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Abstract

This work studies the problem of data-driven modeling and stochastic filtering of complex
dynamical systems. The main contributions are GP-SUM, a filtering algorithm tailored to
systems expressed as Gaussian processes (GP), and the probabilistic modeling of planar
pushing by combining input-dependent GPs and GP-SUM.

The main advantages of GP-SUM for filtering are that it does not rely on linearizations
or unimodal Gaussian approximations of the belief. Moreover, it can be seen as a combi-
nation of a sampling-based filter and a probabilistic Bayes filter as GP-SUM operates by
sampling the state distribution and propagating each sample through the dynamic system

and observation models. Effective sampling and accurate probabilistic propagation are pos-

sible by relying on the GP form of the system, and a Gaussian mixture form of the belief.

In this thesis we show that GP-SUM outperforms several GP-Bayes and Particle Filters on

a standard benchmark.

To characterize the dynamics of pushing, we use input-dependent GPs to learn the

motion of the pushed object after a short time step. With this approach we show that we

can learn accurate data-driven models that outperform analytical models after less than 100
samples and saturate in performance with less than 1000 samples. We validate the results

against a collected dataset of repeated trajectories, and use the learned models to study

questions such as the nature of the variability in pushing, and the validity of the quasi-static

assumption.

Finally, we illustrate how our learned model for pushing can be combined with GP-
SUM, and demonstrate that we can predict heteroscedasticity, i.e., different amounts of

uncertainty, and multi-modality when naturally occurring in pushing.

Thesis Supervisor: Alberto Rodriguez

Title: Associate Professor
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Chapter 1

Introduction

Robotics and uncertainty come hand in hand. One of the defining challenges of robotics

research is to design uncertainty-resilient behavior to overcome noise in sensing, actuation

and/or dynamics. So far however most models of physical interaction in robotics are driven

by experimental laws of friction and impact. These laws, such as Coulomb friction, de-

scribe the macroscopic behavior of contact by compounding variations at the microscopic

level. As a result, one expects them to be accurate at most in a statistical sense.

This work studies the problems of data-driven modeling, simulation and filtering in sys-

tems with stochastic dynamics, with a particular interest in cases where the uncertainty in

the system is complex either because it is action-dependent (heteroscedastic) or because the

distribution over the state space cannot be realistically approximated by a single Gaussian

distribution.

For instance, complex beliefs can naturally arise in manipulation tasks where state or

action noise can make the difference between contact/separation or between sticking/sliding.

The ordinary task of push-grasping a cup of coffee into your hand in Figure 1-1 illustrates

the naturally occurring multimodality. Dogar and Srinivasa [8] used the observation that a

push-grasped object tends to cluster into two clearly distinct outcomes-inside and outside

the hand-to plan robust grasp strategies. Multimodality and complex belief distributions

have been experimentally observed in a variety of manipulation actions such as planar

pushing [41, 4], ground impacts [9], and bin-picking [32].

In this work, we study and model the dynamics of pushing as it is a simple manipulation

15



Figure 1-1: Push-grasp of a coffee cup. A small change in the initial contact between the
hand and the cup, or a small change in the hand's motion can produce a very distinct-
multimodal-outcome either exposing (top) or hiding (bottom) the cup's handle from the
hand's palm.

task which already shows interesting statistical behavior. In previous work [41] we provide

empirical evidence of the variability in the outcome of a planar push and the complexity of

the state distributions formed over time when repeating the same action. Figure 1-2 shows

that a series of pushes (center), indistinguishable to sensor and actuator resolution, yields

divergent outcomes, while a different set of pushes (left) yields a more convergent set of

outcomes. Some pushes are more precise than others, and some yield multi-modal behavior

(right).

The main contributions of this work are:

- Propose a new algorithm GP-SUM to track complex state beliefs through a dynamic

system expressed as a Gaussian process (GP) without the need to either linearize the

transition or observation models or relying on unimodal Gaussian approximations of

the belief.

- Learn a compact data-driven model that captures the first two moments, i.e., mean

and variance, of the expected behavior of a pushed object after a short period of time.

- Combine the learned model for the dynamics of pushing with the algorithm GP-SUM

to reason about the propagation of uncertainty over long pushes. We expect that this

technique can be the basis for more realistic simulation, can aid in the design of

robust plans or control policies, and can yield more statistically sound inference.

16



Figure 1-2: This work learns a data-driven model of the most likely outcome and the ex-
pected variability involved in pushing an object. The image shows three different pushes
whose outcome (repeated 100 times) yields very different distributions: (left) convergent,
(center) divergent, and (right) multi-modal. We show in green the trajectories of the center
of mass of the block, and in red an ellipse approximating the distribution of final poses.
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1.1 Model learning: heteroscedasticity

We are interested in learning the statistical mechanics of the planar pusher-slider system

[26, 10, 24, 12] where a frictional point contact pushes on a planar object sliding on a

frictional surface. To this aim we rely on the MIT pushing dataset [41] to learn and test the

model and contribute in Section 5.2 with an addendum to the dataset with repeated pushes

in a grid of pushing locations and directions designed to validate the variances predicted by

the model (the new dataset is available online [1]).

The model used to learn the dynamics of pushing is based on a family of Gaussian

processes called Heteroscedastic Gaussian processes (HGPs), along with their state-of-the-

art variational implementation [22]. This model targets phenomena with input-dependent

noise, i.e., when the amount of noise introduced by the system depends on the action.

Section 6.1 uses it to estimate the most likely outcome of a push and its variance. To prove

the accuracy of the model we evaluate the push predictions for four objects sliding on four

materials. The accuracy is measured by the mean square prediction error (NMSE) and the

normalized log probability density (NLPD), and compared to normal Gaussian processes

and a common analytical model [25]. Finally, in Section 6.3 we validate the predicted

probability distributions based on the KL-divergence distance to ground truth estimates of

the distribution from repeated pushes.

1.2 Uncertainty propagation: GP-SUM

Given a robotic system where its dynamics are described by Gaussian processes, we pro-

pose the algorithm GP-SUM to propagate over time the evolution of the system state in

a probabilistic manner. GP-SUM operates by sampling the state distribution, so it can be

viewed as a sampling-based filter. It also maintains the basic structure of a Bayes filter by

exploiting the GP form of the dynamic and observation models to provide a probabilistic

sound interpretation of each sample, so it can also be viewed as a GP-Bayes filter.

We compare GP-SUM's performance to other existing GP-filtering algorithms like GP-

UKF, GP-ADF and GP-Particle Filter in a standard benchmark [6, 31]. GP-SUM shows

18



better filtering results both after a single and multiple filtering steps with a variety of met-

rics, and requires significantly less samples than standard particle filtering techniques.

We demonstrate the use of GP-SUM to predict the expected distribution of outcomes

when pushing an object. From modeling the dynamics of pushing we show in Section 6.1

that planar pushing produces heteroscedastic and multimodal behavior, i.e., some actions

are more deterministic than others and distributions can break down into components. GP-

SUM successfully recovers both when applied to a GP learned model of planar pushing.

We compare the results against trajectories simulated with less efficient Monte Carlo-based

simulations.

Both actions and sensed information determine the shape of the belief distribution. This

thesis provides an efficient algorithm for tracking distributions tailored to the case where

the observation and transition models are expressed as GPs.
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Chapter 2

Related work

In this chapter we describe in detail both the previous work done to model pushing be-

haviour, and the existing literature on Bayes filtering algorithms that resemble GP-SUM.

2.1 Data-driven modeling of pushing

There is significant excitement surrounding empirical data-driven techniques for robotic

manipulation [33, 2]. Recently Huang et al. [13] surveyed efforts to create datasets of ob-

ject manipulation. The high-fidelity dataset on planar pushing interaction by Yu et al. [41]

is specially relevant to this work. It contains recordings of pushing motions and forces for

different dimensions of shape, material, pushing direction, location, velocity, and accelera-

tion. It also provides empirical evidence of the variability of the pushing process, which is

the basis of the learned models in this thesis.

Over the years, several works have applied data-driven techniques to the problem of

planar pushing [36, 40, 21, 27, 42]. Most recently, Zhou et al. [42] presented a data-

driven but physics-inspired model for planar friction. The algorithm approximates the limit

surface representation of the relationship between frictional loads and motion twists at a

planar contact, and is the state-of-the-art in data-efficient friction modeling in robotics. All

these algorithms study the problem of controlling a pushed object in a data-driven fashion,

but to our knowledge, no previous work has attempted to model both the expected behavior

and the experimental variability.
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In this work we use a probabilistic model of the Gaussian processes family to pre-

dict the outcome of a push. Gaussian processes are used often to capture both mean and

variance of a dynamic system. For example Paolini et al. [32] use Gaussian processes to

learn both the transition dynamics and the observation model of prehensile manipulation

tasks. We explicitly consider the dependence of the noise in the transition dynamics with

the input action by considering the heteroscedastic Gaussian processes introduced by Le

and Smola [23]. Kersting et al. [14] proposed a simplified learning algorithm based on

maximum likelihood approach, which tends to underestimate noise levels. Lazaro-Gredilla

and Titsias [22] solve this problem by introducing a variational heteroscedastic Gaussian

process algorithm which we use in this work.

2.2 GP-Bayes filtering: GP-SUM

Gaussian processes (GPs) have proved to be a powerful tool to model the dynamics of com-

plex systems [17, 30, 32], and have been applied to different contexts of robotics including

planning and control [29, 7, 28], system identification [17, 11, 3], or filtering [16, 6, 31].

In this work, we study the problem of propagating and filtering the state of a system by

providing accurate distributions of the state. When the models for the dynamics and mea-

surements are learned through GP regression, the filtering algorithms are referred as GP-

Bayes filters. Among these algorithms, the most frequently considered are GP-EKF [16],

GP-UKF [16] and GP-ADF [6], with GP-ADF regarded as the state-of-the-art.

All these GP-filters rely on the assumption that the state distribution is well captured

by a single Gaussian and depend on several approximations to maintain that Gaussianity.

GP-EKF is based on the extended Kalman filter (EKF) and linearizes the GP models to

guarantee that the final distributions are Gaussian. GP-UKF is based on the unscented

Kalman filter (UKF) and provides a Gaussian distribution for the state using an appropriate

set of sigma points that captures the moments of the state. Finally, GP-ADF computes

the first two moments of the state distribution by exploiting the structure of GPs and thus

returns a Gaussian distribution for the state.

GP-SUM instead is based on sampling from the state distributions and using Gaussian
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mixtures to represent these probabilities. This links our algorithm to the classical problem

of particle filtering where each element of the mixture can be seen as a sample with an

associated weight and a Gaussian. As a result, GP-SUM can be understood as a sampling

algorithm that benefits from the parametric structure of Gaussians to simplify its compu-

tations and represent the state through weighted Gaussians. Another sampling algorithm

for GP-filtering is provided in [16] where they propose the GP-PF algorithm based on the

classical particle filter (PF). However, when compared to GP-UKF or GP-EKF, GP-PF is

less reliable and more prone to give inconsistent results.

In the broader context of Bayes filtering where the dynamics and observation models

are known, multiple algorithms have been proposed to recover non-Gaussian state distribu-

tions. For instance, we can find some resemblances between GP-SUM and the algorithms

Gaussian Mixture Filter (GMF) [38], Gaussian Sum Filter (GSF) [19], and Gaussian Sum

Particle Filtering (GSPM) [19]; all using different techniques to propagate the state distri-

butions as sum of Gaussians. GPM considers a Gaussian mixture model to represent the

state distribution, but the covariance of each Gaussian is equal and comes from sampling

the previous state distribution and computing the covariance of the resulting samples; GP-

SUM instead recovers the covariance of the mixture from the dynamics of the system. GSF

is as a set of weighted EKF running in parallel. As a consequence it requires to linearize the

system models while GP-SUM does not. Finally GSPM, which has proven to be superior

to GSF, is based on the sequential importance sampling filter (SIS) [19]. GSPM samples

from the importance function which is defined as the likelihood of a state x given an ob-

servation z, p(xIz). GP-SUM instead does not need to learn this extra mapping, p(xIz), to

effectively propagate the state distributions.

Other algorithms relevant to GP-SUM are the multi-hypothesis tracking filter (MHT)

[5] and the manifold particle filter (MPF) [20]. MHT is designed to solve a data association

problem for multiple target tracking by representing the joint distribution of the targets as a

Gaussian mixture. Instead, MPF is a sample-based algorithm that has been recently applied

to several manipulation tasks with complex dynamics. MPF exploits the contact manifolds

of the system by collapsing the distribution defined by the samples into that manifold.

An advantage of GP-SUM is that it can be viewed as both a sampling technique and
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a parametric filter. Therefore most of the techniques employed for particle filtering are

applicable. Similarly, GP-SUM can also be adapted to special types of GPs such as het-

eroscedastic or sparse GPs. For instance, GP-SUM can be easily extended to the case where

sparse spectrum Gaussian processes (SSGPs) are considered by using the work from Pan

et al. [31]. This implies that GP-SUM can be made significantly faster by using sparse GPs

for the dynamics and observation models of the system.
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Chapter 3

Background: Gaussian processes and

Bayes filtering

This work focuses on the classical problem of modeling and filtering when the dynamics

and observation models of the system are learned through Gaussian process regression.

In this section, we introduce the reader to the concepts of Bayes filtering and Gaussian

processes.

3.1 Bayes filters

The goal of a Bayes filter is to track the state of the system, xt, in a probabilistic setting.

At time t, we consider that an action ut_1 is applied to the system making its state evolve

from xt1 to xt, and an observation of the new state, zt, is obtained. As a result, a Bayes

filter computes the state distribution, p(xt), conditioned on the history of actions and ob-

servations obtained: p(xtlui:t 1, zi:t). This probability is often referred as the belief of the

state at time t.

In general, a Bayes filter is composed of two steps: the prediction update and the mea-

surement or filter update following the terminology from [39].

Prediction update. Given a model of the system dynamics, p(xtlxt_1, ut-), the pre-
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diction update computes the prediction belief, p(xt jui:t_1, zi ti ), as:

p(xtIU:t_1, ZI:t-1)

p(Xt IXt _1, ut-1)p(Xt_1|Uit-2, Zi~t_1)dxt _ (.I

where p(Xt ItUL:t-2, Zi:t-i) is the belief of the system before applying the action ut1.

Thus the prediction belief can be understood as the pre-observation distribution of the

state at time t while the belief would be the post-observation distribution. In general, the

integral in (3.1) can not be solved analytically and different approximations must be used

to simplify its computation. Among these simplifications, it is common to linearize the

dynamics of the system as it is classically done in the EKF or to directly assume that the

prediction belief is Gaussian distributed [39].

Measurement update. Given a new measurement of the state, Zt, the belief at time t

can be obtained by filtering the prediction belief. The belief is recovered using the obser-

vation model of the system p(ztlxt) and applying the Bayes' rule:

P(xt lui~t' Zi:t) -p(ztIxt)p(xtUi:t-1, Zi:t-1) (3.2)
p(ze lUi:t _1, Z1:t-1)

This expression usually can not be solved in a closed form and several approximations

are required to estimate the new belief. Linearizing the observation model or assuming

Gaussianity are again common approaches [39].

Note that the belief at time t can be directly expressed in a recursive manner using the

previous belief, and the transition and observation models:

P(XtlUi t_1, Zi:t) Oc
(3.3)

p(ztlxt) I Axt IXt- 1, Ut _1)P(Xt_|t- 2, ziUt _1)dxt _1(3 )

We will show in Section 4.1 that the same idea of recursion can be applied to the pre-

diction belief, which is a key element for our algorithm GP-SUM.

In general, the dynamics and observation models are considered known and given by

parametric descriptions. However, in real systems it is often the case that these models
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are unknown and it is convenient to learn them using non-parametric approaches such as

Gaussian processes. This proves specially beneficial when the actual models are complex

and parametric approaches do not provide a fair representation of the system behavior

[7, 4].

3.2 Gaussian processes

Gaussian processes (GPs) provide a flexible and non-parametric framework for function

approximation and regression [35]. In this work, GPs are considered when modeling the

dynamics of the system as well as its observation model. There are several advantages in

using GPs over traditional parametric models. First, GPs can learn high fidelity models

from noisy data as well as estimate the intrinsic noise in the system. Moreover, GPs can

also quantify how certain are their predictions given the available data hence measuring

the quality of the regression. For each point in the space, GPs provide the value of the

expected output together with its variance. In practice, for each input considered, a GP

returns a Gaussian distribution over the output space.

In classical GPs [35], the noise in the output is assumed to be Gaussian and constant

over the input:

y(x) =f(x) + E (3.4)

where f(x) is the latent or unobserved function that we want to regress, y(x) is a noisy

observation of this function at the input x, and E - N(O, a2 ) represents zero-mean Gaussian

noise with variance o.

The assumption of constant Gaussian noise together with a GP prior on the latent func-

tion f(x) makes analytically inference possible for GPs (3.5). In practice, to learn a GP

model over f (x) you only need a set of training points, D = {(x,, y,)} n 1 , and a kernel

function, k(x, x'). Given a new input x,, a trained GP assigns a Gaussian distribution to
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the output y, = y(x*) that can be expressed as:

p(yIx,, D, a) = N(y la*, c2 + 02)

a* = kT(K + c 2 I<-y (3.5)

C = k_ - k(K + c 2I--k*

where K is a matrix that evaluates the kernel in the training points, [K]Lj = k(xi, xj), k*

is a vector with [k*]i = k(xi, x*) and k* is the value of the kernel at x,, k** = k(x*, x*).

Finally, y represents the vector of observations from the training set, and a is the set of hy-

perparameters including o 2 and the kernel parameters that are optimized during the training

process.

A notable property of GPs is that the expected variance of the output y* comes from the

addition of two variances: 72 and c2 (3.5). The first one, o7 2 , is constant and represents the

overall noise of the data. The second one, c2, depends on the input x* and is only related to

the regression error.

In this work we consider the ARD-SE kernel [35] which provides smooth represen-

tations of f(x) during GP regression and is the most common kernel employed in the

literature of GPs. However, it is possible to extend our algorithm to other kernel functions

as it is done in [31].

3.3 Heteroscedastic Gaussian processes

Assuming that the noise of the process 72 is constant over the input space is sometimes

too restricting. Allowing some regions of the input to be more noisy than others is spe-

cially beneficial for those systems with converging and diverging dynamics. Algorithms

where GPs incorporate input-dependent noise have proven useful in different context such

as mobile robot perception [14], volatility forecasting [22] and robotic manipulation [4]. In

Section 4.3, we explore the benefits of combining GP-SUM with input-dependent GPs to

characterize the long term dynamics of planar pushing.

The extensions of GPs that incorporate input-dependent noise are often referred as Het-
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eroscedastic Gaussian processes (HGPs). This implies that they can regress both the mean

and the variance of the process for any element of the input space. Then, the main concep-

tual difference between GP and HGP regression is that for HGPs observations are assumed

to be drawn from:

y(x) = f (x) + c(x) (3.6)

where E(x) ~ N(0, o.2 (x)) explicitly depends on x compared to (3.4) where E is a random

variable independent of x.

To model the dynamics of planar pushing in this work we consider the state of art algo-

rithm for HGPs called variational HGP (VHGP) proposed by Lazaro-Gredilla and Titsias

[22]. Using Bayesian variational theory they derive closed-form solutions for the mean and

variance of the process considering input dependent noise. As a result, the probability of

an observation y,, is given by:

p(y.|x,, D, a) = N(y,a,, c + e*+ d /2)

a* = kf*(Kf + R) -y

C = k - k*(Kf + R) kf* (3.7)

1
b* = kg(A - II) I+p/-o

2

kg** -k K - A 1 ->1 kg*

where kf and kg are the ARD-SE kernels of the mean f(x) and the logarithm of the variance

g(x) = log U 2 (x). The matrix R is diagonal with [R]ii = f 2 (X,), , is the hyperparam-

eter of the log-variance mean and A is a positive semidefinite diagonal matrix optimized

together with the other hyperparameters using conjugate gradient descent.

The similarity between the inference equations for GPs and VHGPs is remarkable. The

term c* makes equally reference to the mean error due to the regression process and the

equation for a* is essentially the same. The constant noise o.2 in GPs however is substituted

by the input-dependent expression eb*+ds/2, the expected noise of the process at the input

x*. In terms of computational cost, GPs and VHGPs scale alike with the amount of training

data.

29



Given its nature, GP-SUM can be extended to systems where the models for the transi-

tions and measurements are given by heteroscedastic GPs. This is exemplified in Chapter 7

during the study of planar pushing where, depending on the type of push, the motion of the

object is more or less predictable [4].
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Chapter 4

GP-SUM Bayes filter

In this chapter we present GP-SUM, discuss its main assumptions, describe its computa-

tional complexity, and evaluate and compare its performance.

4.1 The algorithm

Given that GP-SUM is a GP-Bayes filter, our main assumption is that both the dynamics

and the measurement models are represented by GPs. This implies that for any state and

action on the system the probabilities p(xtxt_1, ut_) and p(ztlxt) are available and are

Gaussian.

To keep track of complex beliefs, GP-SUM does not approximate them by single Gaus-

sians, but considers the weaker assumption that they are well approximated by Gaussians

mixtures. Given this assumption, in Section 4.1.1 we exploit that the transition and obser-

vation models are GPs to correctly propagate the prediction belief, i.e. the pre-observation

state distribution. In Section 4.1.2 we obtain a close-form solution for the belief expressed

as a Gaussian mixture.
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4.1.1 Updating the prediction belief

The main idea behind GP-SUM is described in Algorithm I and derived below. Consider

(3.1) and (3.3), then the belief at time t in terms of the prediction belief is:

p(xtLui:t-1, Z1:t) c p(ztxt) - p(xtjui:t_1, Zi:t i) (4.1)

If the prediction belief at time t - 1 is well approximated by a finite Gaussian mixture,

we can write:

P(xt- I11t2, Zi:t-2)

Mt- 1  (4.2)

S j-~ AF(xt~1 -tt-,i Z11-,i)
i=1

where Mt_1 is the number of components of the Gaussian mixture and Wt_,, is the weight

associated with the i-th Gaussian of the mixture .A(xt 1Lt-1,j, Et_1,).

Then we can compute the prediction belief at time t combining (3.1) and (4.1) as:

p(Xt 1ti:t-1, zi1:t_1) =

p(xtlxt-1, Ut_1)P(Xt-i IU-t-2, zi:t-1)dxtj c (4.3)

p(Xt xti , Ut-I )P(zti-Xt-i)P(xt_1|'U:t-2, zi:t-2)dxt-I

Given the previous observation zt_1 and the action ut1, the prediction belief at time t

can be recursively computed using the prediction belief at time t - 1 together with the tran-

sition and observation models. If p(xt- 11:t-2, Z:t_1) has the form of a Gaussian mixture,

then we can take Aft samples, {xt_j}]f, and approximate (4.3) by:

P(XtZL:t_1, Zi:t-1) Oc

Mt (4.4)
Sp(xjtxt _,y, ut-,j)p(zt-ilxt-,j)

j=1

Because the dynamics model is a GP, p(xtlXt_1,j, Ut_1) is the Gaussian A(x I1t,j, Eig),

and p(zt1 Ixt_1,) is a constant value. As a result, we can take:
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Lt p(zt_1|xt_1,j) (4.5)
A" p (z t _11Xt-1,k )

and express the updated prediction belief again as a Gaussian mixture:

Aft

p(Xt1Ui:t_1, '1ti _1) = it *e~ . (xtIp/tj, Etj) (4.6)
j=1

In the ideal case where M tends to infinity for all t, the Gaussian mixture approximation

for the prediction belief converges to the real distribution and thus the propagation over

time of the prediction beliefs will remain correct. This property of GP-SUM contrasts with

previous GP-Bayes filters where the prediction belief is approximated as a single Gaussian.

In those cases, errors from previous approximations inevitably accumulate over time.

Note that the weights in (4.5) are directly related to the likelihood of the observations.

As in most sample-based algorithms, if the weights are too small before normalization,

it becomes a good strategy to re-sample or modify the number of samples considered. In

Section 4.3 we address this issue by re-sampling again from the distributions while keeping

the number of samples constant.

Algorithm 1 Prediction belief recursion

SUM-GP({p1_t_.1j, Et _1j, wt-_1 }A-", ut_1, z_,M)

{Xt_1}d = sample({pt- 1,, Et_,, wt-1 i }MI, MAl)

forj {1,.. , Mt} do

ptj = GP,(xt 1,j, ut 1)

Etjy = GPE (xt,,j, ut -1)

oWtj = p(zt_1xt_1j)

end for

{wtj }I" = normalize.weights( wt }jAt)
return {fpt,j, Et,j,wtj}/91
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4.1.2 Recovering the belief from the prediction belief

After computing the prediction belief, we can use the observation zt to compute the belief

as another Gaussian mixture using (4.1):

Alt

p(Xt lui:t_1, zi.t) ~c pllztlxt) E t'j - )V(Xt1ptts, E-t j)

it j=1 (4.7)

= wtj -p( Ztjxt )A(xtjpt j, Et j )
j=1

Note that if p(ztjXt)N(Xtjptt, Etj) could be normalized and expressed as a Gaussian

distribution, then the belief at time t would directly be a Gaussian mixture. In most cases,

however, p(zI Ixt)V(xt I Ltt, Et) is not proportional to a Gaussian. For those case, we find

different approximations in the literature (see Algorithm 2). For instance, the algorithm

GP-EKF [16] linearizes the observation model to express the previous distribution as a

Gaussian.

Algorithm 2 Belief recovery

belief-computation({p[tt, Et'j, Wte } AI, zt, Mt):

forj {1 ... ,Mt} do

pti, -t, = Gaussian-approx( p(zt xt)F(xtjptj, E,) )
end for

{pt'j} d = {bet} j1

return {4tj, Zt, j lij

In this work, we exploit the technique proposed by Deisenroth et al. [6] as it preserves

the first two moments of p(ztlxt)V(xtljitj, Etj and has proven to outperform GP-EKF

[6]. This approximation assumes that p(xt, Zt lu:t_1, Zi:t_1) = p(zt1Xt)p( tIUi:t-1, Zi:t1)

and p(ztlui t_i, zi:t-1) = f p(xt, Ztjuji:t_, zit-1 )dxt are both Gaussians. Note that this is

an approximation, and that is only true when there is a linear relation between xt and zt.

Using this assumption and that p(ztlxt) is a GP, p(ztjxt)A(xtjptj, Et) can be approxi-

mated as a Gaussian by analytically computing its first two moments [6]. As a result, we

recover the belief as a Gaussian mixture.

It is important to note that this approximation is only necessary to recover the belief,
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but does not incur in iterative filtering error. GP-SUM directly keeps track of the prediction

belief, for which the approximation is not required.

4.2 Computational complexity

The computational complexity of GP-SUM depends on the number of Gaussians consid-

ered at each step. For simplicity, we will now assume that at each time step the number

of components is constant, Al. Note that the number of samples taken from the prediction

belief corresponds to the number of components of the next distribution. Propagating the

prediction belief one step then requires taking Al samples from the previous prediction be-

lief and evaluate M times the dynamics and measurement models. The cost of sampling

once a Gaussian mixture can be considered constant, 0(1), while evaluating each model

implies computing the output of a GP and takes 0(n2 ) computations where n is the size

of data used to train the GPs [35]. Therefore the overall cost of propagating the prediction

belief is O(Mn2 + Al) where n is the largest size of the training sets considered. Ap-

proximating the belief does not represent an increase in O-complexity as it also implies

0(A In2 ) operations [6].

Consequently GP-SUM's time complexity increases linearly with the size of the Gaus-

sian mixture while providing a more realistic approximation of the belief and better filtering

results (see Section 4.3). To further reduce the computational cost of GP-SUM, sparse GPs

can be considered. For instance, combining GP-SUM with SSGPs [31] makes the evalua-

tion of the GP models decrease from O(n2 ) to O(k 2 ) with k < n.

4.3 Evaluation and comparison

We evaluate the performance of our algorithm in a standard synthetic task for nonlinear

state space models [6, 15] where our algorithm proves it can outperform previous GP-

Bayes filters1 .

'The implementations of GP-ADF and GP-UKF are based on [6] and can be found at https:
//github.com/ICL-SML/gp-adf.
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Figure 4-1: Non-linear dynamics and measurement model of the ID system presented in
Section 4.3. The dynamics are specially non-linear around zero which will potentially lead
to unstable behavior and multi-modal state distributions.
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Figure 4-2: Graphical example of how GP-SUM, GP-ADF and Gauss GP-SUM propa-
gate complex state distributions. In this case, the prior has yo = 0 making the dynamics
extremely nonlinear around it. As a result, the prediction belief and the belief become mul-
timodal in the first time steps. Compared to GP-ADF, GP-SUM can express properly these
complex distributions and its predictions are more accurate. The belief at time t = 1 for
GP-SUM clearly points out that there are three narrow regions for the location of the true
state while GP-ADF only considers a Gaussian wide enough to enclose them all.
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To compare GP-SUM to other existing GP-Bayes filters we consider the following I D

dynamical system:

xt+1 = Xt + 2 5xt w ~ A(0,0.22) (4.8)

and observation model:

zt+1 = 5 sin 2xt + v v ~ A(0, 0.012) (4.9)

illustrated in Figure 4-1. The GP models for prediction and measurement are trained us-

ing 1000 samples uniformly distributed around the interval [-20, 20]. GP-SUM uses the

same number of Gaussian components over all time steps, Al = At = 1000. The prior

distribution of xo is Gaussian with variance o = 0.52 and mean [o E [-10, 10]. /-o is mod-

ified 200 times to assess the filters in multiple scenarios and becomes specially interesting

around x = 0 where the dynamics are highly nonlinear. For each value of Po, the filters

take 10 time steps. This procedure is repeated 300 times to average the performance of

GP-SUM, GP-ADF, GP-UKF, and GP-PF, described in Section 2. For GP-PF, the number

of particles is the same as GP-SUM components, A = 1000.

The error in the final state of the system is evaluated using 3 metrics. The most relevant

is the negative log-likelihood, NLL, which measures the likelihood of the true state accord-

ing to the predicted belief. We also report the root-mean-square error, RMSE, even though

it only uses the mean of the belief instead of its whole distribution. Similarly, the Maha-

lanobis distance, Maha, only considers the first two moments of the belief so we have to

approximate the belief from GP-SUM by a Gaussian. For the GP-PF we only compute the

RMSE given that particle filters do not provide close-form distributions. In all the metrics

proposed, low values imply better performance.

From Table 4.1 and Table 4.2, it is clear that GP-SUM outperforms the other algorithms

in all the metrics proposed and can be considered more stable as it obtains the lowest

variance in most of the metrics. In the first time step, GP-PF is already outperformed by

GP-SUM and GP-ADF, and after a few more steps in time, particle starvation becomes a

major issue for GP-PF as the likelihood of the observations becomes extremely low. For
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Table 4.1: Comparison between GP-filters after 1 time step.
GP-ADF GP-UKF GP-SUM GP-PF

Error pka k pktA a Pki

NLL 0.49 0.17 95.03 97.02 -0.55 + 0.34 -
Maha 0.69 0.06 2.80 0.72 0.67 0.04 -

RMSE 2.18 0.39 34.48 23.14 2.18 0.38 2.27 i 0.35

Table 4.2: Comparison between GP-filters after 10 time steps
GP-ADF GP-UKF GP-SUM GP-PF

Error pIki p 0 p a Ta
NLL 9.58 15.68 1517.17 7600.82 -0.24 t 0.11 -
Maha 0.99 i 0.31 8.25 3.82 0.77 0.06 -

RMSE 2.27 t 0.16 12.96 t 16.68 0.19 0.02 N/A

2 4 6 8 11
NLL vs. time steps

Figure 4-3: Evolution over time of the negative log-likelihood, NLL. In the first time steps
the shape of the real belief is more likely to be non-Gaussian and this explains why GP-
SUM performs better than both GP-ADF and the Gaussian approximation of GP-SUM,
Gauss GP-SUM. As time evolves, GP-SUM and Gauss GP-SUM converge meaning that
the shape of the real belief tends to become Gaussian. On the other hand, GP-ADF's per-
formance worsens over time because for the cases where the dynamics are highly nonlinear
its predicted variance tends to increase making the likelihood of the true state lower with
time.
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this reason, we did not report a RMSE value for the GP-PF after 10 time steps. GP-UKF

performance is clearly surpassed by GP-SUM and GP-ADF after 1 and 10 time steps.

In Figure 4-2 we compare the true state distributions (computed numerically) to the

distributions obtained by GP-ADF, GP-SUM, and a simplified version of GP-SUM, Gauss

GP-SUM, that takes a Gaussian approximation of GP-SUM at each time step. It becomes

clear that by allowing non-Gaussian beliefs GP-SUM can assign higher likelihood to the

actual state while better approximating the true belief. Instead, GP-ADF can only assign a

single Gaussian wide enough to cover all the high density regions.

In Figure 4-3 we study the temporal evolution of the Negative Log-Likelihood (NLL)

metric for GP-ADF, GP-SUM and Gauss GP-SUM. As the number of steps increases, GP-

SUM and Gauss GP-SUM tend to coincide because GP-SUM tends to become more confi-

dent on the location of the true state and its belief becomes more Gaussian. Figure 4-3 also

shows that GP-ADF worsens its performance over time. This is due to those cases where

the dynamics are highly non-linear, i.e. around zero, and the variance of GP-ADF increases

over time. As a result, at the cost of larger computational expense, the expressiveness of

its distributions and the lack of heavy assumptions makes GP-SUM a good fit for those

systems where multimodality and complex behaviors can not be neglected.
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Chapter 5

Pusher-Slider Data

Given that this thesis aims to model the probabilistic behavior of the pusher-slider system,

illustrated in Figure 5-1, we include this chapter to describe the data used to learn and

validate the models. We are interested in learning the behavior of the slider as an input-

output relationship. As illustrated in Figure 5-2 the representation for the input space is:

vP : Magnitude of the velocity of the pusher.

c : Contact point on the perimeter of the slider.

/ : Pushing angle.

and the representation for the output space is:

Ax :COM x displacement in the pusher ref. frame.

Ay : COM y displacement in the pusher ref. frame.

A O : Orientation change.

after a push for At seconds. These parameters are sufficient to characterize simple models

of planar point pushing [25, 12].

In this work we use two sets of data: a large-scale general purpose dataset of planar

pushing for learning, and a dataset with repeated pushes we collected for the purpose of

validating the results. In particular we validate the model prediction of the variance for the

outcome of a push.
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pusher surface

object _e

Figure 5-1: Experimental setup. The interaction between the pusher (vertical rod) and
the object (square block) is recorded through a Vicon tracking system and a force-torque
sensor. The system has been designed to provide a clean interface between the pusher and
slider, and is described in detail in Yu et al. [41].

- 1 

CL

V P

(a) (b)

Figure 5-2: Input/output space for the dynamics of the pusher-slider system. (a) The input is
parametrized with the distance c that captures the contact point along an edge of the square
(for objects without symmetries, contact points are evenly spaced along their perimeter),
the angle of push #, and its velocity vp. (b) The output is parametrized with (Ax, Ay, AO),
the displacement of the object in a reference frame aligned with the push direction.
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5.1 Learning Data

In previous work [41] we captured a large set of planar pushes with the robotic setup in

Figure 5-1, composed of a high-precision industrial robot fitted with a cylindrical pusher

and stainless steel objects of different shapes sliding on surfaces of different materials. The

system records the trajectories of the pusher and object and the force at the interaction.

We will show in later sections that 100 samples are sufficient in average to outperform

analytical models, and model accuracy saturates with less than 1000 samples.

5.2 Validation Data

Our goal is to predict reliably the object's expected motion and its variance:

A p ~ px(U), o (U)

Ay - uy9(u), o (U) (5.1)

AO '- [t0(Z),O,('a)

where u = (Vc, c) is the input/action and p(u) and 02 (u) are the input-dependent ex-

pected outcome and variance. The dependence of the variance u2 (U) with the input i is the

key complexity we address in this work, motivated by the example in Figure 1-2, and leads

us to consider HGPs instead of standard GPs.

To validate the observation that the output noise depends on the input, we collected

a new dataset in the same setup in Figure 5-1 containing 100 repetitions of each push

considered, which gives us an approximate distribution of the object motion. In this new

dataset, the pusher follows a straight trajectory of 1cm long at 20mm/s. The initial contact

angles go from - 1.5 to + 1.5 radians spaced by 0.1 radians while we consider 11 different

initial contact points evenly spaced on the side of the object. This produces a sufficiently

dense grid of pushes allowing us to extract for each push the expected mean and variance

of the object motion. This dataset is available online [1].

Besides validating the proposed model, the new dataset also provides empirical evi-
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dence to study the variability of the pushing process, including multi-modality effects.
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Chapter 6

The Dynamics of Pushing

6.1 The learned model

In this section we describe in more detail the process to learn the pushing model for the

four objects in Figure 6-1 sliding on a horizontal surface of four different materials.

To compute the pushing model of a certain pair object-surface, we train three inde-

pendent VHGPs, one for each output Ax, Ay, and AO. While not optimal from a data-

efficiency perspective, since we neglect the existing correlations between the outputs vari-

ables, it proves sufficient in terms of performance as long as enough training data is used.

For future work it would be interesting to combine multi-task GP prediction with het-

eroscedastic GPs.

Once each VHGP is trained, we visualize the effect of different pushes given a fixed

velocity. Each push is defined by the contact point c and the pushing angle 3. Figure 6-2

shows the regressed distribution for the case where the pusher's velocity is v, = 20mm/s,

the object shape is a square, and the surface is plywood. In accordance with intuition, we

Figure 6-1: Objects used for learning, from Yu et al. [41].
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Figure 6-2: Expected displacement after a push (units: mm and rad). The first row
shows the predicted outputs by the learned VHGP model for a fixed velocity vp = 20mm/s
after a push of At = 0.2 sec, for different contact point locations and push angles. The
result is remarkably similar to the expected outputs from the validation data in the 3rd row.
The symmetries in the plots are due to the symmetries of the square. The second row shows
pushes that are predicted to yield high displacement in Ax (c = 0.5, / = 0), Ay (c = 0.7,
/3 = 0.7), and AO (c = 1.0, 3 = 0) correspondingly.
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see that the displacement in the pusher's direction Ax is maximum when pushes are done

at the center of the edge, c = 0.5, and perpendicular to the edge, # = 0. The maximum

change in orientation happens when pushing in between the edge center and the vertex with

a pushing angle of / = +300 if c = 0.75 and / = -30' if c = 0.25.

Analogously, Figure 6-3 shows the modeled and experimental standard deviation of the

predicted pushes, as a function of the contact location and direction. We observe that the

magnitude of the noise is in between 10% and 40% of the magnitude of the expected output,

which is significant, and further motivates the work in this thesis.

There are well defined regions that present more noise than others. To a certain degree

the prediction matches well with the validation data, also shown in Figure 6-3. The pre-

cision of the measurement equipment (Vicon tracking system), suggests that the regressed

noise comes principally from the pushing process and not from sensor noise. It is further

indicative that the shape of the regressed noise remains more o less constant when consid-

ering the same object but a different surface.

A data-driven model that captures the uncertainty of interaction, beyond the determin-

istic predictions of standard analytical models gives us a more complete perspective of the

dynamics of pushing. This information can be used to differentiate between more and less

stable pushes, and improve multi-step prediction, by propagating uncertainty.

6.2 Evaluation of the model

We evaluate the performance of the learned model with the standard metrics normalized

mean square error (NMSE) and normalized log probability density (NLPD):

NMSE = - 2 (6.1)
EM (yj - y),

NLPD = -i1 log p(y|D) (6.2)
j=1

where n is the number of elements in the test set and {y} I the observations. We note

with Qj the predicted value from the VHGP model at xj and with Y the mean of the ob-
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servations in the training set. We consider the total NMSE of the model as the sum of the

individual NMSEs for each output. For the total NLPD, we consider p(yj ID) as the product

of the individual probabilities of each output given their respective VHGP.

Note that NMSE, as defined in (6.1), does not take into account the variability of mo-

tion and only considers its expected value . It reflects the squared distance between the

model outputs and the real process normalized by the variance of the observations. The

NMSE is especially useful when comparing the results with deterministic models of push-

ing. The NLPD metric instead, computes how likely are the observations according to a

given probabilistic model. It is more appropriated for evaluating our data-driven models as

they also regress the uncertainty of the motion in (6.2). For the NLPD, lower results imply

a higher likelihood of the data. Consequently NLPD penalizes both underconfident and

overconfident models, so deterministic models can not be fairly evaluated using NLPD.

6.2.1 Evaluation on different objects and materials

Figure 6-4 and Figure 6-5 show the evaluation of the model when trained on four different

surfaces (plywood, Delrin, polyurethane, and ABS) and for four different object shapes

(square, circle and two ellipses, as shown in Figure 6-1). An advantage of VHGPs models

is that they do not require a large amount of data. The plots show that less than 1000

samples are sufficient to saturate performance, which is equivalent to collecting about 5

minutes of pushing experiments in our setup if we use At = 0.2s. Therefore our VHGP

models can provide good planar push models of new objects and surfaces without having to

go through an extensive data collection. The fact that VHGPs performance remains more

or less constant after a certain amount of data also suggests that the pushing motion is a

sufficiently well defined process and simple enough to be learned in general from a reduced

exploration of the environment.

6.2.2 Comparison with other models

In this n we compare the performance of VHGP against a standard GP model, and a com-

monly used analytical model [25]. GP and VHGP show a similar NMSE. This is expected
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of the training set. We observe that the model is not very sensitive to the type of surface
considered as the errors in NMSE and NLPD are reasonably similar. Higher NLPD in
delrin and plywood could be due to higher degradation with time.

Table 6.1: NMSE and NLPD comparisons between models
Outputs Analytical GP VHGP
NMSE 0.72 0.38 0.37
NLPD - -2.82 -3.73
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since NMSE only evaluates the most likely outcome, and both GPs and VHGPs have a very

similar formulation for the regressed mean. The difference in NLPD however, justifies the

need of input-dependent noise to explain the stochastic behaviour of pushing. As all inputs

in a classical GP are supposed to have the same noise, all the observations become equally

weighted during training. Instead, in VHGPs those observations from lower noise regions

have higher relevance in the regression process.

We also compare our data-driven model with the analytical model proposed by Lynch

et al. [25], that relies on assumptions of quasi-static, uniform pressure distribution, uniform

coulomb friction, and an ellipsoidal approximation to the limit surface.

The proposed data-driven model, instead of relying on a perfect knowledge of the

object-surface interaction, outputs a distribution of the motion's outcome that encloses un-

expected behaviours. Figure 6-6 shows that both GPs and VHGPs outperform the analytical

model after 100 samples approximately.

We also observed that for high velocities the analytical model is more unreliable. This

is reasonable as the analytical model assumes a quasi-static interaction and does not take

into account inertia. In our model, those dynamic effects are captured by adding the pusher

velocity as an input and through the uncertainty of the distribution.

6.3 Validation

The training and testing set used from [41] does not contain sufficient repeated pushes to

estimate ground truth variance for a given push. To validate the distributions predicted

by our model, we captured a benchmark dataset that incorporates repeated trajectories so

that a reliable notion of uncertainty can be extracted from them (the dataset is available in

[1]). The differences between repeated pushes should mainly include the uncertainty in the

object-surface interaction, i.e., the stochastic side of the push itself. Given the samples of

each repeated push, we compute the expected motion of the object and its variance from

the benchmark. Section 5.2 contains a more detailed description of the dataset, and the

bottom rows of Figure 6-2 and Figure 6-3 illustrate the obtained means and variances.

To evaluate the results of the model learned from the training dataset in [41], against the
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Table 6.2: KL divergence between the validation data and the models
KL divergence GP VHGP
Average KL 22.63 15.32
Median KL 5.74 5.34

benchmark dataset, we use the average KL divergence over the pushes. If we assume that

the real distribution of each push comes from three independent Gaussians, we can directly

use the KL divergence between two Gaussian distributions:

KL(p, q) = og 0og )+ U1 (6.3)
2 ( -(T 072

where p = N(/ 1 , o 2) and q = N(pL 2, U2).

The average and median KL divergences of each model show that our model not only

regresses properly the expected motion, but also can predict reasonably well its distribution

(Table 6.2). This is crucial to create robust probabilistic models that can be latter incorpo-

rated into multi-step planning and control.
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Chapter 7

Uncertainty propagation in pushing

Planar pushing is an underdetermined and sometimes undecidable physical interaction [26],

except when making sufficient assumptions and simplifications [10, 24]. It has also been

shown experimentally that uncertainty in frictional interaction yields stochastic pushing

behavior [4, 41]. Moreover, the type of push has a strong influence in the amount of ex-

pected uncertainty, i.e., the level of "noise" in the pushing dynamics is action dependent,

a.k.a., heteroscedastic. This can be observed in Figure 1-2 where three different pushes

repeated multiple times lead to very different distributions for the object position including

multimodality.

A pushing controller could benefit from a model of the heteroscedasticity in pushing

dynamics by preferring those pushes that lead to lower uncertainty. To this end, it is nec-

essary an heteroscedastic pushing model for the dynamics together with an algorithm that

reliably and efficiently propagates uncertainty over time. In this work, we use HGPs to

model the dynamics of pushing as done by Bauza and Rodriguez [4], and GP-SUM to

propagate the uncertainty of the system.

As illustrated in Figure 5-2, we model planar pushing as a HGP that takes as inputs

the contact point between the pusher and the object, the pusher's velocity, and its direction.

The output of the dynamics is the displacement of the object relative to the pusher's motion.

We use the learned HGP model described in Section 6.1 with the real data from the MIT

pushing dataset [41].

Because we are only concerned about simulating the propagation of uncertainty over
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Figure 7-1: Uncertainty propagation during pushing. Figure (a) represents two different
pushes and several trajectories obtained from those pushes by propagating the HGP dy-
namics in time. Figure (b) shows the evolution of the state distribution provided by GP-
SUM over time. For simplicity, until the last time step we only show the mean of each
Gaussian component where different colors represent different time steps. Both pushes
present ring-shaped distributions and multimodality: the one on top presents more sym-
metric distributions while the one on the bottom is asymmetric because the object is more
likely to remain to the left of the pusher's direction. The modes disconnected from the main
distribution are due to the lose of contact with the pusher. This can be due to the object
orientation which has been omitted in the plots to enable a clear visualization of the results.

U0

o ooo o oooooooooooo ooooo ooobl>>o o o o

Figure 7-2: Comparison of two pushes with different levels of noise. One push is clearly
noisier than the other as it generates a much wider distribution of the object position from
the beginning. This is in part possible because the dynamics, given by an HGP, consider
input-dependent noise.
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time, we do not consider a measurement model. As a result, when using GP-SUM the

prediction belief and the belief coincide and all the components in the Gaussian mixtures

have the same weights.

Given that the distribution of the object position tends to become non-Gaussian over-

time, GP-SUM can obtain more accurate results than other algorithms. Figure 7-1 shows

the resemblance between sampled trajectories from propagating the dynamics in time in

a Monte-Carlo fashion and the distributions obtained by GP-SUM. It also becomes clear

that the shape of the distributions recovered by GP-SUM are ring-shaped and even multi-

modal which can not be captured by standard GP-Bayes filters that predict single Gaussian

distributions.

Being able to propagate the uncertainty of the object position over time exposes inter-

esting properties of the planar push system. For instance in Figure 7-2 we observe two

different pushes and how the belief for the object position evolves. It becomes clear that

one of the pushes leads to more noisy distributions. Being able to recover these behav-

iors is specially useful when deciding what are the best pushes to exert. If our goal is to

push an object to a specific region of the space, then it would be advantageous to consider

those pushes that lead to narrower (low-variance) distributions and avoid those that involve

multimodal outcomes because they are often harder to control.
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Chapter 8

Conclusion

In this chapter we discuss the main advantages and limitations of GP-SUM, review the

implications of our probabilistic modeling of pushing and finish by describing future work

directions.

8.1 Discussion on GP-SUM

GP-Bayes filters are a powerful tool to model and track systems with complex and noisy

dynamics. Most approaches rely on the assumption that the belief is Gaussian or can be

iteratively approximated by a Gaussian. The Gaussian assumption is an effective simplifi-

cation. It enables filtering with high frequency updates or in high dimensional systems. It

is most reasonable in systems where the local dynamics are simple, i.e., linearizable, and

when accurate observation models are readily available to continuously correct for complex

or un-modelled dynamics.

In this work we look at situations where the Gaussian belief is less reasonable. That

is the case of contact behavior with non-smooth local dynamics due to sudden changes in

stick/slip or contact/separation, and is the case in stochastic simulation where, without the

benefit of sensor feedback, uncertainty distributions naturally grow over time. We propose

the GP-SUM algorithm which considers the use of Gaussian mixtures to represent complex

state distributions.

Our approach is sample-based in nature, but has the advantage of using a minimal
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number of assumptions compared to other GP-filters based on single Gaussian distributions

or the linearization of the GP-models. Since GP-SUM preserves the probabilistic nature of

a Bayes filter, it also makes a more effective use of sampling than particle filters.

When considering GP-SUM, several aspects must be taken into account:

Number of samples. Choosing the appropriate number of samples determines the number

of Gaussians in the prediction belief and hence its expressiveness. Adjusting the number of

Gaussian over time might be beneficial in order to properly cover the state space. Similarly,

high-dimensional states might require higher values of 1h to ensure a proper sampling of

the prediction belief. Because of the sample-based nature of GP-SUM, many techniques

from sample-based algorithms can be effectively applied such as resampling or adding

randomly generated components to avoid particle deprivation.

Likelihood of the observations. There is a direct relation between the weights of the

beliefs and the likelihood of the observations. We can exploit this relationship to detect

when the weight of the samples degenerates and correct it by re-sampling or modifying the

number of samples.

Computational cost. Unlike non-sampling GP-filters, the cost of GP-SUM scales linearly

with the number of samples. Nevertheless, for non-linear systems we showed that our

algorithm can recover the true state distributions more accurately and thus obtain better

results when compared to faster algorithms such as GP-ADF, GP-UKF or GP-PF.

GP extensions. The structure of GP-SUM is not restricted to classical GPs for the dy-

namics and observation models. Other types of GPs such as HGPs or sparse GPs can be

considered. For instance, combining GP-SUM with SSGPs [31] would make the computa-

tions more efficient.

8.2 Discussion on push modeling

In recent work [41, 18] we provided empirical evidence that planar frictional interaction

shows non-trivial statistical behavior, and suggested that a probabilistic model might yield

a practical and less over-confident approach to model frictional contact. This work is a step
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in that direction. We focus on the problem of planar pushing, which has proven essential for

many types of interaction, both simple and complex, and for which the robotics community

has developed a good and long-standing analytical understanding.

Input-dependent noise. This work starts from the empirical observation that the magni-

tude of the observed variability under a constant push can vary up to an order of magnitude

with the pushing action, i.e., pushing location, pushing direction or pushing velocity. A

model that accounts for that variability could be used, for example, to avoid actions that

yield unpredictable behavior.

Data-driven modeling. Building from the recent pushing dataset by Yu et al. [41], we

propose to use a data-driven modeling approach based on a Variational Heteroscedastic

Gaussian process model (VHGP) to capture the mean and variance of a planar frictional

push. Unlike traditional Gaussian processes, which assume a level of output noise inde-

pendent of their input, heteroscedastic Gaussian processes model the dependence of both

the mean and variance of the outcome of a planar push as functions of the input pushing

action.

The learned models are specific to the particular object and material. Generalization

over materials and shapes is an interesting question that we plan to explore in future work,

which will require a model less computationally expensive to train, such as those based on

sparse Gaussian processes [37] or Random Features [34].

Evaluation. We show that an order of 100 samples is sufficient to overcome the perfor-

mance of a standard analytical model, and evaluate the improvement of the VHGP frame-

work over a traditional homoscedastic GP. The accuracy of the VHGP model tails off at

about 10 3 training samples, data that can be captured in about 5 minutes in our training

setup.

We validate the model against a new dataset collected in the same setup as [41] for

the purpose of benchmarking. This new dataset is composed of 100 identical pushes for

each of a set of more than 300 different pushing actions, which gives an empirical footprint

of the stochasticity of planar pushing. The performance, evaluated by means of the KL

divergence shows a clear improvement over a normal GP.

61



Histogram for Ax Histogram forAy

2.5 2.5

2 2

1.5

0.5 0,5

-0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5

Histogram for 6
S Normaizedhistogram

2.5 - Predicted distribution
2

1.5

0.5

0 0.01 0.02 0.03 0.04 0.05

Figure 8-1: These histograms represent the different outputs obtained when repeating the
same push. They have been normalized so that they can be compared with the distribution
provided by our VHGPs. In this case, distributions do not adjust clearly to a Gaussian
distribution but our model still obtains a good approximation for them.

Gaussianity vs. multi-modality. While VHGPs are the state-of-the-art for data efficient

regression for input dependent processes, Gaussianity and unimodality of the underlying

dynamics is still a key assumption. We know that this is not always the case (Figure 8-

1). However, a model with input-dependent noise can express multi-modal behavior when

integrated over time. We are interested in exploring further the idea of capturing finite

multi-modal behavior with uni-modal Gaussian instantaneous models.

Dependence with velocity. A very common assumption in robotic manipulation is to

neglect the inertial effects of interaction, i.e. the quasi-static assumption. In this work we

avoid that assumption by making the velocity of the pusher an explicit input to the model.

To evaluate the importance of considering velocity as an input, we group data from

different velocities by time-scaling the interaction (under the quasi-static assumption, an

action executed twice as fast will have the same outcome, except in half the time) and train

models without the velocity as input. If the system is indeed quasi-static, combining the

data from different velocities should increase the amount of training data and yield better

(or not worse) performance. Otherwise, we should see the performance worsen. Figure 8-2

shows the evolution of the performance of the learned model as we add data from larger

velocities, all time-scaled to 10mm/s. We can see that the performance peaks at around
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Figure 8-2: The x-axis of the plot shows the max velocity added to train a pushing model
without velocity as an input. The plot shows the evolution of the performance (NMSE) of
these velocity-independent models trained for a larger bracket of velocities in the training
data. Initially, adding more velocities improves performance. However, after 50-80mm/s
the performance of the model worsens. We conclude that the quasi-static assumption does
not hold anymore after that.

50-80mm/s and degrades after that. We conclude that the quasi-static assumption does not

hold after that, and hence there is value in adding velocity as an explicit input.

8.3 Future work

Future research will focus on combining GP-SUM with planning and control techniques.

Being able to detect multimodality or noisy actions can help to better navigate the complex

and noisy dynamics of the system and reduce the final uncertainty in the state distribution.
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