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Abstract

Colloidal gels are viscoelastic materials characterized by the collective behavior of particles that
form a space-spanning network. Although the network structure embodies the aggregation process
of the particles, the kinetic pathway from a stable suspension to such a complex microstructure
remains poorly understood. In this work, we explore the evolution of microscopic structure and
dynamics of home-made colloidal particles in the early phase of gelation, by extending the
applicability of Differential Dynamic Microscopy (DDM) to non-ergodic media. We demonstrate
uncoupled development of the structure and dynamics that reveals an intermediate stage of gel
formation, and compare the DDM results with the rheological features of evolving gels. We finally
show how understanding the gelation at multiple length and time scales via DDM and rheology
opens new ways to tune the mechanical properties of colloidal gels that bear inherent versatility.
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Chapter 1

Introduction

Suspensions of attractive colloidal particles spontaneously self-assemble into space-spanning non-

equilibrium structures, characterized by unique mechanical properties. They exhibit viscoelastic

behavior under small stress, but fluidize as the applied stress exceeds a certain threshold. When

the inter-particle attractive forces are sufficiently strong such that the particles irreversibly adhere

to one another, the kinetic process of aggregation is entirely diffusion-controlled: individual

particles and their aggregates approach one another through their random motions. This description

of network formation is called Diffusion-Limited Cluster Aggregation (DLCA) [1-3]. On the other

hand, when the attractive forces are weak, particles of an aggregate continuously break their bonds

with their neighbors under thermal fluctuations, allowing more extensive rearrangement of the

network structure. This process is called Reaction-Limited Cluster Aggregation (RLCA) [4-6].

One distinguishing characteristic of DLCA lies in the formation of uniform-sized clusters, or

largest discrete units of particle aggregates. Although gel networks appear purely random in

configuration, they are composed of the clusters that induce macroscopic homogeneity in the

system [1]. The internal structure of a cluster, however, displays clear heterogeneity; its density

decreases, as we probe larger portions within the cluster. This decrease in density results from that

the structure becomes increasingly tenuous away from its center, such that, in statistically averaged

sense, the mass (M) of any sub-unit of the cluster scales as its characteristic length (L) to the power

of fractal dimension (df), M Laf, where df = 1.75 [3].

The structural complexity of the resulting gels manifests itself in a number of mechanical and

structural characteristics. The fractality, for example, is reflected in the power law dependence of

the storage modulus on the particle volume fraction in Small Amplitude Oscillatory Shear (SAOS)

experiments [7], as well as in another power law behavior of the static structure factor S(q) ~ q-df
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over a range of wave vectors q with exponent df corresponding to the fractal dimension, in Static

Light Scattering (SLS) [8]. Even singly bonded aggregates that comprise the network have proved

capable of resisting bending torques, indicating substantial effect of tangential contact force

between the particles [9], and in the limit of large amplitude shear that completely unbends and

stretches the particle strands, some gels have shown strain-hardening behavior before fracture [10].

The dynamics of gel networks driven by thermal fluctuations [11] and intermittent particle

rearrangements [12], measured with Dynamic Light Scattering (DLS), have revealed a vast

spectrum of length and time scales involved.

Even with these pioneering works, however, we understand little about the early stage of gelation.

The majority of the studies have limited their scope to fully-developed gels with a well-established

percolating network of particles exhibiting steady state dynamics. Yet, the structure and the

mechanical properties of the gels are entirely set by how the particles aggregate. Therefore,

bringing colloidal gels into the realm of engineering by being able to tune their mechanical

behavior demands understanding the physics of early kinetic pathways from a stable suspension

to a gel.

In this work, we explore the microscopic evolution of structures and dynamics of a home-made

colloidal system during gelation and its relation to rheological properties. The system is composed

of polystyrene-poly(N-isopropylacrylamide) or PS-PNIPAM core-shell particles suspended in

density-matched water. Due to the temperature sensitive dimensions of PNIPAM, we can control

the gelation by adjusting the system temperature. With rheology, we observe multiple phases of

gel evolution, and frequency dependence of the viscoelastic moduli of the gel. For microscopic

characterization, on the other hand, we develop a new methodology to apply Differential Dynamic

Microscopy (DDM) [13] to non-ergodic media, and find distinct time scales of the evolution of

structures and dynamics of the gel networks. Finally, we extend the application of DDM to

estimate the gel elasticity without mechanical perturbation, and start exploring the behaviors of

binary mixtures of different particles to devise a way to tune the properties of colloidal gels.
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Chapter 2

Experimental Methods

2.1 Preparation and description of PS-PNIPAM particles

2.1.1 Synthesis protocol and sample preparation

The polystyrene-poly(N-isopropylacrylamide) (PS-PNIPAM) core-shell colloidal particles are

prepared by emulsion polymerization based on the protocol of Dingenouts et al. [14], with minor

modifications on the amounts of ingredients. In a IL flask equipped with a stirrer, a reflux

condenser, and a gas inlet, 25.02 g of N-isopropylacrylamide (NIPAM; Acros Organics) and

0.2008 g of the stabilizer sodium dodecyl sulfate (SDS; Sigma-Aldrich) are dissolved in 525.14 g

of DI water with stirring. After the solution is bubbled with nitrogen for 30 minutes, 142.75 g of

styrene (Sigma-Aldrich) is added, and the mixture is heated to 80'C under nitrogen atmosphere.

Then 0.3521 g of the initiator potassium persulfate (KPS; Acros Organics) dissolved in 15.00 g of

DI water is added to the mixture being stirred. After 6 hours, the dispersion is cooled to room

temperature, and cleaned through repeated centrifugation and supernatant exchange. The resulting

colloids are particles with PS cores and thin PNIPAM shells.

A second set of particles with thicker PNIPAM shells is synthesized by subsequently running a

seeded emulsion polymerization process after the initial polymerization. For each 100 g of the

initial particles obtained, 12.58 g of NIPAM and 0.8994 g the cross-linker of N,N'-

methylenebis(acrylamide) (BIS; Sigma-Aldrich) are added, and the mixture is heated to 80*C.

After the addition of 0.1264 g of KPS dissolved in 9.43 g of DI water, the mixture is stirred for 4
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hours, before being cooled to room temperature. The new suspension was cleaned through dialysis

against DI water for approximately 4 weeks.

For both systems of particles, we prepare samples by matching the density of the solvent with that

of the particles using deuterium oxide (D20; Acros Organics) to a final solvent composition of

H20/D20 = 1.10 vol/vol. Then 0.5 M of sodium thiocyanate (NaSCN; Acros Organics) is added

to the samples to screen electrostatic inter-particle forces. We tested both systems for their

dependence on the salt concentration in the range of 0.3 - 0.7 M, and observed no change in their

rheological behaviors, indicating that the charges are fully screened under these conditions.

2.1.2 Characteristics of PS-PNIPAM core-shell particles

Poly(N-isopropylacrylamide) (PNIPAM) is a temperature-sensitive polymer that exhibits a lower

critical solution temperature (LCST) of -32'C, and significant changes in its dimensions even

below the LCST [15]. We exploit this thermo-sensitivity of PNIPAM to tune the particle

interactions in our system. At a low temperature, the PNIPAM shell is only barely thick enough to

provide steric repulsion that prevents aggregation due to van der Waals attractions of the PS core.

Increasing the temperature, however, reduces the thickness of the shell, such that the range of the

steric repulsion decreases, which consequently leads to a deeper minimum in the interaction

potential, as shown in Fig. 2.1. To ensure that the attraction is solely determined by the van der

Waals interactions between the PS cores, we limit our investigations to temperatures T 30'C,

below which the intermolecular interactions of PNIPAM remain approximately constant.

The temperature sensitivity of PNIPAM enables us to control the interactions of both types of

particles, but the second type, synthesized through the two-step polymerization, contains thicker

PNIPAM shells that bring about longer-ranged steric repulsion, and in turn, weaker net attraction.

Hence we call the particles with the thinner PNIPAM shells the strong system, and those with

thicker shells the weak system hereafter.
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FIG. 2.1. Qualitative description of PS-PNPAM particles and their interaction potentials at low

and high temperatures. At high temperature, the range of the steric repulsion is reduced, and as

a result the attractive van der Waals interactions dominate, causing the particles to form

aggregates. The shell size is exaggerated for clarity.

We estimate the potential depth to be approximately 30 kBT and 5 kB T at 30'C, for the strong and

weak systems respectively, where kB is the Boltzmann constant, and T is the temperature. This

rough estimate is based on the volume fraction 4 dependence of the shear modulus G, which

exhibits a power law dependence G = ! q5, with Ko the inter-particle spring constant accounting
R

for the resistance of the bond to deformation, R the particle radius, and c a constant [11,16]; for

our gels we find c = 3.51 and Ko = 5.18 x 10-' N/m for the strong system, and c = 3.21 and Ko =

2.52 x 10- N/m for the weak system. We assume van der Waals interactions between PS spheres

in water and estimate the magnitude of the attraction by taking the second derivative of the van

der Waals potential to match the experimental value of K 0 .

The size of the PS-PNIPAM particles is determined in Dynamic Light Scattering (DLS)

experiments using extremely dilute solutions of q ~10-'. The light scattering apparatus used is BI-

200SM (Brookhaven Instruments), and we use the Stokes-Einstein relation to calculate the

hydrodynamic radius (Rht) of the particles.

The results for both systems of particles at 21 C to 29'C are reported in Table 2.1. The intensity

autocorrelation functions measured are single exponentials, reflecting reasonable monodispersity

of our particles. The smaller values of Rh at 29'C indicate that the PNIPAM shell thickness
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diminishes at the higher temperature. The actual shell thickness variation, however, is presumed

to be lower than the changes in Rh, as the hairy configuration of the PNIPAM shell stretching

outward at the lower temperature increases the surface to volume ratio, leading to greater viscous

drag.

TABLE 2.1. Hydrodynamic radius (Rh) of PS-PNIPAM particles measured in Dynamic Light Scattering

(DLS). The single exponential intensity autocorrelation function indicates monodispersity of the

synthesized systems, as further evidenced by the small standard deviations. The measurements are

performed at scattering angles of 300, 600, and 900.

Temperature 21 0C 290C

Strong system 100.4+ 1.3 90.3 + 1.6
Rh (nm)

Weaksystem 139.9 1.7 116.3 + 1.8
Rh (nm)

To obtain a crude estimate for the strong system of the temperature, at which van der Waals

attraction starts to dominate over the steric repulsion, we perform a Small Amplitude Oscillatory

Shear (SAOS) experiment with a temperature ramp from 15'C to 30'C at the rate of 1 C per minute

on a stress-controlled rheometer (AR-G2; TA Instruments). The frequency and strain amplitude

we use are 10 Hz and 1 x 10-4 respectively. For minimal delay in the detection of gelation, we use

a sample with a high volume fraction (P = 15%) of particles that ensures rapid percolation. This

test, nonetheless, only provides a rough measure of the gelation temperature, as we expect an

extremely slow aggregation process, compared to the ramp rate of P C per minute, near the

gelation temperature, where the inter-particle potential depth is still comparable to thermal energy.

The gelation temperature may also vary with P, and hence a thorough determination of the gelation

temperature would require q as another control parameter.

The onset of sharp increase in the viscoelastic moduli and the crossover between the storage

modulus G' and the loss modulus G" occur just above 25 0C, as shown in Fig. 2.2. These

observations indicate that the sample starts to rheologically behave like a solid at this temperature,

and we therefore identify 25 0C as the gelation temperature. The moduli continue to increase with

temperature beyond 250 C, because the higher the temperature, the further the PNIPAM shells
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shrink, gradually decreasing the steric repulsion. Throughout our study, we intentionally keep the

temperature below 32*C, the LCST of PNIPAM, to exclude any effect of the PNIPAM phase

transition in water.

C13
C3 E

S

C

EJ

C

C C

4
10

103

10 2

10 1

10 0

20

FIG. 2.2. Storage modulus (G'; solid symbols) and loss modulus (G";

open symbols) of the strong system with volume faction 0 = 15% in

a temperature ramp experiment at the ramp rate of I 0C/min.

The advantage of using the PS-PNIPAM particles lies in that we have a fine control over the

gelation of the system and the viscoelastic moduli in a temperature range close to room temperature.

Furthermore, as the thermal response of PNIPAM is reversible, we can rejuvenate a gelled system

back to a stable suspension with freely diffusing particles by readjusting its temperature below the

threshold. Consequently, we obtain an excellent command over the initial conditions of our

particles, as we can avoid ill-defined crude shear rejuvenation protocols typically applied to other

colloids. The PS-PNIPAM particles, therefore, serve as an amenable material to investigate the

transient state of colloidal gelation.

All of the following parts in this thesis, with the exception of the discussion of binary mixtures in

Chapter 5, are concerned with the strong system only.
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2.2 Rheological characterization

The rheological characterization of the PS-PNIPAM gels is performed on a stress-controlled

rheometer (AR-G2; TA Instruments) equipped with a 40 mm diameter steel cone-plate geometry

whose cone angle is 2' and truncation gap is 49 ptm. The sample temperature is controlled with

the lower Peltier plate of the rheometer, in the range of 15'C to 30'C. To ensure fully controlled

initial conditions of each sample, we apply an extensive pre-shear as a pre-conditioning step at the

rate of k = 1000 s-1 for 3 minutes at 15'C, below the gelation temperature, to erase any

deformation history, and then wait for 2 minutes for equilibration before starting the measurement.

The characterization of the linear viscoelasticity of colloidal gels in Small Amplitude Oscillatory

Shear (SAOS) experiments requires the strain amplitude to be sufficiently small to deform the

system only within its linear elastic limit. Therefore, the characterization procedure is preceded by

a strain sweep experiment to determine the linear amplitude regime, after rapidly raising the

temperature above the gelation temperature. For gels heated to 30'C, the temperature primarily

used in this study, we observe sharp increase in G' and G" within approximately the first 300 s,

followed by a slow increase over an extended period of time. We account for this by performing

our oscillatory shear experiments after a precise waiting time t = 1800 s.

Since gels at the volume fractions of interest exhibit low moduli close to the resolution limit of the

stress-controlled rheometer AR-G2, we pay greater attention to the data obtained from the weakest

gels to discern artifacts. For this purpose, we refer to the criteria presented by Ewoldt et al. to

determine measurement limits posed by minimum torque resolution and instrument inertia [17].

For AR-G2, the minimum applicable torque is 3 nN - m [18], and the instrument inertia, which

includes that of the cone geometry, and is calibrated at the beginning of every experiment, is

1.739 x iO4
approximately 26.6 IiN -m -S2. The resulting minimum modulus resolution limit is Pa,

Yo

where yo is the strain amplitude, and the instrument inertia limit is 2.19 x f2 Pa, where f is the

strain frequency in Hz. Although employed as guidelines, these criteria are not considered absolute

standard for data reliability, as they are found to be rather conservative for this study.
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Our protocol for gel characterization consists of three steps. At the beginning of the time sweep

step after the equilibration of each sample, the temperature is increased from 151C to 30'C, and

the linear viscoelastic moduli are measured for 1800 s to observe the transient response of the

colloidal system undergoing a transition from a stable suspension to a gel. The temperature

increases beyond 28'C, well above the gelation temperature, within the first 10 seconds, and

reaches 30'C with + 0.1 C fluctuation within the first 40 seconds. We assume this temperature

change is rapid enough, compared to the gelation time scale, to neglect any influence from the

delayed temperature variation from 15'C to 30'C. The frequency is set f = 1 Hz, and the

amplitude within the range of 2 x 10-3 - 2 x 10-2, depending on the volume fraction. The

conditioning and sampling times used are 3 s each.

The time. sweep step is followed by a frequency sweep step that measures the frequency response

of the gels. We maintain the same strain amplitude as in the time sweep step for each sample, but

adopt variable sampling times such that each data point is sampled after three complete periods of

oscillation at each applied frequency. The frequencies probed range from 0.1 or 0.01 Hz to 100

Hz.

Lastly, in the strain sweep step that explores linear and nonlinear behaviors of the gels, we revert

the applied strain frequency to 1 Hz, retaining the same conditioning and sampling times. We

gradually increase the strain amplitude from 1 x 10-5 to 10, until after gel fracture.

After the strain sweep step, the temperature is set to return to 15'C for sample rejuvenation.

Throughout this procedure, the gap temperature compensation of 0.5 im/C is applied to minimize

the effect of thermal dilation of the geometry.
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2.3 Principles of Differential Dynamic Microscopy

Differential Dynamic Microscopy (DDM) is a technique developed by Cerbino and Trappe that

merges the power of optical microscopy and light scattering by probing dynamics of various soft

materials in both real and reciprocal spaces [13]. Initially applied to a simple system of

monodisperse isotropic colloidal suspensions, DDM has proved its capability to extract

information over multiple length and time scales from various complex fluids, including

anisotropic colloidal particles [19], liquid crystals [20], and biological systems such as bacteria [21]

and actin [22]. The technique has also shown its compatibility with many forms of microscopy,

such as bright-field [13,23], dark-field [24], confocal [25], and fluorescence [26].

Compared to Dynamic Light Scattering (DLS), DDM offers immediate advantages in its

accessibility and throughput. Unlike DLS, which requires a laser source, an avalanche photodiode,

and a goniometer in its simplest form, DDM needs only a microscope and a camera. Moreover,

since DDM computes reciprocal space quantities from ordinary microscope images, it

simultaneously provides real space and reciprocal space information, which had previously been

accessible only with separate probing techniques. DDM also significantly reduces the amount of

sample required, as the samples are typically confined in a small, thin cell or capillary tubing to be

compatible with a microscope, whereas a much greater volume of samples needs be loaded in a

cuvette for DLS measurements. An extensive assessment of the strengths and limitations of DDM

is presented in [27].

Specifically in the analysis of colloidal gels, DDM can outperform DLS for at least three reasons.

First, DDM allows more turbid samples to be examined, whereas DLS measurements necessitate

extreme dilution of samples to achieve the single scattering limit, where each photon detected by

the photodiode is scattered only once within the sample. This feature restricts the colloidal gels

that can be studied with DLS to those at very low volume fraction, characterized by highly fragile

and tenuous networks that typically take several hours or days to form. Therefore, DDM can

dramatically accelerate experimental processes, and bring the regime of microscopic
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characterization closer to that of macroscopic, mechanical exploration, where gels need to be

strong enough to bear measurable stress.

Second, colloidal gel networks manifest heterogeneity in terms of the length and time scales

observed in their structures and dynamics. Hence a DLS measurement at a specific scattering angle,

corresponding to a single wave vector that sets the length scale being probed, can provide only a

modicum of the rich information that such networks contain. DDM performs unrivaled, by

simultaneously processing signals at multiple length scales that range over a decade of wave

vectors.

Lastly, non-ergodicity of colloidal gel systems prevents convenient methods for appropriate

ensemble averaging of the scattered intensity signal in DLS. Since gelation leads to kinematic

arrest of colloidal particles, the system remains at a thermodynamic non-equilibrium [28], which

in turn renders scattering examination of a specific narrow region within the sample inadequate

for collecting statistics representative of the entire system. In other words, no matter how long one

observes the fluctuation of a scattered light, one cannot comprehend the overall system behavior

as long as the observation field stays unaltered; time averaging is not equivalent to ensemble

averaging. Though some ingenious techniques have been reported that enable characterization of

non-ergodic samples with DLS, they require a rather laborious process and additional steps in the

analysis [29,30]. DDM, on the other hand, accomplishes the ensemble averaging of the signals

from non-ergodic systems, simply by the following the same computation procedures as for the

ergodic samples, as long as an image encompasses a sufficiently wide field of view. This non-

ergodicity of colloidal gels, however, poses a fundamental challenge in analyzing and

understanding scattering data obtained through any means, as will be discussed in detail in Chapter

3.

We use an inverted microscope (Eclipse TE2000-U, Nikon) and a complementary metal-oxide-

semiconductor (CMOS) camera (Prime Mono 2048x2048 pixels, Photometrics) for our DDM

analysis. All experiments are conducted in the bright-field, and each sample is loaded in a capillary

glass cell (Vitrocom) with a path length of 100 ltm. For the samples of volume fraction 4 = 0.3%,

we use an objective lens with magnification of 40 x and numerical aperture of 0.90, and for
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samples of higher volume fractions, we use an objective lens with magnification 60 x and

numerical aperture of 1.20. For rapid and stable control over the gelation of the sample, we use a

home-built temperature control stage equipped with a Peltier module connected to a PID controller

(TC-720, TE Technology). The sample capillaries are mounted on the module with an optical gel

(Cargille) pasted for improved thermal conductivity. Gelation process of each sample is observed

by applying a rapid heating from 20'C to 30'C; the temperature stabilizes to 30 + 0.02'C within

the first 15 s, with a 5 s-long overshoot of maximal 0.7'C. All computational analyses are

implemented in MATLAB.

2.3.1 Principles

The essential step in DDM is to calculate a correlation function, called image structure function,

of two images separated by an arbitrary delay time At. After subtracting one image from the other

treating them as large arrays of pixel intensity values, we can apply two-dimensional Fast Fourier

Transform (2D FFT) to the difference image. Square of the modulus of the complex-valued Fourier

transformed difference image then provides a spectral decomposition of the energy content (power

spectrum) of intensity captured in the difference image. The resulting values in the reciprocal space

represent the temporal change of intensity captured in the real space image at the corresponding

spatial frequencies, each of which can be directly associated with a unique scattering vector. As a

result, the accessible domain of wave vectors via DDM is limited by the image size at its lower

bound, and the pixel number at its upper bound.

If we repeat this computation for all combinations of two images from the entire image stack, and

if the signal captured by the camera is stationary (i.e. statistical quantities remain unchanged over

the entire time scale of image acquisition), we can take averages of the spectral decomposition as

a function of the time interval between the images for statistical improvement of data. A stack of

N images taken at an interval time a yields N - 1 time-averaged power spectra of difference

images at N - 1 delay times, as shown in Fig. 2.3. This enables us to probe a time span of (N -

1)a simultaneously at all the length scales represented by the scattering angles (spatial frequencies)

included in the image.
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FIG. 2.3. Schematic illustration of temporal averaging procedure over the entire time scale of an image

stack. Since there are fewer combinations of images separated by larger delay times At, the statistics

become poorer for larger delay times.

For isotropic samples, the 2D power spectrum displays no directionality, and can be treated as a

one-dimensional quantity in the radial direction. Thus, performing azimuthal averaging on the 2D

spectrum image for every delay time At leads to a function that conveys information on how much

an arbitrary set of two images separated by a delay time are correlated at different spatial

frequencies. This function is the image structure function, here denoted by D(q,At). This

computation procedure to obtain the image structure function is schematically illustrated in Fig.

2.4.

The technical ground for the working principles of DDM in the framework of digital Fourier optics

can be found in [31]. In this work, we use stacks of N = 1000 TIFF images, unless otherwise

stated.
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FIG. 2.4. Schematic illustration of image processing algorithm in DDM to compute image structure

function. In analogy with DLS, 2D FFT is equivalent to the scattering process of light, and azimuthal

averaging completes ensemble averaging.

2.3.2 DDM applied to ergodic, stable PS-PNIPAM colloidal suspensions

We verify our own code for image structure function calculation and stability of high-speed image

acquisition by performing curve-fitting optimization on the image structure function obtained from

the images of the ergodic, stable suspension at 20'C, below the gelation temperature.

The image structure function D(q, At) can be expressed as a function of the normalized

intermediate scattering function, or equivalently the dynamic structure factor f(q, At), by:

D(q, At) = A(q)[1 - f(q, At)] + B(q). (2.1)

A(q) reflects a combined effect of optical features of the microscope, number of particles in the

field of view, and static configuration of the particles, while B(q) represents the contribution from

camera noise [31]. f(q, At) is a quantity that tells how far particles at a certain time are located

with respect to the locations of all other particles at a delayed time. In DLS measurements, we

obtain its value from the scattered intensity autocorrelation function [32].
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For non-interacting colloidal particles at thermodynamic equilibrium, their displacements follow

a Gaussian distribution, which leads to a simple exponential expression of the dynamic structure

factor [33]:

f(q, At) = exp (- . (2.2)
(_ T(q)

Substitution of this relation into Eq (2.1) leads to the proper functional form of D(q,At) for

particles undergoing Brownian motion:

D (q, At) = A(q) 1 - exp - + B(q), (2.3)[ (_ at~

where A(q), B(q), and T(q) are curve-fitting parameters to be identified. For ergodic systems,

such as the stable colloidal suspension investigated here, the optimization offers robust fitting

results as shown in Fig 2.5.

The image structure function obtained from the PS-PNIPAM colloidal suspension (< = 0.5%)

below the gelation temperature closely follows the simple exponential relation of Eq (2.3) at all

wave vectors, and the relaxation time T(q) obeys a power law of -2 as predicted by the Gaussian

displacement distribution of non-interacting Brownian particles. Specifically, the dynamic

structure factor for such systems can be expressed in terms of the mean square displacement

(Ar 2 (At)) of the particles, instead of the relaxation time as in Eq (2.2):

f(q, At) = exp ( (Ar2(At))), (2.4)
4_ 4

where (Ar 2 (At)) is a linear function of the delay time At. The denominator 4, instead of 6, results

from that DDM extracts dynamics from 2D images [23].

Since for Brownian particles, (Ar 2 (At)) = 4DOAt, where Do is free diffusion coefficient, we can

compute the hydrodynamic radius of the particles by utilizing the Stokes-Einstein relation:

kBT (2.5)
6T7 7RH'

where kB is the Boltzmann constant, 17 viscosity of the background fluid, and RH the

hydrodynamic radius of a particle. Yet this calculation overestimates the hydrodynamic radius of

the PS-PNIPAM particles by a factor of approximately 1.5, compared to the DLS results, most

likely because of the presence of unfiltered alien particles.
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FIG. 2.5. (a) Normalized image structure function D(q, At), with its exponential fits of Eq (2.3) (dashed

lines) obtained from a stable PS-PNIPAM colloidal suspension at T = 20'C with <p = 0.5%. Camera

frame rate used here is 100 frames per second (fps), with exposure time of 10 ms. Normalized D(q, At)

values are shown for three different wave vectors (q = 1, 2, 3 im-1 from right to left); larger wave

vectors display faster dynamics, reducing the rise time to saturation. (b) Relaxation time r(q) resulting

from the curve-fitting, r(q) follows a power law of -2, testifying the Brownian dynamics of the stable

suspension.

Although powerful in analyzing various complex fluids including stable colloidal suspensions, this

standard analysis of image structure function is inappropriate for non-ergodic solid-like systems.

The gelation and the accompanying formation of the percolating network bind the particles to fixed

average positions, and this constraint on the particle motion gives rise to a fundamental change in

the microscopic dynamics. In Chapter 3, we discuss our extension of DDM that renders

investigations of non-ergodic systems possible.
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Chapter 3

Methodology development of DDM analysis

on non-ergodic systems

In non-ergodic systems like colloidal gels, by definition, temporal averaging of local statistics

contained in the scattered light intensity fails to offer ensemble-averaged statistics. DDM, however,

collects the ensemble statistics without any extra endeavor, as long as the field of view is broad

enough to capture sufficient number of clusters of the network in the images; the 2D FFT on the

entire difference images and the subsequent azimuthal averaging of the power spectrum embedded

in the calculation of the image structure function D (q, At) ensures proper ensemble averaging of

the scattered light intensity that cannot be performed with as much ease in DLS measurements.

Yet the challenge arises when we attempt to extract dynamic parameters from D (q, At).

3.1 Stretched exponential relaxation

One ramification of the kinematic arrest of colloidal particles through gelation is the stretched

exponential relaxation. This stretched exponential relaxation necessitates modification of the

functional form for the dynamic structure factor in Eq (2.2) for proper analysis of their microscopic

dynamics. Fig 3.1 shows how exponential curve fitting on the computed image structure function

of the PS-PNIPAM gel network (0 = 0.5%, T = 300C) leads to erroneous results. The D (q, At)

shown for the two wave vectors are representative of D (q, At) at all investigated wave vectors.

D (q, At) increases at slower rates than simple exponentials, and for many wave vectors, D (q, At)

does not saturate to a plateau within the experimental time scale.
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FIG. 3.1. Representative examples of image structure functions

D(q, At) and corresponding (poor) exponential fits shown as dashed

lines at wave vectors q = 1 [tm' (left) and q = 3 pm- 1 (right)

obtained from PS-PNIPAM gel network images (5 fps, N = 500), 15

min after the initiation of gelation at 30'C. D(q, At) increases more

slowly than simple exponentials, and its plateau at later delay times is

often inaccessible within experimental time scales.

Such stretched exponential form of the dynamic structure factor is a well-known feature of dilute

gels, whose clusters exhibit a fractal dimension df = 1.9, close to the expected value of 1.75 for

DLCA gels [3]. The model proposed by Krall and Weitz interprets the motion of an individual

particle in a gel network as the superposition of motions of the aggregates (and the larger

aggregates of these aggregates), to which the particle is attached [11]. Thus, we can express the

motion of any aggregate in a cluster as a summation, or an integral of multiple exponential terms

that represent overdamped elastic modes undergoing thermal fluctuation, and this integral gives

rise to the stretching exponent in the exponential term of the mean square displacement. The

resulting dynamic structure factor then becomes

f(q, At) = exp [- (Ar2(At)) = exp -2 82{ _ exp (_ , (3.1)
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where 82 is the maximum mean square displacement, r* the characteristic relaxation time, and p

the stretching exponent, all independent of the wave vector q [11]. Krall and Weitz show good

agreement between this model and experimental data for early delay times At.

Application of the Krall-Weitz model to the DDM analysis, however, poses practical challenges

in the stabilization of the curve-fitting optimization process. Since the functional form of the

dynamic structure factor proposed in Eq (3.1) contains a double exponential with multiple free

parameters, we observe that the use of an automatic curve-fitting algorithm to the image structure

functions at all the accessible wave vectors induces unreasonable parameter values, nullifying the

high-throughput offered by DDM.

Therefore, to obtain a computationally more favorable form for the dynamic structure factor, we

simplify Eq (3.1) by expanding the second exponential to the first order of the delay time At

(which is justified for early delay times), and add an extra q-dependent term to account for the

saturation of f(q, At) to a non-zero plateau for large At. The relation then becomes

f(q, At) = (1 - C(q))exp [- (c ) + C(q), (3.2)
'r(q))

where C(q) is the extra parameter that leads f(q, At) from its initial value of 1 to a non-zero final

value. Despite the simplification, Eq (3.2) preserves the two key physical features of colloidal gel

network dynamics: stretched exponential decay resulting from the hierarchy of multiple elastic

modes and the incomplete decorrelation of particle positions due to the non-ergodicity.

Substitution of this new relation into Eq (2.1) results in the following functional form for the image

structure function that we utilize throughout this work:

A(q) ii
D~qxpt = -~)( -II))1- + B(q). (3.3)
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3.2 Estimation of the image structure function plateau

The normalized dynamic structure factors f(q, At) or equivalently the intermediate scattering

functions of attractive colloidal gels obtained in both experiments [12] and simulations [34]

commonly reveal two-step decays from 1 to 0 as shown in Fig. 3.2.

1

cr-reaaxation

cc-relaxation

0

At

FIG. 3.2. Schematic of the two-step decay of a dynamic structure factor

f(q, At) at a fixed wave vector q as a function of delay time At.

The first decay, named #-relaxation, results from small-amplitude thermal fluctuation of the

network strands, which is the relaxation accessible in this DDM analysis. The second decay, named

a-relaxation, ensues the ft-relaxation typically at much greater time scales, and is interpreted as a

slow restructuring of the network, where particles undergo major rearrangements [35]. The

difference in the time scales of these two relaxation modes uncovers itself in the form of the non-

zero plateau of the dynamic structure factor after the #-relaxation.

Although we have a fair understanding of why this two-step decay of f(q, At) occurs, namely the

non-ergodicity originating from the kinetic arrest of colloids due to the network, we lack a priori

knowledge of the time scales characterizing the onset of the intermediate plateau and its magnitude.

Therefore, D(q, At -> oo) = A(q)(1 - C(q)) + B(q), the limiting value of the image structure
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function at large delay times, is unknown, except that the noise term B(q) is typically much

smaller than A(q) (1 - C(q)). Given that we typically cannot access the plateau experimentally at

low q values because of the slow relaxation, obscurity of A(q)(1 - C(q)) greatly compromises

the quality of fit.

To aid the curve-fitting optimization, we predict A(q) in advance as a guidance that provides an

upper limit to the long term plateau of A(q)(1 - C(q)), where 0 5 C(q) 1. A(q) is a term

jointly determined by the microscope optics and the number of particles in the field of view.

Specifically, A(q) can be expressed as

A(q) = 2N~k(q) 2 S(q), (3.4)

where N is the number of particles; k(q) is the transfer function, an intrinsic optical property

determined by the lenses and the light source in the microscope; and S(q) is the static structure

factor, the static analog of the dynamic structure factor f(q, At -+ 0) [32].

First, 2N1k(q) 12 can be obtained from the plateau of the simple exponential fit of D (q, At) of the

stable system at 20'C. For stable colloidal suspensions, lack of collective structures causes the

static structure factor S(q) to be 1, independent of q. A(q) = 2NIk(q) 12 thus holds true in Eq (2.3)

for the stable system, where freely diffusive motions of particles lead to saturation of D (q, At) at

short delay times, as shown in Fig 2.5 (a). For the acquisition of A (q) values over a large q-domain,

we use one image stack file taken at a fast frame rate (100 fps), and another taken at a slow frame

rate (5 fps). The resulting relaxation time from both files as a function of q, which is expected to

follow a power law with exponent -2 for a freely diffusing system, is shown in Fig. 3.3. As the

100 fps image stack better captures the high q behavior, and the 5 fps image stack retains the

power law in the low q regime, the combination of these sets of data produces an appropriate set

of A(q) over an extended q-domain.
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FIG. 3.3. r(q) obtained from exponential curve fitting of D(q, At)

of two image stack files taken at 100 fps (black squares) and 5 fps

(red circles). The two data sets follow the expected power law of -2

in different q-domains, and therefore the superposition of A(q) in

the high q-domain from the 100 fps file, and that in the low q-

domain from the 5 fps file yields correct A(q) of the stable

suspensions over a large q range.

Second, S(q) can be computed from the power spectrum of individual images of the gel network,

rather than the difference images, averaged over the time span of the image stack files. For imaging

of isotropic samples in a linear space invariant (LSI) system, the ensemble-averaged power

spectrum of intensity (I (q, t) 12)E scales as

(JAt) 21 1(q, )2)E 2q )E C(,t12 )E, (3.5)

where ^(q, t) is the particle number density in the reciprocal space [31]. On the other hand, from

the theory of conventional light scattering, we know that ensemble-averaged detected intensity

(I(q, t))E at a wave vector q is proportional to (I (q, t)I 2)E, and also independently to S(q)P(q),

where P (q) is the form factor, a measure of scattered intensity from an individual particle:

(i(q, t))E ((q, t)1 2 )E S(q)P(q). (3.6)

Combining Eq (3.5) and Eq (3.6) yields
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(I (q, t)1 2)E = C 'k(q)12 S(q)P(q), (3.7)

where C is a constant. Hence employing the fact that S(q) = 1 for stable systems, we can compute

the static structure factor of a gel network at any age by dividing the power spectrum of gel images

by that of the stable system counterpart taken before the initiation of gelation

(|JA t)|12 E,12
1 q, )~fei Ck~) ~)Pq)=S (q). (3.8)(I (q, t) 12 )E, suspension C = Sq).P (()

Just as in the computation of the image structure function, (I ̂ (q, t) 12 )E of images can be obtained

from 2D FFT, calculating square norm, azimuthal averaging, and temporal averaging over all the

frames in the image stack. It should be noted that this derivation assumes non-evolving behavior

of the sample (i.e. sample does not evolve within the period of image acquisition), and the transfer

function k(q) stays the same before and after the onset of gelation. The transfer function, in fact,

may vary because of thermal dilation of the temperature control stage in our experiments, but we

believe its influence on our data to be minimal.

Finally, we calculate A (q) of the image structure function of gel network images:

A(q)gei = 2Nk(q) 2 S(q)gei = A(q)suspension -S(q)gel. (3.9)

The a priori knowledge of A (q) with the modified fitting function of D (q, At) indeed improves

the quality of fit as presented in Fig. 3.4.

34



4x10'

3x108

~ 2x108
CU

1x101-

0
10-2 10- 100 10 102 103

At (s)

FIG. 3.4. Example of an improved fit of the image structure function D(q, At)

obtained from gel network images. The stretching exponent allows extra

flexibility, and A(q) calculation from individual images guides the fitting

curve to a plateau at later times, in the absence of plateau given by the data.

3.3 Curve-fitting scheme details

Since the fitting function Eq (3.3) involves four free parameters and D (q, At) calculation from

microscope images offers values for restricted time scales, the choice of an initial set of parameter

values for optimization requires discretion. We repeat Eq (3.3) with the free parameters color

coded in red for clarity. lsqcurvefit function in MATLAB is used throughout.

D(q, At) = A(q)(1 - C(q)) 1 - exp - (t y) + B(q). (3.3)
T(q))

First, given that the stretched exponential relaxation model remains valid only for the early delay

times At [11,36], we select a proper domain of At for fitting by gradually increasing the At domain

with arbitrary initial parameter values, until we observe saturation of r(q) over an empirically

35

q =3 Rm-1J



determined q-domain (approximately 0.1 im- 1  q : 6 m). If the chosen fitting domain is

too narrow, we observe a severe decrease of r(q) over the entire q-domain. If the domain is

defined to be too broad, the noise becomes amplified. During this initial step of increasing the At

domain, we find that saturation of -r(q) near its peak was not necessary as it recovers in a later

step, as long as the saturation is achieved at both ends of the q-domain.

Within the chosen delay time domain, we then adjust the initial value of C(q) between 0 and 1 to

obtain the largest possible coincident q-domain of constant p(q) and C(q). After taking the mean

of both p(q) and C(q) over the q-domain, we fix the corresponding parameters to these means,

and iterate the curve-fitting optimization with only 'r(q) and B(q) as free parameters. The noise

term B(q) is always set to be less than 0.1% of the A(q) value at each wave vector q. This step

consistently produces noise-free trends for -r(q) with a satisfactory quality of fit.

Keeping the resulting r(q) the p(q) constant, we then repeat the curve-fitting optimization with

B(q) and C(q) as free parameters to yield monotonically decreasing values of C(q) with q. The

key difference in this final optimization is that we perform curve-fit to about 80% of the total delay

time domain of the entire image stack, for best estimation of the plateau location. For the image

stack files with longer acquisition times, however, it is necessary to ensure the domain of fit does

not capture the a-relaxation regime for high wave vectors.
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Chapter 4

Results and discussion

4.1 Rheological properties of PS-PNIPAM colloidal gels

4.1.1 Gel formation: Asymptotical evolution of viscoelastic moduli

One of the main advantages of using colloids with temperature dependent attractions is that we

can induce their aggregation by a temperature increase, thereby avoiding the use of an ill-defined

shear rejuvenation procedure to control the history of the sample. We rapidly increase the

temperature T of our suspension of PS-PNIPAM particles from 15 to 30'C. At 15'C the particles

are fully dispersed, and at 30'C they interact with an attraction strength of -30 kBT.

Upon the sharp increase in temperature at t = 0 s, the system becomes unstable and the particles

aggregate, which results in the formation of a stress-bearing network, as evidenced by the

development of the storage modulus G' and the loss modulus G" shown in Fig. 4.1 (a). For all the

volume fractions studied here, ranging from # = 1% to 0 = 15%, both G' and G" steeply rise by

several orders of magnitude during the first 200 s after the initiation of gelation, and then very

slowly increase over an extended period of time. We hold the strain amplitudes constant (yo = 2 X

10-3 -2 x 10-2) for each q, ensuring that yo falls within the linear elastic regime, and apply a single

frequency of 1 Hz for all 4's.

For closer inspection of the earliest phase of the gelation, the same time evolution of the moduli is

presented on log-log scale in Fig. 4.1 (b). The higher q is, the earlier both moduli display the onset
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of the sharp increase, and the larger their magnitude. All the samples exhibit initial latent periods,

during which both moduli remain nearly constant, and the duration of the latency shortens for

higher (. Although the finite rate of heat transfer from the rheometer to the sample may delay the

gelation, we expect that this latency also shows inherent properties of the samples, as the recorded

temperature exceeds 28'C, well above the gelation temperature at 25*C, within the first 10 s, and

the truncation gap is only 49 pm. The crossover between G' and G", on the other hand, occurs after

the sharp moduli increase, except for the gel with the lowest P = 1%.
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FIG. 4.1. Evolution of storage G' (solid) and loss G" (open) moduli of PS-PNIPAM gels of different 4 in
(a) the log-linear scales and (b) the log-log scales after the sudden increase of temperature from 15C to

30*C at time t = 0 s.

These two transitions may indicate that the simple description of the DLCA model fails to capture

a critical evolution stage of nascent colloidal gels. The DLCA gelation time, or the time of

percolation, tg for q = 1% and (P = 15% are estimated to be 9.51 s and 0.01 s, respectively, by

the expression

a3 3

t9 = 0f -3, (4.1)
(kBT

where a denotes the particle radius, rI the solvent viscosity, and df the fractal dimension of the

clusters [37]. Clearly, both the end of latency and the moduli crossover, which significantly alter

the mechanical behavior of the system, are observed much later than the predicted tg.
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In Fig. 4.2, we show tan(S) = G"/G' of the same data sets, which provides a measure of the ratio of

fluid-like to solid-like behavior of the gel. Except for the data for <5 = 1%, at which the gel is too

weak to yield robust measurement results, tan(S) drops from a value higher than 1 to values below

1, as represented by the crossover between G' and G" in Fig. 4.1 (a, b). Then all of the data sets

start to reach plateaus in the range of 0.6 - 0.9, seemingly independent of #P, at around 750 s after

the initiation of gelation. This saturation of tan(S) again sets a separate time scale of colloidal

gelation that we cannot otherwise find in the rheometric measurements. The rather high values of

the tan(S) plateaus indicate important viscous dissipation processes in the gels occurring at the

used oscillation frequency of 1 Hz.
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FIG. 4.2. Temporal evolution of tan(g) of PS-PNIPAM gels with

different q5 after the intiatiation of gelation at t = 0 s. For all (P,

tan(8) saturates to a plateau between 0.6 and 0.9.
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4.1.2 Yielding behavior

To investigate the range of linear elasticity and the yielding behavior of the PS-PNIPAM colloidal

gels, we perform a series of strain sweep experiments after letting the samples evolve for 30 min

at 30'C, for different volume fractions 4. At low strain amplitudes yo, the moduli of the gels are

independent of yo as shown in Fig. 4.3; these plateaus indicate the regimes of linear viscoelastic

response. With increasing q6, the upper bound of the linear regime decreases as the gel becomes

stiffer and more brittle. Although the limit of linearity is expected to exhibit a power law as a

function of 0 for particles possessing strong attractive forces [7], ambiguity in the exact location

of the limit renders the resulting power law rather arbitrary. While the decrease in the moduli with

amplitude defines the onset of nonlinear response, the crossover between storage and loss moduli

marks fracture of the gel network. After the crossover, the loss modulus G" dominates the storage

modulus G', and the system rheologically behaves fluid-like, hinting at the breakage of the

underlying stress-bearing network. Unlike the limit of linearity, the location of crossover does not

display any obvious trend as a function of q5.
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FIG. 4.3. Storage (solid) and loss (open) moduli of PS-PNIPAM

gels of different # with increasing strain amplitude yo, 30 min after

the onset of gelation at 30*C.
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4.1.3 Volume fraction independent frequency response

To gain further insight into the dependence of our gels on q5, we investigate their behavior in a

range of frequencies f of the applied oscillatory shear. We let the gels evolve for 30 min at 30*C

before starting the measurements. Here, the strain amplitude yo is fixed to a value within the

respective linear regime for each q5, to exclude any nonlinear effect.

Both G' and G" moderately increase with frequency for all the volume fractions, as presented in

Fig. 4.4 (a). Although the magnitudes of the moduli differ by several orders of magnitude for

different q5, we observe that the data can be scaled onto a master curve by normalizing both moduli

by the crossover modulus G* and the frequency by the crossover frequency f*, as shown in Fig.

4.4 (b).
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FIG. 4.4. (a) G' (solid) and G" (open) of PS-PNIPAM gels 30 min after the beginning of gelation at

30*C as a function of strain frequency. The moduli exhibit a moderate frequency dependence for the

samples with q6 ranging from 1% to 15%. (b) Master curve resulting from the scaling of all the data in

(a) by the respective crossover values.

The scaling modulus G* exhibits a power law behavior as a function of 4) over a decade, with an

exponent of 3.81, comparable to the power law exponent of 3.28 modelled for theoretical DLCA

gels at low volume fractions, as shown in Fig. 4.5 (a) [7]. This scaling behavior suggests that the

PS-PNIPAM colloidal gel forms a fractal microstructure. Despite the strong inter-particle
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attraction (-30kBT) at 30'C, the resulting gels relax at experimentally accessible frequencies, as

marked by the crossover between G' and G". The observation of the crossover indicates that the

gels behave fluid-like at frequencies below the crossover frequency, indicative of slow network

reconfigurations. This type of frequency response is reminiscent of the Maxwell model of

viscoelastic fluids [38]. Most remarkably, the scaling frequency f* is independent of 4, as shown

in Fig 4.5 (b).

a-

1 4

310

210

10

010

102

2
10-2 10~

1

10

10~10*

10-2

10
10

FIG. 4.5. (a) The scaling modulus G* exhibits

The scaling frequency f* is independent of P.

a power law behavior with 0, with exponent 3.81. (b)

Understanding the scaling behavior and p-independence of the frequency response as well as the

multifaceted initial development of PS-PNIPAM colloidal gels revealed through the time sweep

experiments calls for an exploration of their physical mechanisms. Rheological approaches,

however, cannot discern the signs of these mechanisms, as a rheometer measures the bulk

mechanical properties only. In the following sections, we employ DDM to seek for the hints of the

physical mechanisms responsible for these rheological phenomena by investigating the

microscopic structure and dynamics of the gel networks.
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4.2 Microscopic structure and dynamics of PS-PNIPAM colloidal gels

probed with Differential Dynamic Microscopy

4.2.1 Real space images: qualitative assessment

The change in the microstructure of the gel network during gelation is prominent in the microscope

images. The PS-PNIPAM colloidal gels undergo strong configurational evolution after the rapid

increase of temperature from 20*C to 30'C at t = 0 s, as shown in Fig. 4.6 for a gel at # = 0.5%.

The images visualize the network composed of particles of a diameter below the diffraction limit

of an optical microscope from the very beginning of the aggregation process. As the gelation

proceeds, we observe a gradual development of the structure as the constituents of various sizes

undergo aggregation and compaction processes. We do not observe any evidence of the

detachment of particles or their aggregates throughout the experiment, which suggests that the

aggregation is an irreversible process, consistent with the DLCA description and our rheological

findings.

Upon gelation, the particles and clusters undergo kinetic arrest within the space-spanning gel

network, as evidenced by the observation that specific features of the network retain their locations

within the images throughout the gelation process, despite thermal fluctuations. This finding

indicates that a percolating structure pins its components, such as the particles, clusters, and sub-

clusters, to fixed positions, giving rise to the non-ergodicity of the system.
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FIG. 4.6. Microscope images of the PS-PNIPAM colloidal gel (0 = 0.5%) taken (a) 2 min, (b) 5 min,

(c) 15 min, (d) 30 min after the initiation of gelation by steep temperature increase from 20'C to 30*C.

The texture clearly coarsens as the gel ages, as a result of aggregation and compaction.

The gel network images of the PS-PNIPAM colloidal gels further display that the grain size

decreases with increasing q, as presented in Fig. 4.7, for gels at four different volume fractions

(q = 0.3%, 0.5%, 0.8%, and 1.0%), 30 min after the initiation of gelation. The diminishing sizes

of the aggregates elucidate that individual clusters are constrained from growing as their

surroundings become more crowded.
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FIG. 4.7. Microscope images of the PS-PNIPAM colloidal gels with particle volume fraction tr of (a)

0.3%, (b) 0.5%, (c) 0.8%, (d) 1.0%, 30 min after the initiation of gelation by steep temperature increase

from 200C to 300C. The texture coarsens with decreasing t#, leaving more room for the constituents to

grow in size.
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4.2.2 Evolution of structural properties

The implementation of 2D FFT, square norm calculation, and subsequent azimuthal and temporal

averaging on the gel network images, as described in Chapter 3, allows us to quantify these visual

observations. The static structure factor S(q), which encodes the statistical picture of the structural

characteristics of the gel network, exhibits a systematic evolution as a function of the gel age, as

shown in Fig. 4.8 for a gel with <P = 0.5% at 30*C.
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FIG. 4.8. Evolution of the static structure factor S(q) during the

gelation of PS-PNIPAM particles (4P = 0.5%) at T = 30*C. The

power law shown provides the fractal dimension of the clusters.

S(q) provides a measure of the total mass of the scatterers at the corresponding length scale

q-1 [37], and in our accessible q-range, we observe several structural features of the gel. In the

high q regime, a time-invariant peak at q ~ 6 pm- occurs, which corresponds to the real space

length scale of r = _ ~ 500 nm, and therefore reflects the nearest neighbor correlation between
q

adjacent individual particles.

Over the q regime of 0.9 tm-1 < q 3 im- 1 , S(q) exhibits an age independent power law

behavior, a signature of scale-invariance or fractality of the microstructure [37]. The slope in the
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q-domain of 1.5 iim' < q 3 pim- is approximately -1.77, suggesting that the gel network

possesses a fractal dimension of 1.77, in close agreement with that of a DLCA gel (1.75) [3]. In

the q-domain of 0.9 im-1 < q 1.5 m-1, we observe a larger fractal dimension of -2.37. This

might be a sign of a partial compaction of the clusters at these length scales.

The peaks in the low q-domain show the spacing among adjacent clusters. The fact that these peaks

are well-defined for each gel age indicates that the cluster sizes are uniform, as expected for a

DLCA gelation process [8]. In addition, the position of the peak shifts to lower q during the

gelation, implying the growth of the clusters.

To estimate the cluster radii at different ages, we exploit the self-similarity of the structure to scale

S(q) for each gel age such that the cluster peak is located at (1,1) in the scaled coordinates as

shown in Fig. 4.9 (a). The cluster radius (R, = T/qpeak) increases in the early stage of gel

formation as shown in Fig. 4.9 (b). qpeak, the location of the peak at each gel age is equal to the

horizontal shift factor q*.
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FIG. 4.9. (a) S(q) of PS-PNIPAM particles (4 = 0.5%) at T = 30*C scaled with the global peak

located at (1,1). The deviations in the high q-domain are attributed to the spacing among individual

particles that does not scale with the cluster size. (b) Cluster radius (R, = 7r/qpeak) as a function of

gel age t, where qpeak = q* is the wave vector corresponding to the global peak location, and is

determined from the horizontal shift factor in the dynamic scaling of (a).
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We find similar overall structural characteristics for all volume fractions we investigate, as

demonstrated by the markedly clear scaling of all our S(q) curves for different q5 at different ages

shown in Fig. 4.10.
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FIG. 4.10. Scaled S(q) at T = 30'C with the global peak located at

(1,1) for four different 4) (0.3, 0.5, 0.8, 1.0%) at different ages.

For all volume fractions, the final cluster radii of our gels differ from the theoretical DLCA

prediction of

RC = a#dr3 , (4.2)

marked with dashed lines in Fig. 4.11 [37]. The measured cluster sizes are in general higher than

the predicted values, and exhibit notably weaker 4P dependence than predicted in Eq. (4.2). For

4P = 0.8%, in particular, Rc further disobeys the model by maintaining values comparable to those

of 4P = 0.3% throughout the gelation. We do not yet fully understand what induces these

discrepancies between the experiments and the theoretical estimates, but they are a strong

indication that the DLCA model does not accurately capture all the structural features of our

colloidal gels. They might partially result from the compaction of clusters before percolation,

which eventually allows each of them to occupy larger spaces upon percolation. Alternatively,

they might stem from the rearrangement of particles driven by a stress field after the percolation.
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FIG. 4.11. Cluster size (R,) as a function of gel age for q5 = 0.3%,

0.5%, 0.8%, and 1.0% at T = 30'C. The dashed lines correspond to

the theoretical DLCA gel cluster size for each 0.

4.2.3 Evolution of dynamic properties

In addition to the rich information on the structural evolution of gel networks that S(q) delivers,

DDM allows us to extract previously inaccessible data on the dynamics from the two curve-fitting

parameters 1r(q) and p(q). These parameters give insight into new aspects of the gelation,

revealing that the evolution of the gel network dynamics occurs over much longer time scales than

those of the static structure.

For the PS-PNIPAM sample of q5 = 0.5% at T = 30'C, the characteristic time scale, or the

relaxation time, 1r(q) in Eq. (3.3) at different gel ages is shown in Fig. 4.12. The exponential

relaxation time for the stable suspension at T = 20'C before the gelation is included for reference.

The power law with exponent -2 over the entire q -domain exhibited by 1r(q) of the stable

suspension at t = 0 s signifies the diffusive motion of the particles before the gelation. Upon the
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initiation of gelation, however, the stretched exponential relaxation time r(q) exhibits a peak at

the values of q, corresponding to qpeak of S(q) at each gel age.

Compared to the diffusive relaxation time scale, r(q) during the gelation increases by three or four

orders of magnitude over the q-domain corresponding to the cluster size and all smaller length

scales (higher q values). On the contrary, for the lower q-domain, the increase in -(q) is moderate,

and for the lowest q values probed, and hence for the largest real space length scales, the relaxation

is faster than the Brownian motion. We hypothesize that the faster dynamics at the inter-cluster

length scales may be a signature of macroscopic fluid-like features of the gels, in agreement with

the dominance of G" over G' at low frequencies in our frequency sweep experiment discussed with

Fig. 4.4.
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FIG. 4.12. Relaxation time r(q) of PS-PNIPAM gel of <p = 0.5% at

different waiting times after the initiation of gelation (T = 30*C). The

data set corresponding to the stable suspension at 20'C that exhibits

a power law of -2 in the entire domain is shown for reference.

Although the static structure does not undergo any significant change after 900 s (15 min) as can

be inferred from Fig. 4.9 (b), the relaxation time keeps increasing after 900 s by almost an order

of magnitude over the entire q-domain. In other words, the juxtaposition of the static and dynamic

information extracted via DDM explicitly discloses a phase of gelation, during which the gel
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evolves dynamically, but not structurally. Yet, the dynamics parameter 'r(q) indirectly exhibits

embedded structural information by reaching its peak at the q values corresponding to the

maximum of S(q) at each gel age.

Similar characteristics of T(q) are also observed for all other investigated volume fractions q =

0.3%, 0.8%, and 1.0%. For denser samples with higher particle volume fraction q, r(q) at any

given time is larger, as shown for the maximum of r(q) in Fig. 4.13 (a), because of the greater

kinetic constraint imposed by neighboring particles. These data points can be scaled in time as

shown in Fig. 4.13 (b), implying time scale invariant behavior of aging, and the shift factors exhibit

a power law as a function of q5 with exponent -3.09 as displayed in Fig. 4.14.
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FIG. 4.13. (a) Temporal evolution of the maximum of T(q) after the initiation of gelation of PS-

PNIPAM gels with different 4) at T = 30'C. (b) rmax in (a) shifted horizontally such that the

increasing parts for different q5 fall onto a master curve.
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FIG. 4.14. Shift factors of Tmax as a function of 0, as obtained from

the scaling shown in Fig. 4.13 (b).

For all systems regardless of 0, however, r(q) continues to increase over the entire q-domain with

gel age. For 0 = 0.3% at later times, the peaks of r(q) are not as well-defined, which we speculate

to result from the structural non-uniformity due to random restructuring of clusters that are allowed

relatively large spaces to jiggle under thermal agitation. Note also that the largest time scales

detected far exceed the image acquisition times; each image acquisition typically lasts for 10 s to

300 s, while the time scales probed throughout the gelation span eight orders of magnitude. This

capacity to explore a wide range of time scales provides a comprehensive view of the

heterogeneous dynamics of gelation.

The change in the stretching exponent p(q) during gelation provides further insight into the

evolution of the dynamics by hinting at the distributions of the different time scales that the

scatterers of different length scales possess. For stable suspensions, the dynamic structure factor

f(q, At) follows a simple exponential decay as shown in Eq. (2.2). For thermodynamically

unstable gelled systems, on the contrary, the stretching exponent p(q) arises in the description of

f(q, At), as in Eq. (3.2). Hence, p(q) is a parameter that characterizes the kinetic arrest of the

particles.
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Krall and Weitz first systematically developed a model to identify the stretching exponent of 0.7

as a value independent of q and 0 that describes the fluctuations of colloidal gels [11]. To derive

this exponent, the model restricts itself to the description of the internal elastic modes within a

cluster, where the structure is scale-invariant (fractal). The model approximates the fluctuations at

different length scales as independent, localized, overdamped oscillators, and concludes that

superposition of the corresponding simple exponential relaxations of individual oscillators yields

the exponent of 0.7. Romer et al., also presented experimental data on the immediate shift from a

simple exponential to a stretched exponential dynamics of p = 0.7 upon the sol-gel transition for

evolving gels at intermediate concentrations [39].

Yet, our DDM data reveal that p = 0.7 is not an intrinsic property of all colloidal gels as shown in

Fig. 4.15 for PS-PNIPAM gels ('p = 0.5%) at T = 30'C. From the onset of gelation, p(q),

gradually decreases to a value around 0.6 after 15 min, rather than undergoing an instantaneous

transition from 1 to 0.7.

Another novel feature is that p(q) is independent of q, even in the low q-domain corresponding

to the length scales larger than the cluster size measured from S(q). This implies similar relaxation

behavior on inter-cluster and intra-cluster length scales. Given that on the intra-cluster length

scales the system is devoid of discrete scatterers under sub-diffusive motion that induce stretched

exponential relaxation in the corresponding reciprocal space, this observation cannot be explained

by the simple model of multiple elastic modes superposed in the frame of clusters as largest units

that comprise the gel network.
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FIG. 4.15. Stretching exponent p(q) of PS-PNIPAM gel of P = 0.5%

at different times (legend) after the initiation of gelation (T = 30*C).

The resulting p is largely independent of q over the entire range of

length scales probed.

The evolution of p(q) for the gels of three other volume fractions (cP = 0.3%, 0.8%, and 1.0%) at

T = 30*C exhibit identical features: q-independence, and gradual decrease with gel age. The rate

of decrease, however, strongly depends on 0 as displayed in Fig. 4.16 (a). As 0 increases, p more

rapidly saturates to a final value close to 0.6. For q5 = 0.3%, p does not fall markedly below 1 until

after the theoretical DLCA gelation time at 171 s (2.85 min), at which the uniformly sized clusters

start to span the whole system space, and then gradually decreases to reach 0.6 at a later time. This

delay, therefore, may evidence that the stretched exponential relaxation is a consequence of the

kinetic arrest of the particles, regardless of the exact value of the stretching exponent p. For the

samples with higher P, the decrease in p follows the same trend, except for a shift to earlier times.

For 4P = 1.0%, the transition occurs too rapidly to be captured, and thus p reaches a plateau even

before the first acquisition of the images at 120 s (2 min).

Similar to Tmax displayed in Fig. 4.13, these data points can be scaled in time as shown in Fig.

4.16 (b), except for 0 = 1.0%, for which p is saturated already for the first image acquisition. This

scaling again implies a time scale invariant behavior of aging. The horizontal shift factor as a
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function of <p obeys a power law with exponent -2.85 as displayed in Fig. 4.17, close to the value

found from the scaling of Tmax (-3.09) in Fig. 4.14. This strongly suggests a correlation between

the evolution of -r(q) and p(q). The physical origin of this correlation, however, currently remains

an open question.
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FIG. 4.16. (a) Temporal evolution of the stretching exponent p of PS-PNIPAM gel at different volume

fractions 4P (legend) after the initiation of gelation at t = 0 s (T = 30'C). The vertical dashed line indicates

the gelation time (percolation) in the theoretical DLCA model for q5 = 0.3%. (b) p in (a) shifted

horizontally such that the decreasing parts for different 0 fall onto a master curve.
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FIG. 4.17. Shift factors of p as a function of 4, as obtained from the

scaling shown in Fig. 4.16 (b).
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When multiple exponential relaxation modes constitute a stretched exponential relaxation, as in

the Krall-Weitz model [11], the stretching exponent p contains complete information on the

distribution of the relaxation time scales of the individual modes as studied by Johnston [40]. Then

the gradual decrease of p during gelation from 1 to 0.6 may be a representation of the spreading

distribution of single mode relaxation times from a delta function to a wide distribution with long

tails of the fast relaxation modes driven by thermal fluctuations. Indeed, the exponent of 0.6

corresponds to the lowest maximum value and largest full width at half maximum of the density

function of single mode relaxation times [40]. Furthermore, the spreading of the distribution may

be attributed to intermittent break-up of bonds between highly agitated aggregates that can

gradually cut out low frequency modes, while sustaining high frequency modes.

In this picture of the gel evolution, the fact that long-term p plateau is located at slightly lower

magnitude for more dilute samples in Fig. 4.16 (a) is a corollary of missing the fastest relaxation

modes in the images, because of the limited image acquisition frame rate. Further dilution of

sample leads to faster motion of the smallest scatterers (e.g. individual particles), which in turn

causes the camera to lose a greater amount of information on the fastest dynamics in the network.

This loss manifests itself in the form of an underestimated exponent p, consistent with our results.

The challenge lies in bringing this abstraction to the level of quantitatively supported argument

when we can only obtain statistically averaged parameters.

Theoretically, the dynamic structure factor f(q, At) of any vibrating fractal networks has been

reported to decay as a stretched exponential with an exponent p, where the stretched exponential

time scale T(q) scales as q- 2 /P for large q [41]. This general relation between 'r(q) and p indeed

holds true in our colloidal gel networks, as shown in Fig. 4.18. For < = 0.3%, the slope s, of the

high q power law domain of r(q) closely matches with the theoretical prediction of -2/p for

vibrating fractal networks. This agreement provides another sign of fractality of the PS-PNIPAM

particle clusters, and indicates that p mirrors the distribution of relaxation times over multiple

length scales.
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FIG. 4.18. (a) Slope (s,) of r(q) in the high q-domain (black squares) and theoretical prediction

(-2/p) of the power for vibrating fractals (red circles) based on the mean p values obtained from curve-

fitting [41], as a function of the age of PS-PNIPAM colloidal gel (P = 0.3%, T = 30'C). (b) T(q) at

different ages (shifted from the bottom to the top as the gel evolves) showing steeper slopes in the high

q-domain for greater waiting time t.

4.3 Elasticity estimation using DDM

Quantitative exposition of the coupling between rheometric measurements and microscopic

observations has been a task that has motivated many research groups [11,42-46]. Here, we

develop our DDM analysis further to relate to rheology by estimating the elasticity of the gels with

DDM parameters. We use the scaling prediction of the elastic shear modulus predicted by the

Krall-Weitz model, which assumes that the macroscopic elasticity of the system is determined by

the spring constant between adjacent clusters [11]. Since a shear strain unbends the network

strands, rather than stretching them, the interaction among the largest units offers the floppiest

mode in a multitude of normal modes that exist in the system. Hence, in the Krall-Weitz model,

the shear modulus G scales as

KC 61r7lb
G~ -= , (4.3)

RC T

where KC is the inter-cluster spring constant, Rc the cluster radius, 77 the viscosity of background

fluid, b = 0.35 a correction factor, and -r* the q-independent characteristic relaxation time of the
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mean square displacement used in Eq (3.1) [11]. The last expression clarifies that the modulus can

be understood as the balance between Stokes drag in the numerator and displacement time scale

in the denominator.

To obtain r* in the Krall-Weitz model from the DDM parameters, we compare the expressions for

the dynamic structure factor f(q, At) used. The functional form of f(q, At), Eq (3.1), proposed in

the Krall-Weitz model and here modified for 2D images is

f(q, At) = exp - 62 f1 - exp (()P)}] (4.4)

[11], while the simplified form we use for the DDM analysis on non-ergodic media is Eq (3.2)

(repeated here)

f(q, At) = (1 - C(q))exp [- q + C(q). (3.2)
r(q) I

Equating these two expressions for early delay time At yields

--262 AP At),(4.5)
4 (T* T(q)'

which then leads to

2

(q65)P
~ 1 -r(q), (4.6)

4P

where q and r(q) are any set of values in the high q regime that probes the internal dynamics of
2

clusters. Indeed, the power law of r(q) ~ q P in the high q-domain discussed in section 4.2.4

renders r* in Eq. (4.6) q-independent.

The value of 62 can be found from C(q) in Eq. (3.2), since in the limit of At -> co, equating the

two expressions for f(q, At) results in

exp ( 2) = C(q). (4.7)

Although rather noisy compared the other parameters such as -r(q) or p(q), C(q) as obtained by

the method delineated in Chapter 3 provides a bell-shaped curve with its peak close to the limit of
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q -> 0, as shown in Fig. 4.19, for the PS-PNIPAM colloidal gel of <p = 0.3% and T = 30'C,

during gelation.

0.4
A t=180s

At = 300 s
0.3 - V t = 600 s

t = 900 S
4 t = 2700 s

0.2-* t = 3600 s

0.1 - 1

0.0
0 1 2 3 4 5 6

q (pm-')

FIG. 4.19. C(q) for PS-PNIPAM colloidal gels (4) = 0.3%, T =

30*C) at different gel ages (legend). Each of the data sets roughly

follows the right half of a Gaussian-type curve as predicted by Eq

(4.7).

By another curve-fitting optimization using Eq (4.7), with a correction factor multiplied to allow

the y-intercept to be a value lower than 1, we compute the values of the maximum mean square

displacement 62 in the gel network, and finally the shear modulus G using Eq (4.3). Both

quantities are shown in Fig. 4.20 as a function of time after the initiation of gelation. Even though

DDM captures reasonable values for 62 at the beginning of gelation, it quickly reaches a plateau

while r(q) in Eq. (4.6) continues to increase. This mismatch causes the estimated G value to

dramatically decrease, in contrast to what we find in the rheometric measurements.
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FIG. 4.20. Maximum mean square displacement S2 (black squares)

of scatterers in the PS-PNIPAM gel network (<b = 0.3%, T = 30'C)

and the corresponding estimation of shear modulus G (blue

triangles). (2 saturates to a minimum while the dynamics

continuously slow down, making the estimated G inaccurate for later

ages. Lines are guides to the eye.

The saturation of 62 to the order of 0.1 pm 2 is most likely induced by the image resolution limit,

whose pixel size in the real space is equivalent to 0.1 pim. A nafve scaling of the minimum 62

detected in DDM is 0.1 pm x 0.1 pim = 0.01 pm2 , but noise in the actual data can easily raise the

limit to the level observed in Fig. 4.20. Indeed, calculation of 62 from C(q) of denser samples

results in more rapid saturation to the values of the order 0.1 pIm2 or 0.01 [tm 2 .

Yet, this result provides valid values of G for the earliest stage of gelation. For the sample with

< = 0.3% at T = 30*C, the estimate via DDM yields a G of ~1.0 x 10' Pa before the saturation

due to the resolution limit. In comparison, G' of the fully evolved gel for the same volume fraction

is extrapolated to be -7.9 x 10-3 Pa from the power law reported in Fig. 4.5 (a). This extrapolated

value of G' would indeed be a reasonable prediction of the plateau magnitude to be found in Fig.

4.20, if it were not for the resolution limit.
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Whether we can justify this direct application of the Krall-Weitz framework to evolving systems

remains to be answered. The model assumes independence among the oscillating scatterers at

different length scales, which appears rather crude for a system whose viscoelastic properties are

determined by the collective behavior of particles and their aggregates. The inter-cluster length

scale dynamics newly presented by DDM may instead contain a key to predicting the bulk

elasticity, accounting for the interaction among the oscillators.

4.4 Strengths and limitations of DDM analysis on colloidal gels

Compared to the conventional scattering techniques used on non-ergodic systems, DDM preserves

all of its advantages discussed in Chapter 2 in its application to the colloidal gels: low cost, easy

implementation, high throughput, and compatibility with multiply scattering samples. One of the

most significant strengths of DDM in the analysis of heterogeneous, non-ergodic systems is that

we can instantaneously access the ensemble-averaged information over multiple length scales, thus

enabling us to holistically probe the structure and dynamics of the system during its transient state.

In the low q-domain, therefore, DDM provides a detailed picture of the dynamics at the length

scales larger than cluster sizes, revealing novel behaviors, which other localized probing

techniques are blind to.

Use of DDM to analyze the microscopic dynamics of the PS-PNIPAM colloidal gels also uncovers

several limitations. The most obvious technical limit of processing the images to calculate the

image structure function is the computation cost. For an image stack file with N = 1000 frames of

2048 x 2048 pixels, the image structure function computation takes more than 7 hours, which

substantially increases the analysis time. Although optimization of algorithm and the use of GPUs

for parallel computing can reduce the computation cost, real-time calculation of the correlation

function is not practical, especially in case of analyzing heterogeneous media such as colloidal gel

networks, where extensive ensemble-averaging is crucial for statistical integrity.
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Another practical limit to the DDM analysis, specifically for linking DDM parameters to

rheological properties of the gels, lies on the narrow range of particle volume fraction that is

compatible with microscopy. DDM allows us to examine samples at concentrations too high for

DLS, where incident light has to be only singly scattered. Yet bright-field microscopy requires the

sample to be sufficiently dilute to allow light to be transmitted through the sample. This restriction

prevents us from measuring dynamics of samples of comparable (p with those mechanically

measured on a rheometer.

A further limit to investigating dense samples can be ascribed to the low spatial and temporal

resolution of DDM, compared to the sensitive detectors used in other light scattering apparatuses.

Given a technical upper bound on the throughput, generating high definition images inevitably

compromises the speed of imaging, which renders DDM insensitive to the fastest dynamics in the

system. On the other hand, the number of pixels in the images determines the highest accessible

wave vector q, and given a finite magnification of the objective, we cannot probe the smallest

displacements of particle network segments. This technical limit seems to cause the estimation of

the gel elasticity to be impractical, except for the very early stage.
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Chapter 5

Tuning mechanical properties of colloidal

gels: Binary mixture

The prime engineering value of understanding the connection between macroscopic mechanical

properties and microscopic dynamics of soft materials is rooted in potential tunability of the

systems. Our design strategy to reach such tunability in colloidal gels lies in the use of mixtures

of two different types of particles: one characterized by strong attractive interactions (U- 30 kBT),

the other by weak attractive interactions (U ~ 5 kB T). As seen in the evolution of G' and G" of the

two systems after the initiation of gelation at t = 0 s for (p = 5% at T = 30'C in Fig. 5.1, the

moduli of the strong system, used so far in this work, are two orders of magnitude higher than

those of the weak system. We now start to explore with rheology and DDM how mixtures of these

two types of particles give rise to novel mechanical properties.
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FIG. 5.1. Temporal evolution of G' (solid) and G" (open) after the

initiation of gelation at t = 0 s of the strong (black squares), and the

weak (red circles) systems (<p = 5%, T = 300 C). The moduli

between the two systems differ by two orders of magnitude.

Mixing the two systems at different ratios with total particle volume fraction q = 5% at T = 30'C

leads to a similar temporal evolution of the moduli as for the individual systems. To systematically

investigate how the properties of the mixed systems vary with different mixing ratios, we alter the

relative proportions of the two particles by volume, keeping the total volume fraction constant at

# = 5%. Gradually decreasing the proportion of the strong particles, we obtain gels with gradually

decreasing moduli as shown in Fig. 5.2. Both the starting time of the initial sharp increase in the

moduli and the time of crossover between G' and G" remain similar for all gels.
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FIG. 5.2. G' and G" of the mixtures of strong and weak PS-PNIPAM colloidal gels with different

volume ratios (legend) ( 0 = 5%, T = 30'C) in the time sweep experiments. The moduli

systematically increase over two orders of magnitude with the proportion of the strong particles. There

is no obvious change in any time scale as a function of the ratio.

By contrast, we find that the yielding behavior of the gels exhibits drastically modified

characteristics in the mixtures, as shown in Fig. 5.3 for the samples of q5 = 5% at T = 30'C. The

strong gel alone displays a limit of linearity at yo ~ 8 x 10-3. The weak gel, however, exhibits a

much broader linear regime and a strain-hardening behavior before fracture. Remarkably,

increasing the proportion of the strong particles in the mixture gradually erases the strain-

hardening by inducing a nonlinear decrease of the moduli at lower strain amplitudes. In particular,

the balance between these two types of nonlinearity leads to a double yielding behavior at

intermediate proportions of strong and weak particles, where the gel retains the signatures of both.
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FIG. 5.3. G' and G" of the mixture of strong and weak PS-PNIPAM colloidal gels with different

volume ratios (legend) (0p = 5%, T = 30*C, gel age t > 30 min) in the strain sweep experiments. Not

only does the magnitude of the moduli vary as a function of the ratio, but also the nonlinear behavior

systematically changes by showing strain-hardening.

Strain-hardening has been ascribed to the stretching of the particle chains in the network that

follows unbending of the chains as the strain amplitude increases [10]. While the strain-hardening

is a result of chain stretching, moduli of the gels are measures of the resistance against chain

bending. Therefore, this picture of strain-hardening explains the consistent final yielding strain

amplitude, independent of the mixing ratio.

As the mixture gel becomes stiffer with increasing strong particle proportion, we speculate that

the gel simultaneously grows brittle, which drives the earlier onset of nonlinearity before the strain-

hardening regime. For the gels with intermediate ratios, consequently, signs of both modes of

nonlinearity are observed in two separate steps, suggesting a possibility of tuning the large

amplitude deformation behavior of colloidal gels. The double yielding behavior has been discussed

in different rheological studies of colloidal gels [47], and we expect our experiments with the

mixtures will contribute to a better understanding of the phenomenon.
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Most strikingly, the frequency dependence of the viscoelastic moduli is highly sensitive to the

interaction potential. While the strong system alone shows a relaxation within our experimental

frequency window, the weak system alone displays a pronounced dominance of G' over the probed

frequency domain. In the binary mixtures, the frequency behavior changes systematically with

increasing proportion of the weak particles, as shown in Fig. 5.4 (a). This versatility in the

frequency response of the PS-PNIPAM mixture gels becomes most evident when we scale the data

sets onto a master curve, as in Fig. 5.4 (b).
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FIG. 5.4. (a) G' and G" of the mixture of strong and weak PS-PNIPAM gels with different volume

ratios (legend) (4 = 5%, T = 300C, gel age t > 30 min) in the frequency sweep experiments. (b) A

master curve obtained by scaling the data with respect to the crossover values. This scaling onto a

master curve reveals a universality in the frequency response of the colloidal gels.
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This master curve indicates that by adjusting the ratios of the particles, we can tune the relaxation

time of the resulting gel that varies over an extraordinary range of seven orders of magnitude. Let

us note that this frequency response is on a first sight rather counterintuitive. Our data clearly show

that the relaxation time of a stronger gel is much faster than that of weaker gels - an intriguing

result that warrants further investigation.

Our new DDM tools we have developed will allow us to explore this broad spectrum of relaxation

dynamics seen in rheology in greater detail. DDM can effectively capture the increased

heterogeneity in the dynamics introduced by mixing the two types of particles through its powerful

ensemble-averaging algorithm over multiple length and times scales. Moreover, as the difference

in the inter-particle potential sets the structural features of the space-spanning network, we expect

to benefit from direct visualization of the network configuration by dying the two types of particles

with different colors in confocal fluorescent microscopy. This study of the change in microscopic

dynamics and structure accompanying the wide rheological variation will help us delineate a more

universal picture of colloidal gels.
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