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mal energy density two-point functions, at least for maximally chaotic systems. The man-

ifestation, referred to as pole-skipping, concerns the analytic behaviour of energy density

two-point functions around a special point ω = iλ, k = iλ/vB in the complex frequency

and momentum plane. Here λ and vB are the Lyapunov exponent and butterfly velocity

characterising quantum chaos. In this paper we provide an argument that the phenomenon

of pole-skipping is universal for general finite temperature systems dual to Einstein gravity

coupled to matter. In doing so we uncover a surprising universal feature of the linearised

Einstein equations around a static black hole geometry. We also study analytically a

holographic axion model where all of the features of our general argument as well as the

pole-skipping phenomenon can be verified in detail.
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1 Introduction

Over the last few years there has been exciting progress in characterizing chaotic be-

havior in quantum many-body systems using out-of-time ordered correlation functions

(OTOCs) [1–20]. For instance, for a large class of systems, it has been observed that1

〈V (t, ~x)W (0)V (t, ~x)W (0)〉β0 = 1− ε eλ(t−|~x|/vB) + · · · , (1.1)

where V and W are generic few-body operators, β0 = 1/T is the inverse temperature,

and ε is a small parameter inversely proportional to the number of degrees of freedom.

1We have normalized V and W so that at t = 0, the correlator is 1. Some variances of (1.1) have also

been observed. For example, λ can be zero in some systems and different spatial profiles have also been

seen. See for example [19] for a survey.
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The exponential growth of (1.1) is reminiscent of the diverging trajectories of two initially

infinitesimally separated particles in classical chaotic systems. Thus λ is often referred

to as the quantum Lyapunov exponent, and vB, which describes the speed at which the

growth propagates in space, as the butterfly velocity. For later purposes, let us note that

the equation (1.1) has the form of a plane wave

〈V (t, ~x)W (0)V (t, ~x)W (0)〉β0 ∼ 1− εe−iωt+ik|~x| + · · · , (1.2)

with purely imaginary values of both frequency ω and momentum k:

ω = iλ , k = ik0 , k0 =
λ

vB
. (1.3)

The quantum nature of (1.1) is highlighted by the fact that λ has an upper bound

λ ≤ λmax = 2πkB
~β0 [5] (henceforth ~ = kB = 1), which is saturated by a variety of systems

including holographic theories, two-dimensional conformal field theories (CFTs) in the large

central charge limit, and strongly coupled SYK models. Below we will refer to systems

which saturate the bound as maximally chaotic systems.

At the classical level, chaos is believed to provide the microscopic dynamical mechanism

for macroscopic phenomena such as transport and thermalisation (for example see [21, 22]).

It remains an outstanding open question whether chaos plays a similar role for quantum

many-body systems. It is thus a welcome development that there have been various tanta-

lising hints indicating that (1.1) is inextricably connected to transport and hydrodynamic

behavior [14–16, 23–32].

In particular, two recent developments showed that in addition to (1.1), quantum chaos

also has a sharp manifestation in the thermal energy density two-point functions [27, 28].

The manifestation, referred to as pole-skipping in [28], was first observed numerically in

a holographic system in [27], and then derived as a general prediction of an effective field

theory (EFT) for chaos [28]. More explicitly, it was proposed in [28] that the chaotic

behavior (1.1) can be captured by the propagation of an effective chaos mode, which, at

least for maximally chaotic systems, coincides precisely with the hydrodynamic mode for

energy conservation. The phenomenon of pole-skipping is a direct consequence of the same

mode playing the dual role of capturing both energy conservation and chaos. The EFT

description of chaos also provides a simple explanation for connections between (1.1) and

energy diffusion observed in previous literature [14, 15, 23–28]; they correspond to the

behaviour of a single effective mode, albeit at different scales: the OTOC (1.1) at the

scale given by (1.3), and transport at scales of ω, k � 1/β0. They are related by an O(1)

extrapolation.

Pole-skipping can be checked to hold for the SYK chains studied in [14]. And it has

also been verified in two-dimensional CFTs in the large central charge limit [33].

The purpose of this paper is to provide further support for the generality of the man-

ifestation of quantum chaos in energy density correlation functions. We show that the

pole-skipping phenomenon is universal in general holographic systems described by the

Einstein gravity coupled to matter fields, thereby generalising the analysis of [27] for the

Schwarzschild black hole in AdS5. We will provide a general analytic derivation of this
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phenomenon and elucidate its gravitational origin. We will also make a connection with

the gravitational shock wave analysis of (1.1), thus directly establishing that the behaviour

of an OTOC and pole-skipping have the same gravitational origin. In doing so we will un-

cover a surprising universal feature of the linearised Einstein’s equations coupled to matter

around a static geometry. A hint of this universal feature came from the analysis of [27]

which initiated the study of linearised gravitational perturbations at the special point (1.3).

We emphasise that for a general gravity system there is no near-horizon SL(2,R) symmetry

(as there is in AdS2 or the BTZ black hole). This makes it clear that pole-skipping is a

phenomenon that occurs more generally than just in highly symmetric cases.

Before summarising the main contents of the paper, let us first review the phenomenon

of pole-skipping in the energy density two-point functions. The simplest example which

exhibits this phenomenon is the SYK chain of [14] for which the energy density retarded

two-point function has the form

GRT 00T 00(ω, k) = C
iω
(
ω2

λ2
+ 1
)

−iω +DEk2
, (1.4)

where C is some constant and DE is the energy diffusion constant. For this system the

Lyapunov exponent λ = λmax and vB =
√
λmaxDE . Equation (1.4) has a line of diffusion

poles at ω = −iDEk
2. Now, analytically continuing ω and k to imaginary values, we see

that the pole line precisely passes through the special point (1.3). But at that point, the

numerator of (1.4) is zero, so at the special point the would-be pole skips. It has been

argued in [28] that this is a generic phenomenon for maximally chaotic systems. More

generally, writing

GRT 00T 00(ω, k) =
b(ω, k)

a(ω, k)
, (1.5)

it follows from energy conservation that GR should exhibit hydrodynamic poles at small

ω, k, i.e. a(ω, k) should have a line of zeros at

ω = ωh(k) =

{
csk + · · ·
−iDEk

2 + · · ·
(1.6)

where in the second equality we have performed a small k expansion with the upper (lower)

line for a system with (without) momentum conservation. Now the statement of pole-

skipping is:

1. When analytically continued to imaginary ω and k, (1.6) passes precisely through

the special point (1.3);

2. b(ω, k) has a line of zeros which also passes through the special point (1.3).

The same phenomenon is also present in GR
T 00T 0i , G

R
T 0iT 0i as they are related by Ward

identities. For the rest of paper we will simply focus on GRT 00T 00 .

– 3 –
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An immediate consequence of having zeros of a(ω, k) and b(ω, k) passing through the

same point (1.3) is that there, GRT 00T 00 = 0
0 , and thus the energy density two-point does

not have a well defined value at that specific ω and k! More explicitly, let us consider

ω = iλ+ δω, k = ik0 + δk . (1.7)

Then, as δω, δk → 0, we find

GRT 00T 00(ω, k) =
∂ωb(iλ, ik0)

δω
δk + ∂kb(iλ, ik0)

∂ωa(iλ, ik0)
δω
δk + ∂ka(iλ, ik0)

. (1.8)

In other words, the function becomes infinitely multiple-valued at (1.3), depending on the

slope δω/δk at which the point is approached. Thus if the gravity analysis is to reproduce

the pole-skipping phenomenon, something special must be happening to the linearised

Einstein’s equations at (1.3). We will see this indeed to be the case.

We now summarise the main results of the paper on holographic systems.

In section 2 we study the linearised Einstein’s equations around a general black brane

geometry in ingoing Eddington-Finkelstein coordinates, and demonstrate that precisely

at (1.3) these equations exhibit a remarkably universal behaviour near the horizon. Specif-

ically, we will show that one component of the near-horizon Einstein’s equations becomes

trivial at the point (1.3), and hence one finds an extra ingoing mode near (1.3). As a

result, in the neighbourhood of (1.3) we find a family of different ingoing modes that de-

pend on the slope δω/δk with which one approaches (1.3), precisely mirroring the situation

of (1.8). By choosing this slope one can find a normalisable mode that passes through the

location (1.3) and hence there must be a pole in the energy density two-point correlator

passing through (1.3). Likewise, by choosing a different slope one can also find a different

ingoing solution corresponding to a line of zeroes passing through (1.3).

To illustrate the general discussion of section 2, in section 3 we proceed to study

this phenomenon in detail in a specific holographic model which describes a class of three-

dimensional strongly coupled field theories with broken translational symmetries [34]. More

explicitly, the model has a continuous parameter m. For m = 0, it reduces to a transla-

tionally invariant black brane in AdS4 describing a three-dimensional CFT at a finite

temperature. For m 6= 0, spatial momenta are not conserved, with dimensionless param-

eter mβ0 controlling the strength of momentum dissipation. We choose this model as it

exhibits rich transport behaviour as one varies m (see ref. [35]), thus allowing us to demon-

strate explicitly the insensitivity of the pole-skipping phenomenon to the long distance

transport properties of a system (as long as energy is conserved). Yet the model is simple

enough to allow us to calculate the energy density two-point functions analytically, which

in turn enables us to exhibit all features of the general argument of section 2 as well as

the pole-skipping phenomenon in great detail. In appendix B we show that the same an-

alytic discussion can also be applied to the Schwarzschild black hole of AdS5, dual to a

four-dimensional CFT at a finite temperature. In section 4 we conclude with a discussion

of future directions.
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2 Near-horizon Einstein’s equations and pole-skipping

In this section, we will demonstrate a remarkably universal property of the linearised

Einstein’s equations coupled to general matter content. We will then use this property

to argue that in general, the retarded energy density two-point correlator of holographic

theories with Einstein gravity exhibits pole-skipping at the location of eq. (1.3). This prop-

erty also enables us to make a connection with the gravitational shock wave analysis [2–4]

of (1.1), thus establishing that the behaviour of the OTOC and pole-skipping have the same

gravitational origin. The discussion of this section is general, thus somewhat abstract. In

the next section we will then examine a family of examples very explicitly.

2.1 Setup

Let us start by considering Einstein’s equations that arise from a bulk action of the form

S =

∫
dd+2x

√−g (R− 2Λ + LM ) , (2.1)

where Λ = −d(d + 1)/2L2, LM is the matter Lagrangian and L is the AdS radius that

henceforth we set to 1. We will allow for a rather general matter Lagrangian LM , but will

assume that the theory admits an equilibrium configuration corresponding to a homoge-

neous and isotropic black brane. We write the background metric as

ds2 = −r2f(r)dt2 +
dr2

r2f(r)
+ h(r)d~x2 , (2.2)

where f(r) is the emblackening factor which vanishes at the horizon f(r0) = 0. The

Hawking temperature is given by T = r20f
′(r0)/(4π).

Note that for a metric of this form the special frequency and momentum in (1.3)

are extracted by constructing the Dray-‘t Hooft shock wave describing a gravitational

perturbation δgV V = c(x)δ(V ) where V is the ingoing Kruskal-Szekeres coordinate. In the

presence of an infalling matter perturbation with energy E thrown into the black hole at

time t = −tw, the V V component of Einstein’s equations leads to a decoupled equation for

c(x) [2–4, 23, 36]

(∇2 − dπTh′(r0))c(x) ∼ e2πtw/β0Eδ(x) , (2.3)

where β0 = 1/T is the inverse temperature. Solving this equation gives an exponential

profile for c(x) that leads to the form (1.1) with the Lyapunov exponent and butterfly

velocity given by

λ = 2πT , k20 =
(2πT )2

v2B
= dπTh′(r0) . (2.4)

Here we wish to study the retarded energy density correlation function GRT 00T 00(ω, k)

near (2.4). This correlation function can be extracted from solving the linearised grav-

itational perturbation equations around (2.2) subject to ingoing boundary conditions at

– 5 –
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the horizon. It is therefore convenient to introduce ingoing Eddington-Finkelstein (EF)

coordinates (v, r, xi) with x1 ≡ x and

v = t+ r∗ ,
dr∗
dr

=
1

r2f(r)
, (2.5)

in terms of which the background metric (2.2) is

ds2 = −r2f(r)dv2 + 2dvdr + h(r)d~x2 . (2.6)

To calculate the energy density correlation function we then need to study the perturbation

equations of the metric δgvv(r, v, x) = δgvv(r)e
−iωv+ikx, together with all the other metric

perturbations and matter fields that couple to this mode. The fields that couple in this

channel are δgvv, δgrr, δgvx, δgvr, δgxixi , δgrx and δϕ, where δϕ schematically represents

any matter fields that couple to these perturbations.2

2.2 Near-horizon expansion

The retarded Green’s function of energy density GRT 00T 00 is governed by solutions of the

gravitational and matter perturbation equations that are regular at the horizon in ingoing

EF coordinates. It is therefore useful to expand these perturbations near the horizon as

δgµν(r) = δg(0)µν + δg(1)µν (r − r0) + . . . ,

δϕ(r) = δϕ(0) + δϕ(1)(r − r0) + . . . . (2.7)

After inserting the expansion (2.7) into Einstein’s equations one can construct the most

general solution to the perturbation equations as an expansion about the horizon.

Since the special location (1.3) (with parameters there given by (2.4)) depends only on

the background metric at the horizon, then if there is to be any universal behaviour near

this point it must arise from the near-horizon behaviour of these equations. To examine this

we simply insert (2.7) into the perturbations equations and evaluate them at the horizon,

which gives a set of constraints that relate the near-horizon coefficients in (2.7) to each

other. The full details of these equations are quite complicated and are not necessary for

our purposes. Thus, in order to illustrate the key point it is enough to proceed by dividing

them into two classes: the vv component of Einstein’s equations Evv = 0 and all other

perturbation equations, which we schematically write as X = 0.

As we approach the point (1.3) the perturbation equations X = 0 remain well defined

and, together with the perturbation equations away from the horizon, impose non-trivial

constraints that must be satisfied by the solution (2.7). In contrast, the behaviour of the vv

component of the Einstein equations is highly singular near (1.3). In particular, evaluating

this equation at the horizon we find that(
−id

2
ωh′(r0) + k2

)
δg(0)vv − i(2πT + iω)

[
ωδg

(0)

xixi
+ 2kδg(0)vx

]
= −2h(r0)

[
Tvr(r0)δg

(0)
vv − δTvv(r0)

]
, (2.8)

2This requires that δTvxi , δTrxi , δTx1xi , δTxjxk all vanish, with i 6= 1 and j 6= k 6= 1.
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where Tµν(r0) is the bulk stress-energy tensor of the background matter fields supporting

the black brane (2.2) and δTµν(r0) describes the matter perturbations. A priori, (2.8)

therefore depends on the matter content of the theory, i.e. the precise form of LM in (2.1).

However, for a large class of black brane solutions that we examined, including AdS gravity

coupled to scalar and gauge fields, we find that the identity[
Tvr(r0)δg

(0)
vv − δTvv(r0)

]
= 0, (2.9)

holds automatically for any value of ω and k as a consequence of regularity at the horizon.

In particular, in appendix A we show that the identity (2.9) holds for the commonly

studied Einstein-Maxwell-Dilaton-Axion gravity theories. As such, in all these theories the

vv component of Einstein’s equations at the horizon takes a remarkably universal form

that depends only on the metric perturbations(
−id

2
ωh′(r0) + k2

)
δg(0)vv − i(2πT + iω)

[
ωδg

(0)

xixi
+ 2kδg(0)vx

]
= 0 . (2.10)

2.3 Solutions at special point

From (2.10) we can now see that the location (1.3) in Fourier space is indeed very special.

In particular, note that for general ω and k equation (2.10) provides a non-trivial constraint

that relates the parameters δg
(0)
vv , δg

(0)
vx , δg

(0)

xixi
of the near-horizon solution to each other.

However, when ω = 2πT i then all other fields decouple at the horizon from δg
(0)
vv . The

equation (2.10) then reduces to

(dπTh′(r0) + k2)δg(0)vv = 0 , (2.11)

which remarkably has the same form as the equation that determines the spatial profile of

the Dray-‘t Hooft shock wave (2.3). For generic k this equation sets δg
(0)
vv = 0, however for

k = ik0 then this component of Einstein’s equations is automatically satisfied. This means

that precisely at the special point (1.3), equation (2.10) is identically zero, and hence does

not impose any constraint on the near-horizon expansion parameters δg
(0)
vv , δg

(0)
vx or δg

(0)

xixi
.

In other words, precisely at (1.3) there is one fewer equation to solve at the horizon than

at a generic value of ω and k.

As a consequence we can deduce that at the location (1.3) there exists an extra linearly

independent ingoing solution to Einstein’s equations. For the specific cases of AdS4 gravity

or the axion model that we study in detail in section 3 we can check this by explicitly

constructing the solutions (2.7) by solving the equations of motion order-by-order in the

expansion (2.7). For instance, in AdS4 gravity then, after fixing radial gauge, we find that

the most general ingoing solution to Einstein’s equations is specified at generic ω and k by

4 parameters in this near-horizon expansion. These can be chosen to be the parameters

δg
(0)
vx , δg

(0)
xx , δg

(0)
yy and δg

(1)
yy (where x2 ≡ y). However, precisely at (1.3), we find that there

is an extra independent parameter, which can be chosen to be the metric component δg
(0)
vv

at the horizon. In total the most general solution to the equations of motion then has 5

independent parameters in the near-horizon expansion at (1.3).

– 7 –
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The consequences of having such an extra linearly independent solution at (1.3) are

dramatic. With a slight risk of oversimplifying the problem, but in aid of conceptual clarity,

let us use a single scalar field as an illustration of the implications this extra solution. Recall

that a scalar field φ has the following expansion near the boundary r →∞:

φ(r, ω, k) = A(ω, k)r−α1 +B(ω, k)r−α2 , α1 < α2 , (2.12)

where the A-term (B-term) is the non-normalisable (normalisable) term and corresponds

to the external source (expectation value). The dual retarded Green’s function is then

given by GR = B/A with φ obeying ingoing boundary conditions at the horizon [37]. For

generic ω and k, at the horizon, φ has an ingoing and an outgoing mode. When we choose

the ingoing mode, the ratio of B over A becomes completely fixed, and so does the retarded

Green’s function. Suppose now that at the special point (1.3), we have an extra ingoing

mode at the horizon, which means that both independent solutions of φ are now allowed

at the horizon. Then, there is no constraints on A or B, and the retarded Green’s function

becomes infinitely multiple-valued, depending on one free parameter which determines the

linear combination of two near-horizon solutions. In particular, we can always choose a

combination so that there is only the normalisable term near the boundary (i.e. A = 0),

which then leads to a pole in GR. Similarly, there exists another combination such that

the normalisable term is absent (i.e. B = 0), which then corresponds to a zero of GR.

The present situation with metric perturbations is a bit more complicated, but the

essence is the same: the extra freedom in δgvv at the horizon should generically lead to

one free parameter in GRT 00T 00 at the special point. We will shortly see that when we move

slightly away from the special point, the free parameter can be taken to be the slope δω/δk

approaching the point, thereby precisely mirroring the situation of equation (1.8). In fact,

after fixing all the bulk gauge freedom and solving the constraints, the sector of metric

perturbations associated with δgvv always reduces to a single scalar degree of freedom [38].

On the boundary theory side this can be understood as a result of Ward identities for

GRT 00T 00 , GRT 00T 0x , GRT 0xT 0x , whereby all of these two-point functions are proportional to a

single scalar function. We will see this explicitly in the example studied in the next section.

To close this subsection, we note that the fact that at this special point the metric

component δg
(0)
vv can be tuned independently of the other fields at the horizon resonates

with the analysis of [27] which found a special null ansatz solution to Einstein’s equations

at (1.3). The solution constructed in [27] is indeed a special case of our general ingoing

solutions corresponding to the case with δg
(0)

xixi
= δg

(0)
vx = 0 and δg

(0)
vv non-zero. However,

we emphasize that from the point of view of the present analysis the key feature of (1.3) is

not that ingoing solutions with only δg
(0)
vv 6= 0 at the horizon exist at (1.3), but rather that

such a solution represents an additional independent solution to the equations of motion.

2.4 Solutions near special point

As we have seen, (2.10) becomes trivial at (1.3) and leads to an extra ingoing solution

precisely at this point. As a result the Green’s function GRT 00T 00 is ill defined precisely

at (1.3), and is infinitely multivalued. To understand physically what this means for the

– 8 –
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retarded Green’s function, we can consider tuning ω and k slightly away from (1.3). That

is we consider Einstein’s equations with ω = iλ+ εδω and k = ik0 + εδk, for |ε| � 1. Then

at leading order in ε the solution must satisfy the smooth equations X = 0 together with

an extra non-trivial constraint arising from (2.10)(
− d

2
δωh′(r0) + 2k0δk

)
δg(0)vv + δω

[
2πTδg

(0)

xixi
+ 2k0δg

(0)
vx

]
= 0 . (2.13)

Note that even though we have only moved slightly away from the special point, Einstein’s

equation (2.13) now imposes a non-trivial constraint on the near-horizon expansion that

must be satisfied by the ingoing mode (in addition to those coming from the smooth limits

of X = 0). As such for a fixed δω/δk there is no longer an extra solution. However, the

singular nature of (1.3) is reflected in the fact that the constraint (2.13) depends on the

slope δω/δk with which we move away from (1.3). This means that near (1.3) then, even

after fixing the usual independent parameters in the near-horizon expansion, we have a

family of different ingoing modes parameterised by δω/δk. The slope δω/δk now acts as

an extra parameter in the near-horizon solution and can be tuned to match the ingoing

solution onto different asymptotic solutions at the boundary.

In particular, by choosing δω/δk appropriately, we can ensure that we have an ingoing

mode that matches continuously onto the normalisable solution at the boundary. This can

be achieved by choosing δω/δk to satisfy

δω

δk
=

2k0δg
(0)
vv

d
2h
′(r0)δg

(0)
vv − 2πTδg

(0)

xixi
− 2k0δg

(0)
vx

, (2.14)

where δg
(0)
µν corresponds to the near-horizon expansion of the normalisable solution.

We therefore deduce that if we move away from the special point (1.3) along the

slope (2.14), then we will see a line of poles in the energy density correlation function that

passes through (1.3) (as well as in the correlation functions of the operators dual to the

fields that couple to δgvv). Furthermore, given knowledge of the normalisable solution of

the perturbation equations then (2.14) gives a prediction for the slope of this line of poles

in terms of the metric components of this mode. Note that we could also choose a different

slope so that the ingoing mode matches onto a solution with different asymptotics at the

boundary. In particular one can choose the slope to instead match to a solution with the

expectation value 〈T00(ω, k)〉β0 = 0, from which we also deduce the existence of a line of

zeroes in the dual Green’s functions passing through (1.3), with a different slope that is

again related to the metric components of this solution through the same equation (2.14).

Whilst the above discussion gives a simple gravitational argument for the phenomenon

of pole-skipping for a broad class of black brane solutions, it is somewhat abstract. In

particular, although the existence of an extra parameter in the ingoing solution should

generically result in an extra parameter in the asymptotic behaviour of δgvv, the precise

dependence of the asymptotic δgvv on the extra parameter (i.e. the slope δω/δk) depends

on the details of the specific gravitational theory. To show how the argument works more

directly, in the next section, we examine in detail a holographic model in which we can
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analytically study the energy density two-point Green’s function. We will see explicitly

all the features mentioned above, and confirm the prediction (2.14). Note that the above

discussion applies in the vicinity of eq. (1.3), thus only showing that a line of poles passes

through (1.3). It is not clear that the line of poles actually goes over to those that corre-

spond to hydrodynamic excitations at small ω and k. This will be checked by using explicit

examples in the next section.

3 Energy density Green’s function near special point

In this section, we study the connection between chaos and the energy density correlator in

a specific holographic model [34, 35], which has a free parameter m controlling the strength

of momentum dissipation. We choose to study this example because it provides a simple

and soluble model, which nevertheless exhibits a wealth of transport behaviour as one

varies m, thus allowing us to demonstrate explicitly the insensitivity of the pole-skipping

phenomenon to long distance transport properties of a system. Remarkably, in this model,

we will be able to analytically compute the retarded energy density correlator near the

special point (1.3) in Fourier space. This will allow us to demonstrate explicitly how the

general considerations of section 2 are borne out in a specific example. In particular, we will

be able to prove that both the line of poles and the line of zeroes of GRT 00T 00(ω, k) always pass

through (1.3) in these models. Moreover, we will be able to derive an analytic expression

for the slope of the line of poles (of the dispersion relation ω(k)) as it passes through

the point (1.3), which we find to be in perfect agreement with a numerical calculation of

the same quantity. In appendix B, we show that the same analytic discussion can also be

applied to the Schwarzschild black hole of AdS5, dual to a four-dimensional CFT at a finite

temperature and studied initially in [27].

Here, we focus on the 2 + 1 dimensional boundary theories dual to 3 + 1 dimensional

gravity coupled to massless scalar (‘axion’) fields with action

S =

∫
d4x
√−g

(
R+ 6− 1

2

2∑
i=1

∂µϕi∂
µϕi

)
. (3.1)

In ingoing EF coordinates, this action has the black brane solution [34]

ds2 = −r2f(r)dv2 + 2dvdr + r2dxidx
i , f(r) = 1− m2

2r2
−
(

1− m2

2r20

)
r30
r3
,

ϕi = mxi .

(3.2)

When m = 0, (3.2) is simply the Schwarzschild-AdS4 solution and our results in this limit

are identical to those that would be found in the absence of matter. Increasing m causes

the scalar fields to backreact on the metric, and in the extreme limit m/T →∞ the metric

near the horizon becomes AdS2 ×R2.

The parameter m sets the strength of the source of a scalar operator φ
(0)
i = mxi

that explicitly breaks the translational symmetry of the dual field theory. This symmetry

breaking radically alters how energy is transported over long distances, resulting in a much

richer variety of energy dynamics than in the translationally invariant case [35].

– 10 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
5

As we have explained, our goal is to study the energy density correlator of these

theories near the point (1.3) in Fourier space. Explicitly, the location of this point is (see

equations (1.3) and (2.4))

ω = iλ , λ = 2πT =
r20f
′(r0)

2
, k = ik0 , k20 = r30f

′(r0) , (3.3)

and depends explicitly on the dimensionless parameter m/T .

We emphasise that all of our results hold even in the translationally invariant m = 0

case. We allow for m 6= 0 simply to illustrate the generality of the pole-skipping phe-

nomenon, and its insensitivity to the long distance transport properties of the theory.

Analogous results to those we will present can also be found in higher dimensions, and

in appendix B we outline how to obtain these for the Schwarzschild-AdS5 solution. This

solution was studied numerically in [27], and our analysis provides an explanation of the

results found there.

3.1 Master field perturbation equations

In order to calculate the energy density correlation function we need to study the lin-

earised gravitational perturbation equations about the spacetime (3.2). In a general

theory, studying these linearised perturbation equations is rather complicated, since at

non-zero frequency ω and momentum k there are many coupled fields. For instance,

if one aligns the momentum in the x direction then for this axion model, the correla-

tor GRT 00T 00(ω, k) can be extracted from solving the equations of motion for the ‘longitu-

dinal’ perturbations {δgvv, δgxx, δgyy, δgrr, δgvx, δgxr, δgvr, δϕ1} after Fourier transforming

δgµν = δgµν(r)e−iωv+ikx.

Fortunately, in the simple model (3.1) the dynamical equations for the perturbations

can be decoupled by working with suitable gauge-invariant ‘master field’ variables [35]. In

particular, the energy density correlation function is simply related to the dynamics of the

following variable

ψ ≡ r4f
{
d

dr

[
δgxx + δgyy

r2

]
− iω

r4f
(δgxx + δgyy)−

2ik

r2

(
δgxr +

δgvx
r2f

)
− 2rf

(
δgrr +

2

r2f
δgvr +

1

r4f2
δgvv

)
− k2 + r3f ′

r5f
δgyy

}
−
(
k2 + r3f ′

)
(k2 +m2)

mr

2

(
m

r2
(δgxx − δgyy)− 2ikδϕ1

)
, (3.4)

which obeys the equation of motion

d

dr

[
r2f

(k2 + r3f ′)2
ψ′
]
− 2iω

(k2 + r3f ′)2
ψ′ − Ω(ω, k)

r2 (k2 + r3f ′)3
ψ = 0 , (3.5)

where primes denote derivatives with respect to r and we have defined

Ω(ω, k) = (2r20 −m2)3ir0ω + k2(k2 +m2). (3.6)
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The retarded two-point Green’s function of the energy density T00 is determined by solv-

ing (3.5) subject to ingoing boundary conditions at the black hole horizon. From the

near-boundary expansion of the solution ψ = ψ(0) +ψ(1)r−1 + . . . one can then read off the

retarded Green’s function using the usual holographic dictionary as

GRT 00T 00(ω, k) = k2
(
k2 +m2

) ψ(0)(ω, k)

ψ(1)(ω, k) + iωψ(0)(ω, k)
, (3.7)

up to contact terms.

As motivated earlier, we are particularly interested in demonstrating that there is

always a line of poles ω(k) in (3.7) that passes through (1.3). Since we are working in

terms of the master field (3.4), which is related to metric components in a complicated

way, the usual notion of normalisable and non-normalisable modes is a bit subtle in terms

of ψ. However, we can see that (3.7) will have a pole when there is an ingoing solution

with ψ(0)(ω, k) 6= 0 and ψ(1)(ω, k) + iωψ(0)(ω, k) = 0. It can be checked that a solution

with these properties corresponds to a normalisable metric perturbation, and we will refer

to it as a normalisable mode ψn.

Likewise, there will be a line of zeroes passing through (1.3), if near (1.3) we can show

there is an ingoing mode with no normalisable component: ψ(0)(ω, k)=0 and ψ(1)(ω, k) 6=0.

For (3.7) to have both a line of poles and zeroes arbitrarily close to (1.3) we therefore require

there to be two different ingoing solutions as we approach (1.3). In section 2 we argued

that indeed there is not a unique ingoing solution near (1.3). We will now show how this

same phenomenon can be seen directly from solving the equation of motion (3.5) for the

gauge invariant field ψ.

3.2 Solutions at special point

The existence of multiple different solutions near the special location (1.3) in Fourier space

can be understood clearly by examining the near-horizon behaviour of (3.5) at (1.3). First,

let us consider the near-horizon behaviour of (3.5) at generic k. Then taking the near-

horizon limit of (3.5) one finds the following power law solutions to (3.5):

ψ = a1η1 + a2η2, η1,2 = (r − r0)α1,2 as (r → r0), α1 =
iω

2πT
, α2 = 0. (3.8)

At a generic value of ω, k there is therefore a single regular solution in ingoing coordinates,

corresponding to the (r − r0)0 power law. The power law (r − r0)
iω

2πT is the corresponding

outgoing solution.

However, we can see from (3.5) that at the special value k2 = −k20 the near-horizon

behaviour of (3.5) changes since
(
k2 + r3f ′

)
now vanishes at the horizon. Taking the

near-horizon limit of (1.3) one now instead finds power law solutions of the form

ψ = a1η1 + a2η2, η1,2 = (r − r0)α1,2 as (r → r0), α1 = 1 +
iω

2πT
, α2 = 1. (3.9)

The indices are shifted by one at this special value of k. For a generic ω it is clear that

there is still one regular solution in ingoing coordinates corresponding to the (r−r0) power
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law. However, one can now see that something special occurs when we also set iω = −2πT

in (3.9). In this case we have power law solutions

ψ = a1η1 + a2η2, η1,2 = (r − r0)α1,2 as (r → r0), α1 = 0, α2 = 1. (3.10)

As such, precisely at the location (1.3) it appears that both near-horizon solutions for ψ

are regular in ingoing coordinates.

The existence of two regular solutions for ψ at this point can be seen more directly from

the fact that in this simple example we can exactly solve (3.5) at the special point (1.3).

At this location Ω(ω, k) = 0 and hence (3.5) simplifies considerably to

d

dr

[
r2f

(−k20 + r3f ′)2
ψ′
]

+
r20f
′(r0)

(−k20 + r3f ′)2
ψ′ = 0. (3.11)

This is a first-order equation for ψ′ and so it is straightforward to find the general solution,

ψ(r) = c1 + c2

∫ r

r0

dr

exp

(
m2−3r20

r0
√

3r20−2m2
tan−1

(
2r+r0√
3r20−2m2

))
r
√

2(r2 + rr0 + r20)−m2
. (3.12)

Note that the integral in (3.12) is regular as r → r0. We therefore manifestly have regular

solutions near the horizon for any values of c1, c2, and these solutions can be expanded as

ψ(r) = c1 + c2F (r0)(r − r0) + . . . , F (r0) =

exp

(
m2−3r20

r0
√

3r20−2m2
tan−1

(
3r0√

3r20−2m2

))
r0
√

6r20 −m2
.

(3.13)

So precisely at (1.3) there is indeed an extra regular solution for ψ. That is, there are

two linearly independent solutions to (3.11) that are both regular at the horizon and as

such we can always choose c1 and c2 independently in (3.12). Expanding the solution (3.12)

near the boundary, it is clear that ψ(1)/ψ(0), the ratio of coefficients that determines the

Green’s function (3.7), depends on c2/c1 and thus is not uniquely fixed by imposing ingoing

boundary conditions at the horizon. By appropriately choosing c2/c1 one can find both

normalisable and non-normalisable solutions that are regular at the horizon. In order to

resolve this non-uniqueness, it is necessary to move slightly away from the location (1.3),

at which point the near-horizon behaviour reduces to (3.8). We will do this shortly.

We note that the considerable simplification Ω(ω, k) = 0 that occurs at the loca-

tion (1.3) does not generalise to higher dimensions. It is this simplification that allowed us

to write down the exact expression (3.12) for the general solution for ψ. However, we em-

phasize that a simplification like this is not necessary to realise the key property that there

are two independent solutions for ψ that are regular at the horizon. In appendix B, we

discuss the case of Schwarzschild-AdS5 and illustrate this property by constructing regular

series solutions for ψ near the horizon.

3.3 Solutions near special point

In order for the choice of ingoing boundary conditions on ψ to be non-trivial, it is necessary

to move slightly away from the location (1.3) in Fourier space. To do this we will consider
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r0

r � r0

0

UV

IR

horizon boundary

✏/b

Figure 1. Moving slightly away from (1.3) changes the near-horizon behaviour of ψ. To calculate

the Green’s function we solve separately for the solution in the UV region (r− r0)� ε/b and an IR

region (r − r0) ∼ ε/b. The solutions can then be matched by comparing them in their overlapping

regime of validity.

perturbing a small distance ε from (1.3) by taking

k2 = −k20 + ε, ω = iλ− 2iλεq, (3.14)

where we have introduced q as a convenient parameterisation of the direction δω/δk in

which we move away from (1.3)

δω

δk
=

4λ2

vB
q +O(ε). (3.15)

Note that near the horizon, the function appearing in the equation (3.5) for ψ takes the form

k2 + r3f ′(r) = ε+ b(r − r0) +O((r − r0)2), b = 3r20f
′(r0) + r30f

′′(r0), (3.16)

and so the effects of ε 6= 0 on the equation become significant in the regime (r− r0) ∼ ε/b.
In particular for (r − r0) � ε/b then the near-horizon behaviour reduces to (3.8) and the

ingoing boundary condition for ψ can be imposed near the horizon in the usual way.3

Our goal now is to construct the form of this ingoing solution as we take ε → 0 and

approach the point (1.3). We can do this by dividing the radial direction into two regions

and performing a matching calculation (see figure 1). In particular for (r − r0) � ε/b we

3Note that an exception to our analysis is provided by the special case m2 = 2r20. In this axion model

one finds b = (3m2 − 6r20)/(2r0) and so the parameter b vanishes for this choice of m. The point m2 = 2r20
corresponds to a special point in this model in which there is an enhanced symmetry, and is discussed

separately in section 3.6 and appendix D.
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are free to safely ignore ε in (3.5). In this ‘UV regime’ the solutions are then given by

solving (3.5) at ω = iλ and k = ik0 and simply take the form (3.12).

However, close to the horizon (r − r0) ∼ ε/b the approximation of ignoring ε breaks

down. We therefore need to solve separately for the solution in this ‘IR regime’. To do this

we can consider the scaling

(r − r0) =
εy

b
, (3.17)

and then construct the ingoing solution perturbatively in ε

ψr(y) = ψ0(y) + εψ1(y) + . . . . (3.18)

By expanding this solution in the regime y � 1 we will then obtain a solution of the

form (3.10) that can be matched to the UV solution by comparing to (3.13).

Specifically we insert (3.14), (3.17) and (3.18) into the equation of motion for ψ and

expand in small ε. At leading order (3.5) becomes (primes now denote derivatives with

respect to y)

ψ′′0 +
2

y(1 + y)
ψ′0 = 0 . (3.19)

The regular solution to (3.19) simply corresponds to a constant

ψ0(y) = c1, (3.20)

which we can set to unity c1 = 1 to normalise our solution. At this order in our expansion

the regular solution therefore only has one of the power laws in (3.10). To match to the

UV we also need to determine the coefficient of the y1 term. This requires us to go to next

order in our expansion (3.18) and solve for ψ1(y). At O(ε) we find that the equation of

motion takes the form

ψ′′1 +
2

y(1 + y)
ψ′1 = f1(y,m

2, q, r0), (3.21)

where the forcing term f1(y,m
2, q, r0) is determined by expanding the equation of motion

and then inserting the zeroth-order solution ψ0 = 1. We can then again solve this equation

subject to regularity at the horizon to find ψ1(y). Expanding this solution at large y we

find that the leading behaviour of ψ1 is

ψ1(y) = b+(q)y, (3.22)

where b+(q) is explicitly given by the formula

b+(q) = b0 − q, b0 =
4(3r20 −m2)

3(6r20 −m2)(2r20 −m2)
. (3.23)

After transforming back to the radial coordinate r we then find that the ingoing solution

takes the form

ψr(r) = 1 + b+(q)b(r − r0) + . . . , (3.24)

in the IR region, where the . . . indicate terms that vanish as ε→ 0.4

4Note that even though the y1 power law arose from ψ1 it appears at leading order in (3.24) as it carried

a different y dependence than the zeroth-order solution.
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The key point is that as we take ε→ 0 the ingoing mode in (3.24) depends at O(ε0) on

the direction q at which we approach the special point (1.3). In particular, by varying the

direction q we can generate an arbitrary linear combination of the two solutions in (3.10).

By choosing an appropriate q, we can therefore always match the ingoing solution onto

any UV solution (3.13). Explicitly performing this matching we find that the ingoing

solution (3.24) matches to the UV solution

ψUV(r) = 1 +
b+(q)b

F (r0)

∫ r

r0

dr

exp

(
m2−3r20

r0
√

3r20−2m2
tan−1 (2r+r0)√

3r20−2m2

)
r
√

2(r2 + rr0 + r20)−m2)
. (3.25)

In particular, since we can match to any UV solution by a suitable choice of q, it is

clear that there is always a line of poles passing through the location (1.3): by choosing

the direction q at which we move away from the special point appropriately, we will find

an ingoing solution which is normalisable in the UV (ψ
(0)
n = 1, ψ

(1)
n − 2πTψ

(0)
n = 0) and

there will therefore be a line of poles passing through the point (1.3). Moreover we can use

our matching procedure to obtain a prediction for the slope of this line of poles passing

through (1.3). To do this we simply expand the normalisable solution ψn as r → r0 as

in (3.13) to find a solution of the form

ψn = a1,n + a2,n(r − r0) + . . . , (3.26)

with fixed coefficients a1,n and a2,n that we display in appendix C. To match ψn with our

infrared solution (3.24) then we simply have to choose the slope q = qp such that

b+(qp)b =
a2,n
a1,n

. (3.27)

With this choice of q = qp, we then have that the ingoing mode in (3.24) is normalisable in

the UV. As such if one moves away from (1.3) along this direction then one will see a line

of poles passing through (1.3) with this slope. Combining (3.27), (3.15) and the explicit

forms of a1,n and a2,n from appendix C, we then find an analytic formula for the slope of

the line of poles passing through (1.3):

1

vB

δω

δk
=

8(3r20 −m2)

3(2r20 −m2)
+

4(6r20 −m2)

3(m2 − 2r20)

F (r0)r0

Ñ(m, r0)
, (3.28)

where Ñ can be written in terms of the integral of a known function and is defined

through (C.4) and (C.6).

We have focused on describing the matching to ψn since this establishes the existence

of a pole passing through (1.3). However, by moving away from the point (1.3) along a

different direction q we could find an ingoing solution that matches to any UV solution. In

particular we could also pick a (different) q = qz to use (3.27) to match to the coefficients

a1,nn and a2,nn of a solution which has no normalisable component. As such there will

always also be a line of zeros of the Green’s function passing through (1.3) at a slope

q = qz. For a general q the UV solution is the linear combination of these modes given
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by (3.25). In appendix C we extract the full Green’s function from (3.25) and verify it

indeed has the form

GRT00T00(ω, k) ∝ δω − 4λ2qz/vBδk

δω − 4λ2qp/vBδk
, (3.29)

in which one can explicitly see there are both a line of poles and a line of zeroes passing

through (1.3). Note that the precise slope of the line of zeroes qp could be altered by the

inclusion of contact terms and in this sense, it is less robust than the trajectory of the line

of poles qp.

It is worth emphasising that the behaviour of the Green’s function in (3.29) is rather

unusual. Firstly, since there is not a unique ingoing solution at (1.3), the Green’s func-

tion in (3.29) is not uniquely defined at this point. In particular, depending on how we

approach (1.3) we may see a line of zeroes along q = qz or a line of poles along q = qp.

The fact that both a line of zeroes and a line of poles cross at (1.3) has been emphasised

in [27, 28] and is referred to as pole-skipping.

3.4 Expansion of ψ at special point in terms of the metric

So far we have seen two different approaches to describing the special nature of (1.3). In

section 2 we used the Einstein equation in ingoing EF coordinates to argue that there was

not a unique ingoing solution near (1.3). In section 3 we explicitly saw this was the case

by solving the equation of motion for the gauge invariant variable ψ near (1.3). Here we

will use the relationship (3.4) between ψ and the metric to show these two descriptions are

in precise agreement with one another.

To compare these discussions we can simply insert the near-horizon expansion

δgµν(r) = δg(0)µν + δg(1)µν (r − r0) + . . . ,

δϕ1(r) = δϕ
(0)
1 + δϕ

(1)
1 (r − r0) + . . . , (3.30)

into the definition (3.4) of the gauge invariant field ψ. This then allows us to construct the

near-horizon behaviour of ψ in terms of the expansion of a metric (2.7) which is regular

in ingoing coordinates. Upon doing so we find that at the special point (1.3) this gives a

solution of the form

ψ = a1 + a2(r − r0) + . . . , (3.31)

where a1 and a2 are related to the coefficients of the metric and δϕ1 in the near-horizon

expansion (2.7). The coefficient a1 has a simple form and can immediately be read off from

the near-horizon expansion of the metric as

a1 = −
[
2r0δg

(0)
vv − 2πTδg(0)xx − 2πTδg(0)yy − 2k0δg

(0)
vx

]
. (3.32)

Determining the coefficient a2 is more complicated as after inserting our expansion (2.7)

into (3.4) one finds it depends on many different coefficients in the expansions of the

near-horizon metric and scalar field. However since we are looking to determine a2 for a

solution to the equations of motion we can use Einstein’s equations at (1.3) (the equations
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we schematically denoted X = 0 in section 2) to simplify this. After doing so one finds the

simple result

a2 = b0ba1 +
b

4πT
δg(0)vv , (3.33)

with b0 given by the formula in (3.23) and where we have used the explicit expressions

4πT =
(6r20 −m2)

2r0
, b =

3(m2 − 2r20)

2r0
. (3.34)

Now, as we emphasised in section 2, precisely when δω = 0 and δk = 0, the vv compo-

nent of the Einstein equations is trivial and as a result the parameters δg
(0)
vv , δg

(0)
xx , δg

(0)
yy , δg

(0)
vx

can be chosen independently. As such when we are precisely at the point (1.3) the coeffi-

cients a1 and a2 in (3.31) are independent of each other. That is, at the special location (1.3)

an arbitrary solution of the form (3.31) can be realised by a regular metric. The fact that

there are two independent regular solutions for ψ can be seen to be a direct consequence

of the fact that (2.10) did not impose a constraint on the near-horizon metric, and hence

we had an extra free parameter in the solution.

However, slightly away from (1.3), we know that these metric components are not in-

dependent, but rather are related through Einstein’s equation (2.10). From our matching

argument we determined the solution (3.24) for ψ by imposing ingoing boundary conditions

slightly away from the point (1.3). This matching resulted in the value of a2/a1 being de-

termined by the direction q in which the special point (1.3) is approached: bb+(q) = a2/a1.

From using the expressions (3.32) and (3.33) we now see that this expression relates the

coefficients of the near-horizon metric perturbations to the direction q in which we move

away from the special point

1

4πT

δg
(0)
vv

2r0δg
(0)
vv − 2πTδg

(0)
xx − 2πTδg

(0)
yy − 2k0δg

(0)
vx

= q, (3.35)

where have used the expression for T in (3.34). From using δω/δk = 4λk0q one then can

see this is precisely equivalent to the previous prediction (2.14) we derived in section 2 by

imposing the vv component of Einstein’s equations (2.13) close to the special point (1.3)

in Fourier space.

3.5 Comparison to numerics and hydrodynamic poles

In section 3.3, we analytically demonstrated that in the holographic model (3.1) there is

a pole in the energy density correlator passing through (1.3), with a slope determined

by (3.23), for any value of m/T . Furthermore, as a line of zeroes also passes through (1.3),

all of these models exhibit the phenomenon of pole-skipping at the point (1.3). Here

we will confirm these analytical results by comparing them to numerical computations

of the Green’s function poles (the quasinormal modes of the spacetime) in (3.7). These

numerics also allow us to extract the full dispersion relation ω(k) of the pole that passes

through (1.3). From this we investigate the behaviour of this same pole at small ω, k and

explore the connection with hydrodynamic modes seen in [27, 28].
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In particular, let us recall that in the translationally invariant (pure gravity) case

m = 0, the hydrodynamic limit of the energy density Green’s function (3.7) is dominated

by gapless sound modes. That is, at small ω and k it exhibits hydrodynamic sound poles

with dispersion relations [39]

ω(k) = ±vsk − i
k2

8πT
+ . . . , (3.36)

where vs = 1/
√

2 is the speed of sound and . . . denote higher-order corrections in k that

in principle can be computed using higher-order hydrodynamics (see e.g. [40]). As for

the analogous AdS5 theory studied numerically in [27], we observe that the full dispersion

relation ω(k) of the mode which approaches (3.36) (with + sign for Im(k) > 0) at small k

satisfies the condition ω(ik0) = iλ where λ and k0 = λ/vB are independently defined by

the formula (3.3).

Furthermore, we are able to demonstrate that this connection between hydrodynamic

poles of the energy density Green’s function and the location (1.3) is far more general, and

does not rely on the hydrodynamic modes having a sound-like dispersion relation at small

k. At any non-zero m/T , the relaxation of momentum qualitatively changes the nature

of the hydrodynamic modes that propagate over long distances and one instead finds a

diffusive pole in (3.7) at small k [35]

ω(k) = −iDEk
2 + . . . , (3.37)

where DE is the energy diffusion constant. Numerically tracking the dispersion relation

of this pole, we find that for any value of m/T that ω(k) continues to pass through the

location (1.3). We emphasise that this is very non-trivial. There are a family of different

dispersion relations ω(k), parameterised by m/T , whose qualitative features change dra-

matically as m/T is varied (see figure 2). However, in all cases we find that regardless of

the details of the full dispersion relation it always satisfies the constraint ω(ik0) = iλ as

can be seen in the left hand panel of figure 3.

In addition, from the numerical computations of the dispersion relation we can extract

the slope δω/δk of the pole as it passes through the location (1.3) and compare it to the

analytic result (3.28) that we obtained from the matching calculation in section 3. The

analytic formula (3.28) for δω
δk /vB interpolates between roughly 1.09 for the translationally

invariant case m/T = 0 and exactly 2 for m/T → ∞. In the right hand panel of figure 3

we plot this formula (red line) and also the numerical values of the slope (black dots)

extracted from the dispersion relation (e.g. those shown in figure 2). The numerical results

agree perfectly with the analytic expression (3.28), validating the details of the matching

argument described in section 3.

As can be seen in figure 2, as m/T is increased, the leading-order hydrodynamic

approximations of the dispersion relations ω(k) become a better and better approxima-

tion to the exact dispersion relation near the special point (1.3). Using the fact that

DE(m/T →∞)→ v2B/λ [24], our result that δω
δk /vB → 2 in this limit indicates that the

hydrodynamic approximation to the dispersion relation (3.37) is exact in the vicinity of the

point (1.3) when m/T → ∞. This is consistent with the observation that hydrodynamic

collective modes exist even over time scales much shorter than T−1 in holographic theories

with an AdS2 factor in the near-horizon metric [41].
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Figure 2. These plots show the dispersion relation ω(k) of the hydrodynamic pole in (3.7) as a

function of imaginary k for the choices m/T = 1/100 and m/T = 100. The blue lines are the hydro-

dynamic approximations (3.36) (left panel) and (3.37) (right panel) to the small k hydrodynamic

behaviour. The black dots correspond to the exact dispersion relation extracted from our numerics.

Despite the qualitatively different small k behaviour, in all cases we find this dispersion relation

passes through the special point (1.3) such that ω(ik0) = iλ for k0 = λ/vB .

Figure 3. (a) The red line plots the butterfly velocity vB = λ/k0 as determined from the analytic

formula (3.3). The black dots correspond to λ/k1 where k1 is extracted as the wavevector for which

the numerical dispersion relation for the hydrodynamic pole satisfies ω(ik1) = iλ. If the pole passes

through (1.3) then we should have λ/k1 = vB which indeed holds for all m/T . (b) The red line

plots the analytic formula (3.28) for the slope of the line of poles in the energy density correlator as

it passes through the point (1.3). The dots correspond to the values of the slope extracted from the

numerical calculations of the dispersion relation. Note that m/T → ∞ corresponds to m =
√

6r0,

which is the upper limit shown on each plot.

3.6 The SL(2,R) × SL(2,R) invariant point

Our analytic discussion in sections 3.2 and 3.3 describes the behaviour of the axion model

near (1.3) at generic values of the parameters m and r0. However for the special choice of

m2 = 2r20 the above discussion in terms of the gauge invariant mode ψ is somewhat subtle,

as a result of the fact the parameter b controlling our matching calculation vanishes for

this choice of m. We perform a detailed analysis of this special case in appendix D. For the

purposes of our discussion in the main text, we simply note that at this value of m/r0, the

theory described by (3.1) dramatically simplifies and has an enhanced SL(2,R)× SL(2,R)
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symmetry [35]. This enhanced symmetry allows one to obtain an analytic expression for

the Green’s function GRT 00T 00 for any ω, k. Here we will use this expression to demonstrate

the pole-skipping phenomenon very explicitly. In particular, for this choice of m2 = 2r20
the retarded Green’s function takes the form5 (see ref. [35])

GRT 00T 00(ω, k) = −k
2
(
k2 + 2r20

)
2r0

Γ
(
1
4 − iω

2r0
− 1

4

√
1− 4k

2

r20

)
Γ
(
1
4 − iω

2r0
+ 1

4

√
1− 4k

2

r20

)
Γ
(
3
4 − iω

2r0
− 1

4

√
1− 4k

2

r20

)
Γ
(
3
4 − iω

2r0
+ 1

4

√
1− 4k

2

r20

) .
(3.38)

From which we see that the Green’s function has an infinite family of poles ω(k) satisfying

1

4
− iω

2r0
− 1

4

√
1− 4

k2

r20
= −n, 1

4
− iω

2r0
+

1

4

√
1− 4

k2

r20
= −p, (3.39)

where n, p are non-negative integers. Expanding the pole with n = 0 gives the hydrody-

namic mode

ω = −iDEk
2 + . . . , (3.40)

with an energy diffusion constant DE = r−10 . As in section 3.5 we can consider tracking

this pole as we increase imaginary k. The full dispersion relation can be readily read

from (3.39):

ω = i
r0
2

(√
1− 4k2

r20
− 1

)
, (3.41)

which we can see passes through ω = iλ = ir0 precisely at the momentum

k2 = −2r20 = −k20. (3.42)

Furthermore, from (3.41), we can also extract the slope of the pole as it passes through (1.3)

as

1

vB

δω

δk
=

4

3
, (3.43)

which lies precisely on the curve derived from our matching argument (3.28) and plotted in

figure 3. Finally, we can see from (3.38) that the Green’s function also has a line of zeroes

at k2 = −k20. The simple expression (3.38) therefore exhibits all the expected features of

pole-skipping.

Whilst for the purposes of the main text we have simply focused on using (3.38) to

illustrate this phenomenon, the enhanced symmetry of the theory at m2 = 2r20 means we

can perform a very detailed analysis of the origin of pole-skipping in this example. As we

explain in appendix D, there are subtleties involved in discussing pole-skipping in terms of

the gauge invariant field ψ at this point. Fortunately however this special case is sufficiently

simple that we are able to also explicitly discuss this phenomenon in terms of the family

5For other examples, which allow for exact solutions of holographic Green’s functions at points of en-

hanced symmetry, see e.g. [42–44].
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of ingoing metric solutions discussed in section 2. In particular it is possible for this choice

of m to find exact analytic expressions for the metric solutions at (1.3) everywhere in the

bulk, and hence study their UV asymptotics. As we discuss in appendix D this allows us to

confirm the existence of an extra parameter in the ingoing metric solution, and explicitly

see that this extra parameter gives rise to the phenomenon of pole-skipping according to

the discussion in section 2.

4 Discussion

In this paper we have shown that in general holographic models dual to Einstein gravity

coupled to matter, remarkable signatures of many-body chaos exist in the energy density

two-point correlation functions. A key element for the discussion is the observation that

one of the Einstein’s equations becomes trivial at the horizon at the special point (1.3)

determined by chaos parameters, which leads to a general argument for the phenomenon

of pole-skipping [27, 28]. We then illustrate how the general argument works in a specific

holographic model in great detail.

As emphasised in [28], the phenomenon of pole-skipping can be considered as a

“smoking-gun” for the fact quantum many-body chaos is tied with energy conservation.

The results of this paper give further strong support for this surprising, but likely pro-

found connection (at least for maximally chaotic systems). In particular, from the per-

spective of the hydrodynamic dispersion relation (1.6), the statement that ωh(k) must pass

through (1.3) is a highly nontrivial one. In the Einstein-Axion model we explicitly saw

that this happened regardless of the detailed behavior of the full dispersion relation, which

could vary dramatically as we changed the ratio m/T . The special point (1.3) lies outside

the range of the small ω, k expansion and thus the full dispersion relation ωh(k) is needed

to extrapolate to the point. This means that in the small k expansion of the second equal-

ity of (1.6) an infinite number of terms (which arise from higher-order hydrodynamics)

must conspire for ωh(k) to pass through (1.3). In the proposal of [28], this conspiracy is

ensured by an emergent shift symmetry in the hydrodynamic EFT for chaos. Thus, the

results of this paper can also be considered as support for this “hidden” shift symmetry in

hydrodynamics.

We end with a discussion of various questions for future research.

1. Immediate generalizations

The general argument we presented in section 2 for pole-skipping implies that this

phenomenon also occurs for charged black holes and/or for those with additional

scalar fields, and it would be interesting to test this explicitly. Furthermore, whilst

our analytic arguments show that there is a pole that always passes through (1.3), it

was only through the help of numerics that were able to see this pole to always be

connected to the dispersion relation of the hydrodynamic mode. It would be interest-

ing to understand if one can argue that this should always be the case from gravity,

perhaps by tracking the holographic diffusion poles that were recently constructed

using horizon data in [45].
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2. Shift symmetry in hydrodynamics from gravity

As commented above, the confirmation of pole-skipping in general holographic the-

ories (which all have maximal chaos) can be considered as support for the shift

symmetry in an all-order quantum hydrodynamics proposed in [28]. It would be ex-

tremely interesting to see whether the universal property of the linearised Einstein

equation we uncovered at the special point (1.3) can be used to identify this shift

symmetry directly from a gravitational analysis.

3. Other implications of the extra ingoing mode

It would be interesting to explore other physical implications of the extra ingoing

mode we uncovered at the special point (1.3). For example, another important open

question is to understand whether the existence of this pole-skipping phenomenon can

be tied more directly to the existence of the Dray-‘t Hooft shock wave solution that

gives rise to (1.3). In section 2 we saw that the reason that pole-skipping occurred

at (1.3) was a consequence of the fact that at ω = iλ the Einstein’s equation (2.10)

reduced to a decoupled equation for g
(0)
vv , that took the same form as the equation

determining the shock wave profile (1.3). However, as noted in [27], there is not an im-

mediate connection between such a perturbation and the delta function shock-wave in

Kruskal-Szekeres coordinates. We hope to explore this question further in the future.

4. Higher-derivative gravity theories and stringy corrections

So far, all examples of pole-skipping are for maximally chaotic systems. It is clearly

of crucial importance to understand what happens to non-maximally chaotic sys-

tems. For holographic systems, stringy corrections decrease the Lyapunov exponent

from being maximal [4], so it is very interesting to see how stringy corrections

affect the pole-skipping. Perhaps a more immediate question is to see whether

the phenomenon persists or gets modified when higher-derivative corrections are

included. For example, Gauss-Bonnet gravity (see [43, 46, 47]) may be a good

testing ground for this purpose.

More generally, it is also important to study this phenomenon in weakly coupled

systems. A recent discussion [29] of chaos using kinetic theory gives some encourag-

ing indications on the connection between chaos and energy dynamics even at weak

coupling.

5. Theories with weak energy dissipation

Finally, it would be interesting to explore what happens if a system no longer has

exact energy conservation. In the holographic context, weak energy dissipation

can be introduced by working with massive gravity with an appropriate choice of

graviton mass [48]. This, or axion models with time-dependent fields, could provide a

nice laboratory to study how the Lyapunov exponent and pole-skipping are affected

by energy dissipation.
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A Stress-energy tensor in Einstein-Axion-Dilaton theories

Here we wish to demonstrate that the condition (2.9) that we needed to claim we could

ignore the matter terms in (2.8) holds in a large class of matter theories. We will consider

a general Einstein-Axion-Dilaton matter theory with an action of the form

S =

∫
dd+2x

√−g (R− 2Λ + LM ) , (A.1)

with a matter Lagrangian

LM = −Z(φ)

4
FµνF

µν − 1

2
(∂φ)2 + V (φ)− Y (φ)

2

d∑
i=1

(∂ϕi)
2 , (A.2)

which has an equilibrium black hole solution (2.6) sourced by the fields

φ ≡ φ(r), ϕi = mxi, A = Av(r)dv, (A.3)

with other components of the Maxwell field Aµ vanishing.

We wish to demonstrate that for this general class of matter fields (2.9) holds identically

for any ω, k. That is [
Tvr(r0)δg

(0)
vv − δTvv(r0)

]
= 0. (A.4)

For the Lagrangian (A.2) the stress-energy tensor is

Tµν =
1

2
LMgµν −

∂LM
∂gµν

=
1

2
LMgµν +

1

2
∂µφ∂νφ+

Y (φ)

2

d∑
i=1

∂µϕi∂νϕi −
Z(φ)

2
Fµαg

αβFβν ,

(A.5)

from which we can read off the relevant component Tvr of the background stress-energy

tensor as

Tvr =
1

2
LM −

Z(φ)

2
F 2
vr. (A.6)
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We also need to work out δTvv, and hence need to vary the stress-energy tensor (A.5)

once more with respect to the fields gµν , Aµ, φ, ϕ. At leading order this gives

δTµν =
1

2
LMδgµν+

Z(φ)

2
Fµαg

αγgδβFβνδgγδ+
1

2
gµν

[
δLM
δgαβ

δgαβ+
δLM
δψi

δψi

]
+

1

2

[
∂µφ∂νδφ+∂µδφ∂νφ+Y (φ)

d∑
i=1

(∂µϕi∂νδϕi+∂νϕi∂µδϕi)+δφ
∂Y (φ)

∂φ

d∑
i=1

∂µϕi∂νϕi

]

−Z(φ)

2
gαβ [Fµα (∂βδAν−∂νδAβ)+Fνα (∂βδAµ−∂µδAβ)]−Z

′(φ)

2
Fµαg

αβFβνδφ, (A.7)

where ψi = {Aµ, φ, ϕi} denotes the matter fields.

Evaluating the vv-component of this for the black hole solution with the matter fields

in (A.3) gives

δTvv =

(
1

2
LM −

Z(φ)

2
F 2
vr

)
δgvv + gvv

[
− Z(φ)

2
gvvF

2
vrδgrr + Z(φ)F 2

vrδgvr

+
1

2

δLM
δgαβ

δgαβ +
1

2

δLM
δψi

δψi + Z(φ)Fvr (∂rδAv − ∂vδAr)−
Z ′(φ)

2
F 2
vrδφ

]
, (A.8)

where we have used that grv = 1, grr = −gvv.
Now since gvv(r0) = −r20f(r0) = 0 then assuming the quantity in square brackets is

regular at the horizon we immediately see by comparing to (A.6) that

δTvv(r0)− Tvr(r0)δgvv(r0) = 0, (A.9)

indeed holds for this class of black holes. In all these theories the vv component of the Ein-

stein equations therefore reduces at the horizon to the universal form (2.10) that depends

only on the near-horizon expansion of the metric perturbations.

B Generalisation to AdS5

In the main text we studied the AdS4 axion model. However, as we have noted, the

phenomenon of pole-skipping was first noticed in a gravitational setting in [27], which

studied Einstein gravity in AdS5. Here we will show that the matching argument presented

in section 3 can easily be generalised to explain the pole-skipping observed in [27]. The

action we consider is

S =

∫
d5x
√−g (R+ 12) , (B.1)

and the AdS5-Schwarzschild solution of interest to us can be written

ds2 = −r2f(r)dv2 + 2dvdr + r2
(
dx2 + dy2 + dz2

)
, f(r) = 1− r40

r4
, (B.2)

in ingoing EF coordinates. Note that for this theory the special location (1.3) in Fourier

space corresponds to

ω = iλ , λ = 2πT =
r20f
′(r0)

2
, k = ik0 , k20 =

3r30f
′(r0)

2
. (B.3)
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The generalisation of the ‘master field’ (3.4) to Schwarzschild-AdS5 is

ψ = r4f

[
d

dr

(
δgxx + δgyy + δgzz

r2

)
− iω

r4f
(δgxx + δgyy + δgzz)−

2ik

r2

(
δgxr +

δgvx
r2f

)

− 3rf

(
δgrr +

2

r2f
δgvr +

1

r4f2
δgvv

)
−
(
k2 + 3

2r
3f ′
)

2r5f
(δgyy + δgzz)

]
,

(B.4)

which obeys the equation of motion

d

dr

[
r3f(

k2 + 3
2r

3f ′
)2ψ′

]
− 2iωr(

k2 + 3
2r

3f ′
)2ψ′ + Ω(ω, k, r)

r
(
k2 + 3

2r
3f ′
)3ψ = 0, (B.5)

where

Ω(ω, k, r) = −k4 + k2r (6r − iω) + 6r3 (4r − 5iω) + f

[
3

2
r5f ′ − 5k2r2 + 6r3 (5iω − 4r)

]
.

(B.6)

We again find that when k2 = −k20 the two solutions near the horizon are of the form (3.9)

and thus at the special location (1.3) the general solution for ψ that is regular at the

horizon is of the form (3.10).

Infinitesimally away from the location (1.3), the solution continues to take the

form (3.10) away from the horizon with the ratio a2/a1 fixed by the direction in Fourier

space in which one moves. To quantify this, we again parameterise the perturbation away

from (1.3) by (3.14) and note that near the horizon

k2 +
3

2
r3f ′(r) = ε− b̃(r − r0) +O((r − r0)2), b̃ = 12r0. (B.7)

We first solve in the IR regime r − r0 ∼ ε/b̃ of the spacetime by scaling the radial

coordinate as in (3.17) and then solving perturbatively for ψ, as in section 3.3. After

demanding regularity at the horizon, the solution is

ψr(r) = 1 + b+(q)b̃(r − r0) + . . . , (B.8)

where . . . indicate terms that vanish as ε→ 0, and

b+(q) = q − 5

24r20
. (B.9)

In the UV region r − r0 � ε/b̃, the solution has the form (3.10). Matching (3.10) to (B.8)

where the solutions overlap tells us that imposing ingoing boundary conditions enforces

the relation
a2
a1

= b+(q)b̃, (B.10)

on the UV solution. In other words the linear combination of η1 and η2 depends on q, the

direction in which one moves away from the point (1.3) in Fourier space. Unlike in the

AdS4 axion case studied in the main text we do not have analytic expressions for η1 and η2.

– 26 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
5

In this case we therefore do not know which ratio a2/a1 corresponds to the normalisable

mode in the UV and so we cannot analytically predict the slope qp with which the line of

poles passes through the point (1.3).

The analysis we have just performed is consistent with the general argument for pole

skipping presented in section 2. Using the explicit expression (B.4) for ψ in terms of the

metric components, in addition to the non-trivial Einstein equations X = 0 at (1.3), the

relation (B.10) is equivalent to the condition

q =
1

4r0

δg
(0)
vv

3
2h
′(r0)δg

(0)
vv − 2πTδg

(0)

xixi
− 2k0δg

(0)
vx

, (B.11)

where δg
(i)
µν are again the coefficients in the near-horizon expansion of the metric compo-

nents. Converting q back to δω/δk then gives perfect agreement with the equation (2.14)

that relates these coefficients to the direction q in which one moves away from the

location (1.3).

C Explicit matching to normalisable mode

In section 3.3 we determined the form of the ingoing solution for ψ (3.24) near (1.3). Here

we will extract the form of the Green’s function (3.7) and a prediction for the slope of the

line of poles passing through (1.3) by explicitly matching to the UV solution (3.12). In

particular we saw in (3.25) that after matching the ingoing solution to the UV we are left

with a solution of the form

ψUV(r) = 1 +
b+(q)b

F (r0)

∫ r

r0

dr

exp

(
m2−3r20

r0
√

3r20−2m2
tan−1 (2r+r0)√

3r20−2m2

)
r
√

2(r2 + rr0 + r20)−m2
, (C.1)

from which the Green’s function near (1.3) can be extracted by expanding (C.1) near the

UV boundary as ψUV = ψ(0) + ψ(1)/r + . . . and

GRT00T00(q) = k20(k20 −m2)
ψ(0)(q)

ψ(1)(q)− 2πTψ(0)(q)
+ . . . , (C.2)

with k20 given by (3.3) and the . . . in (C.2) refer to terms that vanish as ε → 0.6 From

expanding (C.1) one can explicitly read off

ψ(0)(q) = 1+
b+(q)bN(m,r0)

F (r0)
, ψ(1)(q) =− b+(q)b√

2F (r0)
exp

(
sgn(3r20−2m2)

π(m2−3r20)

2r0
√

3r20−2m2

)
,

(C.3)

where have defined the integral

N(m, r0) =

∫ ∞
r0

dr

exp

(
m2−3r20

r0
√

3r20−2m2
tan−1 (2r+r0)√

3r20−2m2

)
r
√

2(r2 + rr0 + r20)−m2
, (C.4)

and F (r0) was defined in (3.13).

6We will again assume we are not at the special value m2 = 2r20 so that k20 −m2 6= 0.
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We will see a pole in (C.2) when (C.1) corresponds to a normalisable mode with

2πTψ(0) = ψ(1). From (C.3) this implies we need to chose q = qp by imposing

bb+(qp) = − F (r0)

Ñ(m, r0)
, (C.5)

with

Ñ(m, r0) = N(m, r0) +
1√

22πT
exp

(
sgn(3r20 − 2m2)

π(m2 − 3r20)

2r0
√

3r20 − 2m2

)
, (C.6)

which is equivalent to our prediction (3.27). Using the explicit forms of b, T, b+(q) we can

use (C.5) to solve for qp and deduce there is a line of poles passing through (1.3) with a slope

1

vB

δω

δk
=

8(3r20 −m2)

3(2r20 −m2)
+

4(6r20 −m2)

3(m2 − 2r20)

F (r0)r0

Ñ(m, r0)
. (C.7)

Likewise there will be a line of zeroes when (C.1) corresponds to the non-normalisable

solution with ψ(0) = 0. From (C.3) this corresponds to choosing q = qz such that

bb+(qz) = − F (r0)

N(m, r0)
. (C.8)

Indeed from (C.1) it is straightforward to read off the Green’s function itself as

GRT00T00(q) = −k
2
0(k20 −m2)

2πT

F (r0) + bb+(q)N(m, r0)

F (r0) + bb+(q)Ñ(m, r0)
, (C.9)

from which one can explicitly see the line of poles corresponding to moving away from (1.3)

along the slope q = qp and a line of zeroes for q = qz.

D Details of calculations at the SL(2,R) × SL(2,R) invariant point

Here we wish to discuss in detail the special case of m2 = 2r20, in order to both highlight

various subtleties with the discussion in terms of the gauge invariant mode ψ and also to use

this case to elaborate on the general argument for pole-skipping we provided in section 2.

Pole-skipping in terms of ψ. In particular, whilst our arguments in sections 3.2 and 3.3

are generically valid, the description of pole skipping in terms of the variable ψ is somewhat

different for the choice of m2 = 2r20. To see why m2 = 2r20 is special it is useful to note

that the function k2 + r3f ′(r) = k2 +m2 that appears in the equation (3.5) for ψ becomes

a constant for this value of m. At the special point (1.3) k2 = −k20 = −m2 it therefore

vanishes identically, and we must be more careful in describing the behaviour of (3.5)

at (1.3). For the choice m2 = 2r20 the equation of motion (3.5) dramatically simplifies to

d

dr
(r2fψ′)− 2iωψ′ − k2

r2
ψ = 0, (D.1)
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from which the retarded energy density Green’s function can be extracted by solving (D.1)

subject to ingoing boundary conditions and using

GRT00T00(ω, k) = k2(k2 + 2r20)
ψ(0)(ω, k)

ψ(1)(ω, k) + iωψ(0)(ω, k)
. (D.2)

Note that upon setting ω = iλ and k = ik0 in (D.1) this no longer reduces to the equa-

tion (3.11) which holds for any other m2 6= 2r20. Solving (D.1) at (1.3) one now finds that

the two linearly independent solutions for ψ are

ψ1 = c1
r + r0
r

, ψ2 =
c2

r(r − r0)

[
2rr0 + (r20 − r2)log

(
r − r0
r + r0

)]
, (D.3)

from which we see that there is only one solution ψ1 that is regular at the horizon.

Therefore whilst for any other m2 6= 2r20 there are two linearly independent regular

solutions for ψ at (1.3), for the specific choice m2 = 2r20 there is instead a unique regular

solution. Note that this observation is perfectly consistent with smoothly taking the limit

m2 → 2r20 in the solution (3.25) we derived by matching, even though the matching proce-

dure is formally invalid at this point as b→ 0. In that limit we find bb+(q) = −1/2r0 and

hence the ingoing solution in (3.25) becomes independent of the slope. Upon performing

the integral in (3.25) for m2 = 2r20 one finds precisely that the solution becomes ψUV = ψ1.
7

Note that although there is a unique solution for ψ1, the Green’s function (D.2) still

cannot be defined at this point. To see this note that the ingoing solution ψ1 is normalisable

in the UV, that is the denominator in (D.2) vanishes for ψ1. However the numerator

in (D.2) vanishes at k2 = −k20 because of the explicit factor of k2 + 2r20 in the relation

between GRT00T00(ω, k) and the asymptotics of ψ.

In contrast to our explanation in section 2, at this value of m it appears that the

pole-skipping phenomenon is unrelated to the existence of an extra ingoing solution. As

we will illustrate shortly, this is not the case. The aforementioned subtleties associated

with ψ at the point m2 = 2r20, ω = iλ, k = ik0 are in fact indicators that ψ is not a suitable

variable for capturing the general gauge-invariant solution to the Einstein equations at

this point. A more careful analysis reveals that at this point ψ in fact obeys a first order

equation of motion (which enforces c2 = 0), as does the other decoupled gauge-invariant

variable (see (E.2) below). To illustrate the origin of pole-skipping at this value of m, we

will therefore examine the solutions for the metric perturbations directly.

Discussion in terms of metric solutions. The enhanced symmetry at m2 = 2r20 allows

the linearised gravitational equations of motion to be solved analytically. The following is

an exact solution to these equations at m = 2r20, ω = iλ, k = ik0 in ingoing EF coordinates

δgvv =
er0(v−

√
2x)

8r3

[
r20

(√
2δg

(0)
tx +δg(0)yy −δϕ(0)

1

)(
4r3+4r2r0+rr20−r30

)
+16cr(r+r0)

+8δg
(0)
tt

(
r5+r4r0−r50

)]
,

7Furthermore, this also is consistent our discussion in section 2 that there should be an extra free

parameter for the metric solutions at (1.3) corresponding to δg
(0)
vv . One can see directly from (3.33) that

we should still only find a unique ingoing mode for ψ at b = 0 even when the metric component δg
(0)
vv is a

free parameter.
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δgvx =
er0(v−

√
2x)

40r3

[
5(r+r0)

((
8r4−4r2r20−r40

)
δg

(0)
tx −2

√
2r20
(
2r2+r20

)(
δg(0)yy −δϕ(0)

1

))
−8
√

2c
(
5r2+5rr0+3r20

)]
,

δgxx =
er0(v−

√
2x)

60r3

[
60δg(0)xx r

5+60δg(0)xx r
4r0+16c

(
5r2+5rr0+6r20

)
+3r50

(
18δg

(0)
tt +3

√
2δg

(0)
tx

+δg(0)xx +17δg(0)yy −16δϕ
(0)
1

)
−10r2r30

(
δg

(0)
tt +
√

2δg
(0)
tx −δg(0)xx −4δg(0)yy +3δϕ

(0)
1

)
−30r3r20

(
δg

(0)
tt +
√

2δg
(0)
tx +δg(0)xx −2δg(0)yy +3δϕ

(0)
1

)
−5rr40

(
2δg

(0)
tt +2

√
2δg

(0)
tx +δg(0)xx −8δg(0)yy +9δϕ

(0)
1

)]
,

δgyy =
er0(v−

√
2x)

60r3

[
60δg(0)yy r

5+60δg(0)yy r
4r0+8c

(
5r2+5rr0+6r20

)
+3r50

(
22δg

(0)
tt +7

√
2δg

(0)
tx

−δg(0)xx +8δg(0)yy −9δϕ
(0)
1

)
+10r2r30

(
δg

(0)
tt +
√

2δg
(0)
tx −δg(0)xx +2δg(0)yy −3δϕ

(0)
1

)
+30r3r20

(
δg

(0)
tt +
√

2δg
(0)
tx +δg(0)xx +δϕ

(0)
1

)
+5rr40

(
2δg

(0)
tt +2

√
2δg

(0)
tx +δg(0)xx +δg(0)yy

)]
,

δgvr =− er0(v−
√
2x)

80r4 (r+r0)

[
80δg

(0)
tt r

5+160δg
(0)
tt r

4r0+32c
(
5r2+10rr0+4r20

)
+r50

(
56δg

(0)
tt

+41
√

2δg
(0)
tx −8δg(0)xx +49δg(0)yy −57δϕ

(0)
1

)
+80r2r30

(
2δg

(0)
tt +
√

2δg
(0)
tx +δg(0)yy −δϕ(0)

1

)
+40r3r20

(
4δg

(0)
tt +
√

2δg
(0)
tx +δg(0)yy −δϕ(0)

1

)
+10rr40

(
16δg

(0)
tt +9

√
2δg

(0)
tx +9δg(0)yy −9δϕ

(0)
1

)]
,

δgxr =
er0(v−

√
2x)

40
√

2r4 (r+r0)

[
16c
(
5r2+10rr0+7r20

)
−
√

2δg
(0)
tx

(
40r5+80r4r0+60r3r20+40r2r30

+35rr40+6r50

)
+8r50

(
3δg

(0)
tt +δg(0)xx

)
+r20δg

(0)
yy

(
40r3+80r2r0+100rr20+61r30

)
−r20δϕ(0)

1

(
40r3+80r2r0+100rr20+53r30

)]
,

δgrr =
er0(v−

√
2x)

40r5 (r+r0)
2

[
40δg

(0)
tt r

5+120δg
(0)
tt r

4r0+16c
(
5r2+15rr0+8r20

)
+8r50

(
22δg

(0)
tt

+7
√

2δg
(0)
tx −δg(0)xx +8δg(0)yy −9δϕ

(0)
1

)
+20r2r30

(
14δg

(0)
tt +3

√
2δg

(0)
tx +3δg(0)yy −3δϕ

(0)
1

)
+20r3r20

(
10δg

(0)
tt +
√

2δg
(0)
tx +δg(0)yy −δϕ(0)

1

)
+15rr40

(
24δg

(0)
tt +7

√
2δg

(0)
tx +7δg(0)yy −7δϕ

(0)
1

)]
,
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δϕ1 =
er0(v−

√
2x)

120r5

[
120δϕ

(0)
1 r5+120δϕ

(0)
1 r4r0−8c

(
5r2+5rr0+6r20

)
+3r50

(
4δg

(0)
tt +4

√
2δg

(0)
tx

−2δg(0)xx −9δg(0)yy +7δϕ
(0)
1

)
+20r2r30

(
δg

(0)
tt +
√

2δg
(0)
tx −δg(0)xx −δg(0)yy

)
+60r3r20

(
δg

(0)
tt +
√

2δg
(0)
tx +δg(0)xx −δg(0)yy +2δϕ

(0)
1

)
+5rr40

(
4δg

(0)
tt +4

√
2δg

(0)
tx +2δg(0)xx −7δg(0)yy +9δϕ

(0)
1

)]
.

We are working here in a different gauge than in section 2. This solution is regular at the

horizon r = r0 and depends on six constants: the five sources of the dual energy-momentum

tensor and scalar operator
{
δg

(0)
tt , δg

(0)
tx , δg

(0)
xx , δg

(0)
yy , δϕ

(0)
1

}
, and an additional constant c.

Consistently with our general argument in section 2, it is manifest that the dependence on

c means that fixing the sources does not uniquely specify the ingoing solution.

Furthermore, it is straightforward to explicitly check that the dependence on the addi-

tional constant c results in the retarded Green’s function of energy density being infinitely

multi-valued. Upon transforming to the coordinates (2.2) and expanding near the boundary

r →∞, the solution is

δgtt = er0(t−
√
2x)

[
δg

(0)
tt r

2+. . .+
2c

r
+. . .

]
, δgtx = er0(t−

√
2x)

[
δg

(0)
tx r

2+. . .−
√

2c

r
+. . .

]
,

δgxx = er0(t−
√
2x)

[
δg(0)xx r

2+. . .+
1

3r

[
4c+r30

(
δg

(0)
tt +
√

2δg
(0)
tx +2δg(0)xx −δg(0)yy +3δϕ

(0)
1

)]
+. . .

]
,

δgyy = er0(t−
√
2x)

[
δg(0)yy r

2+. . .+
1

3r

[
2c−r30

(
δg

(0)
tt +
√

2δg
(0)
tx +2δg(0)xx −δg(0)yy +3δϕ

(0)
1

)]
+. . .

]
,

δϕ1 = er0(t−
√
2x)

[
δϕ

(0)
1 +. . .− 1

3r3

[
c+r30

(
δg

(0)
tt +
√

2δg
(0)
tx +2δg(0)xx −δg(0)yy +3δϕ

(0)
1

)]
+. . .

]
,

δgtr = er0(t−
√
2x)O(r−5), δgxr = er0(t−

√
2x)O(r−5), δgrr = er0(t−

√
2x)O(r−7). (D.4)

Calculating the expectation value of the dual energy-momentum tensor of this solution

using [34, 49]

〈Tµν〉 = lim
r→∞

r5
[
2
(
Kµν −Kγµν +Gµνγ − 2γµν

)
+

1

2
γµν∂ϕi · ∂ϕi −∇µϕi∇νϕi

]
, (D.5)

yields

〈T tt〉 = er0(t−
√
2x)6c,

〈T tx〉 = er0(t−
√
2x)3
√

2c,

〈T xx〉 = er0(t−
√
2x)
[
4c+ r30

(
δg

(0)
tt +

√
2δg

(0)
tx + 2δg(0)xx − δg(0)yy + 3δϕ

(0)
1

)]
,

〈T yy〉 = er0(t−
√
2x)
[
2c− r30

(
δg

(0)
tt +

√
2δg

(0)
tx + 2δg(0)xx − δg(0)yy + 3δϕ

(0)
1

)]
.

(D.6)

The expectation value of the energy density 〈T tt〉 depends on the arbitrary constant c and

thus the corresponding Green’s function is not well-defined (consistent with the general

expression (3.38)). Our analysis here makes it clear that this property can be traced back

to the presence of an additional ingoing solution to the equations of motion.

– 31 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
5

E Details of numerical calculations

The full dispersion relations ω(k) of the poles of GRT 00T 00 can be found by solving Einstein’s

equations numerically. In this appendix we briefly describe how we did this to produce the

numerical results shown in figures 2 and 3 of section 3.5.

To perform the numerical calculations, we transformed to a coordinate system in which

the metric is

ds2 = −r2f(r)dt2 + r2
(
dx2 + dy2

)
+

dr2

r2f(r)
. (E.1)

We studied linear perturbations of the metric δg̃µν(r, t, x) and the scalar fields δϕ̃i(r, t, x)

around this spacetime, after Fourier transforming in the (t, x) coordinates to the conjugate

variables (ω̃, k) (the tildes differentiate quantities from the analogous ones in ingoing EF

coordinates studied in the main text). The perturbation of interest to us is δg̃tt, and it

couples to δg̃xt, δg̃xx, δg̃yy, δg̃rr, δg̃xr, δg̃tr and δϕ̃1. In addition to the three first-order (in

radial derivatives) equations governing these fields, there are two second-order equations.

The Green’s function GRT 00T 00 can be efficiently extracted by writing the two second-order

equations as a closed set of equations for two gauge-invariant variables [38]. A convenient

choice for these variables is

Ψ1 =
r2f

(k2 + r3f ′)2
d

dr

[
r4f

(
d

dr

(
δg̃xx + δg̃yy

r2

)
− 2ik

r2
δg̃xr − 2rfδg̃rr −

(
k2 + r3f ′

)
r5f

δg̃yy

)

−
(
k2 + r3f ′

)
(k2 +m2)

mr

2

{
m

(
δg̃xx − δg̃yy

r2

)
− 2ikδϕ̃1

}]
,

Ψ2 = m

(
δg̃xx − δg̃yy

r2

)
− 2ikδϕ̃1, (E.2)

as they obey two equations of motion that decouple and thus can be solved independently.

The equation for Ψ1 is

d

dr

[
r2f

(
k2 + r3f ′

)3
ω̃2 (k2 + r3f ′)− k2 (k2 +m2) f

Ψ′1(r)

]
+

(
k2 + r3f ′

)2
r2f

Ψ1(r) = 0. (E.3)

Our first method for extracting the poles of GRT 00T 00(ω, k) was to solve (E.3) numerically

by imposing ingoing boundary conditions Ψ1 ∝ (r − r0)
−iω̃/4πT near the horizon and

integrating to the boundary. We then extracted the coefficients of the near-boundary

expansion Ψ1(r →∞) = Ψ
(0)
1 +Ψ

(1)
1 r−1+. . . and looked for zeroes of the quantity Ψ

(0)
1 /Ψ

(1)
1 ,

which correspond to poles of GRT 00T 00(ω, k). A drawback of this method is that for imaginary

values of k the equation develops a singularity within the integration region when
∣∣k2∣∣ lies

between m2 and (2πT/vB)2. This is an artifact of the variables chosen and means that we

cannot track the poles over the entire range of imaginary k that we desire.
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To circumvent this problem, we also considered a different variable

Ψ3 =
1

r2

(
ω̃2δg̃xx + 2ω̃kδg̃xt + k2δg̃tt −

(
ω̃2 − k2f − 1

2
k2rf ′

)
δg̃yy

)
, (E.4)

which obeys the equation of motion

d

dr

 r4f(
ω̃2 − k2f − k2

4 rf
′
)2
−m2f

(
ω̃2 − k2

(
3
4 − m2

8r2

))Ψ′3


+

32r4A1(r)

fA2(r)
Ψ3 +A3(r)Ψ

′
2 +A4(r)Ψ2 = 0,

(E.5)

where

A1(r) = 2
{
k2ω̃

(
m2 − 6r2

)
+ 8r2ω̃3

}2
− f

{
k2
(
m2 − 6r2

)
+ 8r2ω̃2

} [
k2
(
m2 − 6r2

) (
2k2 + 5m2 − 6r2

)
+ 8r2ω̃2

(
3k2 + 4m2

)]
+ 2r2f2

[
k4
{

7m4 + 36m2r2 − 180r4 + 4k2
(
m2 − 6r2

)}
+ 4r2ω̃2

(
9k4 + 16m4 + 72k2r2

)]
− 4k2r4f3

{
2k4 + k2

(
11m2 − 18r2

)
+ 24

(
m4 + 3r2ω2

)}
+ 72k4r6f4,

A2(r) =
[ {
k2
(
m2 − 6r2

)
+ 8r2ω̃2

}2
− 4r2f

(
k2 + 2m2

) {
k2
(
m2 − 6r2

)
+ 8r2ω̃2

}
+ 4k4r4f2

]2
,

(E.6)

and the precise forms of A3(r) and A4(r) are not important. The solutions that determine

the poles of GRT 00T 00(ω, k) are those where the boundary metric is unchanged, which requires

that Ψ2(r → ∞) = 0. As Ψ2(r) obeys a decoupled, linear equation of motion then the

ingoing solution that vanishes at the boundary will generically be Ψ2(r) = 0 and so our

second method was therefore to numerically integrate the equation (E.5) with Ψ2(r) = 0,

after imposing ingoing boundary conditions on Ψ3 ∝ (r− r0)−iω̃/4πT at the horizon. After

expanding near the boundary Ψ3(r → ∞) = Ψ
(0)
3 + Ψ

(1)
3 r−1 + . . . we then extracted the

poles of GRT 00T 00(ω, k) by determining the zeroes of Ψ
(0)
3 /Ψ

(3)
3 . The exception to Ψ2(r) = 0

being the appropriate solution is at particular sets of (ω̃, k) that correspond to quasinormal

modes of the Ψ2 equation, but we expect that generically these frequencies will not overlap

with the poles of GRT 00T 00(ω, k). We confirmed that this is the case by checking that our

results from this method agree with the results from the previous method in the regime

where both could be performed.
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