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The relaxation of an one-dimensional transient thermal grating (TTG) in a medium with
phonon-mediated thermal transport is analyzed within the framework of the Boltzmann transport
equation (BTE), with the goal of extracting phonon mean free path (MFP) information from
TTG measurements of non-diffusive phonon transport. Both gray-medium (constant MFP) and
spectrally dependent MFP models are considered. In the gray-medium approximation, an
analytical solution is derived. For large TTG periods compared to the MFP, the model yields an
exponential decay of grating amplitude with time in agreement with Fourier’s heat diffusion
equation, and at shorter periods, phonon transport transitions to the ballistic regime, with the
decay becoming strongly non-exponential. Spectral solutions are obtained for Si and PbSe at
300 K using phonon dispersion and lifetime data from density functional theory calculations. The
spectral decay behaviors are compared to several approximate models: a single MFP solution, a
frequency-integrated gray-medium model, and a “two-fluid” BTE solution. We investigate the
utility of using the approximate models for the reconstruction of phonon MFP distributions from
non-diffusive TTG measurements. VC 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4820572]

I. INTRODUCTION

Lattice thermal conductivity exhibits non-diffusive char-
acteristics over length scales comparable to phonon mean
free paths (MFPs). Information on phonon MFP distributions
within materials is important for understanding and engineer-
ing heat transport, which has prompted recent experiments1–7

to investigate phonon-mediated thermal transport at small
length scales. Experiments and theory have shown that in
materials such as Si, the Fourier law breaks down at much
longer distances than previously thought, on the order of
microns at room temperature.6–10 When temperature gra-
dients occur at length scales comparable to the MFP of heat
carrying phonons, the diffusion model of thermal conductiv-
ity becomes inadequate, even in the absence of physical
boundaries.11,12 In the non-diffusive regime, phonon transport
can be described by the Boltzmann transport equation (BTE),
which is difficult to solve. In the past, theoreticians have
resorted to the gray-medium (constant MFP) approximation
and to idealized geometries that do not match experimental
conditions, such as one-dimensional transport across a slab
bounded by blackbody walls.13–16

One notable experimental method for measuring thermal
conductivity is the transient thermal grating (TTG)
technique.17–19 The TTG technique uses crossed laser beam
interference to produce a spatially sinusoidal temperature
profile in a sample, as illustrated in Fig. 1, which gives rise

to a spatially modulated refractive index. The subsequent
decay of the temperature profile is measured using a dif-
fracted probe beam. The heat transfer distance in a TTG
experiment is controlled by the grating period, L, which can
be easily varied over a wide range. Non-diffusive phonon
transport has been observed when L is within the range of
MFPs of the heat carrying phonons in a material.6 The sim-
ple geometry, the absence of material interfaces, and the
sinusoidal temperature profile make the TTG arrangement
attractive for theoretical analysis. Maznev et al.20 obtained
an analytical solution for the one-dimensional TTG relaxa-
tion using a “two-fluid” approximation that combined the
diffusion model for the high frequency part of the phonon
spectrum and the BTE for low frequency phonons.
Minnich21 used the result of Ref. 20, along with a solution to
the BTE obtained with a deviational Monte Carlo method,22

to propose a procedure for reconstructing phonon MFP
distributions from TTG data.

In this article, we present a systematic study of BTE
solutions to the one-dimensional TTG problem. We start by
analyzing the gray-medium model, assuming a constant pho-
non MFP, for which we obtain an analytical solution. We
proceed with numerical solutions to the spectral phonon
BTE for Si and PbSe at 300 K, including all six phonon
branches, using phonon dispersions and relaxation times
obtained from density functional theory (DFT) calcula-
tions.9,23 We then compare the exact spectral BTE solutions
with approximate solutions, including the gray-medium
model and the two-fluid model from Ref. 20, and considera)gchen2@mit.edu
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the utility of those approximate models for reconstructing
phonon MFP distributions from TTG measurements of non-
diffusive thermal transport.

II. GRAY-MEDIUM MODEL

We consider the thermal relaxation of a one-dimensional,
spatially sinusoidal temperature profile, as illustrated in Fig. 1.
Our formulation differs from the experimental geometry of
Ref. 6, where heat transport was influenced by the boundary
scattering in a thin membrane. Rather, our approach is appro-
priate for TTG measurements in bulk materials, where the
depth of the thermal grating is much greater than the grating
period.17 In order to extend this approach to thin membranes
or strongly absorbing materials in which heat is dissipated
into the depth of a sample, a multidimensional BTE would
need to be considered. Initially, the temperature profile is
given by

Tðx; t ¼ 0Þ ¼ Tmax cosðqxÞ; (1)

where T is the temperature deviation from To, the average
background temperature, Tmax is the peak temperature devia-
tion, t is time, x is the spatial variable, and q is the spatial
wave vector, which relates to the grating period through
q ¼ 2p=L. The heat diffusion equation yields an exponential
thermal decay of the form

Tðx; tÞ ¼ Tmax cosðqxÞe$aq2t; (2)

where a is the thermal diffusivity of the material. At suffi-
ciently small grating periods, the thermal transport will be
non-diffusive and needs to be described instead by the pho-
non BTE. In the relaxation time approximation, the phonon
BTE takes the form13,24

@g

@t
þ lv

@g

@x
¼ go $ g

s
; (3)

go ¼
1

4p
!hxDðxÞfBEðTÞ &

1

4p
CxT; (4)

where our distribution function, g ¼ gðx; t; lÞ, is phonon
energy density per unit frequency interval per unit solid
angle, equal to the occupation function, f, multiplied by
!hxDðxÞ=4p; go ¼ goðx; tÞ is the distribution when f is the
equilibrium occupation function determined by the Bose-
Einstein distribution, fBEðTÞ; l ¼ cosðhÞ is the directional

cosine, v is phonon group velocity, s is phonon relaxation
time, !h is the reduced Planck constant, x is phonon
frequency, DðxÞ is phonon density of states, and Cx is the
differential, frequency-dependent specific heat. Again, both
g and f are defined as deviations from the average back-
ground values corresponding to thermal equilibrium at the
background temperature, To. In the small perturbation limit,
the equilibrium distribution function, go, is proportional to
the temperature change, as shown in Eq. (4).10 In the gray-
medium model, v and s are assumed to be constant, in which
case the BTE does not depend on phonon frequency, and the
frequency dependence of g can be ignored.

We seek a spatially periodic solution for g by assuming
that g and T are of the form ~gðt; lÞ expðiqxÞ and ~TðtÞ expðiqxÞ.
Now Eq. (3) takes the form of a first-order ordinary differential
equation for ~g,

@~g

@t
þ c~g ¼

~go

s
; (5)

with the solution

~gðt; lÞ ¼ 1

s

ðt

0

ecðt0$tÞ~goðt0Þdt0 þ Ae$ct; (6)

where c ¼ ð1þ iqlvsÞ=s and A ¼ ~gðt ¼ 0; lÞ ¼ ~goð0Þ. We
obtain a second relation between ~g and ~go using energy con-
servation, assuming a gray medium,13

goðx; tÞ ¼
1

2

ð1

$1

gðx; t; lÞdl; (7)

which leads to

~goðtÞ ¼ ~goð0Þ sincðqvtÞe$t=s

þ 1

s

ðt

0

~goðt0Þeðt
0$tÞ=s sincðqvðt0 $ tÞÞdt0: (8)

We can further generalize Eq. (8) by substituting nondi-
mensional variables,

f ¼ t

s
; g ¼ qvs ¼ 2pK

L
; ! ¼

~goðtÞ
~goð0Þ

¼
~TðtÞ
~Tð0Þ

; (9)

producing

!ðfÞ¼ sincðgfÞe$fþ
ðf

0

!ðf0Þsincðgðf0$ fÞÞeðf0$fÞdf0; (10)

which is a nondimensional solution of the gray-medium,
one-dimensional phonon BTE for a sinusoidal temperature
profile. Here, K is the phonon MFP, which relates to relaxa-
tion time and group velocity through K ¼ vs. Equation (10)
is a Volterra integral equation of the second kind, which can
be solved using standard numerical techniques.25

The solution of the diffusion equation, given by Eq. (2),
can be represented in a similar nondimensional form

!ðfÞ ¼ e$bf; (11)

where b ¼ aq2s.

FIG. 1. Illustration of a TTG experiment, in which crossed pump lasers pro-
duce a sinusoidal interference pattern on the surface of a sample with period
L. The interference pattern results in a spatially sinusoidal temperature pro-
file that decays in time.
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An alternate approach for deriving an analytical solution
to the one-dimensional, gray-medium phonon BTE for a
sinusoidal temperature profile assumes a spatially periodic
solution for g and utilizes a Fourier transform in time.
Starting with the gray-medium phonon BTE with a spatially
periodic instantaneous source,

@g

@t
þ lv

@g

@x
¼ go $ g

s
þ AdðtÞeiqx; (12)

assuming a periodic spatial solution of the form, exp(iqx),
and taking a Fourier transform in time leads to

$i!~~g þ iqvl~~g ¼
~~go $ ~~g

s
þ A; (13)

where ~~g ¼ ~~gðlÞ ¼
Ð

~gðt; lÞei!tdt. Integrating over l to sat-
isfy energy conservation, as shown in Eq. (7), gives

~~go ¼
As

qK tan$1
qK

1$ i!s

# $# $$1

$ 1

; (14)

which is an analytical solution for the equilibrium distribution
function in the frequency domain. To obtain a time domain
solution, an inverse Fourier transform can be performed
numerically,

~go ¼
As
2p

ð1

$1

expð$i!tÞ

qK tan$1
qK

1$ i!s

# $# $$1

$ 1

d!: (15)

Writing Eq. (15) in the nondimensional variables of Eq. (9)
leads to

!ðfÞ ¼ 1

2p

ð1

$1

expð$iwfÞ

g tan$1
g

1$ iw

# $# $$1

$ 1

dw; (16)

where w ¼ !s.
Equations (10) and (16) produce identical decay curves.

A few numerically computed solutions of !ðfÞ for different
values of g are shown in Fig. 2(a). The decay curves shown
correspond to the difference between the peak and null tem-
peratures in the sinusoidal temperature profile as a function
of time. These are compared to corresponding diffusion
model solutions from Eq. (11). In the diffusive limit, abulk

¼ vK=3 and bbulk ¼ g2=3. The diffusive limit curves yield
faster decays than the corresponding BTE curves, indicating
that the thermal transport at small length scales slows down
compared to Fourier law predictions.10,12,13,20,24

At large g values, the decay becomes strongly non-
exponential and acquires an oscillatory character. The ther-
mal decay for very large g values approaches the ballistic
limit, as shown in Fig. 2(b). In the ballistic limit, s!1,
and Eq. (8) reduces to ! ¼ sincðgfÞ. We can understand this
oscillatory behavior by considering the case of purely ballis-
tic transport, which would be equivalent to having non-
interacting particles moving with a constant velocity, v, and
having an initial density distribution, cosðqxÞ. For a subset of

particles whose velocity makes an angle h with the x direc-
tion, the particle density will oscillate as cosðqx$ qvltÞ.
Integrating over all angles yields a sinc function in time,
identical to the ballistic limit derived from the BTE.

It is instructive to find the dependence of the “effective”
thermal diffusivity on the TTG period by fitting the BTE
curves using diffusion model solutions, as is frequently done
in the analysis of experimental data.5,6 The Fourier curves in
Fig. 2(a) are fit to the BTE curves by varying b, and example
fitted curves are shown. This produces a set of effective val-
ues of b, which are normalized and plotted in Fig. 2(c). In
the limit of small g, which corresponds to large grating peri-
ods, transport is in the diffusive regime, with bef f =bbulk

¼ 3bef f =g
2 ¼ aef f =abulk ¼ 1, and Fourier fits are good. At

progressively larger values of g, the transport transitions
to the ballistic regime, with BTE curves displaying highly

FIG. 2. (a) Gray-medium, nondimensional BTE thermal decay curves,
!ðf ¼ t=sÞ ¼ ~goðtÞ=~goð0Þ ¼ ~TðtÞ= ~Tð0Þ, for different nondimensional length
scales, g ¼ 2pK=L, compared to corresponding diffusive Fourier decay
curves and best fit Fourier decay curves. (b) BTE decay curves for large g
values compared to the ballistic limit. (c) Normalized gray-medium effective
thermal diffusivity for a range of g (solid line). The suppression function
from Ref. 20 is shown for comparison (dashed line). A fit by Matthiessen’s
rule given by Eq. (18), where Lef f ¼ L=2:254, is shown (dotted line).
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non-exponential behavior which cannot be captured by the
fitted Fourier curves, and the effective diffusivity approaches
zero. We would like to stress that this result does not mean
that ballistic phonons do not carry heat; they simply transfer
much less heat than diffusion theory predicts.

The effective thermal diffusivity falls off by a factor of
two at K ¼ L=2:513, which is close to the TTG peak-to-null
distance, L=2. One may want to attempt to use Matthiessen’s
rule by analogy with other size-effects,24 even though in our
case there is no scattering process associated with the length
scale L. If one follows a Matthiessen’s rule approach, where
Leff is the effective length scale in the problem,

1

Kef f
¼ 1

Kbulk
þ 1

Lef f
; (17)

and rearranging gives

Kef f

Kbulk
¼ 1þ Kbulk

Lef f

# $$1

; (18)

which can be fit to the gray BTE curve in Fig. 2(c) to find
Leff. The best fit curve is plotted in Fig. 2(c), and suggests
an effective length scale of Lef f ¼ L=2:254, which is again
close to L=2. However, Eq. (18) yields a poor fit to the BTE
result and, moreover, lacks a sound physical meaning,
because the thermal grating does not physically reduce the
phonon MFP.

III. SPECTRAL MODEL

Heat carrying phonons in real materials have a wide
range of MFPs,6–10 rendering the gray-medium model inad-
equate. In the spectral model, phonon group velocity, v, and
relaxation time, s, in Eq. (3) become frequency-dependent,
and hence, g should now be treated as a function of four vari-
ables, g ¼ gðx; t; l;xÞ. Our model includes phonon disper-
sions and lifetimes for all six phonon branches as a function
of frequency, obtained through DFT calculations for Si and
PbSe at 300 K.9,23 Si and PbSe are interesting case materials
to consider due to their different thermal conductivity accu-
mulation functions. Si has a thermal conductivity accumula-
tion function spanning a wide range of MFPs, from 10 nm to
10 lm,9 while PbSe has a much more narrow distribution.23

We used Brillouin-zone-averaged properties, thus assuming
an isotropic medium. We verified that our averaging pro-
duced literature values for the thermal conductivities and the
volumetric specific heats of Si and PbSe at 300 K.

As in the gray-medium case, we assume a spatial
dependence of the phonon distribution and temperature of
the form exp(iqx), producing

@~g

@t
þ iqlv~g ¼

~go $ ~g

s
; (19)

~goð ~TÞ &
1

4p
Cx ~T ; (20)

where the temperature variation is given by10

~T ¼ 2pðxm

0

Cx

s
dx

ðxm

0

ð1

$1

~g

s
dldx: (21)

Our numerical solution of Eqs. (19)–(21) uses an
explicit finite difference scheme. The granularity used for
the variables in the finite difference solution included at
least 32 bins for l and 100 bins for x, with dt' 2 ps.
Convergence was verified by systematically increasing gran-
ularity. We further verified our spectral BTE code by input-
ting gray-medium parameters and achieving identical results
to the gray-medium model discussed previously.

Calculated thermal decay curves for a range of grating
periods in Si are shown in Fig. 3(a), and compared to diffu-
sive Fourier heat equation solutions. The BTE curves decay
slower than the Fourier curves, indicating that thermal trans-
port deviates from the diffusive regime, even for grating
periods as large as L ¼ 20 lm. The Fourier curves are fit to
the BTE curves by varying a, producing a set of effective
values of a as a function of L, which are normalized and plot-
ted as closed symbols in Fig. 3(b) for Si and Fig. 3(c) for
PbSe.

Now that we have computed a spectral BTE solution,
we can compare it to approximate models. We start with the
most crude approach: assuming a single MFP. Normally,
MFP estimates are obtained from the experimental values of
thermal diffusivity using the expression, abulk ¼ vK=3, given
by the gray-medium BTE, and assuming the Debye model in
which v is the branch-average acoustic velocity.24 This
approach yields MFP values of (40 nm for Si8,24 and (2 nm
for PbSe,23,26 but these produce effective diffusivity curves
shifted towards much lower grating periods than our spectral
BTE calculations. It has been suggested that the gray-
medium BTE can be made to work better for Si by using a
larger MFP value.7,8,27 We find that the best fit to the spectral
BTE results for Si is achieved with a MFP as large as 1 lm,
and even then the fit is quite poor, as can be seen from the
dotted line in Fig. 3(b). For PbSe, a MFP of 6:5 lm yields a
somewhat better fit to the spectral BTE results, as shown in
Fig. 3(c).

We can improve on the single-MFP model by assuming
that phonons of frequency x, for a given phonon branch,
contribute to the thermal conductivity according to the
gray-medium model with MFP KðxÞ. The effective thermal
conductivity, keff, is found by summing over the phonon
spectrum as follows:

j ¼
kef f

kbulk
¼ 1

3kbulk

ðxmax

0

SgrayCxvKdx; (22)

where the suppression function, Sgray ¼ aef f =abulk, is given
by the solid curve in Fig. 2(c). This approach might be rea-
sonable if phonons of different frequencies did not interact
such that phonons at each frequency, for a given phonon
branch, obeyed the gray-medium BTE. At room temperature,
phonon scattering is dominated by phonon-phonon interac-
tions, in which case Eq. (22) lacks a solid foundation.
Nevertheless, one can hope that it will yield an improvement
over the single-MFP gray-medium model, and indeed we
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observe that this “frequency-integrated gray-medium”
approach does yield better results, as shown by the dash-
dotted lines in Figs. 3(b) and 3(c). In fact, for PbSe, the de-
pendence of the effective diffusivity on grating period is rea-
sonably reproduced over a wide range of grating periods.

Now let us consider the approximate solution to the
spectral BTE derived in Ref. 20. The model20 analyzes the
onset of non-diffusive transport when the TTG period is
much larger than the MFPs of high-frequency phonons re-
sponsible for most of the specific heat. Accordingly, those
high-frequency phonons are assumed to obey the diffusion

model, whereas the low-frequency phonons are analyzed
with the BTE. Within this two-fluid approach, it was found
that the TTG decay remains exponential, as in Eq. (2), with
the thermal conductivity modified by a suppression function
as follows:

j ¼
kef f

kbulk
¼ 1

3kbulk

ðxmax

0

Stwo$fluidCxvKdx; (23)

Stwo$fluid ¼
3

g2
1$ tan$1g

g

 !

: (24)

In Fig. 3(a), the exponential TTG decay curves accord-
ing to Ref. 20 for Si are compared to the spectral BTE solu-
tions. The agreement is quite good down to L ¼ 1 lm, where
the spectral BTE yields a nearly exponential decay, and
remains reasonable even at L ¼ 0:2 lm. The dashed line in
Fig. 3(b) shows that for Si at 300 K, the dependence of the
effective diffusivity on TTG period according to Ref. 20
closely matches the spectral BTE results. In Ref. 20, it was
suggested that for Si at 300 K, the approximate solution
would be expected to work for L > 1 lm. We see that in fact
it works quite well for a much wider range of TTG periods.

IV. CONSIDERATIONS FOR MFP SPECTROSCOPY

Solutions to the phonon BTE can be used to extract pho-
non MFP information from measurements of non-diffusive
phonon transport. The MFP distribution of heat-carrying
phonons can be characterized by the thermal conductivity
accumulation function versus MFP, which has been shown
to be instrumental for analyzing thermal transport in bulk
materials and nanostructures.28,29 Minnich21 recently sug-
gested a way to reconstruct the thermal conductivity accu-
mulation function, UðKÞ, as a function of phonon MFP, K,
using non-diffusive measurements of normalized effective
thermal conductivity, j, and an appropriate suppression
function, S, as follows:

j ¼
ð1

0

SðgÞ/ðKÞdK ¼
ð1

0

$ dS

dg
dg
dK

UðKÞdK: (25)

Here the thermal conductivity accumulation function,
UðKÞ, is related to the thermal conductivity per MFP, /ðKÞ,
through UðKÞ ¼

ÐK
0 /ðK0ÞdK0. A similar equation appears in

the analysis of thermal conductivity size effects in nanostruc-
tures, with the nanostructure dimension taking the place of
the thermal grating period, L.29 The extraction of UðKÞ from
the measured dependence of j on L is essentially the inverse
of the methods discussed above for predicting effective ther-
mal conductivity using a suppression function and a known
MFP distribution. Even though such a reconstruction is an ill-
posed problem, given the limited number of j measurements,
progress can be made if certain constraints are imposed on
UðKÞ. Minnich21 showed that if UðKÞ is a smooth function
that monotonically increases from 0 to 1, convex optimiza-
tion30,31 can be used to reasonably estimate UðKÞ.

Following Minnich’s approach, we reconstruct the ther-
mal conductivity accumulation functions for Si and PbSe at

FIG. 3. Spectral BTE solutions showing (a) normalized BTE temperature
decay curves (solid lines) for Si for different grating periods, L, compared to
corresponding diffusive Fourier decays (dashed lines) and exponential TTG
decays based on the model in Ref. 20 (dotted lines). DT is the difference in
the peak and null of the TTG temperature profile. Normalized effective ther-
mal conductivities (closed symbols), j, are shown for a range of L, for (b) Si
and (c) PbSe. Suppression functions based on our frequency-integrated gray-
medium BTE approach (dash-dotted lines) and from Ref. 20 (dashed lines)
are used to predict j for comparison, and single-MFP model fits (dotted
lines) are also shown.

104302-5 Collins et al. J. Appl. Phys. 114, 104302 (2013)



300 K. The resulting reconstructions are shown in Figs. 4(a)
and 4(b). We use the effective j values obtained with the
spectral BTE as the “measurement” inputs for Eq. (25). We
compare reconstructions achieved using the suppression
function from Ref. 20 and the suppression function from our
frequency-integrated gray-medium approach, to reference
UðKÞ distributions calculated from the same DFT dispersion
and relaxation time data9,23 which we used for our spectral
BTE calculations. As expected from the results of the for-
ward method plotted in Figs. 3(b) and 3(c), using Stwo$fluid

produces a better MFP distribution reconstruction for Si and
using Sgray produces a reasonable reconstruction for PbSe.
The approximations in the two-fluid approach of Ref. 20
lead to a more accurate result for low-frequency, long MFP
phonons, and indeed, we observe that the two-fluid model
well reproduces the long MFP thermal conductivity accumu-
lation function for both Si and PbSe. Our frequency-
integrated gray-medium approach is more appropriate for
materials that approximate gray-mediums with step-like
thermal conductivity accumulation functions, and hence,
works better for PbSe than for Si.

V. SUMMARY

We have presented gray-medium and spectral solutions
to the one-dimensional phonon BTE corresponding to the

spatially sinusoidal temperature profile in a TTG experiment.
Our gray-medium analysis yielded an analytical solution
which approached the diffusive limit for grating periods that
were large compared to the gray-medium phonon MFP, and
approached the ballistic limit for small grating periods.
Spectral BTE solutions were found for Si and PbSe at 300 K
using phonon dispersions and lifetimes for all six phonon
branches from DFT calculations. We compared the spectral
BTE decays to several approximate models: a single-MFP
BTE solution, a frequency-integrated gray-medium BTE
model, and a two-fluid model from Ref. 20 that combines the
BTE with the diffusion equation. We found that the spectral
BTE results for Si were well reproduced by the two-fluid
model from Ref. 20, and that PbSe was reasonably modeled
using our proposed frequency-integrated gray-medium BTE
approach. We also considered the inverse problem of recon-
structing thermal conductivity accumulation functions from
measured effective thermal conductivities and modeled sup-
pression functions. While the suppression function from
Ref. 20 produced better results for Si, the suppression func-
tion from our frequency-integrated gray-medium BTE
approach produced reasonable results, and, in fact, worked
better for PbSe. We anticipate that the latter approach,
applied to different experimental geometries, may offer rea-
sonable estimations for modeling non-diffusive thermal
transport, and extracting phonon spectral information from
experimental measurements.
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