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. bstract

In this thesis, we develop and analyze methods for approximate analysis of networks of
single-server dynamic queues. Specifically, we investigate three facets of these problems.

First, we develop and test new approximate methods for analyzing individual queues
with time-varying arrival and/or service rates. We approximate queues with time-varying
Poisson arrival processes and Erlang, hyperexponential and general non-phase-type service-
time distributions. These new methods are simple to implement, efficient and have limited
computer memory requirements. In cases in which exact results can be found, the exact
methods require 3 — 400 times as much CPU time as the approximations. Our computational
tests cover cases of moderate to heavy utilization. We show that under many system
conditions, these methods give estimates within 5% of exact system measures.

Second, we propose and test an approximate decomposition method for analyzing open
networks of single-server dynamic queues. This method allows analysis of systems for which
exact methods of analysis do not exist, or are infeasible to implement due to time or com-
puter memory constraints. It uses an individual queue approximation method to estimate
delays at the queues, and a propagation algorithm to model the interactions among the
queues. The decomposition approach is computationally and computer-memory efficient.
Our results indicate that the exact solution requires two to three orders of magnitude more
CPU time than the decomposition method. We determine the sensitivity of the accuracy
of the decomposition method to the parameters of the system, and identify under what
conditions the methods give estimates within 5% of exact system measures.

Third, we investigate aspects of the behavior of queueing systems with lime-varying
arrival and service rates. We examine the time lag between a peak in system utilization
and corresponding peaks in the mean and variance for the number of customers in an
M(t)/M(t)/1 system. We establish a necessary condition for the times at which local
extremes in the mean will be achieved. In cases in which system utilization exceeds one
during some period, we show that the local peak in the mean induced by this period of
oversaturation occurs strictly after the end of the oversaturatinn period. The observations
we make for these systems provide some rules of thumb that should help planners and
operators of facilities with strongly time-dependent demand and capacity to make better
facility management decisions.

Our focus on networks of single-server dynamic queues was motivated by a particular
system of great practical importance: the national network of airports. In recent years,
congestion in the airport networks has been experienced with increasing frequency in both




the United States and Western Europe. The use by the airlines of “hub-and-spoke” net-
work configurations that create a tight “coupling” among flights at geographically dispersed
airports causes delays at one major airport to propagate rapidly throughout the Air Traf-
fic Management (ATM) system. The Office of System Capacity and Requirements of the
Federal Aviation Administration (FAA) estimated the total cost of delay in US airports to
be at least $§736 million in 1992. The airlines estimate that cost as being in excess of $1.5
billion. The research presented in this thesis provides, among other results, evidence that
the assumptions of a decomposition approach for modeling a network of queues may be
appropriate in the context of a network of airports.

Thesis Supervisor: Amedeo R. Odoni

Title: Professor, Departments of Aeronautics and Astronautics and
of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation and Objective

Congestion and its propagation among facilities is a common phenomenon which involves
complex interactions within a single queueing facility system as well as in a network of
queueing facilities. In many real-world systems, such as airports, air terminals, some man-
ufacturing processes, rozds and highways, and telecommunication networks, there are large
costs associated with congestion and its propagation. The Office of System Capacity and
Requirements of the Federal Aviation Administration (FAA) estimated the total cost of
delay in US airports to be at least $736 million in 1992 [5]. The airlines estimate that cost
as being in excess of $1.5 billion. There are good economic reasons for studying ways to
reduce this delay.

To analyze congestion at real-world facilities, we use the tools of queueing theory. Most
analytical results in queueing theory and especially for networks of queues are valid under
restricted conditions, one of which is constant arrival and service rates. Many important
real-world queueing systems, such as those mentioned above, do not have this critical charac-
teristic. They have demand and capacity which vary strongly as a function of time. We call
such time-varying systems “dynamic” or “nonstationary.” Some analytical results do exist
for individual queues with arrival and/or service rates that vary with time. However, these
results are for special queueing systems, or require at least some numerical computation or
transform inversion. More general methods of analysis are needed.

Simulation can be used to analyze queues with demand and capacity which are stochastic

and vary with time, but many simulation “runs” are needed in order to obtain statistically
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valid results. Koopman [26] noted that the time required to obtain a sufficient number of
data points makes simulation an unattractive and often infeasible approach for the analysis
of complex dynamic queues.

The fluid approximation model also provides a first-order analysis of queueing systems
with parameters which vary with time [24]. This model predicts a queue only if the arrival
rate exceeds the service rate. However, if there is randomness in the arrival or service pro-
cess, the fluid model severely underestimates queueing congestion. Diffusion approximations
try to compensate for this deficiency and provide second-order approximations [24, 33, 34].
They take into account the variance of the arrival and service processes. However, even
these approximations are only good if the arrival rate is approximately equal to the service
rate over the period of analysis, limiting their applicability.

When a quick back-of-the-envelope calculation is needed, steady-state queueing results
are sometimes used to analyze systems with time-varying arrival or service rates. However,
Green et al. [16] have shown how poorly stationary results may approximate these types
of systems even when the arrival rate exhibits limited variation from average demand as a
function of time. Odoni and Roth [35] have shown that the amount of time needed to reach
steady-state in peak periods of system utilization is not negligible; in fact, in some systems,
it may take several hours to reach steady state, whereas the peak period being analyzed is
usually short and depends on the particular system. Hence, applying steady-state results to
discrete periods of the day using the average arrival and service rates over the period may
yield rather inaccurate results. Furthermore, steady-state results for time-varying systems
mask the time lag which occurs between the peak in system utilization and the peak in the
congestion level (measured in terms of expected number of customers in the system), as well
as the peak in the standard deviation for the number of customers in the system. Applying
steady-state results at peak periods may give a a very erroneous indication of when the
system is most congested. This time lag can range from minutes to hours depending on
the arrival-rate process, service-time distribution, the average system utilization, and how
much the instantaneous system utilization peak exceeds the average utilization. Finally, the
most significant drawback of using steady-state results to analyze systems with time-varying
parameters is that it cannot be applied to systems in which demand exceeds capacity for
certain periods of time, as often happens in practice.

Networks of queues with time-varying demands and capacities present even more diffi-
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culties. Relatively little is known about networks of queues with time-varying parameters,
yet these systems are common and most important. With the exception of networks with
infinite-server queues, no exact general solutions exist ({30]. Simulation is not a feasible
approach for analyzing large and complex networks, due to the number of runs necessary
to obtain statistically valid results. If one takes an “exact” computational approach, one
can model an open network of queues with an external Poisson arrival process which varies
with time, and exponential service. In this case, one can solve the differential equations
describing the system using an ordinary differential equation (ODE) solver. We show in
Chapter 4, however, that even for simple two-station networks, one encounters serious mem-
ory and CPU time constraints when solving such systems. This approach proves infeasible
for most real-world networks problems.

In summary, existing methodologies do not satisfactorily address real-world problems
with time-varying demands and capacities. In this rcsearch, we strive to develop approxi-
mate methods for these problems. It is, of course, impossible to address all possible real-
world manifestations of queues and networks of queues with time-varying arrival and service
rates in a general manner. There is an enormous number of such problems with accom-
panying attributes specific to each. In addition, these are extremely difficult problems to
address. Motivated by practical applications, we study in this thesis a subset of these
problems: networks of single-server nonstationary queues.

Our focus on networks of single-server nonstationary queues is motivated by a particular
system of great practical importance: the national network of airports. Until the mid-1980’s,
most congestion problems in the air traffic management (ATM) system were of a local
nature, i.e., they were concentrated primarily at a few local airports. More recently, however,
both the United States and Western Europe are experiencing system-wide congestion with
increasing frequency. This more widespread congestion has resulted from an overall traffic
growth that has created many potential “bottlenecks” in the world’s two most intensively
utilized regional airport systems. Also contributing to the phenomenon is the growing use
by the airlines of “hub-and-spoke” network configurations that create a tight “coupling”
among flights at geographically dispersed airports. This coupling causes delays at one
major airport to propagate rapidly throughout the ATM system. There is then an acute
need for models that can assist in analyzing network-wide airport congestion phenomena

and understanding the impact of various parameters on the propagation of delays.
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An additional motivation for developing network models comes from the growing need
to understand the system-wide implications of major local changes, such as the investment
of capital funds to achieve a significant expansion of capacity at a particular airport. For
example, part of the justification for the contribution of approximately $500 million of
federal funds to the construction of the new Denver International Airport was based on the
claim that the new airport would have a substantial effect on reducing air traffic delays
not only at Denver, but, “through a ripple effect,” throughout the United States, as well.
Furthermore, in operating the Airport Improvement Program (AIP), the FAA distributes
approximately $2 billion annually in grant monies to US airports for facility improvement
and expansion. As a federal organization, the FAA is interested not only in the local effect
of local improvements, but also the system-wide effect of local improvements.

Understanding the system-wide costs and benefits of facility improvement requires an
understanding of the nietwork behavior. Equivalent doliar investments in different facilities
may generate significantly different national benefits in terms of delay reduction. For exam-
ple, following the deregulation of the air transportation industry in 1978, Chicago’s O’Hare
Airport became a hub for both American and United Airlines and the busiest airport in
the world, with more than a thousand flights operating there each day. When Chicago
experiences congestion, the delays ripple throughout the national network of airports. This
ripple or “network effect” causes delays at airports which may not otherwise experience
delay. Therefore, decreasing the chance of excessive delays at Chicago can possibly reduce
delay at other airports in the US airport system. Hence, an investment at O’Hare may reap
larger benefits than an equivalent investment elsewhere.

The study of delay in networks of airports gives us insights into system performance
and into the economic questions of facility improvement and expansion. Moreover, because
delays at airports are caused by a large concentration of aircraft in a small area, studying
ways to reduce delays may have safety benefits as well.

With the paradigm of the network of airports in mind, we investigate three facets of

networks of single-server dynamic queues.

1. We develop and test new approximate methods for analyzing individual queues with
time-varying arrival and/or service rates. These computational methods are efficient
and have limited computer memory requirements. In addition, they are simple to

implement and model a wide variety of queues with different service-time distributions.
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2. We investigate the behavior of queueing systems with time-varying arrival and service
rates. The observations we make for these systems provide some rules-of-thumb that
should help planners and operators of facilities with strongly time-dependent demand

and capacity to make better facility management decisions.

3. We propose and test an approximate decomposition method for analyzing open net-
works of dynamic queues. These methods allow analysis of systems for which exact
methods of analysis do not exist, or are infeasible. The decomposition approach is
computationally and computer-memory efficient. It uses the individual queue approx-
imation methods to estimate delays at the queues, and a propagation algorithm to

model the interactions among the queues.

We will use the paradigm of the national network of airports in much of our discussion and
numerical tests.

We have applied the results of our research to networks of airports. During the last four
years, we developed a policy-oriented tool which models the national network of airports.
This tool is called the Approximate Network Delays (AND) Model [29]. The AND model
is an approximate model for a weakly-connected network of queueing systems (nodes) with
nonstationary parameters. “Weakly connected” means, informally, that no single node
receives a large percentage of its customers from any other single node. The arrival stream
at any one node is a combination of streams from sources external to the network and from
several other nodes in the network. The AND model is macroscopic and is best-suited for
use in strategic (or “policy analysis”) studies in which the primary objective is to assess the
relative performance of a wide range of alternatives. That is, we want to capture the relative
changes in delay in response to changes in demand and capacity at airports. For this reason
it aspires to be very fast, in terms of both input preparation and execution times, so it can
be used to explore a large number of “scenarios.” The model can also be used as a screening
device to identify the few most promising among many alternative courses of action, which
can then be studied in detail through more “microscopic” simulation models. The research
presented in this thesis provides, among other results, evidence that the assumptions and
algorithm of the AND Model are appropriate. Section 4.4 briefly describes the AND Model.

We next describe the relevant characteristics of the Airport System. We distill these

characteristics into important attributes which form the basis of how we model the network
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of airports in a queueing context.

1.2 Characteristics of Individual Airports and the National

Network

In this section we first identify the characteristics of individual airports and of networks of
airports which must be captured by our queueing models. We then show how we incorporate
these characteristics into our approximate, macroscopic queueing models.

To avoid confusing terminology, we use the word “arrivals” to an airport to indicate
the demand for “landings” and “takeoffs.” “Arrivals per hour” is equivalent to the hourly
demand rate for landings and takeoffs. We define an “operation” to be either a landing or
a takeoff.

We identify five attributes of individual airports which we consider significant for a
macroscopic airport model. First, the number of operations per hour at airports varies.
Figure 1-1 shows the number of scheduled operations per hour at Boston Logan International
Airport. This demand profile represents a typical weekday at Logan in 1992. The hourly
demand rate varies from 0 during some of the night hours to more than 100 during peak
hour periods. This profile is unique to Logan. However, practically all other major US
airports have demand profiles which also show large variations in the number of operations
per hour over the 24-hour day.

The second attribute is that the demand profiles are not deterministic. Several factors
“randomize” the scheduled demand for Jandings and takeoffs at airports. First, aircraft
do not operate exactly according to the published schedule. Air traffic control, weather
and wind conditions, routes flown, and changes of aircraft contribute to occasionally large
deviations from the scheduled landing and takeoff times. Second, airlines sometimes publish
landing times which may not reflect the actual flight time between the airports of origin
and destination. Instead, flight times are increased to include an allowance for expected
flight delays. The airlines may do this to attract air travelers to their flights by claiming
better “on-time” performance, or to protect themselves against unforeseen delays. A third
factor which randomizes the number of operations per hour is that not all operations are
scheduled. In fact, General Aviation (GA) flights, charter flights, and extra sections of
shattle flights are not scheduled and account for about 10% of the approximately 1200
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Figure 1-1: Hourly Demand Rate at Boston Logan International Airport

weekday operations at Logan Airport. Logan is actually an example of an airport with very
few unscheduled flights. Typically, unscheduled flights represent a much higher percentage
of the number of daily operations. Finally, airlines cancel flights. Unscheduled and canceled
flights cause the actual number of operations to vary from day to day, and hour to hour,
from the number which are scheduled.

Periodicity of demand is the third relevant attribute of airports from the queueing point
of view. From a practical point of view, the demand profile at airports is nearly periodic,
with a period of 24 hours.

We capture these first three attributes of airport demand by modeling the arrival process
to the queues as a nonstationary Poisson process, as in Koopman [26] and Horangic [19].
We define the Poisson arrival rate to be the rate over time of demand for access to the
runway by landings and takeoffs. This rate is not necessarily the same as the rate at which
aircraft actually land or take off. The two rates will be approximately the same only in the
absence of congestion.

Airport capacity also varies with time, in an even less predictable manner than the
demand rate. Airport capacity depends on the runway configuration in use. A runway
configuration of an airport consists of a set of runways which are simultaneously active.

Figure 1-2 shows the runway layout at Boston’s Logan Airport. Logan has about 40 runway
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Figure 1-2: Boston Logan International Airport Runway System

configurations in total. For example, one common such configuration is the simultaneous
use of runways 4R and 4L for landings and takeoffs and of runway 9 for takeoffs only.
Changes in weather and wind direction are the primary causes of runway configuration
changes, and therefore changes in capacity. Some weather conditions cause airport capacity
to drop so low that the demand rate exceeds the airport capacity for extended periods of
time. Thus, the fourth attribute for which airport models must account is that demand can
exceed capacity for certain periods of time that may last for several hours.

In our queueing model, we represent the airport as a “black box” which processes land-
ings and takeoffs. Our black box approach ignores the interdependencies among and in-
dependence of runway combinations. What impact does this have on our model? First,
because we take a macroscopic view of the airport as a server, we do not attempt to model
the details of the runway interdependencies. Second, the distinction between single and
multiple servers at an airport only makes a difference when there are fewer aircraft in the
system than the number of servers. Since we consider busy airports, the congested periods
of operation are far more important than the periods of low utilization. During congested

periods, there is a relatively large expected number of aircraft in the system. Therefore,
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this single vs multiple-server distinction is not critical from a macroscopic point of view.

We model the queue discipline at airports as First-Come First-Serve (FCFS). In prac-
tice, this is a reasonable assumption. In cases of low to moderate congestion, air traffic
controllers allow aircraft to land and take off in FCFS order. In the case of severe conges-
tion, landings have partial priority over takeoffs. However, air traffic controllers fit takeoffs
into the sequence of landing aircraft in such a way that although the queue discipline in
this circumstance is not strictly FCFS, it is a reasonable approximation. In addition, when
departure queues get long, the priorities are sometimes reversed and a string of departures
will be allowed to operate ahead of landings.

Finally, the fifth attribute of airports concerns the service times of aircraft. The service
times at an airport depends on the types of aircraft that operate there. At busy airports,
many different sizes of aircraft operate. This results in a large variability in the service
times there. Figure 1-3 shows a sample distribution of 61 interoperation times recorded
during a busy period at Logan. In this case, the mean service time was 35.7 seconds, and
the standard deviation was 23.5. This means that the coefficient of variation of the service
times, or the standard deviation divided by the mean, was 0.66. In general, at busy US
airports like Logan, the coefficient of variation is as a rule less than one. In contrast, major
European airports, which restrict the classes of aircraft with access to the airport, typically
exhibit less variability in service times. It is reasonable to expect much smaller service time
coefficients of variation at these airports.

To model the service times observed at airports, we use the Erlang distribution. The
Erlang has two parameters which can be adjusted for the variability of the service times. It
is also an analytically tractable distribution in a queueing context. Finally, its coefficient of
variation can be adjusted to values less than or equal to one. A more detailed description
of the Erlang distribution appears in Section 2.2.3.

We now turn to the network of airports: from a modeling perspective, the major at-
tribute of the national network of airports is that it is weakly connected. That is, no single
airport receives a dominating percentage of its arrivals from any other single airport. If we
examine total arrivals to a particular airport, departures from any other single airport in
the network typically represent less than 10% of the total arrivals to the airport under con-
sideration. A stronger link exists between landings and takeoffs at a single airport. Aircraft

which land at an airport subsequently take off at some time later in the day. Departures
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Figure 1-3: Histogram of Interoperation Times at Boston Logan International Airport.
October 26, 1994. 5:12 - 5:30 pm.

which are directly linked to a previous arrival during the same day typically represent 30 -
40% of the total operations at an airport. Despite the fact that there is this coupling, even
in this case one can argue that variable gate times, airline scheduling practices, and late
arrivals and departures lead to a very substantial decoupling of this link.

We model the network of airports using a decomposition method. We intend this decom-
position to provide a tractable method for approximate analysis of a network of airports.
We intend it for use as a strategic, as opposed to a tactical, model. The goal of this strategic
model is to give an indication of the relative changes in delay which occur as a result of
changes in demand and/or capacity. We do not account for the tactical decisions of airlines
to change itineraries or swap aircraft in response to congestion conditions at airports.

Our approach decomposes the network of airports into individual queues at each single
airport. We use the M(t)/E(t)/1 queueing system to model each individual airport ap-
proximately. We use a “propagation method” to link the airports together and to propagate
the delays at congested airports to other airports in the network. Since we use the Poisson
arrival assumption for each individual airport throughout our analyses, we believe the weak
connectivity among the airports in the network is a key assumption in our decomposition
method. We experiment with this assumption in Chapter 4. We show that the results of

the decomposition method are valid for the levels of connectivity typically encountered in
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an airport network.
In this section, we have described the practical context we intend to use in this research.
In the next section, we review what options exist curcently for analysis of the types of

queues and networks in which we are interested.

1.3 Review of Previous Research

We now briefly review existing methods for analyzing nonstationary queues which are
relevant in light of our stated research goals: fast accurate approximations of the time-
dependent probability distribution, mean, and variance for the number of customers in
M(t)/Ex(t)/1 systems and networks of such systems. Methods can be categorized along
two dimensions: exact or approximate methods for transient or periodic systems. We as-
sume that the systems we study are stable. Bambos and Walrand [3], Harrison and Lemoine
[17], Heyman and Whitt [18], and Rolski [42, 43] discuss notions of and conditions for sta-
bility in queueing systems with nonstationary inputs.

To date, exact numerical analysis of nonstationary models focus on M(t)/M(t)/s/c
systems and generalizations in which the number of customers (or phases) in system can
be represented by a continuous-time Markov Chain, M(t)/G /oo systems in which the time-
dependent number of busy servers (or customers in the system) is distributed as a time-
dependent Poisson random variable, or M(t)/G(t)/1 systems in which either a transient
analysis using transforms or an asymptotic workload and waiting time analysis is used.
Readers interested in infinite-server systems are referred to the papers of Eick, Massey and
Whitt [11, 12] and Massey and Whitt [30] and the references therein. See Jennings et al.
[20) and Massey and Whitt [31] for infinite-server approximations to finite-server systems.
We now discuss exact results for finite-server systems.

Clarke [8] derived an exact expression for the time-dependent probability of ¢ customers
in an M(t)/M(t)/1 system, for all i. These expressions can be evaluated, given that a
solution to several complicated expressions, including an integral equation of the Volterra
type, can be found. Due to its complexity, this method is not used.

In the case of M(t)/M(t)/s/c systems and generalizations, the time-dependent distribu-
tion of the number of customers in the system can be found by numerically solving a system

of time-dependent ordinary differential equations (ODE’s), as in Koopman [26]. One can
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perform transient and periodic analyses of such systems. Finite or infinite capacity systems
can be modeled. Infinite capacity systems must be approximated by a finite queueing capac-
ity ¢, chosen large enough that the probability of having c or more customers in the system
is smaller than some prespecified level e > 0. Allowing the arrival rate to exceed the service
rate exacerbates the issue of choosing ¢, because the number in the system grows rapidly
during this period. When more complicated phase-type distributions are used, the number
of states needed to represent a system with queueing capacity c increases. For example,
the number of states needed to represent the M(t)/Ey(t)/1/c system is kc + 1, versus ¢+ 1
in the M(t),2M(t)/1/c case. A large state space greatly increases computation time. This
serious drawback prompted development of approximation methods for M(t)/M(t)/s/c sys-
tems and its natural generalizations called closure or surrogate distribution approximation
(SDA) methods, in which the number of ODE’s solved at each iteration is independent of
system capacity or utilization.

Choudhury, Lucantoni, and Whitt [6] develep an exact numerical algorithm for calcu-
lating the distribution of the workload (virtual waiting time) at an arbitrary time ir an
M(t)/G(t)/1 queue. This is a generalization of the work of Van den Berg and Groenendijk
[61] in which they develop a recursive scheme for finding the number of customers as a func-
tion of time in an M/M/1 system with regularly changing arrival and service intensities.
Specifically, Choudhury et al.’s model calculates the transform of the workload distribution
at a given time ¢;. The arrival rate and service-time distribution change only at finitely
many points, i.e., they are piecewise continuous. This model permits the arrival rate to ex-
ceed the service rate. The piecewise-stationary time-dependence reduces the M(t)/G(t)/1
problem to solving recursively a nested family of problems involving the transient behavior
of stationary M/G/1 models. The method applies known transform results for the transient
workload distribution in a stationary M/G/1 model with arbitrary initial workload distri-
bution. To actually compute the transient workload distributions, the method employs a
two-dimensional numerical transform technique. There are two major issues in this numer-
ical algorithm: computational time and inversion precision. The computational effort of
this method is proportional to the square of the number of stationary (piecewise) intervals,
but does not depend on the length of the intervals. In the case of a seven-interval example,
in which the arrival rate exceeds capacity during three of the intervals, the method takes 18

minutes to calculate 10 values (5 points in time, two threshold values) in the last interval
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on a SUN SPARCstation 2 using FORTRAN double precision, resulting in 7-10 digits of
accuracy. An equivalent 21-interval example (3 times as many intervals), takes 3 hours to
run (about 9 times as long). Choudhury et al.’s algorithm can be used to analyze transient
or periodic behavior. Since the model focuses on workload, any work-conserving queue
discipline (FCFS, LCFS, processor-sharing) is allowed.

Lemoine [27] develops moment formulas for periodic time-dependent and average asymp-
totic workload and waiting time in M(t)/G/1 queues with periodic Poisson arrival input.
The expression for the r** moment of the time-dependent workload distriktion involves
moments one through r — 1, in the form of an integral equation. The expression may be
explicitly evaluated if the asymptotic probability of an empty systcm at each ¢ is exactly
1 — p, the time-average probability that the system is empty. A sufficient condition for
the expressions to be explicitly computable is if service times are discrete and take on only
positive integer multiples of the period length. This can sometimes be a serious restriction
in applications, for instance, in the airport context.

The difficulty of finding exact solutions for nonstationary queues generated interest in
developing approximation methods. There are three main classifications for time-dependent
approximations. Surrogate Distribution Approximation (SDA) methods focus on the differ-
ential equations for the moments of the number of customers (or phases) in M(t)/M(t)/s/c
systems and its generalizations. The Pointwise Stationary Approximation (PSA) and its ex-
tensions focus on applying the stationary performance measure formulas for M(t)/M(t)/s
at each point in time. A variant of the Markov-modulated approach approximates the
time-dependent arrival function and uses known results from Markov-modulated queues to
estimate time-dependent workload probabilities in M(t)/G/1 queues.

The SDA method is based on the differential equations for the time-dependent mean
number of customers in the system, m(t), its second moment, my(t), and variance, v(t),
initially developed by Clarke [8] for the M(t)/M(t)/1 system. These moment differential
equations (MDE'’s) can be carefully written for any Ph(t)/M(t)/s/c or Ph(t)/Ph(t)/1/c
system. If the unknown quantities appearing in the MDE’s can be found or estimated, the
MDE'’s can be integrated, and the time-dependent mean and variance, and higher moments
can be found. Hence, SDA methods can approximate the transient behavior of a queue
by tracking the time-dependent mean and variance given initial conditions, and, in the

case of periodic arrival and service rates (with a common period), it can approximate the
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limiting periodic mean and variance of the number of customers or phases in the system.
For example, let F;(t) represent the probability of i customers in an M (t)/M(t)/s system
at time ¢. From Rothkopf and Oren [46], the MDE'’s for the M (t)/M(t)/s system are:

s—1i

m(t) = M) - u(t)s+ ) Y (s —n)Pa(?) (1.1)
n=0
-1

V() = A() + p(t)s — u(t) E(2m(t) +1—=2n)(s — n)P,(t) (1.2)
n=0

Note that, given A(t) and p(t) over the interval of interest, the unknowns in equations (1.1)
and (1.2) are Py(t),..., Ps—1(t). The SDA use surrogate distributions to approximate these
unknown probabilities, i.e., P;(t) = P(X = i), where X is a random variable associated with
a distribution called the surrogate. One finds the parameters of the surrogate by matching
the current known values of m(t), ma(t), and v(t) to the corresponding moments of the
surrogate.

Rider [40], Rothkopf and Oren [46], Clark [7], Taaffe and Ong [50], and Ong and
Taaffe [36] develop increasingly sophisticated SDA models for queueing models with time-
dependent phase-type arrival processes and service-time distributions through the SDA
method. This approach offers several significant advantages over solving the entire set of
Chapman-Kolmogorov equations. There are few equations to integrate at each time step,
as compared to the entire set of Chapman-Kolmogorov equaticns, resulting in faster solu-
tions to the time-dependent mean and variance for the number in the system. The user is
also relieved of the responsibility for selecting a truncation point for the maximum queue
length, ¢, in approximating queues with infinite queueing capacity. Finally, the number of
equations to be solved is independent of the system capacity.

The general SDA Algorithm proceeds as follows [49], although the details differ slightly in
some cases. For each time ¢, assume m(t), mg(t) are known. Assume P;(t) is approximated
by P(X = i), where X is a random variable with an associated distribution, called the

surrogate.

1. Solve for the surrogate distribution parameters using m(t), ma(t), and v(t) to obtain

the unknown P;(t) appearing in the MDE’s.

2. Use the P;(t)’s to obtain m/(t), v'(¢t).
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Author System Quantities Surrogate Number of

Approximated | Distribution Equations
Integrated
Rider M(@)/M(t)/1 | m(t) Approximate Py(t) 1

by modifying exact
solution to Py(t)
for constant A,u

Rothkopf & M(t)/M(t)/s | m(t),ma(t),v(t) | Negative Binomial 2
Oren
Clark M(t)/M(t)/s | m(t),ma(t),v(t), | Conditional PE 5
8(t), E[W ()]
Taaffe & Ong | Ph(t)/M(t)/s/c | m(t),m2(t),v(t) | Conditional PE 6k,

Ong & Taaffe | Ph(t)/Ph(t)/1/c | m(t),ma(t),v(t) | Conditional PE ky + 3k1k,

Table 1.1: Summary of SDA Methods Research, Systems Approximated, and Surrogate
Distributions Used.

3. Calculate m(t + At) and v(t + At), using numerical integration.

4. t =t + At. Go to Step 1.

Given initial conditions m(0), m2(0), and v(0), one can find approximations for m(t), ma(t)
and v(t) for any t.

SDA methods differ from each other, depending on which system is being approximated,
and how the surrogate distribution is defined. The differences translate into the number
of equations to be integrated at each time step, and precisely which probabilities are to
be approximated. Let k;, ko be the number of phases in the arrival process and service-
time distribution, respectively. Let PE represent the Polya-Eggenberger distribution. (See
Johnson and Kotz [21] for more information about PE distributions.) Let 4(t), E[W(t)]
represent the output rate and expected waiting time in the system at time ¢. Table 1.1 clas-
sifies the SDA methods according to system analyzed, surrogate distribution used, number
of equations integrated at each time step, and the performance measures collected.

Rothkopf and Oren [46], Clark [7], Taaffe and Ong [50], and Ong and Taaffe [36] all
find that their methods approximate m(t) better than v(t) or o(t), the standard deviation
for the number of customers in the system. This is consistent with the empirical results
of the approximation methods presented in this dissertation. Although it appears that it
could easily be done, the researchers who have used the SDA method have not attempted to
approximate the actual probability distribution for the number of customers in the system

using a surrogate.
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The Pointwise Stationary Approximation (PSA) for Markovian systems forms the basis
of several approximation schemes for time-average, time-dependent, and peak epoch perfor-
mance measures. It is appealing because it is the easiest to compute: the basis of the method
is the closed-form expressions which exist for stationary parameter systems in steady-state.
For this reason, PSA can be used only if the arrival rate never exceeds the service rate.
Green and Kolesar [13] originally examined PSA as a long-run (time-averaged) measure.
In this case, Green and Kolesar showed empirically that PSA provides an upper-bound on
the actual performance measures, such as expected number in the system and probability
of delay. Whitt [55] showed that PSA is asyniptotically correct in the time-averaged and
time-dependent versions, as the service and arrival rates increase with the instantaneous
traffic intensity held fixed. Whitt also proved that the Average Stationary Approximation
(ASA) is also asymptotically correct under the same conditions as PSA. ASA also uses
the stationary M/M/s (and more generally M/G/s) formulae with an averaged arrival rate
over the interval [t — z, t], where z is proportional (or equal) to the mean service time. This
averaging allows ASA to be applied to systems in which the arrival rate exceeds the service
rate for short periods such that (the time-averaged) utilization does not exceed one.

Green and Kolesar extended PSA to estimate peak epoch and peak hour expected queue
lengths and expected delay, in addition to probability of delay [14, 15], in M(t)/M/s and
M(t)/G /oo systems with sinusoidal arrivals. We address the finite-server case here. In
the finite-server case, only the PSA approximation to the probability of delay exists when
the arrival rate exceeds the service rate. The PSA approximations to the expected queue
lengths and expected delay do not exist in this case. The Simple Peak Hour Approximation
(SPHA) is an extension of the PSA which uses the average arrival rate over the peak hour
to find the peak hour expected queue lengths, expected delay and probability of delay. The
SPHA was generally within 10% of the exact system measures when the service rate was
at least 2 per hour, and the peak utilization rate was less than 0.83. A service rate of 2
equals a half-hour average service time per call. This order of magnitude in the service rate
is frequently experienced in both police patrol and firefighting [14]. For larger service rates
(at least 20 per hour), SPHA gave good estimates of exact system parameters at higher
maximum utilizations.

Although extremely easy to use, the PSA does have drawbacks for the application in

which we are interested. In the finite-server case, the PSA approximation to the expected
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queue lengths and expected delay does not exist when the arrival rate exceeds the service
rate. As mentioned earlier, the infinite-server approximation is not appropriate for the
airport context. In both cases, PSA does not exhibit the time-lag between the time at
which the system utilization peaks, and the time at which other system measures, such as
expected number in the system, peaks. PSA peaks when system utilization peaks.

Rolski {41] develops approximations for time-dependent and time-average workload,
mean delay and mean qneue size for periodic M(t)/G/1 queues under equilibrium con-
ditions. He examines a sequence of Markov-modulated arrival functions which converges in
the limit to the exact periodic arrival process. Using theory developed by Regterschot and
De Smit [39] for Markov-modulated processes, Rolski states that the time-dependent, aud
mean periodic workload processes at the kt* Markov-modulated queue converge, and proves
that they converge in the limit to the exact distributions. Rolski demonstrates the accuracy
of his method for the case of periodic queues with deterministic service times. However,
it is not clear how these calculations would be performed for a more general service-time
distribution.

In conclusion, there exist exact and approximation methods for nonstationary queueing
methods. Each method has its strengths and weaknesses. There is room for development of
other approximation methods. In this research, we present new, fast and flexible practical
methods for approximating the time-dependent probability distribution for the number of
customers in nonstationary queueing systems, from which moments for the time-dependent
number in the system, and wait in the system can be calculated. The airport application
requires the probability distribution to estimate the probability that the wait in queue ex-
ceeds any specified amount of time. (This type of information is of great interest to the
airlines, their passengers, and the FAA.) One of the methods investigated in this thesis also
approximates a system with time-dependent general (non-phase-type) service-time distribu-
tions. Furthermore, we develop and test a decomposition method for networks of dynamic
single-server queues. With the exception of the marginal decomposition algorithm (MDA)
proposed by Schmeiser and Taaffe [48] and the study of the local effects of hubs on hub-
and-spoke networks by Peterson et al. {38], we know of no other methods for analyzing such

dynamic queueing networks.
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1.4 Outline of the Dissertation

This dissertation is organized as follows. Chapters 2 and 3 address approximations for a
single-server dynamic queue of great practical importance. the M(t)/Ey(t)/1 queue. This
infinite-capacity queueing system has a time-varying Poisson arrival process and a time-
varying Erlang service-time distribution. An Erlang distribution is very useful for approx-
imating certain common empirical distributions [24], such as the service times observed
at airports. Using the Chapman-Kolmogorov forward equations, the M(t)/Ej(t)/1 system
can be solved exactly by numerical techniques. Unfortunately, the time needed to solve this
system exactly can be significant, hence our interest in developing and testing fast, accurate
approximations. In Chapter 2, we will derive the five approximation methods examined in
this thesis, and, in Chapter 3, we will describe the test cases used to determine the speed
and accuracy of these approximations, and critical parameters affecting accuracy. Results
show that several of the methods yield excellent approximations in one-third to one-four
hundredths of the time it takes to solve the exact system, depending on the order of the
Erlang and other parameters. The approximations give accurate results even when demand
exceeds capacity for finite periods of time.

We investigate two new approximation methods: the State Probability Vector Approx-
imation (SPVA) and DELAYS. SPVA is the most general of the approximations: it is &
computational method for approximating M(t)/G(t)/1 systems. DELAYS was developed
by Kivestu [23] as a fast approximation to the M(t)/E(t)/1 system. For completeness, we
also investigate M(t)/M(t)/1, M(t)/D(t)/1, and INTERP [19] as approximations to the
M(t)/E /1 system. The approximations M(t)/M(t)/1 and M(t)/D(t)/1 are well known.
INTERP is a weighted combination of the M(t)/M(t)/1 and M(t)/D(t)/1 approximations,
with the weights depending on the order of the Erlang being approximated. All the methods
can approximate finite or infinite queueing-capacity systems and can be used to find tran-
sient and/or equilibrium system performance measures. They estimate the time-dependent
probability distribution for the number of customers in the system, fromn which the time-
dependent means, variances, and higher moments can be calculated, and similarly for the
wait in the system and the probability that a customer is delayed more than a threshold
value.

We will demonstrate the flexibility and accuracy of the SPVA approximation to
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M(t)/G(t)/1 systems. We test the SPVA method empirically for two general service-time
distributions. One test case has stationary service rates, the other time-varying. We also test
the SPVA approximation to the M(t)/H2/1 system. The hyperexponential distribution has
a coefficient of variation greater than or equal to one. By testing the SPVA approximation
to the M(t)/Ex/1 and M (t)/H2/1 systems, we determine SPVA's ability to approximate
queueing systems with small and large service-time coefficients of variation. Finally, we
compare the SPVA method to three SDA methods.

Chapter 4 develops a computational approach for approximating dynamic queueing net-
works. We propose a “disaggregation-aggregation” (DA) approach: analyze the individual
queues in the network independently, propagate the time-dependent congestion at individ-
ual queues to other queues in the network, update individual queue parameters, and repeat.

Therefore, the DA approach consists of two distinct parts:
1. The Queueing Engine: a model to analyze the queues in isolation.

2. The Propagation Algorithm: an algorithm to link the queues together by propagating

congestion among queues in the network.

We tesi computationally the plausibility of a DA approach by examining a tandem-queue
(two-queue, acyclic) network. The test cases we examine will be ones for which we can obtain
exact, time-dependent solutions to the problem; the exact and approximation solutions are
compared. We determine the sensitivity of the DA solution to particular system parameters
such as: the fraction of arrivals to a queue in the network which are departures from other
queues, as opposed to external arrivals; the average and maximum utilization levels at
the queues; the degree of nonstationarity in the arrival processes; and the service-time
distributions at queues in the network. We develop rules of thumb for when a DA approach
can sensibly be used to analyze dynamic queueing networks. Results indicate that a DA
approach is reasonable for modeling any network of “weakly-connected” stations.

Chapter 5 presents observations, results, and conjectures about the general behavior
of individual dynamic single-server queues with infinite waiting space. In our extensive
computational analysis of the nonstationary queueing systems, we have observed consistent
patterns of behavior across all cases examined. For example, the peak in the time-dependent
variance for the number of customers in the system occurs strictly later than the peak in

the mean number of customers in the system. Based on these types of observations, we
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will prove several results and state an additional conjecture about the general behavior of
dynamic queueing systems.

Chapter 6 summarizes the contributions of this research and indicates possibly fruitful
areas of future research.

Concern for developing models to understand and analyze complex real-world dynamic
systems motivates this research. Contributions are of both a quantitative and qualitative
nature. Quantitatively, this research develops fast, accurate approximation methods for
some dynamic queueing systems of significant practical importance. These approximations
are flexible and accurate, and it is hoped that they will be used as tools in future analy-
ses. Qualitatively, we hope that the resulting improved understanding of complex dynamic
queueing system behavior will provide rules of thumb to help planners and operators of
facilities with strongly time-dependent demand and capacity to make better facility man-

agement decisions.
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Chapter 2

Approximation Methods for
Single-Server Queues with
Nonstationary Arrivals and/or

Services

This chapter presents new approaches for analyzing single-server queueing systems with
nonstationary arrivals and/or service-time distributions. The new approaches are the State
Probability Vector Approximation (SPVA) and DELAYS, developed by Kivestu [23]. SPVA
and DELAYS are computational methods which can be used to analyze the transient or
equilibrium behavior of a queueing system. The transient behavior concerns the system
evolution from initial conditions to equilibrium. Systems with stationary arrival and ser-
vice rates as well as those with nonstationary arrival and service rates exhibit transient
behavior. One defines equilibrium behavior for systems with nonstationary arrivals or ser-
vice differently from that of systems with stationary parameters. Equilibrium behavior for
nonstationary systems is defined only in the case of stable systems with periodic arrival
functions. In these cases, the behavior of the system repeats itself every period. Bambos
and Walrand (3], Harrison and Lemoine [17], Heyman and Whitt [18], and Rolski [42, 43]
present stability conditions for queueing systems with nonstationary arrivals. A sufficient
condition for stability in a single-server queue with periodic Poisson arrival rate is that

the time-average arrival rate over the period is strictly less than the service rate. In this
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research, we assume that all the systems we examine are stable. Chapter 3 examines the
accuracy of the approximation methods for both the transient and equilibrium behavior of
queueing systems.

SPVA approximates M (t)/G(t)/1 systems. Few other methods exist which can model
dynamic systems with general service-time distributions exactly or approximately. To
our knowledge, none is as computationally efficient as SPVA. SPVA solves for the time-
dependent probability distribution for the number of customers in the system. From this
probability distribution, moments for the number in the system or waiting time in the sys-
tem can be found. We demonstrate that SPVA is a fast, flexible, and accurate method in
Chapter 3.

DELAYS approximates the M(t)/Ex(t)/1 system. It is a fast and accurate method
which solves for the probability distribution for the number of customers in the system.

This chapter describes the SPVA and DELAYS methods. We initially focus on these
methods as approximations to queueing systems with nonstationary Poisson arrival pro-
cesses and k**-order Erlang service times, i.e., M(t)/Ex(t)/1. Why do we need approxima-
tion methods for this system which, after all, can be solved exactly by numerical methods?
First, since we can solve the M(t)/Ex(t)/1 system exactly, we can compare the results
obtained through SPVA and DELAYS tc the exact values and assess the quality of the
approximations. Second, the M (t)/Ex(t)/1 system can be used to approximate a wide va-
riety of service-time distributions. Assessment of the SPVA and DELAYS approximations
to the M(t)/Ex(t)/1 systems will then give an indication of their flexibility to approximate
other queueing systems with service-time distributions having characteristics similar to the
k**-order Erlang. Third, finding the exact solution to M(t)/Ej(t)/1 system requires a sig-
nificant amount of computer memory and CPU time. It may not be practical to solve this
system exactly under some conditions, such as for large Erlang orders (memory constraints)
or if the solution to the M(t)/Ek(t)/1 system is not an end in itself but one of many steps
to a solution of a larger problem (time constraints). SPVA and DELAYS approximations
to the M(t)/Ex(t)/1 system use far less memory and CPU time than the exact solutions.

For comparison purposes, we also investigate the M(t)/M(t)/1 and and M(t)/D(t)/1
methods, and an interpolation method, INTERP, as approximations to the M(t)/Ex(t)/1
system. Koopman [26] observed that the M (t)/E(t)/1 system is “somewhere in between”
the M(t)/M(t)/1 and M(t)/D(t)/1 systems. When k = 1, the M(t)/E(t)/1 system reduces
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to ar. M(t)/M(t)/1 system, and as k — oo, it approaches asymptotically the M(t)/D(t)/1.
However, we would not expect that either the M (t)/M(t)/1 or M(t)/D(t)/1 approximations
are particularly good for 1 < k < oo.

INTERP is a linear combination of the M(t)/M(t)/1 and M(t)/D(t)/1 systems, whcre
the weight associated with each depends on the order of the Erlang being approximated.
Chapter 3 shows that INTERP provides an accurate approximation to the M(t)/FEx(t)/1
system.

In Chapter 3, we further test SPVA as an approximation to systems with nonstationary
Poisson arrivals and general service times.

This chapter is organized as follows. It begins by defining the notation used in this the-
sis. It then derives the SPVA and DELAYS methods (Sections 2.2.1 and 2.2.2) and finally
describes briefly the M(t)/Ex(t)/1, M(t)/M(t)/1, M(t)/D(t)/1 , and INTERP methods.
Detailed discussions on Markovian queueing systems can be found in many queueing text-
books, e.g., Kleinrock [24].

We note here that we model systems with infinite queueing capacity. In practice, we
must, of course, use a finite number of equations to represent the dynamic evolution of these
systems. We describe how we choose the number of equations to solve infinite queueing-

capacity systems in Chapter 3.

2.1 Notation

We introduce here the notation used in this thesis. We assume the arrival rate to the queue-
ing systems is periodic, with period T. We sometimes refer to the period as a “day,” or
“twenty-four hours.” This is consistent with the airport paradigm described in Chapter 1.
Let A(t) be the instantaneous arrival rate to the system at time ¢, let A(¢) be the cumulative
arrival rate over [0,t], and let u(t) be the instantaneous service rate at time ¢. The proba-
bility that there are j customers in the system at time ¢t will be denoted by P;(t). Let L(t)
represent the random variable for the number of customers in the system at time ¢, includ-
ing the one in service. We denote the first and second moments, the standard deviation,
and the variance for the number of customers in the system by m(t), my(t), o(t), and v(t),
respectively. Peak values (local maxima) will be denoted with asterisks; for example, m*

will denote a peak value of m(t). We let a,(7) (Yn(j)) represent the probability that there
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are j arrivals (at least j arrivals) to the system during the service time of the nt* customer.

Let Bi(z) represent the service-time cumulative distribution function (CDF) at time
t, let b(z) be its probability distribution function (pdf) and b;(t) the i** moment of the
service-time distribution, at time ¢. This implies b;(t) = ;(1;)- We let cv?(t) represent
the squared coefficient of variation, or the variance divided by the squared mean, of the
service-time distribution. We use k to represent the order of the Erlang distribution.

We let Z; represent the expected service time of the i** customer served in the queueing
system. We represent the queueing capacity of the system by c. We assume a FCFS queue

discipline for all systems and approximation inethods.

2.2 The Approximation Methods

This section describes the methods we examine in this thesis. It begins with the two new
methods, SPVA and DELAYS, and then briefly summarizes the M (t)/Ex(t)/1, M(t)/M(t)/1,
M(t)/D(t)/1 and INTERP methods.

2.2.1 The State Probability Vector Approximation (SPVA)

SPVA is an M/G/1-like approximation to dynamic queveing systems developed by the
author. It is the most general of the approximation methods examined in this research
in tha! it makes no assumption about the particular form of the service-time distribution.
That is, it can be used as a fast approximation for queueing systems with time-varying
Poisson arrivals and general service-time distributions.

Standard analysis of an M/G/1 system, as described, e.g., in Kleinrock [24], uses the
imbedded Markov Chain at customer departure epochs. The key to this approach is that
the number of arrivals to the system during a customer’s service time is independent of the
customer currently in service. If we allow the arrival rate to vary with time, one must know
the time at which the n'® departure occurs in order to calculate the number of arrivals
during the (n + 1)* service time. This added complexity causes the elegant analysis of the
standard M/G/1 analysis to fail.

SPVA overcomes this problem by assuming that customer departures occur at tg, ¢, ¢3, . . .,
which we call the customer pseudo-departure epochs. This assumption is the key to the
SPVA approach. The definition of t, provides a link between departure epochs and the

40



“real” time clock. As a result, the arrival rate of customers immediately after the n'*
pscudo-departure epoch is set equal to: A(¢,). We can then write the state probability
equations for SPVA. The equations assume the imbedded Markov-chain is defined at cus-
tomer pseudo-departure epochs. These equations look exactly like the equations of the
M/G/1 system.
J+1
Pi(ta+1) = Poltn)ans1(5) + Y Filtn)ann1 (G —i+1), §=0,1,2,...,c =1 (21)

=1

Pltns1) = Polta)Tnsa(d) + 3 Pilta)Tasalc—i+1) (22)

=1

Given initial conditions for the system at time tp, we can compute the state probability
vector for any customer pseudo-departure epoch.

We define the nt* customer pseudo-departure epoch as the sum of the first n expected
service times, multiplied by a constant 8 > 0. If the service rate does not vary with time,

t, = BnT. If the service rate varies with time,

wes(5). e
i=1
where ; is the expected service time of the i** customer. We use the service rate immedi-
ately after the (i — 1)** customer pseudo-departure epoch to find Z;. That is, Z; = IT(t%-ﬁ’
where t;_, is defined as in (2.3), and o = 0. § is a constant which we initially set to one.
We test the effect of varying 5 on the accuracy of the SPVA method in Section 3.6.4.
Although SPVA assumes t,, depends only on the first moment of the service-time distri-
bution, SPVA uses the entire service-time distribution in the calculation of ay41(5). The
derivation of ap41 (j, for the SPVA Method is similar to the derivation of an+1(j) in the

M/G/1 system, except that we have an explicit dependence on time.

ons1(j) = P(j arrivals during the service time of the (n + 1)* customer)
= z: P(j arrivals in z time units, starting at time t,| service time = z) -
) P(service time = z) (2.4)
- /::o (A(t;!)-zy e~Ntn)zgB, (z) (2.5)
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Details on how to calculate A(t;) appear in Appendix B. In many cases, closed-form ex-
pressions for a,,1{j) exist, as shown ir Appendix A. In the case of the k*-order Erlang

distribution, for example,

k=145 | (kp(ta))[Mta)P

an+1(j) = i (ku(t,) + ,\(tn))k+j

In the case that p(t,) = 0 or A(¢,) = O for some t,, we define 41 (j) in the obvious way.
For example, if u(t) = 0 for t € [t,, T), no customers may depart in t € [t,, 7), but custor..ers
may arrive during this interval. Define ¢,,, = 7. Then, an+1(j) is the probability that j
arrivals occur in the interval [t,,tn+1], where the arrival process is nonstationary Poisson.

That is,

o\

ant+1(j) = P(j arrivals in [t,4+1 — t,] time units)

[A(tn+1) — A(ta))’ o~ [Altn+1)=A(t)]

J! '
where A(t) is the cumulative arrival rate in (0,¢). In this case, we simply calculate the
cumulative arrival rate during the period when no customers may depart. Conversely, if
A(t) = 0 for t € [tn,7), then no customers may arrive during this interval. Again, let

tn+1 = T, and define

) 1, ifj=0
an+l(.7 ) = .
0, otherwise

Does PASTA! hold for the SPVA Method? One important assumption for PASTA to
hold is the “Lack of Anticipation Assumption (LAA).” Intuitively, the LAA requires that
future arrivals be independent of the current state of the system. Under the same set of
assumptions, PASTA holds for M(t)/G/1 systems [56] as well. In this case, Poisson arrivals
see the systemn time averages over the period. Furthermore, a transient version of PASTA
holds for arrivals to M (t)/G/1 systems. In this case, the probability that the system is in
state 7 at time ¢ given at least one arrival occurs in (¢ + At) is the same as the probability
that the system is in state 7 at time £. However, Mourtzinou showed that the probability

that the system is in state 7 at time ¢ immediately after a departure occurs is not the same

!PASTA = Poisson Arrivals See Time Averages. See Wolff [56] or Kleinrock [24).

42



as the probability that the system is in state ¢ at time ¢ [32]. Since the SPVA Method
observes the system at customer pseudo-departure epochs, PASTA does not hold.

We do expect, however, that SPVA, a method which focuses on describing the time-
dependent number in the system by looking at customer departure epochs, will be accurate
for a system which is “relatively busy” and has frequent departures. Assuming departures
occur “frequently enough,” we expect that the distribution for the number of customers in
the system at departure epochs will be close to the time-dependent number of customers in
the system. In contrast, we expect SPVA will be less accurate for a system which is “essen-
tially empty.” Such systems have few arrivals, hence few departures, and few opportunities
to observe the system. We expect that the number in the system which departures observe
on average will be less representative of the actual time-dependent distribution for the num-
ber in the system as the system becomes less busy. But when the system is relatively busy,
the impact of looking at customer pseudo-departure epochs, instead of pure time averages,

is not critical from a practical point of view.

2.2.2 DELAYS

Kivestu [23] developed an approximation he called DELAYS for the M(t)/E(t)/1 system.
It is based on a set of difference equations very similar to those solved in the M (t)/D(t)/1
system except that the epochs at which the state probability vector is solved are chosen
differently. The epochs are based on time constants from the transient analysis of stationary
queueing systems. For many stationary queueing systems, the rate at which a queue con-
verges to its steady-state characteristics eventually becomes dominated by an exponential
term [35]. The time constant we refer to appears in the exponent of the exponential term.
The time constant can be used to determine how quickly the system responds to a step
function. Therefore, a time-varying arrival process is viewed in this approach as the sum
of many step functions. The sum of the responses to each of these step functions describes
the dynamic behavior of the system as it evolves over time.

The key concept of DELAYS is the definition of the departure epochs. The DELAYS
epochs are the same as those of the M(t)/D(t)/1 system multiplied by a constant, r. That

is, the epochs are to,1,12,..., where t; = 1'2'};1 T;. To find r, Kivestu took the ratio of
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the time constants of the M/E;/1 and M/D/1 systems,

_™/E1 _k+1

T™/D)1 k-’

T (2.6)

where Tp/g/1 = u—_"fgl—)—z- is a time constant for the M/G/1 system found using the diffusion
approximation [23, 25]. Reasoning that it takes m time units for the M(t)/Ex(t)/1
system to respond to input which the M(t)/D(t)/1 system responds to in R:_J time units,

Kivestu chose
k+1 S
ta="T13"7,
k =1

We use the service rate immediately after the (i — 1)*¢ customer departure epoch to find
T;. That is, T; = E(t'.l__J Note that when k = 1, then r = 2. On the other hand, as
k — 00, limg 00 (tnt1 — tn) = limig_y00 ﬁ&; = ’;T(:'..T Therefore, the time step in DELAYS
is bounded above and below; as k ranges from 1 to oo, by

1 2
w(en) < (tp41—1tp) < OOk

In DELAYS, the probability of j arrivals in "kifnﬂ units of time, a,+1(7), is calculated
using the length of the expected service time, ;675, not the actual time increment, %?‘t—b
That is,

(,\tn )j )

#(tn

The difference equations to be solved at each time epoch are:
j+1
Pj(tn+l) = PO(tn)arH-l(j) + Z Pi(tn)an-i—l(j -1+ l)a .7 = 01 1a2’ ey C— 1

1=1

Pe(tn+1) = Poltn)Tns1(c) + Z Fi(ta)Tntr(c~i+1)

i=1
Given initial conditions for the system at time ty, we can compute the state probability
vector for epoch t,.
DELAYS expects kiH-A(T) arrivals over the interval [0, T]. This expectation differs from
the expected number of arrivals to the M(t)/E;/1 system over the interval by the factor

"—‘kﬂ. Therefore, DELAYS corrects the calculation for the expected number in the system
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Family of Erlang Probability Density Functions

Figure 2-1: Family of Erlang Probability Density Functions

by multiplying by the factor 'ifl Analogously, to correct the i® moment for the number
in the system, DELAYS multiplies by the factor (Lt—l-)'

2.2.3 The M(t)/Eg(t)/1 System and Its Wide Applicability

The Erlang distribution has two parameters, k € {1,2,...} and u(t) > 0. One can write
the probability density function (pdf) for the k**-order Erlang in two ways (see Kleinrock
[24] and Drake [10]). We use the Kleinrock convention. The probability density function,

mean, and variance of the k*#-order Erlang are:

(kp(t))kxk'le'k“(‘)’

bt(x) = (k _ 1)! ' T 2 0
E(b) = o)
2 1

The Erlang distribution can be used to approximate a wide variety of service-time distri-
butions {24]. Figure 2-1 shows the probability distributions for Erlangs of different orders
with the same mean. Momentarily disregarding the time-dependence subscripts, if we have
sufficient data to obtain estimates of the actual mean, T, and variance, 02, of a service

process, then we can find u and k for an Erlang distribution to approximate the actual
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service-time distribution as follows: Let int(y) = the integer nearest to y. Then,

1
. (2.7)

i&;lf =0l = k=int ((—E-‘E)E) (2.8)
If we rewrite equation (2.8) as 02/(Z.)? = 1/k, we see that the squared coefficient of
variation of the kt*-order Erlang distribution is less than or equal to one.

The kt*-order Erlang is the sum of k independently, identically distributed (iid) exponen-
tial random variables. This special property allows one to write a Markovian representation
of the M (t)/Ex(t)/1 queueing system, where the states of the system represent the number
of stages of service yet to be completed. In this case, the server provides each customer
with k exponential stages of service, and may serve only one customer at a time. Each
arrival to the system brings k stages of required service. n customers in the system at time
t, with the customer currently in service having ¢ < k stages of service yet to complete,
corresponds to a total of (n — 1)k + ¢ stages of service yet to complete in the system. This
relationship allows us to convert from the probability distribution for the number of stages
of service in the system to the number of customers in the system at time ¢t as follows. Let
PE(t) denote the probability that there are i stages of service in the Erlang system at time

t. Then,

Pyt) = Fy(t)
jk
Pi(t) = Y PE@),i=1,2...,c
i=(j—1)k+1

Figure 2-2 shows a Markovian system with a Poisson arrival process and third-order Erlang
service-time distribution. This figure shows that upward transitions in the state space
jump by three, due to the fact that each arrival brings three stages of required service.
The downward transitions represent service completions. A customer actually departs the
queue after receiving three “stages of service.” Downward transitions from states 1, 4, 7,
etc., represent customers who physically depart the system.

The Chapman-Kolmogorov (CK) forward equations for the M(t)/Ex(t)/1/kc system
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Figure 2-2: State-Transition-Rate Diagram for M(t)/E3(t)/1

=A()Po(t) + (ku(t)) Pr(t)

—(A@®) + p@)Pi(t) + (ku() Pisa(t), 1<i<k

F{(t) = X&)Pik(t) — (Mt) + kp(t))Pi(t) + (ku(t)) Pipr(t), k<i<(c—1)k
P{(t) = X&)Pi—k(t) + (ku(t))(Pirr(t) — Fi(t)), (c—1k<i<ke—1

Pie(t) = At)Pie-1)(t) — kp(t)Pic(t))

Fy(t)
Pi(t)

Thus, in order to represent an M(t)/E(t)/1 system with capacity for ¢ customers, kc+1
states (and CK equations) are needed.

2.2.4 M(t)/M/1 Queueing System

Another possible way to approximate an M(t)/Ex(t)/1 system is by solving the equations
of an M(t)/M(t'/! system. The approximation becomes an exact method when k = 1.
We solve the following standard CK equations, representing the number of customers

in the system, for the M (t)/M(t)/1/c system:

Py(t) = —A(t)Po(t) + pu(t)Pi(t)
P{(t) = At)Pi-1(t) — (A(2) + p(®))Pi(t) + p(t)Pisa(t), 1 <i<c—1
P(t) = A2)Pe-1(t) — p(t)Pe(t)

2.2.5 M(t)/D(t)/1 Queueing System

As the Erlang order k approaches infinity, the Erlang distribution becomes a unit-impulse
function at z = ;(135, the mean of the Erlang distribution [24]. Another possible way

to approximate an M(t)/Eg(t)/1 system is by solving the eqnations of an M(t)/D(t)/1
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system.
We solve the difference equations for the M(t)/D(t)/1 system at epochs tg,t,12s,...,

where

We use the service rate immediately after the (i—1)* epoch to find Z;. That is, 7; = MO
The states of the system represent the number of customers in the system. The equations
for the state probability vector at time ¢, are:
j+1
Pi(tat1) = Po(ta)ans1(d) + Y Pilta)anni(i—i+1), =0,1,2,...,c—1

=1

Ptast) = Poltn)Yusr(e)+ 32 Pilta)Cnsale— i + 1),

i=1

A
where an+1(j) = M Given initial conditions for the system at time ¢y, we can
compute the state probability vector for any epoch. We note that solving the above set of
equations does not give the exact solution for the time-dependent probability distribution
for the number in an M(t)/D(t)/1 system. This is because we observe the system at

particular epochs.

2.2.6 INTERP: The Interpolation Method

The interpolation method, INTERP, is based on Koopman’s observation [26] that the Er-
lang distribution is “somewhere between” an exponential and a deterministic distribution.
INTERP uses a linear combination of the state probability vectors for the M(t)/M(t)/1
and M(t)/D(t)/1 to approximate the state probability vector for an M(t)/Ey(t)/1 sys-
tem. Hence, INTERP is an approximation method to the M (t)/Ex(t)/1 system which uses
another approximation, M(t)/D(t)/1.

We define the state probability vector for the number of customers in the system for

INTERP as:
k-1

1
P{(t) = EP,-M(t) +—

PP(t) (2.9)

where the I, M, and D superscripts represent the INTERP, M (t)/M(t)/1 and M (t)/D(t)/1
systems, respectively. This weighting scheme has been used by Horangic [19]. Note that
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for the case of a stationary M/E} /1 system in equilibrinm, INTERP is exact for k = 1 and
k — oo, as discussed in Sections 2.2.4 and 2.2.5.

Based on the definition in (2.9), the moments for the number of customers in the sys-
tem are also linear combinations of the moments for the M(t)/M(t)/1 and M(t)/D(t)/1

approximations. The i** moment of the number in the system at time ¢, m;(t), is:

2.3 Summary

In this chapter, we introduced new computational methods for approximate analysis of
nonstationary single-server queues. These methods are the State Probability Vector Ap-
proximation (SPVA), developed by this author, and DELAYS, developed by Kivestu [23].
We also described an interpolation method, INTERP, which is a linear combination of the
M(t)/M(t)/1 and M(t)/D(t)/1 systems (26, 19] as well as the M(t)/Ex(t)/1, M(t)/M(t)/1
and M(t)/D(t)/1 systems. SPVA is the most general of the methods discussed; it approxi-
mates M(t)/G(t)/1 systems. DELAYS and INTERP approximate M(t)/Eg(t)/1 systems.
All methods can model the transient and equilibrium behavior of these systems and calculate

the time-dependent probability distribution for the number of customers in the system.
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Chapter 3

Computational Experiments,
Results and Comparisons for
Dynamic Single-Server Queueing

Systems

In this chapter, we determine the quality of new approximation methods for queueing
systems with nonstationary arrival and/or service rates. The new methods we investigate
are SPVA and DELAYS, derived in Chapter 2. SPVA approximates M (t)/G(t)/1 systems.
DELAYS approximates M(t)/Ey/1 systems. We also investigate the M(t)/M(t)/1 and
M(t)/D(t)/1 systems, and INTERP, which is a linear combination of the M(t)/M(t)/1
and M(t)/D(t)/1 systems.

We initially examine the accuracy of the approximations to M(t)/Eg(t)/1 systems. We
test 76 cases ranging from moderately- to heavily-utilized systems. Each case is a combina-
tion of five system parameters, which we define in Section 3.3. We define measures of ap-
proximation quality in Section 3.1. Based on the quality measures, we identify combinations
of parameters for which the approximation methods give good estimates of M(t)/E;(t)/1
system measures.

The 76 test cases involve time-varying arrival rates but stationary service rates. In this
way, we gain valuable insights into the behavior of systems with time-varying arrivals. Based

on these initial 76 tests, we identify the most promising approximation methods. We test
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these further in Section 3.5. The additional case we test has both a time-varying arrival
and service rate. It is based on the airport paradigm discussed in Chapter 1. We show
empirically that the new approximation methods investigated in this research are accurate
for systems with time-varying arrival and service rates.

We further test the SPVA approximation for other service-time distributions in Sec-
tion 3.6. Section 3.6.1 presents SPVA approximation results for M(t)/G(t)/1 systerns. We
test the SPVA method empirically for two general service-time distributions. One test case
has stationary service rates, the other time-varying. In both cases, the arrival rate varies
with time. In both cases, SPVA gives good results. In Section 3.6.2, we test the SPVA ap-
proximation to the M(t)/H;/1 systemn. The hyperexponential distribution has a coefficient
of variation greater than one. By testing the SPVA approximation to the M(t)/Ex/1 and
M(t)/Hy/1 systems, we determine SPVA’s ability to approximate queueing systems with
small and large service-time coefficients of variation. Section 3.6.2 contains results of test
cases with moderate and high service-time coeificient of variation.

We compare the SPVA method with the fast and flexible SDA methods in Section 3.6.3.
Descriptions of the SDA methods appear in Section 1.3. The SDA methods apply to systems
with phase-type arrival and service processes. They have been shown to give good estimates
of the time-dependent mean and variance of the number of customers in the system. We
compare SPVA and SDA quality for M(t)/M(t)/1 systems.

Finally, we assess the effect of 8, a constant used in the SPVA method, on SPVA
accuracy, in Section 3.6.4.

This chapter begins with the description of accuracy measures used to assess the ap-

proximation methods.

3.1 Measures of Quality

We assess the approximation methods by their speed and accuracy. We measure speed
by CPU time. We assess accuracy by comparing approximation estimates of the system
measures to the exact values. We first describe accuracy, then speed measures.

An approximation estimate of a system measure is “good” if it is within 5% of the
exact measure. Two measures which interest us are the time-dependent mean, m(t), and

standard deviation, o(t), for the number in the system. Comparison of the time-dependent

52



measures allows us to determine how accurate the approximation estimates are, point-by-
point in time. We measure accuracy for m(t) and o(t) using the Weighted Percentage Error

(WPE), which we define as

Tl |mP() - mAw)|

100.0
2{:1 mE (tt)

WPE of mean =

where mE(t;) and mA(t;) are the exact and approximation values at time ¢;. I is the number
of times we collect statistics over an interval of time. For example, the interval could be
a day, and I could be the 24 statistics collected once an hour over the day. We define a
similar measure for o(t), WPE of 0. The WPE has the following desirable properties. It

provides

1. a summary statistic which indicates the quality of the approximation estimates of
m(t) and o(t) for each test case,

2. a weighted measure in which errors which occur at high values of system measures

receive more weight than at low values of system measures, and

3. a measure which can be used to assess transient and equilibrium approximation qual-
ity.
Physically, WPE represents the area between the exact and approximation curves as a
percentage of the total area under the exact curve.

WPE can measure either transient or equilibrium approximation quality. To assess
approximation of transient behavior, we start to measure the WPE at time 0. We set
to = 0 and select the desired end of the interval of comparison. To assess the approximation
of equilibrium behavior, we let the systems run until m(t) and o(t) are ne more than 2%

apart over two consecutive periods. That is, until

m(t) -m(t—-T)
m() l <0.02 (3.1)
and
o(t)y—o(t-T)
I Y <0.02 (3.2)

The two conditions must apply for an entire period T in order to meet our standard for

equilibrium. This is the same type of standard as suggested by Rothkopf and Oren [46].
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Once we find a value of ¢, say tp, satisfying conditions (3.1) and (3.2), we assume the
conditions hold for all ¢ > .

We also examine plots of m(t) and o(t) over time. These graphs show, for example,
whether an approximation method consistently overestimates m(t) as A(t) increases. This
information will be valuable in interpreting the approximation measures in the future.

We are also interested in the accuracy of the estimates of the peak expected number of
customers in the system, m*, and peak standard deviation for the number in the system, o*.
By “peak,” we mean the maximum values of m(t) and o(t) achieved over period. We use
Relative Error (RE) to assess approximation estimates of peak values. RE is the percentage
difference from the exact value:

As _ . Ex
RE of m‘ = 1n7n—E:Tl x 100.0.

mEP* and mA* are the exact and approximation peak expected number in system, respec-
tively. We define a similar measure for the RE of o*.

We examine approximation estimates of the probability distribution for the number of
customers in the system. This distribution varies with time, so we choose two points in
time at which to examine the estimates: the times at which m* and o* are achieved.

We now discuss the other measure of approximation quality, speed. We use one of two
methods to measure CPU time. We measure CPU time using the UNIX operating system
profiler, gprof, in the stationary service rate cases. gprof gives the CPU time used by each
function called during a process. If several processes are run from a single batch file, the
gprof output shows the cumulative CPU time used by each function over all the processes.
This is a drawback because we would like to have separate CPU times for each function for
cach case. Fortunately, this only affects SPVA and DELAYS. In these cases, we divide the
CPU times given by gprof equally over the processes.

When using gprof, routines common to two functions also present difficulties. gprof
does not allocate the CPU time of routines used by two or more functions. For example,
gprof does not allocate the CPU time of the common Visual Numerics C/Math/Library
functions to either M(t)/E(t)/1 or M(t)/M(t)/1, the users of these functions. Therefore,
the CPU times listed for the M(t)/Ex(t)/1 and M(t)/M(t)/1 systems include only the

time used solving the actual differential equations, which are unique to each. There are two
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iwstances in which a batch file contains a single case: Cases 6 and 32. In these instances,
gprof gives the exact CPU time needed to solve the M (t)/E,(t)/1 system.

For the M(t)/H5/1 tests and the network analyses of Chapter 4, we use the Visual
Numerics C/math/Library utility imsl_ctime to measure CPU time. imsl_ctime gives
precise estimates of CPU time for eack function, regardless of the number of cases contained

in a single batch file, or whether the functions use common routines.

3.2 Implementation Details

This section describes the computer hardware and software and solution methods used in

the computational tests.

3.2.1 Computer Hardware and Software

All computational tests are run on a SUN SPARCstation 10 Model 41. We use the
Visual Numerics C/Math/Library ordinary differential equation (ODE) solver to solve
the Chapman-Kolmogorov forward (CK) equations of the M (t)/Ex(t)/1, M(t)/M/1 and
M (t)/H/1 systems, in double precision. This function solves the ODE'’s using the Runge-
Kutta-Verner fifth-order and sixth-order method, with a global error tolerance of 10~¢ per
call to the ODE solver. All other computer programs for the approximation methods and
the CK equations were written by this author in the C programming language.

3.2.2 Solution Methods

In this section, we describe the implementation of the methods discussed in Chapter 2. Since
the states of the queueing systems represent probabilities, we have the following boundary
conditions which hold at all points in time: the probabilities are nonnegative and sum
to 1.0. Taaffe {49] experimentally found that the accuracy of the Runge-Kutta numerical
integration of the CK equations for an M/M/1/K queueing system improved noticeably
by normalizing the probabilities after each step taken by the algorithm. That is, P,(t) =
E;E'—‘;(g—(t—). Therefore, in this research, we normalize the solution of the M(t)/Ex(t)/1 and
M(t)/M(t)/1 systems after each algorithm step. We also normalize the SPVA, DELAYS,
and M (t)/D(t)/1 state probability vectors.

In this research, we approximate M(t)/Ex(t)/1 systems with infinite queueing-capacity
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systems. In practice, we must solve a finite number of equations. Therefore, we must choose
the maximum size of the state probability vectors such that the probability of having a
greater number of customers in the system is very smail. We do this as follows. After
each step in the algorithm, we calculate the cumulative probability up to and including the
maximum state. We check that this probability is at least as great as n = 0.999999. We also
require the probability mass in the maximum index state to be not “too big,” namely, that
it is smaller than e = 1078, similar to the approach in [45] and [14]. If either of these two
conditions does not hold, we increase the maximum size of the vector used to store the state
probabilities and resolve. The data structures used to store the SPVA, DELAYS, INTERP,
M(t)/M(t)/1 and M (t)/D(t)/1 state probability vectors for a particular test case are all of
the same size. As mentioned in Section 2.2.3, the size of the M(t)/Ex(t)/1 data structure
is k times as large as the other methods.

When we test the SPVA approximation to the M(t)/Hz/1 system, we fix the queue-
ing capacities. We note that these capacities do not meet our infinite queneing-capacity
standard in some cases. However, the queueing capacities chosen are large from a practical
point of view (600, 1200, and 2000).

To speed up the methods, we take advantage of the periodic utilization function by
varying the aumber of equations to be solved at each iteration. Let Kpax(t) be the smallest
state index at time ¢ such that Pk, (t) <c, }:ﬁ'(‘)“ Pj(t) > n and Pk, (t) > €. After the
next iteration, the srallest state index at time ¢ 4- 7 meeting the above criteria is found as

follows:

Knax(t+7) =min{i|0 <i<¢, Pi(t+7) 2k, il’,-(t + At) > n}
j=0

Once Knmax(t + 7) is found, the state probability vector is normalized. This approach
succeeds in solving the SPVA, DELAYS, and M(t)/D(t)/1 methods. However, when we
apply this method to the M(t)/M(t)/1 and M(t)/Ek(t)/1 systems, they become unstable
in heavily-loaded cases. Therefore, we keep the number of equations constant in solving the
M(t)/Ex(t)/1, M(t)/M(t)/1, and M(t)/H2/1 systems, and vary the number of equaticns
in SPVA, DELAYS, and M (t)/D(t)/1 methods.
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3.3 Parameter Definition

In contrast to queueing systems with stationary parameters in equilibrium, there are ad-
ditional important parameters which account for behavior of queueing systems with non-
stationary arrival and/or service rates. See, for example, Eick et al. [11] and Green et al.
[16]. The important parameters are average and maximum system utilization, degree of
nonstationarity in the utilization rate, event frequency, and the number of servers. Our re-
search concerns single-server systems. so the last parameter is always one. For single-server
systems, average “system utilization” and “traffic intensity” are equivalent. We use the
term “system utilization.” We now define the four remaining parameters.

We use p and ppax to represent the average and maximum system utilization, respec-
tively, over the period of interest. We define the time-average system utilization to be:

1 (T 1 (T At
p=7z » p(t)dt = 7 ;%dt.

Maximum utilization is the maximum instantaneous utilization over the period of analysis.
That is [16],

Pmax = oréltang{p(t)}-

Green et al. [16] found that systems with pmax < 1 and pmax > 1 behave differently.
Therefore, we include test cases with ppax < 1 and ppax > 1.

The “degree of nonstationarity” of a queueing system with time-varying arrival and/or
service rates is not a well-defined concept. Green et al. [16] use a definition which is sensible
for queueing systems with a stationary service rate and sinusoidal Poisson arrival process.
In this case, they reason that the larger the amplitude of the sine function, the greater
the nonstationarity of the process. We extend this idea to systems in which the service
rate varies with time, and the arrival rate is not necessarily sinusoidal. It describes by how

much the maximum utilization exceeds the average utilization over the period. We define

the degree of nonstationarity, Relative Amplitude (RA) [16], to be:

RA = Pma:T"P (3.3)

Green et al.’s definition of nonstationarity is a special case of (3.3).

Event frequency is the number of events (arrivals or departures) per cycle. Green et
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al. [16] showed that event frequency has an effect on queueing systems with nonstationary
arrivals and/or departures. We examine two levels of event frequency, high and moderate.

In addition to the four key parameters listed above, we also use the squared coefficient
of variation as a parameter. In Sections 3.4.1 and 3.4.2, the squared coefficient of variation
is %, where k is the order of the Erlang. We also define our average arrival rate over the
period, X, such that X = L [T A(t)dt.

Note that the parameters are not independent of each other. For example, RA and p
determine pmax. If p£(t) = p, then i and 5 determine X. The four independent parameters,

P, 11, RA and cv?, determine the others.

3.4 Computational Tests and Results for Approximations

to M(t)/Ex/1 Systems

This section describes the test cases and presents results for approximations to the M (t)/Ej/1
system. We first present the stationary service rate cases in Section 3.4.1. We discuss the
quality of the approximations in Section 3.4.2. We identify under what conditions the ap-
proximation methods give gocd estimates of m(t), o(t), m* and o*. Finally, we identify the

best approximations, based on speed and accuracy.

3.4.1 Stationary Service Rate Test Cases

In the initial 76 test cases we examine, we keep the service rate stationary in order to gain
insights into the complex behavior of queueing systems with nonstationary arrivals. For
simplicity, we use a sinusoidal Poisson arrival process with amplitude A, similar to Green
et al. [16]. The test cases are combinations of the following parameter values, covering

moderate to heavy system utilization levels.

e Poisson Arrival Function: A(t) = X + Asin (22—’;5) . Since A(t) > 0, we restrict A to be
0 < A < X. Note that A(t) is a smooth differentiable function with one peak over each

period.

e Average Utilization (p) ranges from moderately- to heavily-loaded systems: 0.5, 0.7,
0.75, 0.9

e Maximum Utilization: 0.67 < pnax < 1.8. In 60 of the 76 cases, pmax = 1
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o Degree of Nonstationarity: RA = %, %, 1. In the case of our sinusoidal arrival function,

RA= §. Note that 0 < RA < 1 in this case.

Event Frequency: high and moderate: p = 100,10. We note here that the number of

services per hour at busy airports is on the order of one hundred.

e Erlang orders: k = 1,3,6,10. This range covers the squared coefficient of variation of

service times typically observed at busy US airports.

Tables 3.1 and 3.2 list the parameters for each test case, along with an assigned case
number. In the following discussion, we will refer to cases by their case numbers for conve-

nience.

3.4.2 Stationary Service Rate Results

This section begins with an overview of the computational results for stationary service rate
cases. We examine the approximations once all methods reach equilibrium. We present the
CPU times, and compare estimates of m(t), o(t), m* and o*, as well as of the probability
distributions for the number in system. We then assess each approximation method in
detail, focusing on the SPVA, DELAYS and INTERP methods. We identify conditions for
which the methods give good results.

Tables 3.3 and 3.4 show the CPU times for 61 of the 76 cases analyzed. We did not
record CPU times for 15 of the initial test cases. Because one must solve the M (t)/M/1
and M(t)/D/1 systems to solve INTERP, the INTERP CPU times are the sum of of the
CPU times of these two systems. The differences in CPU times among the methods are
dramatic. DELAYS is consistently the fastest method, followed by M(t)/D/1 and SPVA.
The M(t)/M/1 and INTERP methods use at least 4 to 14 times as much CPU time as
SPVA does. M(t)/Ex/1 needs between three and five hundred times as much CPU time to
be solved. The amount of time needed to solve the M(t)/Ejy/1 system increases nonlinearly
with k, event frequency, and system utilization. Why? Recall that kc + 1 equations are
needed to represent the M(t)/E(t)/1 with queueing capacity c. Therefore, the number of
equations grows linearly with k. The nonlinear growth in CPU time is introduced by the
fact that the service rates in the M(t)/Ey(t)/1/kc system are multiplied by a factor of k,
causing the ODE solver to take smaller time steps at each iteration. High event frequency
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Case | 5 | pmax | RA | Erlang Order | Event Frequency ||
1 0.5 | 0.67 | 0.33 10 100
2 0.5 | 0.67 | 0.33 1 100
3 0.5 | 0.67 | 0.33 3 100
4 0.5 | 0.67 | 0.33 6 100
5 0.5 | 0.83 | 0.67 10 100
6 0.5 | 0.83 | 0.67 1 100
7 0.5 | 0.83 | 0.67 3 100
8 0.5 | 0.83 | 0.67 6 100
9 0.5 1 1 10 100
10 | 0.5 1 1 1 100
1 | 05 1 1 3 100
12 0.5 1 1 6 100
13 0.5 { 0.67 { 0.33 10 10
14 | 0.5 | 0.67 | 0.33 1 10
15 | 0.5 | 0.67 | 0.33 3 10
16 | 0.5 | 0.67 | 0.33 6 10
17 | 0.5 | 0.83 | 0.67 10 10
18 | 0.5 | 0.83 | 0.67 1 10
19 | 0.5 | 0.83 | 0.67 3 10
20 | 0.5 | 0.83 | 0.67 6 10
21 0.5 1 1 10 10
22 0.5 1 1 1 10
23 | 05 1 1 3 10
24 0.5 1 1 6 10
25 | 0.75 1 0.33 10 100
26 1075 1 |0.33 1 100
27 {075 1 |0.33 3 100
28 | 0.75 1 0.33 5 100
29 |[0.75 | 1.25 | 0.67 10 100
30 |[0.75 | 1.25 | 0.67 1 100
31 | 0.75 | 1.25 | 0.67 3 100
32 1075 1.25 | 0.67 6 100
33 {075 | 1.5 1 10 100
34 {075 1.5 1 1 100
3 075 1.5 1 3 100
36 [0.75| 1.5 1 6 100

Table 3.1: Test Case Parameters for Approximations to M(t)/Ek/1 Systems, Cases 1-36
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Case | P | Pmax | RA | Erlang Order | Event Frequency
37 1075 1 ]0.33 10 10
38 1075 1 |[0.33 1 10
39 1075 1 |0.33 3 10
40 1075 1 [033 6 10
41 | 0.75 | 1.25 | 0.67 10 10
42 10.75 | 1.25 | 0.67 1 10
43 | 0.75 | 1.25 | 0.67 3 10
44 {0.75 | 1.25 | 0.67 6 10
45 [0.75] 1.5 1 10 10
46 |0.75] 1.5 1 1 10
47 10.75| 1.5 1 3 10
48 10.75| 1.5 1 6 10
49 | 0.7 | 14 1 10 10
50 | 0.7 | 14 1 1 10
51 | 0.7 | 1.4 1 3 10
52 1 0.7 | 14 1 6 10
53 [ 09 | 1.2 |0.33 10 100
54 | 09 | 1.2 | 0.33 1 100
55 | 09 | 1.2 |0.33 3 100
5 | 09 | 1.2 |0.33 6 100
57 | 09 | 1.5 | 0.67 10 100
58 | 09 | 1.5 | 0.67 1 100
59 | 09 | 1.5 | 0.67 3 100
60 | 09 | 1.5 | 0.67 6 100
61 | 09 | 1.8 1 10 100
62 | 09 | 1.8 1 1 100
63 | 09 | 18 1 3 100
64 | 09 | 1.8 1 6 100
65 | 09 | 1.2 |0.33 10 10
66 [ 09 | 1.2 | 0.33 1 10
67 | 09 [ 1.2 | 0.33 3 10
68 | 09 | 1.2 {0.33 6 10
69 | 09 | 1.5 | 0.67 10 10
70 [ 09 | 1.5 | 0.67 1 10
71 | 09 | 1.5 | 0.67 3 10
72 1 09 | 1.5 |0.67 6 10
73 |1 09 | 1.8 1 10 10
74 [ 09 | 18 1 1 10
75 [ 09 | 18 1 3 10
76 | 09 | 18 1 6 10

Table 3.2: Test Case Parameters for Approximations to M(t)/Ey/1 Systems, Cases 37-76
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Case | M(t)/E,/1 | DELAYS | SPVA | INTERP | M(t)/M/1T | M(¢)/D/1
6 60.8] 97| 111 - = 12.2
9 1,158.3 25| 41 25.9 213 46
10 23.3 25| 41 25.9 21.3 46
11 129.8 25| 41 25.9 21.3 46
12 510.1 25| 41 25.9 21.3 4.6
13 39.2 01| 01 0.8 0.7 0.1
14 0.9 01| o1 0.3 0.7 0.1
15 3.7 01| o1 0.8 0.7 0.1
16 1.7 01| 01 0.8 0.7 0.1
17 89.6 02| 02 3.1 2.9 0.2
18 2.8 02| 02 3.1 2.9 0.2
19 9.5 02| 02 3.1 2.9 0.2
20 31.0 02| 02 3.1 2.9 0.2
21 210.1 03| 05 6.4 5.9 0.5
22 6.1 03| 05 6.4 5.9 0.5
23 25.6 03| 05 6.4 5.9 0.5
24 76.6 03| 05 6.4 5.9 0.5
% 2,666.0 a7 7 52.0 442 7.8
26 48.3 47| 17 52.0 4.2 7.8
27 208.6 a7 17 52.0 442 78
28 1,111.8 47| 7.7 52.0 442 7.8
29 2,548.0 73| 135 54.5 44.0 10.5
30 50.0 73| 135 545 44.0 10.5
31 294.0 73| 135 54.5 44.0 10.5
32 814.61 23| 41 = - 3.9
33 4,226.5 165 | 27.8 123.4 98.7 24.7
34 106.8 165 | 27.8 123.4 98.7 24.7
35 609.3 165 | 27.8 1234 98.7 24.7
36 1817.3 165 | 27.8 123.4 98.7 24.7

Table 3.3: CPU Times on SUN SPARCStation 10 Model 41. Columns marked by t only

include time solving ODE’s, with exception of cases marked by {.
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Case | M(t)/Ex/1T | DELAYS | SPVA | INTERP | M(t)/M/1T | M(t)/D/1
37 232.5 05| 06 5.4 49 0.5
38 54 05| 0.6 5.4 49 0.5
39 23.9 05| 06 5.4 49 0.5
40 78.0 05| 06 54 49 0.5
4l 4485 08| 1.2 12.6 11.5 1.1
42 12.3 08| 12 12.6 115 1.1
43 474 08| 12 12.6 115 1.1
44 161.1 08| 12 12.6 11.5 11
49 955.8 15| 21 26.9 25.1 1.8
50 26.9 15| 21 26.9 25.1 1.8
51 121.9 15| 21 26.9 25.1 1.8
52 340.7 15] 21 26.9 25.1 1.8
53 4,462.0 14.3 | 246 116.9 95.7 21.2
54 106.9 143 | 246 116.9 95.7 21.2
55 692.6 143 | 246 116.9 95.7 21.2
56 1,885.7 143 | 246 116.9 95.7 21.2 ]
58 149.4 164 | 46.0 168.8 1344 344
59 875.8 164 | 46.0 168.8 134.4 344
61 6,566.7 100.7 | 137.5 570.3 446.9 1234
63 1,038.5 100.7 | 1375 570.3 446.9 123.4
65 476.7 11| 18 11.3 10.0 1.3
66 11.0 11| 18 11.3 10.0 1.3
67 47.9 11| 18 113 10.0 13
68 163.8 11| 1.8 11.3 10.0 1.3
69 1,001.6 19| 31 26.3 24.1 2.7
70 26.1 19| 31 26.8 24.1 2.7
71 107.9 19| 31 26.8 24.1 2.7
72 352.1 1.9] 31 26.8 24.1 2.7
73 1,259.4 31| 38 33.3 29.8 3.6
74 32.3 31| 38 33.3 29.8 3.6
75 142.8 31| 38 33.3 29.8 3.6
76 453.7 31| 38 33.3 29.8 3.6

Table 3.4: CPU Times on SUN SPARCStation 10 Model 41, Continued. Columns marked
by t only include time solving ODE’s, with exception of cases marked by {.
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Figure 3-1: Expected Number in the System Over One Period. Case 32.

also increases the coefficients of terms appearing in the ODE’s. The combination of these
factors causes the nonlinear growth in computation time with increasing k.

SPVA and DELAYS have clear speed advantages over INTERP, M (t)/M(t)/1 and
M(t)/E(t)/1. These advantages will become magnified if these methods are used in larger
models, e.g., networks or “what-if” scenario analyses. In surh cases, the methods may
need to be run many times. The result of the speed advantage may be whether or not one
can solve a problem in which there are time or memory constraints. Chapter 4 presents
a network model in which memory and time constraints are serious issues, even for small
problems.

We now make general observations about the estimates of m(t), o(t), m*, and o* by the
approximation methods. When discussing the time-dependent accuracy of the methods, we
focus our discussion on Case 32. This is a high-frequency case with average utilization of
0.75, maximum utilization of 1.25, Relative Amplitude of 0.67, and Erlang order of 6.

Figures 3-1 and 3-2 show the time-dependent mean and standard deviation for the
number of customers in system over one period for Case 32. These figures show typical
results. SPVA, DELAYS and INTERP estimates of m(t) and o(t) are very close to that
of the exact method. M(t)/M/1 and M (t)/D/1 over- and underestimate m(t) and o(t),
respectively. All methods show the same general shape of the m(t) and o(t) curves. The

time lag between the peak in A(t) and the peaks in m(t) and o(t) is similar for all methods.
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Figure 3-2: Standard Deviation for Number in the System Over One Period. Case 32.

The time lag is about four hours for the mean, and seven hours for the standard deviation.

Figure 3-3 plots the difference between the approximate and exact values for m(t) for
Case 32. The top graph shows this difference for ali five approximation methods. The
M(t)/M/1 and M(t)/D/1 differences dwarf those of SPVA, DELAYS and INTERP. The
bottom graph shows these same differences for the SPVA, DELAYS and INTERP methods
only. Over the entire 24-hour period, each of these three methods is within +0.4 of the
exact value. This is very good, considering m* = 141.7 in this case.

Figure 3-4 plots the difference between the approximate and exact values for o(t) for
Case 32. The top graph shows this difference for all five approximation methods. Again, the
M(t)/M/1 and M(t)/D/1 differences dwarf those of SPVA, DELAYS and INTERP. The
bottom graph shows these same differences for the SPVA, DELAYS and INTERP methods
only. Over the entire 24-hour period, each of these three methods is within 1 of the exact
value. In this case, 0* = 35.9. These results are good. Estimates of m(t) are better than
those of o(t) on a case-by-case basis.

Figure 3-4 shows the typical behavior of each of the methods. M(t)/M/1 severely
overestimates o(t) over a long interval, which makes up most of the period. Likewise,
M(t)/D/1 severely underestimates o(t) over a long interval of the period. M(t)/D/1’s
underestimation neither lasts as long nor is as severe as the M(t)/M/1 overestimation.

This behavior has an impact on INTERP. INTERP gives good estimates of o(t) over most
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Figure 3-3: Difference between Approximation and Erlang Mean: m4(t) — mE(t). Case 32.
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oE(t). Case 32.
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Figure 3-5: Relative Error in Estimating Peak Expected Number in the System, m*

of the period, except for the “spike” in overestimating o(t), appearing at hour 112. We
attribute this spike to M(t)/M/1. At hour 112, M(t)/M/1 still greatly overestimates o(t).
In contrast, M(t)/D/1 underestimates o(t), at hour 112, but this underestimation is small.
INTERP’s definition gives M(t)/M/1 { of the weight in Case 32, which, combined with
the prolonged congestion, results in this spike in o(t) overestimation. INTERP shows this
characteristic spike in each case, except for those in which it is exact (k = 1).

Figure 3-4 shows that SPVA increasingly overestimates o(t) while o(t) is building to
its peak, and falls off thereafter. This behavior appears to varying degrees in all cases
examined. Finally, DELAYS shows a somewhat jagged difference from the exact system,
sometimes overestimating o(t), sometimes not. Again, this is typical of DELAYS.

Figures 3-5 and 3-6 show plots of the Relative Error (RE) in the approximations of m*
and o*, respectively. Most data points corresponding to greater than :+20% RE correspond
to the M(t)/M/1 and M(t)/D/1 methods. Again, M(t)/M/1 and M(t)/D/1 errors dwarf
those of SPVA, DELAYS, and INTERP. Figures 3-7 and 3-8 show the RE in estimating m*
and o* for the SPVA, DELAYS, and INTERP methods only. With the exception of a few
DELAYS cases, these three approximations give good estimates of m*. With the exception
of a few cases for each approximation, they also give good estimates of o*.

Figures 3-9 and 3-10 show the probability distributions for the number in the system for
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Case 32. The distributions are snapshots of the probability distributior. at the times at which
m* and o* are achieved. The SPVA and INTERP probability distributions approximate
the exact M(t)/Eg/1 distribution well. Their modes are close to that of the exact, and the
difference in area between the approximation and exact curves is small. The prebability
distribution of the M (t)/M/1 system is significantly different from M (t)/Eg/1. The mode
of the M(t)/M/1 distribution is lower than that of the M(t)/Eg/1. We know that the
variance of the the M(t)/M/1 system is larger than that of the M(t)/Es/1 system at the
time at which the distributions were recorded. We can see that in Figures 3-9 and 3-10
through the lower mode and longer tails of the M(t)/M/1 distribution. In addition, the
mode of the M(t)/M/1 distribution is to the right of the exact, indicating overestimation
of m*. Likewise, the M(t)/D/1 distribution is more narrow and has a higher mode than
the exact, indicating a smaller variance for the number in the system. Its mode is to the
left of the exact system’s. The DELAYS distribution has its modes centered near the exact
modes. The DELAYS distribution appears to have a large spread. Recall that the P;(t)
in the DELAYS system corresponds to the Fi(x11))/k(t) in the system it is approximating.
There is a “spreading” effect of the DELAYS distribution in this multiplication. In reality,
the DELAYS distribution does not have a large veriance for the number of customers in

the system.
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Figure 3-11: SPVA WPE of Mean vs. k, pmax, p, and RA

The speed and accuracy of the SPVA, DELAYS, and INTERP methods surpass the
quality of the M(t)/M/1 and M(t)/D/1 approximations to the M(t)/Ej/1 system. There-
fore, we do not consider the M(t)/M/1 and M(t)/D/1 methods further. We now focus
on the SPVA, DELAYS, and INTERP methods. We examine each of these in detail to
determine under which conditions they give good estimates of m(t), o(t), m* and o*.

As a general observation, we note that on a case-by-case basis, the errors for m(t) and
m* are on the same order. That is, for each case, WPE of mean ~ RE for m*. The same
holds for o(t) and o*. To avoid repetition, we focus our discussion on m(t) and o(t).

Figures 3-11 - 3-16 show the influence of k, pmax, P, and RA, on the WPE of mean and
of standard deviation for each method. We refer to these figures to assess the accuracy and

sensitivity of the approximations. Note that the error scale differs in each figure, ranging

from 0 - 2% for INTERP to 0 - 50% for DELAYS.

SPVA

SPVA gives good estimates (less than 5% error) of m* and of m(t) in all 76 cases. Figure 3-
11 shows that SPVA accuracy increases with increasing k. The other parameters in isolation
do not appear to affect SPVA accuracy.

SPVA gives good estimates of o* in 63 of the 76 cases and of o(t) in 56 of 76 cases.
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Figure 3-12: SPVA WPE of o vs. k, pmax, §, and RA

Figure 3-12 shows that a combination of factors plays a role in the accuracy of o(t) estimates.
For example, there are small and large errors for k = 1. Likewise for p = 0.9. However,
the combination of a low value of k, together with a high RA and a high p, and not any
one factor in isolation, decreases accuracy. In general, the WPE of o is less than 5% for
combinations of low k£ and low RA and p, and of high k and any values of RA and p. As
k increases from one, SPVA estimates of o(t) are good for increasingly larger values of RA
and p.

In all 76 test cases, SPVA overestimates m* and o*. It also tends to overestimate m(t)
and o(t) as A(t) increases. In some cases, SPVA underestimates m(t) and a(t) when A(t)

decreases. Estimates of m(t) and m* are better than those for o(t) and a*.

DELAYS

DELAYS gives good estimates of m* in 60 of the 76 cases, and of m(t) in 52 of 76 cases.
Figure 3-13 shows that the DELAYS’ estimate of m(t) improves with increasing k, pmax,
P, and RA. A combination of factors contributes to accuracy. It is ¢ % first surprising that
increasing congestion znd nonstationarity yield improvements in approximation accuracy.
This can possibly be explained by the fact that DELAYS does not produce exact results for
the M(t)/Ex/1 system with stationary parameters in equilibrium, and by the fact that for
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73



Erang Order vs INTERP WPE Mean P vs INTERP WPE Mean

2 X 2 x
§15 ¥ x " §15) X %
3 X x s x X
W % % w1 X y %%
S | S X = |y ¥ Xxp oy
0.5 ¥ x X 05 X x x
x g bl
1 3 6 10 0831 125 15 18
Erang Order P nax

p vs INTERP WPE Mean RA vs INTERP WPE Mean

2 2
x x
§1s X X g5 o x o
2 b s x
w1 X % w1 % x i
L N ST
0.5 2 a osp 2 j x
o3 > ! i o\—i ¥ |
05 075 09 033 0.67 1
P RA

Figure 3-15: INTERP WPE of Mean vs. k, pmax, P, and RA

these cases the magnitude of the absolute error was very small, but in percentage terms the
error was large. DELAYS generally produces good estimates for m* and m(t) when k =1,
and p is large, or if p is low, but RA is large. As k increases from one, DELAYS estimates
improve for a broader range of the other parameters.

DELAYS gives good estimates of ¢* in 61 of the 76 cases examined, and of ¢(t) in 60 of
76 cases. Again, a combination of factors contributes to the accuracy, including increasing
congestion and nonstationarity. Figure 3-14 shows the WPE of o plotted against system
parameters. Here, we see that the dominant factors which decrease accuracy the accuracy
of DELAYS estimates of o are low p and k. In generai, DELAYS is accurate for k£ > 1, and
p>0.7

Like SPVA, DELAYS overestimates m* and o*. However, DELAYS gives better esti-

mates of o(t) and ¢* than of m(t) and m*.

INTERP

INTERP gives excellent estimates for m*, o*, m(t), and o(t). Like SPVA, approximations
are better for the mean than for the standard deviation. INTERP gives good estimates of
m* and m(t) in all 76 cases. WPE of mean are within £2% in all these cases. It gives good

estimates of o* in 70 of the 76 cases, and of o(t) in 73 of 76 cases. Recall that INTERP
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Figure 3-16: INTERP WPE of o vs. k, pmax, P, and RA

is exact for k = 1 and asymptotically exact for k — oo. Figure 3-15 shows that k and p
play the largest role in the accuracy of m(t) estimates, and Figure 3-16 shows that k plays
the critical role in the accuracy of o(t) estimates. k = 3 produces the least accurate results
of the 4 values of k tested. Our results indicate that for £ > 6, and of course for k = 1,
INTERP gives good estimates for o(t), regardless of other system parameters. Note that
the largest WPE of o is less than 6%.

INTERP can both over- and underestimate system measures. INTERP underestimates
m* when not exact. It can over- or underestimate o*, when not exact. INTERP ap-
proximates m(¢) and o(t) well as A(t) increases but overestimates m(t) and o(t) after A(t)
peaks. In our test cases, INTERP produces a characteristic “spike” in overestimating o(t),
as shown in Figure 3-4. We hypothesize the spike is due to the influence of M(t)/M/1

congestion in the system long after the congestion in the exact system has dissipated.

3.4.3 Summary of Approximations to M(t)/Ey/1 System

We have presented results of testing five approximation methods for the M (t)/Ey /1 system.
The 76 test cases cover a wide variety of average and maximum system utilizations, degrees
of nonstationarity, event frequencies, and Erlang orders. According to our measures of

quality, three methods emerge as good approximations: SPVA, DELAYS, and INTERP.
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m(t) o(t)

Approximation | maximum Case Parameters maximum Case Parameters
Method WPE kE p v RA WPE k p ¢ RA
SPVA 4% 1 09 10 1 23% 1 09 10 1
DELAYS 45% 1 05 10 1/3 31% 1 05 10 1/3
INTERP 2% 3 05 100 1 5% |3 09 10 1/3
M(t)/M/1 48% 10 0.75 100 1/3 56% 10 0.75 100 2/3
M(t)/D/1 36% 1 075 100 1/3 40% 1 075 100 1/3

Table 3.5: Mean and Standard Deviation Weighted Percentage Error (WPE) Maximum
Range over 76 Cases of Stationary Service-Time Parameter

When does one choose to use an approximation method? Which one should be chosen?
We have seen that there are large time and memory requirements to solve the M (t)/Ey/1
system exactly. When it is not practical to do so, one may choose to use an approximation
method. There is a tradeoff between accuracy and speed in choosing between INTERP
and SPVA or DELAYS. INTERP offers superior accuracy. However, one must solve both
the M(t)/M/1 and M(t)/D/1 systems to use the INTERP method. This costs 4 to 14
times as much time as SPVA. SPVA and DELAYS are significantly faster than INTERP.
If speed is critical, and accuracy within 3 — 5% of the exact value is sufficient, then SPVA
and DELAYS offer good alternatives to solving the M(t)/Ei/1 system. We show examples
of systems in which memory and speed are critical considerations in Chapter 4.

We conclude this section with some final remarks about the methods.

None of the approximations chow sensitivity to the two event frequencies which we test.
We believe that for even higher event frequencies, the approximation quality will remain
unaffected or improve. However, we cannot conclude from our 76 tests that the same holds
for lower event frequencies, say for 0 < u < 1.

For completeness, we include Tables 3.5 and 3.6. They show the worst case performance
of each method for estimating m(t) and o(t), and m* and o*, respectively. The tables show
the typical combinations of parameters which yield the worst case performance.

We note that, with the exception of DELAYS, the approximation methods give better
estimates of m* and m(t) than of o* and ~(t). This observation is consistent with those
made by other researchers. Rothkopf and Oren [46], Clark (7], Taaffe and Ong [50], and
Ong and Taaffe [36] also produced better estimates of m(t) than of o(t) in the systems they

analyzed.
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m* o*
Approximation | maximum Case Parameters maximum | Case Parameters
Method RE k P r RA RE k p u RA
SPVA 4% 1 05 10 1 18% 1 09 10 1
DELAYS 37% 1 05 10 1/3 22% 1 05 10 1/3
INTERP -2% 3 0.75 100 1/3 8% 3 05 100 2/3
M(t)/M/1 58% 10 05 100 2/3 71% 10 0.5 100 2/3
M(t)/D/1 -41% 1 05 100 2/3 -54% 1 05 10 1/3

Table 3.6: Maximum Percentage Error in Estimating m* and o* over 76 Cases of Stationary
Service-Time Parameter

3.5 Approximations to M(t)/Ey(t)/1 System: Time-Varying

Arrival and Service Rates

In this section, we further test two approximation methods for systems in which the arrival
and service rates vary with time. We test the SPVA and DELAYS approximation methods
to the M (t)/Ex(t)/1 system. We choose a scenario to test SPVA and DELAYS based on
our airport application. We estimate the time-dependent mean and standard deviation for
the number in system at Boston Logan International Airport.

We determine the arrival and service rates at the airport as follows. We use an hourly
demand rate at Logan from May 6, 1993, measured in operations per hour. The rates include
scheduled and GA operations. The number of operations ranges from 0 to over 100 per hour.
We choose a 9t#-order Erlang to model the service-time distribution, corresponding to the
squared service-time coefficient of variation of %. The capacity scenario chosen is one in
which Logan experiences a decrease in capacity during the morning hours of operation,
possibly due to morning fog. The fog causes capacity to drop from 120 operations per hour
to 60 from 6 am to 9 am. This period of decreased capacity corresponds to Logan’s morning
peak demand period. The time-average utilization over the 24-hour period is approximately
0.63 and pmax = 1.66, implying that RA ~ 1.63. We assume the system starts out empty.

Figure 3-17 shows the arrival and service rates over the 24 hours, the time-dependent
mean number in the system for the M(t)/Ey(t)/1 system, and the SPVA and DELAYS
approximations to the M (t)/Eg(t)/1 system. There is nc discernible difference between
the exact and approximation curves! The SPVA and DELAYS approximations to m(t) are
good in this case.

Figure 3-18 shows the time-dependent standard deviation of the number in the system
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Figure 3-17 SPVA and DELAYS Approximations to the Expected Number in the

M (t)/Ey(t)/1 System. Boston Logan International Airport Scenario.
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Figure 3-18: SPVA and DELAYS Approximations to Standard Deviation for the Number
in the M(t)/Eq(t)/1 System. Boston Logan International Airport Scenario.
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for the M(t)/Eg(t)/1 system, and the SPVA and DELAYS approximations. Again the
SPVA and DELAYS approximations are good. The differences between the exact and
approximation curves are small. The largest difference between DELAYS and the exact
value is 0.3; the exact value at this time is about 18. The largest absolute difference
between SPVA and the exact value is 0.7, when the exact value is about 17.

It is striking that the approximation methods capture the behavior of the exact m(t)
and o(t) well over the entire period. This includes, for example, the small local peaks in
o(t) occurring at about 3:30 pm and 5:30 pm. There is no indication in this test case
that a time-varying service rate adversely affects the accuracy of the SPVA and DELAYS
methods. More empirical testing is necessary to draw conclusions on whether SPVA and
DELAYS are accurate for other types of time-dependent service-rate functions.

Finally, SPVA and DELAYS need only a few seconds to determine m(t) and o(t) for this
airport scenario. In contrast, the ODE solver needs more than 40 minutes to solve the exact
system. The approximation methods’ performance in this scenario indicate that they give
good estimates of m(t) and o(t) when both the arrival rate and service-time distribution

vary with time, in much less time than required for the exact solution.

3.6 Further Testing of SPVA

In this section, we test SPVA further. In Section 3.6.1 we use SPVA to approximate
M(t)/G(t)/1 systems. We demonstrate how easily SPVA can be used to approximate
M(t)/G(t)/1 systems. The results indicate that SPVA estimates of m(t) and o(t) show be-
havior and values we expect. Section 3.6.2 assesses SPVA method accuracy for M(t)/H,/1
systems. The hyperexponential distribution has a coefficient of variation greater than or
equal to one. By testing the SPVA approximation to both M(t)/Ex(t)/1 and M(¢)/H2/1
systems, we obtain an indication of how well SPVA can approximate service-time distribu-
tions with virtually any coefficient of variation. Section 3.6.3 compares the quality of the
SPVA method to the SDA methods of Rider, Rothkopf and Oren, and Clark. Finally, we
determine SPVA sensitivity to the departure epoch stepsize. We vary the [ discussed in

Section 2.2.1 to determine its effect on SPVA estimates of m*, o*, m(t) and o(t).
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3.6.1 SPVA Approximation to M(t)/G(t)/1 Systems

In this section, we apply the SPVA method to M(t)/G(t)/1 systems. What methods are
available to analyze such systems? The exact method of Choudhury et al. [6] applies to
systems with piecewise linear arrival rates. Since the computational time is proportional
to the square of the number of stationary intervals, this method may not be practical
for the types of arrival rate functions we want to model. The exact method of Lemoine
[27] applies to M(t)/G/1 systems which have special types of service-time distributions.
Exact, equilibrium solutions can be found if the service-time distributions are discrete,
with probability mass only at integer multiples of the arrival function period. Rolski’s
[41] approximation method applies to M(t)/G/1 systems in equilibrium. There is room
for development of more methods, which can be used for either transient or equilibrium
analysis of systems with time-varying arrival and/or service rates. SPVA is such a method.
The derivation of the SPVA approximation in Section 2.2.1 makes no assumption about the
specific form of the service-time distribution. Recall also that SPVA is exact for stationary
parameter M/G/1 systems in equilibrium. We now take advantage of these properties to
examine two queueing systems with service-time distributions which might be considered
as candidates for approximating service-time distributions at some airports: the uniform
and triangular service-time distributions.

We illustrate the application of SPVA to M(t)/G(t)/1 systems using the same airport
arrival rates as in Section 3.5. These rates are measured in number of operations per hour.
Our first test case has stationary service rates, the second, nonstationary. In the stationary
case, we assume that the expected service rate is 120 operations per hour, with cv? = é.

The uniform and triangular distributions each have two parameters. Their service-time

distributions, means and variances are:

Uniform Service Times

=, 0<a<z<b,
flz) =
0, otherwise
- a+b
b 5
2 (b—a)?
T = 13



Triangulaer Service Times

ﬁv(z—c), 0<c<z< —'f—
f(x) = (;f—c;r(d—z), de<zr<d
0, otherwise
= c+d
by = 5
2 _ (c—d)?
7T T

Given the mean, by, and squared coefficient of variation, cv?, of the airport service times,

we fit the uniform and triangular parameters as follows. For the uniform distribution, we

find @ and b in terms of b; and cv?:

a = b(l-cwV3)
b = bi(1+cwV3)

c = El(l—cv\/(_i)
d = 31(1+C'U\/6)

To apply the SPVA method, we use expression (2.5) to find the ay4+1(j)’s for the uniform and
triangular service-time distributions. Plugging in the appropriate service-time distribution
in each case, we find the an41(7)’s to be:

nifo rvi im

) 1 -a A(in)a - A n)b
an-l—l(]) = m{ '\('n)l:z:(( ))]_ b/\(tn)[Z( t))]}

1==0 1=0
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Figure 3-19: SPVA Approximation to Time-Dependent Mean of Uniform and Triangular
Service-Time Distributions
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We use the SPVA algorithm to find the time-dependent mean and standard deviation for the

number in the system. We start the system from rest, and observe the transient behavior
over one period, a day.

Figure 3-19 shows the time-dependent mean number in the system predicted by the
SPVA approximation to the queueing systems with uniform and triangular service-time

distributions for the stationary service-rate case. It is striking that the curves are indistin-
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Figure 3-20: SPVA Approximation to Time-Dependent Standard Deviation of Uniform and
Triangular Service-Time Distributions

guishable. They also behave as we expect queues with time-varying arrival rates to behave.
The arrival rate to the system is as shown in Figure 3-17. There are four local peaks in the
arrival rate over the 24 hours. Figure 3-19 also shows four local peaks in m(t). They all
occur after the corresponding peaks in the arrival rate.

Figure 3-20 shows the time-dependent standard deviation for the number in the system
predicted by the SPVA approximation to the queueing systems with uniform and triangular
service-time distributions. Again, the curves are indistinguishable. The standard deviation
behaves as we expect, which in this case is similar to the mean. It has four local peaks,
which occur after the four corresponding local peaks in the arrival rate.

SPVA gives estimates of m(t) and o(t) which behave as we expect. However, we cannot
make precise statements about SPVA quality in these cases without comparing these esti-
mates to exact values. Since no techniques exist to model transient M(t)/G(t)/1 system
behavior, these exact values must be found using simulation.

We now use SPVA to approximate m(t) and o(t) for the same queueing systems with a
time-varying service rate. The scenario is the same as in Section 3.5. Figure 3-21 shows the
arrival rate and service capacity over the 24 hours, and the time-dependent mean number
in the system predicted by the SPVA approximation to the uniform and triangular service-

time systems. It also shows m(t) predicted by the DELAYS and SPVA approximations
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Figure 3-21: m(t) of the M(t)/Eq(t)/1 System, the DELAYS Approximation to the
M (t)/Es(t)/1 System, and the SPVA Approximations to Systems with the 9¢%-order Erlang,
Uniform and Triangular Service-Time Distributions
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Figure 3-22: o(t) for M(t)/Ee(t)/1 system, the DELAYS Approximation to the
:2(t)/Eg(t)/1 System, and the SPVA Approximations to Systems with 9*"-order Erlang,
Uniform and Triangular Service-Time Distributions
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Figure 3-23: SPVA Approximation to Probability Distribution at Time of Maximum Con-
gestion for Systems with Uniform and Triangular Service-Time Distributions

to the M(t)/Eq(t)/1 system, as well as the exact M(t)/Eg(t)/1 mean. These last three
curves are repeated from Figure 3-17. One cannot distinguish the five curves from one
another! This leads us to the following two hypotheses. First, the SPVA approximation
for M(t)/G(t)/1 systems with uniform and triangular service-time distributions is good. It
behaves as we expect. Second, the first two moments of a service-time distribution drive
the behavior of m(t). This hypothesis is the time-varying counterpart of the Pollaczek-
Khintchin (PK) formula for M/G/1 systems. The PK formula for the expected number in
the system contains only the first two moments of the service-time distribution, in addition
to the arrival rate and system utilization.

Figure 3-22 shows o(t) for the number of customers in system, for the same airport
scenario discussed above. Again, the behavior of the SPVA approximation to the uniform
and triangular service-time systems is strikingly similar to that of the exact M(t)/Eq(t)/1
system.

Recall that SPVA estimates the entire probability distribution for number in system for
M(t)/G(t)/1 systems. Figure 3-23 shows the SPVA approximation to the distributions for
number in the system for the two M(t)/G(t)/1 systems at the time of maximum congestion
for the second scenario. The distributions are virtually identical!

Up to now, few methods have been proposed to model transient or equilibrium behavior

85



of M(t)/G(t)/1 systems. SPVA is such a method. It is easy to implement. The only
customization necessary for a service-time distribution is that nne must determine the form
of the an41(7)’s to plug into the general SPVA algorithm. Once the an41(5)’s have been
identified, the SPVA system is as easy to solve as an M(t)/D(t)/1 system. Furthermore,
SPVA produces results for M(t)/G(t)/1 systems in seconds on a SUN SPARCstation 10
Model 41. This is three to five hundred times faster than solving the M(t)/Ex(t)/1 CK
equations. In the case of M(t)/G(t)/1 systems with non-phase-type distributions, one
must use simulation to find the “exact” solution, a time-consuming method. The complex
definition of the an41(j)’s for M(t)/G(t)/1 systems with uniform and triangular service-
time distributions does not have an impact on the CPU times of SPVA.

We do not compare the SPVA estimates of m(t) and o(t) to simulation results. We leave
this to the future, at which time we hope to examine SPVA accuracy for a wide variety of
service-time distributions. The results of this section indicate, however, that SPVA gives
estimates which we expect. The behavior of m(t) and o(t) is consistent with other systems
with the same mean and cv? for the service-time distribution. We concltde that SPVA has

the potential to be a fast, flexible approximation to a broad range of M(t)/G(t)/1 systems.

3.6.2 SPVA Approximation to M(t)/Hz2/1 Systems

This section examines the SPVA approximation to the M(t)/H,/1 system. Why do we
need an approximation for this system, which, after all, can be solved exactly by numerical
methods? First, since we can solve the M(t)/H;/1 system exactly, we can compare the
results obtained through SPVA to the exact values and assess the quality of the approxima-
tion. Second, the hyperexponential distribution can be used to approximate a wide variety
of service-time distributions with squared coefficient of variation greater than or equal to
one. It is in some sense the “complement” of the Erlang distribution, which can approx-
imate service-time distributions with squared coefficient of variation less than or equal to
one. We assess the SPVA approximation to M(t)/Eg(t)/1 systems in Sections 3.4.2 and
3.5. Assessment of the SPVA approximation to the M(t)/Hz/1 system will then give an
indicaticn of SPVA'’s flexibility to approximate queueing systems with service-time distri-
butions with coefficients of variation greater than or equal to one. Third, finding the exact
solution to the M(t)/H2/1 system requires a significant amount of computer memory and

CPU time. It may not be practical to solve this system under some conditions, such as high
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squared coefficients of variation (memory constraints) or if the solution to the M (t)/H,/1
system is not an end in itself but one of many steps to a solution of a larger problem (time
constraints). The SPVA approximation to the M(t)/H;/1 system uses far less memory and
CPU time than the exact sclution.

This section is organized as follows. We first describe the hyperexponential distribution
and the M(t)/H2/1 queueing system. We then present the test cases used to assess the
quality of the SPVA approximation to the M(t)/H2/1 system, followed by the results.
Finally, we assess the SPVA approximation for the range of service-time coefficients of
variation we examine in this thesis.

The hyperexponential distribution is a mixture of exponential distributions. We consider
here a mixture of two exponentials, and denote this particular hyperexponential distribution
as “Hy.” H, has three paramcters, 0 < p < 1 and p;,u2 > 0. The probability density

function, mean, second moment, and variance of the Hs are:

h(z) = pme ™%+ (1 —plue ™3,z >0

1

- p _,1-p
B = 2(ghs+ )
2
e - B - a2 gk + k) + (8 + )
(BLH]?® (& +52)

H3 has coefficient of variation greater than or equal to one.

We now show how we can use the H to obtain a two-parameter fit to the first two

moments of a service-time distribution. We assume balanced means, i.e., z% = 07'221 Given

the mean, b, and cv? > 1, then we can find p, u; and pj as in [52],

1+/%4
p = 5
2p
H = 31
_ 2(1-p)
B2 = Bl

Intuitively, what does a Hj service-time distribution mean in a queueing system context? It

means that with probability p, a customer requires a service time distributed as a negative
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exponential random variable with mean ﬁlT’ and with probability (1 — p) a service time

distributed as a negative exponential random variable with mean “lz The M(t)/H2/1
system would have the state-transition-diagram shown in Figure 3-24. [24]. If the system is
in state s;, then there are s customers in the system, and the customer currently in service
has a service time distributed as a negative exponential random variable with mean ”L',
1 = 1,2. The number of states needed to represent a system with queueing capacity c is

2c+ 1.
At)

(-p) 1, (®)

Figure 3-24: State-Transition-Rate Diagram for M(t)/Ha(t)/1

To apply the SPVA method, we use expression (2.5) to find the an41(j)’s for the
M(t)/H2/1 system. It is:

Pity + (1 —p)u2
(I‘l + )\(tn))‘ﬂ'l (ﬂ2 + ’\(tn))j+l

an+1(j) = A(tn)

We examine 13 test cases to obtain an indication of the quality of the SPVA approxi-
mation to the M(t)/Hz/1 system. We use a set of parameters similar to those described in
Section 3.3. The difference is that we explicitly identify the coefficient of variation of H; as
a parameter, instead of k for the Erlang distribution. Recall taat }; = cv?. We keep the ser-
vice rate stationary in order to gain insights into the complex behavior of queueing systems
with nonstationary arrivals. For simplicity, we use a sinusoidal Poisson arrival process with
amplitude A, similar to Green et al. [16]. The test cases are combinations of the following

parameter values, covering moderate to heavy system utilization levels.
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Case \cv2| P | pmax | RA | p | Queue Capacity |
1 2 0.5 1.0 1.0 | 100 600
2 2 10751125 | 0.5 | 100 1200
3 2 0.9 | 1.35 0.5 | 100 1200
4 2 109120 | 033 {100 1200
5 2 0.5 1.0 1.0 10 1200
5 2 107511125 | 0.5 10 1200
7 2 09 | 1.35 0.5 10 1200
8 10 | 0.5 1.0 1.0 {100 2000
9 10 {075 ] 0.5 | 0.125 | 100 2000
10 10 [ 0.9 | 1.20 | 0.33 | 100 2000
11 10 | 0.5 1 1 10 2000
12 10 1 0.75 | 1.125 | 0.5 10 2000
13 10 1 09 | 1.35 0.5 10 2000

Table 3.7: Test Case Parameters for Approximations to M(t)/H,/1 Systems

Poisson Arrival Function: A(t) = X + Asin (%ﬁ—‘) . Since A(t) > 0, we restrict A to be
0 < A < ). Note that A(t) is a smooth differentiable function with one peak over each

period.

Average Vtilization (p) ranges from moderately- to heavily-loaded systems: 0.5, 0.75,

0.9

Maximum Utilization: 1.0 < ppax < 1.35.

Degree of Nonstationarity: RA = %, %, 1. In the case of our sinusoidal arrival function,

RA = %. Note that 0 < RA <1 in this case.

Event Frequency: high and moderate: u = 100, 10.
e Squared Coefficient of Variation: moderate and high: cv? = 2, 10.

Table 3.7 lists the parameters for each test case, along with an assigned case number. We use
the case number for convenience. The last column of Table 3.7 lists ‘ ne queueing capacity
for each case. These capacities are large from a practical point of view. However, some
cases, e.g., Cases 9 and 10, do not meet our criteria for infinite queueing-capacity systems,
discussed in Section 3.2.2.

Table 3.8 lists the CPU times for the exact solution to the M(t)/H3/1 system and for
the SPVA approximation. The exact system requires 4 to 70 times as much CPU time

to solve than SPVA does. It is striking that SPVA requires significantly more time to
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Case | M(t)/H2/1 | SPVA
1 412.1 56.8
2 864.4 133.5
3 895.3 153.0
4 899.1 148.8
5 785.3 11.0
6 786.8 13.3
7 753.3 15.6
8 1,612.4 408.5
9 1,682.3 554.3
10 1,764.5 658.3
11 1,307.1 39.9
12 1,320.3 55.0
13 1,300.7 65.2

Table 3.8: CPU Times on SUN SPARCStation 10 Model 41 for Exact M (t)/H2/1 System
and SPVA Approximation

approximate the M(t)/H,/1 systems than the M(t)/E;/1 systems. For example, compare
Case 9 of Table 3.3 with Case 8 of Table 3.8. The former case requires 4.1 seconds of CPU
time whereas the latter requires 408.5. Why is there such a large difference in the SPVA
CPU times between the two systems? In both cases, p = 0.5, pmax = 1.0, RA=1.0, and
7 = 100. The difference between the two cases is the coefficient of variation: it is % in
the former, and 10 in the latter. There are on average more customers in the M(t)/H>/1
system than in the M (t)/E /1 system with the same p, pmax, RA, and . The probability
distribution for the number in the system has a significant probability mass in high-index
states. SPVA calculates the probability distribution from state 0 to the highest index state
such that the cumulative probability is greater than a threshold value, and that probability
mass is greater than a small positive number €. Hence, SPVA solves more equations at each
iteration to approximate the M (t)/H2/1 system than it does to approximate the M(t)/E/1
system, resulting in higher CPU time.

Table 3.9 lists the SPVA approximation errors, as well as m* and ¢*. In general, it
appears that SPVA errors are larger for the M(t)/H2/1 systems than for the M(t)/Ey/1
systems. Seven of the cases have cv? = 2, and six have cv? = 10. In the cases in which
cv? = 2, the worst errors occur in Cases 5 and 7, both of which have the moderate event
frequency. In Case 5, the WPE of mean is 6.8 and the RE of RE of m* is 6.9%. In
Case 7, the WPE of o is 11.5 and the RE of RE of o* is 11.3%. These errors are not
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Case | WPE of Mean | WPE of o m* RE of m* o* RE of ¢*
1 2.40 4.08 23.76 | 2.45% | 20.81 | 3.72%
2 1.81 5.41 75.87 1.48% | 4294 | 4.59%
3 0.78 11.70 [ 250.78 | 0.40% | 65.19 | 7.78%
4 1.12 6.83 14395 [ 0.73% | 58.00 | 5.31%
5 6.81 10.70 8.56 6.89% 8.06 | 10.35%
6 5.36 9.90 1533 | 5.53% 12.08 | 10.27%
7 4.68 11.53 3487 | 3.49% | 2034 | 11.27%
8 6.68 10.55 46.27 | 6.19% | 44.66 | 9.08%
9 5.10 10.69 103.24 | 4.61% | 74.89 | 9.79%
10 3.13 9.13 175.21 [ 2.66% | 10351 | 9.17%
11 21.34 29.41 136 | 20.90% | 15.75 | 29.97%
12 9.91 15.92 24.96 | 11.51% | 25.09 | 19.65%
13 11.08 19.03 54.67 | 9.59% | 44.08 | 19.91%

Table 3.9: Errors of SPVA approximation of M(t)/H2/1 Systems

large, but they are larger than those seen for the M(t)/E/1 system. Of the cases with
cv? = 10, the largest errors occur in Case i1, which has moderate event frequency. In
this case, WPE of mean and of o are 21.3 and 29.4, respectively, and RE of m* and of ¢*
are 20.9% and 30%, respectively. It appears that increasing cv? contributes to increased
SPVA approximation error. However, Case 8, with cv? = 10 and g = 100, has errors in the
range of 6-10%. Although these are outside our range of good (less than 5%), they are not
bad. We hypothesize that for cases with high cv?, combinations of mocerate p, moderate
RA, and high frequency, or high p and low to moderate RA, SPVA will yield estimates of
m(t) and o(t) in the 6-10% range. We hypothesize that for moderate cv?, combinations of
moderate p, moderate RA, and high frequency, or high p and low to moderate RA, SPVA
will yield good estimates of m(t) and o(t).

Table 3.10 bears out SPVA’s trend for increasing error with increasing cv?. We compare
two cases in which we allows the cv? to vary from —115 to 10. We examined these cv?’s for the
M(t)/Ex/1 and M(t)/H,/1 systems. The two cases have 5, pmax, RA and event frequency
held constant. The four error measures, WPE of mean and of ¢, and RE of m* and of ¢*
increase monotonically with increasing cv?. The increase in error is approximately lincar
for the cases shown. WPE of o and RE of ¢* increase faster than their equivalents for the
mean, but not significantly.

Figure 3-25 plots the time-dependent mean number in the system for the exact system

and the SPVA approximation to the M(t)/H2/1 system. SPVA overestimates m(t) as it
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Case Parameters Error cv?
P pmax RA Measure % | & |z | 1] 2 | 10
0.5 1 1 100 | WPE of Mean | 0.18 { 0.26 | 0.53 | 1.43 | 2.42 | 6.68
WPE of ¢ 0.27 [ 0.44 1093 ] 240 | 4.08 | 10.55
0
0

RE of m* 0 065|156 245 | 6.19
RE of o* 083155245 | 3.72 | 9.08
0.5 1 1 10 | WPE of Mean | 1.09 | 1.08 | 1.38 | 3.70 | 6.81 | 21.34
WPE of o 0.89 | 1.20 | 2.15 { 6.00 | 10.70 | 29.41

RE of m* 0 (090|164 411 689 |20.90
RE of o* 0 0 |192]6.25 ] 10.35 | 29.97

Table 3.10: Trend of Increasing SPVA Estimation Error with Increasing cv?, with All Other
Parameters Held Fixed

grows to its peak. The SPVA estimate of m(t) drops off more quickly than the exact
curve after the peak. The SPVA curve has approximately the correct shape, and peaks at

approximately the same time as the exact system.

— M{tyH2/1
- - SPVA

75 80 85 90 95
Hour

Figure 3-25: Expected Number in the A (t)/H,/1 System Over One Period. Case 8.

Figure 3-26 plots the time-dependent standard deviation for the number in system for
the exact system and the SPVA approximation to M (t)/H,/1 system. SPVA overestimates
a(t) as it grows to its peak. After the peak, though, the SPVA estimate of a(t) drops off
more quickly than the exact curve after the peak. This behavior is similar to the SPVA
estimate of m(t). SPVA gives better estimates of m(t) than of o(t).

What can we conclude about the SPVA approximation to M(t)/H,/1 systems? SPVA

92



— MM
- - SPVA

75 80 85 90 95
Hour

Figure 3-26: Standard Deviation for the Number in the M (t)/H2/1 System Over One
Period. Case 8.

can be used to give good estimates of m(t), o(t), m* and o* for M(t)/H,/1 systems in
many cases. The primary parameter which determines SPVA accuracy is cv®. With all
other parameters fixed, SPVA error increases with increasing cv?. We already know from
Section 3.4.2 that as cv? increases, decreases in 7 and RA, and high event frequency may
keep the error from growing. We see that even for extremely high cv? = 10, SPVA still gives
estimates of m(t), o(t), m* and o* with errcrs in the 6-10% range. We note that pmax > 1
in every case we examined. This indicates that we stressed the SPVA approximation,
and it still gave good results. Furthermore, SPVA requires significantly less CPU time than
solving the exact M(t)/H/1 system. SPVA also requires half as much memory to represent

a system with queueing capacity c¢ as does the exact system.

3.6.3 A Comparison With Other Researchers’ Methods

In this section, we compare the SPVA method to Surrogate Distribution Approximation
(SDA) methods. We briefly described the methods in Section 1.3. Here we supplement
Section 1.3 by giving more details of the SDA methods, then compare the SPVA and SDA
in two test cases. In both cases, we approximate M (t)/M(t)/1 systems. The first test case
is one that appears in Rider [40] and Rothkopf and Oren [46]. They compare the exact

time-dependent mean number in the systemn to that predicted using Rider’s and Rothkopf
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and Oren’s methods. We extend the comparison by examining the time-dependent standard
deviation for the number in the system. We also compare the exact probability distribution
for the number in the system to that predicted by the SDA method of Rothkopf and Oren
and to the SPVA method. The second case we examine appears in Clark [7]. Clark compares
his method to the exact solution and to the solution using Rothkopf and Oren’s method.
We compare the SPVA time-dependent mean and variance for the number in the system in
a case appearing in Clark’s paper.

To avoid confusion, we refer to Rothkopf and Oren’s SDA method as “SDA-RO”, to
Rider’s as “SDA-R”, and to Clark’s as “SDA-C.”

The general SDA method is based on the differential equations for the time-dependent
mean number in the system, m(t), its second moment, m(¢), and variance, v(t), initially
developed by Clarke (8] for the M(t)/M(t)/1 system. These moment differential equations
(MDE’s) can be carefully written for any Ph(t);M(t)/s/c or Ph(t)/Ph(t)/1/c system. The
exact form of the MDE’s depend on the system approximated and the definition of the state
space. SDA methods also differ from one another in which surrogate distribution is used to

estimate the time-dependent probabilities which appear in the MDE’s.

Comparison of SPVA and Rider’s and Rothkopf and Oren’s SDA Methods

The MDE of the SDA-R method is the time-dependent mean for the number in system.
The MDE's of the SDA-RO method are for the timre-dependent mean and variance for the
number in the system. For the M(t)/M(t)/1 system, these arz:

m'(t) = A(¢) - p(t)(1 - Polt) (3.4)
V(L) = )+ u(t) — u(t)Po(t)(2m(t) +1). (3.5)

The probability needed to close the above system is Py(t). This is the key to the SDA
methods: estimate the unknown quantities appearing in the MDE’s using a surrogate dis-
tribution. Then, solve the MDE’s to find updated values for m(t + At) and v(t + At), and
iterate. SDA-R estimates this quantity by modifying the exact transient solution for Py for
stationary systems. SDA-R simplifies the exact expression by using the current value of
the mean number in the system to estimate future values of Py(t). In contrast, SDA-RO

estimates Py(t) in terms of m(t) and v(t) using the negative binomial distribution. The
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negative binomial distribution has two parameters, r and p, and is fully described by its

mean, "=} and variance, "¢52):

P P

=777 : p(1-p)" (3.6)
n
Specifically, Py = p". The SDA-RO method matches the time-dependent mean and variance
of the number in the system to the moments of the negative binomial to find estimates of
p and r, and thus Py(t): p = 'L—‘z%‘)l, r= W%ﬁ’ and Py(m(t),v(t)) = p". We solve for m(t)
and v(t) using the general SDA algorithm described in Section 1.3.

The test case in which we compare SPVA with SDA-R and SDA-RO is an
M(t)/M(t)/1/30 system in equilibrium. Both the arrival and service rates vary with time
over a 24-hour period. The data are rates per hour. The arrival rate is interpolated between
hours, and the service-rate changes as a step-function. When we carry out the computation,
we allow the system to run for 96 hours to achieve equilibrium. Table 3.11 lists the hourly
arrival and service rates, the exact values of m(t), and approximations for m(t). SDA-R has
two sets of approximation values for this case, depending on how the method’s parameter,
T, is set. We list the one for T = %, which is the more accurate one. Table 3.11 also
shows the equilibrium solution for an M/M/1 system, applied hour-by-hour to this case. It
performs poorly in comparison to the other methods. Only when the system operates for a
relatively long period of time with the same parameters does the PSA give good estimates
of m(t).

SPVA, SDA-RO, and SDA-R give good estimates of m(t). The maximum absolute
difference between the exact and each approximation method over the 24 hours is 0.10 for
SDA-RO, 0.22 for SPVA, and 0.23 for SDA-R. The WPE of mean is 1.48 for SDA-RO,
2.46 for SPVA, and 2.87 for SDA-R. These errors are small. SDA-RO gives slightly better
estimates of m(t) than do SPVA and SDA-R. Figure 3-27 plots the time-dependent mean
number of customers over the period. The differences between the methods are negligible.
The three methods approximate the time-dependent behavior of m(t) well.

Table 3.12 lists the SPVA and SDA-RO estimates of the standard deviation for the
number in the system for the M(t)/M(t)/1 case. We do not have SDA-R estimates of the
standard deviation in this case. Table 3.12 shows that SPVA and SDA-RO give comparable
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Data Expected Number in System
Hour | Arrival | Service || Exact | Steady | Rider | Rothkopf | SPVA
Rate Rate State & Oren
Approx.

1 12.0 15.0 4.52 4.00 4.65 4.47 4.62
2 10.0 13.0 3.63 3.33 3.86 3.67 3.68
3 7.0 13.0 2.66 1.17 2.80 2.76 2.67
4 5.0 13.0 1.29 0.63 1.15 1.39 1.20
5 4.5 7.0 0.69 1.80 0.58 0.66 0.64
6 4.5 7.0 1.39 1.80 1.28 1.33 1.46
7 5.0 10.0 1.74 1.00 1.67 1.69 1.80
8 5.5 10.0 1.28 1.22 1.28 1.28 1.26
9 6.5 13.0 1.49 1.00 1.46 1.49 1.50
10 7.0 13.0 1.17 1.17 1.16 1.18 1.15
11 7.0 1.0 1.17 0.88 1.16 1.17 1.17
12 7.0 15.0 0.90 0.88 0.89 0.90 0.89
13 7.0 15.0 0.88 0.88 0.88 0.88 0.88
14 7.0 15.0 0.88 0.88 0.88 0.88 0.88
15 7.0 8.0 0.88 7.00 0.88 0.88 0.88
16 7.0 8.0 2.40 7.00 2.27 2.34 2.61
17 7.0 12.0 3.14 1.40 3.05 3.06 3.37
18 10.0 12.0 " 2.81 5.00 2.84 2.81 2.87
19 10.0 120 | 3.41 5.C0 3.44 3.40 3.53
20 10.0 15.0 u 3.77 2.00 3.83 3.74 3.89
21 10.0 15.0 2.70 2.00 2.83 2.77 2.70
22 13.0 15.0 3.18 6.50 3.12 3.22 3.18
23 13.0 15.0 4.03 6.50 3.98 3.99 4.11
24 13.0 15.0 4.53 6.50 4.54 4.47 4.63

Table 3.11: Comparison of SPVA and SDA Methods: Estimates of m(t).
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Data Standard Deviation for Number in the System
Hour | Arrival | Service || Exact | Rothkopf SPVA
Rate Rate & Orer.
1 12.0 15.0 4.69 491 4.82
2 10.0 13.0 4.36 4.55 4.39
3 7.0 13.0 3.73 3.83 3.69
4 5.0 13.0 2.46 2.34 2.26
) 4.5 7.0 1.41 1.13 1.23
6 4.5 7.0 1.77 1.66 1.84
7 5.0 10.0 2.05 2.01 2.14
8 5.5 10.0 1.78 1.74 1.74
9 6.5 13.0 1.87 1.86 1.89
10 7.0 13.0 1.63 1.61 1.59
11 7.0 15.0 1.60 1.59 1.60
12 7.0 15.0 1.34 1.32 1.31
13 7.0 15.0 1.29 1.28 1.29
14 7.0 15.0 1.28 1.28 1.28
15 7.0 8.0 1.28 1.28 1.28
16 7.0 8.0 2.36 2.43 2.70
17 7.0 12.0 3.01 3.14 3.37
18 10.0 12.0 3.04 3.13 3.20
19 10.0 12.0 3.49 3.62 3.69
20 10.0 15.0 3.85 4.00 4.04
21 10.0 15.0 3.39 3.48 3.40
22 13.0 15.0 3.44 3.46 3.49
23 13.0 15.0 4.02 4.14 4.16
24 13.0 15.0 4.47 4.65 4.63

Table 3.12: Comparison of SPVA and SDA Methods: Estimates of o(t).
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Figure 3-27: Comparison of SPVA and SDA Estimates of the Time-Dependent Expected
Number in the System.

estimates of o(t). The estimates of o(t) are not as good as those for m(t). The maximum
absolute difference between the exact and approximation methods is 0.36 for SPVA, and
0.29 for SDA-RO. The WPE of mean for SPVA is 3.94, and for SDA-RO is 3.38. Figure 3-28
shows the time-dependent estimates of the standard deviation for the number in the system.
Both SPVA and SDA-RO over- and underestimate o(t) during some time intervals. The
approximations are good.

Figure 3-29 shows the probability distribution for the number of customers in the system
predicted by SPVA and SDA-RO. This probability distribution is at hour 96, the hour at
which the system achieves the maximum number of customers in the system. The SPVA
method must estimate this distribution at each time step. SDA-RO does not; it needs only
the value of Py(t) at each step in the algorithm. However, we use the negative binomial
distribution from expression (3.6) to estimate the entire distribution for SDA-RO. The
difference between the exact and SPVA estimate of the probability distribution can barely
be seen. SPVA gives a better estimate of the probability distribution than does SDA-RO.
However, the difference between the SPVA and SDA-RO probability distributions is small.
SDA-RO’s estimate is good, although it overestimates the probability mass in the lower
index states, and underestimates it in the higher index states. SDA-RO’s estimate of Py(t)

appears to be virtually exact. This, of course, is the key to the method.
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Figure 3-28: Comparison of SPVA and SDA-RO Estimates of the Time-Dependent Standard
Deviation for the Number in the System.

We now compare the CPU times of the SPVA and SDA-RO methods. SDA-RO has
fewer numerical computations than SPVA does. We do not expect that SPVA will be
faster than SDA-RQO. This is indeed the case, but the difference is smaller than expected.
When we run the above test case and do not calculate the entire probability distribution
for SDA-RO, it requires 0.14 seconds of CPU time. SPVA requires 0.35 seconds, and the
exact method 2.02 seconds. SDA-RO is 2.5 times faster than SPVA in this case. When we
do calculate the entire probability distribution for SDA-RO, it uses 0.32 seconds. In this
case, the difference in CPU time between SPVA and SDA-RO is negligible.

In conclusion, SPVA gives estimates of m(t) and o(t) comparable to the SDA methods
of Rider and Rothkopf and Oren. If the entire probability distribution for the number in the
system is not needed, SDA-RO is approximately 2.5 times faster than SPVA in the case we
examine. In cases in which there is a very large number of customers in the system, there
may be a larger difference in the CPU times. However, if the entire probability distribution
for the number in the system is needed, the speed advantage of SDA-RO diminishes greatly.

Rothkopf and Oren mention that errors occasionally build up during the convergence
to periodic limiting results. When working with the SDA-RO method, this did occur in
some of the preliminary test cases we examined. However, we note that we wrote the

SDA-RO program ourselves. It may not be identical to the program written by the original
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Figure 3-29: Comparison of SPVA and SDA-RO Probability Distributions for the Number
in the System.

SDA-RO method programmers. However, our computational results for SDA-RO for the
test case described in this section match those published by Rothkopf and Oren extremely
well. Therefore, it is likely that our program is correct. Rothkopf and Oren note that
this buildup cannot occur if sometime during the period the system empties of customers.
We contrast this with SPVA. SPVA behaves in a stable manner in all the computational
results presented in this chapter. We examine cases in which the queue both empties and
does not empty during each period in Section 3.4.2. Some of the cases in which the queue
does not empty have extremely high average utilization (p = 0.9) and maximum utilization
(Pmax > 1). In one case, the mean number in the system ranges from 2 to 140. SPVA is

stable even under these extreme conditions.

Comparison of SPVA with Clark’s and Rothkopf and Oren’s SDA Methods

In this section, we compare the SPVA method to SDA-C and SDA-RO. The case we
compare is one which appears in [7]. It is for an M(t)/M(t)/1 system. We begin with a
brief description of the SDA-C method.

The SDA-C method is a refinement of Rothkopf and Oren’s SDA method for M (t)/M(t)/s
systems. SDA-RO requires the estimation of s probabilities: Py(t), Pi(t),..., Ps_1(t) (see
expressions 1.1 and 1.2). The SDA-C methods differs from SDA-RO in three ways. First,
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the surrogate distribution for the number of customers in the system is represented by two
conditional distributions. These conditional distributions depend on whether there are less
than or equal to s customers in the system, or greater than s customers in the system.
These conditional distributions reflect the form of the exact steady-state distribution for

the number of customers in an M/M/s system: the form of P; depends on whether i < s

or i > s. The second difference between SDA-C and SDA-RO is the surrogate distribution
used to approximate the probabilities which appear in the MDE’s. The SDA-C method
uses the Polya-Eggenberger (PE) distribution instead of the negative binomial. Third, the
SDA-C method requires the solution of five MDE's, instead of just two in the SDA-RO
method. However, these MDE'’s require the estimation of only two probabilities: Ps(t) and
Py (t).

The test case used to compare SPVA with SDA-C and SDA-RO has a sinusoidal-Poisson
arrival rate with parameter A(t) = 1+sin(%5). The service rate is constant: p = 1.67. Note
that pmax > 1. This is the first test of SPVA with service rate on the order of one. We
compare m(t) and v(t) over the period for the SPVA, SDA-RO and SDA-C methods. The
actual numerical results unfortunately do not appear in [7]. Therefore, we estimate the
errors from the hand-drawn graphs which appear in (7).

The time-dependent mean in the case which we test ranges from a minimum of 0.4 to a
maximum of 4.9 over the period. In Figure 3 of [7], the maximum absolute error of SDA-C
is approximately 0.05, which is 3% of m(t) ~ 1.5, and that of SDA-RO is 0.22, which is
28% of m(t) ~ 0.8. SPVA’s maximum error is 0.53, which is 13% of m(t) = 4. SDA-C
and SDA-RO both over- and underestimate m(t) over the period. SDA-RO’s absolute error
is greatest when m(t) is at its minimum. SPVA overestimates m(t) over the period. Its
maximum absolute error occurs just after the peak in m(t).

The time-dependent variance ranges from a minimum of 1.3 to a maximum of 16.3 over
the period. In Figure 6 of [7], the maximum absolute error of SDA-C is approximately 1,
corresponding to 10% of v(t) = 10, and that of SDA-RO is 4, which is 40% of v(t) ~ 10.
SPVA’s maximum error is 5.4, which is 35% of v(t) = 15.

In this case, SDA-C gives better estimates of m(t) and v(t) than do SPVA or SDA-RO.
However, the magnitude of the absolute errors is small in this case. In all the tests which
appear in [7], SDA-C gives better estimates for m(t) and v(t) than does SDA-RO. SPVA’s

errors are on the same order as those of SDA-RO. However, results from Section 3.6.2
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indicate that SPVA performs less well for low event frequencies, which is the case here.

This may explain why SPVA does not perform as well as SDA-C.

Summary of SPVA and SDA Methods

We have compared SPVA to three approximation methods. In our test cases, SPVA gives
estimates of m(t) which are as good as those of the SDA-R and SDA-RO methods, and
of o(t) which are as good as the SDA-RO method. SDA-C gives better estimates of m(t)
and v(t) than do SDA-RO and SPVA. However, the magnitude of the absolute errors for
m(t) is small. The absolute errors of v(t) are larger than for m(t). However, the test case
for comparing SDA-C and SPVA is for a low event frequency. We hypothesize that SPVA
performs less well for systems with low event frequencies than for moderate or high event
frequencies.

The SDA methods require less CPU time than SPVA. In our test case, the SPVA
method required 2.5 times as much CPU time as did SDA-RO. However, if the probability
distribution for the number in the systern is needed, the speed advantage of the SPA
methods diminish greatly.

All SDA methods solve a constant number of MDE’s for a given system at each time
step, regardless of system queueing capacity. In contrast, the number of equations SPVA
solves at each time step varies. The number depends on the number of customers in the
system. More equations must be solved during periods of high traffic intensity than during
periods of low traffic intensity.

SPVA is a more general method than the SDA methods examined. It can be used to
approximate M (t)/G(t)/1 systems. Although it is not specifically designed to approximate
M(t)/M(t)/1 systems like the SDA methods examined, it does give good estimates of m(t)
and o(t) for such systems.

SPVA is a stable method. Both Clark and Rothkopf and Oren mention that cases exist
in which there is a buildup of error as the system evolves to its equilibrium (time-dependent)
solution.

SDA methods exist for systems with more complicated phase-type arrival and service-
time distributions. Specifically, Taaffe and Ong [50] and Ong and Taaffe [36] developed
SDA methods for the Ph(t)/Ph(t)/1/c and Ph(t)/M(t)/s/c queueing systems. In these

cases, the number of MDE’s which must be solved depend on the the number of phases in
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the arrival and service-time distributions. Most importantly, this number is independent
of system capacity, i.e., it is fixed. The probabilities which must be estimated to close the
MDE’s depend on the definition of the state space. To apply the SDA methods, one rmust
carefully describe the state space, and then write the MDE’s for the state space. The set
of equations differs from system to system, and can be complicated. SPVA, in contrast to
the SDA methods, is simple to implement. The only customization necessary to model an
M(t)/G(t)/1 system is to find the an41(j)’'s. Appendix A shows the an4+1(j)’s for some
service-time distributions. Once the form of the ay41(j)’s is known, the method is as simple
to implement as an M (t)/D(t)/1 system. We intend to compare the SPVA approximation
to the SDA methods of Ong and Taaffe for the M(t)/Ex(t)/1 and M(t)/H>(t)/1 systems

in the future.

3.6.4 The Choice of

Recall that 8 appears in the SPVA expression (2.3) which determines the time of the nt* cus-
tomer pseudo-departure epoch. In all the computational results presented in Sections 3.4.1
and 3.5, we use 8 = 1. This means that the SPVA time step equals the expected value of
the service time. Cne might reason, though, that a more judicious choice of [ may exist
which accounts for the second moment of the service-time distribution. In this section, we
test different values of 3 which account for the 2"d moment of the service time.

To test the effect of the choice of 3, we experiment with one of SPVA’s “worst case’
approximations to the M(t)/Ei/1 system: Case 58, with parameters k = 1, p = 0.90,
RA = %, and p = 100. We choose a worst case because we expect the benefit of changing
the stepsize, if any, will manifest itself here.

Table 3.13 shows the SPVA estimates and errors for m*, m(t), *, and o(t) for values of
£ both smaller and larger than 1. Cases in which 8 # 1 yield results significantly worse than
those for 3 = 1. We can possibly explain this result by noticing that SPVA already accounts
for the entire service-time distribution in the calculation of the ap+1(j) in expression (2.5).
Since we obtain the best results using 3 = 1 for Case 58, we conjecture that = 1 is the

best choice for all cases.
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Case measure M(t)/M/1 | SPVA SPVA SPVA | SPVA
=1 =2 B=16|08=05

Case 58 m* 357.97 | 358.51 183.43 227.30 | 706.78
% diff in n.* 0.15% | —48.76% | —36.50% | 97.44%
WPEMean 0.33% 47.49% 35.48% | 94.65%

o* 57.12 61.38 43.02 48.25 87.37

% diff in o* 7.46% | —24.68% | —15.53% | 52.96%

WPEo 12.24% 21.39% 12.04% 58%

Table 3.13: SPVA Approximation Quality with various 3’s

3.7 Summary

In this chapter, we examined approximation methods for queueing systems with time-
varying arrival and service rates. We investigated the SPVA, DELAYS, and INTERP
methods. All three methods generate the probability distribution for the number of cus-
tomers in the system. The new SPVA method approximates M(t)/G(t)/1 systems. The
DELAYS and INTERP methods approximate M (t)/Ey /1 systems. The Erlang distribution
has cv? < 1. We showed that SPVA, DELAYS and INTERP approximate the M(t)/E;/1
system well. Furthermore, they offer huge time and memory savings over solving the exact
system in many cases. INTERP is the most accurate method. However, it requires 4 to
14 as much CPU time as the SPVA method, and has more memory requirements than do
SPVA and DELAYS. If estimates within 3 — 5% accuracy are sufficient for estimates of the
mean and standard deviation for the number in the system, then the SPVA and DELAYS
methods are good options. They are fast, and have small memory requirements.

We further showed that SPVA and DELAYS approximate M (t)/Ex(t)/1 systems well.
We tested a scenario for Boston Logan International Airport with time-varying arrival
rates and capacities. The SPVA and DELAYS estimates of the time-dependent mean and
standard deviation for the number in the system were virtually exact.

We further tested SPVA as an approximation to M(t)/G(t)/1 systems. We demon-
strated that SPVA is a fast, flexible approximation method for queueing systems with
non-phase-type service-time distributions. We examined the uniform and triangular service-
time distributions. The SPVA estimates of the mean and standard deviation of the num-
ber in the system is what we expected for systems with nonstationary arrival and service
rates. Based on the results, we formed two conjectures. First, the SPVA approximation to

M (t)/G(t)/1 systems is good. Second, the first two moments of the service-time distribution
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are the primary drivers of the time-dependent mean number in the system. Furthermore,
SPVA requires a few seconds of CPU time to find the mean and standard deviation for the
M(t)/G(t)/1 systems, as well as the probability distribution for the number in the system.
This makes it one of the fastest methods currently available for approximate analysis of
M(t)/G(t)/1 systems.

We tested the SPVA approximation to the M(t)/H>/1 system. H, has cv? > 1. Our
computational tests indicate that SPVA approximations to the M(t)/H2/1 system will be
good in some cases. These cases include moderate cv? and moderate and high event fre-

2 increases. However,

quencies. Holding all parameters constant, SPVA error increases as cv
even for high cv? (cv? = 10), SPVA errors are in the 6 — 10% range for high event frequen-
cies and heavy utilization. We expect that errors will be smaller for systems with high cv?
and high event frequency, and moderate system utilization and/or lower degrees of system
nonstationarity.

Finally, we compared the SPVA approximation to three SDA methods for M(t)/M(t)/1
systems. We showed that SPVA gave estimates of the time-dependent mean and standard
deviation are comparable to the Rider and Rothkopf and Oren methods. The results of
Clark’s method were slightly better than those of SPVA for a low event frequency system.
The SDA methods require less CPU time than SPVA to estimate the mean and standard
deviation. However, this time advantage diminishes if the SDA methods estimate the prob-
ability distribution for the number in the system as well. Clark and Rothkopf and Oren
stated that the SDA methods can develop a buildup of error as the system evolves to its
equilibrium solution in some cases. This buildup of error did not occur for SPVA in any of
the 92 cases we examined.

Up to now, few methods for approximating M (t)/G(t)/1 systems have been developed.
The SPVA method approximates transient and equilibrium behavior of M(t)/G(t)/1 sys-
tems. We showed that SPVA performs extremely well under many system conditions. It is
as easy to solve. It is fast, requiring seconds of CPU time on a SUN SPARCstation 10 Model
41. This is significantly faster than simulation methods and exact methods, if they exist.
We conclude that SPVA is potentially a quite useful tool for approximating M (t)/G(t)/1

systems.
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Chapter 4

A Decomposition Method for
Networks of Queues with Strongly

Time-Varying Arrival Rates

This chapter presents a new decomposition method for approximate analysis of networks
of queues with time-varying arrival rates. We focus on applying this method to a network
of airports, although this model is applicable to other systems for which the assumptions
are valid. No model exists today for analyzing such a network. The ability to analyze
the network of airports is especially crucial given the current airline hub-and-spoke flight
patterns. Congested hub airports propagate delay to other airports, even when those other
airports may not themselves be congested.

One uses such a model strategically for airport capacity planning from a system-wide
perspective. We want to answer questions such as, “What is the system-wide benefit of in-
creased capacity at Chicago O’Hare Airport?” This tool can also be used to perform “what-
if” analyses. For example, “How much would delay increase if airport demand increases
system-wide by 5%, without any capacity expansion?”, or “Would a $200M investment at
Boston or Los Angeles yield a greater decrease in delays system-wide?” Airlines may also
use such a model to develop more robust flight schedules. They can determine the amount
of “slack” or “buffer” time built into the schedule needed to minimize the “network effects”
of local delay, i.e., the propagation throughout their route network of delays occurring at

airports which experience congestion.
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An important attribute of strategic models such as the one we describe here is speed.
This virtually rules out simulation as a tool for such high-level network-wide analysis,
because of the number of simulations necessary to obtain statistically valid results, and the
computation time per simulation.

Modeling a network of queues with nonstationary arrival rates is very difficult, although
some exact models do exist. One can write and solve the CK equations describing an open
network of M(t)/M(t)/s queues with probabilistic routing and instantaneous travel time
between queues in the network. If there are K queues in the network each with capacity
N, 1 = 1,2,..., K, then the number of equations needed to describe such a system is
]']{‘;1 N;, which can be very large. The same type of analysis can be extended to phase-type
arrival processes and/or service times, but this results in a further increase in the number
of states needed to describe the system. Hence, even in these relatively simple cases, the
computational effort to analyze the queueing network is extremely heavy. The issue of
numerical stability also arises.

Massey and Whitt [30] developed exact results for networks of M(t)/G /oo queues. In
this case, customers move independently of each other through the system because there is
no queueing. For certain initial conditions, there is a time-dependent product-form solution
for number in the system. As mentioned in Section 1.3, infinite-server approximations to
finite-server queueing systems may not be good in cases in which the arrival rate is close
to or exceeds the service rate. Massey and Whitt are currently exploring an infinite-server
approximation to a network of finite-server queues.

Because few options exist to analyze exactly dynamic queueing networks, we develop
an approximation method. A natural first choice is to decompose a K-queue network into
K individual queues for which we do have solution tools, then use a propagation algorithm
to link the individual queues together. This approach allows analysis of networks for which
no tools currently exist, or which would otherwise require more memory or CPU time than
practically available to solve exactly. For example, a decomposition approach reduces the
number of equations to be solved for a network of K M(t)/M/s queues from [J/, N; to
Z,ﬁl N;. This results in great memory and CPU time savings and may make analyzing the
network possible. The decomposition approach we describe here is similar to the approach
of the Queueing Network Analyzer (QNA) for steady-state analysis of networks of queues

with stationary parameters [53].
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The decomposition method we investigate consists of two components:

1. The Queueing Engine: a model to analyze the queues in isolation. The engine gives
statistics of interest for the individual queues, which may depend on the system be-
ing modeled, as well as the information needed by the propagation algorithm. The

Queueing Engine should be extremely fast.

2. The Propagation Algorithm: an algorithm to propagate the congestion among queues

in the network. This algorithm should use the information about local delays obtained

at each of the individual queues by the Queueing Engine.

As a result, there are two distinct areas of investigation in decomposition methods: devel-
oping fast, accurate approximation models for analyzing individual dynamic queues, and
identifying effective algorithms for propagating congestion. Chapters 2 and 3 of this thesis
have investigated the former. This chapter examines combinations of queueing engines and
propagation methods, and assesses their effectiveness.

The decomposition method must account for the dynamic behavior of the individual
queues and their effect on each other. One of the unknowns in the system is the time-
dependent arrival rate to each of the queues. The primary task of the propagation method
is to estimate this unknown. The arrival rate to each queue in the nonstationary network is
partially a sum of departure rates from other queues, which are unknown. These departure
rates are time-dependent and reflect the time lag between the arrival rate and levels of
congestion at each queue. Note that this contrasts with a stationary, stable network of
queues in equilibrium in which we do know the arrival (and departure) rates for each queue.
This demonstrates the complexity that nonstationary arrivals introduce to networks of
queues.

There is a large body of literature for modeling departure processes for queues with
stationary parameters in equilibrium. See, for example, Albin [1], Albin and Kai [2], Daley
[9], and Whitt [53, 54], and references therein. However, these methods are not directly
applicable to systems with nonstationary arrivals. For example, the variance of the de-
parture processes is used to determine the variance of the superimposed arrival stream of
downstream queues. However, finding the variance of the departure process from a system
with nonstationary arrivals is problematic. The variance depends in part on the probability

the system is idle, and busy. In general, P(system idle at time t) # 1 — p(t), and P(system
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busy at time t) # p(t) in queues with nonstationary arrival or service rates (see Chapter 5).
Furthermore, the probabilities are time-dependent quantities for which no closed form ex-
pressions exist, or, when they do exist, they may not be tractable. Hence, we cannot find the
variance of the departure process, or use the results from systems with stationary arrivals.
The only nonstationary system for which we do have exact information about the departure
process is for a network of M(t)/G /oo queues, where this process is nonstationary J’oisson
(12, 30].

In this chapter, we test a particular decomposition approach for modeling networks of
queues with nonstationary arrivals. Arrivals to the individual queues originate both from
inside and outside the network. The arrivals to each queue from outside the network form
a nonstationary Poisson arrival process. The arrivals to each queue from inside the network
are formed by departures from other queues, which have an unknown distribution. The
total arrival stream to each queue is the sum of two streams: a stream which is a Poisson
arrival process, and a stream which has an unknown distribution. Hence, the total arrival
process may not be Poisson. In the decomposition approach we pursue, we assume that
the total arrival process at each individual queue forms a nonstationary Poisson process.
The main question we want to answer is, “How critical is the Poisson arrival assumption in
our decomposition approach?” We shall test the sensitivity of the Poisson arrival process
assumption to the following factors: the fraction of total arrivals to each queue which
are departures from other queues in the network, the average utilization at each queue,
the degree of nonstationarity in the arrival process, and the service-time distributions at
the queues. We hypothesize that the degree of nonstationarity in the arrival process may
“randomize” the arrival and departure processes, making the downstream Poisson arrival
assumption plausible.

The rest of this chapter is organized as follows. We describe the decomposition method,
then the network and test cases used to assess its accuracy. Section 4.3 presents the resuits.
We also briefly discuss the Approximate Network Delays (AND) Model, developed by Mal-
one and Odoni [29] to perform “what-if” analyses for strategic planning in the US airport

system.
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4.1 The Decomposition Methods

The decomposition method estimates the time-dependent probability distribution for the
number in the system in each queue in the network. To avoid confusion, we refer to the
individual queues in the network as “stations.” The method is based upon calculating the
probability distribution for the number in the system at each station independently and
then estimating the network effects by calculating departure rates from each station. The
queueing engine calculates the probability distributions for the number in the system, and
the propagation method calculates the departure rates. In this section we will first describe
the mechanics of the calculations of the decomposition algorithm, then the queueing engines
and the propagation methods used.

The decomposition algorithm implemented here assumes that we know the initial prob-
ability distribution for number in the system at t = 0, the exogenous time-dependent arrival
rate, the service rate, the queueing capacity, and the interstation routing probabilities for
each of the stations. The algorithm operates in discrete time intervals advancing from t = 0
to the end of the interval of analysis. At each time increment, the algorithm uses the proba-
bility distribution for the number in the system as input into a propagation algorithm which
calculates the departure rates from each station. These rates are then used as input into a
queueing engine to calculate the probability distribution for the number in the system for
a future time interval.

With this scheme in mind, we describe the decomposition method in detail. We must
first introduce the following special notation for networks of stations, to supplement that

of Chapter 2.

Notation:
' A
K = number of stations in the network
Ai(t) = arrival rate to station ¢ from outside the network at time ¢
Aij(t) = departure rate from station ¢ to station j at time ¢
Xi(t) = total arrival rate to station i at time ¢t = \;(¢) + i Aji(t)
=1
Sit = the expected system time of a customer a.rrivintho station ¢ at time ¢
ui = service rate at station ¢
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pi; = probabilistic routing matrix

P;i(t) = P(l customers at station i at time t)
¢i = queueing capacity at station ¢
T = time interval of analysis

We note here that the service rate and probabilistic routing matrix can also be time-
dependent. In our experiments, we keep them stationary, but the model that has been
implemented does accommodate both possibilities.
The Decomposition Algorithm

In this chapter we will consider two propagation methods, the Disaggregation-
Aggregation (DA) and Schmeiser-Taaffe (ST) [48] propagation methods. The DA methed
calculates the departure rate from a station from the point of view of arrivals. In contrast,
ST uses the instantaneous departure rate. Because of the different perspectives of the
two approaches, we present the decomposition algorithms separately below. We give full
descriptions of each in Section 4.1.2.
Decomposition Algorithm for the DA Propagation Method:
Given \i(t), pi, ¢, pij, and P;1(0) for all 4,5 € {1,... K}, and t € [0, T,

1. Set t =0.

2. Call the Propagation Algorithm to calculate \;;(t + S ) from P (t) for each i, j. Set
Xt + Sie) = Ni(t + Sig) + 0, Njilt + Sie).

3. Call the Queueing Engine to calculate P;(t + At) using Ai(t + At) for each 1.
4. t=t+ At. If t <T, go to step 2.

The DA algorithm will actually calculate the departure rates A;; different lengths of time
into the future depending upon the expected number in the system at the time ¢.
Decomposition Algorithm for ST Propagation Method:

Given X(t), pi, &, pij, and P;(0) for all 4,5 € {1,... K}, and t € [0, T,

1. Set t =0.

2. Call the Propagation Algorithm to calculate A;;(t) from P;(t) for each 7,j. Set
Xi(t) = Xi(t) + T, Ni(e).
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3. Call the Queueing Engine to calculate P;(t + At) using Xi(t) for each .
4. t=1+ At. Ift <T, go to step 2.

We now describe the Queueing Engine and Propagation Methods.

4.1.1 The Queueing Engines

The decomposition method breaks up the K-station network into K independent stations.
The queueing engine calculates the time-dependent probability distribution for the number
at each station in the network, as if the stations were operating in isolation. The queueing
engine is an analytical model, chosen on the basis of the network examined. For example, if
we examine a network of single-server stations each with exponential service, we may choose
the queueing engine to be the CK equations describing an M (t)/M/1 station. Alternatively,
we may choose the queueing engine to be an approximation method described in Chapter 2,
such as SPVA. The choice of queueing engine will depend on the network examined and the
goals of the analysis. In this research, we have modeled a network composed of single-server
stations each of which has an exponential or k*»-order Erlang service-time distribution. The
queueing engines we use are SPVA and the CK equations for the M(t)/M/1 and M(t)/E;/1

systems. Finally, We assume a FCFS queue discipline at each station.

4.1.2 The Propagation Algorithms

The propagation algorithm determines the time-dependent departure rate of each station
in the network. As we mentioned in the description of the decomposition algorithm we test
the Disaggregation-Aggregation (DA) and Schmeiser-Taaffe (ST) [48] propagation methods.

We now describe each in detail.

The DA Propagation Method

The DA method calculates the departure rate from station ¢ to j for the point in time
when a customer arriving to station ¢ at time t will depart in the future. Conceptually, an
arrival to station ¢ at time ¢ must wait for all customers already at station ¢ to be served,
plus for its own service time, before it can depart station i. DA uses the expected value of
the system time to estimate system time at station : at time {. We denote the expected

system time as Sj;. DA estimates that an arrival to station 7 at time ¢ will depart at time
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f;‘t =t+ S;¢. At time t, DA estimates the future departure rate from station 7 to station j
at time £;; to be A;(2)p;;.

DA stores this future information in a look-up table, which we call );;. This table stores
departure rates for time intervals of length h. Thus, entry m of the look-up table represents
the departure rate from station i to station j during the time interval (h(m - 1), hm).
To store the future departure information from station ¢ to station j, DA must find the
appropriate entry in the look-up table in which to store j\i(f,-,g)p,-j. DA translates the

continuous variable fi,t to an integer value which is the index of the look-up table. This is

index = [ t;z_’t.l

Conversely, when the Queueing Engine retrieves the information in the look-up table to

accomplished as follows:

find the total arrival rate to station 7 at time ¢, it must find the look-up table index which

represents t. This is done as follows:

index = [%.l

Note that if the server at station ¢ is busy, u;p;; is the expected departure rate from station
i to j. Therefore, DA assumes each entry in the look-up table has a maximum capacity of
pipij. DA stores the departure rate from station 7 to j, ;\i(fi,g)p;j, in the look-up table entry
index if the current amount in index, plus S\i(fi,t)pij, does not exceed p;p;j. If this is not
the case, the amount by which the capacity is exceeded is distributed in consecutive bins.
In summary, the DA algorithm applied to station 1 is:
Given %i(t), i, Py, and Pyy(t),
Sit = [E[number of customers at station i at time t]+1]/y;
tie =t +Si,
index= r-:i;&]
departure rate = Xi(t)pij
vhile( departure rate > 0.0 )

temp = min[(y;p;;), (Aj; [index] + departure rate)]

excess = [();[index] + departure rate) - (u;pj;)]

Ajj[index] = temp

index = index + 1
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departure rate = excess
end while

When using the DA Method, the arrival rate to station 7 at time ¢ is found as follows:
Let index = [£]. Then,

K
Xi(t) = Ai(t) + 3 Aji[index]
j=1

In all experiments, we choose h to be the expected service time. For models in which
the data is less refined, h may be chosen to be a larger number. For example, our data may

be in the form of hourly arrival rates. In this case, we may choose h to represent one-half

hour or one-hour intervals.

The ST Propagation Method

Schmeiser and Taaffe (48] developed a propagation method for networks where each station
is approximated by an M(t)/M(t)/s system. We call this method “ST.” ST uses the
expected departure rate from station i to j to approximate \;;(t). We extend the method
to the general approximation method, SPVA, and to M(t)/Ey/1 stations.

The expression for expected departure rate depends on the state definition used by the
queueing engine. If the states of station i represent the number of customers, the expected

departure rate from i to j is:

Aij(t) = pij[0- P(server at station 4 is idle at time t)+
u; - P(server at station 1 is busy at time t)]

= pijpi(l — Pio(t)) (4.1)

We use expression (4.1) when we model station i by SPVA or the CK equations for an
M (t)/M/1 station.

In contrast, the CK equations for the M(t)/Ey /1 system represent the number of stages
of service in the system still to complete. A customer needs ku; stages cf service. A
departure can occur only from states 1, k + 1, 2k + 1, 3k + 1, .... Therefore, the expected
customer departure rate at time ¢t from an M(t)/Ex/1 station is ky; Y ;o Piek+1(t). The
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A0
Aft)

Figure 4-1: The Tandem Queue Network Model to Test the Decomposition Method

expected customer departure rate from station ¢ to j is:

As(t) = sk ,i Prtes(®) (42
=0
We use expression (4.2) when we model station 7 by the CK equations for an M(t)/Ex/1
station.

In total, we test combinations of two queueing engines, SPVA and the CK equations, and
two approximation methods, DA and ST, resulting in four approximation methods. The
CK+DA and CK+ST combinations, we call the “first-level” decompositions because they
are based on an exact (CK) approach for computing the queueing statistics at each indi-
vidual station. The SPVA+DA and SPVA+ST are “second-level” decompositions because
they use an approximate method (SPVA) for computing queueing statistics. We compare
these results to the exact network in which we solve large sets of CK equations describing

the joint state probabilities for all the stations in the network.

4.2 Network Description and Test Case Parameters

We now describe the network used to test the decomposition approach, and the correspond-

ing parameters and their values.

-4.2.1. _The Network

We test the four decomposition methods using the tandem-queue network illustrated in

Figure 4-1. This network is simple. This simplicity will allow us to observe the performance
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of the decomposition method and to isolate the factors which affect its accuracy.

The tandem-queue network consists of two stations labeled Q1 and Q2. All Q1 arrivals
come from outside the network. A departure from Q1 goes to Q2 with probability pi2 = p,
or leaves the network with probability 1 — p. Arrivals to Q2 come from outside the network
and from Q1. The “+” sign between Q1 and Q2 indicates that the two streams, Az(t) and
A12(t), are added to form the total arrival stream to Q2. Departures from Q2 leave the
network after completing service. There is no feedback in this network.

The decomposition method will reduce the analysis of this network to analysis of indi-
vidual stations. Since all of Q1’s arrivals come from outside the network, the decomposition
method will give the same time-dependent probability distribution at Q1 as the individual
queue analysis. Q2, however, depends on the time-dependent output of Q1. Therefore,
the decomposition method will be approximate for Q2. We measure the accuracy of the
decomposition method at Q2. We compare the exact network values m(t), o(t), m*, and

o* at Q2 to those predicted by the decomposition method.

4.2.2 Parameters

We parameterize the test cases in a manner similar to Section 3.3. However, we differentiate
between the two stations. The test cases are combinations of the following parameter values.

Average Utilization, p;, ranges from moderate to heavy at both stations: 0.5 - 0.9. p;
and p, are input data for the model.

The service rates at Q1 and Q2, u; and po, are input data. The service-time distributions
at Q1 and Q2 are also input data. Note that the service-time distribution at Q1 affects the
estimates of m(t), o(t), m*, and o* at Q2. We model the service-time distributions at Q1
as exponential and 3"%-order Erlang, and Q2 as exponential. Note also that the departure
process from Q1 is not Poisson if the arrival rate varies with time, even if the service times
are exponential.

We model the external Poisson arrival process as a sinusoidal function: A\;(t) = \; +
RA;)\sin (%’;;1) RA; and ); are the relative amplitude and average external arrival rate to
station %, respectively. Kg represents the average total arrival rate to Q2. We define RA;

below. RA; and RA; are input data. ); and ig are calculated from other input data:

Al = P
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A2 = Pops
X2 = Ag—ph

We define the degree of stationarity as in Section 3.3, except we differentiate between
RA,, the relative amplitude of the external arrival rate, and 1/2712, the relative amplitude
of the total arrival rate to Q2. RA; and RA, are input data, and I/2712 is calculated from
model outputs: RA; = m‘“ﬁ:—_éz. RA, = 1,21, RA; = 0,},2,1, and RA, ranges from
0.02 to 0.98.

The fraction of arrivals to Q2 which are departures from Q1, f, ranges from 10% to
90%. We examine f =0.1, 0.3, 0.4, 0.5, 0.9. In each case, (1 — f) of the arrival stream to
Q2 forms a nonstationary Poisson process. f is a user-specified input. p, the probability
that a random departure from Q1 goes to Q2, is derived from other input data: p = f;z

We represent maximum system utilizations at Q1 and Q2 by pmax,1 and pmax,2- Pmax,1
is calculable from other input data. It ranges from 0.83 to 1.8. In 49 of 56 test cases,
Pmax,1 = 1. Pmax,2 is a model output and depends on X2 (t), another model output. In our
test cases, pmax,2 ranges from 0.55 to 1.7, and pmax,2 > 1 in 26 of 56 cases.

We would like to model networks with infinite queueing capacity at each station, as well
as Erlang service-time distributions of higher-orders. However, memory constraints dictate
the maximum queueing capacity and the Erlang orders. We showed in Chapter 3 that
increasing the order of the Erlang increases the number of states, and therefore memory
requirements, to model a system with queueing capacity c. Therefore, we strike a balance
between Erlang orders modeled and queueing capacity. We model Q1 and Q2 with queueing
capacity 450 when Q1’s service-time distribution is exponential, and with capacity 250 when
QI has a 3"%-order Erlang distribution.

The order of the Erlang distribution also affects the complexity of the CK equations
describing the exact system. Even for this very simple tandem-queue network, the CK
equations are extremely complex for both service-time distributions as Q1. We show the
equations for the case in which Q1 has a 3"%order Erlang service-time distribution. Let
c1 = ¢z = ¢ = queueing capacity at Q1 and Q2, and Q; ;(t) = Prob(i stages of service at

Q1 and j customers at Q2 at time t). Then the CK equations for the network are:
Qoo®) = —(M(2) +A2(t))Qo,0(t) + 3(1 — p)r1Q1,0(t) + 12Q0,1(t)
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Qo,;(t)

Qo,c(t)

Qio(t)

Qiolt)

Qio(t)

Qiolt)

Qgc,o (t)
Qi ;(t)

ielt)
Qic(t)

Qi o(t)
Qi c(t)
Q3e,c(t)

Qi ;(t)

Q;i(t)

—(A1{t) + Aa(t) + p2)Qo,5(t) + X2(t)Qo,j-1(t) + 3pp1Q1,5-1(2)

+3(1 = p)m1Q1,;(t) + p2Qoj+1(t),1 < j<c—1

—(A1(8) + 12)Qo,c(t) + A2(t)Qo,c-1(2)

+3pp1Q1,e-1(t) + 3p1Qu,e(t)

—(A1(2) + Aa(t) + 3p1)Qio(t) + 3p1Qis1,0(8) + 12Qia(2),

1<i<2

—(A1(t) + A2(t) + 3p1)Qi0(t) + M (t)Qi-3,0(t) + 3(1 — Pl Qiv1,0(t) +
p2Qia(t),i € {3n},n=1,2,...,c—1

—(A1(®) + A2(2) + 3p1)Qi0(t) + M (1)Qi-3,0(t) + 3p1Qit1,0(t) + p2Qin (B),
ic{(3n+1,3n+2,n=12...,¢c-1

—(A2(t) + 3p1)Qi0(t) + A1 (t)Qi-3,0(t) + 3p1Qit1,0(8) + 12Qin (2),
3c-2<i<3—-1

—(A2(t) + 3p11)Qac,0(t) + A (t)Q3c-3,0(t) + 42Q3c1(2)

—(A1(t) + Aa(t) + p2 + 3p1)Qi (1) + A2(t)Qij-1(8) + 311 Qi 5(2)
+p2Qij+1(t),1 <i<3,1<j<c—1

—(M(t) + p2 + 3p1) Qi c(t) + A2(t)Qic-1(t) + 3p1Qin1e(t), 1 S 12
—(A1(t) + p2 + 3p11) Qie(t) + A2(t)Qic-1(8) + 311 Qi 1,(2)
+A1(8)Qi—3,c(t) + 3pp1Qit1,c-1(t),i € {In},n=1,2,...,c—-1
—(A1(t) + p2 + 3p1)Qie(t) + A2(t)Qic—1(2) + 311 Qit1,e(?)
+A1(8)Qi-3c(t)i€ {3n+1,3n+2},n=1,2,...,c—1

—(p2 + 3p11) Qi c(t) + A2(t)Qic—1(2) + 341 Qi1,¢(t)

+A1(t)Qi-3,(t),3¢ —2<i<3c~1

—(p2 + 3p1)Qac,c(t) + A2(t)Q3c,c-1(2) + A1 (t)Q3c-3,c

—(A1(t) + A2(t) + p2 + 3p1)Qi (1) + M (2)Qi-3,5() + A2(8)Qi j-1(2)
+3pp1Qit1,j-1(t) + 3(1 — p)p1Qir1,5(2) + p2Qi j+1(2),
ie{3rln=1,2,....c-1,1<j<c—1

—(M(t) + Xo(t) + p2 + 3p1) Qi (t) + M (8)Qi=3,5(2) + X2(t)Qij-1(¢) +

+3u1Qi+1,i(2) + #2Qij41(2),
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ie{3n+1,3n+2}n=1,2,...,c—1,1<j<c—1
Qi;(t) = —=(2(t) + p2 4 3u1)Qi ;(t) + M (t)Qi-3;(t) + A2(t)Qij—1(t) +
+3p1Qi+1,5(t) + p2Qij+1(t),

3c-2<1<3c-1,1<35<c-1
Qaci() = —(2(t) + p2 + 3111) Q3¢ (2) + M (8)Qac-3,5(t) + A2(t)Q3c,j-1(2) +

+12Q3c,j+1(t),1 <j<c—1

The complexity of these equations will increase with more stations in the network.

We analyze the systems over a 24-hour period. Again, this choice is dictated by the CPU
time needed to solve the exact system. Tables 4.1 and 4.2 list the CPU times needed to solve
the exact system, and each of the decomposition methods. All cases were run on a SUN
SPARCstation 10 Model 41 in double precision. The “CK+DA” and “CK+ST” columns
indicate the CK equation queueing engine with the DA and ST propagation methods,
respectively. The “SPVA+DA” and “SPVA+ST” columns indicate the SPVA queueing
engine with the DA and ST approximation methods, respectively. Note that the exact
solution CPU time in Table 4.2 is at least 12 hours, as compared to 3 minutes for CK+DA
and CK+ST, and 10 seconds for the SPVA+DA and SPVA+ST methods.

Tables 4.3 and 4.4 list the parameters associated with each of the 57 cases. We examined
24 cases in which Q1 had an exponential distribution, and 33 cases in which Q1 had a 3"-
order Erlang distribution. We investigated 9 extra cases of the 3"%-order Erlang distribution
for f = 0.3 and 0.4 to assess decomposition method accuracy for more values between

f=0.1 and 0.5.

4.3 Performance Measures, Test Case Results and Discus-

sion

This section presents performance measures used to assess decomposition accuracy, and
presents and discusses results. We examine decomposition quality in several ways. First,
we examine the “first level” approximations, CK+DA and CK+ST, which we refer to as
DA and S1'. These first-level approximations give us insight into the effect of decomposing

the network. We also compare the quality of the propagation methods to each other. We
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[Case | Exact | CK+DA | CK+ST | SPVA+DA | SPVA+ST |

1  [32,8290] 1105 84.7 21.1 20.8
2 | 33,1084 97.1 75.5 20.6 20.3
3 | 272112 | 1248 1069 22.5 20.1
4 | 26,565.7 | 1325 97.7 21.0 20.7
5 | 27,7742 | 1241 94.5 20.5 20.2
6 | 252038 | 138.6 | 1034 24.8 20.7
7 | 29,158.8 | 1005 92.0 19.5 19.6
8 | 258862 | 1254 105.9 20.9 20.4
9 |22,716.7 | 1138 95.3 18.9 18.4
10 |22315.7| 130.7 | 103.0 20.3 20.3
11 | 31,8327 85.9 85.0 19.9 21.6
12 | 25,662.2 |  100.7 96.7 21.4 22.8
13 | 282145 1238 | 1003 18.9 18.7
14 | 26,5705 | 1117 | 1021 21.0 21.6
15 | 27,2846 | 1073 92.7 18.7 18.4
16 | 28,405.9 94.0 84.6 19.0 18.7
17 | 33,5421 77.3 75.7 20.7 21.8
18 | 26,8253 | 11L1 93.2 21.8 22.9
19 | 25,7685 | 149.7 | 1128 20.4 211
20 | 29,1865 | 11838 73.5 19.6 19.1
(21 27,9874 1472 90.7 20.1 19.1
(22~ [26,673.3| 1650 | 104.1 20.0 19.2
23 [ 31,9422 86.9 86.6 20.1 21.1
24 26,1936 91.3 90.5 20.8 21.6

Table 4.1: CPU Times (Seconds) on SUN SPARCstation 10 Model 41: Q1 M(t)/M/1
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" Case | Exact ] CK+DA I CK+ST l SPVA+DA I SPVA+ST "
1 55,120.2 174.7 164.5 10.3 10.2
2 53,417.5 167.1 158.5 9.4 9.4
3 46,481.6 173.3 166.0 10.1 10.2
4 46,876.8 187.1 173.0 10.2 10.2
5 46,530.6 179.3 167.8 9.6 9.6
6 47,592.2 191.2 175.3 10.3 10.3
7 54,558.1 168.5 164.6 9.8 9.9
8 47,106.2 175.9 170.0 10.4 10.5
9 45,843.3 190.0 179.2 9.1 9.2
10 45,939.2 181.6 170.2 9.5 9.2
11 52,022.8 151.0 145.4 10.2 10.4
12 47,546.5 160.6 150.3 10.1 10.6
13 52,222.7 159.4 147.6 10.0 10.0
15 46,431.8 180.5 172.2 9.1 9.1
16 53,102.6 173.4 167.5 9.3 9.3
17 54,427.3 160.2 155.4 10.2 10.2
18 47,306.5 175.8 165.8 19.3 10.3
19 47,568.5 194.9 171.6 10.3 10.1
20 53,796.2 182.9 163.6 9.6 9.5
21 47,742.2 197.0 173.6 9.6 9.6
22 45,289.1 200.9 175.9 9.6 10.5
23 51,629.3 148.8 144.7 10.3 10.3
24 48,081.6 164.1 151.5 10.1 10.1
25 48,766.6 149.9 133.2 8.3 8.2
26 48,258.0 155.6 142.8 8.4 8.4
27 44,500.0 165.4 149.4 8.2 8.2
28 49,024.2 182.9 168.4 10.6 11.2
29 53,766.1 192.9 175.9 11.3 11.6
30 42,738.4 168.6 , 1519 8.2 8.2
31 47,194.3 1926 | 176.4 11.6 11.2
32 47,478.2 169.9 164.0 10.1 10.1

Table 4.2: CPU Times (Seconds) on SUN SPARCstation 10 Model 41: Q1 M (t)/E3/1

122



TCase| f | 7. | po | RAL| RA2 | RAs | pmax | Pmaxz2 |

1 0.1]0.75]0.751 0.67 | 0.67 | 0.63 | 1.25 1.23
2 0.1090 050|067 |067|061]| 1.50 | 0.81
3 05075075 1.00 | 0.00 [ 0.17 | 1.50 | 0.88
4 0.5]0.75]0.75 | 0.67 [ 0.67 | 0.50 | 1.25 1.13
5 0.5(0.90]050] 067|067 03| 1.50 | 0.69
6 0.9 {0.75(0.75 | 0.67 | 0.67 | 0.37 [ 1.25 1.02
7 0.1{0.75[0.75] 1.00 | 0.00 { 0.03 [ 1.50 | 0.78
8 090751075 1.00 | 0.00 [ 0.30 | 1.50 | 0.98
9 09 {090 [050]1.00]0.00(010| 180 | 0.55
10 0.9[090[050]|067 [ 067|017 ] 150 | 0.58
11 0.2 ]0.50 | 0.90 | 0.67 | 0.67 [ 0.67 | 0.83 1.50
12 0.51{0.50 | 0.90 | 0.67 | 0.67 | 0.66 | 0.83 1.50
13 0.1{050[090] 1.000.00 009 | 100 | 0.98
14 0.5]0.50 | 0.90 | 1.00 | 0.00 | 0.46 | 1.00 1.32
15 05]090048]1.00]0.00f0.09| 1.8 | 0.3
16 0.1]090 (050 [ 1.00 | 0.00 { 002 | 1.80 | 0.51
17 01075075033 {1.00 093] 1.00 1.45
18 0.5[0.750.75]0.33 | 1.00 | 0.64 | 1.00 1.23
19 0.9]0.75]075] 033 | 1.00 | 0.36 | 1.00 1.02
20 0.1]090[050]0.33 |1.00 (091 120 | 0.96
21 0.50.90[050]0.33]1.00|056 | 1.20 | 0.78
22 09(090]050]033[100}020| 120 | 0.60
23 0.110.50]090|033|1.00]0.93]| 083 1.74
24 0.5 | 0.50 | 0.90 | 0.33 | 1.00 | 0.67 0.83 1.50

——

Table 4.3: Case Parameters for Decomposition Test Cases in which Q1 has Exponential
Distribution.
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[ Case | f | 5 | o | RAL| RA2 | RA2 | pmaxt | Pmac |
1 0.11075]0.75] 0.67 { 0.67 | 0.63 | 1.25 1.23
0.11090 050 067 | 0.67 | 0.62 | 1.50 0.81
0.5]0.75]0.73 ] 1.00 | 0.00 | 0.1 | 1.50 0.88
0510751 0.75 | 0.67 | 0.67 | 0.50 1.25 1.13
0.5(090]0.49 | 0.67 | 0.67 | 0.43 1.50 0.69
091075]0.75 | 0.67 | 0.67 | 0.37 | 1.25 1.03
0.1]0.75]0.75 ] 1.00 | 0.00 | 0.04 | 1.50 0.78
09107510721} 1.00 [ 0.00 { 0.35 | 1.50 0.98
9 09(090)043 | 1.00 | 0.00 | 0.28 | 1.80 0.55
10 091090048 | 0.67 | 0.67 { 0.23 | 1.50 0.58
11 0.11050)]0.90| 067 | 0.67 | 0.67 | 0.83 1.50
12 051050]090 | 067 | 0.67 | 0.67 | 0.83 1.50
13 0.1 {0.50]0.90 | 1.00 | 000 [ 0.09 | 1.00 0.98
14 0.510.50)0.90 | 1.00 § 0.00 | 0.47 | 1.00 1.32
15 05090046 { 1.00 | 0.00 | 0.15 | 1.80 0.53
16 0.1(1090 0491 1.00 | 0.00 | 0.03 { 1.80 0.51
17 0110751075033 (1.00 093] 1.00 1.45
18 0.5{0.75|0.75033 | 1.00 { 0.65 | 1.00 1.24
19 091075]0.75| 033 ] 1.00 { 0.37 | 1.00 1.02
20 0.1 {0.90)0.50] 033 1.00 | 0.91 1.20 0.96
21 05(090 050033 | 1.00 | 056 | 1.2C 0.78
22 0.9(0.90)0507] 033100020 1.20 0.60
23 0.1 (050|090 033 | 100|093 | 0.83 1.74
24 05(050]09 1033 100067 ] 0.83 1.50
25 0.1 {050 1] 0.50 | 0.67 | 0.67 | 9.67 | 0.83 0.83
26 017050]050] 100 | 100|099 | 1.00 1.00
27 0310501050 1.00 | 1.00 | 0.98 1.00 0.99
28 03]0.75]0.75 | 0.67 | 0.67 | 0.57 1.25 1.18
29 03]090)090] 033 (033027 ] 1.20 1.14
30 04050050100 100 (097 | 1.00 0.99
31 04(0.75]075| 0.67 | 0.67 | 0.53 | 1.25 1.15
32 04)075]10741100 100|076 | 1.50 1.30
33 041090(090|033]033]025] 1.20 1.12

[o R | K= >R L] IS WU O]

Table 4.4: Case Parameters for Decomposition Test Cases in which Q1 has 3"%-order Erlang
Distribution.
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then assess the “second level” approximations, which are SPVA+DA . ad SPVA+ST. We
call these second level because they have two layers of approximation: the network has
been decomposed, necessitating the use of a propagation method, and we model individual
queues with the SPVA method. We compare the error introduced by SPVA by comparing
the SPVA+DA with DA results, and SPVA+ST with ST results.

We begin the discussion with performance measures.

4.3.1 Network Performance Measures

We assess the decomposition methods by their speed and accuracy. Tables 4.1 and 4.2 show
that solving the network exactly requires 2 and 3 order of magnitude more CPU time than
solving the decomposition methods. Our test cases examined the simplest network possible.
There are only two queues, with no feedback. From our experience, we conclude that it may
be practically infeasible to model and solve larger and more complicated networks using the
exact solution approach.

The methods using the SPVA queueing engine use far less CPU time than the CK
queueing engines. Tables 3.3 and 3.4 show similar results. The SPVA method is faster by
an order of magnitude. There is a one to 30 second difference between the DA and ST
methods using the CK gueueing engine. This difference is not evident when the SPVA
queueing engine is used.

We use the same accuracy measures as in Section 3.i. Accuracy for m* and o* at Q2
is measured by the Relative Error (RE). We measure accuracy for m(t) and o(t) at Q2 by
the Weighted Percentage Error (WPE). We now discuss the results.

4.3.2 Test Case Results and Discussion

We present the first-level decomposition results first. We isolate through them the error
introduced by decomposing the network. We identify the parameters (service-time distribu-
tion, f, P, P2s Pmax,1» Pmax,2) Which affect this error. We then compare the first and second
leve! approximations to identify the change in error introduced by the SPVA queueing

engine.
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Figure 4-2: f vs. WPE of Mean at Q2. Q1 with Exponential (Top) and with 3"%-order
Erlang (Bottom) Service-Time Distribution

Propagation Method Quality

Our results show that the service-time distribution at Qi, as well as f, the fraction of arrivals
to Q2 which are departures from Q1, are the primary factors which affect the accuracy of
our decomposition estimates of m(t), o(t), m*, and o*. Figure 4-2 shows the plots of f vs
WPE of mean for Q1 with exponential (top) and 3"%-order Erlang (bottom) service-time
distributions. Within each plot, the error increases as f increases from 0.1 to 0.9. The
WPE of mean is less than 5% in all 24 cases when Q1 has an exponential distribution.
In contrast, the WPE of mean reaches 25% when f = 0.9 and Q1 has a 3"%-order Erlang
distribution. WPE of mean is less than 3% for f= 0.3 or 0.4. When f=0.5, the WPE of
mean is less than 9%. The WPE of o, and RE of m* and o* show the same increasing error
as f increases. They show errors or the same order as those shown for WPE of mean for
the two service-time distributions, respectively.

Each of the twenty-four cases listed in Table 4.3 has the same input data as the corie-
sponding case in Table 4.4 except that the service-time distribution at Q1 in the former is
exponential and in the latter, 3"%-order Erlang. Associated with each case in the tables are
the four error measures. We compare the effect of the change in service-time distribution

for each case by examining the change in the error measure on a case-by-case basis. In
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Figure 4-3, we plot the difference in WPE of mean on a case-by-case basis. That is, each
point in the graph is (WPE of mean with 3r¢-order Erlang distribution — WPE of
mean with exponential service-time distribution) for ecch of the 24 cases. We plot
these differences vs. f. This plot isolates the effect of changing the service-time distribution,
while keeping all other parameters the same. When f = 0.9, the increase in error is between
5 and 25%. Strikingly, the increase in error is negligible when f = 0.1. Even when f = 0.5,
the increase in error is less than 10%.

What effect do the other parameters, RA;, ﬂg, D1y P2y Pmax,1 and pmax2 have on
decomposition accuracy? Our test cases indicate that they do not have as much effect as
f and the service-time distribution. Figure 4-4 shows the WPE of o plotted against these
parameters. Q1 parameters appear in the left column, Q2 in the right. Q1 parameters
result in increasing errors with increasing arrival rate nonstationarity, and maximum and
average utilization. But there are also cases which have high RA;, pmax,1, and p;, but
small WPE. None of these factors in isolation decreases appreciably the accuracy of the
decomposition. The Q2 parameters, ﬁg and pmax,2 show some large errors at values in the
middle of their ranges. However, there are also small errors in these same middle ranges.
None of these factors in isolation decreases decomposition accuracy. We conclude that

relative amplitude, average and maximum utilization are secondary factors in determining
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Q1 and Q2

decomposition accuracy.

We fix f = 0.5 to see if we can isolate secondary effects. Figure 4-5 plots WPE of o
vs. secondary factors for the 3"4-order Erlang distribution. The secondary effects are clear.
For a fixed f, decomposition accuracy decreases with increasing relative amplitude and
maximum and average utilization at Q1. However, the opposite is true for Q2 parameters.
Decomposition method accuracy increases with increasing relative amplitude in the total
arrival process, and in maximum and average utilization at Q2, for a fixed f.

Some of our results are similar to Albin (1] in which she examined queues with stationary
arrival rates in equilibrium. She examined the difference between the expected number in
a Y%, GI/M/1 system and in an M/M/1 system. Albin’s arrival processes had squared
coefficients of variation of %, 2, and 9. She found that the difference between the expected
number in the "%, GI/M/1 and M/M/1 systems decreases primarily as the number of
superposition arrival processes, n, increases. Our result, that as f increases, accuracy
decreases, is analogous. Albin found that the secondary factors were average utilization
and the squared coefficient of variation of the component processes. For a given n, the
difference increases as system utilization increases, and the absolute difference of the squared
coefficient of variation of the component processes from 1.0 grows. Our analogous result is
that for a fixed f, decomposition accuracy decreases as RA), p;, and pmax,1 increase. In

contrast, for a fixed f, decomposition accuracy increases as RAj3, py, and pmax,2 increase.
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Q1 and Q2, for fixed f = 0.5.

We note here that Albin’s experiments differ from ours in that she examined superimposed
arrival processes composed of n streams, each having the specified squared coefficient of
variation. In contrast, our experiments have a fraction f of total arrivals which come from
one source with an unknown distribution, and 1 — f which have a nonstationary Poisson
distribution.

The size of our errors are smaller in many cases than Albin’s. As an example, we examine
Case 14 of Table 4.4 with Q1 having a 3"%-order Erlang distribution, f=0.5 and 5, = 0.9.
The squared coefficient of variation of the interdeparture times from Q1 is unknown. DA and
ST estimate m(t) at Q2 within +0.4. WPE of mean is 0.17. In contrast, the error in Albin’s
stationary systems with p = 0.9, cv? = 0.5 and n = 2 is about 2.5, or 38.5%. This leads us
to hypothesize that the nonstationarity of the arrival processes does dampen the error. It
is difficult to understand why, although Koopman [26] observed that the nonstationarity in
the arrival process does not allow the full impact of differences which exist for stationary
systems in equilibrium to take hold. Chapter 5 presents some observations and conjectures
about the behavior of queueing systems with nonstationary arrival and/or service rates.

The difference between the propagation methods DA and ST is not significant. DA
and ST produce similar error measures for m(t), o(t), m* and o*. The choice of queueing
engine affects RE and WPE in the same way for both propagaticn methods. Figure 4-6

shows the four decomposition method estimates of m(t) and o(t) at Q2, in addition to
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Figure 4-6: Exact and Estimates of the Mean and Standard Deviation of the Number of
Customers at Q2. Q1 with 3"%-order Erlang Service-Time Distribution, Case 28.
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the exact values, for Case 28 with 3"%-order Erlang distribution and f = 0.3. All four
decomposition estimates appear virtually exact. DA and ST give better estimates of m(t)
and o(t) than do SPVA+DA and SPVA+ST. Figure 4-6 (b) shows that SPVA+DA and
SPVA+ST overestimate o(t), similar to results in Chapter 3. Results from Chapter 3 show
that SPVA overestimates o(t) in the case of M(t)/M/1 systems. Q2 is not an M(t)/M/1
system, but SPVA models it as one. DA and ST also overestimate o(t). One explanation
is that DA and ST assume the arrival process to Q2 has squared coefficient of variation
equal to one. However, we do not know what the actual squared coefficient of variation of
the arrival process is. Q1 has a 3"%-order Erlang service-time distribution, which probably
means that the interdeparture times from Q1 to Q2 have squared coefficient of variation
less than one. In this case, DA and ST assume a larger squared coefficient of variation in
the arrival process, which would explain the overestimation of o(t).

Figure 4-7 shows the exact and decomposition method estimates for the total arrival
rate to Q2. In this and all other cases tested, ST gives exact estimates of Ay(). SPVA+ST
also produces good estimates of Az(t). The errors in estimating m(t), a(t), m* and o* at
Q2 occur because the distribution of the arrival process is not Poisson. What is striking
about Figure 4-7 are the jagged lines at around the 4-hours and 15-hours regions. These
lines belong to the DA propagation method. This behavior manifests itself in both the
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CK+DA and SPVA+DA methods in all cases examined. It results from the expansion and
contraction of the expected system time at Q1 over the interval of analysis.

The relationship between the expansion of system time and arrival estimates in the
DA Method can be explained as follows. As the expected number of customers at Ql
grows over an interval, so does the expected system time. As the system time grows,
the spacing between the DA Method’s estimates of future departure times grows. As the
DA Method assigns future departure times to the look-up table );;, the increased spacing
between departure times may result in an entry of the look-up table being skipped, i.e.,
no departures are assigned to a particular look-up table entry. Therefore, an entry may
remain empty. The jagged effect on the arrival rate comes about when an empty entry in
the look-up table is located between two non-empty entries. In this case, there is a drop in
the total departure rate from station i to station j for the interval of time represented by
the empty entry. Since );j is a component of the total arrival stream to station j, this drop
will manifest itself as jags in the total arrival rate to station j. An equal and opposite effect
occurs as the expected number in the system contracts after it reaches its peak. In this case,
system time decreases over the interval. The result is that DA sometimes “doubles up” on
assignments of departures to a particular entry in the look-up table. In summary, he effect
of this jagged behavior on system statistics m(t), o(t), m* and o* appears insignificant;

however, the effect on the time-dependent arrival rate is noticeable.

The Queueing Engine Effect on Decomposition Method Accuracy

How well do the SPVA+DA and SPVA+ST methods perform in our test cases? Clearly, they
estimate m(t) as well as the CK+DA and CK+ST methods, but they generally overestimate
o(t). This is consistent with the behavior of SPVA observed in the individual queue results
of Chapter 3. In those tests, SPVA gave good estimates of m(t) in all 76 cases. However,
SPVA overestimated o(t). This overestimation is particularly noticeable for M(t)/M/1
systems with high arrival rate nonstationarity, and high average and maximum utilization.
The overestimation decreases rapidly for M(t)/Ey/1 as k increases, and for lower arrival
rate nonstationarity, and lower average and maximum utilization. In our tandem-queue
network, we model Q2 as an M(t)/M/1 station. Therefore, it is not surprising that SPVA
should overestimate o(t) for Q2.

The service-time distribution and f are the primary factors which determine the decom-

132



Figure 4-8: f vs. WPE of Mean at Q2. Q1 with Exponential (Top) and with 3rdorder
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Figure 4-10: Case-By-Case Difference in Queueing Engine WPE of 0. Q1 had 3d.order
Erlang Distribution.

position method accuracy when SPVA is used as the queueing engine. Figure 4-8 shows
the WPE of mean for all four decomposition methods. The methods with SPVA as the
queueing engine show errors on the same order as those with the CK queueing engine.
Larger f results in a decrease in accuracy. Figure 4-9 shows the WPE of SPVA methods
for o vs. f. f does not affect the decomposition accuracy in isolation. In fact, the top plot
shows the opposite trend from that of the CK+DA and CK+ST methods. However, we
point out two things. First, in the top graph, SPVA models both Q1 and Q2 as M(t)/M/1
stations, hence overestimation of o(t) is expected. Second, the points represented by the
four greatest errors for each SPVA method in both graphs correspond to cases 1, 11, 17 and
23. These systems have high average utilization (5, > 0.75) and degree of nonstationarity
(0.67 < RA; < 0.93) at Q2. In Chapter 3, we showed that the accuracy of SPVA estimates
of o(t) decrease for M (t)/M/1 systems as average utilization and degree of nonstationarity
increase. It is by chance that the choice of case parameters does not contain a case with high
f and high p, and RA,, which might show a different trend in Figure 4-9. Figure 4-10 shows
the secondary parameters vs. case-by-case differences between the WPE of o for SPVA+DA
with DA, and SPVA+ST with ST, for the 3"%-order Erlang distribution at Q2. It clearly
shows that increasing pmax,2 increases the WPE of the SPVA method as compared to CK
methods. Combinations of high RA; and high p, also yield higher SPVA WPE than CK.
These observations are consistent with the SPVA decrease in o(t) quality for M(t)/M/1
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systems. We conclude that in both cases the problem is due to the queueing engine error,
and not propagation method error.

The SPVA methods give good estimates of m(t), o(t), m* and o* for Q2 when the
parameter choice for the queues in isolation will yield good results. With respect to the
decision about whether to use CK or SPVA, SPVA enjoys a speed advantage. It gives
excellent estimates of m(t), o{t), m* and o* when the Erlang order is greater than or equal

to three. Therefore, use SPVA when possible.

4.4 The Approximate Network Delays Model

One of the motivations for this work is to validate some of the premises of a model that
we have developed in parallel with this research over the past three years, the Approximate
Network Delays (AND) Model [29]. The AND Model employs a decomposition approach
for approximate analysis of the national airport system. The AND Model is macroscopic
and is best-suited for use in strategic, or “policy analysis,” studies in which the primary
objective is to assess the relative performance of a wide range of alternatives. For this
reason, it aspires to be very fast, in terms of both input preparation and execution times,
so it can be used to explore a large number of “scenarios.” The model can also be used as
a screening device to identify the few most promising among many alternative courses of
action, which can then be studied in detail through more “microscopic” models. Specifically,
AND quantifies the system-wide changes in delay as a result of local changes at airports in
the network. These local changes may take the form of significant expansion of capacity at
a particular airport, or of a forecasted growth in operations.

As mentioned in Chapter 1, the network of airports is weakly connected. The fraction
of arrivals to any airport which are departures from any other single airport is less than 0.1.
A stronger link exists between landings and takeoffs at a single airport. In this case, the
fraction is about 0.3-0.4. However, one can argue that variable gate times, airline scheduling
practices, and late arrivals and departures lead to a very substantial decoupling of this link.
Our tandem-queue results indicate that these attributes of the network of airports satisfy
the “weakly-connected” assumption of a decomposition method, and thus the assumptions
of the AND Model. We conclude the decomposition approach of AND is appropriate for a

network of airports.
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The AND model was conceived at MIT where a prototype involving 3 airports was de-
veloped [29]. In 1994, under a co-operative research project between MIT and the MITRE
Corporation, the AND model was generalized to accept any specified number of intercon-
nected airports in the range from 2 to 58. In fact, a current implementation of AND models
the principal 58 commercial airports in the United States as the elements of the network.
Other airport networks can be modeled, if the appropriate data are available.

The AND Model differs from another airport model developed at MIT by Peterson et al.
[38], which we refer to as the “Peterson Model” in this discussion. The Peterson Model is a
quasi-deterministic multi-class queueing model which examines hub airports in a hub-and-
spoke network. Specifically, it tries to capture the effect of extreme peaks in demand at a hub
airport and its effect on the spokes and other hub airports with which it is tightly connected.
The special structure of the Peterson Model limits its applicability on a national scale, which
indicates the difference between the AND and Peterson Models. Another difference between
AND and the Peterson Models is the assumptions of the queueing model used by each.
The Peterson Model assumes arrivals are time-varying but deterministic. Airport capacity
varies according to an underlying discrete-state discrete-transition Markov model, but the
capacity associated with each state of the Markov Chain is deterministic. In contrast, the
AND Model assumes an arrival process which is nonstationary Poisson. Airport capacity
in the AND Model also varies with time and is stochastic.

The AND model employs a combination of analytical and algorithmic approaches to
estimate local and system-wide delays in a network. The model iterates between the ana-
lytical and algorithmic parts. Figure 4-11 illustrates the relationship between the analytical
and algorithmic parts of AND. The analytical part employs the DELAYS model to compute
delays at individual airports. (See Section 2.2.2 for a description of DELAYS, and Chap-
ter 3 for performance analysis.) The delays propagation part “propagates” delays from each
individual airport %o the rest of the network by tracing how individual aircraft are affected
by local delays. The current implementation of AND uses the DA propagation method.
As an example, consider three airports, A, B and C, in a network. If an aircraft flying
from A to B to C suffers a serious delay on landing at B on a particular day, this may also
affect its expected time of departure from B, as well as its expected time of arrival at C
late in that day. The analytical part of AND will compute the delay suffered on landing

at B by solving the dynamic queueing model that describes congestion at B, based on the
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(dynamic) demand and capacity profiles at B. The delay propagation part will then revise
the expected departure time of the aircraft from B and its expected arrival time at C, based

on

1. the amount of delay the aircraft suffers upon arrival at B,

2. the amount of that delay that can be “absorbed” on the ground at B due to any
“slack” in the turn-around time allotted to that aircraft by the airline’s schedule, and

3. the flight time required to go from B to C.

It can be seen that adjustments of this kind to the expected arrival and departure times will
affect demand profiles at the “downstream” airports later in the day. This may necessitate
revising the delay estimates at individual airports by going back to the DELAYS model.
The AND model thus iterates between revisions of the demand profiles at individual airports
and computation of delays at the airports until the entire time period of interest (one or
more days of operations) is completed.

The model itself actually consists of: an AND pre-processor, which uses airline schedules
to prepare full itineraries for every aircraft in the network along with dynamic (i.e., by time-

of-day) demand and capacity profiles for all the individual airports in the system; and of
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the AND Analytic/Delay Propagation Engine that computes and propagates delays in the
manner outlined in the previous paragraph.

Trvo versions of AND exist, a serial model and a parallel model. Both versions run on
SUN SPARCstation 10 workstations. The parallel version exploits networks of workstations
or multiprocessor workstations to spced up model execution by a factor of approximately
2 at this point. This is accomplished primarily by taking advantage of the decomposition
approach to distribute among the parallel processors the task of computing delays at the
individual airports. Further improvements along these lines may be achievable in the future.

The computational performance of the AND model is very efficient, compared to that
of large-scale simulations modeling network delay propagation in the A1'M/airport sector.
For example, the execution of a recent run involving a complete day of operations at the 58
principal airports in the United States took about 20 minutes on the serial version of the
model and about half this time in the parallel version. A total of about 50,000 landings and
takeoffs took place at these airports during the day in question. It should be noted that
the model computes the entire probability distribution for the number of aircraft at each
airport at any time ¢. In other words the fundamental quantity of interest is P;(t), i.e.,
the probability that there will be ! aircraft waiting to land or takeoff at airport 7 at time ¢,
for all possible values of [, 7 and {.

Figure 4-12 shows the CPU usage of a parallel implementation version of AND across
the real time axis. This graph shows three distinct behaviors. First, the series of low bumps
at the beginning of the computation correspond to the AND pre-processor preparing the
aircraft itineraries and airport demand and capacity as input to the model. The middle
series of high, telescoping peaks corresponds to the CPU effort in solving the queueing
engines for the individual airports. These telescope because, with each call to the queueing
engine, the delay at airports is propagated through the network later in the day, until the
very end of the period of analysis. Hence, only the first call to the queueing engines starts
from time 0. The subsequent calls start at later points in time corresponding to how far into
the day the delay has been propagated. The dips between the telescoping peaks correspond
to the propagation algorithm. The final peak at the end of the graph corresponds to the
calculation of statistics collected by AND.

The AND model generates a variety of output statistics, which can be aggregated for

the entire network or be specific by airport and even by aircraft. Its principal emphasis is
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on delay statistics, both in terms of additional time needed to complete a flight leg (“true
delay”) and in terms of the deviation from the flight’s schedule ( “effective delay”). Note that
true delay may be different from effective delay because airlines often include beforehand
in their published flight schedules an allowance for potential detays.

The AND model runs with a mouse-driven graphical user interface (GUI). Through the
GUI the user can select different scenarios for execution, create new scenarios or modify
existing ones. A “Capacity Editor” is included with the GUI to facilitate the modification
of the capacity profiles of the airports in the network as desired. A map display allows the
user to add or subtract airports to/from the network.

Over the past few months, the MITRE Corporation has tried to compare AND Model re-
sults with outputs of simulation models of the National Airspace System [4]. The simulation
models compared include the Nationa! Airspace System Performance Capability (NASPAC)
Simulation Modeling System (SMS). The NASPAC SMS was developed by MITRE in the
late 1980’s at the request of the FAA. The model is now being used as a benchmark against
which other models are compared. Preliminary results indicate that when NASPAC is used
with all of its features, NASPAC and AND give comparable results.

In conclusion, the AND model represents an important new development in the area
of system-wide modeling of airport operations. It could also be extended in the future

to include delay analyses that would also consider selected congested en route sectors.
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By itself, AND can be a viable alternative to simulaticn models for approximate policy
analyses that must explore a large number of alternatives. It may in fact be far preferable
to simulations, because of its speed, robustness and, most important, its computation of
probability distributions, not point estimates. For detailed design studies that aim at a
microscopic level of detail and high accuracy, a model siich as AND can still be highly
valuable as a screening tool or pre-processor that would help identify a small number of
alternatives that deserve further evaluation with a more detailed simulation model such as

NASPAC.

4.5 Summary

In this chapter we investigated a decomposition method for approximate analysis of net-
works of queues with time-varying arrival rates. This approach is an alternative to simu-
lation and to modeling the system as a network of M(t)/M(t)/1 stations. Both of these
methods are infeasible for almost all cases with the exception of the simplest networks.
To simulate a network, one must perform many simulations to obtain statistically valid
results. This, combined with the computation time per simulation, make it an infeasible
approach for high-level, network-wide analysis. If we model the network as an open network
of M(t)/M(t)/1 stations with probabilistic routing and instantaneous travel times between
stations, we can write down the CK equations describing the network and solve the system
exactly using numerical methods. However, we showed that the CK equations are complex
even for a simple tandem-queue network. Furthermore, the memory requirements of such a
system, and the CPU time needed to solve it, make this approach infeasible for almost all
cases.

The decomposition methods investigated in this chapter offer good alternatives for ap-
proximate analysis of networks of queues with time-varying arrival rates. A decomposition
approach may offer the only feasible method of analysis of such a network. First, the mem-
ory requirements are linear in the number of stations in the network. This attribute permits
analysis of networks with a large number of stations. Second, the CPU time required to
solve the decomposition methods is two to three orders of magnitudes less than the systems
mentioned above, if they can be solved. Third, the equations describing the relationships

among the queues are simple. This reduces the complexity of the network.
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When will a decomposition method be accurate? It is difficult to generalize based on
our tandem-queue results, but we get at least an indication of the most important factors
affecting decomposition accuracy. The primary factors determining the decomposition ac-
~ curacy at a station are f, the fraction of arrivals to a station which are departures from one
single other station, and the service-time distributions at the stations. Larger f leads to
decreased accuracy. As the coefficient of variation of the service-time distribution becomes
smaller, the accuracy also decreases.

Specifically, even for f ~ 0.5, most cases of CK+DA and CK+ST have RE and WPE of
the mean and of o which are less than 5%. The same is true of SPVA+DA and SPVA+ST
for WPE and RE of mean. When the service-time distribution changes from exponential
to 3"%-order Erlang, the increase in WPE of mean for f = 0.5 is less than 10% for all four
decomposition combinations. For f = 0.1, the increase is negligible. But for f = 0.9, the
increase in WPE is at least 10% when the service-time distribution changes.

How does one choose a method to analyze a network of queues with nonstationary
arrivals? If f = 0.9, one should clearly not use a decomposition method. If f < 0.5,
the first and second level decomposition methods are good. How does one choose which
combination to use? The choice of Queueing Model depends on the system being modeled.
It should be based on the knowledge of the circumstances under which the Queueing Engine
performs within the desired accuracy, and the types of statistics desired. One of the key
attributes of the Queueing Engine is that it be extremely fast. In our research, we used
the CK equations and the SPVA approximation method. SPVA enjoys speed advantages
over the CK equations. We showed that SPVA is very accurate for approximating many
systems in this chapter and in Chapter 3. The two propagation methods investigated in
this chapter, DA and ST, also produced estimates of the same level of quality. The ST
method produces smoother estimates of departure rates from the stations in the network
than does the DA method. DA’s estimates of departure rates from the stations are not as

good, but that does not seem to affect the system measures in a significant way.
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Chapter 5

On the Timing of the Peak Mean
and Variance for the Number of
Customers in an M(t)/M(t)/1
System

The research in this thesis focuses on systems with arrival and/or service rates which vary
with time. In practice, when managers design or analyze facilities with strongly time-varying
demand and capacity, they commonly focus on the performance of the facility during peak
" utilization: that period during which the facility is busiest. For example, airport authorities
strive to have their facilities designed so that aircraft and passenger delays in the peak
periods are within tolerable limits. Therefore it is important to develop an understanding
of when a peak in congestion (= the expected number of customers in the system) will
occur in relation to a peak in the system utilization. The difference between the time at
which the system utilization peaks and the time at which a system performance measure
(for example, number in the system) reaches its highest value is called the time lag. The
time lag can be a matter of minutes or hours, depending on the type of queueing system, the
average utilization rate, and how much the utilization peak rises over the average utilization
level. In addition, insight into the relationship between the time-dependent mean, m(t),
and variance, v(t), for the number of customers in the system may allow more effective

management of congestion at facilities where demand and capacity vary strongly with time.
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Researchers have already begun addressing this time lag issue in queueing systems with
nonstationary arrival and/or service rates. In the case of oversaturated queues, Newell (33]
conjectured that the peak mean number of customers in the system should occur at about
the end of the period of oversaturation, without making assumptions about the particular
form of the arrival process or service-time distribution. Using a diffusion approximation to a
nonstationary queue, he observed that the maximum variance for the number of customers in
the system occurs later than the maximum mean number in the system, based on numerical
calculations. Green and Kolesar [14] and Green et al. [16] addressed the behavior of several
performance measures of periodic M(t)/M/s queueing systems. They noted that not only
does the arrival rate peak not coincide with peaks in other measures such as expected
queue length and probability of delay, but the measures also behave differently from one
another. They also noted that as the event frequency (the number of arrivals or service
completions per cycle) increases, the lag between the peak in the arrival rate and the mean
number in queue decreases. Eick et al. [11, 12] examined M(t)/G /oo queueing systems.
In their breakthrough research, they used exact results for m(t) derived by Palm [37] and
Khintchine [22] to find exact, closed-form expressions for m(t), the extreme values of m(*),
and for the time lag between the peak in the arrival rate and the number of customers in
the system, in the case of a sinusoidal arrival rate function. These results can also be used
to approximate a finite-server system if the arrival rate does not approach or exceed the
service rate. This is not the case for some real-world systems with strongly time-varying
arrival and service rates. For such systems, an approximation based on M(t)/G /oo would
likely underestimate the actual time lag. Eick et al. also prove that the mean number of
customers in an M(t)/G /oo system with a sinusoidal arrival rate is symmetric about its
extremes, i.e., if an extreme occurs at time t,, then m(t;, —t) = m(ty, +¢) for all t. In
contrast, Green et al. showed that no system performance measures for finite server systems
(1 - 12 servers) are symmetric about their extremes.

Our research into M(t)/M(t)/1 systems is strongly motivated by real-world applica-
tions. Common characteristics of such systems are arrival and service rates that are highly
time-dependent, but do typically change in a periodic and smooth manner, with regularly
occurring intervals during which the arrival rate is low enough that the queue usually emp-
ties. Thus, we are interested in the systems that are stable, in the sense that the system

returns virtually to rest at some point during every period. It will be convenient to think
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of the period length as 24 hours, but it could of course be different. The assumption of a
nonstationary Poisson arrival process is reasonable for many real-world applications. The
assumption of exponentially distributed service times is typically less reasonable; we make
this assumption for analytical tractability. However, our computational results lead us to
believe that our results also hold for certain more realistic service-time distributions.

The purpose of this chapter is to provide theoretical insight and computational results
for the time lag between a peak in the system utilization and corresponding peaks in the
mean and variance (and, of course, the standard deviation) of the number in the system
in stable, periodic M(t)/M(t)/1 systems. Specifically, we provide a necessary condition
for when local extremes of the mean number in the system will occur, and a condition for
the local peak in the variance to occur strictly after a corresponding local mean peak, in
Section 5.1. Depending on the utilization function, there may not be a one-to-one corre-
spondence between peaks in the system utilization and peaks in the mean and variance,
over a single period. To avoid this complication, we will interpret our results in Section 5.1
under the assumption that the instantaneous utilization peaks exactly once per period. In
Section 5.1, we show that if the instantaneous utilization during some interval exceeds one,
then the next local peak in the mean number in the system will occur strictly after the
end of that interval. In Section 5.2, we present computational results supporting a con-
jecture: in a periodic, stable M (t)/M(t)/1 queue with a smooth utilization function that
peaks once per period, the mean peaks after the utilization and the variance peaks after
the mean. In Section 5.3, we discuss the issue of multiple utilization peaks over a single

period, corresponding to the multiple rush hours encountered in some real-world systems.

5.1 Extremal Conditions for the Mean and Variance of the

Number of Customers in the System

A time lag between the peak in the arrival rate and the peak in the system congestion has
been observed in M(t)/M/s, M(t)/Ex/1, M(t)/G /oo, and other types of nonstationary
queueing systems. The top graph in Figure 5-1 shows an example of this lag for the mean
of an M(t)/M/1 queueing system in which A(t) = 75 + 50sin(27/24) and @ = 100. The
bottom graph in Figure 5-1 shows the standard deviation for the number of customers in

the system for an M(t)/M/1 queueing system with the same parameters as in the top
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Figure 5-1: Example of Time Lag in the Mean and Standard Deviation for the Number in
the System of an M(t)/M/1 System

graph. The peak in the arrival rate occurs at ¢ = 102, the peak in the mean at about
t = 106, and the peak in the standard deviation at about ¢ = 109. Our computational
results indicate that the standard deviation for the number in the system peaks later than
the mean number in the system does for all the nonstationary single-server queueing systems
with infinite queueing capacity which we have examined. In this section, we focus on the
M(t)/M(t)/1 system and establish conditions for the peak in the mean and variance for

the number of customers in the system, as well as the relationship between the two.

Notation: We use the same notation as appears in Section 2.1. We supplement it with
the following. Primes will be used to denote derivatives, e.g., m'(t) = dm(t)/dt. The time
at which m* is achieved will be denoted t;,. We define t; and tj, similarly.

After proving the following preliminary lemma, we will derive conditions for when the

expected number of customers in the system peaks.

Lemma 1 In an M(t)/M(t)/1 queueing system, if Po(0) > 0, then FPy(t) > 0 for all t > 0.

Proof: The familiar Chapman-Kolmogorov forward equation for state 0 in an M (t)/M(t)/1

system is
Py(t) = =A(t)Po(t) + u(t) Pi(2).
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Let Py(0) = Py(0), where Py(t) satisfies
Py(t) = ~M(t)Pot)- (5.1)

The quantity Py(t) will be no greater than Py(t) for all ¢ > 0, as we now show. Since
p(t)Pi(t) > O it follows that Py(t) > Pi(t) for all ¢t > 0. Integrating on both sides of
P}(t) > Pj(t) we obtain

Py(t) > By(t) for all £ > 0. (5.2)

The solution to equation (5.1) is (see, e.g., Luenberger [28]):
. t
Py(®) = Puyexp [~ [ x(ryar]
7=0

Since Py(0) > 0 and exp [— It z\(r)d‘r] > 0 for all ¢ > 0, we have that Py(t) > 0 for all
t > 0. Finally, inequality (5.2) implies that Py(t) > 0 Vt > 0. ]

Theorem 1 In an M(t)/M(t)/1 Queueing System, a necessary condition for the times at
which the ezpected number of customers in the system m(t) takes on its local eztreme values
1s:

Al _
i =1 RO (5.3)

Proof: We use the expression for m/(¢) derived by Clarke [8] in 1956 and used by Rothkopf

and Oren [46] in the derivation of their closure approximation for the nonstationary M/M/s
1

queue’:
m'(t) = A(t) — p(t) (1 — Po(t)] = u(t) [p(t) — (1 — Po(2))] (5.4)
To find when m(t) achieves its extreme values, we simply set m/(t) = 0 and find the following
condition:
m'(t)=0 & %g =1— Py(t) (if u(t) > 0) (5.5)

Equation (5.5) must hold for m(t) to achieve a local maximum, m*, or local minimum, m,.

!The expression for m’'(t) which appears in Clark (8] requires that the operations of differentiation and
infinite summation be switched. A proof of this appears in Appendix C.
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Eick et al. [11] specialized their M(t)/G /oo results to the case of exponential service-
times and proved a result for M (t)/M /oo systems which looks similar to that of Theorem 1:
m'(t) = A(t) — um(t). In the case of sinusoidal-Poisson arrivals, a closed-form expression
for m(t) exists (in the infinite-server case), and the exact time at which m* occurs , and
the value of m*, can be found.

Theorem 1 has the following important corollary.

Corollary 1 Suppose that Py(0) > 0 and p(t) > 1 for t € (t1,t2) for an M(t)/M(t)/1

system. Then the first congestion peak m* after t| will occur after ty, t.e., t3, > ta.

Proof: From (5.4), we see that when p(t) > 1, m/(t) = pu(t) [p(t) — (1 — Po(t))] = p(t)(p(t)—
1) > 0. Therefore, m(t) does not peak while p(t) > 1, i.e., t}, > t2. By Lemma 1, Py(t2) > 0,
which implies that 1 — Py(t2) < 1 = p(t2). Thus, the condition of equation (5.5) is not met,

so m* does not occur at £3. We conclude that t;, > t. - |

Figures 5-2(a), 5-2(b), and 5-2(c) illustrate Corollary 1. They correspond to an M(t)/M/1
system with A(t) = 90+ 30sin(27/24) and 2 = 100. Figures 5-2(a), 5-2(b), and 5-2(c) depict
p(t),m'(t), and m(t), respectively, over one period of A(t). The times ¢; and t mark the
beginning and the end of the period during which p(t) > 1, t3 is the time ¢}, at which m(t)
peaks, and ¢4 is the time at which the minimum value m, of m(t) is achieved. Note that
t3 — tp is very small in this particular case, but positive nevertheless.

In our work with nonstationary queueing systems, we have also observed that the be-
havior of the variance and standard deviation for the number of customers in the system
can be quite different from that of the mean. One of the most salient differences is that
the variance and standard deviation peak later — sometimes much later — than the mean.
Theorem 2 establishes a condition under which the variance peak v* occurs later than the

peak in the mean m*. Let t} be the time at which v* is achieved.

Theorem 2 In an M(t)/M(t)/1 system, t; > t;, iff

1
m*+1

> Py(ts,). (5.6)

We remark that in all our numerical computations to date, £ > t7..
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Proof: The proof consists of showing that v'(t;,) > 0 iff condition (5.6) holds. We use
the expression for v'(t) derived by Clarke [8],

M)

o(t) = u(t) [“(t)

+1-Py)1+ 2m(t)]] (5.7)

At the time £}, when m(t) achieves its peak m*, the relation ;\Tg':"% =1 — Py(ty,) will hold,

by Theorem 1. Substituting this relation into equation (5.7), we get:
V(tm) = 2u(ty) (1 — Po(ty)m® +1]). (5.8)
Assuming that u(t),) > 0, the right-hand-side of equation (5.8) will be positive iff

1— Py(t;,)[m* +1] >0, that is, iff ;71 > Po(t], B

We note that m.l =7 is never greater than one so condition (5.6) is not trivially true. We

also note that for stationary M/M/1 systems in steady state, m* = p/(1 — p). Therefore,

in this case, F!-T-T = 1—p = P, i.e., the two sides of the inequality (5.6) are equal. We
note that a completely equivalent condition to inequality (5.6) is: p(t;,) > 5’!‘—;—1

In this section, we analyzed the M(t)/M(t)/1 queueing system. We obtained results
consistent with the Theorems 1 and 2 in Section 3.4.2 for the M(t)/Ey/1 system and for
the SPVA, DELAYS, INTERP and M(t)/D/1 methods.

5.2 Computational Results for M(t)/M/1 Systems

In this section we present some of the computational results for M (t)/M/1 queueing systems
which led us to investigate the time lags for the mean and variance for the number of
customers in the system and to derive the results of Section 5.1. We cull these results from
the test cases of Section 3.4.2 which contained 19 different cases for the M (t)/M/1 system.

Each case had u(t) = z. We also present results supporting the following conjecture:

Conjecture 1 Suppose that the utilization function p(t) = A(t)/u(t) for a stable
M(t)/M(t)/1 system is smooth, continuous, and periodic, with one peak per period. Then
that peak will induce peaks in m(t) and v(t), with the mean peak occurring strictly later than

the utilization peak and the variance peak occurring strictly later than the mean peak.
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In Table 5.1, we provide data which confirm Theorems 1 and 2 and Corollary 1. Note
that because the ODE solver takes discrete time steps, m'(t;,) is not exactly equal to 0.
In Table 5.1, coluran 7, we show how small the difference t;, — t, is for the cases in which
pmax > 1, where (t;,¢2) is the interval during which ppax exceeds 1.0. For the cases in
which pmax < 1, N/A (= Not Applicable) appears in this column. Note that in the cases
in which Z = 100 and pmax > 1, which correspond to heavily-stressed systems, there was
no discernible difference (to two decimal places) between ¢}, and t5. Although Po(t;,) is
positive, it is extremely small in these cases, as can be seen in column 9 of Table 5.1. Based
on condition (5.4) we expect t}, — t2 to be very small when Py(t;,) = 0.

In Tables 5.1 and 5.2, we provide support for Conjecture 1. Our computational results
are for a stationary service rate, so only the arrival rate changes with time, but this is
immaterial as far as the validity of the conjecture?. There are three sets of values which
support Conjecture 1. First, condition (5.6) of Theorem 2 holds in all 19 cases examined.
Second, also in all 19 cases examined, v'(t},) > 0, sometimes v'(t;,) > 0, indicating that
v(t) is still increasing at the moment that m(t) peaks. Third, o(t) peaked later than m(t),
sometimes by several hours, in all 19 cases. Table 5.2 lists the time lag between the peak
in the arrival rate and the mean in column 4, and between the peak in the arrival rate and
standard deviation in column 5. We note that in all the computational results for the other
nonstationary single-server systems we mentioned at the end of Section 5.1, o(t) peaked
later than m(t), leading us to believe that this behavior may be typical of a broader class of
nonstationary queueing systems, with service-time distributions which are not necessarily
exponential.

Figures 5-3, 5-4 and 5-5 are graphical representations of Table 5.2 for the 19 cases
examined. Figures 5-3 and 5-4 plot pmax vs. the time lag between the peak in the arrival
rate and the times at which m* and o* occur, respectively. The size of the time lag of m* is
smaller than that of o*. Figure 5-5 plots pmax vs. t}, — t}, and shows that t}, exceeded ¢, in
our test cases. Furthermore, the time lag of o* increased significantly faster than that of m*
for cases in which pmax > 1. This observation again suggests that m(t) behaves differently

from v(t) and o(t), in significant ways.

2An M(t)/M(t)/1 system can be transformed into an M(7)/M/1 system, via the time transformation
T(t) = f‘: p(8)ds (see [8]). The ordering of the peaks in p(t), m(t), and v(t) is not affected by this time
transformation.
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L2 p RA| | m'(tn) | V() [th—tel 7 | P |

100 0.5 = | 30.2 | 0.0038 0.03 | N/A 0.33352 | 0.33346
£1 30.5 | -0.0006 0.11 [ N/A 0.1695 | 0.1694

11035 | 0.0196 | 43.21 | N/A 0.0494 | 0.0388

0.75 2 | 104.0 | -0.0022 | 42.49 | N/A 0.0429 | 0.0338

= | 106.0 | 0.0014 | 199.61 | 0.00 0.0068 | 0.0000

1] 154.7 | 0.0355 | 200.04 | 0.00 0.0031 | 0.0000

0.9 x| 1564.7 | 0.0196 | 198.50 | 0.00 0.0071 | 0.0001
£1155.4 | 0.0061 | 200.01 | 0.00 0.0028 | 0.0000

1] 227.6 | -0.0068 | 199.99 | 0.00 0.0171 | 0.0000

10 0.5 3 | 55.1[-0.0032 0.14 | N/A 0.3424 | 0.3399
£ [ 103.7 | -0.0008 1.09 | N/A 0.2105 | 0.1991

1] 152.4 | 0.0013 4.15 | N/A 0.1207 | 0.0956

0.7 1]346.3 | 0.0050 | 17.59 | 0.02 0.0340 | 0.0041
0.75 z | 153.2 | 0.0006 4.17 | N/A 0.1046 | 0.0828
£1226.1 | 0.0008 | 13.66 | 0.13 0.0472 | 0.0150

11]274.7 (-0.0023 | 19.06 | 0.01 0.0269 | 0.0013

0.9 312269 | 0.0014 | 12.72 [ 0.21 0.0431 | 0.0157

£ |347.4 | -0.0073 | 19.33 | 0.01 0.0231 | 0.0008

1]347.6 | 0.0111 | 20.00 | 0.00 0.0154 | 0.0000

Table 5.1: Numerical results: derivatives of m(t) and v(t) at the time ¢}, when m(t) peaks.

lz » RA | lag in m* | lag in o* ||

100 0.5 0.15 0.22
0.49 0.72

1 1.51 2.21

0.75 I 2.01 2.94
4.00 6.88

1 4.70 9.10

0.9 : 4.70 8.12
5.36 10.89

1 5.57 12.12

10 0.5 3 1.10 1.50
£ 1.70 2.50

1 2.40 3.40

0.7 1 4.33 6.80
0.75 1 3.20 4.70
4.13 6.00

1 4.71 7.70

0.9 z 4.91 7.69

£ 5.37 9.10

1 5.60 10.20

Table 5.2: Time lags in hours between the peak in arrival rate and peaks in the mean and
standard deviation of the number of customers in the system.
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Figure 5-3: Time Lag for Peak in the Expected Number in the System
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Figure 5-4: Time Lag for Peak in the Standard Deviation of the Number in the System
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Figure 5-5: Difference Between the Time Lags for the Peak in the Standard Deviation and
the Expected Number in the System

5.3 Summary

This chapter began to explore the time lag between the peak in the utilization function
and the times at which local peaks m*,v*, and o* for the mean, variance, and standard
deviation of the number of customers in the system occur. We conjecture that for stable,
periodic M (t)/M(t)/1 queueing systems with smooth, continuous, utilization functions that
peak once per period, the mean peak m* will occur later than the system utilization peak
and the variance peak v* will occur later than its corresponding mean peak (Conjecture 1).
We suspect that the same is true of M(t)/G/1 systems.

We demonstrated analytically, for a periodic M (t)/M(t)/1 queue, that if pmax > 1, then
the mean number in the system is increasing when the utilization peaks. Thus, any local
peak in the mean number in the system induced by a utilization peak will occur strictly
later than the utilization peak. Computational results for M (t)/M(t)/1 and other periodic
single-server queueing systems confirmed our analytical result and support Conjecture 1.

Our results in Theorems 1 and 2, and Corollary, do not depend on specific arrival,
service-rate, or utilization functions; however they are most easily interpreted for the case
when the utilization function is periodic and peaks once per period. In the case of more

general utilization functions with multiple maxima over a single day, there may not be
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a one-to-one correspondence between utilization peaks and mean peaks. Consider, for
example, a utilization function which exceeds one throughout somc interval of the day,
during which there are two local utilization peaks. After the end of this interval, the
utilization will drop below one, and the mean will then reach a local maximum if the
utilization stays below one long enough. In this case, two utilization peaks correspond
to one mean peak. Thus, the practical implication of our findings is that if there are
multiple utilization peaks over the day, and these peaks are “well-spaced,” meaning that
the periods of system utilization exceeding one are separated by sufficiently long periods of
time during which system utilization is strictly less than one, then there will be a one-to-one

correspondence between local utilization maxima and local mean maxima.
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Chapter 6

Conclusions and Future Research

In this thesis, we developed approximate, computaticnal methods for the analysis of dy-
namic queues and for networks of dynamic queues. Specifically, we investigated three facets
of these problems. First, we developed and tested new approximate methods for analyzing
individual queues with time-varying arrival and/or service rates. These methods are effi-
cient and have limited computer memory requirements, and model a variety of queues with
different service-time distributions. Second, we proposed and tested approximate decompo-
sition methods for analyzing open, weakly-connected retworks of dynamic queues. These
methods allow analysis of systems for which exact methods of analysis do not exist, or are in-
feasible to implement for practical reasons. The decomposition approach is computationally
and computer-memory efficient. Third, we investigated aspects of the behavior of queueing
systems with time-varying arrival and service rates. The observations we make for these
systems provide some rules-of-thumb that should help planners and operators of facilities
with strongly time-dependent demand and capacity to make better facility management
decisions.

Our focus on networks of dynamic single-server queues was motivated by a particular sys-
tem of great practical importance: the national network of airports. We used the paradigm
of the national network of airports to motivate the problem, and to choose scenarios for
numerical tests.

We discuss the main results of the thesis and their implications in Section 6.1. We

discuss future research directions in Section 6.2.
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6.1 Results of the Thesis

The main contribution of this thesis is the development of fast, flexible and easy-to-implcment
computational methods for approximate analysis of dynamic single-server queueing systems
and networks of dynamic queues. In Chapter 2, we introduced new computational methods
for approximate analysis of nonstationary single-server queues. These methods include the
State Probability Vector Approximation (SPVA), developed by this author, and DELAYS,
developed by Kivestu [23]. We also investigated an interpolation method, INTERP [26, 19].
SPVA is the most general of the three methods tested; it approximates M(t)/G(t)/1 sys-
tems. DELAYS and INTERP approximate M(t)/Eg(t)/1 systems. All methods can model
the transient and equilibrium behavior of these systems and calculate the time-dependent
probability distribution for the number of customers in the system. The computational
results of Chapter 3 indicated that SPVA, DELAYS and INTERP approximate M(t)/Ex/1
systems well under conditions encountered in real-world systems. Specifically, they gave
estimates of the quantities of interest, i.e., the time-dependent mean and standard devia-

tion, and their peak values, within 5% of exact values in many cases. These approximation

methods required significantly less CPU time and computer memory than solving the exact
M(t)/Eg/1 system.

Further computational testing of SPVA indicated that it is potentially a good approxi-
mation for single-server queueing systems with time-dependent general service-time distri-
butions and Poisson arrival processes. In all cases tested, SPVA solved for the quantities
of interest in a matter of seconds. Our observations of SPVA are the following. First, the
quality of SPVA estimates of the quantities of interest were within 5% of exact values when
both the arrival and service rates varied with time in the two cases we tested. Second, we
showed that SPVA is fast, flexible, and easy-to-implement in approximating two particular
M(t)/G(t)/1 systems. SPVA gave results for these systems which were consistent with
the behavior of nonstationary queueing systems with similar parameters. Third, we inves-
tigated SPVA accuracy for approximating M(t)/H2/1 systems. The Hj distribution, in
contrast to the k**-order Erlang, has a coefficient of variation which is greater than or equal
to one. The SPVA approximation to the M(t)/H2/1 system revealed that it gave good
approximations of the quantities of interest under certain combinations of parameters, even

when the coefficient of variation was extremely high. These tests also indicated that as
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the coefficient of variation of the service-time distribution grew, the quality of the SPVA

estimates decreased, when all other parameters were held constant. The decrease in quality

was most noticeable for cases of moderate event frequency. Finally, we compared SPVA to
the Surrogate Distribution Approximation (SDA) methods of Rider, Clark, and Rothkopf
and Oren. SPVA gave estimates of the time-dependent mean which were comparable to
those of Rider and Rothkopf and Oren. Clark’s SDA method was superior to SPVA in the
case we examined. We note, however, that the case was for low event frequency.

In Chapter 4 we began to investigate a decomposition approach for approximate analysis
of a weakly-connected network of nonstationary single-server queues, or stations. Few re-
sults exist for these complicated systems. The decomposition method we proposed provides
an alternative to simulating networks of nonstationary aueues and to the exact modeling of
a system as a Markovian network. Both simulation and the Markovian representation of the
network are often infeasible, the exception being cases of very small and simple networks.
In contrast, the decomposition method we investigated has memory requirements which are
linear in the number of stations, requires little CPU time, and easily captures the relation-
ships among stations in the network. We performed computational tests on a two-queue
tandem network for which we could compare the decomposition results to the exact val-
ues. Memory restrictions limited the choice of the service-time distributions and queueing
capacities we could model, even for this simple network. The solution times for the exact
system were on the order of 6 and 12 hours for the two sets of cases we examined using this
simple network. In contrast, the four versions of the decomposition method we examined
required between 10 and 200 seconds to solve the same sets of systems. Our results indicate
that there are two primary factors which affect the accuracy of the decomposition method:
the fraction of arrivals to a station which are departures from any other single station, and
the service-time distributions at the stations. Larger fractions lead to decreased accuracy.
As the coefficient of variation of the service-time distribution becomes smaller, the accuracy
also decreases. Specifically, for fractions of less than 0.5, the decomposition error is less than
5% of the exact value when the coefficient of variation of the service-time distribution is 1.0.
When the coefficient of variation of the service-time distribution is 0.58, the decomposition
method errors are less than 10%. For smaller fractions, the errors were smaller for both
service-time coefficients of variation. When the fraction is 0.1, for example, the errors were

negligible for service-time coefficients of variation of 1.0 and 0.58. It is difficult to generalize
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this conclusion for more networks with more stations or different service-time distributions,
though, based on the results for our particular network configuration.

The combination of fast, accurate approximation methods for dynamic queues and of a
decomposition method which uses them provides a potentially useful tool for approximate,
macroscopic analysis of a network of airports. The network of airports is weakly connected.
The fraction of arrivals to any airport which are departures from any other single airport is
less than 0.1. A stronger link exists between landings and takeoffs at a single airport. In this
case, the fraction is about 0.3-0.4. Our tandem-queue results indicate that these attributes
of the network of airports satisfy the “weakly-connected” assumption of a decomposition
method. We conclude a decomposition approach is appropriate for a network of airports.

Finally, in Chapter 5 we investigated some aspects of the behavior of M(t)/M(t)/1
systems. We found a necessary condition for the time when the extremes in the time-
dependent mean of M(t)/M(t)/1 systems occur. The necessary condition depends only on
the time-dependent arrival and service rates and the probability of an empty system. More
importantly, the corollary of this condition states that if the system utilization exceeds
1.0 for some interval in an M(t)/M(t)/1 system, the peak in the mean will occur strictly
after the end of this interval of system oversaturation. These results do not depend on the
exact form of the arrival and service rate functions. Our computational results indicated
that this principle may hold for other nonstationary queues. The corollary also provides a
rule-of-thumb for determining when the peak in the expected number of customers occurs
in real-world systems, assuming the arrival and service rates are known. Several other
conjectures regarding the behavior of M(t)/M(t)/1 systems which appear important from
the practical point of view were also presented.

In carrying out this research, we identified new research opportunities. We now briefly

discuss them.

6.2 Future Research

Based on the research presented in this thesis, we have identified many potentially fruitful
areas of research. These fall into two categories: extensions of the SPVA appioximation
method, and further exploration of the decomposition method to networks of dynamic

queues.
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We have identified four areas of further research involving SPVA. They are:

1. Assess the accuracy of the SPVA method for M(t)/G(t)/1 systems in a more precise

manner.

2. Compare the SPVA method to more general SDA methods which approximate
Fh(t)/Ph(t)/1/c systems. These methods were developed by Ong and Taaffe (36]
and are currently the benchmark against which new approximation methods must be

compared.

3. E::plore the possibility of extending SPVA to systems with Phase-type arrival distri-

butions.
4. Determire if SPVA can accurately model multi-server systems.

The area of networks of dynamic single-server queues offers many possibilities for re-
search. In this thesis, we solved exactly only a two-station tandem network. Research on
larger and more complicated networks is necessary in order to refine our understanding of
the factors affecting decomposition accuracy. For example, our network examined the effect
of a single station feeding a second station. When we assessed the accuracy of the decom-
position method, one of the two primary factors affecting the accuracy was the fraction of
total arrivals to the second station which were departures from the first station. A natural
question to ask next is, “What is the effect of having two stations feeding a single station
whiie holding the fraction of arrivals to the second station which are departures from the
first two stations, fixed? What effect does the superposition of several departure streams
have on the accuracy of the decomposition method?” We could not address this important
question in our two-station tandem network.

Research on networks of dynamic queues with feedback and different service-time dis-
tributions is also necessary. However, CPU time and computer memory limit the size and
complexity of networks which we can solve exactly. Simulation of such systems is also im-
practical as far as obtaining levels of accuracy adequate for analysis. Therefore, we suggest
exploring the effect of these attributes by extending our two-queue network in such a way
that exact results can still be found. That is, keep the network small, and add attributes
one-at-a-time. In this way, the impact of these attributes on decomposition accuracy can

be assessed in isolation and in combination with others.
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Appendix A

Examples of o,  1(j) for Specific

Service-Time Distributions

A.1 Exponential Service Times

If dB(z) = pe #**dz,z2>0,
00 J
then Qpt1 (j) = / Q.(_t_'.'.')_x_)_e‘x(tn)zpe-ﬂzdx
z=0 J: '
_ UV
(1 + A(tn))7+?

A.2 kt*-order Erlang Service Times

(ky)kzk"le_k“z

IfdB(z) = k=1 dz,z >0,
then an41 (]) = /ioo (,\(t;')z)j e—A(tu)z (kp)(":i—;)e'—kuz i
I LA o B B (77 YN )
j (kp + A(tn))E+7
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A.3 Hyperexponential Service Times

m m
IfdB(z) = Zpgme"‘“’dx,x > O,Ep; =1,p; >20fori=12,...,m,

=1 t=1
J
then ap41(j) = / (i(t,,)_a:) -/\(tn)xzpue BiZ )
z=0 J' i=1

_ i Pilti
= Al [Z} it A(t,,))fﬂ]
A.4 Uniform Service Times

1
b—

a
' 1 —a Atn o Altn)b
oan1(j) = m{ M) [E( t )a)] bA(tn) [Z( (tn) )]}

If dB(z)

1=0 =0

A.5 Triangular Service Times

@\~ dtc
IfdB(z) = d—c (x—¢c), 0<c<z< % ,
pd—z), %§¢<z<d

) = GTaRom)

e ffvecs(i3) [ 2262

[(A(t »’J(' )’“]}

i} Mty | (j+1 2, (A(tn)d)’
ve mﬂ,{< (e | (341 _,) [ZI( (,-.”]}

1=0

_—eA(ta) ) _ (/\(tn)jcj+l) J+1Y | tn)C)'
‘ { ( )+ () Eo
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Appendix B

The Arrival Process

In all of the queueing systems, we assume a nonstationary Poisson arrival process with

instantaneous rate parameter A(t) at time ¢. Assuming \(s) is an integrable function, let

A®) = J{ tzo A(s)ds.

Then (see Ross [44]),

[A(t2)—A(ty)jr e~ (At2)-A(t1)) _
ili i i n! ) n_o’l,z,...
Probability of n arrivals in (;,t2) = !
0

ctherwise

If A\(s) is an integrable function over the interval of interest, then A(t2) — A(t1) =

) at;tn A(s)ds exists. In our research with sinusoidal arrival functions, one can find At+by) -

A(t) exactly. However, in the case of general arrival functions, it may be significantly easier

to use A(t)b; instead of [ ‘_'_ff ! \(s)ds. For example, if we attempt to evaluate expression (2.4)

8

for A(t) = X+ ARAsin (%—:), we get the following difficult-to-evaluate expression:

) = [ [a? + XRA (8) = sin (2t +2) sin (5)]]

z= j!
o {4 A (2 o (2 7)o (22)]] 0

However, we know that the time clock advances b; time units in the SPVA, DELAYS, and
M(t)/D(t)/1 metheds. If [ tntbi ) (s)ds ~ A(tn)b1, we may nse A{t,) in the complicated

s=tn

expression above, and thus obtain simpler expressions, such as (2.5). This approximation is

165



Linear Case A =50 | A=5

Exact Approx || Exact | Approx ” Exact | Approx
parameter value | 0.30000275 | 0.3 0.5007 | 0.5 0.5065 | 0.5
ag(t,t + by) 0.7408 0.7408 |l 0.6061 | 0.6065 || 0.6026 | 0.6065
ay(t,t+by) 0.2223 0.2222 | 0.3035 | 0.3033 | 0.3052 | 0.3033
ax(t,t + by) 0.0333 0.0333 || 0.0760 | 0.0759 | 0.0773 | 0.0758
as(t,t + by) 0.0034 0.0033 |f 0.0127 | 0.0126 || 0.0131 | 0.0126

Table B.1: Exact and Approximate Values for Nonstationary Poisson Arrival Process Pa-
rameter Cases

good if A(t) changes slowly relative to the length of the average service time. To illustrate
that this is a reasonable assumption, we give an example from our airport application where
b; = 0.01 hour (assuming a service rate of 100 per hour). In Table B.1, we show how small
the difference is between the exact parameter (A(t + b;) — A(t)), labelled “Exact”, and
the approximate parameter (A(t)b;), labelled “Approx,” for several cases. We examine the

following functions of the nonstationary Poisson process parameter:

1. A linear function. This function describes the greatest change in airport arrival rate
during the course of a day at Logan International Airport. The slope of this function

is 55. b; = 0.01.

2. A high-frequency sinusoidal function with parameter X(i) = 50 + 50sin (2”‘) This
function produces values of A(t) comparable to the range of arrival rates at Logan

over a 24-hour period. b; = 0.01.

3. A low-frequency sinusoidal function with parameter A(t) = 5 + 5sin (22’;‘) This case

was chosen to determine if approximation accuracy is sensitivity to the frequency of

events. b; = 0.1.

In Table B.1, we also show the probability of 0, 1,2, and 3 arrivals in b; time units using the
exact and approximate parameters. The notation used is a;(t,t+b;) = P(i arrivals in (¢,¢+
by)).

In the three examples shown in Table B.1, the difference between the probabilities for the
number of arrivals in the interval calculated using the exact and approximate parameter is,
at worst, visible only in the third decimal place. Therefore, it is reasonable to approximate

A(t+5;) — A(t) by A(t)b;. We define the probability of k arrivals in a time interval of length
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T to be:

])\gtlrl“e“\(‘)' _
o , n=0,1,2,...

an(t,t+7)= (B.1)

0, otherwise
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Appendix C
Supplementary Proof

Consider an M(t)/M(t)/1 queue and its evolution over some finite time interval [a,b], as

governed by the forward differential equations:

Pl (t) = Mt)Pic1(£) = (A(t) + u(®) Pi(t) + p(t) Pia (t) for i = 1,2, ...

, (C.1)
Py(t) = =A(t)Po(t) + u(t) Pi(2)

Given initial conditions {P;(a) > 0} where io‘, P;(a) = 1, we are assured of the existence
of a unique, nonnegative continuously different:i-_;x(i)le solution to (C.1).

Assume that the arrival and service rate functions A and p are nonnegative and that A
is bounded on [a,b]. For t € [a,b], define m(t) = f iP;(t) and assume that m(t) is finite
and continuous’. =

Proposition: m(t) is differentiable on [a, b], with derivative

m'(t) = ‘% {iiﬂ-(t)} = iip,f(t)

=0 =0
i.e., m' (t) exists on [a, 8] and can be computed by interchanging the infinite summation and
the differentiation.

Proof: We define the following functions:

)

This is really a condition on the arrival and service rate functions: we require them to b2 sufficiently
well behaved so that m(t) is continuous.
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ft)= Z iP;(t)

I..—

fa(t) = Z iP{(t)

'l._

an(t) = Z iFi(t)

i=0

We need to show that f;(t) converges uniformly on [a,d] to f(t) (see theorem 7.17 in
[47]). Due to the form of | fn(t) — f(t)|, it turns out that this amounts to showing that gn(t)
converges uniformly on [a, b] to m(t) and we therefore show this first.

For any n, the function g,(t) is continuous, since it is the sum of continuous functions.
By definition, g,(t) converges pointwise to m(t) and it does so in a monotonic manner,
since all the terms in the summation are nonnegative. Since m(t) is assumed continuous,
the assumptions of theorem 7.13 in [47] are satisfied (the theorem is stated for the case
of a monotonically nondecreasing sequence of functions, but is easily seen to hold also for
monotonically ron-increasing sequences) and we are assured that g, (t) converges uniformly
to m(t) on [a,b]. A similar application of the same theorem shows that {33 Pi(t)},—,
converges uniformly to 0 on [a,b]. A bounding argument, where |g,(t) — m(t)| is used as
an upper bounad on |(n + 1) P,41(t)|, shows that {nP,(t)},2, also converges uniformly to 0
on [a,b).

Next, we will compute |f,(t) — f(2)|, using the forward equations (C.1):

TORF OB AC
= | £ 10RO - A0 + sO)PO + )P (1)
= ho £ a0 - Ro}+un - P.(t)+P:+1(t)}$
- A(t){gﬂ(iﬂm(t) oy tmt)}w(t){—i_: P+ ¥ (z—m’(t)}
= po{rra+ £ R0} - u(t){(n+1)Pn+1(t)+'_§3 P.(t)}
< Mo {nPa)+ £ RO} <3 {nPe) + £ RO}

where A* = max A(t). Next,
a<t<b
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[o o) [o ]
nlergo asgt:gbz\ {nP,,(t) + Z P.-(t)} <A nlgrgo asgt:gb {nPp(t)}+A nll{go asS\?()b {2 P,~(t)} =0

i=n =% \i=n

since both {3-%° Pi(t)}ox, and {nPy(t)}n—, converge uniformly to zero on [a,b]. This com-

pletes the proof. |
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