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Abstract: Recent studies of out-of-time ordered thermal correlation functions (OTOC) in

holographic systems and in solvable models such as the Sachdev-Ye-Kitaev (SYK) model

have yielded new insights into manifestations of many-body chaos. So far the chaotic

behavior has been obtained through explicit calculations in specific models. In this paper

we propose a unified description of the exponential growth and ballistic butterfly spreading

of OTOCs across different systems using a newly formulated “quantum hydrodynamics,”

which is valid at finite ~ and to all orders in derivatives. The scrambling of a generic few-

body operator in a chaotic system is described as building up a “hydrodynamic cloud,”

and the exponential growth of the cloud arises from a shift symmetry of the hydrodynamic

action. The shift symmetry also shields correlation functions of the energy density and flux,

and time ordered correlation functions of generic operators from exponential growth, while

leads to chaotic behavior in OTOCs. The theory also predicts an interesting phenomenon

of the skipping of a pole at special values of complex frequency and momentum in two-point

functions of energy density and flux. This pole-skipping phenomenon may be considered

as a “smoking gun” for the hydrodynamic origin of the chaotic mode. We also discuss the

possibility that such a hydrodynamic description could be a hallmark of maximally chaotic

systems.
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1 Introduction

Chaotic phenomena are ubiquitous in nature. While much has been learned about chaos

at a classical level, its characterizations and manifestations at a quantum level are far less

understood, especially in many-body systems.

One characterization of chaos in quantum many-body systems is the Eigenstate Ther-

malization Hypothesis (ETH) [1–5] which says that for a chaotic system, highly excited
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energy eigenstates should behave like a thermal state. ETH is a powerful statement, im-

plying that chaos underlies thermodynamical behavior of an isolated quantum statistical

system. But it is not easy to work with or to check explicitly in practice as energy eigen-

states of many-body systems are hard to come by.1 More recently, studies of out-of-time

ordered thermal correlation functions in holographic systems and in solvable models like

Sachdev-Ye-Kitaev (SYK) model have yielded new insights into manifestations of many-

body chaos [7–19].

More explicitly, consider a quantum many-body system at a finite temperature T0 =
1
β0

, and the expectation value of the square of the commutator of two generic few-body

operators V and W

C(t) = −
〈
[V (t),W (0)]2

〉
= C1(t)− C2(t) (1.1)

C1(t) = 〈V (t)W (0)W (0)V (t)〉+ 〈W (0)V (t)V (t)W (0)〉 (1.2)

C2(t) = 〈V (t)W (0)V (t)W (0)〉+ 〈W (0)V (t)W (0)V (t)〉 (1.3)

where C1 and C2 are respectively referred to as the time ordered (TOC) and out-of-time

ordered (OTOC) correlation functions.

For convenience throughout the paper we will assume that both V and W are normal-

ized such that they can be considered as dimensionless. When t is small, C(t) should be

very small,

C(t) ∼ 1

N , t . tr (1.4)

where N denotes the total number of degrees of the system and tr is the characteristic

relaxation time of the thermal equilibrium. For a chaotic large N theory one typically

expects that C(t) will grow exponentially with time

C(t) ∼ 1

N eλt tr � t� ts (1.5)

until the so-called scrambling time ts ∼ 1
λ logN when C(t) becomes of O(1). The Lyapunov

exponent λ has been shown to be bounded in a generic system by [10] (below we will set

~ and kB to 1 throughout the paper)

λ ≤ λmax =
2πkB
β0~

. (1.6)

Physically one can interpret the behavior (1.5) as due to scrambling. At t = 0 operator

V (0) = V involves only a few degrees of freedom. Under time evolution, V (t) expands in the

space of degrees of freedom, i.e. it gets scrambled among more and more degrees of freedom.

C(t) keeps increasing until V (t) is scrambled essentially among all degrees of freedom, when

C(t) becomes O(1) and saturates (see figure 1). The exponential behavior (1.5) reflects

that the scrambling procceds at a steady rate with 1
C(t)∂tC(t) = λ = const.

When we separate V and W also spatially, then at large distances (1.5) appears to

generalize to

C(t, ~x) ≡ −
〈
[V (t, ~x),W (0)]2

〉
∼ 1

N e
λ(t− |~x|

vB
)

(1.7)

1See also [6] for a recent proposal for another manifestation of quantum chaos in many-body systems.
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Figure 1. A cartoon of scrambling. The operator V (t) expands in the space of degrees of freedom.

tr is relaxation time, and ts is the scrambling time when V (t) is essentially scrambled among all

degrees of freedom.

where vB in (1.7) is often referred to as the butterfly velocity which characterizes the

scrambling/expansion of an operator in space. Equation (1.7) is observed in a SYK chain

and essentially all holographic systems [8, 9, 20]. In other systems different forms of spatial

propagation are often seen instead [21–23]. For instance in [22, 23] chaos is described by a

diffusive spreading around the exponential growth2

C(t, ~x) ∼ 1

N e
λt− |~x|

2

D0t . (1.8)

There have also been studies using random unitary circuits which find other types of

butterfly spreading, but not a nonzero Lyapunov exponent [24, 25].

The behaviors (1.5)–(1.8) have been found in many model systems, often through

complicated model specific calculations. A unified understanding of how they emerge

across different systems is still lacking. It is the purpose of this paper to propose such

an effective description which does not depend on details of a specific system. We will be

interested in those systems for which λ ∼ 1
~ , so that the chaotic behavior is intrinsically

quantum, i.e. does not have a straightforward semi-classical limit. For such systems we

propose the following effective description of chaos:

A. To leading order in the limit N →∞, the scrambling of a generic few-body operator

in a chaotic system allows a coarse-grained description in which the growth of the

operator can be understood as building up a “cloud” of some effective field σ. More

explicitly, as indicated in figure 2, V (t) can be represented by a core operator V̂ (t),

which involves the degrees of freedom originally in V , dressed by a variable σ(t).

B. The chaotic behavior (1.5)–(1.8) of OTOCs can be understood from exchanging and

propagation of σ (see figure 3).

In this paper we will realise the above elements through developing a “quantum hydrody-

namic” theory for chaos in which we identify σ with the hydrodynamic mode for energy

conservation. As we will shortly discuss, this connection between the effective chaos mode

2In [9, 20], the behavior below has been observed as transient behavior to (1.7).
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Figure 2. We propose that operator growth of V (t) can be described in terms of a bare operator

V̂ (t) surrounded by an expanding hydrodynamic cloud.

V

V

W

W

�

V

V

W

W

�

Figure 3. At leading order in large N correlation functions are controlled by exchange of hydrody-

namic fields σ(t). The only difference between time ordered (left) and out-of time-ordered (right)

configurations is in the effective vertex describing the coupling to σ(t).

and hydrodynamics can be motivated from the explicit calculations of OTOCs in holog-

raphy and SYK models. Our general hydrodynamic theory not only provides a system-

independent explanation of the chaotic behavior (1.5)–(1.8) of OTOCs, but also leads to

new predictions which can be explicitly checked. As we will remark later in the paper, likely

the full content of this hydrodynamic theory only applies to systems which are maximally

(or nearly maximally) chaotic. Nevertheless, we expect that various features associated

with items A and B above may also apply to non-maximal chaotic systems. So throughout

the paper we use a general Lyapunov exponent λ unless explicitly stated.

There have been various hints for such an effective description, and possible connec-

tion with hydrodynamics. In holographic systems, the scrambling and chaotic behaviors

are realized through the backreaction of an in-falling particle to the spacetime geome-

try [7–9] which can be interpreted in the boundary theory as building up a hydrody-

namic cloud, see figure 4. In SYK, chaos is captured by a low energy effective action, the

Schwarzian [11, 13–19]. As already pointed out by K. Jensen [14], the Schwarzian can be

considered as the effective action for a hydrodynamic mode associated with energy conser-

vation (i.e. the σ variable mentioned above). In fact, figure 2 and figure 3 have been implicit

in various calculations performed using Schwarzian in [15] (see also [17]) for SYK. Here we

propose that they should apply to general chaotic systems. Note the construction of the

Schwarzian action from gravity [15] parallels that of construction of hydrodynamic action

in [26–28]. Furthermore, [22] extracted an unstable “chaotic mode” by developing a kinetic

theory for OTOCs. Finally in many holographic examples and non-holographic models the

butterfly velocity vB in (1.7) and D0 in (1.8) appear to be related to the thermal/energy

diffusion constant DE (for example see [20, 21, 23, 29–33]). Given that hydrodynamic
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Figure 4. In holographic theories scrambling is described by the interaction of a particle with

near-horizon degrees of freedom. The wavy line in the plot represents a stretched horizon while

solid line the event horizon. As a particle falls into a black hole, from the perspective of an outside

observer, the particle is “dissolved” into the thermal cloud of a stretched horizon. Such a process

may be interpreted in the dual quantum field theory as building up a hydrodynamic cloud.

degrees of freedom constitute a universal sector among all quantum many-body systems,

it is then natural to search for a hydrodynamic origin of the chaotic behavior (1.5)–(1.8)

(see also [35–37] for other attempts to connect chaos and hydrodynamics).

Despite the above hints, at first sight there are nevertheless various important difficul-

ties for a hydrodynamic description of chaotic behavior (1.5)–(1.8). We now discuss these

difficulties and how to address them to help clarify and elaborate on our proposal:

1. Chaotic behavior lies outside the usual range of validity of hydrodynamics.

Conventionally hydrodynamics is formulated as a low energy effective theory for

gapless modes associated with conserved quantities, valid for time variation scales

∆t much larger than typical relaxation scales tr, which for illustrative purposes we

will take to be of order β0 (e.g. in a strongly coupled system). It is written using

a derivative expansion with expansion parameter β0
∆t � 1. Such a description is

inadequate for our purpose,3 as in (1.5) the Lyapunov exponent λ is often of order
1
β0

. Hence to capture the exponential growth (1.5) one needs a formulation which is

valid for ∆t ∼ β0. Furthermore since we interested in quantum systems in which λ

is proportional to 1/~, one needs a formulation which applies at quantum level with

a finite ~, rather than the classical statistical limit which is normally taken.

A quantum hydrodynamics which applies to the regime ∆t ∼ β0 can be obtained

using the action formalism recently developed in [38, 39].4 The theory should be

understood as obtained from integrating out all degrees of freedom of a quantum

many-body system except for those associated with conserved quantities. It can be

nonlocal, but non-locality is only at scales of order β0.5 This is due to the fact that

for a generic system at a finite temperature, hydrodynamical modes are the only

gapless degrees of freedom, thus the integrated out modes have energies or decay

3Of course in the standard hydrodynamic limit ∆t� β0, the hydrodynamic equations can exhibit chaotic

behavior, such as turbulence. These infrared chaotic behavior has a smooth classical limit and has nothing

to do with what we discuss in the paper which may be considered as ultraviolet chaos from hydrodynamics

perspective.
4See also [40, 41] for discussions of extracting linearized hydrodynamic constitutive relations to all

derivative orders from holography.
5For example it can incorporate quasi-normal modes.
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rates at least of order 1
β0

. Working with such a theory is delicate as physics at scales

of order β0 depends on microscopics of individual systems, which makes extracting

universal information challenging. Nevertheless we will see that significant amount

of universality can be obtained.

In particular, for the purpose of describing the chaotic behavior at leading order

in N → ∞ it is enough to work to quadratic order in perturbations from thermal

equilibrium. Since the chaotic mode is only associated with energy conservation, to

minimize technicalities in this paper we will consider a theory whose only conserved

quantity is energy conservation. Such a theory describes either a (0 + 1)-dimensional

quantum mechanical system or a higher dimensional system with strong momentum

dissipation at some microscopic scales. It should be straightforward, although tech-

nically more cumbersome, to write down a theory which has full energy-momentum

conservation or other conserved quantities, which will be left for future work.

2. Can hydrodynamics of a stable system have an exponentially growing mode?

More explicitly, if exponential growth (1.5) arises from exchanging and propaga-

tion of hydrodynamic variable σ associated with energy conservation, would that

immediately lead to inconsistencies as the stress tensor certainly cannot have such

exponential behavior? It turns out they can be perfectly consistent.

We propose that the quantum hydrodynamics for a chaotic system possesses a shift

symmetry. On the one hand, this shift symmetry warrants that the retarded Green’s

function of σ has a pole in the upper half complex frequency plane for real momentum

k as indicated in figure 5, which leads to exponentially growing behavior in real time.

On the other hand, the structure of the quantum hydrodynamics is such that precisely

the same symmetry ensures that such an exponential mode is invisible to the full stress

tensor, and the retarded Green’s functions of the stress tensor components have poles

only in the lower half complex frequency plane for real k.

3. In [38, 39] the hydrodynamics action is formulated as an effective theory for a system

in some state ρ0 defined on the closed time path (CTP), see figure 6. How can a

theory which is formulated on a closed time path, i.e. on a contour with two segments,

describe the chaotic behavior of OTOCs, which require a contour of four segments?

The reason is simple. To leading order in 1/N , only two-point functions of σ field

are needed, as indicated in figure 3. Thus OTOCs on a 4-contour in the end reduce

to a sum of two-point functions of σ on a two-contour which are in turn determined

by the quantum hydrodynamics, see figure 7. In particular, the difference between

the TOCs of (1.2) and OTOCs of (1.3) lies in the precise structure of respective

effective vertices, see figure 3. In TOCs, due to the shift symmetry in the coupling

between the core operator V̂ and its hydrodynamic dressing, the contributions of

exponentially growing mode cancel while in OTOCs exponential mode survives and

leads to (1.5)–(1.8).
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Figure 5. Chaos is described in our framework through a pole (at ω = iλ) in the upper half complex

frequency plane of the retarded Green function of hydrodynamic variable σ(t). Such a pole does

not indicate an instability, since it originates from a symmetry of the quantum hydrodynamics.

⇢0
1
2 ⇢0

1
2
3
4

Figure 6. Left: the hydrodynamic theory in a state ρ0 is formulated directly in real time on the

CTP contour. Right: OTOCs (1.3) require a contour of four segments.

�(ti)

�(tj)

⇢0=
X

i,j

⇢0

V (t1)

V (t2)

W (t3)

W (t4)

Figure 7. At leading order in large N OTO four-point functions defined on a four-contour reduce

to a sum of two-point functions of σ(t). They can therefore be calculated from the effective action

of the hydrodynamic field σ on a CTP contour.

4. Why does chaotic behavior have anything to do with energy conservation?

Despite the aforementioned hints it is certainly not clear to what extent chaos should

always be related to the hydrodynamic mode σ(t) associated to energy conservation.

For instance it is certainly the case that driven systems, in which energy conservation

can be badly broken, can also be chaotic. Chaos has also been studied using random

unitary circuits [24, 25] which do not have energy conservation. A possible expla-

nation is that such a connection may be a feature of systems which are or are close

to being maximally chaotic. We will elaborate more on this point in the conclusion

section.
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Now that we have motivated our hydrodynamic description of chaos we can describe

the implications of such an effective theory. In particular, a key feature of this theory is

that the mode σ which characterizes the energy conservation also describes the chaotic

growth of general operators. This dual role leads to interesting predictions: many-body

chaos also has bearings in two-point functions of energy density and energy flux, although

in a subtle way. More explicitly, the theory predicts that:

a. The butterfly velocity vB is determined from the diffusion kernel. More explicitly, in a

system with only energy conservation, one can introduce a general nonlocal diffusion

kernel D to relate energy flux Ji and the energy density E as

Ji = −D(∂t, ∂
2
i )∂iE , D(ω, k2) = DE +O(ω, k2) (1.9)

where the leading order term in the small ω, k expansion of D is the energy diffusion

constant DE . One then finds that vB can be obtained from the solution to the

following equation as

λ− k2
CD(iλ,−k2

C) = 0, vB =
λ

kC
. (1.10)

In some special systems, D collapses to a constant, i.e. higher order ω, k2 terms in

the second equation of (1.9) all vanish. In such cases vB is then related to DE as

v2
B = DEλ that is seen in examples of SYK chains [33, 34].

b. The pole line of energy density two-point function which originates from the diffusion

pole ω = −iDEk
2 (with DE the energy diffusion constant) for small ω, k passes

through the following point in the complex ω-k plane

ω(ikC) = iλ, k = ikC , kC ≡
λ

vB
. (1.11)

See figure 8.

c. Precisely as the pole line passes through the specific point (1.11) the theory predicts

that the residue of this pole should vanish. In other words, at that point, the pole is

in fact skipped. This phenomenon, which we refer to as “pole-skipping”, allows both

λ and vB to be directly calculated from knowledge of the energy-energy two point

function, without the need to calculate OTOCs (see figure 8). Such a behavior can

be seen to happen in SYK chains and certain holographic systems [20, 37].

The above predictions may be considered as a “smoking gun” for the hydrodynamic origin

of the chaotic mode, and provide a simpler way than OTOCs to extract the Lyapunov

exponent λ and butterfly velocity vB.

The plan of the paper is as follows. In section 2 we introduce the quantum hydrody-

namics for energy conservation. In section 3 we introduce a shift symmetry to characterize

chaotic systems. In section 4 we study correlation functions of the hydrodynamic vari-

able in systems with a shift symmetry. In section 5 we explain the phenomenon of pole

skipping. In section 6 we study TOCs and OTOCs of generic operators. We conclude in

section 7 with a summary and discussion. We have also included a few appendices for

various technical details.
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Im k vB

λ

0.5

1.0

1.5

2.0

2.5

Imω

λ

Figure 8. The hydrodynamic origin of chaos predicts “pole-skipping” in the energy-energy correla-

tion function: following the line of poles which starts at small ω, k as the energy diffusion pole along

pure imaginary k to a specific value of k = iλ/vB for which the pole would be at ω = iλ, one finds

the pole is not there! In the figure the solid line denotes the line of poles, and the open dot indicates

that at that particular point the pole is skipped. The dashed line is the curve ω = −iDEk
2 which

coincides with the pole line for small ω, k.

2 Quantum hydrodynamics for energy conservation

Consider a quantum many-body system in a “liquid” phase for which the only gapless

degrees of freedom are those associated with conserved quantities. The effective theory for

these low energy degrees of freedom is hydrodynamics. In this section we discuss quantum

hydrodynamics for a system whose only conserved quantity is energy, following the general

formulation of [38, 39]. Such a theory applies to systems which have some way to strongly

dissipate spatial momenta at some microscopic scales, but at macroscopic level still have

spatial translation invariance. With all spatial dependence dropped, the theory describes

(0 + 1)-dimensional quantum mechanical systems. Our discussion in this and subsequent

sections can be readily generalized to systems with momentum conservations or other global

symmetries.

2.1 General quantum hydrodynamics formulation

In [38, 39] the hydrodynamics action is formulated as an effective theory for a general

statistical system in some state ρ0 defined on the closed time path (CTP), see left plot of

figure 6. Let us first review the case with full energy-momentum conservation.

The formulation is reminiscent of the standard Lagrange description of fluid flows. One

introduces a fluid spacetime with coordinates σA = (σ0, σi) where σi can be interpreted

labels of each fluid element and σ0 as the “internal clock” of a fluid element. The hydrody-

namical degrees freedom are given by Xµ
1,2(σA), which describe motions of fluid elements

along two segments of the CTP contour,6 and their equations of motion correspond to

energy-momentum conservations associated with the two segments. One also introduces

6A single copy of such kind of variables was already used in [42] and more recently in [26, 43] for ideal

fluids. The doubled copies for CTP contour were first used in [44] to describe dissipative effects.
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an inverse temperature β(σA). Below we will denote the coordinates in physical spacetime

as xµ = (t, xi).

For the majority of this paper we will discuss systems with only energy conservation, in

which case one can identify the spatial components of the fluid and physical spacetimes as

σi = xi. As we will explain, the hydrodynamic theory for such systems can be formulated

in physical spacetime in terms of fluid time σ0(t, xi) and the antisymmetric combination

X0
a = X0

1 − X0
2 which describes quantum statistical noises. We will ultimately drop the

superscript 0, and hence obtain a theory in which the fundamental dynamical field is the

variable σ = σ0 highlighted in our introduction. For completeness we first review various

aspects of the general formulation of the hydrodynamic theory constructed in [38, 39],

before specializing to the simplified setting in which there is only energy conservation.

To construct the hydrodynamic action consider turning on external metrics g1µν and

g2µν associated with the two legs of the CTP. The hydrodynamic action Ihydro is required

to depend on Xµ
1,2 only through the induced metrics in the fluid spacetime,

hsAB = gsµν(Xs)
∂Xµ

s

∂σA
∂Xν

s

∂σB
, s = 1, 2 (2.1)

i.e. Ihydro = Ihydro[h1, h2, β]. It is further required to be invariant under the following fluid

spacetime diffeomorphisms

σ0 → σ′0(σ0, σi), σi → σi, (2.2)

σ0 → σ0, σi → σ′i(σi), (2.3)

and unitarity conditions

I∗hydro[h1, h2, β] = −Ihydro[h2, h1, β], (2.4)

Ihydro[h1 = h2, β] = 0, (2.5)

Im Ihydro ≥ 0 . (2.6)

Finally Ihydro is required to satisfy a Z2 dynamical KMS symmetry which imposes local

equilibrium as well as microscopic time reversal symmetry.7 It has a simple form when we

use (2.2) to set the local inverse temperature to be

β = β0Er, Er =
1

2

(√
−h100 +

√
−h200

)
(2.7)

with β0 some constant scale.8 Ihydro is then required to be invariant under the following

Z2 transformation

h̃1AB(−σ0,−σi) = h1AB(σ0 + iθ, σi), h̃2AB(−σ0,−σi) = h2AB(σ0 − iθ̂, σi), (2.8)

for arbitrary θ ∈ [0, β0] with θ̂ = β0 − θ.
7Here we will assume the Hamiltonian of the underlying system is invariant under PT .
8For ρ0 given by a thermal density matrix, β0 is simply the background inverse temperature.
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Various real-time correlation functions of the stress tensor of the full system can be

computed using the theory of Ihydro. For example, the retarded and symmetric two-point

functions are obtained by

Gµν,λρR (xµ) = i
〈
T̂µνr (x)T̂ λρa (0)

〉
hydro

, Gµν,λρS (xµ) =
〈
T̂µνr (x)T̂ λρr (0)

〉
hydro

(2.9)

where we have introduced the symmetric and antisymmetric pieces of the energy-momentum

tensor

T̂µνr =
1

2
(T̂1µν + T̂2µν), T̂µνa = T̂1µν − T̂2µν , (2.10)

T̂µν1 (x) =
2√−g1

δIhydro

δg1µν(x)
, T̂µν2 (x) = − 2√−g2

δIhydro

δg2µν(x)
. (2.11)

2.2 Systems with only energy conservation

Now consider a system with only energy conservation, in which case we will set

Xi
1,2(σ0, σi) = σi and identify σi = xi. The remaining dynamical variables are then

X0
1,2(σ0, xi), β(σ0, xi), with equations of motion of X0

1,2 equivalent to energy conserva-

tions. Below for notational simplicity we will drop superscripts 0 on both X0 and σ0.

Since there is only energy conservation it is enough to turn on only the following external

metric components

ds2 = gµνdx
µdxν = −e2

(
dt− widxi

)2
+ (dxi)2, g00 = −e2, g0i = e2wi (2.12)

with the induced metric in the fluid spacetime

ds2 = hABdσ
AdσB = −E2(dσ − vidxi)2 + (dxi)2, (2.13)

E = e∂σX, vi =
1

∂σX
(wi − ∂iX) . (2.14)

The energy density E and energy flux Ji can then be defined as

E = −T̂ 0
0 = − 1√−g

(
e
δIhydro

δe
− wi

δIhydro

δwi

)
, J i = −T̂ i0 =

1√−g
δIhydro

δwi
. (2.15)

In (2.12)–(2.15) for notational simplicities we have suppressed indices 1, 2 labeling the two

legs of the CTP; it should be kept in mind there are two copies of them. The symmetry

conditions (2.2)–(2.8) are as before except that (2.3) reduces to rigid rotational symmetries

(i.e. residual symmetries compatible with (2.12) and (2.13)).

To obtain an action which is invariant under (2.2) it is convenient to define the following

variables9

Er =
1

2
(E1+E2), Ea = log(E1E

−1
2 ), Vai = Er(v1i−v2i), Vri = Ervri, vri =

1

2
(v1i+v2i) .

(2.16)

9The discussion below can also be obtained from that in section V A of [38] by setting various quantities

associated with spatial directions (and charged sector) to zero.
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Note that under (2.2), Ea, Vai transform as a scalar. We also define covariant time and

spatial derivatives

Dσφ =
∂σφ

Er
, diφ = ∂iφ+ vri∂σφ (2.17)

which take a scalar φ under (2.2) to scalars. Er, Vri do not transform as a scalar under (2.2).

They can be combined to form

si =
1

Er
(∂iEr + ∂σVri), tij = Er(divrj − djvri) (2.18)

which transform as scalars under (2.2). Note that si and tij are not completely indepen-

dent as

Dσtij = disj − djsi . (2.19)

Thus the Lagrangian density can be constructed using β, si, tij , Ea, Vai and their Dσ, di
derivatives. For convenience of imposing the Z2 dynamical KMS symmetry we will again

fix the local temperature through (2.7). Note that setting (2.7) breaks (2.2) to a σ-

independent shift

σ → σ + c(xi) . (2.20)

2.3 Physical spacetime formulation without sources

The above discussion is a bit formal. For the majority of our purposes in this paper it will

be sufficient to work with the theory in the absence of external sources. That is, we set

e1 = e2 = 1, w1i = w2i = 0, (2.21)

and write the action in physical spacetime.

In particular, we now introduce X = 1
2(X1 + X2) and Xa = X1 − X2 where X can

be interpreted as describing physical motions while Xa quantum statistical noises. To

write the action in physical spacetime we identify X = t and then invert X(σ, xi) to obtain

σ(t, xi).10 Thus the dynamical variables we will use to formulate our theory are now σ(t, xi)

and Xa(t, x
i) ≡ Xa(σ(t, xi), xi). The various quantities described in (2.16)–(2.18) can be

written in physical spacetime as

Er =
1

∂tσ
, Ea = ∂tXa +O(a3), Vai = −∂iXa(t, x

i) +O(a3), si, tij = O(a2) (2.22)

and

Dσφ(σ(t, xi), xi) = ∂tφ(t, xi), diφ(σ(t, xi), xi) = ∂iφ(t, xi) +O(a2) (2.23)

where O(a2) denotes terms containing at least two factors of noise field Xa.

The most general Lagrangian for the fields σ,Xa constructed from these quantities can

be expanded to quadratic order in noise field Xa as

Lhydro[σ,Xa] = −H∂tXa −Gi∂iXa +
i

2
M1(∂tXa)

2 +
i

2
M2(∂iXa)

2 +O(a3) (2.24)

10Instead of X we now use t in the arguments of σ as it is now time coordinate of physical spacetime.
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where H, Gi depend on σ only through the local inverse temperature β (recall (2.7))

β =
β0

∂tσ
(2.25)

and its ordinary spatial and time derivatives e.g.

H = H(β, ∂tβ, ∂
2
i β, . . .) . (2.26)

Likewise M1,2 should be understood as differential operators constructed out of β, ∂i, ∂t
and acting on the first factor of Xa. In writing down equation (2.24) we have im-

posed (2.4)–(2.5).

The quantities H and Gi are respectively the dynamical part11 of the energy density

and energy flux

Er = H + · · · , J ir = Gi + · · · (2.27)

where · · · include contact terms and contributions from noises. The equations of motions

that follow from (2.24) then reduce to energy conservation12

∂tH + ∂iGi = 0, Xa = 0 . (2.28)

Clearly the equilibrium configuration

σ = t, β = β0, Xa = 0 (2.29)

is always a solution to (2.28).

For (0 + 1)-dimensional quantum mechanical systems we simply set all the spatial

derivatives to zero, i.e

Lhydro[σ,Xa] = −H∂tXa +
i

2
M1(∂tXa)

2 +O(a3), (2.30)

and (2.28) reduces to

∂tH = 0, Xa = 0 . (2.31)

2.4 Near-equilibrium quadratic action

For our later purpose, let us now consider the quadratic action near equilibrium. Expanding

around (2.29) we have

σ = t+ ε(t, xi), β = β0 + δβ, δβ = β0(1− ∂tε), Xa = −εa(t, xi) (2.32)

and at linear order in δβ we can write H and Gi as

H = f1δβ = −β0f1∂tε, Gi = h1∂iδβ = −β0h1∂i∂tε (2.33)

11This can be seen explicitly by turning on external sources as in appendix A.
12Note that the equation of motion corresponding to X always contains at least one factor of Xa and

thus we can consistently set Xa = 0. In the absence of unphysical a-type sources, this is the only solution

which satisfies the boundary condition Xa(t = +∞) = 0. Sometimes a-type sources are turned on as a

mathematical device for obtaining various types of correlation functions, in which case Xa can have nonzero

solutions. In this paper we will not need any a-type sources.
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where f1, h1 are differential operators built from ∂t, ∂i. Since X2
a terms in (2.24) are

already quadratic order, thus all β-dependence in M1,M2 should be set to β0. With

this understanding, the quadratic action can be written as

Lhydro = εaKε−
i

2
εaMεa, K = β0(f1∂t + h1∂

2
i )∂t, M = M1∂

2
t +M2∂

2
i (2.34)

and (2.28) becomes

(f1∂t + h1∂
2
i )∂tε = 0, εa = 0 . (2.35)

Imposing dynamical KMS symmetry (2.8) requires that f1, h1 and M1,2 satisfy (see ap-

pendix A)

β0(f1 − f∗1 ) = −2i tanh
iβ0∂t

2
M1, β0(h1 + h∗1)∂t = −2i tanh

iβ0∂t
2

M2 (2.36)

where f∗1 is the differential operator obtained from f1 by integrations by parts, i.e.

f∗1 (∂t, ∂i) = f1(−∂t,−∂i). Note by definition in (2.34) M1 = M∗1 and M2 = M∗2 .

In the above discussion f1, h1,M1,M2 can be nonlocal at the scale β0. To make con-

nections to conventional theory of hydrodynamics, let us consider (2.35) to leading order

in derivative expansions of these differential operators

f1 = − c0

β2
0

+ · · · , h1 =
κ

β2
0

+ · · · , M1 = c1 + · · · , M2 = c2 + · · · (2.37)

where c0,1,2 and κ are constants. From (2.33) we can identify c0 as the specific heat while

κ as the thermal conductivity. Note that (2.6) requires c1, c2 ≥ 0 while (2.36) implies that

κ

β2
0

=
c2

2
≥ 0 . (2.38)

Equation (2.35) then becomes diffusion equation

(∂t −DE∂
2
i )∂tε = 0 (2.39)

with energy diffusion constant

DE =
κ

c0
, (2.40)

which is precisely the Einstein relation.

By including higher order terms in the derivative expansion, one could systematically

incorporate corrections to (2.37)–(2.39) as in conventional hydrodynamics. However, as

we emphasized in the introduction, the advantage of our approach is that it is possible

to formulate the effective hydrodynamic theory non-perturbatively in derivatives. Such a

framework is necessary in order to discuss the theory on scales ∆t ∼ 1/λ. In the next section

we use this effective action Ihydro[β,Xa] to introduce our proposal for a hydrodynamic

description of chaos.

To conclude this section let us briefly discuss the N scaling of the hydrodynamic action.

The variables X,Xa are O(1), while the coefficient of each term in the full nonlinear action

should be of order O(N ). Thus in (2.34), K,M, c0, κ ∼ O(N ) while n-point functions of

ε, εa scale as

〈εmεna〉hydro ∼ N−
n+m

2 . (2.41)
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3 Hydrodynamic theories for chaotic systems

The quantum hydrodynamic theory introduced in last section applies to any quantum liq-

uids at a finite temperature with energy as the only conserved quantity. In this section we

show that imposing certain additional symmetry on the action gives rise to exponentially

growing behavior of hydrodynamic variable σ. In next section we will show such exponen-

tial behavior will not affect correlation functions of the energy density and flux, while in

section 6 we show that it leads to chaotic behavior in OTOC.

3.1 Shift symmetry in 0 + 1-dimension

To illustrate the general idea, let us first consider a quantum mechanical system with no

spatial directions. We propose that a chaotic system with Lyapunov exponent λ can be

described by an effective theory of the form (2.30) with an additional shift symmetry. More

explicitly, let us introduce u(σ(t)) through

u = e−λσ, σ = − 1

λ
log u (3.1)

and require the Lagrangian Lhydro[σ,Xa] in (2.30) to be invariant under a shift symmetry

u→ u+ a (3.2)

for arbitrary constant a.

Let us look at some immediate implications of this shift symmetry. Recall that equi-

librium state is described by σ = t, which in terms of u, is u = u0 = e−λt. From the shift

symmetry, u = e−λt + a must also be a solution to equation of motion (2.31). In terms of

β(σ(t)) = β0/∂tσ this implies that

β = β0 + aβ0e
λt (3.3)

is a solution. At the linearized level, this corresponds to an exponentially growing solution

in σ(t)

σ = t− a

λ
eλt + · · · (3.4)

which we wish to propose as the origin of the chaotic behavior (1.5).

To characterise hydrodynamic theories with this symmetry note that for H to be

invariant under the shift symmetry (3.2) implies that it depends on u(σ) only through

derivatives, i.e.

H = H(∂tu, ∂
2
t u, · · · ) . (3.5)

Now recall that by our original construction, H depends on σ only through derivatives, i.e.

by definition it is invariant under shift symmetry

σ → σ + c (3.6)

with c a constant. Thus H is characterized by two shift symmetries. Note in terms of u,

the shift symmetry (3.6) means scale invariance, i.e.

H(cu) = H(u) (3.7)

for arbitrary constant c.
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To have some intuition on the result action, let us expand H in derivatives. The first

few terms are (primes below denote t derivatives)

H = a1
u′′

u′
+
a2

2

u′′2

u′2
+ a3

(
u′′

u′

)′
+ · · ·

=

(
−a1λβ0

β
+
λ2β2

0a2

2β2

)
+

(
−a1

β
+ λβ0

a3 + a2

β2

)
β′ +

1
2a2 + a3

β2
β′2 − a3β

′′

β
(3.8)

where a1,2,3 are constants. Note the term proportional to β′ contains only one time deriva-

tive and is thus a friction-like dissipative term. It can be shown that it leads to entropy

production. Setting a1 = 0 and a3 = −a2, then H is proportional to a Schwarzian

H = −a2Sch(u, t) = a2

(
1

2

u′′2

u′2
−
(
u′′

u′

)′)
= a2

(
λ2β2

0

2β2
− β′2

2β2
+
β′′

β

)
(3.9)

which has a larger symmetry under SL(2, R) transformations of σ(t). When taking λ =

λmax = 2π
β0

, this theory is reminiscent of the Schwarzian action for SYK and AdS2 discussed

in [11, 13–15]. Indeed one can show that the Lagrangian (2.30) with H given by (3.9) can

be factorized into two copies of the Schwazian action, see appendix B.

To summarize, the shift symmetry (3.2) warrants that the system has an exponentially

increasing solution of the form (3.3). One immediate concern is that whether this will lead

to instabilities. Note that σ(t), or equivalently the local inverse temperature β(t), is not

a physical observable.13 It is a degree of freedom we use to parameterize non-equilibrium

dynamics. Thus exponentially behavior in σ does not have to imply instabilities. For

example, despite the exponentially growing behavior in β, the energy H is always constant.

In other words, the exponential behavior (3.3) carries no energy. Whether the exponential

behavior shows up in other observables is a much trickier issue. In the context of Schwarzian

for SYK and AdS2, the SL(2, R) symmetry is a global gauge symmetry, which ensures that

the behavior (3.3) does not lead to any instability in any physical observables. Here we face

similar issues; the exponentially growing behavior (3.3) should not lead to any instabilities

in physical observables, but should lead to the exponential behavior of OTOCs (1.3) or

commutators like (1.1). These are nontrivial requirements, which we will discuss in detail

in section 6.

3.2 Point-wise shift symmetry

We now generalize the above discussion to systems with spatial dependence. The gen-

eralization is not unique. We first discuss a simplest possibility and then consider more

general cases.

As a simplest generalization of (3.2), we require the Lagrangian Lhydro[σ,Xa] to be

invariant under an arbitrary spatial dependent shift symmetry

u(t, xi)→ u(t, xi) + a(xi) . (3.10)

13Although we refer to the field β as a local inverse temperature this is merely an analogy with the usual

formulation of hydrodynamics and does not imply β can be directly measured. The precise meaning of β is

given by the mathematical identifications (2.7) and (2.25). Physical quantities such as the energy density or

energy flux are extracted using the relationships in (2.27) between these quantities and β, which in general

can be complicated.
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The physical interpretation of (3.10) is simple: each fluid element has a separate shift

symmetry. For such a Lagrangian it then follows that

β = β0 + a(xi)β0e
λt (3.11)

is a solution to equation of motion for arbitrary a(xi). Note that this statement holds at

full nonlinear level. Invariance of (2.24) under (3.10) implies the invariance of H and Gi
under (3.11), and thus the exponentially increasing behavior is invisible to both the energy

density and energy flux.

With

γ ≡ ∂tu (3.12)

then invariance under (3.10) implies that

H = H(γ, ∂tγ, ∂iγ · · · ), Gi = Gi(γ, ∂tγ, ∂jγ · · · ) . (3.13)

The spatial dependent shift (2.20) of σ now corresponds to γ → c(xi)γ and thus both

functions H and Gi in (3.13) should be invariant arbitrary spatial dependent scaling of

γ, i.e.

H[γ] = H[c(xi)γ], Gi[γ] = Gi[c(x
i)γ] . (3.14)

As an illustration let us consider leading derivative expansion of Lhydro which satis-

fies (3.13)–(3.14)

Lhydro = a0
∂tγ

γ
∂tXa + a1∂i

(
∂tγ

γ

)
∂iXa +O(a2) (3.15)

= −a0

(
λβ0

β
+
∂tβ

β

)
∂tXa − a1∂i

(
λβ0

β
+
∂tβ

β

)
∂iXa +O(a2) (3.16)

Comparing with (2.24) we thus find

H = −a0

(
λβ0

β
+
∂tβ

β

)
, Gi = −D∂iH, D = −a1

a0
. (3.17)

Further expanding (3.17) around equilibrium and comparing with (2.33) and (2.40) we

conclude that D is precisely the thermal diffusion constant DE .

3.3 Effective action for a SYK chain

As an application of the point-wise shift symmetry we now propose a real-time effective

action for the SYK chains, as discussed for example in [20, 33]. The effective action can be

considered as a generalization of the SL(2, R) invariant action (3.9) to general dimensions,

which incorporates diffusion. In the microscopic models of [20, 33], the theory has a large

symmetry that corresponds to a separate SL(2, R) transformation at each lattice point,

which may be considered as enlarging (3.10) to point-wise SL(2, R) symmetries. Such an

action can be readily written down by taking

H = −CSch(u, t) = C

(
− β′2

2β2
+
β′′

β
+
λ2β2

0

2β2

)
, Gi = −D∂iH (3.18)
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where C,D are some constants. The resulting action is invariant under SL(2, R) transfor-

mations of the form

tanh
πσ(t, xi)

β0
→ tanh

πσ̃(t, xi)

β0
=
a(xi) tanhπσ(t,xi)

β0
+ b(xi)

c(xi) tanhπσβ0 + d(xi)
, ad− bc = 1 . (3.19)

From (2.32) the quadratic action corresponding to (3.18) near equilibrium can be written as

Lhydro = Cεa

(
λ2 − ∂2

t

)
(∂t −D∂2

i )∂tε+O(ε2a) (3.20)

where ε2a term can be obtained from (2.36). We see that D again corresponds to energy

diffusion constant DE .

It is interesting compare (3.20) with the Euclidean quadratic action for SYK chains

(which has λ = λmax) studied in [20, 33, 34], which has the form

Sε = C̃
∑

k,|ωn|6=0, 2π
β0

|ωn|(|ωn|+Dk2)(ω2
n − λ2

max)|ε(k, ωn)|2 . (3.21)

Note the parallel between (3.20) and (3.21). Also note that (3.21) has one copy of ε

while (3.20) has two. While (3.21) can be used to calculate Euclidean two-point functions

in momentum space, it does not have a sensible continuation to Lorentzian signature.

To conclude this subsection, we note that in both examples (3.17) and (3.18) we have

Gi = −D∂iH. Of course in general this does not have to be the case. For example,

combining (3.17) and (3.18) we can have

H = a1
∂2
t u

∂tu
+ a2Sch(u, t), Gi = ∂i

(
c1
∂2
t u

∂tu
+ c2Sch(u, t)

)
(3.22)

for some constants a1,2 and c1,2.

3.4 A general shift symmetry

More generally we can require the action be invariant under

u(t, xi)→ u(t, xi) + f(t, xi) (3.23)

for certain class of functions f(t, xi). Equation (3.10) corresponds to the class of f ’s which

are time independent, i.e. f satisfies equation

∂tf = 0 . (3.24)

Let us now suppose f satisfies a more general differential equation

∂tf = κ(∂i)f (3.25)

for some differential operator κ(∂i) built from spatial derivatives. We require κ to contain

at least one derivatives such that a constant shift (3.2) f = c = const is always allowed.

Writing σ = t+ ε(t, xi) with ε infinitesimal, we then find the following ε

ε = −f
λ
eλt (3.26)
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must be a solution to equations of motion at linearized level. Taking time derivative on

both side of the above equation we find that ε satisfies the differential equation

∂tε = −feλt − 1

λ
κ(∂i)fe

λt = λ̃(∂i)ε (3.27)

where

λ̃(∂i) = λ+ κ(∂i) . (3.28)

In general different chaotic systems can have different κ(∂i) and thus λ(∂i). When

transforming to Fourier space λ(ki) can be interpreted as a momentum-dependent Lya-

punov exponent, with the constant piece λ in λ̃(∂i) as the Lyapunov exponent for variables

without any spatial dependence. We will see later such a general shift symmetry could

lead to a diffusive spreading around the exponential growth (1.8) in coordinate space at

large distances. As before due to that the action is invariant under the shift symmetry, the

exponential mode is invisible to energy density and flux.

4 Correlation functions in chaos EFT

In this section we study the near-equilibrium two-point functions of the hydrodynamical

mode σ in the chaos EFT. These functions will clarify the implications of the various

shift symmetries that we introduced in the last section. They will also be used later for

computing correlation functions of the energy density/energy flux, and four-point functions

of general few-body operators.

We will denote the retarded, advanced and symmetric Green’s functions of ε near

equilibrium as GR, GA, GS respectively, which can be obtained from (x = (t, xi))

GR(x) = i〈ε(x)εa(0)〉 GA(x) = i〈εa(x)ε(0)〉 = GR(−x), GS(x) = 〈ε(x)ε(0)〉 (4.1)

while the Wightman functions are14

G+(x) = 〈ε2(x)ε1(0)〉 = GS −
i

2
GR (for t > 0), G−(x) = 〈ε1(x)ε2(0)〉 = G+(−x) . (4.2)

These functions can be obtained from path integrals of the quadratic action (2.34). In

particular, the relations (2.36) ensure that they satisfy the fluctuation-dissipation relations

GS(x) = − i
2

coth
iβ0∂t

2
(GR(x)−GA(x)) . (4.3)

For a system with a shift symmetry, as discussed in last section, ε has an exponentially

growing mode. The evaluation of GR, GS from (2.34) is subtle as one must be careful about

possible contributions at time infinities.

To avoid too much technicality, we will proceed with a shortcut. The retarded Green’s

function GR(x) can be obtained by inverting the different operator K = β0(∂tf1 + h1∂
2
i )∂t

in the εaKε term in (2.34), with retarded boundary condition. More explicitly,

GR(x) = −
∫

C

ddk

(2π)d
e−iωt+ikix

i

K
, (4.4)

14Recall that the subscript 1, 2 denotes the segment of the CTP an operator is inserted.
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where to ensure the retarded boundary condition, the contour C in the complex ω-plane

should be chosen so that all the poles of integrand should lie below it. In particular, if K

has a zero in the upper half ω-plane, C must be deformed to go above it. With GR, one

can then use (4.3) to obtain GS , and then G± from (4.2). We will discuss the behavior of

GR below leaving the expressions for GS and G± in appendix C.

We will assume that the system has a general shift symmetry (3.23) with (3.25), which

includes point-wise shift (3.10) and the constant shift of a (0 + 1)-dimensional system as

special cases.

The presence of the shift symmetry (3.23) and equation (3.27) implies that f1 and h1

in (2.34) can be written in a form15

f1 = (∂t − λ̃(∂2
i ))a(∂t, ∂

2
i ), h1 = (∂t − λ̃(∂2

i ))b(∂t, ∂
2
i ) . (4.5)

For later convenience we will denote

D(∂t, ∂
2
i ) ≡ − b(∂t, ∂

2
i )

a(∂t, ∂2
i )

= DE +O(∂t, ∂
2
i ) (4.6)

which can be interpreted as the “diffusion” operator, as its leading term in a derivative

expansion gives the energy diffusion constant (see (2.40)). Thus now the operator K can

be written in momentum space as

K = iβ0ωa(ω, k)(ω − iλ̃(k))
(
ω + iD(ω, k)k2

)
, k2 = k2

i (4.7)

and (4.4) becomes

GR(x) =
i

β0

∫

C

ddk

(2π)d
e−iωt+ikix

i

ωa(ω, k)(ω − iλ̃(k)) (ω + iD(ω, k)k2)
. (4.8)

Note that for point-wise shift symmetry we simply have λ̃ = λ and the expression for

(0 + 1)-dimension is obtained by setting all ki to zero.

For simplicity we will assume that for real k, K does not have any zero on the upper ω-

plane other than ω = iλ̃. Other zeros of K on upper half ω-plane may indicate instabilities

or secondary Lyapunov exponents if they arise due to some other shift symmetries. In the

lower half plane we expect there to be additional zeroes (for real k) in K corresponding to

solutions of16

ω + iD(ω, k)k2 = 0, (4.9)

As we will show explicitly in section 5 solutions to (4.9) give rise to poles in the two-point

functions of energy density and energy flux. In particular, in the limit of small ω, k they

include the standard energy diffusion pole

ω = −iDEk
2 + . . . (4.10)

15Strictly speaking, invariance of (2.34) only requires the combination K to be proportional to ∂t −
λ̃(∂i). (4.5) follows by requiring the action in the presence of external fields also has the shift symmetry.

See appendix A.
16In principle a(ω, k) may also have zeros.
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and (often infinite) other quasinormal poles with schematic dispersion relations at small k

ω = ω0 +O(k2), ω0 ∼ O(β0), Imω0 < 0 . (4.11)

Now let us examine the behavior of (4.8) for various situations:

1. (0 + 1)-dimensional chaotic systems. In this case we have K = iβ0ω
2a(ω)(ω − iλ)

which gives

GR(t) = θ(t)
(
ceλt + · · ·

)
, c = − 1

β0a(iλ)λ2
(4.12)

where the exponential term comes from evaluating the pole at ω = iλ and · · · denotes

the remaining (non-exponentially growing) contributions.

2. Point-wise shift symmetry. In this case we again have a pole at ω = iλ, whose

contribution gives

GR = −θ(t) e
λt

β0λ

∫
dd−1k

(2π)d−1

eikix
i

(λ+ k2D(iλ, k2))a(iλ, k2)
. (4.13)

In general D(iλ, k2) is a complicated function of k2. Let us first consider a special

case in which

D(ω, k2) = DE = const (4.14)

with DE the energy diffusion constant, which happens for example for the SYK chain

discussed in section 3.3.

In this case we have h1 = DEf1 and Gi = −DE∂iH and hence a diffusion pole

satisfying (4.10) to all orders in derivatives. Now the integrand of (4.13) has a pole

at k2 = − λ
DE

, whose contribution gives

GR = cθ(t)e
λ(t− |~x|

vB
)

+ · · · , v2
B = λDE (4.15)

with c some constant. We therefore see that ballistic propagation of chaos can arise

from the combination of an exponentially growing mode and the spatial propagation

of diffusion.

For a general D(ω, k2) we can get the same behavior if we suppose that the equation

λ+ k2D(iλ, k2) = 0 (4.16)

has a solution at some −k2
C < 0. Then we get ballistic behaviour with a butterfly

velocity given by

v2
B =

λ2

k2
C

(4.17)

Note that the fact vB is coming from a solution to (4.9) means it is again determined

by a pole in the energy density two point function. Specifically (4.16) implies that to

get ballistic behaviour this correlation function should have a pole which eventually
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crosses the point ω(k) = iλ for some imaginary wave-vector k = ikC . The value of

the wavevector kC at which this happens determines vB according to

ω(ikC) = iλ vB =
λ

kC
(4.18)

In the case where the pole that determines vB is exactly diffusive this gives the simple

relation DE =
v2B
λ seen above and in examples of SYK chains. More generally, the

pole that determines vB will obey some more complicated dispersion relation given

by solving (4.9). Nevertheless, our approach predicts that the relationship (4.18)

between this pole and the butterfly velocity will hold.

3. General λ̃(k). Performing the ω integral in (4.8) we find that

GR = −θ(t) 1

β0

∫
dd−1k

(2π)d−1

eλ̃(k)t+ikix
i

λ̃(λ̃+ k2D(iλ̃, k2))a(iλ̃, k2)
. (4.19)

We again have the behavior (4.15) if17

λ̃+ k2D(iλ̃, k2) = 0 (4.20)

has a solution at some −k2
C < 0. Now define

λ̄ = λ̃(−k2
C), vB =

λ̄

kC
(4.21)

then we have

GR = cθ(t)e
λ̄(t− |~x|

vB
)

+ · · · . (4.22)

Note that λ̄ is in general different from λ = λ̃(k = 0) and may be interpreted as an

“averaged” Lyapunov exponent over different k.

Equation (4.19) can also have a different regime. Suppose for small k,

λ̃(k) = λ−D0k
2 + · · · (4.23)

with some D0 > 0. Then for large |~x| and
√
λD0t � |~x|, the integrals are domi-

nated by small k region, and we can evaluate (4.19) by saddle point of the exponent,

which gives

GR ∼ θ(t)
1

t
d−1
2

e
λt− ~x2

4D0t + · · · . (4.24)

Note that this regime is qualitatively different to the ballistic propagation in (4.15)

or (4.22) which arose from the interplay of the exponential growing mode and other

poles (such as energy diffusion). In contrast the entire functional form of (4.24) is

determined by the shift symmetry λ(k) alone.

17For the discussion below to hold we need λ̃(k) to behave sufficiently well at large k so that contour

integrations can be performed.
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5 Phenomenon of pole skipping

In this section we examine two-point functions of the energy density E and flux J i to all

derivative orders. Their behavior confirms our earlier expectation that the exponentially

growing mode should be invisible to them. Nevertheless, we will find that the hydrodynamic

origin of chaos predicts the phenomenon of “pole-skipping” in the response functions of

the energy density and flux, as indicated in figure 8. Remarkably this phenomenon implies

that both the Lyapunov exponent and the butterfly velocity can be extracted from the

energy density two-point function alone.

We will denote the retarded, advanced and symmetric Green’s functions for E ,J i as

GR,GA,GS respectively, For example, various density-density functions are obtained from

GEER (x) = i〈Er(x)Ea(0)〉, GEEA (x) = i〈Ea(x)Er(0)〉, GEES (x) = i〈Er(x)Er(0)〉 (5.1)

where the explicit forms of the symmetric Er and antisymmetric part Ea of the energy

density are given in appendix A. One finds, for example, various retarded functions are

given by

GEER (x) = β2
0f1h1∂t∂

2
iGR(x), GEJ iR = −β2

0f1h1∂
2
t ∂iGR, (5.2)

GJ iER = −β2
0h1f1∂

2
t ∂iGR, GJ iJ jR = −β2

0h
2
1∂

2
t ∂j∂iGR (5.3)

where GR is retarded function of σ given in (4.8). In the above expressions we have

suppressed various “contact” terms which are given explicitly in appendix A. One can

also check that with GR, GS satisfying (4.3), various GR and GS satisfy the fluctuation-

dissipation relations

GR(x)− GA(x) = 2i tanh
iβ0∂t

2
GS(x) . (5.4)

We now use GEER (x) as an illustration for the pole-skipping phenomenon with parallel

discussions for others. From (4.8)–(4.5) and (4.7) in (5.2) we find in momentum space

GEER (ω, k) = β0
(ω − iλ̃(k))k2b(ω, k)

ω + iD(ω, k)k2
. (5.5)

Notice that the factor ω−iλ̃(ω, k) now appears in the upstairs. Thus there is no exponential

behavior. Let us first look at the (5.5) to leading order in the small ω, k limit. Comparing

with (2.37) we identify κ
β2
0

= λ̃(k = 0)b(ω = k = 0), and using (2.40), (4.6) we find (5.5)

becomes

GEER (ω, k) = − c0

β0

DEk
2

−iω +DEk2
(5.6)

which is the standard form.

Now due to the presence of the factor ω − iλ̃(ω, k) in the upstairs of (5.5) there is a

new phenomenon. Equation (5.5) has a pole at

ω = −iD(ω, k2)k2 (5.7)

which for small ω, k is simply the standard diffusion pole ω = −iDEk
2 as exhibited in (5.6).

Consider continuously changing the value of k until k = ±ikC = ±i λ̄vB which satisfies (4.20).
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At this value of k, ω = iλ̄ and thus the zeros in upstairs and downstairs of (5.5) precisely

coincide and cancel each other. We then find a line of poles which suddenly skips at that

point, as indicated in figure 8.

Note that this phenomenon is a general consequence of formulating a hydrodynamic

theory of chaos with a shift symmetry λ̃(k). For the case of a point-wise shift symmetry,

we expect that the pole-skipping will always occur at a frequency λ̄ = λ, while for the

extreme diffusion case we further have that the kC =
√

λ
DE

. However note that in all cases

we can use the location of this pole-skipping to read off both the Lyapunov exponent and

butterfly velocity from a computation of GEER (ω, k) alone.

This phenomenon has implicitly been present in several previous calculations of the

energy two-point function in chaotic theories. For instance it can be seen in the expression

found for a SYK chain (equation (4.15) of [20]) whose analytic continuation to Lorentzian

signature gives (using our notations)

GEER (ω, k) =
N c0

β2
0

iω
(

ω2

λ2max
+ 1
)

−iω +DEk2
. (5.8)

As we discussed earlier the SYK chain of [20] has point-wise shift symmetry and is an

example of extreme diffusion (see section 3.3). The same pole-skipping phenomenon has

also been observed in a momentum conserved system in [37] at precisely the value stated

above. This strongly suggests that not only is this phenomenon expected to hold for

systems with full energy-momentum conservation, but also the locations of pole-skipping

remain the same.

6 Correlation functions of general few-body operators

In section 3 we proposed a chaos EFT in which the hydrodynamic variable corresponding to

energy conservation has an exponentially growing mode. We showed in section 4 that this

mode has ballistic propagation as in (1.7) or diffusive spreading around the exponential

growth (1.8). We also saw that such exponential behavior does not show up in energy

density or energy flux, or their corresponding correlation functions, but does give rise to

the phenomenon of pole-skipping. In this section we discuss their relevance for correlation

functions of general few-body operators.

There are two key aspects we would like to elucidate. Firstly, despite that correlation

functions such as (1.1) require a contour with at least four segments, to leading order

in the large N limit such four-point functions are in fact controlled by two-point near-

equilibrium functions of the hydrodynamical variable σ discussed in section 4. Secondly,

with the imposing of a shift symmetry in the couplings between a general few-body operator

and σ, the exponentially growing mode does not affect TOCs (1.2), but does show up in

OTOCs (1.3), resulting in (1.5)–(1.7).

6.1 General structure

Let us first discuss the general structure of the couplings of a general few-body operator

to σ. To simplify our discussion we will focus on studying OTOCs in 0 + 1 dimensional

– 24 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
7

systems. We then briefly discuss how the basic structure could be generalised to higher

dimensional systems with strong momentum dissipation.

We imagine each few-body operator V (t) can be separated into a bare operator V̂ (t)

dressed by a “hydrodynamical” cloud as indicated in figure 2. The bare operators can

only communicate with themselves, i.e.
〈
V̂ Ŵ

〉
= 0 for generic V 6= W . Such a separation

clearly makes sense only in the limit of large number of degrees of freedom. More explicitly,

we can expand V (t) in power series of ε(t) = σ(t)− t as

V (t) = V̂ (t) + L(1)[V̂ ε](t) +O(ε2) (6.1)

where L(1) is a differential operator acting on both V̂ and ε, and should be understood as

L(1)[V̂ ε] =
∞∑

n,m=0

cnm∂
n
t V̂ ∂

m
t ε (6.2)

where cmn are constants. In other words we take the most general possible local coupling

between V̂ and ε. One expects that for a chaotic system L(1) should not depend on the

specific form of V , and only on some gross features such as spin or scaling dimension. The

couplings which are quadratic and higher in ε will be neglected as due to (2.41) they will

give subleading corrections in 1/N .

An example of (6.2) is SYK or holographic AdS2 theories where the full dressed oper-

ator V has the form [13–15]

V (t) = (∂tσ)∆V V̂ (σ(t)) (6.3)

where ∆V is a constant given by the infra-red scaling dimension of the operator V . Equa-

tion (6.3) has a simple geometric interpretation: the bare operator V̂ is simply the pull-back

of V to the fluid spacetime. Expanding (6.3) in ε we find that

V (t) = V̂ (t) +
(
∆V ε

′(t) + ε(t)∂t
)
V̂ (t) + · · · . (6.4)

Now consider a general 4-point function between two few-body operators V̂ and Ŵ

ordered in a certain way

Gi1i2i3i4(t1, t2, t3, t4) =
〈PVi1(t1)Vi2(t2)Wi3(t3)Wi4(t4)〉
〈PVi1(t1)Vi2(t2)〉〈PWi3(t3)Wi4(t4)〉 (6.5)

where P denotes path ordering along the contour in the right plot of figure 6 and i1,2,3,4
(taking values from 1 to 4) denote on which contour each operator is inserted. Note that

Vi1(t) = V̂i1(t) + L(1)(V̂i1εi1) + O(ε2i1) where εi1 = σi1(t) − t and σi1(t) is the inverse of

Xi1(σ) discussed in section 2.2. Now since there are four segments we need to introduce

four X’s or correspondingly four σ’s depending on whether one wants to write down the

action in the fluid or physical spacetime.

Inserting (6.1) into (6.5) and keeping keeping in mind there is no correlation between

V̂ and Ŵ , we find that to leading order in large N the four-point function reduces to

various two-point functions of ε,

Gi1i2i3i4 − 1 =
〈
Bi1i2
V (t1, t2)Bi3i4

W (t3, t4)
〉

(6.6)
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⇢0

V (t1)

V (t2)

W (t3)

W (t4) ⇢0

V (t1)

V (t2)

W (t3)

W (t4)

Figure 9. Left: operator insertions for (6.9). Right: operator inserations for (6.10).

with

Bi1i2
V =

1

gV

(
L

(1)
t1

[gV (t12)εi1(t1)] + L
(1)
t2

[gV (t12)εi2(t2)]
)

(6.7)

where the subscript on L(1) denotes that which variable it acts on, and

gV (t12) ≡
〈
PV̂i1(t1)V̂i2(t2)

〉
, t12 = t1 − t2 . (6.8)

BW is similarly defined with V replaced by W . BV can be considered as defining the

effective vertex for V̂ V̂ coupling to ε. Since two-point functions on a four-segment contour

reduce to those on a CTP contour (the left plot of figure 6), we conclude that regardless

of the orderings, (6.6) can be computed using correlation functions of σ on a CTP contour

discussed in section 4 and appendix C, as indicated in figure 7. This discussion also makes

clear that at this order in 1/N the only interesting correlation functions between V and

W are four-point functions as all higher-point functions reduce to them.

Let us consider two explicit examples indicated in figure 9. The first is TOC as in (1.2)

G4(t1, t2, t3, t4) = 〈PV1(t1)V2(t2)W1(t3)W2(t4)〉 = 〈V (t2)W (t4)W (t3)V (t1)〉 (6.9)

and the second is the OTOC (1.3)

H4(t1, t2, t3, t4) = 〈PV1(t1)V2(t2)W1(t3)W3(t4)〉 = 〈W (t4)V (t2)W (t3)V (t1)〉 (6.10)

with t3,4 � t1,2, where in the second equalities of (6.9)–(6.10) we have given the spe-

cific orderings of various operators. In these definitions for notational simplicity we have

suppressed the downstairs of (6.5). Using (6.6) we find the difference between the two

H4 −G4 =
1

gV gW
L

(1)
t2
L

(1)
t4

[gV (t12)gW (t34)∆(t42)], ∆(t42) = 〈[ε(t4), ε(t2)]〉 . (6.11)

Thus if the couplings cmn and two-point functions of V̂ , Ŵ are such that the exponential

mode does not appear in ordered four-point function G4, they will always appear in out-

of-time order four-point functions H4.

6.2 Shift symmetry for effective vertex

We will now require the effective vertex (6.7) respect the shift symmetry (3.3), i.e. it should

be invariant under εi → εi + ceλt with c some constant. This implies that

L
(1)
t1

[gV (t12)eλt1 ] + L
(1)
t2

[gV (t12)eλt2 ] = 0 (6.12)
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which implies that

Feven(λ, t)

Fodd(λ, t)
= − tanh

λt

2
. (6.13)

In the above equations we have introduced

Feven(λ, t) =
∑

n even

fn(λ)∂nt gV (t), Fodd(λ, t) =
∑

n odd

fn(λ)∂nt gV (t) . (6.14)

where

fn =
∑

m

cnmλ
m . (6.15)

Note that with equation (6.13) we can write L
(1)
t1

[gV (t12)eλt1 ] = −L(1)
t2

[gV (t12)eλt2 ] as

L
(1)
t1

[gV (t12)eλt1 ] = eλt1 (Feven(λ, t12) + Fodd(λ, t12)) = −Feven(λ, t12)

sinh λt12
2

e
1
2
λ(t1+t2) . (6.16)

For V a Hermitian operator, we have g∗V (t) = gV (−t) and thus F ∗even(λ, t) = Feven(λ,−t)
and F ∗odd(λ, t) = −Fodd(λ,−t).

While is does not naturally follow from our logic, we will see in next subsection that

in order for the exponential growing behavior to cancel for all the TOCs, we also need to

impose the version of (6.12) with λ→ −λ, i.e.

L
(1)
t1

[gV (t12)e−λt1 ] + L
(1)
t2

[gV (t12)e−λt2 ] = 0 (6.17)

which implies

Feven(−λ, t)
Fodd(−λ, t) = tanh

λt

2
(6.18)

and

L
(1)
t1

[gV (t12)e−λt1 ] =
Feven(−λ, t12)

sinh λt12
2

e−
1
2
λ(t1+t2) . (6.19)

Now let us consider applying (6.13) to the specific example (6.4) for SYK and AdS2.

We find that
∂tgV
gV

= − ∆V λ0

tanh λ0t
2

, λ0 =
2π

β0
(6.20)

which can be integrated to give

gV =
c

(
sinh λ0t

2

)2∆V
. (6.21)

The above expression is precisely the expected behavior in SYK and AdS2 for two-point

function of V̂ . Note that (6.21) also satisfies (6.17).
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6.3 Ordered and out-of-time ordered four-point functions

We will now show that the shift symmetry (6.12) implies that the exponential behavior is

canceled for the ordered four-point function (6.9), but leads to chaotic behavior (1.5) for

OTOC (6.10).

More explicitly, from (6.6)–(6.7) we find (6.9) can be written as

G4 − 1 =
1

gV gW

(
L

(1)
t1
L

(1)
t3
G+(t31) + L

(1)
t1
L

(1)
t4
G+(t41)

+ L
(1)
t2
L

(1)
t3
G−(t32) + L

(1)
t2
L

(1)
t4
G−(t42)

)
gV gW (6.22)

where in the above equation it should be understood that L(1)’s also act on gV (t12) or

gW (t34) after them. The contribution from the exponential modes to the above equation

can be extracted using the hydrodynamic Green’s functions for t > 0. First let us consider

a non-maximally chaotic theory, for which we have (see appendix C)

G+(t) = c+e
λt + · · · G−(t) = c−e

λt + · · · (6.23)

with c± some constants. With some manipulations it can be shown that the contribution

of the exponential mode to (6.22) can be written as

G4 − 1 = BW [ε̃(t3), ε̃(t4)] + · · · (6.24)

where

ε̃(t3) = c12e
λt3 , ε̃(t4) = c12e

λt4 , c12 = c+L
(1)
t1

[gV e
−λt1 ] + c−L

(1)
t2

[gV e
−λt2 ] . (6.25)

Equation (6.12) then implies that the contribution from the exponential mode precisely

cancels out of this time ordered configuration. Note the above expression (6.24) has a

natural interpretation in terms of a saddle point analysis. Namely, we can view the initial

V operators as sourcing a classical solution with an exponential mode ε1 = ε2 = c12e
λt

turned on in between the two operator insertions. The four point function G4 then re-

duces to evaluating the effective vertex BW in this configuration, which vanishes due to

condition (6.12).

Note that whilst the condition (6.12) is sufficient to get cancellation of the exponential

mode in (6.22), it is not enough to guarantee that the exponential growth cancels for all

relevant time-ordered configurations. This can be seen by repeating the above analysis for

the correlation function

G̃4(t1, t2, t3, t4) = 〈PV2(t1)V3(t2)W2(t3)W3(t4)〉 = 〈W (t4)V (t2)V (t1)W (t3)〉 . (6.26)

Notice that in contrast to (6.9), this correlation function corresponds to operator insertions

on a closed time path with ρ0 imposed at t = +∞. See figure 10. For the exponential modes

to vanish in (6.26) we find we now need to impose the condition (6.17) which corresponds

to requiring invariance of the effective vertex (6.7) under an exponentially decaying mode

εi → εi + ce−λt. Such a condition is natural for the correlation function (6.26) since this
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⇢0
V (t1)

V (t2)

W (t3)

W (t4)
⇢0

V (t1)

V (t2)

W (t3)!
W (t4)

Figure 10. The configuration G̃4 can be reduced to a four point function on a time reversed CTP

contour.

is a time reversed configuration relative to (6.22). This gives an extra constraint (6.18) on

the couplings.

For the maximally chaotic chaos, a slightly more sophisticated analysis is required

since (as discussed in appendix C) the hydrodynamic Green’s functions have additional

terms. Namely, we have

G+(t) = (ct+ c+)eλt, G−(t) = (ct+ c−)eλt, c = −iβ0(c+ − c−) . (6.27)

The terms proportional to c+, c− will again vanish out of (6.22) if we impose the condi-

tion (6.12). To check that the tet terms vanish we can write these terms as G+ = G− =

∂(ceλ1t)/∂λ1 and then set λ1 = λ. Then we can then write the contribution of these terms

to (6.22) as

G4 − 1 =
∂BW [ε̃(t3;λ1), ε̃(t4;λ1)]

∂λ1

∣∣∣∣
λ1=λ

(6.28)

where

ε̃(t3;λ1) = c12(λ1)eλ1t3 , ε̃(t4;λ1) = c12(λ1)eλ1t4 ,

c12(λ1) = cL
(1)
t1

[gV e
−λ1t1 ] + cL

(1)
t2

[gV e
−λ1t2 ] . (6.29)

After imposing (6.12) we find that there will be an exponentially growing contribution

in (6.28) unless c12(λ) = 0. However this is precisely satisfied if we use the fact that

the effective vertex should also be invariant under (6.17).18 The fact that we need both

conditions to cancel the exponential growth in (6.22) alone is interesting.

Since the shift symmetry of the coupling ensures the exponential modes do not appear

in the TOC then they will appear instead from (6.11) in the OTOC. We then find the

contribution of the exponential mode to the OTOC is given by

H4 − 1 = − ic

gV gW
L

(1)
t2
L

(1)
t4

[gV (t12)gW (t34)eλt42 ] + · · · . (6.30)

Using equations (6.16) and (6.19) it is possible to write the above equation in a form which

separates the dependence on the relative time t12 (t34) and “center of mass time” 1
2(t1 + t2)

(1
2(t3 + t4)) for V ’s (W ’s)

H4 − 1 =
ic

gV gW

Feven(−λ, t12)

sinhλt122

F̃even(λ, t34)

sinhλt342

eλ(t3+t4−t1−t2)/2 + · · · . (6.31)

18We thank Ping Gao for pointing this out to us.
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where F refers to the coupling of ε to V and F̃ refers to the coupling of ε to W . Note for

maximal chaos this is consistent with the functional form for OTOCs proposed in [17].

In the case of the SYK model in the infra-red limit we know the exact couplings

and (6.13) is satisfied as a result of the SL(2, R) symmetry of generic correlation functions.

To compare with the results of [15], let us consider the full G4 (not just the exponential

parts) for the example of (3.9) at maximal chaos. Using the explicit expression (C.8) for

G+ obtained in appendix C, we find that (in the equations below we have set a2 = 1,

β0 = 2π and λmax = 1)

G4 − 1 =
∆V ∆W

2π

[(
−2 +

t12 − 2πi

tanh t12
2

)(
−2 +

t34

tanh t34
2

)]
(6.32)

which agrees fully with Lorenzian continuation of (4.30) of [15].19 Similarly, for OTOC

we find

H4 − 1 = − i∆V ∆W e
1
2

(t3+t4−t1−t2)

sinh t12
2 sinh t34

2

+ · · · (6.33)

which matches the analytic continuation of (4.32) of [15].

Whilst we defer a detailed analysis to future work this discussion can in principle be

generalized to higher dimensions to include spatial dependence in each operator insertion.

For instance H4 is now replaced by

H4(t1, x1, t2, x2, t3, x3, t4, x4) = 〈PV1(t1, x1)V2(t2, x2)W1(t3, x3)W3(t4, x4)〉
= 〈W (t4, x4)V (t2, x2)W (t3, x3)V (t1, x1)〉 . (6.34)

In the case of point-wise shift symmetry case the discussion is parallel to the above, and

one finds that for t12, t34 � t42, x12, x34 � x42

H4 − 1 ∼ eλ(t42−|x42|/vB) (6.35)

while the exponentials will again cancel for G4 provided that the effective vertex analogous

to (6.7) is invariant under εi → εi + c(x)e±λt. Such a condition is satisfied for instance by

the effective vertex corresponding to the SYK chains in [20].

7 Discussions and conclusions

Let us first summarize our main findings: with a shift symmetry, the hydrodynamic

theory has a mode which grows exponentially in time, and exhibits ballistic spreading

with a butterfly velocity vB. As a result such behavior appears in OTOCs, leading

to (1.5), (1.7)–(1.8), while the shift symmetry prevents correlation functions of the energy

density and flux, and TOCs of generic operators from having such behavior.

A key prediction of this theory is that there should be direct connections between chaos

and correlation functions of energy-density and energy flux. In particular we emphasised

19The additional −2πi term compared with (4.30) of [15] is due to the fact we are considering a slightly

different ordering. Here we consider VWWV while there V VWW is computed: the two orderings can be

related by taking t1 → t1 + iβ0.
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that within this approach the butterfly velocity is determined by the dispersion relation for

a pole in the energy-density two point function according to the relation (1.10)–(1.11). The

fact that vB is determined by such a pole could provide an explanation for why in many

soluble models vB is comparable to the energy diffusion constant DE [20, 29–33]. Further-

more the theory predicts that correlation functions of energy density and flux exhibit the

phenomenon of pole-skipping. This phenomenon provides a simpler way than OTOCs to

extract the Lyapunov exponent λ and butterfly velocity vB. It is of interest to study this

pole-skipping phenomenon more generally in holographic systems.

While in this paper we considered a theory with only energy conservation we expect the

discussion can be straightforwardly generalized to systems with full energy-momentum con-

servation, with other conserved quantities, or with additional light modes, since the chaos

mode is associated with energy conservation. For example, as mentioned earlier, strong

support for the pole-skipping phenomenon has been observed in a momentum conservation

system in [37] at exactly the same value of frequency and momentum we indicated.

The hydrodynamic description developed here should also provide new techniques for

studying chaotic systems, especially those phenomena related to operator spreading and

scrambling, including for example, the spread of entanglement and the traversable worm-

hole of [45].

There are still many open questions. One central issue is the precise scope of the

applicability of the hydrodynamic description. A closely related question is why quantum

many-body chaos should have anything to do with the hydrodynamic mode σ(t) associ-

ated to energy conservation? Currently the hints for a hydrodynamic picture which we

mentioned in the Introduction appear to largely involve examples with maximal chaos,

such as SYK at strong coupling and holographic gravity examples. Further analyses of

the TOCs and OTOCs in section 6 find further parallels with those of known maximally

chaotic systems, which we will elaborate elsewhere. In particular, one finds that the leading

exponential growth in the expectation value of a commutator square in fact vanishes due

to destructive interference, which appears to resonate well with a recent proposal regarding

maximal chaos from [17, 47]. If indeed it turns out that maximally chaotic systems are

distinguished from general chaotic systems by having a hydrodynamic formulation in terms

of σ(t) then this would be a rather interesting physical picture and open a new window

into the physical nature of quantum many-body chaotic behavior.

It is tempting to further speculate that for a non-maximally chaotic system, proposal

A and B of the Introduction may still apply, i.e. one should still be able to formulate the

Lyapunov behavior and butterfly spreading using an effective chaotic mode as, for example,

in [22]. In holographic systems, the Lyapunov exponent deviates from the maximal value

when stringy mode exchanges are included [9] and it may happen that the net effect of

summing over an infinite number of stringy modes can be captured by a single mode as in

Regge physics. Now such a chaos mode may not be fully captured by energy conservation.

Nevertheless, for a near-maximally chaotic system it appears reasonable that the mode

may still have significant overlap with the hydrodynamic mode for energy conservation,

and thus there might still be remnant of the pole-skipping phenomenon, and there might

be some structure in the commutator square as advocated in [17, 47].

– 31 –



J
H
E
P
1
0
(
2
0
1
8
)
1
2
7

Another important issue is the physical origin and nature of the shift symmetry. In the

special example of (3.9) which provides an effective theory for SYK, the shift symmetry is

a subgroup of the SL(2, R) which is a “global” gauge symmetry [15]. It appears sensible

that the shift symmetry should also be a “global” gauge symmetry in the sense that con-

figurations related by such a shift are considered to be physically equivalent, and thus not

integrated over in the path integrals. An interesting question is whether we can identify

the counterpart of the shift symmetry on the gravity side in holographic systems. We do

not have a full answer, but it is tempting to identify this symmetry as a horizon boost,

given that on the gravity side the hydrodynamic cloud is essentially built up through large

relative boosts between stationary observers near a horizon and at the infinity. See also

figure 4. One can also show that the exponential solution generated by the shift symmetry

precisely matches with a shock wave solution on the gravity side, which we will discuss

elsewhere.
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A Quadratic action to all derivative orders in the presence of background

fields

In this appendix we discuss the full hydrodynamic action Ihydro to quadratic order in

deviations from thermal equilibrium in the presence of background fields. Turning on

background fields is needed in determining the explicit forms of Er,J ir , Ea,J ia which are in

turn needed to compute various correlation functions of the energy density and energy flux.

Consider infinitesimal deviations from (2.21)

er =
1

2
(e1 + e2) = 1 + e, ea = e1 − e2, wi =

1

2
(w1i + w2i), wai = w1i − w2i . (A.1)

We will treat the above quantities and deviations (2.32) of the dynamical fields from equilib-

rium to be of the same order, and expand the action to quadratic orders in these variables.

Various variables introduced in section 2.2 can now be written as

Ea = ea − ∂tεa, si = ∂ie + ∂twi, tij = ∂iwj − ∂jwi, (A.2)

Vai = wai + ∂iεa + · · · , β = β0 + δβ, δβ = β0(e− ∂tε) . (A.3)

Note that si and tij depend only on external sources.
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At linear order in these variables we simply find

S1 = a0

∫
ddx ea (A.4)

with a0 interpreted as the constant part of the energy density. At quadratic order we find

S2 =

∫
ddx

(
−HEa +GiVai +

i

2
g1E

2
a + iĝ2Ea∂iVai +

i

2
(g3∂i∂j + g4δij)VaiVaj

)
(A.5)

where H and Gi can be written more explicitly as

H = f1δβ + f2∂isi, Gi = h1∂iδβ + (h2∂j∂i + h3δij)sj + h4(∂jδki − ∂kδji)tjk . (A.6)

In writing down (A.5) we have imposed (2.4)–(2.5). f1,2, h1,2,3, g1,2,3,4 should be understood

as scalar operators constructed from ∂0 and ∂2
i acting on the fields immediately behind

them. Note h4 is a function of ∂2
i only due to (2.19). Note that by definition

g1 = g∗1, g3 = g∗3, g4 = g∗4 (A.7)

where g∗1 denotes the operator obtained from g1 by integration by parts.

At linearized level the dynamical KMS transformations (2.8) have the form

χ̃r(−t) = ei(θ−
β0
2

)∂t

(
Lχr(t) +

La
2
χa(t)

)
, χ̃a(−t) = ei(θ−

β0
2

)∂t (Lχa(t) + 2Laχr(t))

(A.8)

with

L = cosh
iβ0∂t

2
, La = sinh

iβ0∂t
2

(A.9)

where (χr, χa) = {(δEr, Ea), (Vri, Vai)} (recall δβ = β0δEr). Requiring the action (A.5) to

be invariant under these transformations we find

ĝ2 = g2∂t, g2 = g∗2, β0h1 = −f2∂t − h2∂
2
i − h3 (A.10)

and

β0(f1 − f∗1 ) = −2i tanh
iβ0∂t

2
M1, β0(h1 + h∗1)∂t = −2i tanh

iβ0∂t
2

M2, (A.11)

f2 − f∗2 = 2i tanh
iβ0∂t

2
g2, (h2 + h∗2)∂t = −2i tanh

iβ0∂t
2

g3, (A.12)

(h3 + h∗3)∂t = −2i tanh
iβ0∂t

2
g4 . (A.13)

From (2.15), the symmetric and antisymmetric parts of the energy density and flux

can be obtained at linearized level as

Er(t, xi) = − δIhydro

δea(t, xi)
, J ir (t, xi) =

δIhydro

δwai(t, xi)
(A.14)

and similarly for Ea,J ia with ea, wai in the above equations replaced by e, wi. We thus find

Er = H − ig1Ea + ig2∂t∂iVai, Ea = (β0f
∗
1 + f∗2∂

2
i )Ea + f∗2∂t∂iVai (A.15)

J ir = Gi − ig2∂t∂iEa + i(g3∂i∂j + g4δij)Vaj , (A.16)

J ia = f∗2∂t∂iEa − (h∗2∂i∂j + h∗3δij)∂tVaj − 2h∗4∂jwaij (A.17)
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with waij = ∂iwaj − ∂jwai. From the above expressions and using the definitions of (4.1)

and (5.1) one can find that

GEER (x) = β2
0f1h1∂t∂

2
iGR − f2∂

2
i , GJ iER = GEJ iR = −β2

0f1h1∂
2
t ∂iGR + f2∂i∂t, (A.18)

GJ iJ jR =−β2
0h

2
1∂

2
t ∂j∂iGR + h̃2∂i∂j + h̃3δij (A.19)

GEES (x) =−β2
0f1f

∗
1∂

2
tGS + β0f1M1∂

2
tGR + β0M1f

∗
1∂

2
tGA + g1 (A.20)

GJ iJ jS (x) = β2
0h1h

∗
1∂

2
t ∂i∂jGS+β0h1M2∂t∂i∂jGR−β0h

∗
1M2∂t∂i∂jGA+g3∂i∂j+g4δij (A.21)

GEJ iS (x) = β2
0f1h

∗
1∂

2
t ∂iGS + β0f1M2∂t∂iGR − β0M1h

∗
1∂

2
t ∂iGA + g2∂t∂i (A.22)

GJ iES (x) =−β2
0f
∗
1h1∂

2
t ∂iGS + β0M1h1∂

2
t ∂iGR + β0f

∗
1M2∂t∂iGA + g2∂t∂i (A.23)

with h̃2 = h2∂t − 2h4, h̃3 = h3∂t + 2h4∂
2
i . Note that the terms in the above which do not

involve GR, GA, GS are “contact” terms. One can check from the above expressions the

Onsager relation

GEJ iS = GJ iES (A.24)

and the fluctuation-dissipation relations

GR − GA = 2i tanh
iβ0∂t

2
GS (A.25)

for all components.

B Equivalence to the Schwarzian action

In this appendix we show that the Lagrangian (2.30) with H given by (3.9), which we copy

here for convenience,

Lhydro = −H∂tXa +
i

2
M1(∂tXa)

2 +O(a3), (B.1)

H = −a2Sch(u, t) = a2

(
λ2β2

0

2β2
− β′2

2β2
+
β′′

β

)
, β =

β0

∂tσ
(B.2)

can be factorized into two copies of the Schwazian action. First note that with H given

by the above expression it can be checked that dynamical KMS symmetry (2.8) requires

the corresponding M1 = 0. Following the discussion of [46] to construct an entropy, one

finds that M1 controls the entropy production. Its absence thus implies that this theory

is non-dissipative, which can also be heuristically deduced from the absence of terms with

odd time derivatives in H.

Now writing20

σ(t) =
1

2
(σ1(t) + σ2(t)), Xa = − σa

∂tσ
, σa = σ1 − σ2 (B.3)

we then find that up to total derivatives

Lhydro = L[σ1]− L[σ2] +O(σ3
a) (B.4)

20Recall that X1(σ1(t)) = t,X2(σ2(t)) = t.
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with

L[σ1] = −a2Sch
(
e−λσ1 , t

)
= a2

(
λ2

2
σ′21 − Sch(σ1, t)

)
= a2

(
λ2

2
σ′21 −

σ′′′1
σ′1

+
3

2

σ′′21

σ′21

)
.

(B.5)

Note that in the classical limit ~→ 0 [39], O(σ3
a) terms vanish in both factorized Schwarzian

and (B.1), so the two theories are completely equivalent. They are also completely equiv-

alent at quadratic order away from equilibrium.

C Wightman Green functions

In section 4 we obtained the exponentially growing part of the retarded Green’s function

GR for σ. In this appendix we use the fluctuation-dissipation relation (4.3) to obtain

the exponential parts of G+ and G− (defined in (4.2)) whose expressions are needed in

section 6.

For this purpose let us write

GR(t) = iθ(t)∆(t), GA = GR(−t) = −iθ(−t)∆(t), ∆(t) = −∆(−t) . (C.1)

then the fluctuation-dissipation relation (4.3) can be written as

∆(t) =
(
eiβ0∂t − 1

)
G−(t) (C.2)

from which we can determine the exponential part of G−(t) from GR. Writing GR as

GR = θ(t)ceλt + · · · (C.3)

then from (C.2) we find

G−(t) =

{
− ic
eiλβ0−1

eλt + · · · t > 0

ic
e−iλβ0−1

e−λt + · · · t < 0
=⇒ G+(t) =

{
ic

e−iλβ0−1
eλt + · · · t > 0

− ic
eiλβ0−1

e−λt + · · · t < 0
. (C.4)

The above expressions become singular for the maximally chaotic case, with λ = 2π
β0

. In

this case we find that the exponential parts are

G−(t) =




− c
β0
te

2πt
β0 + ae

2πt
β0 t > 0

c
β0
te
− 2πt
β0 + be

− 2πt
β0 t < 0

, G+(t) =




− c
β0
te

2πt
β0 + be

2πt
β0 t > 0

c
β0
te
− 2πt
β0 + ae

− 2πt
β0 t < 0

(C.5)

with a, b undetermined constants satisfying c = i(b−a). Note the additional teλmaxt terms.

To make comparison with explicit Euclidean calculation in the Schwarzian effective

action for SYK in [15] let us consider the full correlation functions (not just the exponential

parts) for the example (3.9) for maximal chaos λ = λmax. For notational simplicity we will

set β0 = 2π so that λ = 1 and a2 = 1 in (3.9). Apply (4.8) to the example we find that

GR = θ(t)(t− sinh t) (C.6)
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and from (4.3) we find that

GS(t) = − 1

2π

[
t2 − π2

2
− t sinh t+ a+ b cosh t

]
. (C.7)

and

G+(t) = − 1

2π

[
t2 − π2

2
− t sinh t+ a+ b cosh t+ iπt− iπ sinh t

]
. (C.8)

where a, b are some undetermined integration constants. Note that (C.8) precisely agrees

with the Lorentzian analytic continuation of (4.28) of [15].
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