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Abstract

This thesis presents a framework for analyzing the shape deformation of structures within
the human brain. A mathematical model is developed describing the deformation of any
brain structure whose shape is affected by both gross and detailed physical processes. Using
this technique, the total shape deformation is decomposed into analytic modes of variation
obtained from finite element modeling, and statistical modes of variation obtained from
sample data.

The method is general, and can be applied to many problems where the goal is to
separate out important from unimportant shape variation across a class of objects. In this
thesis, the focus is on the analysis of diseases that affect the shape of brain structures.
Because the shape of these structures is affected not only by pathology but also by overall
brain shape, disease discrimination is difficult. By modeling the brain’s elastic properties,
it is possible to compensate for some of the nonpathological modes of shape variation. This
allows the experimental characterization of modes of variation that are indicative of disease
processes.

The technique is applied to magnetic resonance images of the brains of individuals
with schizophrenia, Alzheimer’s disease, and normal-pressure hydrocephalus, as vrell as to
healthy volunteers. The results are used in three ways. First, the modes of variation are
displayed in order to indicate the types of deformations caused by different pathologies.
Second, projections onto the modes are fed into standard pattern recognition algorithms
in order to perform shape-based diagnosis. Finally, the results are used in a database
program, indicating that the brain structure shape representation developed in this thesis
is an efficient metric for database search.

Thesis Supervisor: Alex P. Pentland
Title: Associate Professor

Thesis Reader: Jacquelyn C. Yanch
Title: Associate Professor
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Chapter 1

Introduction

Various neurological disorders affect the gross anatomical shape of different brain structures.
These changes have been studied for several decades, using both postmortem and invasive in
vivo methods. Recent advances in the contrast and resolution of magnetic resonance (MR)
scanners now make it possible to study these shape effects in vivo and noninvasively, with
the potential for better diagnosis and treatment. The aim of this thesis is to quantitatively
describe these pathological shape deformations.

Previous studies of neuropathological morphology suffer from two drawbacks. First,
these studies have used just lincar [6, 44, 34, 83, 29], planar [64], and/or volumetric {29, 69,
15, 58, 70, 14, 3, 72, 13, 55, 71, 40] measurements in order to characterize neuropathological
shape changes. Research that has used more general shape measures has been qualitative,
e.g. having a user manually grade the uniformity of corpus callosum thinning [34, 46] and /or
smoothness [34]. None of these previous shape descriptions iz both general and quantitative.

The second drawback of previous work involves the method of normalizing for non-
pathological inter-patient differences. These differences are a result of both genetic and
environmental factors, which cause biological structures to have a large range of normal
variation. To properly study pathological deformations, these nonpathological differences
must first be taken into account. Previous studies addressed this by normalizing brain struc-
ture measurements for overall brain size. While this is the correct first-order approximation,
a more thorough normalization would take into account the complete brain shape.

This thesis overcomes these limitations by creating a mathematical framework that (1)

separates out disease deformation from deformation due to head shape, (2) uses the complete



head shape to normalize cranial contents, and (3) represents pathological deformation in a
general and natural manner. The shape description is in terms of physical and statistical
deformation modes. These modes can be displayed to show how structures deform due to
both head shape and pathology, can be used in pattern recognition algorithms to classify
diseases based on shape changes, and can be used as similarity metrics in order to search

through a medical image database.

1.1 General Approach

This thesis addresses the general problemn of separating out interesting from uninteresting
shape deformations in a class of objects. The method developed has applications in such
areas as understanding biological shapes and in distinguishing important from unimportant
shape differences in the encoding of functional classes. In this thesis, the focus is on the
specific example of scparating out nonpathological shape variation from the pathological
deformations caused by various neurological disorders.

Figure 1-1 demonstrates our framework. Two people with different head shapes will tend
to have different ventricular shapes, even in the absence of pathology. This is illustrated in
Figure 1-1a. With disease, however, two people with the same head shape and originally the
same ventricular shape will end up with different ventricular shape, as illustrated in Figure
1-1b. In the most general case, both the effects of head shape and ventricular pathology
will be present simultaneously, complicating diagnosis based on ventricular shape. Figure
1-1c shows this case.

To make this precise, we represent the shape of an average, healthy brain structure as
a set of 3-D point positions X 4. This list will contain one entry for every spatial location
included in the model. This could be every voxel in the volume, just the surface voxels, or
even just a small set of landmarks. The particular choice depends on the implementation,
and also on exactly what is expected to be measured. Then, for any particular patient p,
the observed deformation u,; away from any point x; of X4 can be separated into two
distinct components:

w,i (%) = uli(x;) + uli(xi) (1.1)

where u,’,{;(x;) is the deformation due to global effects that are correlated with overall head
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Figure 1-1: Schematic representation of head and ventricles. (a) Different shaped heads, no
ventricular disease present. The only ventricular shape difference is due to the difference
in head shape. (b) Same shaped heads, with ventricular disease. The lower tips of the
ventricles are expanded due to the disease’s physical processes. (c) Different shaped heads,
with ventricular disease. The pathological difference in ventricular shape is partially masked
out by the nonpathological difference due to head shape.
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shape, and uE,—(x,—) is the deformation caused by disease and individual local variation.'

For the entire point set we have

U,=Uf+Up (1.2)
where U, is the 3V x 1 vector
o 1
up,1(x1)
up, 2(X2)
U, = (1.3)
| upv(xv) |

and U;’ and U,l,) are defined similarly. V is the number of points in the model.

What is needed then is a method that separates out these two types of deformations,
allowing just the pathological deformations UpD to be analyzed. We accomplish this by using
the finite element method to create a physical model that describes the macroscopic effects
caused by different head shapes. After elastically warping the cranial contents according
to this physical model, we are left with residual shape differences across patients that are
largely independent of head shape. Once an entire database of patients has been normalized
for head shape in this manner, statistical techniques are then used in order to characterize
pathological shape variation.

We apply modal analysis to the physical modeling, and principal component analysis to
the experimental observations. Both are eigenanalysis techniques, and represent shape in
terms of deformation modes [57, 67, 26]. These modes represent unique, natural coordinates

in which to express the shape and deformation of brain structures.

1.2 An Example

To demonstrate our method, we examine deformations in the shape of the left putamen
caused by schizophrenia, and deformations in the shape of the cerebral ventricles caused by

Alzheimer’s disease (AD) and by normal-pressure hydrocephalus (NPH). Figure 1-2 shows

'Equation 1.1 is valid only if u,’,’f,-(x.—) and uf.,-(x.') are measured in the same coordinate system.
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(a) (b

Figure 1-2: Reconstructions of the left putamen created from MR images. (@) Normal.
healthy adult. {b) Patient with schizophrenia.

Figure 1-3: Reconstructions of the cerebral ventricles created from MR images. (a) Normal,
healthy adult.  (b) Patient with Alzheimer’s disease.  (¢) Patient with normal-pressure
hydrocephalus.

the left putamen of a healthy volunteer and of a patient with schizophrenia, while Figure 1-3
shows the ventricles of a healthy volunteer. an AD patient. and an NPH patient. Recent
studies have shown that schizophrenia can canse the putamen to enlarge [10]. and tha
both AD and NPIH cause the ventricles to enlarge [53]. While these studies treated just
volumetric changes, we seek to explore other pathological deformations in addition to just
volume.

As a reference point for the methodology to be developed in the following seetions, we
consider here possible wayvs of classifving patients into the two classes shown in Figure 1-2.
Given a data set consisting of samples from these two categories, the most straightforward
classification procedure wonld he to use just one feature, putamen volume. However, since
a person with a larger head will tend to have larger putamen. even ift healthy he or she
may be misclassified as schizophrenic. Therefore the second procedure to try would be to
normalize cach person’s putamen volume by his or her overall intra-cranial cavity (1C'CY
volume.

Using cach of these two features, putamen volume and putamen volume normalized

12



by overall ICC volume, we ran a Gaussian linear classifier on a data set consisting of 13
schizophrenics and 12 normal control subjects. As Table I shows, normaiizing for overall
ICC volume actually causes the classification rate to slightly decrease. While this decrease
in performance is probably random variation due to our small sample size, it also points
to possible problems in our normalization. While head size is certainly important, the

complete head shape is really what we ought to use in the normalization.

TABLE I
Putamen Volume Classification Rates
Feature(s) %Correct
_Putamen volume 60
Normalized putamen volume 56

With this in mind, our technique can be viewed as a more sophisticated version of the
two features of Table I. Instead of using just brain structure volume, a principal compo-
nent analysis of the brain structure deformation is calculated, providing other important
discriminating features in addition to volume. Also, instead of normalizing for just head

size, we normalize for the complete head shape.

1.3 Thesis Overview

Chapter 2 reviews previous work in this field. Because work specific to neuropathology has
used only very simple shape measures, and has already been briefly discussed in this chapter,
Chapter 2 focuses on the application of shape models to medical imaging in general.
Chapter 3 presents the mathematical model that forms the basis of this thesis. The
model consists of two types of deformation modes. The first type of mode is physical, coming
from finite element modeling and modal analysis. The second type of mode is statistical,
being derived from experimental observations using principal component analysis.
Chapter 4 applies the mathematical model developed in Chapter 3 to the application
area of this thesis, neuropathology. The physical modes of the model are used to normalize
a patient’s cranial contents for his or her particular head shape, while the statistical modes

of the model are used to characterize the shape deformations caused by neuropathology.
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The next two chapters describe the experimental results obtaired by applying the
model to two specific medical data sets. Chapter 5 applies the modei to the putamen
of schizophrenics, while Chapter 6 applics it to the cerebral ventricles of patients with
Alzheimer’s disease and patients with normal-pressure hydrocephalus. In each case, the
recovered modes are first displayed in order to show the sorts of deformations undergone by
the afflicted brain structures, and then input into a pattern recognition algorithm in order
to perform shape-based diagnosis.

Chapter 7 uses the results of the previous two chapters as input into a database search
tool. Basically, the recovered experimental modes, which serve as a shape description for
a particular brain structure, are used to form a similarity metric upon which the database
tool can search. A few simple experiments are run in order to indicate the functionality of
this tool when applied to the medical domain.

Many issues arise during the above chapters; Chapter 8 organizes and discusses these
issues, and brings up other open questions. Also, current limitations as well as possible
future research directions are considered.

Finally, Chapter 9 briefly summarizes the work done for this thesis.

14



Chapter 2

Background

This thesis develops a shape representation method consisting of both physical and statis-
tical deformation modes. Once developed, the method is used to characterize neuropatho-
logical shape deformations.

There are thus two areas of previous work that relate to this thesis. This first involves
the application area of this thesis, neuropathology. As discussed in Chapter 1, however,
previous studies of the shape effects of various neuropathologies have used either very simple
measures such as volume, or when the measures have been more complex, they have been
qualitatively provided by a user. To our knowledge, there are no previous neuropathological
shape studies that employ a quantitative, general shape methodology.

In this chapter we therefore focus on the second area, previous work that employs
methods similar to those developed in this thesis. While our method of using both types of
modes is novel, as is its application to neuropathology, both physical modeling and statistical
techniques have been used previously in image analysis. In the medical domain, they have
been used primarily for registration, segmentation, and/or shape description. Although the
goals of these three applications differ, the mathematical techniques employed arc often
very similar. In this chapter we review relevant literature from all three application areas,

and draw comparisons to our work on shape description.

2.1 Registration

Bajcsy [4] used an elastic model, combining it with cross correlation measures in order

to align raw gray scale brain scans with a simplified brain atlas. Christensen et al. [19]
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implemented both elastic and viscous fluid models of deformation in order to warp patient
data to a brain atlas. In their technique, the elastic constraints are used as the prior
distribution in a Bayesian formulation. The likelihood function incorporates the agreement
between patient data and atlas through a similarity function resembling cross correlation.
Minimum mean square estimation (MMSE) is then used to find the posterior distribution,
giving the parameters of the elastic transformation from patient to atlas.

Volumetric deformations have also been computed without resorting to a physical model.
Similar to Bajcsy, Collins et al. [23, 25] applied a cross correlation measure to align raw
patient data with a brain atlas, using both gradient and intensity measures. The allowable
deformations were not enforced through physically-based elasticity constraints, but rather
by limiting deformations to be on the order of the current scale in their multiresolution ap-
proach. Szeliski and Lavallée [78] used a lcast-squares approach to compute the minimum
distance between two sets of 3-D surface points. Although surfaces are matched, the defor-
mation is modeled as a volumetric spline. Their multiresolution implementation, based on
octree splines, is computationally very efficient. Face data sets from a range scanner were
registered to one another, as were vertebra data sets from a computed tomography (CT)
scanner. Feldmar and Ayache [32] also matched 3-D surface data in a non-physical fash-
ion, using locally affine deformations. The distance function they minimize incorporates
3-D distance, surface normals, and principal curvatures. Faces, brains, and hearts were
registered.

Although all of the above techniques are formulated differently, it has been shown that
physically-based and probabilistic approaches are in fact very similar to one another (77, 10].
Thus the important differences between these techniques lie more in the implementation
details, and thus in speed and convergence properties, than in the particular formulation
employed.

While all these methods have shown promising results, they all suffer from one major
drawback. The priors used in their deformation models, whether in the form of clastic
constants, prior probabilities, or allowable geometric transformations (c.g. affine), are typi-
cally chosen in an ad hoc fashion, often for numerical convenience. The result is either that
the physical and geometric models deform in a physically unrealistic way, or that the prior

probabilities in the Bayesian models are poor approximations of the true priors.
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2.2 Segmentation

Both physical and probabilistic methods have also been used for medical image segmenta-
tion. The primary way in which physical models have been employed has been through the
use of deformable models such as snakes [80] and their variants. Cohen [22] augmented the
original snake formulation with a balloon force to help it avoid local minima. Staib and
Duncan [73] used “Fourier snakes”, based on a Fourier decomposition of an object’s shape.
Instead of relying on the elastic constraints of a physical model, they approximated the
probability distributions of the Fourier parameters from a training set of manually traced
contours, and then applied Bayes rule in order to find the best set of parameter values.
Székely et al. [76) extended this approach to 3-D using the spherical harmonic technique
developed by Brechbiihler [12], with statistical deviations in the shape parameters derived
from a training set of hand-segmented surfaces.

As in image registration, one of the main problems in segmentation is the construction
of realistic prior models. Both Staib and Duncan [73] and Székely et al. [76] addressed this
by using training examples to form the priors. This method of constructing priors is also
an active research area in shape description, as will be described in the next section.

In addition to segmentation, snake models can also be used for shape description. In
this domain, however, the mesh-like snake approaches suffer from two problems [57]. First,
because the parameters of most snakes can be arbitrarily defined, the recovered shape
descriptions are not unique. Second, because the parameters are coupled, the descriptions
are also not compact. Both of these drawbacks limit the usefulness of snakes for object

recognition.

2.3 Shape Description

2.3.1 Previous work

Because of the above limitations of mesh-like approaches, researchers have developed other
physically-based shape representations. Pentland and Sclaroff [57], on which this thesis
is partially based, represented shape in terms of an object’s physical deformation modes.
Instead of using the modes of a particular object, Bookstein described shape deformation in

terms of the physical deformation modes of an infinite thin plate. Although his original work
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[8] required corresponding landmarks, more recent efforts [9] have focused on automatically
obtaining required points, edges, and surfaces from the image data.

Instead of physically modeling the structure under study, researchers have also sought
Lo obtain shape descriptions directly from sample data. Turk and Pentland [82] have used
principal components to describe facial variation and have been able to use this approach
to reliably recognize people’s faces. Cootes et al. [27] used principal components to experi-
mentally describe the modes of variation inherent in a training set of 2-D heart images. Hill
et al. [37] extended this technique to 3-D and analyzed the cerebral ventricles for purposes
of segmentation and representation.

Along with ourselves [52], other researchers have also begun investigating the relation-
ship between physical and experimental modeling. Cootes [26] has examined both physical
and statistical shape models, with the goal of smoothly transitioning from a physicai to a
statistical shape description as more and more data become available. Zhu and Yuille [85]
have also considered both physical and statistical shape models, in the context of represent-

ing and recognizing objects from their 2-D silhouettes.

2.3.2 Comparison to our method

Like modal analysis, all of the above shape descriptors satisfy the requirements of being
unique and compact. Physical deformation modes, however, offer the additional advantage
that they are an orthogonal basis for a finite element model. Thus there is a connection
with the underlying physics, which is useful for simulation, regularization, and for including
a priori information about the material properties of the object under study [66]. While
Bookstein’s thin-plate modes are also physical, they come {from a 2-D model and are derived
from a finite difference formulation. A finite clement model is more general, and has better
convergence properties. Also, the FEM provides interpolation functions that can be used
to refer all patients’ data back to the same model, thereby removing sampling differences
between patients.

A more novel aspect of this thesis is the connection between FEM modes and principal
component, analysis, presented in Section 3.3. Using that development, prior models can
be constructed either by making physical assumptions, or through the use of training data.
These ideas are similar to the recent work of Cootes [26].

The final original feature of this thesis is the decomposition of shape deformation into

18



two distinct components. This allows us to remove just the nonpathological deformation,
and therefore to focus on pathological morphology. This contrasts with the above work,
where only healthy brains are used, and the goal is usually to remove all morphological
differences between the individual brains. As already mentioned, previous work that has
examined pathological brain morphology has used just linear, planar, and/or volumetric

shape measurements.
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Chapter 3

Mathematical Model

The basic conceptual framework in which we are placing this problem is as follows. The dif-
ferences seen across people in the shape of any particular brain structure are a combination
of three separate effects: overall head shape, any other normal differences not accounted
for by head shape, and any pathological differences due to disease processes. We cannot do
anything about the normal differences not accounted for by head shape. The pathological
differences we want to leave in for the classification. The differences due to head shape we
can take out.

Before discussing the application area in greater detail, in this chapter we first develop
a consistent mathematical framework. This is done in detail below. A brief summary of
what follows is given now. First, we note that by creating an analytical model of an object
we can obtain, by using the technique of modal analysis, a shape description in terms of
the free vibration modes of the object. On the other hand, by gathering sample data of
the object instead of characterizing it analytically, we can use the statistical technique of
principal component analysis to find the directions of greatest variability in the data. This
decomposition also allows for a shape description, but this time it is in terms of the principal
components of the data set. We will show how an object’s shape, for which we have both
a physical model and some experimental data, can be written in terms of a combination of
the physical modes obtained through modeling and the statistical modes obtained through

experimental observation.
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3.1 Physical Modeling

The derivation of the physical modes begins with the creation of a physical model of the
object under study. In our case, we model the object as a linear elastic material, and then
set up equations describing its behavior. The solution to these equations gives the elastic

deformation that the object undergoes due to applied forces.

3.1.1 The finite element method

The most common numerical approach for solving elastic deformation problems is the finite
element method (FEM) [7]. The major advantage of the FEM is that it uses the Galerkin
method of surface interpolation. This provides an analytic characterization of shape and
elastic properties over the whole surface, rather than just at the nodes. The ability to
integrate material properties over the whole surface alleviates problems caused by irregular
sampling of feature points. It also allows variation of the elastic body’s properties in order
to weigh reliable features more than noisy ones, or to express a priori constraints on size,
orientation, smoothness, etc. In Galerkin’s method, we set up a system of polynomial shape
functions that relate the displacement of a single point to the relative displacements of all
the other nodes of an object. By using these functions, we can calculate the deformations
which spread over the body as a function of its constitutive parameters.

In the isoparametric FEM formulation, polynomial shape functions H are defined in
a parametric space r = (r,s,t)T, with both positions and displacements mapped from

parametric to element coordinates using the same shape functions:

x(r) = H(r)X (3.1)
u(r) = H(r)U. (3.2)

Here X and U denote the nodal position and displacement vectors of the shape model,
respectively, and are defined in the (object) coordinate system, x = (z,y, z)T is any point
in the element (object), and u is the displacement at x. Note that although u is the
displacement in the element coordinate system, because x is a function of r, u can be

written as a function of either x or r. (Throughout this thesis, a vector with a “hat” (")

denotes a set of FEM nodal positions or displacements, while a vector without a “hat”
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denotes positions or displacements at a set of non-nodal points.)

The shape matrix H is given by (7]

hi(r) O 0 ho(r) O 0 -+ hu(r) O 0
H(r)=| 0 hi(s) 0 0 ha(s) O - 0  hy(s) 0 |. (33)
0 0 hi(t) O 0 ho(t) --- O 0 hat)

This set of polynomial shape functions is used to relate the displacement at any particular

point to the displacements at the FEM nodes. The fundamental properties of the h; are:

e h; = 1.0 at node i and equals 0 at every other node.
e >, h; = 1.0 at any point in the object.

For most applications it is necessary to calculate the strain due to deformation. Strain €
is defined as the ratio of displacement to the actual length. The polynomial shape functions
can be used to calculate the strains (€) over the body provided the displacements at the

node points are known:

e(x) = B(x)U (3.4)

where the strain displacement matrix B is computed by taking the appropriate derivatives
of the interpolation matrix H. (See [30] for more details.) Because B is a function of x, and
H is a function of r, the chain rule must be invoked in order to perform the differentiation.

This requires the use of the Jacobian matrix J:

or Or Or
dzr 0Oy 0=
J=| 2= &£ = 3.5
ds O0s 0Os (3:5)
0 0y 0
L ot at Ot -

As mentioned earlier, we need to solve the problem of deforming an elastic body sub-

jected to external forces. This requires solving the equilibrium equation

2y

KU=R (3.6)

for the set of nodal displacements U. Here R is the load vector whose entries are external

forces acting on the nodes, and K is the stiffness matrix. K is computed directly from the
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strain displacement matrix by integrating over the object’s volume:

K=/ BTCB dv, (3.7)
Vv

where C is the material matriz, which expresses the material’s particular stress-strain law.

See Bathe [7] for more details on setting up FEM integrals and equations.

3.1.2 Modal analysis

It is often more convenient to represent the nodal displacement vector U in the modal coor-
dinate system, in which displacements are represented as linear combinations of an object’s
free vibration modes. These modes provide a unique, natural, and compact coordinate
system in which to represent shape and shape change, are computationally efficient to cal-
culate, and have convenient robustness properties with respect to sampling irregularities
and measurement noise [57].

To compute the free vibration modes, Equation 3.6 is diagonalized via an orthogonal

transform &®:

U =290 (3.8)

where U is a vector of generalized displacements in the new coordinate system. The columns
of ® are the basis vectors of this new coordinate system.

Substituting Equation 3.8 into Equation 3.6 and premultiplying by &7 yields

KU =R (3.9)

where K = ®TK® and R = &"R.

The optimal transformation matrix @ is derived from the eigenvalue problem
Ko, = Aig; (3.10)

which, for a discretization with N nodes, has 3N solutions (Ay, @;), (A2, @3), ..., (AN, Pan)-
For dynamic systems, these eigenvectors are called the free vibration modes of the system,
with the corresponding eigenvalues giving the square of the vibrational frequency.

We see then that the transformation matrix @ has for its columns the eigenvectors of
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§=[¢la¢21¢31"'|¢3N]1 (311)

and that K is a diagonal matrix with the eigenvalues on its diagonal:

- -

A1
A2

K=8TK®&=A= ' : (3.12)

AaN

Using this diagonalization we are able to write any arbitrary displacement of the nodes

as a linear combination of the physical modes:

U=&a= %(ﬁiai (3.13)
i=1
where a is a vector of the modal coefficients a;.

The modal decomposition is illustrated by the two-dimensional example shown in Figure
3-1. By placing one node at each corner of the square and assigning material properties,
a stiffness matrix K can be constructed. Next, the modal transformation is applied to the
system. The resulting eight free vibration modes (the eigenvectors of K) are shown in the
figure.

Because the stiffness matrix has been diagonalized, the resulting system of equations
is decoupled and therefore computationally much simpler. Also, the high frequency modes
often can and should be discarded for two reasons. First, the low frequency (low eigenvalue)
modes contain more information than the high frequency (high eigenvalue) modes in the
sense that their amplitudes are larger and therefore for object discrimination they are
typically more powerful. Second, because of noise considerations the low frequency modes
are more reliably estimated than the high frequency modes.

See [57] for a more detailed description of modal analysis. Software that uses
the FEM and modal analysis to recover and describe shapes is available from

whitechapel.media.mit.edu in the file /pub/modal.tar.Z.
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Figure 3-1: Physical modes of a square.

3.2 Experimental Modes

Instead of modeling the system as an elastic material, we can instead assume nothing about
it and just collect data samples of the displacements of each node. Here each node is treated
as a random variable, and after collecting P samples of deformed objects, we can form the

sample covariance matrix of these measurements:
1 & —
= —lz -0)(U, - 0)T, (3.14)

where U, is the nodal displacement vector of sample P, and U is the mean of these dis-
placement vectors.

Diagonalizing S by performing a principal component analysis gives the experimental
modes of variation 1;, which we assemble as the columns in a matrix ¥. Any arbitrary
displacement of the nodes can now be written as a linear combination of these experimental

modes!:

3N
U="¥b=) b (3.15)

In this case it is the modes whose associated eigenvalues are large that are typically

'This assumes that the training set is large enough to represent all the possible variation in the new
samples. Variation orthogonal to the space spanned by the training set (i.e. variation that resides in the
nullspace of the training set) will not be represented.
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most useful. This is because the directions of highest variability in the data are given by
the eigenvectors of the largest eigenvalues. Also, these eigenvectors are the most reliably
estimated [33].

Software that calculates and analyzes experimental modes is available from

whitechapel.media.mit.edu in the file /pub/face-recognition.tar.Z.

3.3 The Connection

The connection between physical and experimental modes comes from the close relationship
between mechanical and probabilistic prior models [60, 77, 10]. The mechanical viewpoint
is the one we have used above, modeling the elastic field by a stiffness matrix K and then
minimizing the deformation energy which is a function both of the displacements and of K.

To derive this relationship, we begin by interpreting Equation 3.6 and its solution
U=K 'R (3.16)

from a probabilistic viewpoint. Treating U and R as random vectors related by the linear

transform K~!, we have that
-1 -n\T
Ty =K 'Sg (K™) (3.17)

where 20 and g are the covariance matrices of U and R. Because K is positive semidef-

inite we can write

;=K 'SgK™. (3.18)

Under the assumption? that the elements of R are independent and have common

variance o2,

B, =o’K™% (3.19)

We can form the sample covariance matrix S = X; from a set of observations of U, then

use Equation 3.19 to obtain the estimate

S~ a?K™2. (3.20)

2The validity of this assumption is discussed in Section 8.8.1.
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Thus by collecting samples of U we can approximate the stiffness matrix K.

This connection leads to several useful observations. First, using a physical model is
equivalent to making assumptions about the distribution of samples we expect to see. Not
using any model and just collecting data, on the other hand, requires no a priori knowledge
of this distribution and instead represents an attempt to statistically approximate it through
experimental observation.

Second, we have the following result. By applying to S the orthogonal transform from
Section 3.1.2 that diagonalized K, we have

XY o?dTK 'K '

Q

= o° (QTK"@) (QTK“tb)
= o?A" A
Xl'f

1

N
= o’ ’ (3.21)
1

\2
L 3N d

where the second to last step holds because the eigenvalues of the inverse of any nonsingular
matrix are just the reciprocals of the eigenvalues of the original matrix. This shows that the
orthogonal transform @ also diagonalizes S, which implies that @ consists of the eigenvectors
of S. Therefore the eigenvectors of S converge to those of K, which says thai the analytic
and estimated modes are the same under the assumption of an independent distribution
of loads R. Because of the reciprocal relationship between the eigenvalues of S and K,
the high-variance directions (large eigenvalues) estimated using sample data are the low-

frequency directions (small eigenvalues) in a modal decomposition.

3.4 Compound Modes

Consider the square shown at the left of Figure 3-2. Let us assume that the deformation
we observe in the square is the result of two independent physical processes Py and P,

so that its total deformation is just a combination of two independent deformations. If we

27



Figure 3-2: Total deformed shape = original shape + deformation due to physical process
P, + deformation due to physical process P;.

have good physical models for both processes, then we could use modal FEM analysis for
both. Or if we have data available for one, and a good physical model available for the
other, then we could use both experimental and physical modes at the same time. This
second situation is the one applicable to our problem.

Assume therefore that we understand the physics of the first process, so that we are
able to model it analytically and use the physical modes to describe the deformation Uh
that it causes. Also assume that we do not have detailed knowledge of the physics of the
second process, so we model its deformation U2 by collecting samples and using experi-
mental modes. The total deformation U is just the sum of the physical deformation modes
obtained analytically from the model of the first process and the statistical micdes obtained
experimentally from the data collected on the second process. Using Equations 3.13 and

3.15 we write the total deformation U as

U = Uhu” (3.22)
= ®a+ Vb (3.23)
3N N
= Y di+d v (3.24)
i=1 i=1
6N
= D 7vici (3.25)
i=1
= TIc (3.26)
where
¢,y 1<3IN
Yi =
Y, i>3N
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and
a,, 1<3N

b;, i>3N

C =

T =[¢,, ®2 P3N, ¥1,¥2. - -Pan] is @ 3N X 6N matrix whose columns «; we will call

the compound modes of the system.

3.5 Summary

In this chapter, two types of deformation modes were derived and illustrated. Physical
modes come from finite element modeling and modal analysis, while experimental modes
are obtained from sample data and principal component analysis. Both types of modes
serve as a convenient basis set in which to represent shape deformation.

After deriving the connection between them, an example was given that illustrated how
physical and experimental modes can be applied in a serial manner in order to represent
shape deformation in terms of the compound modes of a system. This approach decomposes
total observed deforimation into modes of shape variation that are the result of different
physical processes.

In the following chapter, this serial approach will be applied to neuropathology. The
total deformation observed in a brain structure will be decomposed into physically-based
nonpathological modes of shape variation, and experimentally-based pathological modes of
shape variation. The nonpathological modes will be used to normalize brain structures
for an individual’s head shape, while the pathological modes will be used to characterize

diseases.
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Chapter 4

Application of Model to
Neuropathology

In this chapter, our mathematical model is applied to structures within the brain. We show
how the two types of modes can be applied in a serial manner in order to improve disease

classification.

4.1 Head Shape Normalization

To characterize the global deformations due to head shape, we model the ICC as a linear
elastic material, and then set up equations describing its behavior. One reason for using
a physically-based model is that we can formulate an approximate physical model for the
ICC as a whole. The accuracy of this physical model is discussed in Section 8.2. A second
and more practical reason is that the finite element implementation of physical modeling
provides analytic interpolation functions that allow us to relate deformations at one point, to
forces and deformations throughout an object. These functions make the task of accurately
warping and resampling the data straightforward, allowing us to relate each data set to a
standard or normative head shape.

Our procedure for head shape normalization consists of three steps. First, a finite ele-
ment model of the average ICC is created. This is accomplished by constructing an average
ICC from our patient database, and then warping a finite element model to approximate
its shape. Next, the same finite element model is warped to approximate the shape of a

particular patient’s ICC. Finally, using these two sets of warping coefficients, the cranial
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contents of the patient are normalized for his or her particular head shape. These three

steps are described in more detail in the following three sections.

4.1.1 FEM model of average ICC

In order to create an FEM model of the average ICC, we first construct a voxel-based
average from patient data sets. This is done by automatically segmenting the ICC from
each of the data sets [21}], performing a rigid body alignment between all the extracted 1CCs
[31], and then averaging spatial occupancy over the aligned 1CCs.

Once the average ICC is constructed, a deformable FEM model is then warped so that
its shape approximates that of the average ICC. This procedure starts by extracting the M

surface voxels of the average ICC:

XICC = [zy,y1, 21, -, 2py yMs 2M)T (4.1)

Next we attach virtual springs between each of these voxel coordinates and the closest point
on the surface of our finite element model. These virtual springs define forces acting on the
deformable model:

f. = d(xm, FEM surface) (4.2)

where d(-) is the displacement vector between the given point and the nearest point on the
FEM surface. In general, a force f,, will not act at an FEM node; however we can use
the FEM interpolation functions H to distribute the force to the surrounding nodes in a

physically meaningful way. The load vector of Equation 3.6 is therefore constructed as
R, = HTF,. (4.3)

where F 4 is a vector consisting of all the individual forces f,,.
Equation 3.6 can then be solved for the nodal displacements that give the FEM model

a shape approximating that of the average ICC:
U = K 'R4. (4.4)

These nodal displacements can be added to the original nodal positions to obtain the nodal
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Figure [1-1: The average 1CC (a) and several of the 1CCs physical deformation modes (h-1).

positions of the average [C'C

X=X+ 0 (-1.5)

where X is the original, undeformed nodal position vector of Equation 3.1.

We can then transform into the modal coordinate system via Equation 3.8:
ultC =9Tulc” (-1.6)

where the modal coeflicient vector ﬁf\('(' specifies how much of cach defermation mode is
contained in the shape of the average 1CC. If only the modal coellicients Uf,('(' and not the
nodal displacements Uf‘('{-' are required, then we can skip solving for Uf‘('(', and instead
solve directly for ﬁff'('. using Equation 3.9. As mentioned carlier, because the system of
equations is decoupled in the modal coordinate system. using Equation 3.9 directly is much
faster.

Figure -1-la shows the average 1CC, while Figures -1-1(b-I') show several ol its physical
deformation modes. These modes represent various ways in which the 1CC can deform; the
ICC shape of a particular patient can be approximated as a linear combination of these

and other modes that are not shown. Figure [1-1b, for example, is the basis function that
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represents a front-to-back squishing along with a top-to-bottom stretching. Any patient’s
ICC that tended toward this shape would have a large projection onto this particular basis
function.

In order to obtain additional computational advantages, these modes were computed
using the “idealized modes” technique described in [57]. It should be noted that while these
idealized modes provide a physical framework and a very useful first approximation to the
actual physical modes of the ICC, we cannot claim that these are necessarily the same as
the actual modes. The use of more recent implementations of modal fitting [68] will recover

modes that are closer to the actual ICC modes.

4.1.2 FEM fitting to patient ICCs

Just as the deformable FEM model was warped to the shape of the average ICC, the model
can also be warped to fit the ICC of any particular patient p. First, the I[CC surface points
X:,CC of the patient are extracted. Virtual springs are then attached between X,’,CC and
the deformable model, generating a force vector F,. Next these forces are distributed to
the FEM nodes, creating the nodal load vector R,. As before, the nodal displacements can

now be found:

Ul°¢ = K 'R,, (4.7)

and then used to find the nodal positions for patient p’s ICC:
wICC _ ¥ TICC
X, " =X+U,". (4.8)

Alternatively, we can recover the modal amplitudes I.J,’,CC via Equation 3.9.

Note that although each I:T,’,CC (or, equivalently, each I:I{,CC) represents a different
patient p, each patient is warping the same original set of FEM nodes. The distinction
between patients comes from the particular amount and type of deformation that the set of
nodes undergoes; the nodes themselves all start out in the same position. The net effect is
that each patient’s ICC surface points have now been referred back to the same set of nodes.

Thus the original MR sampling differences between patients’ ICCs have been removed.
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4.1.3 Warping

The recovered displacement vectors can now be used to normalize each patient’s cranial
contents in order to account for his or her particular head shape. We have available the set
of nodal positions X{'fc and displacements I:TACC of the average ICC, as well as )‘(,’,CC and
fJ,’,CC for each patient p. To avoid creating gaps (undefined voxels) when warping, each
voxel coordinate in the average ICC coordinate system is mapped into the patient’s coor-
dinate system [84]. Because this will produce non-integer coordinates in the patient space,
interpolation is necessary in order to calculate an intensity value for the voxel. Repeating
this procedure for every voxel position in the average ICC space completely fills up that
coordinate system with values from the ICC of patient p.

Recall that the fitting was not done directly from patient ICC to average ICC, but
rather from undeformed model to patient ICC, and from undeformed model to average
ICC. Thus the required mapping from average ICC space to patient p space must be done
in two steps, as described in the next two sections. The final section shows how the other
available information - the modal amplitudes U/CC and fJ{,CC - can be used to perform the

warping directly in the modal coordinate system.

From average ICC space to parameter space

Given a voxel position x in the average ICC coordinate system, the first step is to transform
it into the parametric coordinate system. This can be done with Equation 3.1, using the

nodal positions of the average ICC:
x(r) = H(r)XI€C. (4.9)

Note, however, that Equation 4.9 must be inverted - given x we need to find r.
This is accomplished as follows. According to Equation 4.9, once the nodal positions

X €€ are known, then x is just a function of r:
x =g(r) (4.10)

where g is the system of three polynomials given in Equation 4.9. To solve for r, g must
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be inverted:
r=g ' (x). (4.11)

The solution can be found iteratively using Newton's Method:
3 (x - x¥) gk =0 (4.12)
where J is the Jacobian matrix defined in Equation 3.5, and k represents iteration [75, 30].

From parameter space to patient space

Once the parametric coordinates r are known for x, they must be converted into the coor-
dinate system of patient p. Once again this is accomplished using Equation 3.1, but this

time we use it directly, with the known r and the ICC nodal positions of patient p:
x'(r) = H(r)X]°C. (4.13)

Once x' is known, we can simply look into patient p’s data set in order to assign a value
to x. If the original gray scale data is being warped, then trilinear interpolation can be
used to calculate the value. However, because our data sets are segmented, the value is just
set to that of the integer coordinates that are nearest to x'. To avoid the aliasing that this

introduces, the segmented data can be smoothed before warping.

Modal warping

In our implementation, we recover the modal amplitudes directly, without ever calculat-
ing the nodal positions and displacements. As already mentioned, modes offer two im-
portant advantages: they decouple the FEM equations to yield improved computational
performance, and they provide a unique, canonical coordinate system in which to represent
shape.

In the modal coordinate system, instead of Equation 3.1, the interpolation and warping

is done by combining Equations 3.2 and 3.8:

u(r) = H(r)®U. (4.14)
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To further increase computational efficiency, the polynomial deformations of Equation 4.14
are approximated by a 3 x 3 modal deformation matriz D(r, U) [57], which is used to map

from parametric to element coordinates:
x(r) = D(r, U)r. (4.15)
Thus for a given voxel position x in the average ICC coordinate system,
x(r) = D(r,fJ!,CC)r (4.16)
is inverted and solved via Newton's Method to find r, and then
x'(r) = D(r, 01)r (4.17)

is solved directly to find x'.

Equation 4.16, Equation 4.17, and the appropriate interpolation scheme can be applied
to every voxel position in the average ICC coordinate system. The final result is that
locations inside a patient’s cranium are displaced to the position that they would occupy
if the patient had an average-shaped ICC. By mapping between patient ICC and average
ICC in this manner, we account for the geometric differences due to individual head shape,

as well as the MR sampling differences between patients.

4.1.4 Example: Healthy subject with large cranium

Warping of the cranial contents can result in ventricles that are closer to the average. This
is demonstrated in Figures 4-2 and 4-3. Figures 4-2a and 4-2b show the average ICC and
ventricles, while Figures 4-2c and 4-2d show the ICC and ventricles of one of the healthy
subjects. This particular subject’s ICC is larger than average, particularly in the front-to-
back direction (left-to-right in the figure). This ICC shape difference is propagated down to
the ventricles, where we see similar shape differences between the two ventricular systems.
Calculating the ICC physical deformation modes that warp this subject’s ICC to the shape
of the average ICC, and then applying that warping to the subject’s ventricles, produces
the warped ventricles in Figure 4-2e. As can be seen, the warping has increased the shape

similarity between patient and average ventricles.
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Figure 4-2: Normalizing ventricular shape by cranium shape. (a) Average ICC (computed
from all the data sets). (b) Average normal ventricles (computed from just the healthy
subjects). (c),(d) ICC and ventricles of one of the healthy subjects. Compared to (a) this
ICC is larger than average, especially in the front-to-back direction (left-to-right from this
viewing direction). The ventricles exhibit similar differences as compared to the average
ventricles in (b). (e) Subject’s ventricles after warping her ICC in (c) to the shape of the
average ICC in (a). The ventricles have decreased in size, most notably in the front-to-back
direction. Because we have normalized for head shape, the ventricles are now more similar
to the average ventricles in (b).

4.2 Characterization of Disease States

4.2.1 Shape representation

As described in Equations 1.1-1.3, our shape representation for a brain structure of a par-
ticular patient p is a list of displacements U, away from a set of average point positions
X 4. These average positions are found by first constructing a volumetric average of the
structure from a group of patient data sets, and then extracting the surface voxels.

The displacement vector U, is then constructed as follows. Using the original, unwarped
data, the surface voxels X, of the structure under study are extracted. Then the displace-
ment at a point x; of X4 is computed by finding the nearest point in X,. By doing this
for each of the voxels on the averaged structure’s surface, we can compute the displacement

vector U, of a patient p in the data set.
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Figure 4-3: Same structures as in Figure 4-2, but viewed from above. The [ront-to-back
direction is now bottom-to-top. See the caption of Figure 4-2 for details.

The above procedure can also be applied to the warped patient data. Because nonpatho-
logical deformation is removed by the head shape normalization, the deformation remaining
after warping is due to disease processes (along with any nonpathological differences unac-
counted for by head shape). The displacement vector constructed is thus UE of Equation
1.2,

We have therefore met our original goal of separating the total deformation into its
pathological and nonpathological components. Furthermore, just as with the FEM ICC
fitting, because we have referred each patient’s particular coordinate system back to the
same standard coordinate system, sampling differences between patients’ brain structures
have been removed. In the remainder of this section, we focus on using the set of pathological

displacement vectors U,l,) to characterize disease.

4.2.2 Eigenanalysis of shape variation

We can transform the pathological displacement vectors into a coordinate system in which
deformations are more naturally represented. This is accomplished through the use of
principal component analysis.

Principal component analysis is a statistical technique that finds the directions of maxi-
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mum variability inherent in a data set. When applied to 2-D outline or 3-D surface data, the
principal components are called the eigenshapes of the structure under study. Unlike physi-
cal modes, eigenshapes are derived solely from a data set, without the aid of an underlying
physical model.

The eigenshapes of our data sets are found using Equation 3.14. From our P patients,
each with a 3V x 1 pathological displacement vector U,l,), the sample covariance matrix is

formed as

1 < D =D
S= 55— (U7 -T)(Uy-T), (4.18)
p=1

where U” is the mean of the P displacement vectors. Solving for the eigenvectors of S
yields the principal components, or eigenshapes, of the data set. These eigenvectors are
ordered according to their corresponding eigenvalues.

The principal components can be assembled as the columns in a matrix ¥. Any patient’s
displacement vector can be written as a linear combination of the principal components:

UP = wb,, (4.19)

where by, is the vector of projections onto the principal components for patient p.

4.3 Classifier Design

There are 25 patients in each of our two data sets, and therefore 24 principal components.
Because it has been our experience that approximately the top % principal components of
a data set are reliably estimated, the projections onto the first six principal components of
each data set will serve as the input to the classifier.

We now turn to designing an actual classifier. If the feature vectors of each class are
characterized by a Gaussian density function, then a set of discriminant functions that

minimizes the probability of error is given by!+?

gi(by) = =(b, — m;)T=7 (b, — m;) — In|E;] . (4.20)

'Equation 4.20 assumes that the prior probabilitics of all classes are equal.

2If the underlying distributions are not Gaussian, then these discriminant functions do not necessarily
minimize the probability of error. They can, however, be interpreted as the discriminant functions that are
best matched to the first and second moment statistics of the random vectors b, [81].
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In our case b, is a vector of the projections of patient p onto the first six principal compo-
nents (see Equation 4.19), m; is the 6 x 1 mean vector computed by averaging the projections
over disease class i, and X, is the 6 x 6 covariance matrix of class i. The classification rule
is then to choose the class i which has the largest g;, or, equivalently, the maximum proba-
bility density when evaluated at b,. Because Equations 4.20 are quadratic functions of b,
this form of classifier is referred to as a Gaussian quadratic classifier [81].

The covariance matrix of each class, ¥;, must be estimated from the samples contained
within that class. In our two data sets, however, we have only between 7 and 13 members
per disease state. This is not enough information to reliably estimate a 6 x 6 covariance
matrix. The quadratic classifier will consequently be overparametrized, with the result that
the training set will not be a good predictor for new cases.

Instead we will use a common covariance matrix, which can be estimated using all 25
data samples. When a common X is substituted for X; in each of the Equations 4.20,
the final term is the same for all the discriminant functions and can thus be dropped. By
expanding what remains, more common terms appear. When these are dropped, the set of

discriminant functions simplifies to
gi(by) =2mT="'b, - m{ ="' m; (4.21)

which are linear functions of b,. The resulting classifier is thus called a Gaussian linear
classifier [81]. This is what will be applied to our data.

In order to separate the training stage from the classification stage, we use the leave-
one-out [33] method. In this procedure, the sample to be classified is withheld from the
other samples, which are then used to design the classifier. The held-out sample is then
classified. These two steps are repeated for each of the samples, and the results tallied to
arrive at the classification rate. Use of this procedure prevents an artificial inflation of the
classification rate.

In summary, the steps of our classification are:
e For each of the 25 patients:

1. Use the b, vectors of the remaining 24 patients to estimate the common covari-

ance matrix ¥ and the individual class means m;.
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2. Using the estimates ¥ and m; from Step 1, and the b, of the current patient to

be classified, compute the linear discriminant functions g; of Equations 4.21.

3. Choose as the winner the disease state i with the largest g;. Classify the current

patient as having this disease.

e After doing the above for all 25 patients, count up the number of patients that were

correctly classified. Divide this number by 25 to obtain the classification rate.
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Chapter 5

Experiments with Schizophrenia

5.1 Medical Background

Schizophrenia is a disabling mental disorder that affects approximately 1% of the population.
Its symptoms include thought disorders such as disintegrated thinking and hallucinations,
as well as certain mood and behavior changes. The etiology of schizophrenia is poorly
understood, although it is probably a combination of genetic, biological, and social factors.
Prognosis varies, with treatment consisting of antipsychotic medication and psychotherapy
[1].

The presence of psychosis in an individual can generally be established on the basis of
clinical symptoms alone. However, different types of psychoses can present very similar
symptoms, making the differential diagnosis between psychoses difficult. As an example,
making the diagnosis of schizophrenia instead of manic-depressive psychosis can require
additional factors such as a family history of schizophrenia and a poor work history.

By investigating the structural changes caused by different psychoses, our hope is that
shape information derived from a patient’s medical scans can provide clinicians with ad-
ditional discriminating factors. Although the present data set contains just schizophrenics
and normals, the same concepts illustrated in this section can be applied to future data sets
consisting of different types of psychoses.

In addition to its potential for improving diagnosis, examining shape changes can also
lead to an improved understanding of both the etiolcgy and the effects of schizophrenia. As
mentioned earlier, previous research on neuropathological structural changes has focused

primarily on volume. The pathological deformation modes that we calculate in this thesis
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extend this analysis to shape changes in general, and provide a unique, natural coordinate

system in which to express and view these changes.

5.2 The Putamen Data Set

Thirteen schizophrenic patients and 12 healthy control subjects, matched for gender, age,
and handedness, underwent an MR brain scan. As part of an ongoing volumetric study
(69, 40], the basal ganglia were manually segmented from these scans. Figures 5-1 and 5-2
show the resulting data set of 25 left putamen, viewed from the side and front, respectively.

Because results of the volumetric study indicated that the basal ganglia of schizophrenics
may increase in volume, we decided to examine the basal ganglia for other types of shape
changes. We chose the putamen because its relatively large size and simple shape are

attractive features when attempting to extract a shape description.

5.3 Application of Our Method

First, using the techniques of Section 4.1, the cranial contents of each patient were warped
in order to normalize the database for head shape. Next, the pathological displacement
vector UE was calculated for each patient’s left putamen, as described in Section 4.2.1. A

principal component analysis of the 25 displacement vectors was then performed.

5.4 Experimental Results

Figure 5-3 shows the first two putamen principal components. The first mode (Figure 5-3(a-
e)) is a contrast between the size of the top of the putamen and the size of the bottom. This
can be seen by noting that Figure 5-3a, with a negative modal amplitude, shows the top of
the putamen expanded relative to the undeformed putamen (zero modal amplitude) shown
in Figure 5-3c. Figure 5-3e, with a positive modal amplitude, shows a (slight) expansion
near the bottom of the putamen.

The second mode (Figure 5-3(f-j)) contrasts the size of the front to the size of the back
of the putamen (left and right in the figure). These deformations are easier to see than those

of the first mode. The deformation associated with a negative modal amplitude, illustrated
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in Figure 5-3f, is an expansion of the front of the putamen. Likewise Figure 5-3j, with a
positive modal amplitude, shows an expansion at the back of the putamen.

Next we input the top six principal components (modes) into our Gaussian linear clas-
sifier. Table Il shows the results, along with the classification rate using just putamen
volume. A 12% improvement in the classification rate occurs when using the putamen
principal components instead of just volume. With our small sample size, this is not a
statistically significant result. Instead the data only suggests that the method is working.

Topics related to statistical significance are discussed in Section 8.3.
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(b)

Figure 5-1: The left putamen data set. with the patients facing to the right. (a) Healthy
control subjects, (b) Patients with schizophrenia,



(h)

Figure 5-2: The left putamen data set, with the patients facing forwards.  (a) Healthy

control subjects, (b) Patients with schizophrenia.
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Figure 5-3: (a)-(e) First principal component of the putamen data set. The amplitude of
the mode is increasing from (a) to (e). (f)-(j) Second principal component of the putamen
data set. The amplitude of the mode is increasing from (f) to (j).

TABLEII
Gaussian Linear Classification Rates
Putamen Database
Feature(s) % Correct
Putamen volume 60
Putamen principal components 72
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Chapter 6

Experiments with Ventricular

Disorders

6.1 Medical Background

Alzheimer’s disease (AD) is a degenerative disorder of the nervous system, whose initial
major symptom is the gradual development of forgetfulness. As the disease progresses, the
dementia becomes more and more severe, finally ending with the patient’s death. Normal-
pressure hydrocephalus (NPH), on the other hand, is a disorder of the cerebrospinal fluid.
While the exact causes can be quite varied, they all involve problems in CSF flow and
possibly absorption. Like AD, one of the major clinical symptoms of NPH is dementia [59].

Both disorders cause ventricular enlargement. In NPH, it comes from the disruption of
normal CSF flow characteristics. In AD, ventricular enlargement is a secondary effect. The
brain atrophies due to neuronal destruction, and because the cranium remains fixed, the
amount of CSF in both the subarachnoid space and the ventricles increases.

Unlike AD, which is untreatable, NPH can often be treated surgically by implanting a
shunt in order to redirect CSF flow. Because of the invasiveness of this procedure, differential
diagnosis between AD and NPH is critical. Since both cause dementia and ventricular
enlargement, measuring ventricular volume is not always helpful for differential diagnesis.
Therefore quantitative measures of characteristic shape changes may assist in differential
diagnosis.

As with schizophrenia, there are other possible uses of our method in addition to serving
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as a diagnostic aid. By analyzing the shape deformations caused by AD and NFH, insights

into the causes and effects of these poorly-understood disorders can hopefully be made.

6.2 The Ventricular Data Set

Nine patients with Alzheimer’s disease, 7 patients with normal-pressure hydrocephalus,
and 9 healthy control subjects, all matched for age, underwent an MR brain scan as part
of a previous volumetric study [53] in which the ventricles were segmented using a semi-
automatic procedure. Figure 6-1 shows the resulting data set of 25 ventricular systems. As
can be seen, there is a greater difference between the three ventricular classes than there

was between the two putamen classes shown in Figures 5-1 and 5-2.

6.3 Application of Our Method

As with the schizophrenic data set, the first step was a rigid body alignment of the 25 ICCs
[31]. Next the ICCs were used to perform modal fitting [57], and then the recovered modal
coefficients were used to warp each patient’s cranial contents to a standard ICC shape. The
principal components of both the unwarped and warped ventricle surface voxel displace-
ments were then computed. Because we again have 25 patients, the top six eigenvectors

will be the most reliably estimated, and we will use just these in our analysis.

6.4 Experimental Results

Figure 6-2 shows the first two principal components. The first mode (Figure 6-2(a-e)) is
just a measure of the overall size of the ventricles, while the second (Figure 6-2(f-j)) is the
degree of extension of the posterior horns of the lateral ventricles.

Table IIl shows the results of running our Gaussian linear classifier on the top six
principal components, along with the classification rate obtained using just ventricular
volume. As before, principal component analysis has provided a feature space with improved

class separability.
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Fignre G-1: The ventrienlar data set. (a) Healthy control subjects. (b)) Patients with
Alzheimer’s disease. (¢) Patients with normal-pressure hydrocephalus.
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Figure 6-2: (a)-(e) First principal component of the ventricular data set. The amplitude of
the mode is increasing from (a) to (e). (f)-(j) Second principal component of the ventricular
data set. The amplitude of the mode is increasing from (f) to (j).

TABLE Il
Gaussian Linear Classification Rates
Ventricle Database

Feature(s) %Correct
Ventricle volume 80
Ventricle principal components ] 88
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Chapter 7

Diagnostic Tool

In Chapters 5 and 6, patients were normalized for head shape, and then different brain
structures underwent a statistical shape decomposition. The resulting deformation modes
were first displayed to indicate the sorts of deformations caused by neuropathologies, and
then input into a linear classifier in order to perform shape-based diagnosis.

Instead of using shape features, automatic diagnosis can use other features derived from
images, or non-image data such as clinical symptoms. Whatever the information used,
however, removing the human doctor from the decision-making process should not be the
goal. Rather, the results of any computer-based analysis should serve as an additional
source of information for the clinician. One such form of computer-assisted diagnosis would

be a database tool that allows for efficient searches based on medical image content.

7.1 Content-Based Searches

Medical images are used by clinicians for diagnosis and for planning surgery and radiation
therapy, by researchers in attempting to understand normal and pathological morphology,
and by educators in teaching both anatomy and pathology. These images come from an
ever-increasing variety of sources, in ever-increasing amounts. Currently, in major hospitals,
on the order of one terabyte of medical imagery is produced every year [86].

While the organization and retrieval of medical images is in itself an important and
actively researched problem [42, 62, 51, 50, 61, 43, 11, 38, 39, 5, 74, 79, 16, 41, 45, 49, 48], it
has so far focused primarily on text-based searches (for example, by patient name), and on

the construction of the appropriate hospital computer networks. Commonly called picture
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archiving and communication systems (PACS), the main goal of these projects is to provide
clinicians with immediate access to images, thereby improving diagnosis and patient care.

There are many applications, however, in which it is more appropriate to search a
medical image database using the content of the images themselves, rather than just the
accompanying text annotation. A radiologist, for example, may want to see previous patient
studies in which the liver “looks like” the liver of a current patient. By then consulting
the final diagnoses of those previous patients, the radiologist may be able to improve the
diagnosis of the current patient. Without knowing the patient names in advance, there is
currently no way for the radiologist to acquire this sort of information.

A recent workshop [86] co-sponsored by the National Cancer Institute, the Agency for
Health Care Policy and Research, and the National Library of Medicine focused on the

challenges presented by medical image databases. Among their specific suggestions were:
e In addition to textual indexing, there should be a means for content-based indexing.

e A descriptive language for the geometric content of medical images should be devel-

oped.

e Special tools that allow for flexible shape matching will be needed. Image databases
are needed that can retrieve and sort images by shape and geometry in addition to

conventional text indexing.

e The search and analysis processes should be fast enough for supervision by a human

investigator.

e The user must be able to define which relations and which similarity measures are

appropriate for the problem under consideration.

e By exploring a database, the user will collect images that are “interesting”. These will
suggest new formulations, so that the user will need to alter the search in a customized

way and on the fly.

These issues all involve searching through a medical database using image content,
and being able to do so in an efficient, interactive manner. However, general methods of
searching through image databases based on image content do not yet exist. The main

problem is that it is unclear what image features ought to be used as similarity metrics.
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In the case of a text database, the database elements themselves - strings of characters -
can be directly compared in the search process. Since most often the bits of one image are
not directly comparable to the bits of another image (even when the images contain similar
objects), direct comparison in not a viable option for image databases. Rather, some sort
of high-level features must be derived from the images before performing database search

[65].

7.2 Photobook

We address several of the above issues by applying the Photobook image database tool [56]
to the two medical data sets used in this thesis. The key contributions of Photobook are
that it searches a database based on image content, and that it does so in real-time.
Photobook is a general image database tool that has been applied to faces, texture, and
2-D shape. As will be seen, the underlying functionality and similarity metrics used by
Photobook when searching databases using image content extend naturally to the problems
encountered in the medical domain. Although the experiments in the following sections
were run on our two relatively small databases of 25 patients eacﬁ, Photobook has been

shown to maintain its real-time speed on a database of over 7500 face images [56].

7.3 Demonstration

To demonstrate Photobook’s utility, we ran it using our two medical image databases.
The first database consists of the 25 patients with cerebral ventricular disorders. Figure 7-1
shows this database as initially displayed in Photobook. To each side of the displayed images
are user interface buttons and menus, illustrating some of the functionality of Photobook.
Below the images is the Search filter field, which allows the user to implement text-based
searches instead of or in addition to content-based searches.

Figure 7-2 is a magnified version of Figure 7-1, showing just the images and the Search
filter field. Note that the patients with normal-pressure hydrocephalus (NPH) tend to have
the largest ventricles, the patients with Alzheimer’s disease (AD) have mid-sized ventricles,
and the normal control subjects have the smallest ventricles.

For the first example, we selected one of the NPH patients, and had Photobook rank all

the other patients based on a shape similarity metric. For this metric we used Euclidean
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distance in the feature space defined by the first six principal components of normalized
ventricular shape (the first six components of b, of Equation 4.19). Figure 7-3 shows this
ranking. As can be seen, Photobook chose four of the other NPH patients as the most
similar to the patient selected.

It is also useful to be able to combine text-based searches with content-based searches.
If the patient under study is female, for instance, the clinician may want to search only for
females in the database. Photobook allows for these types of combinations. The text to
search on is entered at the bottom, in the Search filter field. Several of these can be applied
at once, in various boolean combinations. These text searches can then be combined with
a content-based search. Figure 7-4 shows the result when the user selects one of the AD
patients, and requests that only females in the database be considered when searching.

The next set of demonstrations uses the putamen database. Figure 7-5 shows this
database as initially displayed by Photobook. As mentioned earlier, the putamen of schiz-
ophrenia patients tend to be slightly larger than those of healthy controls.

First we selected one of the smaller healthy putamen, and had Photobook rank all
the other patients. As before, the shape similarity metric used was Euclidean distance as
measured in the feature space defined by the first six principal components of normalized
putamen shape. As Figure 7-6 shows, the top three and the first six out of seven putamen
chosen were those of other healthy subjects.

For the next example, one of the larger putamen from a patient with schizophrenia was
selected. Again, Photobook correctly found putamen belonging to the same class as the
patient selected. This result is shown in Figure 7-7.

Finally, we selected another schizophrenia patient, but one with a relatively small puta-
men. This caused Photobook to incorrectly chose healthy subjects as being the most similar

to the patient we selected. Photobook’s ranking in this case is shown in Figure 7-8.

7.4 Experiments

By selecting each patient in turn from a database, and examining the resulting Photobook
rankings, more quantitative experiments can be run. The most straightforward experiment
is to simply record the class membership (diagnosis) of the patient that Photobook picks

as being the most similar to the one selected. By repeating this procedure for each patient
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in the database, and tallying the results, a classification rate is obtained.

Because Photobook uses Euclidean distance as its similarity metric, the above proce-
dure is equivalent to nearest neighbor classification. This type of classification, unlike the
Gaussian approach usad earlier, is nonparametric since it assumes nothing about the math-
ematical form of the underlying class probability distributions.

Table IV shows the results of applying this procedure to the putamen database. For
comparison, the classification rate obtained using just putamen volume is also shown. A
12% improvement occurs when using principal components instead of volume.

For further comparison, Table II from Chapter 5 is repeated here. This table shows the
classification accuracy obtained when a Gaussian linear classifier is applied to the putamen
database. As can be seen, the nearest neighbor algorithm produces lower classification rates

for both volume and principal components.

TABLEIV TABLE I
Nearest Neighbor Classification Rates Gaussian Linear “lassification Rates
Putamen Database Putamen Database
Feature(s) %Correct Feature(s) %Correct
Putamen volume | 52 Putamen volume . 60
Putamen principal components 64 Putamen principal compenents { 72

Table V shows the classification rates obtained when the nearest neighbor algorithm is
applied to the ventricle database. The results of using a Gaussian linear classifier are also
repeated here, in Table III. In this case, using the nearest neighbor algorithm has increased

the classification rate for the principal components, and decreased it for ventricular volume.

TABLE V TABLE III
Nearest Neight or Classification Rates Gaussian Linear Classification Rates
Ventricle Database Ventricle Database
Feature(s) %Correct Feature(s) %Correct
Ventricle volume o 68 Ventricle volume ; 80
Ventricle principal components 92 Ventricle principal components 88
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Chapter 8

Discussion

8.1 Effect of Head Shape Normalization

To test the effect of head shape normalization, we computed the putamen principal com-
ponents without first warping all patients’ cranial contents to the same model. For the
putamen data set, this dropped the classification rate from 72 to 64%, indicating that our
normalization did remove some nonpathological putamen deformation.

Since the classification is performed in a six-dimensional space, it is difficult to visualize.
We therefore plotted just the top two principal components for all 25 patients in the putamen
data set, both without and with the head shape normalization. Figure 8-1a shows the
projections onto the top iwo modes of the unwarped data, while Figure 8-1b shows the
projections onto the tep two modes computed after warping. Note that b, and b; of Figure
8-1b are the first two components of the projection vector b of Equation 4.19, and that
the eigenvectors onto which they are projected were shown earlier in Figure 5-3. Similarly,
a; and a; of Figure 8-1a are projections onto the two highest-variance eigenvectors of the
sample covariance matrix of the original, unwarped putamen.

Consistent with the decrease in classification rate, Figure 8-1a shows less class separa-
bility than Figure 8-1b. This is because the head shape normalization has removed some of
the nonpathological shape variation between patients. This nonpathological deformation is
represented by the projections onto the first two ICC deformation modes, shown in Figure
8-1c. As can be seen, the projections onto the ICC modes show little class distinction. This
is to be expected, since cranium shape is uncorrelated with disease state.

Ideally, Figure 8-1b would show each disease state in a very compact cluster, with
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Figure 8-1: Projections onto modes computed from the schizophrenia database. Each
schizophrenic patient is denoted by a +, and each healthy volunteer is denoted by a o. (a)
Putamen principal components, computed from the original data. (b) Putamen principal
components, computed after first normalizing for head shape. (c) ICC physical deformation
modes.

complete separability between the clusters. There are several reasons why these conditions
are not achieved. First, some nonpathological shape variation certainly remains. This shape
variation might, for instance, be correlated with individual variation that is more local than
what can be measured by overall head shape. Second, the amount of shape deformation
caused by a disease is not necessarily going to be enough to result in a completely separable
class. Finally, there will be some amount of variation in the shape effects of a particular
disease. This will cause additional scatter within each of the disease classes.

We repeated the above procedure for the ventricle database. This time the classification
rate did not drop, staying at 88%. Figure 8-2 shows the projections onto the top two modes
for the unwarped ventricles, the warped ventricles, and the ICC. No improvement is seen
in class separability between Figures 8-2a and 8-2b.

One possible explanation for the lack of improvement when normalizing for head shape
is the already high classification rate (88%) obtainable without removing any nonpatho-
logical effects. Coupled with the small sample size, there is little room for improvement.
Another factor is our simple nearest-point correspondence scheme. For calculating the cor-
respondence between two ICCs or two putamen, this procedure is adequate. For structures
as complicated as the ventricular system, however, nearest-point techniques will provide
only a very coarse approximation to the true correspondence. A third possible cause is
that the ventricular data set was not controlled for gender. On average the male cranium

is larger than the female, but interior structures do not necessarily scale by precisely the
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Figure 8-2: Projections onto modes computed from the ventricle database. Each Alzheimer’s
patient is denoted by a +, each normal-pressure hydrocephalus patient by an *, and each
healthy volunteer by a o. (a) Ventricle principal components, computed from the original
data. (b) Ventricle principal components, computed after first normalizing for head shape.
(c) ICC physical deformation modes.

same amount [53]. Since normalizing an entire database to one standard head shape does
not take into account gender-based shape variation, this gender-based variation may be
interfering with the analysis of pathological shape differences.

To further investigate this problem, we constructed a mean square measure of ventricular
similarity, by computing the distance between each voxel on the average ventricular surface
and the nearest point on a patient’s ventricular surface. The sum of these for a particular
patient is a measure of the similarity of the patient to the average. If the ICC warping is
truly removing some of the variation between ventricles, then this measure should decrease.
Figure 8-3 shows the results for our 25 ventricular patients. Only a moderate decrease is

seen with warping.

8.2 Model Accuracy

Another area requiring further study is the accuracy of physical models of the ICC. Flaws in
these models will cause errors in the warping of the cranial contents, resulting in suboptimal
shape normalization for the basal ganglia, ventricles, and other interior structures.

The creation of these models has long been an active research 2:ea among biomechanical
investigators, who have constructed both solid and fluid mechanic models [17, 20, 35, 63].
The constitutive parameter values plugged into these models have come from experiments

on human cadavers and both living and dead animals. Due to the very complex nature of
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normalization.

brain tissues and difficulties in extrapolating cadaver and animal results to living humans,
however, the material properties of the brain are still very poorly understood [20, 63].
Because mnost of these models were created in order to study head injuries, model validation
has typically been performed by running simulations of objects hitting the head, and then
comparing the simulation results to the results of analogous experiments using cadavers and
animals. While some models have shown good agreement with experimentation, there is
still no general consensus on either the best qualitative form of model (solid versus fluid),
or on appropriate quantitative values for the brain’s constitutive parameters.

Both solid and fluid models of the ICC have also been created by computer vision
researchers [4, 18, 24], typically with the goal of performing some type of inter-patient
warping. The mechanical properties used for these models have usually been set to those
of much simpler materials. In our model, for instance, we build the stiffness matrix using
extremely elastic material properties. It is doubtful, however, that much improvement in
stiffness matrix accuracy would be obtained by employing the material property estimates

found in the biomechanics literature, as these are highly uncertain.
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8.3 Statistical Analysis

In this thesis, we have reported experimental results (e.g. classification rates) without
providing any sort of statistical analysis. Our results could therefore only suggest that the
method works.

With larger data sets, statistical analysis becomes feasible. Obtaining accurate esti-
mation errors of quantities derived from high-dimensional data is, however, very difficult.
In this section we review some of the statistical measures that are available. Much of the

development that follows is taken from [33].

8.3.1 Eigenvector estimation

The principal components of our data sets were first used to visually examine modes of de-
formation, and then used as inpuis into a linear classifier. Because they are the eigenvectors
of the sample covariance matrix, these sample principal components are random variables,
with their own sampling distributions.

Unfortunately, the results that are available from multivariate statistical theory regard-
ing the distribution of sample eigenvectors are complicated, asymptotic, and assume a
multivariate normal distribution for the underlying population. For example, the variation
of the sample principal component {b,-, measured in terms of the expectation of the mean-
square error between it and the population principal component ;, is given approximately
by !

. 1 AiAj
E{l v,b.-—«p;ll?}zﬁzljm (8.1)
J#i
where ); is the eigenvalue corresponding to the eigenvector ;, n is the dimensionality of
the observation vector, and N is the number of samples [33]. Note that this expression
requires knowledge of the population eigenvalues, which themselves can only be estimated.

The applicability of estimates such as Equation 8.1 is severely limited by the assumptions
needed to derive the estimates [2]. For this reason, various ad hoc rules concerning which
eigenvectors can be reliably estimated from a set of data have been proposed. In this thesis,

we kept those eigenvectors corresponding to the largest % eigenvalues.
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8.3.2 Tests of normality

Equation 8.1, as well as some of the results to be presented in the next section, assume that
the underlying distribution is multivariate normal. Methods of testing whether or not high-
dimensional data comes from a normal distribution are not generally available, however. The
best that can be done is to perform normality tests on the univariate marginal distributions,
and also perhaps on a few linear combinations of the data. If the univariate tests are passed,

then the hope is that the joint distribution of the original data is multivariate normal [47].

8.3.3 Classification accuracy

For each patient p, the projections b, onto the principal components were calculated. These

were then fed into linear discriminant functions of the form
gi(bp) = 2m?‘2_lbp - m/E7'm; (8.2)

where m; is the mean of class ¢ and X is the common covariance matrix. Because we did
not know the underlying distributions, sample estimates were used for m; and 3i. The
classifier is thus a function of these sample estimates, and its output is subject to sampling
fluctuations. Expressions can be derived for the resulting bias and variance of the sample
classification rate. However, even under simplifying assumptions, these estimates are very
complicated [33].

A somewhat simpler, though not as useful, approach is to construct measures of class
separability. For two classes, a common measure of separability is the Bhattacharyya dis-
tance, given by
o

VIEIE

Although the Bhattacharyya distance is derived assuming the underlying distributions are

-1
b= glma = my)T [Z2Z2] gy — my) + 3o (8.3)

normal, it can also be used as a reasonable estimate for the separability of two non-normal

distributions.!

Like the discriminant functions of Equation 8.2, in practice the Bhattacharyya distance

'If there are more than two classes, then other measures of class separability can be used. Most of these
measures involve comparing between-class to within-class scatter matrices.
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is computed using sample estimates of the unknown population parameters m and Z. Thus
the Bhattacharyya distance becomes a random variable, with its own sampling distribution.
Fukunaga [33] has derived an expression for the variance of this distribution. Defining s
and p; as the first and second terms of Equation 8.3, respectively, we have?

. 1 n LI m,?m_?(l+/\,-/\j)
Var (i) = aN Z; 1+ Au E;Zl 2(1 + A)2(1 + A;)2 (8.4)

and

,\,?] : (8.5)

8.3.4 Conclusion

In the ideal situation, the underlying probability distribution for each class would be known.
The Bayes classifier could then be used, with the Bayes error giving the theoretically optimal
classification rate. For most applications, however, the probatility distributions are not
known. Obtaining accurate error estimates for quantities such as the sample classification
rate and the Bhattacharyya distance then becomes complicated, asillustrated in this section.
In practice, the best that can be hoped for is to have available large sample sizes, enabling

accurate empirical estimates of these quantities to be made.

8.4 Number of Principal Components

As mentioned earlier, estimating the sampling distribution of principal components (PCs)
is difficult, and a reasonable rule of thumb is to keep those PCs corresponding to the largest
% eigenvalues. For each of our two 25-patient data sets, then, the top six PCs were kept.
To test the robustness of this parameter, we varied the number of PCs used in classifi-
cation. Table VI shows the ventricle classification rate obtained using the Gaussian linear
classifier, with the number of PCs used ranging from four to eight. As can be seen, the
classification rate is not that stable. Table VII shows the effect of varying the number of
PCs when the Gaussian linear classifier classifier is applied to the putamen database. With

five or more PCs, the classification performance is very stable.

2To prevent these expressions from becoming more cumbersome, the covariance matrices were simultane-
ously diagonalized to I and A, and a coordinate shift was applied to move the mean vector of the first class
to O [33]. This can be done without loss of generality. Thus m, refers to component i of the mean vector
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TABLE VI

Gaussian Linear Classification Rates
Ventricle Database
Number of Principal Components Varied

#PCs % Correct
4 R T <
... 6 . 88
1 80
8 84

TABLE VII

Gaussian Linear Classification Rates
Putamen Database
Number of Principal Components Varied

#PCs % Correct
4 .60
R B I
6 ]
R 12 _
8 72

Tables VIII and IX show the effects of varying the number of PCs input into the nearest
neighbor classifier. Just as for the Gaussian linear classifier, the number of PCs used is
more robust for the putamen database than it is for the ventricle database.

As can be seen in both Tables VI and VIII, part of the instability in ventricle classifica-
tion rate is due to the large improvement in performance that occurs when PC 6 is included.
This suggests that PC 6 contains shape variation that is useful for class discrimination. Fig-
ure 8-4, which shows the patient projections onto PCs 5 and 6, verifies this. As the figure
shows, PC 6 helps to distinguish Alzheimer’s patients from both normal-pressure hydro-
cephalus patients as well as from normal subjects. Since classification errors are most often
made either between Alzheimer’s patients and normal-pressure hydrocephalus patieuts, or
between Alzheimer’s patients and normal subjects, it is not surprising that inclusion of PC

6 makes a large difference in classification performance.

of the second class, and \; refers to diagonal component i of the covariance matrix of the second class.
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TABLE VIII

Nearest Neighbor Classification Rates
Ventricle Database
Number of Principal Components Varied

#PCs % Correct
i 4 7
5 | 68
.
1 ) 80
8 | 88
TABLE IX

Nearest Neighbor Classification Rates
Putamen Database
Number of Principal Components Varied

#PCs % Correct
. 4 . 64
5 - 68
L . 64
T .
8 68

8.5 Preset Parameters

In this section, we briefly discuss each of the preset parameters used in the different steps

of the implementation.

8.5.1 Rigid body alignment

The first step in our system is a rigid body alignment of two ICCs. To accomplish this,
we used the technique developed by Ettinger et al. [31]. In their method, cach ICC is
represented by a list of its surface points. One of the 3-D point sets is then iteratively
transformed in order to match the other, using a combination of Gaussian smoothing,
stochastic sampling, and the minimization of an objective function based on a distance
measure between the two point sets.

The preset parameters used in their technique are the widths of the smoothing Gaus-

sians, the cutoff distance at which a point is considered to be an outlier, and the threshold
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Figure 8-4: Projections onto ventricle principal components 5 and 6. Each Alzheimer’s
patient is denoted by a +, each normal-pressure hydrocephalus patient by an , and each
healthy volunteer by a o.

used when deciding to halt the iteration and declare the two point sets matched. The values
of these parameters have been chosen based on both theoretical and empirical considera-
tions. Because this work is still under development, however, the precise effects of changing

these parameters are presently unclear.

8.5.2 Modal fitting

Once the two ICCs have undergone a rigid body alignment, the nonrigid components of
deformation are calculated using the modal fitting method of Pentland and Sclaroff [57].
The preset parameters of their technique are the object’s material properties. In their
implementation, the material propérti% are chosen to correspond to those of a homogeneous,
isotropic, extremely elastic material. Modeling the ICC with these values is certainly an
over-simplification, and more accurate values ought to lead to better results. However, as
discussed in Section 8.2, accurate values for the material parameters of actual ICCs are not

available.

8.5.3 Principal component analysis

The final step in our system involves computing the principal components of the warped
structures. The only parameter value that needed to be set was the number of principal

components to use. The robustness of this parameter was investigated in Section 8.4.
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8.6 Other Issues and Limitations

In addition to the topics discussed so far in this chapter, there are several secondary issues

and limitations that are also worth exploring.

8.6.1 Correlations between ICC and interior structure shape

Because the shapes of the ICC and interior structures are not perfectly correlated, even
a totally accurate physical model of the ICC will not remove all nonpathological shape
variation when used to warp interior structures. While some correlation exists, the exact
amount and types of it are not known. A study using linear measurements of the ventricles
and cranium, for example, found that while the size of the laterzl ventricles was correlated
to cranium size, the size of the third ventricle was not [36].

Even if a correlation exists in general, it will not necessarily hold for all individuals. In
the example of Section 4.1.4, for instance, shape correlation was present and we were able
to successfully remove some of it. There will be cases, however, when there is little or no
correlation present; warping the cranial contents according to ICC shape will therefore not,
help in normalizing the shape of interior structures.

Figures 8-5 and 8-6 provide an example where head shape normalization does not in-
crease ventricular shape similarity. Even though the subject’s ventricles (Figure 8-5d) are
significantly larger than average (Figure 8-5b), their ICC (Figure 8-5¢) is not that different
from average (Figure 8-5a). Using the ICC shape difference to warp their cranial contents,

therefore, does not produce ventricles (Figure 8-5¢) that are any closer to the mean.

8.6.2 Correlations between ICC shape and disease state

Another important correlation is that between the shape of the ICC and the presence of
pathology. An assumption throughout this thesis is that normalizing cranial contents by
ICC shape will remove only nonpathological shape variation. If the disease under study has
affected the shape of the ICC, however, then some pathological shape variation will also be
taken out. Early childhood hydrocephalus, for example, often causes enlargement of the
head, and thus the increase in ventricular size is accompanied by an increase in ICC size. In
this case, normalizing the crania! contents using ICC shape will remove some pathological

shape deformation.
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Figure 8-5: An example where normalizing ventricular shape by cranium shape does not
remove any nonpathological shape variation. (a),(b) Average ICC and normal ventricles.
(c),(d) ICC and ventricles of one of the healthy subjects. The ventricles are far from average,
but the ICC is close to average. Therefore warping this subject’s ventricles using ICC shape
differences does not produce ventricles (e) any closer to average.

Figure 8-6: Same structures as in the above figure, but viewed from above. The front-to-
back direction is now bottom-to-top. See the caption of Figure 8-5 for details.
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The assumption of independence between pathology and head shape is probably valid
for both Alzheimer’s disease and normal-pressure hydrocephalus, since their onset occurs
in adulthood. Schizophrenia, on the other hand, may be present during early development,
thereby increasing the chances of schizophrenia-induced effects in overall brain and ICC
shape. However, both the improved feature space (Figure 8-1b versus 8-1a) and classifi-
cation rates (72 versus 64%) obtained by first normalizing for ICC shape, as well as the
class-independent distribution of schizophrenic and normal projections onto the ICC modes

(Figure 8-1c), suggest that primarily nonpathological deformation was removed.

8.6.3 Disease duration and etiology

Two points concerning pathology should be noted. First, in medical studies researchers must
be certain that their subjects actually have the diseases under investigation. Therefore
typically only chronic cases are included in these studies. This is helpful when trying
to understand structural changes caused by a disease, since deformation modes are best
estimated from a data set of chronic patients. However, since a database of chronic cases
will have better inter-class separability than a truly random sample, classification rates
based on chronic cases (as in this thesis) will be greater than those generally attainable.
Second, many diseases have a wide etiologic diversity. Schizophrenia, for example, is
thought to consist of a group of closely related, but presently unknown, “subdisorders”, all
presenting similar clinical symptoms [1]. The same is true of normal-pressure hydrocephalus,
although its group of subdisorders is probably more diverse than that of schizophrenia [59].
If the induced structural changes vary with the particular subdisorder present, then the
modes calculated from a data set of NPH patients, for example, will be combinations of the
modes of the individual NPH subdisorders. If the data set’s projections onto these modes

show subclustering, then it may be possible to infer the existence of NPH subdisorders.

8.6.4 Correspondence

Computing the various deformation modes requires knowing the correspondence between
points on surfaces. In this thesis we used a closest-match technique to approximate this
correspondence. For calculating the correspondence between two ICCs or two putamen,
this procedure is adequate. For structures as complicated as the ventricular system, how-

ever, closest-match techniques will provide only a very coarse approximation to the true
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correspondence. Any errors in this correspondence will propagate into inaccuracies in the
estimated deformation modes.

Possible solutions to this problem include the use of more sophisticated point correspon-
dence algorithms, or the extraction of more salient features from the ventricles. This feature
extraction could be done manually, having a user simply pick corresponding landmarks on
the different data sets. Aside from the unattractiveness of introducing user intervention,
we have found that it is very difficult even for medical experts to reliably pick homologous
points on different realizations of a complex structure. A more promising approach is to

automatically detect these points or lines using concepts from differential geometry [54].

8.6.5 Segmentation

Our approach assumes that the data has been pre-segmented into the structures of interest.
The ventricular data set used in this thesis was semi-automatically segmented [53], while
the putamen data set was segmented manually [69, 40].

The quality of the segmentation will obviously affect our results. Because of the low con-
trast and high noise levels typical of medical imagery, segmentation is a difficult and largely
unsolved problem. While the above studies did test the reliability of their segmentation
procedures, not all of the segmentation results were equally dependable. In the ventricular
study, for example, the segmentation of the third ventricle was less accurate than that of

the lateral and fourth ventricles.

8.7 Implementation

In this section, we discuss the speed at which the various components of our method run.

All reported running times are on a Sun SPARC 2 with a standard configuration.

8.7.1 Rigid body alignment

The rigid body alignment stage [31] is the most time-consuming step in our current imple-
mentation, requiring on the order of 15 minutes per patient. Its relative slowness is caused

primarily by its stochastic optimization procedure.

78



8.7.2 Modal fitting

The modal fitting [57) takes only a few minutes per patient. Note, though, that even with

a database of only 25 patients, this step takes on the order of one hour to complete.

8.7.3 Principal component analysis

As described in Sections 1.1 and 4.2.2, a principal component analysis is performed on a set
of 25 displacement vectors, with each vector being of size 3V x 1. Because we use all the
surface points in our shape representation, 3V is on the order of several thousand. Thus it
would appear that we must compute the eigenvectors of an extremely large matrix.
Fortunately, because the number of patients is much less than the dimensionality of the
original feature space, the amount of required computation can be greatly reduced [82].
With only 25 patients, for instance, there will be only 24 non-zero eigenvalues, and thus 24
meaningful eigenvectors. It then becomes possible to transform the original problem into
one of finding the eigenvalues and eigenvectors of a 25 x 25 matrix. This requires only a

few seconds of CPU time.

8.7.4 Classification and database search

By the time we are ready to perform classification and database search, the dimensionality
of the original space has been reduced to a feature space dimension of just six. Thus both

classification and database search [56] take just a second or two.

8.7.5 Conclusion

The only parts of our implementation that are slow enough to warrant further optimization
are the rigid body alignment and the modal fitting. Fortunately, these are the only two steps
in which each patient is processed independently of all other patients. Thus parallelization
of these steps would be relatively easy, since only an executive module that assigned each
patient to a different processor would be needed. The core code of each algorithm would
not have to change.

If these two steps were parallelized, then the entire procedure, from start to finish,
would take on the order of minutes instead of hours. This would make it possible to do

more experimentation with the preset parameters discussed in Section 8.5.
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8.8 Suggestions for Future Research

8.8.1 An alternative to finite element modeling

In our current implementation, the ICC is modeled as a homogeneous, linear elastic object.
This enabled us to use general finite element methods to analytically characterize the entire
ICC. Of course ihe ICC is not homogeneous, and so our simple physical assumptions will lead
to inaccuracies, as discussed in Section 8.2. However, it is possible to bypass this dependence
on physical assumptions by using the connection between the eigenshapes calculated using
principal component analysis and the physical deformation modes computed via modal
analysis (see Section 3.3).

Using this connection, we can forgo the reliance on measured material properties and
instead compute the stiffness matrix directly from medical imaging data, in the following
way. The ICCs from a large database of normal subjects can be used to compute displace-
ment data that relates each patient’s ICC surface to a model of an average ICC. Because
the ICC of each patient is sampled at different locations by the medical imaging scanner,
this ICC displacement data will be irregularly sampled. Fortunately, the FEM’s physical
interpolation functions can be used to refer irregularly-sampled displacement data back to
the FEM nodes of the model. Once at the nodes of the model, Equations 3.16-3.20 can
then be used to estimate the stiffness matrix.

Here we see the real power of the FEM and Equations 3.16-3.20. The FEM’s physical
interpolation functions allow you to convert irregularly-sampled ICC displacements into
regularly-sampled (at the FEM nodes) displacement data in a physically meaningful fashion.
Then Equations 3.16-3.20 tell you how to convert this regularly-sampled displacement data
into a stiffness matrix.

Hence we have two ways to construct the stiffness matrix. The one used in this the-
sis relies on experimental observation of material properties, and then builds the stiffness
matrix in the usual FEM fashion. The required assumption is that the ICC behaves as a
homogeneous, linear elastic material.

The method proposed in this section creates the stiffness matrix directly from exper-
imental observations of ICCs, via Equation 3.20. Although assumptions about the ICC’s
material properties are not necessary in this case, certain assumptions regarding the load

vector R were needed in order to derive the connection between the covariance and stiffness

80



matrices.

Which of the two methods creates a more reliable stiffness matrix depends on the ac-
curacy of the measured material properties of th2 ICC, the sample size used in estimating
the stifflness matrix directly, and the validity of the assumptions used in deriving Equation
3.20. Whether the first or second method is used, or even if the two sources of information
are combined (using, for instance, the methods described in [26]), the goal is to produce
the most physically-correct stiffness matrix. This will provide the most realistic ICC de-
formation modes, and will give the best shape normalization when the cranial contents are

warped.

8.8.2 Normal shape correlations

In addition to its use in statistically calculating an ICC stiffness matrix, a large database of
normal subjects could also be used to study correlations between ICC and interior structure
shape. Once the amount and type of these correlations are known, more appropriate warping
functions could be constructed.

A more ambitious task would be to search for structures other than the ICC with which
to perform shape no)rmalization. This thesis used the shape of the ICC for normalization
because it is easy to segment, and because it is unlikely that ICC shape is affected by the
diseases that we studied. There is no reason to assume, however, that the ICC is the best
structure to use when normalizing every interior structure. It may be that other, more
nearby structures are better suited for this purpose.

This idea can be investigated using a large database of normal subjects in which many
of the interior structures have been segmented. For each particular structure whose shape
is to be studied, various normalizations can be attempted, using different nearby structures
or combinations of structures. To make this task computationally feasible, it may be nec-
essary to use knowledge from developmental neuroanatomy in order to select those nearby

structures which are most likely to produce effective shape normalizations.

8.8.3 Pathological shape correlations

In addition to studying normal shape correlations, pathological shape correlations should
also be investigated. Doing so will require a large database of segmented scans for each

disease of interest.
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There are several aspects of pathology that could be studied. First, as mentioned
earlier, little is known about possible correlations between ICC shape and disease state. By
combining the pathological database with a normal control database, correlations between
pathology and ICC shape can be found.

Second, studies similar to the work in this thesis could be performed. With the larger
database, however, precise estimates can be made of guantities such as the improvement
in classification rates obtainable when using principal component analysis instead of just
volume.

Lastly, it would be possible to investigate the use of structures other than the ICC for
performing shape normalization. Recall, however, that one of the benefits of using the ICC
is that its shape is unaffected by most diseases. Since this is less likely to be true for nearby
interior structures, using these structures for nonpathological shape normalization may also
remove pathological shape variation. It would therefore be necessary to assess the amount
of correlation between the disease under study and any structures that are candidates for

use in the shape normalization procedure.

8.8.4 Segmentation versus shape description

Robust segmentation of medical imagery requires the use of prior anatomical knowledge.
In addition to models of the average shape and location of various structures, “allowable”
deformations in these models are also needed. Unfortunately, in order to obtain these shape
descriptions, accurate segmentation of training data is required.

One possible way around this chicken-and-egg problem is to perform some sort of iter-
ation between segmentation and shape description. Manually segmented training data can
be used to calculate initial shape descriptions. These shape descriptions can then be used to
segment other data [73, 76, 28]. The new segmentation results can then be used to update
the shape descriptions, and so on. Both theoretical work that investigates the convergence

properties of this approach, as well as experimental work that validates it, are needed.
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Chapter 9

Summary

We have presented a new method that addresses the general probiem of separating out
normal shape variations across a class of objects from those variations that carry special
importance. Using both physical modeling and statistical techniques, our method describes
shapes in terms of modes of deformation.

When applied to the human brain, our technique is able to separate out pathological from
normal shape deformation, allowing better representation and analysis of the deformations
due to disease. The representation is in the form of a disease’s deformation modes, which
provide a very natural basis set in which to examine pathological shape deformation. The
analysis suggests that by first discounting the experimentally-derived modes of a brain
structure by the physical modes of the intra-cranial cavity, it may be possible to improve
disease classification.

Our method was applied to schizophrenia, Alzheimer’s disease, and normal-pressure
hydrocephalus. The putamen of schizophrenics, although initially very similar to those of
normal controls, were easier to differentiate from the control putamen once head shape
was taken into account. Conversely, the ventricies of Alzheimer’s patients, normal-pressure
hydrocephalus patientz, and normal controls were somewhat differentiable to begin with,
but this separability did not markedly improve when cranial contents were normalized for
head shape.

The limitations of our method involve the accuracy of physical models of brain stiffness,
the ability to determine the correct correspondence ! etween points on structures, and the

degree to which nonpathological and possibly pathological morphology are correlated with
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overall head shape. Overcoming these limitations will require better implementation, further
investigation of the brain’s material properties, and shape correlation studies involving large
numbers of patients.

In summary, there are three main contributions of this work. First, we have developed
a method of shape analysis that is useful for separating out interesting from uninterest-
ing shape variation. By applying modal analysis to the physical modeling, and principal
component analysis to the experimental observations, all shape variations were consistently
described in terms of deformation modes. Second, when our mecihod is applied to neu-
ropathology, it may be possible to improve disease classification by first normalizing for the
physical modes associated with head shape. In addition to serving as features for classi-
fication, putamen and ventricle eigenshapes were also displayed in order to illustrate the
pathological deformation modes caused by schizophrenia, Alzheimer’s disease, and normal-
pressure hydrocephalus. Finally, by incorporating our shape descriptions into an image
database tool, we have indicated that it is possible to accurately and efficiently search
through medical image databases using similarity metrics derived from the content of the

images themselves.
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