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Sampling-based synthesis of maximally-satisfying controllers for
temporal logic specifications

Cristian-Ioan Vasile1 and Vasumathi Raman2 and Sertac Karaman1

Abstract— Sampling-based methods have advanced the state
of the art in robotic motion planning and control across
complex, high-dimensional domains. With few exceptions, such
approaches only admit simple constraints and objectives, such
as collision-avoidance and reaching a goal state. In this work
we leverage the best of two worlds: the scalability of sampling-
based motion planning and the precise formal guarantees of
temporal logic. We present an incremental sampling-based
algorithm that synthesizes a motion control policy satisfying
a bounded Signal Temporal Logic formula over properties
of a given environment. Our key insight is that we can bias
the selection of samples using a quantitative measure of how
well the best path in the current tree of samples satisfies the
specification. This allows us both to converge to a path that
satisfies the specification, and to improve upon an existing path,
i.e. to satisfy the specification with maximum robustness. We
illustrate the performance of our method in several case studies.

I. INTRODUCTION

Sampling-based methods have advanced the state of the
art in robotic motion planning across complex and high-
dimensional domains. The goal is usually to find a controller
that drives the robot from a start state to a goal state.
However, as robots become more capable and versatile, the
tasks we assign to them become more complex, and may
be better specified using richer formalisms such as domain-
specific languages, finite state machines, and temporal logic.
Motivated by the burgeoning complexity of motion tasks
assigned to robots, in this work, we apply sampling-based
methods to produce controllers that solve temporal logic
planning problems.

Temporal logic specifications are expressive and precise
formalisms for describing desirable properties of a system
that evolves over time.[1], [2], [3]. There exist rich theory
and practical tools for synthesis from temporal logics, and
recent research in robotics and control has brought these
methods to bear on motion planning and control for a variety
of systems across several domains [4], [5], [6], [7], [8], [9],
[10]. These works leverage a variety of temporal logics,
including Linear Temporal Logic (LTL) [3], Metric Temporal
Logic (MTL) [11], Signal Temporal Logic (STL) [12], Time
Window Temporal Logic (TWTL) [13], and syntactically co-
safe LTL (scLTL) [14]. In this work, we focus on the problem
of generating a control policy such that a system satisfies a
Signal Temporal Logic (STL) specification.
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A key advantage of STL as a specification language is that
there is also rich body of work on quantitatively monitoring
the satisfaction of STL formulae on system behavior in
hybrid (discrete and continuous) domains, for both discrete
and continuous time semantics [12], [15]. The idea is to
be able to assess not just whether an execution satisfies the
desired properties, but how much of the property is satisfied
(or violated). For STL, such quantitative semantics have been
successfully used for optimization-based synthesis [16], and
methods developed for efficiently assessing satisfaction over
system behavior in both offline [17] and online [18] settings.

Our contribution in this paper is the definition of a class
of specification-based heuristics, and their use in sampling-
based control synthesis for temporal logic specifications.
These heuristics are not just helpful for finding an initial
solution quickly, but can also be applied to improve upon an
existing solution. More precisely, given a formula, we define
the Direction of Increasing Satisfaction (DIS), and propose
a class of heuristic functions based on the DIS to capture
the most promising direction of exploration to improve the
quantitative satisfaction given a partial trajectory. The role of
these heuristics is to provide a gradient-like information for
exploration algorithms, which may be of independent interest
beyond the use in this paper. For instance, these may be
used in conjunction with optimization-based planning and
learning algorithms to speed them up. We show that our
algorithm is asymptotically optimal: in the limit of sampling
it yields a solution that maximizes quantitative satisfaction
of the temporal logic formula. In addition to the theoretical
results, we demonstrate the effectiveness of our approach
experimentally.

Sampling-based methods for planning have already proven
useful in a variety of contexts, including temporal logic
controller synthesis. Extensions of Rapidly Exploring Ran-
dom Trees (RRT) [19] and their optimal version, RRT∗[20],
have been proposed to incorporate specifications in µ- cal-
culus [21], [22] and LTL [23], [24]. Probabilistic Roadmaps
(PRMs) [25] have also been exploited for temporal logic
synthesis [26], [27]. However, ours is the first approach
to explicitly use bounds on the quantitative satisfaction of
a formal specification as a heuristic to guide sampling.
Additionally, since we use STL, unlike previous approaches,
we do not need an expensive discrete abstraction of the
system in order to evaluate satisfaction of the specification.

Another related body of work is that of automata or
language-guided synthesis [28], [29], where an automaton
representing a temporal logic specification is used to guide
a sequence of reachability problems, resulting in a hybrid
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solution to the motion planning problem. Our approach is
similarly guided by a temporal logic specification, but we
avoid the construction of an explicit automaton, and instead
rely on the quantitative semantics of the logic to guide
sampling.

Our approach is for general dynamical systems and STL
specifications, but inspired by robotic motion planning tasks.
We therefore demonstrate its applicability with case studies
on a double integrator and a rear wheel car.

II. PRELIMINARIES

Let R be the set of real numbers and t ∈ R. We denote
the interval [t,∞) by R≥t. Given interval I = [a, b], the
interval [t + a, t + b] is denoted by t + I . The uniform and
Bernoulli distributions are denoted by Unif (S) and Ber(p),
respectively, where S is a set and p is a bias. Missing values
in algorithms are denoted by ./ .

Let (M,d) be a compact metric space with M ⊂ Rn,
n ≥ 1, and S = {s : R≥0 →M} the set of all infinite-time
signals in M . The components of a signal s ∈ S are denoted
by si, i ∈ {1, . . . , n}. The set of all linear functions over Rn
is denoted by F = {π : Rn → R}. Let δτ : S → S be the
time-shift operator acting on signals in S with τ ≥ 0, i.e.,
δτs(t) = s(t+ τ) for all t ≥ 0.

The syntax of STL is defined as follows [12]:

φ ::= > | pπ(x)∼µ | ¬φ | φ1 ∧ φ2 | φ1U〈a,b〉φ2 ,

where > is the Boolean true constant; pπ(x)∼µ is a predicate
over Rn parameterized by π ∈ F , µ ∈ R and an order
relation ∼∈ {≥, >,≤, <} of the form pπ(x)∼µ = π(x) ∼
µ; ¬ and ∧ are the Boolean operators for negation and
conjunction, respectively; and U〈a,b〉 is the bounded temporal
operator until, where 〈 ∈ { [, ( } and 〉 ∈ { ], ) }.

The semantics of STL is defined over signals in S recur-
sively as follows [12]:

s |= > ⇔ >
s |= pπ(x)∼µ ⇔ π(s(0)) ∼ µ
s |= ¬φ ⇔ ¬(s |= φ)

s |= (φ1 ∧ φ2) ⇔ (s |= φ1) ∧ (s |= φ2)

s |= (φ1U〈a,b〉φ2) ⇔ ∃tu ∈ [a, b) s.t.
(
δtus |= φ2

)
∧
(
∀t′ ∈ [0, tu) δt′s |= φ1

)
where a, b ∈ R, a < b. A signal s ∈ S is said to satisfy an
STL formula φ if and only if s |= φ. The Boolean value
false ⊥≡ ¬> and additional operations (i.e., disjunction,
implication, and equivalence) are defined in the usual way.
Also, the temporal operators eventually and globally are
defined as ♦〈a,b〉φ ≡ > U〈a,b〉φ and �〈a,b〉φ ≡ ¬♦〈a,b〉¬φ,
respectively.

The Abstract Syntax Tree (AST) of an STL formula is
a tree with predicates for leaves and operators for internal
nodes, such that its inorder traversal yields the formula.
Fig. 1 shows the AST for the formula (�[t1,t2]pπ1(x)∼µ1

∧
�[t3,t4]pπ2(x)∼µ2

)⇒ ♦[0,t5]pπ3(x)∼µ3

⇒

∧

�[t1,t2]

pπ1(x)∼µ1

�[t3,t4]

pπ2(x)∼µ2

♦[0,t5]

pπ3(x)∼µ3

Fig. 1. Example of an Abstract Syntax Tree

The language associated with an STL formula φ is the set
of all signals in S that satisfy φ. This language is denoted
by L(φ) = {s ∈ S | s |= φ}.

The time horizon of an STL formula [30] is defined as

‖φ‖ =



0 if φ = pπ(x)∼µ

max{‖φ1‖ , ‖φ2‖} if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}
‖φ1‖ if φ = ¬φ1
b+ max{‖φ1‖ , ‖φ2‖} if φ = φ1U〈a,b〉φ2
b+ ‖φ1‖ if φ ∈ {♦〈a,b〉φ1,�〈a,b〉φ1}

An STL formula φ is bounded-time if it has a finite time
horizon.

Let φ be an STL formula. The set of all predicates in φ
is denoted by P(φ), i.e., P(φ1) = {pu1≤2, pu2>3}.

In addition to Boolean semantics, STL admits quantitative
semantics [31], [15], which is formalized by the notion of
robustness degree. The robustness degree of a signal s ∈ S
with respect to an STL formula φ is a functional ρ(s, φ)
recursively defines as

ρ(s,>) = ρ>

ρ(s,⊥) = − ρ>

ρ(s, pπ(x)∼µ) = (−1)ι(π(s(0))− µ)

ρ(s,¬φ) = − ρ(s, φ)

ρ(s, φ1 ∧ φ2) = min{ρ(s, φ1), ρ(s, φ2)}
ρ(s, φ1 ∨ φ2) = max{ρ(s, φ1), ρ(s, φ2)}

ρ(s, φ1U〈a,b〉φ2) = sup
tu∈〈a,b〉

{
min

{
ρ(δtus, φ2),

inf
t′∈[0,tu)

{ρ(δt′s, φ1)}
}}

ρ(s,♦〈a,b〉φ) = sup
tu∈〈a,b〉

{ρ(δtus, φ)}

ρ(s,�〈a,b〉φ) = inf
tu∈〈a,b〉

{ρ(δtus, φ)}

where ρ> ∈ R≥0 ∪ {∞} is a large constant representing
the maximum absolute value of robustness (|ρ(s, φ)| < ρ> ),
and ι = 0 if ∼∈ {≥, >} and ι = 1 otherwise. Note that
a positive ρ(s, φ) implies that s satisfies φ. Moreover, the
interpretation of the robustness degree as a quantitative mea-
sure of satisfaction is justified by the following proposition
from [31], [17].

Proposition 2.1: Let s ∈ S be a signal and φ an STL
formula such that ρ(s, φ) > 0. All signals s′ ∈ S with



‖s′ − s‖∞ < ρ(s, φ) satisfy the formula φ, i.e., s′ |= φ
and ρ(s′, ρ) > 0.

In an online setting, where the signal is being observed
as it is generated, it is useful to assign a quantitative
satisfaction value to partial signals. The authors in [18]
introduced an interval-based semantics for bounding the
quantitative satisfaction value given only a partial signal.
This recursively-defined Robust Satisfaction Interval (RoSI)
includes all possible robust satisfaction values corresponding
to the suffixes of the partial signal.

Definition 2.1 (Prefix, Completions): Given a finite time
horizon TH , let {t0, · · · , ti} be a finite set of time instants
such that ti ≤ TH . Let s[0,i] denote a partial signal over the
time domain [t0, ti] ⊂ R≥0, i.e. s[0,i] : [t0, ti] → M . Then
s[0,i] is a prefix of a signal s if for all t ≤ ti, s(t) = s[0,i](t).
The set of completions of a partial signal s[0,i] (denoted by
C(s[0,i])) is defined as the set {s|s[0,i] is a prefix of s}.

Definition 2.2 (Robust Satisfaction Interval (RoSI)):
The robust satisfaction interval (also called simply the
robustness interval) of an STL formula φ on a partial signal
s[0,i] is an interval I such that:

inf(I) = infs′∈C(s[0,i]) ρ(s′, φ)

sup(I) = sups′∈C(s[0,i])
ρ(s′, φ)

We first define some interval operations as follows:

−[a, b] = [−b,−a]
min([a1, b1], [a2, b2]) = [min(a1, a2),min(b1, b2)]
max([a1, b1], [a2, b2]) = [max(a1, a2),max(b1, b2)]
c+ [a, b] = [c+ a, c+ b]

We now define a recursive function [ρ] that maps a given
formula φ and a partial signal s[0,i] to an interval [ρ](s[0,i], φ).
We first introduce a new symbol † 6∈M , and for every s[0,i] :
[t0, ti] → M , define sω[0,i] : R≥t0 → M ∪ {†} such that
sω[0:i] = s[0:i] on the domain [t0, ti] and sω[0:i](t) = † for t >
ti. Then for any STL formula φ, [ρ](s[0,i], φ) = [ρ](sω[0,i], φ),
where

[ρ](s, pπ(x)∼µ) =


[−ρ> , ρ> ] if s(0) = †
[ρ(s, pπ(x)∼µ), otherwise

ρ(s, pπ(x)∼µ)]

[ρ](s,¬φ) = −[ρ](s, φ)
[ρ](s, ϕ ∧ ψ) = min([ρ](s, ϕ), [ρ](s, ψ))
[ρ](s, ϕ ∨ ψ) = max([ρ](s, ϕ), [ρ](s, ψ))
[ρ](s,♦〈a,b〉ϕ) = supt∈〈a,b〉[ρ](δts, ϕ)

[ρ](s,�〈a,b〉ϕ) = inft∈〈a,b〉[ρ](δts, ϕ)
[ρ](s, φ U〈a,b〉 ψ) = suptu∈〈a,b〉(min([ρ](δtus, ψ),

inft′∈[0,tu)[ρ](δt′s, φ)

Lemma 2.2 ([18]): For any STL formula φ, the function
[ρ](sω[0,i], φ) defines the robust satisfaction interval for the
formula φ over the signal s[0,i] at time t0.
The proof is by induction over the structure of STL formulae.

The authors in [18] propose an efficient algorithm to
compute and maintain [ρ](s[0,i], φ) for a large class of STL
formulae.

Lemma 2.3 (Chain Inclusion of Intervals): Given a par-
tial signal s[0,i], STL formula φ, and j ≤ i, [ρ](sω[0,i], φ) ⊆
[ρ](sω[0,j], φ).
Informally, as more of the signal becomes available, the
bounds on the robustness of satisfaction shrink (i.e. the
robustness of satisfaction becomes more certain).

III. PROBLEM FORMULATION
Let R = (f,X,U, xinit) be a dynamical system, where

X ⊆ Rn and U ⊆ Rm are the state and control spaces,
f : X × U → X is a Lipschitz continuous function, and
xinit is the initial state of the system. The system behavior
is given by:

R : ẋ = f(x, u), x(0) = xinit (1)

We denote by x[xinit, u] the state trajectory originating at
xinit obtained by implementing control policy u. Let U =
{u : R≥0 → U} be the set of all control policies.

The system R is said to satisfy an STL specification φ
under a control policy u ∈ U if the state trajectory starting
at x0 satisfies φ, i.e., x[xinit, u] |= φ.

Problem 3.1: Given a dynamical system R and an STL
specification φ, find a control policy u such that the system
satisfies φ under policy u.

Following [32], Problem 3.1 can be restated in terms of
robustness as an optimization problem, as follows

Problem 3.2: Given a dynamical system R and an STL
specification φ, find a control policy u such that the ro-
bustness degree with respect to φ of the state trajectory
originating in xinit under u is maximized, i.e.,

u∗ = argmax
u∈U

ρ(x[xinit, u], φ). (2)

Note that if ρ(x[xinit, u
∗]) > 0, then φ is satisfied.

IV. APPROACH
In this section, we propose a sampling-based algorithm

that computes a maximally-satisfying control policy. The
RRT∗-based algorithm generates a tree of state-formula pairs,
where the states are randomly generated and the associated
STL formulae capture the progress towards satisfaction of the
overall STL specification. The algorithm is guided towards
maximal satisfaction using two methods: biased sampling
and guided steering. A space-time sampling procedure is
defined that is biased towards a set of pairwise non-mutually
exclusive active predicates at the randomly generated time.
Informally, a predicate is active at a time t if its value may
influence the robustness interval of trajectories at time t.
For sampling, we consider a subset of the active predicates
that together induce a non-empty region in the state space.
To guide the steering of the system, we propose a class
of heuristic functions that capture the Direction of Increas-
ing Satisfaction (DIS). The algorithm blends the stochastic
search power of RRT∗ with targeted (greedy) heuristics, by
steering the system towards a random convex combination
between randomly generated states and states along the DIS.
Finally, in order to maintain the incremental property of the
sampling-based algorithm, we employ an online monitoring
algorithm for STL formulae [18].



A. Algorithm

The proposed sampling-based algorithm is given in Alg. 1.
It takes as input a dynamical system R and an STL spec-
ification φ, and returns an open-loop control policy that
induces a satisfying trajectory, if one exists. Otherwise, the
algorithm stops after the maximum number of iterations
Nmax. In the following, we assume that the specification φ is
in positive normal form (i.e., without any negation operators),
which is not restrictive because any STL formula can be put
in this form [33]. We also assume that all predicates are
linear. This admits a rich set of specifications in the motion
planning domain, since many regions of the workspace, be
they obstacles or goal regions, can be expressed as unions
of polyhedra using conjunctions and disjunctions over linear
halfspace predicates.

The tree T = (V,E) generated by Alg. 1 has tuples
of states and formulae as vertices. We denote the (unique)
parent and the set of children of a vertex v ∈ V by pa(v) and
ch(v), respectively. Each vertex of v ∈ V is annotated with a
time timeT (v), the control value controlT (v) used to steer
the system from pa(v) to v, the state trajectory trajT (v)
induced by the path from the root of T to v, and RoSI
rosiT (v) associated with trajT (v). In the following, we
assume tacitly that all these values are set when a vertex
is added to T .

Alg. 1 starts by initializing the RRT∗ tree with the pair
of initial state xinit and specification φ (lines 1-2). If the
top-level operation of φ is a disjunction, i.e., the root of
the AST of φ, then procedure initialize() (line 2) generates
multiple root vertices in T corresponding to each subformula
of the disjunction. Note that if there are multiple initial states,
then T might be a forest instead of a tree, but this situation
does not pose problems since we can add a virtual root
(either disjunctive or conjunctive depending on whether we
can choose the initial state) to make T a tree.

In each iteration (lines 3-18), Alg. 1 randomly samples
a time and state using the sampling() procedure (line 4);
attempts to connect a near vertex of T to a new state x∗ that
minimizes a convex combination of random sampling and
moving along the DIS (lines 5-14); updates T and associated
RoSI of the new vertex v∗ using update() (line 15); and,
finally, performs a rewiring of the near vertices using v∗ as
a parent (lines 16-18). Connecting a new vertex to the tree T
(lines 5-14) involves the following steps: 1) the set of near
vertices N to the random state xr and time tr is computed
(line 5), 2) a uniformly distributed convex coefficient is
generated (line 6), 3) for each vertex v′ ∈ N the optimal
state xs and cost Js with respect to Jχ() are computed
(line 10-12), and the vertex with minimum cost is selected
as the parent of x∗ (line 14) if the system can steer to it
(line 13). We compute the duration a control value u′′ ∈ U
is applied as the difference between the random time tr and
the time timeT (v′) associated with vertex v′ ∈ N (line 9).
Thus, all vertices in N must respect the causality constraint,
i.e., their associated times must be less than tr, see Sec. IV-B
for details.

Finally, after Nmax iterations if there exists a solution
(line 19), the algorithm return a piecewise-constant (pwc)
control policy (line 21) obtained from the best path in the
RRT∗ tree T (line 20), i.e., best(T ). A solution exists if
there is a vertex v ∈ V with rosiT (v) = {ρ} and ρ > 0.

Algorithm 1: Algorithm
Input: R = (f,X,U, xinit) – dynamical system
Input: φ – STL formula in positive normal form
Output: u – a satisfying control policy w.r.t. φ

1 T = (V = ∅, E = ∅)
2 V ← initialize(xinit, φ)
3 for k = 1 : Nmax do
4 tr, xr ← sample(X, T , φ)
5 N ← near(T , xr, tr)
6 λ← Unif ([0, 1])
7 vpa ← ./ , J∗ ←∞, x∗ ← ./
8 foreach v′ = (x′, φ′) ∈ N do
9 ∆tr = tr − timeT (v′)

10 us ←
argminu Jχ(u,x[x′, u](∆tr), x′, φ′, xr;λ)

11 xs ← x[x′, us](∆tr)
12 Js ← Jχ(us, xs, x′, φ′, xr;λ)
13 if Js < J∗ ∧ steer(x′, xs) then
14 J∗ ← Js, vpa ← v′, x∗ ← xs

15 update(vpa, (x∗, ./ ))
16 for v′′ = (x′′, φ′′) ∈ Near(T , x∗, tr) do
17 if steer(v∗, x′′) then
18 update(v∗, v′′)

19 if existsSolution() then
20 [v0 = vinit, . . . , vs] = best(T )
21 return u = pwc

[
(controlT (vi), timeT (vi))si=1

]
22 else return ./

B. Biased space-time sampling

In this section, we describe a space-time sampling proce-
dure biased based on an STL specification, and a modified
query function for near vertices in T that ensures causality.

The need for generating both a random time and state
stems from the desire to bias the sampling towards promising
regions of the state space. Since satisfaction is history-
dependent, we need a procedure to resolve conflicting con-
straints. We choose to generate a random time, because this
enables the computation of active predicates.

Let s[0,i] be a partial signal over the time domain [t0, ti] ⊂
R≥0. A predicate p is called active at time tj > ti if there
exist two signals s1, s2 ∈ C(s[0,i]) such that ρ(δtjs

1, p) 6=
ρ(δtjs

2, p) implies [ρ](s1[0,j], φ) 6= [ρ](s2[0,j], φ), otherwise it
is called inactive. Informally, this means that the robustness
of an active predicate p at time tj determines the RoSI
of some signals in C(s[0,i]), while inactive predicates do
not influence the RoSI of any signal in the completion.
Note that activity status of predicates depend on the time



bounds associated with temporal operators, hence the need
for sampling over time.

Lemma 4.1: Procedure Alg. 3 correctly computes the set
of active predicates of a formula φ at time t ≥ 0.

Proof: Follows directly from the semantics of STL.
The sampling procedure is described in Alg. 2. First, a

time tr is generated uniformly distributed in [0, TmaxT +TH ]
(line 1), where TmaxT = maxv∈V timeT (v) is the maximum
time of any vertex of T and TH is the maximum horizon
between vertices. Next, the active predicates are computed
(line 2), and the conflicts between mutually-exclusive pairs
of predicates (i.e., their conjunction is identically false) are
resolved by randomly removing one of them (lines 3-5).
Finally, a random state is generated uniformly distributed
in the region spanned by the predicates (line 6).

Algorithm 2: sample(X, T , φ)

1 tr ← Unif ([0, TmaxT + TH ])
2 Pr ← active(φ, tr)
3 while ∃ pπ1(x)≤µ1

, pπ2(x)>µ2
∈ Pr s.t. µ1 ≤ µ2 do

4 if Ber(0.5) = 0 then Pr ← Pr \ {pπ1(x)≤µ1
}

5 else Pr ← Pr \ {pπ2(x)>µ2
}

6 xr ← Unif ({x ∈ X |
∧
p∈Pr p(x)})

7 return tr, xr

Algorithm 3: active(φ, t)

1 if φ ∈ {>,⊥} then
2 return ∅
3 else if φ = pπ(x)∼µ then
4 if t = 0 then return {pπ(x)∼µ}
5 else return ∅
6 else if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2} then
7 return active(φ1, t) ∪ active(φ2, t)
8 else if φ ∈ {♦〈a,b〉φ1,�〈a,b〉φ2} then
9 return

⋃
t′∈〈a,b〉 active(φ1, t− t′)

10 else if φ = φ1U〈a,b〉φ2 then
11 return

(⋃
t′∈[0,b〉 active(φ1, t− t′)

)
∪(⋃

t′∈〈a,b〉 active(φ2, t− t′)
)

A consequence of sampling space and time is that we
need to redefine the near() primitive function to take into
account causality, i.e., vertices come before tr. Thus, we
have near(T , xr, tr) = {v = (x, φx) ∈ V | ‖x− xr‖2 ≤
γ(log(N)/N)

1
n∧timeT (v) ∈ [−TH+tr, tr]}, where n is the

dimension of the state space, N = |T | = |V |, and γ ∈ R≥0.

C. Direction of Increasing Satisfaction

We propose a class of heuristic functions that capture the
most promising direction to improve the robustness bounds
given a partial trajectory. Their role is to provide a gradient-
like information for exploration algorithms, which may be

of independent interest beyond the use in this paper. For in-
stance, these may be used in conjunction with optimization-
based planning and learning algorithms to speed up conver-
gence.

The class of heuristic functions is parameterized by two
procedures: choose() and blend(). The choice function de-
cides which of the two input formulae yields the largest
robustness gain for their conjunction. The blending function
combines the two directions computed for the two sub-
formulae of the conjunction, and should give priority to
the one returned by the choice function. Additionally, we
require that the blending function satisfies the following
orthogonality condition:

χ(s, φ1, t) ⊥ χ(s, φ2, t)⇒

blend(χ(s, φc, t), χ(s, φ¬c, t)) =
∑

i∈{c,¬c}

χ(s, φi, t) (3)

The Direction of Increasing Satisfaction (DIS) is defined as

χ(s,>, t) = 0n

χ(s, pπ(x)∼µ) =

{
ẋi(t)ei (−1)ιẋi(t) > 0

0n otherwise

χ(s,¬φ, t) = − χ(s, φ, t)

χ(s, φ1 ∧ φ2, t) =

{
blend(χ(s, φc, t), χ(s, φ¬c, t))

c,¬c = choose(s, t, φ1, φ2)

χ(s, φ1U[a,b)φ2, t) =


χ(s, φ1, t) t < a

χ(s, φ1 ∧ φ2, t) t ∈ [a, b)

0n t ≥ b

where ẋi(t)ei = fi(x(t), u)ei is a vector dependent on the
control input u. Thus, the DIS χ(s, φ, t) is (as expected)
dependent on the applied control input. In the case of the U
operator, we define the DIS for the interval [a, b) above for
illustrative purposes: it is defined similarly for any 〈a, b〉.

In this paper, we consider a stochastic choice function
that depends only on robustness intervals associated with the
partial trajectory and the two formulae:

choose(s, t, φ1, φ2) = choose([ρ](δts, φ1), [ρ](δts, φ2)) =
1 if a1 < a2 ∧ b1 < b2

2 if a1 > a2 ∧ b1 > b2

1 +Ber(p) otherwise

p = 0.5 +
(a1 + b1)− (a2 + b2)

8ρ>
(4)

where [a1, b1] = [ρ](δts, φ1), [a2, b2] = [ρ](δts, φ2).
To minimize the computational overhead we chose a

simple blending function that returns the direction of the
sub-formula given by the choice function in case the sub-
formulae’ directions are not orthogonal, otherwise (3) is



enforced, i.e.,

blend(χ(s, φc, t), χ(s, φ¬c, t)) ={∑
i∈{c,¬c} χ(s, φi, t) χ(s, φc, t) ⊥ χ(s, φ¬c, t)

χ(s, φc, t) otherwise

(5)

D. Guided steering

In this section we focus on guided steering used in line 10
of Alg. 1 posed as an optimization problem over control
values with the cost function:

Jχ(u, x′′, x′, φ′, xr;λ) =λ ‖x′′ − (x′ + dχ(u) ∗∆tr)‖22
+ (1− λ) ‖x′′ − xr‖22

(6)
where dχ(u) = χ(trajT (v′), φ′, timeT (v′)) is the DIS,
v′ = (x′, φ′), and x′′ = x[x′, u](∆tr) is the terminal
state after applying the constant control input u for duration
∆tr. Informally, the cost function Jχ() balances the greedy
heuristic of moving in the direction that improves robustness,
captured by the first term of (6), and the stochastic search
power of RRT∗of steering towards random samples, imposed
by the second term of (6). However, optimizing over this
cost function simultaneously with respect to both u and x′′

is hard. Therefore, we propose a relaxation that divides it
into two optimization problems:

dχ = max
u
‖χ(trajT (v′), φ′, timeT (v′))‖22 (7)

min
x′′

Jχ(x′′, x′, xr) = min
x′′

{
λ ‖x′′ − (x′ + dχ ·∆tr)‖

2

2

+ (1− λ) ‖x′′ − xr‖22
} (8)

where dχ is now the direction of maximum increasing
satisfaction (DMIS) and independent of u, and the second
optimization is in terms of x′′.

The following results highlight the advantages of the
relaxed formulation.

Lemma 4.2: Let x′, xr ∈ X . The minimizer of
Jχ(·, x′, xr) is x∗ = λxχ + (1 − λ)xr and Jχ(x∗) =
λ(1− λ) ‖xχ − xr‖22, where xχ = x′ + dχ ·∆tr.

Proof: The proof is immediate, and is omitted.
Lemma 4.3: Let φ be an STL formula, s ∈ S , and t ∈

R≥0. If the blending function (5) is used, then there exists
I ⊆ {1, . . . , n} such that χ(s, φ, t) =

∑
i∈I fi(x(t), u(t))ei.

Proof: The form of the DIS follows from the orthog-
onality condition (3), where ẋi(t) = fi(x(t), u(t)).

Theorem 4.4: Let R = (f,X,U, xinit) be a dynamical
system, φ an STL formula, s ∈ S and t ∈ R≥0. If U is a
convex polytope, f(x, u) = h(x)+G(x)u is input-affine, and
χ is parameterized by (4) and (5), then (7) is a maximization
problem of a quadratic function with linear constraints

max
u∈U

∥∥∥∥∥∑
i∈I

eTi (h+Gu)ei

∥∥∥∥∥
2

2

s.t. (−1)ιi(h+Gu)T ei > 0.

Proof: The form of the cost function follows from the
Lemma 4.3, while the linear constraints correspond to the
predicates selected in χ(), and the polytope U .
Note that for non-linear predicates, the form of the con-
straints will vary accordingly.

E. Rewiring

We assume available an oracle om() to compute the
RoSI of a formula on a partial trace. An example is an
implementation of the algorithm in [18], which leverages
Lemire’s running maximum filter algorithm. More efficient
variants can be constructed for subsets of STL.

Adding (line 15 in Alg. 1) and rewiring (line 18) vertices
is done using the update() procedure. First, the monitoring
algorithm om() is used to compute the RoSI for the child
v1 by considering v2 its parent. If v2 is a new vertex (line 2
in Alg. 4), then a simplified formula φ2 is computed from
the formula of v2 (line 5). The vertex v1 is added to the
tree if the new connection induces a RoSI with positive
upper bound. The latter constraint ensures that satisfaction
of the specification is still feasible, otherwise violation is
certain. The simplify() function prunes formulae based on
partial trajectories. Temporal operators that do not influence
the outcome, such as those referring to previous times,
are discharged. Another important role is to keep track
of disjunctions and decide which alternative to choose to
satisfy. The decision was implemented as a stochastic choice
function, where there is a non-zero probability of either not
changing the formula, or pruning one branch of a disjunction
operator. Note, that formulae that do not contain disjunctions
might still change, due to the removal of temporal operators
whose deadline has passed.

In case of updating for rewiring, the parent of vertex of v2
is changed to v1 again only if the upper bound of the RoSI
associated with the new connection is positive. Additionally,
we require the lower bound to be improved and the formulae
associates with the two vertices to be consistent. Since
vertices are associated with simplified versions of the original
specification, we need to ensure that new connections contain
formulae on the same chain of simplifications, i.e., the
formula of a child vertex can be obtain as a simplification
of the parent’s formula. Formally, we can define a partial
order over the subformulae of the specification φ induced by
“implication” to check line 7).

Algorithm 4: update(v1, v2)

// propagate RoSI
1 I ′2 = [a′2, b

′
2]← om(φ1, rosiT (v1), steer(x1, x2))

2 if φ2 = ./ then
3 if b′2 ≥ 0 then
4 rosiT (v2)← I ′2
5 φ2 ← simplify(φ1)
6 V ← V ∪ {v2}, E ← E ∪ {(v1, v2)}
7 else if b′2 ≥ 0∧a′2 ≥ min rosi(v2)∧φ1 =⇒ φ2 then
8 rosiT (v2)← I ′2
9 E ← (E \ {(pa(v2), v2)}) ∪ {(v1, v2)}

10 Vupd = ch(v2) // children of v2
11 while Vupd 6= ∅ do
12 v ← Vupd.pop(), v′ ← pa(v)

rosiT (v′)← om(φ, rosiT (v′), steer(v′, v))



F. Analysis

In this section, we analyze the convergence properties of
our algorithm and its complexity. In particular, we prove that
the control policy u given by the Alg. 1 after Nmax iterations
converges to the solution of Problem 3.2 as Nmax goes to
infinity, with probability one. We provide proof sketches due
to space constraints.

Theorem 4.5 (Asymptotic optimality): The probability
that Alg. 1 returns a control policy u that converges to the
solution u∗ of Problem 3.2 in the bounded variation norm
sense, approaches one as N = |V | tends to infinity, i.e.,

P
({

lim
N→∞

||x[xinit,u]− x[xinit,u
∗]||BV = 0

})
= 1

Proof: [Sketch] The proof follows from the asymp-
totic optimality of the RRT∗algorithm (Theorem 34 in
[20]). Let u∗ be the solution of Problem 3.2 that maxi-
mizes ρ(x[xinit,u

∗], φ). Define a finite sequence of balls
BN = {BN1 , . . . , BNm} around the optimal trajectory x∗ =
x[xinit,u

∗] such that consecutive balls overlap. The radii
of the balls must be set to a fraction of γ(log(N)/N)1/n

such that any state in x ∈ BNi can be connected using
the steer(x, x’) function to a state x′ in the successor ball
BNi+1, where n is the dimension of the state space. It can
then be shown that for large enough N the probability that
each ball in BN contains at least one sample is one. The
convergence in probability follows from two properties of
the proposed algorithm. First, all decision for biasing the
sampling (Alg. 2) and guiding the steering of the system
(Alg. 1, DIS and choice function (4)) are stochastic and
assign non-zero probabilities to all possible choices. Thus,
the probability measure of trajectories generated by Alg. 1
has the same support set as for standard RRT∗, albeit skewed
towards increasing robustness. Second, we used the lower
bounds of RoSIs associated with the tree’s branches as
the cost function. This cost function is monotonic due to
Lemma 2.3, continuous, and it converges to the robustness
value in bounded time. Thus, there is a trajectory xN that
intersects all balls in BN with probability one, and it can be
shown (as in [20]) that xN converges to x∗ as N →∞.

An immediate corollary of Theorem 4.5 is that the optimal
trajectory returned by Alg. 1 converges to the maximum
robustness value as N goes to infinity, i.e.,

P
({

lim
N→∞

||ρ(x[xinit,u], φ)− ρ(x[xinit,u
∗], φ)||BV = 0

})
= 1.

Theorem 4.6: The computational complexity of Alg. 1 is
O(|φ| log(N)) per iteration, where |φ| is the size of the
formula, i.e., the number of predicates and operators.

This iteration complexity follows from a quick inspection
of Alg. 1. The sampling procedure takes O(|φ|) to com-
pute the constraints (i.e., active predicates) of the biased
region. There are O(log(N)) vertices in a ball of radius
γ(log(N)/N)1/d that affect the number of nearest-neighbor
queries. Moreover, it follows that the steering and rewiring
functions are called for O(log(N)) samples as well. The
update procedure takes O(|φ|) time due to the computation
of the DMIS and the RoSI for each vertex, and checking

the consistency of two simplified STL formulae. Overall, the
complexity of each iteration is O(|φ| log(N)).

V. CASE STUDY

In this section, we demonstrate the practical effectiveness
of our approach via representative case studies. We imple-
mented our algorithms in Python, and all experiments were
performed on an Intel R©CoreTM i7-5500U CPU with a clock
speed of 2.40GHz, 8GB RAM and 4 cores.

1) Case 1: Consider a system R1 whose dynamics are
represented by a double integrator.

q̈ = u, (9)

The input u is bounded as ‖u(t)‖1 ≤ umax. The system can
be rewritten as a linear control system

ẋ1 = x2, ẋ2 = u, y = x1 (10)

where xi(t) ∈ Rn for time t and i = 1, 2.
We ran our approach to synthesize a control policy for

R1 subject to the specification φ1 = ♦[2,10](3.5 < x1 ≤ 4∧
−0.2 < x2 ≤ 0.2)∧�[0,2](−0.5 < x2 ≤ 0.5)∧�[0,10]((2 <
x1 ≤ 3) =⇒ (x2 > 0.5 ∨ x2 ≤ −0.5)). We set Nmax to
500.

The mean time per iteration was 16ms, and the total time
for 500 iterations was 7.8s. Along the returned best control
policy, the RoSI chain was:

[(−4.000, 0.500), (−4.000, 0.349), (−4.000, 0.300),
(−4.000, 0.207), (−4.000, 0.207), (−4.000, 1.143),
(−4.000, 0.902), (−4.000, 0.734), (−4.000, 0.441),
(−4.000, 0.272), (−4.000, 0.086), (−4.000, 0.034),
(−4.000, 0.005), (−4.000, 0.005), (−4.000, 0.005),
(−4.000, 0.005), (−4.000, 0.005), (0.005,0.005)]

The final robustness of satisfaction was thus 0.005. Figure 2
shows the generated tree and best policy at three time steps
(100, 200 and 300, respectively). Note that the policy has
already converged by time step 200.

2) Case 2: Consider a rear wheel car R2 whose dynamics
are given by

ẋ1 = x4 cos(x3), ẋ2 = x4 sin(x3), ẋ3 = x5,

ẋ4 = u1, ẋ5 = u2,
(11)

where x1, x2, x3 represent the pose (position and orientation)
of the vehicle, x4, x5 the linear and angular velocities, and
the vehicle is controlled by bounded linear and angular
acceleration u1 and u2, respectively, with | u1 |< 0.2, |
u2 |< 0.4.

We synthesized a control policy for R2 subject to the
reach-avoid specification with timing constraints φ2 =
♦[0,18](3 < x1 ≤ 4 ∧ 2 < x2 ≤ 3) ∧ �[0,6]¬(1 < x1 ≤
2 ∧ 2 < x2 ≤ 3).

The mean execution time per iteration was 260ms, and
the total time for 1600 iterations was 400.55s. The final
robustness of satisfaction value was 0.421 corresponding to
the policy shown in the rightmost subfigure in Figure 2.
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Fig. 2. The three figures on the left show the generated tree for a double integrator with φ1 = ♦[2,10](3.5 < x1 ≤ 4∧−0.2 < x2 ≤ 0.2)∧�[0,2](−0.5 <
x2 ≤ 0.5) ∧ �[0,10]((2 < x1 ≤ 3) =⇒ (x2 > 0.5 ∨ x2 ≤ −0.5)). Trees are shown after 100, 200 and 300 iterations. The rightmost figure shows the
tree for a rear wheel car with φ2 = ♦[0,18](3 < x1 ≤ 4 ∧ 2 < x2 ≤ 3) ∧ �[0,6]¬(1 < x1 ≤ 2 ∧ 2 < x2 ≤ 3).

VI. CONCLUSION AND FUTURE WORK

We presented a sampling-based method for incrementally
synthesizing a motion control policy such that resulting
trajectories satisfy an STL specification. We defined the
Direction of Increasing Satisfaction, and used it to construct a
class of heuristic functions to bias the sampling of controlled
edges in an RRT. We also used the robust interval semantics,
which bounds the quantitative satisfaction of the specification
given a partial policy, to choose which node of the tree to
extend. We prove and demonstrate experimentally that this
allows us to both converge to a path that satisfies the speci-
fication, and improve upon an existing path, asymptotically
converging to a solution that satisfies the specification with
maximum robustness. In future work, we will demonstrate
this approach on a wider variety of domains, including
robotic manipulation, to demonstrate its effectiveness.

Additionally, in this paper, we consider a stochastic choice
function that depends only on robustness intervals of various
subformulae associated with the partial trajectory. Another
option is to learn this choice function while building the
RRT∗. Finally, while the approach we present deals with
open-loop control policy synthesis for a closed system over
a bounded time horizon, receding horizon approaches have
been developed for extending STL synthesis to indefinite
time horizons and open systems [32], [16], [33], [34]. We
note that our approach can also be combined with such
a receding horizon scheme to incorporate changes in the
environment at runtime.
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