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Thermal Anisotropy Enhanced by Phonon Size Effects in Nanoporous Materials

Giuseppe Romano* and Alexie M. Kolpak
Department of Mechanical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA

While thermal anisotropy is a desirable materials property for many applications, including trans-
verse thermoelectrics and thermal management in electronic devices, it remains elusive in practical
natural compounds. In this work, we show how nanoporous materials with anisotropic pore lattices
can be used as a platform for inducing strong heat transport directionality in isotropic materi-
als. Using density functional theory and the phonon Boltzmann transport equation, we calculate
the phonon-size effects and thermal conductivity of nanoporous silicon with different anisotropic
pore lattices. Our calculations predict a strong directionality in the thermal conductivity, dictated
by the difference in the pore-pore distances, i.e. the phonon bottleneck, along the two Cartesian
axes. Using Fourier’s law, we also compute diffusive heat transport for the same geometries ob-
taining significantly smaller anisotropy, revealing the crucial role of phonon-size effects in tuning
thermal transport directionality. Besides enhancing our understanding of nanoscale heat transport,
our results demonstrate the promise of nanoporous materials for modulating anisotropy in thermal

conductivity.

INTRODUCTION

Designing materials to achieve desired thermal prop-
erties is pivotal for many modern applications, including
thermoelectrics [1] and heat management in electronic
devices [2]. Use of nanostructures has led to the achieve-
ment of new extremes in both high and low thermal con-
ductivities relative to natural materials [3]. The degree
of transport suppression is dictated by the relationship
between the characteristic length of the material and the
dominant phonon mean free path (MFP) [4]. For ex-
ample, recent experiments have demonstrated very low
thermal conductivities in thin films [5], nanowires [6, 7],
and porous materials [8-13], illustrating the effectiveness
of boundary engineering in tuning thermal transport [14].

While suppression of phonon transport in nanostruc-
tured materials has recently attracted a great deal of at-
tention, little is known about the directionality of ther-
mal conductivity in such materials. Tailoring thermal
anisotropy, i.e., directional-dependent heat transport,
can be useful for many applications, including transverse
thermoelectrics, in which electron and phonon flows are
orthogonal to each other [15]. In-plane anisotropic ther-
mal conductivities have been demonstrated in layered
two-dimensional (2D) materials such as arsenene [16] and
phospherene [17], which also exhibit promising thermo-
electric properties. In these systems, the in-plane di-
rectionality of heat transport arises from the puckered
nature of the structures. In general, however, materials
with both native anisotropic thermal transport and prac-
tical thermoelectric efficiencies remain elusive. The wide
range of pore sizes and configurations that have been
demonstrated [14, 18-20] suggest that nanoporous ma-
terials are a good platform for artificially inducing and
tuning thermal anisotropy in isotropic materials. In this
work, we investigate this possibility using nanoporous
silicon as a text case. Using our recently developed

approach based on the Boltzmann Transport Equation
(BTE) [18], we calculate the phonon-size effects and the
thermal conductivity tensor in nanoporous silicon with
anisotropic pore lattices. We consider three different pore
arrangements: the configuration with fixed pore size, the
case where the pore size is adjusted to keep the poros-
ity fixed and the case where both pore size and porosity
are kept fixed. For all the configurations, we observe a
significant thermal conductivity anisotropy. These find-
ings can be explained in terms of the directionality of
the phonon bottleneck, represented by the pore-pore dis-
tance along the applied temperature gradient. On the
other side, simple Fourier’s law simulations for the same
geometries predict weak anisotropy, revealing the impor-
tance of phonon-size effects in enhancing thermal trans-
port directionality.

Thermal transport simulations are performed over a
unit-cell with size L,xL, comprising a single square pore
of size Ly, as shown in Fig. 1-a. The pore lattice is iden-
tified by the orthogonal lattice vectors a; = LyrX and
ay = L,¥, where r is the shape factor, simply defined
as r = Ly/L,. For r = 1, the pore lattice is isotropic
and the unit-cell is a square of side L, = L, = L = 10
nm with pore size L, = L\/¢ = 5 nm, where ¢ = 0.25
is the porosity, i.e. the ratio between the area of the
pore and the area of the unit-cell. We will refer to the
isotropic case as “ISO”. For anisotropic pore lattices, we
consider three cases of practical interests: fixed porosity
(FP), fixed pore size (PS) and fixed porosity and pore size
(FSP), as illustrated in Fig. 1-b,-c, and -d, respectively.
Anisotropic pore lattices, which correspond to r > 1, are
achieved by varying L, and adjusting L, and L, in order
to achieve the conditions required for the specific config-
uration. The values for these parameters are described in
table I. The thermal conductivity tensor is reconstructed
by applying a difference of temperature AT, = 1 K along
the Cartesian axis « and collecting heat flux along the
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TABLE I. Geometrical parameters for the different configu-
rations in relation to Fig. 1.

| || Same size | Same porosity| Same size/ porosity|

L. Lr Lr L/r
L, L i NG
LI TV | I/ 1V

same direction. Then, the application of Fourier’s law
gives Kaq = %fca J(r, A, Q) - ndS, where C, is the
boundary of the unit-cell with normal aligned with o.

We first investigate heat transport in absence of
phonon size effects, by using a finite-volume solver for
the standard diffusive equation ﬁbulkV2T(r) = 0, where
Kpulk is the bulk thermal conductivity (~155 Wm1K!
for Si [21]) and “D” stands for “diffusive’. For the ISO
case, the Maxwell-Garnett theory predicts the reduction
in the diffusive heat transport £2, = k) ~ rpur f(¢) =
Kpuk(1 — @) /(1 + ¢) ~ 90 Wm~ k=t [22]. In regard
to the anisotropic cases, the FP and FSP cases lead to
the same thermal conductivities because the two con-
figurations differ only by a scale factor, a parameter to
which diffusive heat conduction is insensitive. In this
case, for r > 1, the pore-pore distance along %X shrinks
leading to a decrease in kL2, while ﬁfy increases because
of the widening of the distance between the pores along
¥. These opposite trends lead to an anisotropy, defined
by AP = kD /kD, of ~ 2.4 for r = 3. On the other
side, for the FS case, both 2, and nfy increase with r
because of the decrease in the porosity. In this case, the
anisotropy remains relatively small. The values of k2,
and finy for different r are shown in Fig. 2-a and -b, re-
spectively, while the values of A are plotted in Fig. 3-a.

Let us analyze the effects of phonon-boundary scatter-
ing on the anisotropy. Phonon size effects are computed
by solving the Mean-Free-Path BTE (MFP-BTE), which
reads as [18]

As(Q) - VT(r,A, Q)+ T(r,A,Q) =

© K(A (1)
=7 152) < T(r,A\,Q) > dA,

where T'(r, A, Q) is the effective temperature associated
with phonons with MFP A and direction s(€2), < . > is
an angular average and -y is a material property, defined
as v = [f,° K(A)/A2dA}_1. The term K (A), namely
the only input to our model other than the material’s ge-
ometry, is the bulk MFP distribution, computed by the
density functional theory [23, 24]. Eq. 1 is discretized in
space by means of the finite-volume method [25] and in
angular domain by the discrete ordinate method [26]. Pe-
riodic boundary conditions are applied along both X and
¥y, while the walls of the pores are assumed to scatter
phonon diffusively. This condition is achieved by enforc-

= Periodic (a) =— Diffuse

FIG. 1. (a) The simulation domain comprises one single
square pore. Periodic boundary conditions are applied both
along z- and y-directions. The walls of the pores are assumed
to be diffusive. Magnitude of thermal flux when a tempera-
ture gradient is applied along the z-direction for a shape ratio
r = 2 for the case with (a) fixed pore size (b) fixed porosity
and (c) fixed pore size and porosity. For all the cases illus-
trated, ¢ = 0.25 and L = 10 nm.

ing zero normal flux along the pore’s wall, which leads to
the following condition on the boundary temperature [27]

_ Jo Js@)mz0 I (r, A, Q) - ndQdA

Ty, =
KN s(Q) - ndQdA

(2)
fs(sz)-n<0

where n is the normal to the pore’s surface and
J(r,A, Q) = KD A Q)s(Q) is the thermal flux.
The presence of phonon-boundary scattering results in
a strong reduction in thermal transport. For example,
for the ISO case, k2, = finy =6 Wm 'K~! (“B” stands
for “BTE”), less than one order of magnitude smaller
than that of the bulk counterpart [27]. In the subsequent
analysis, in order to focus on phonon-size effects we com-
pute the quantities Aoo = KpurkZ,/k2,. As shown in
Fig. 2(c), for the FS case r > 1 leads to a modest incre-
ment in K, and a significant increase in &, leading to
the anisotropy AP ~ 2.8 for r = 3. This high anisotropy
compared to that of the diffusive counterpart, can be ex-
plained in terms of the characteristic length, L.. When
heat transport is dominated by boundaries, the thermal
conductivity goes with L. [4], i.e. Fur ~ Kn~!, where
Kn is the Knudsen number, defined as A/L. and A is
the dominant MFP [4]. For anisotropic pore lattices, the
characteristic length L. depends on the direction of the
applied temperature. For r > 1, phonons travelling along
¥y experience a larger L. than that related to phonons
traveling along X. Hence, directionality in L. translates
in enhanced anisotropy in thermal conductivity. Accord-
ing to this argument, for the FP and FSP cases, we ob-
tain a decrease in Ky, and an increase in k., that reflects
the trend of L. along x and y, respectively. The high-
est anisotropy, A® ~ 18, is obtained for the FSP case.
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FIG. 2. Thermal conductivity tensor for different cases (FP,
FS and FSP), shape ratios » and with L = 10 nm. The
component (a) x5, and (b) kL, computed by Fourier’s law.
The quantities (¢) Rze and (d) Ryy computed by the MFP-
BTE. In all the subplots, the black-dotted line refers to the
ISO case.

From Fig. 1, we note that phonons contributing to K,
travel mainly through direct paths, as a consequence of
the small bottleneck. This “phonon focusing” effect can
be suitable for coupling a heat source with a nanowire,
as proposed in a recent study [28].

In order to provide predictions for material systems
that are currently within experimental reach, we analyze
the scale dependence of the anisotropy for all the three
cases. While for the FS case the anisotropy becomes
negligible for L > 10 nm, the FP and FSP cases exhibit
AB ~ 5 for a scale as large as L = 100 nm and approach
the diffusive limit for larger scales, as shown in Fig. 3.
This result can be better analyzed in terms of the phonon
suppression function, a quantity that describes phonon
suppression for each MFP, defined as [18§]

La

aa AN)=—"77—
Saald) = Z-RTA

/ <T(r,A,Q)s(Q)-n > dA,
hot
3)

where Ay is the area of the hot contact and n is its
normal. The term S(A)na provides the calculation of
the thermal conductivity via kaa = [y K(A)Saa(A)dA
and maps the bulk MFP distribution into that of the
nanostructure. We narrow our analysis to the FSP case,
which is the case of most interest. In fact, in a practi-
cal implementation, the reachable pore size is determined

by the experiment limitations. On the other side, keep-
ing the porosity fixed guarantees higher control in ther-
moelectric applications, where electrons, which mainly
travel diffusively, are affected largely by the porosity
rather than the actual pore configurations [29]. In or-
der to focus on size effects, again, we compute the quan-
tity Saa(A) = (mbulk/mga) Saa(A). In Fig. 3-d, we plot
Sgz(A) and Syy(A) for L = 100 nm and L = 1ym. In
the background, we plot the bulk MFP distribution. We
note that for the largest scale, S, (A) & Sy, (A) for most
of the spectrum while they differ significantly only for
A > 2 — 3um, where the contribution to thermal con-
ductivity is relatively small. On the other side, for L =
100 nm, S, (A) is always higher than S, (A) because of
the small L, with respect to the bulk dominant MFPs,
giving rise to a significant anisotropy.
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FIG. 3. The anisotropy (a) AP and (b) A® for different cases
(FP, FS and FSP), shape ratios r and with L = 10 nm. (c)
The anisotropy computed by BTE and for different scales L.
(d) The phonon suppression functions Sq (A) for L = 100 nm
and L =1 um. In the background, the bulk MFP distribution
used as input to the BTE.

In summary, we have computed the thermal conduc-
tivity tensor of porous Si with anisotropic pore lattices,
demonstrating that phonon size effects can induce sig-
nificant anisotropy. The calculations were based on a
recently developed method, which computes phonon-size
effects with no input parameters other than the mate-
rial’s geometry and crystal structure. As these results
apply when the constituting material is either isotropic or
anisotropic, our findings suggest a practical route to arti-
ficially induce or suppress thermal transport directional-



ity, an appealing capability for modern applications such
as thermoelectrics and heat management in electronic de-
vices.
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