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ABSTRACT
Cell migration is fundamental to a wide range of biological

and physiological functions including: wound healing, immune
defense, cancer metastasis, as well as the formation and devel-
opment of biological structures such as vascular and neural net-
works. In these diverse processes, cell migration is influenced by
a broad set of external mechanical and biochemical cues, partic-
ularly the presence of (time dependent) spatial gradients of solu-
ble chemoattractants in the extracellular domain. Many biologi-
cal models have been proposed to explain the mechanisms lead-
ing to the migratory response of cells as a function of these ex-
ternal cues. Based on such models, here we propose approaches
to controlling the chemotactic response of eukaryotic cells by
modulating their micro-environments in vitro (for example, us-
ing a microfluidic chemotaxis chamber). By explicitly modeling
i) chemoattractant-receptor binding kinetics, ii) diffusion dynam-
ics in the extracellular domain, and iii) the chemotactic response
of cells, models for the migration processes arise. Based on those
models, optimal control formulations are derived. We present
simulation results, and suggest experimental approaches to con-
trolling cellular motility in vitro, which can be used as a basis
for cellular manipulation and control.

INTRODUCTION
Cell migration and motility is fundamental to many bio-

logical and physiological processes. Simple bacteria, such as
E. Coli, swim by adaptively modulating flagellar tumbling and
turning rates. This enables swimming towards favorable envi-
ronments, which leads to survival and prosperity of the bacterial
and colony [1]. Complex eukaryotic cells migrate by constantly
remodeling their cytoskeletons to achieve a wide arrange of key

biological functions. For example, in the context of structural
development, endothelial tip cells guide the formation of vascu-
lar sprouts achieve viable capillary networks [2], whereas neural
growth cones guide axonal migration that is necessary for form-
ing neural interconnections [3]. In the context of wound healing,
epithelial cells migrate towards wound sites to build protective
barriers, while neutrophils migrate to chase invading bacteria and
microbes, eventually engulfing and digesting them in an impor-
tant defense mechanism [4]. In the context of cancer metastasis,
tumor cell migration is a necessary step for intravasation into the
capillary vessels [5], eventually leading to its transport via blood
into far reaching locations in the body. Common to all of these
diverse examples is the premise that cells migrate in response
to extracellular environmental cues. These cues can be either
one or a combination of the following factors: i) the presence of
gradients of soluble growth factors or chemoattractants that ini-
tiate and guide cell movement along gradient directions, ii) the
presence of insoluble molecules bound to the extra cellular ma-
trix that also influence the cell’s trajectory, and iii) the presence
of mechanical interactions between cells and their neighboring
cells and extracellular matrix.

Here we study the problem of controlling cell migration by
presenting external chemoattractant gradients as environmental
cues. These gradients are established by modulating the bound-
ary conditions of a diffusive extracellular region. Consequently,
these boundary conditions become control inputs for affecting
and guiding the migration process. Eukaryotic cells can sense
very shallow gradients (as little as a 2% difference of growth fac-
tor concentrations across the cell body). When presented with
such a stimulus, cells respond through a complex sequence of
signalling activity [6] by switching to a migratory phenotype,
and commencing on a continual processes of remodelling their
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cytoskeletons via polymerization and disassembly of actin fil-
aments [7]. Additionally, the placement and removal of focal
adhesion points enable the cells to bind to the extra-cellular ma-
trix, and consequently translocate their cell bodies towards the
direction of movement [4]. When cells move in trajectories that
are aligned with chemoattractant gradients, the process is known
as chemotaxis. When cell trajectories are random, and are not
directed along the gradients, the migration process is known as
chemokinesis.

Because in vivo cell migration is influenced by a multitude
of interacting factors, it is important to address the problem under
simplified and well understood physical conditions. Therefore,
studying migration under in vitro settings that precisely enable
control of chemoattractant gradients is desirable. Microfluidic
devices are currently being used to achieve this tasks for a va-
riety of settings and cell cultures [8, 9]. While various forms of
such devices exist, many consist of a gel region that acts as a
surrogate to the extra-cellular matrix. Two channels run along
the length of the gel region are used to flow media containing
different concentrations of growth factors. Figure 1(a) shows the
cross-section schematic of a representative device. The flow rate
and composition of this media can be externally controlled via
upstream mixers and instrumentation, thereby enabling the con-
trol of the concentration of the media at the boundary of the re-
gion. The growth factors defuse from the channels into the gel
region, and present to the cells with time-varying growth factor
concentrations and gradients. The growth factors bind to the re-
ceptors differentially along the cell membrane, causing the cells
to polarize and migrate. Because the growth factor concentra-
tions are dynamic, they present the cell with gradients in space
and time. These gradients induce cytoskeletal remodeling lead-
ing to the mechanisms of cell migration. Therefore, to achieve
a representative model of the process, diffusion dynamics, in ad-
dition to chemoattractant-reception binding kinetics have to be
modeled.

The framework described above provides an approach to
controlling and manipulating cellular migration in vitro. For
some problems, it may be desirable to maximize cell migration
rates and distances, for example, in the case of maximizing an-
giogenic sprouting response of endothelial monolayers. This can
be cast as an optimal control problem that maximizes a distance
traveled metric. In other conditions, it may be desirable to have
the cells follow certain paths for patterning and structural forma-
tion. This can be viewed as a trajectory control problem.

In this work, we model the problem setting described above,
and derive optimal control formulations to guide cell migration.
Our objective is to induce and control cellular motion within the
gel region by dynamically altering the growth factor concentra-
tions of the media flowing in the channels. In effect, this changes
the boundary conditions on the gel region, and therefore the mi-
croenvironment presented to the cells.

(a) Cross-section of a representative gel region (extra-cellular
matrix) bounded by two channels.

(b) Diffusion region.

(c) Discretized region.

Figure 1. Problem setup. (a) The concentration profiles (c(y, t)) in the
1-dimensional diffusion model is controlled by the concentrations of the
media in the left and right channels (uL and uR). (b) Discretization of the
diffusion problem.

SYSTEM MODEL
We are concerned with the migration of a single cell in a

purely diffusive, 1-dimensional homogeneous medium (varia-
tions along channel length and height are ignored). The con-
centration profile in the medium is determined entirely by diffu-
sion, and the time-history of the concentrations of the media at
the boundary of the region. Growth factors bind to cell mem-
brane bound receptors, and a certain fraction of the receptors be-
come occupied. Due to the presence of spatial gradients of the
chemoattractants, a difference in the fraction of receptors occu-
pied is established between the leading and trailing edges. This
difference leads to cell polarization and the initiation of the mi-
gratory signaling pathways. Therefore, there are three elements
to the system model that are described below: i) diffusion dy-
namics of the chemoattractants in the extra-cellular domain, ii)
growth factor and receptor binding kinetics, and iii) model of
cellular responses due the the difference in fraction of receptors
occupied.
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Diffusion dynamics
Diffusion in the medium is governed by the differential

equation

∂c(y, t)
∂t

= D
∂2c(y, t)

∂y2 +R(y, t) (1)

where D is the diffusion coefficient (assumed constant through-
out the entire region), and c(y, t) is the concentration of the
growth factor in the medium at spatial coordinate y and time
t. The spatial coordinate considered is one-dimensional and
bounded, i.e. y ∈ [0,Y ], since minimal variance along the other
channel dimensions. The boundary conditions of this region are
c(0, t) = uL(t) and c(Y, t) = uR(t). R(y, t) is the reaction rate
which can be used to model either growth factor sources (such
as when tumors emit chemoattractants) or sinks (such as when
cells internalize the chemoattractants). In our model, we assume
that the amount of growth factor binding to the cells is negligible
compared to the quantities existing in the medium, and therefore
we assume R(y, t) = 0.

It is convenient to spatially discretize the gel region and
write difference equations of the diffusion process. This allows
for the diffusion dynamics to be written in an LTI form where
the state of the diffusion subsystem is the vector of growth factor
concentrations at the discretization grid points. Discretizing over
a grid of N points, yi, with i ∈ [1,N], the difference approxima-
tion of eq. (1) is given by:

∂c(yi, t)
∂t

= D
∂2c(yi, t)

∂x2 ≈ D
ci+1(t)−2ci(t)+ ci−1(t)

(∆y)2 (2)

∂c(y1, t)
∂t

≈ D
c2(t)−2c1(t)+uL(t)

(∆y)2 (3)

∂cN(yN , t)
∂t

≈ D
uR(t)−2cN(t)+ cN−1(t)

(∆y)2 (4)

where ∆y = N/Y is the grid spacing. Based on this difference
approximation, the following state representation of the diffusion
dynamics is written:

⎧⎨⎩
ċ1
ċ2
...

ċN

⎫⎬⎭=
D

(∆y)2

⎡⎢⎢⎢⎢⎢⎣
−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

⎤⎥⎥⎥⎥⎥⎦
⎧⎨⎩

c1
c2
...

cN

⎫⎬⎭ +

D
(∆y)2

⎡⎢⎢⎢⎢⎢⎣
1 0
0 0
...

...

0 1

⎤⎥⎥⎥⎥⎥⎦
{

uL
uR

}
(5)

Equation (5) can be compactly written as

ċ = Acc+Bcuc (6)

Receptor-growth factor binding kinetics
The kinetics of the growth factor (which is the ligand, L, in

this case) and the membrane bound receptor (R), into a product
(P) of an occupied receptor (as illustrated in fig. 2):

[L]+ [R]⇌ [P] (7)

The dynamics of this interaction are driven by the law of mass
action, which can be written in differential equation form as fol-
lows:

d[P]
dt

= kon[L][R]− ko f f [P] (8)

where kon and ko f f are the forward and backward reaction rates
respectively, and the notation [⋅] denotes the concentration of the
argument. Assuming steady-state conditions of the binding ki-
netics, the derivative terms vanish, leading to:

0 = kon[L][R]− ko f f [P] (9)

[P] =
1

kD
[L][R] (10)

where kD = ko f f /kon is the reaction disassociation constant.
The steady-state assumption is justifiable because the reaction
binding kinetics of the growth factor and receptor typically
reach steady state within a few micro-seconds for such proteins,
whereas meaningful cellular migration time scales are typically
on the order of hours.

The fraction of receptors occupied (FRO) in any region of
the cell membrane is therefore given by

FRO =
[P]

[P]+ [R]
=

[R][L]/kD

[R][L]/kD +[R]

=
[L]

[L]+ kD
=

c(y, t)
c(y, t)+ kD

(11)

where the last equality follows since c(y, t) is the concentration
of the growth factor, or the ligand (L). The difference in fraction
of receptors occupied between the leading and trailing edge of
the cell. The location of the leading edge of the cell is given by
y+w, while the location of the trailing edge is given by y−w.
Therefore, we write

uδ(t) =
c(y+w, t)

c(y+w, t)+ kD
− c(y−w, t)

c(y−w, t)+ kD
(12)
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Figure 2. Illustration of ligand (red circles) binding to membrane bound
receptors (blue) in the presence of a ligand concentration gradient. As a
result, the fraction of receptors occupied on the right side is greater than
the fraction of receptors occupied on the left side.

Since the concentrations at the leading and trailing edges
of the cells depend on cell locations, means for interpolating
the concentrations as a function of the concentrations at the grid
point locations ci are necessary. We rely on Gaussian radial ba-
sis functions to ensure smoothness of the interpolating functions
(linear interpolations are necessarily discontinuous). Thus, the
interpolated concentration for an arbitrary location y is given by

c(y, t) =
N

∑
i=1

ci(t) ⋅ e
−
(

yi−y
σ

)2

= cT (t) ⋅d(ycell) (13)

where yi is the grid coordinate, and σ is the spread of the Gaus-
sian radial basis function, and the ith element of the vector d is

e−
(

yi−y
σ

)2

.

Cell migration model
To model the response of the cell as a function of the dif-

ference in fraction of receptors occupied, we rely on a migration
model presented in [10]. In this model, cell motion is driven by a
random noise component, a chemotactic component, and an au-
toregressive (damping-like) term. Modifying this model to our
problem setting, and focusing on the deterministic aspects of the
model, we write:

ÿcell =−βẏcell +κ ⋅uδ (14)

where β is the autoregressive velocity term, and κ is known as the
chemotactic responsiveness of the cell. While this model can be

viewed as highly simplistic, it has been shown to reproduce cell
migration patterns in a qualitatively similar way to experimental
observations [10].

Integrated System Model
To integrate equations (6), (12), and (14) into a common

system model, it is useful to expand the input state vector to in-
clude various intermediate variables as fictitious control inputs.
We expand the control input vector, and write

u =

⎧⎨⎩
uL
uR
uδ

uCL
uCR

⎫⎬⎭=

⎧⎨⎩
uL
uR
uδ

c(ycell−w)
c(ycell +w)

⎫⎬⎭ (15)

where the definitions of the various quantities are self-evident.
This allows us to write the dynamics of the system in the follow-
ing LTI form:

⎧⎨⎩

∣
ċ
∣

ÿcell
ẏcell

⎫⎬⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Ac 0

...

−β 0
⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨⎩

∣
c
∣

ẏcell
ycell

⎫⎬⎭
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D/(∆y)2 0
...

...
...

0
... 0 0 0

...
...

...
...

D/(∆y)2

0 0 κ 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎨⎩
uL
uR
uδ

uCL
uCR

⎫⎬⎭
(16)

Because the 5× 1 input vector u has been expanded from the
2× 1 vector uc, algebraic constraints relating the control inputs
have to be satisfied. Specifically:

uδ =
uCR

uCR + kD
− uCL

uCL + kD
(17)

uCL =
N

∑
i=1

ci ⋅ e
−
(

yi−(ycell−w)
σ

)2

= cT ⋅dL(ycell) (18)

uCR =
N

∑
i=1

ci ⋅ e
−
(

yi−(ycell+w)
σ

)2

= cT ⋅dR(ycell) (19)

4 Copyright © 2010 by ASME
Downloaded From: http://proceedings.asmedigitalcollection.asme.org on 10/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



In summary, equations (16) to (19) can be compactly written as

ẋ = Ax+Bu (20)
s.t. g(x,u) = 0 (21)

In this compact form, it becomes apparent that the model as-
sumes a Hammerstein-like model structure as depicted in fig. 3.

Figure 3. A Hammerstein-like model representation of the cell migration
process.

Open-loop Simulations
Open-loop simulations illustrating the system response are

shown in Figure 4. The Figure shows the time evolution of the
concentration gradients in the extracellular domain, and the re-
sulting cell trajectories. Simulations are shown for different in-
put concentrations at the left and right boundary channels, in-
cluding: constant levels (4(a)), linear ramps (4(b)), sinusoidal
(4(c)) and square inputs (4(d)). The values of the simulation pa-
rameters were chosen to replicate the dynamics of the Vascular
Endothelial Growth Factor (VEGF) diffusion through a medium
of collagen, and the binding kinetics to the VEGF receptor on
endothelial cells. These parameters are: D = 5× 10−11 [m2/s],
kD = 1×10−9 [M] and cell dimensions of approximately 50 [mi-
crons]. All simulations start at zero concentration levels in the
extracellular domain, and with the cells adjacent to the left chan-
nel.

The simulations suggest an interesting outcome: if maximal
migration velocities are desired, extremal controls are not neces-
sarily optimal. For example, in Figure 4(a), the chemoattractant
concentration at the right channel was maintained at a maximal
value of 50 ng/mL at all times, whereas the corresponding con-
centration in Figure 4(b) was a linearly increasing ramp leading
up to 50 ng/mL only after 10 hours. Even though the chemoat-
tractant input in Figure 4(b) was less, the cells responded more
rapidly by traveling across the domain in less time. This perhaps
counter-intuitive result motivates the need to cast the migration
control problem in an optimal control framework, which is dis-
cussed next.

AN OPTIMAL CONTROL FORMULATION
We propose an optimal control formulation relying on the

Pontryagin Minimum Principle [11] to enable cell trajectory con-
trol as it migrates through the diffusion medium. The cost func-
tion formulation is given by:

u∗ = argmin
u

{
ϕ(x∣t=T )+

∫ T

0
L(x,u)dt

}
(22)

. We chose a general Lagrangian cost function is given by

L =
α

2
(ycell− ydes)

2 +
γ

2
(
u2

L +u2
R
)
+υ (23)

and the terminal cost that maximizes net cell migration

ϕ(x∣t=T ) =−ycell =−xN+2 (24)

This cost function can be specialized to various cases via appro-
priate parameter settings. For example, in most practical cases,
there is no cost associated with the control inputs uL and uR since
they represent chemoattractant concentrations. This can be cap-
tured by setting γ = 0. Similarly, if cell trajectory following is
desired, we set all coefficients other than α to zero. If minimum
travel time from extremal points is desired, we set all coefficients
other than υ to zero.

We define the Hamiltonian scalar function H as

H = λ
T f(x,u)+L(x,u)+µT g(x,u) (25)

where the (N + 2)× 1 co-states vector λ includes the Lagrange
multipliers associated with the dynamic constraint (20) and the
3×1 vector µ= [µδ,µCL,µCR]

T includes the Lagrange multipliers
associated with the algebraic input control constraints (17), (18),
and (19).

From the Pontryagin Minimum Principle, the optimal con-
trol and optimal trajectories are characterized by:

λ̇
∗
=−∇xH (26)

u∗ = argmin
u

{
H
}

(27)

where (⋅)∗ denotes quantity optimality. Equation (26) can be
used to characterize the optimal co-states trajectories λ

∗(t).
Equation 27, is used the define the optimal controls. In most
cases it can be equivalently characterized by ∇uH = 0, thereby
defining 5 constraints. Two of these constraints are used to de-
fine the real control inputs (uL,uR), while the remaining three
constraints define the multipliers (µδ,µCL,µCR). The first two re-
lations define the optimal control inputs as follows:
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(a) Zero input at left channel, constant input at right channel. (b) Zero input at left channel, linear input at right channel.

(c) Sinusoidal input at both channels. (d) Zero input at left channel, Square input at right channel.

Figure 4. Simulation results showing the input concentrations at the left channel, right channel, and the time evolution of the field concentration long
time. The location of the cell is initiated at the left end of the field. The cell trajectory is illustrated by the black line. (a) Constant concentrations applied
(Ul = 0 and uR = 50 for all time). (b) Linearly ramping concentrations in the right channels. (c) Sinusoidal concentrations on both channels. (d) Pulsatile
concentrations on the right channel.

∂H
∂uL

=
D

(∆y)2 λ1 + γuL

⇒ u∗L =

⎧⎨⎩

uLmax if − λ1
γ

D
(∆y)2 > uLmax

−λ1
γ

D
(∆y)2 if uLmin <−

λ1
γ

D
(∆y)2 < uLmax

uLmin if − λ1
γ

D
(∆y)2 < uLmin

(28)

and

∂H
∂uR

=
D

(∆y)2 λN + γuR

⇒ u∗R =

⎧⎨⎩

uRmax if − λN
γ

D
(∆y)2 > uRmax

−λ1
γ

D
(∆y)2 if uRmin <−

λN
γ

D
(∆y)2 < uRmax

uRmin if − λN
γ

D
(∆y)2 < uRmin

(29)

Note that in cases when γ = 0, optimal controls u∗L and u∗R
take the form of bang-bang control. This is primarily due to the
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Hamiltonian not being a function of the inputs. The remaining
three relations define the multipliers µ as follows:

∂H
∂uδ

= λN+1κ+
∂L
∂uδ

+µδ

⇒ µ∗
δ
=−λN+1κ (30)

∂H
∂uCL

=
∂L

∂uCL
+µδ

kD

(uCL + kD)2 +µCL

⇒ µ∗CL =
λN+1κkD

(uCL + kD)2 (31)

∂H
∂uCR

=
∂L

∂uCR
−µδ

kD

(uCR + kD)2 +µCR

⇒ µ∗CR =− λN+1κkD

(uCR + kD)2 (32)

Finally, the optimal costate trajectories are given by:

λ̇
∗
=−AT

λ−∇xL−µCL

{
∇xdL ⋅ c+

[
dL
0

]}
−µCR

{
∇xdR ⋅ c+

[
dR
0

]}
(33)

where

∇xL = [0, ⋅ ⋅ ⋅ ,0,α(ycell− ydes)]
T

Thus, to solve for the optimal controls, state trajectories, co-
state trajectories and Lagrange multipliers, equations (28) - (33)
have to be solved simultaneously. The boundary conditions of
the solutions are given by

x(t = 0) = 0 (34)
λ(t = T ) = ∇x ⋅ϕ(t = T )

= [0,0, ⋅ ⋅ ⋅ ,0,−1] (35)

These equations and the boundary conditions characterize the
optimal trajectories.

CONCLUSIONS
We presented a model and an approach to the problem of

controlling cell migration. A key feature of eukaryotic cell mi-
gration is that migration velocities depend on the difference of

fraction of receptors occupied. A simple growth factor-receptor
binding kinetics model reveals that the inputs are transformed
nonlinearly to what is otherwise assumed to an LTI process. We
developed a Hammerstein-like model of this process. Simula-
tions showed that in order to maximize cell migration rates across
a region, extremal controls are not necessarily optimal. This mo-
tivated the derivation of optimal control conditions by relying on
the Pontryagin minimum principle.
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