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Deep learning has been proven to yield reliably generalizable answers to numerous classification and
decision tasks. Here, we demonstrate for the first time, to our knowledge, that deep neural networks
(DNNs) can be trained to solve inverse problems in computational imaging. We experimentally demon-
strate a lens-less imaging system where a DNN was trained to recover a phase object given a raw
intensity image recorded some distance away. © 2016 Optical Society of America

OCIS codes: (100.3190) Inverse problems; (100.4996) Pattern recognition, neural networks; (100.5070) Phase retrieval;
(110.1758) Computational imaging.
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1. INTRODUCTION

Neural network training can be thought of as generic function approxi-
mation: given a training set (i.e., examples of matched input and output
data obtained from a hitherto-unknown model), a neural network at-
tempts to generate a computational architecture that accurately maps
all inputs in a test set (distinct from the training set) to their correspond-
ing outputs. In this paper, we propose that deep neural networks may
“learn” to approximate solutions to inverse problems in computational
imaging.

A general computational imaging system consists of a physical part
and computational part. In the physical part, light propagates through
one or more objects of interest as well as optical elements such as
lenses, prisms, etc. finally producing a raw intensity image on a digital
camera. The raw intensity image is then computationally processed
to yield object attributes, e.g. a spatial map of light attenuation and/or
phase delay through the object—what we traditionally call an “intensity
image” or “quantitative phase image,” respectively. The computational
part of the system is then said to have produced a solution to the inverse
problem.

The study of inverse problems is traced back at least a century to
Tikhonov [1] and Wiener [2]. A good introductory book with rigor-
ous but not overwhelming discussion of the underlying mathematical
concepts, especially regularization, is [3]. During the past decade, the
field experienced a renaissance due to the almost simultaneous matura-
tion of two related mathematics disciplines: convex optimization and
harmonic analysis, especially sparse representations. A light technical
introduction to these fascinating developments can be found in [4] and

a more detailed exposition in [14].

Neural networks have their own history of legendary ups-and-downs
[5] culminating with an even more recent renaissance. This was driven
by empirical findings that deep multi-layer architectures, dubbed as
“deep neural networks” (DNNs), could generalize better than had been
previously thought possible. Vast improvements in the available com-
putational power were certainly helpful; most effective, however, were
revivals of older concepts combined with new insights on these con-
cepts’ function and realization. These have included: architectures,
such as convolutional connectivity [6–9] for regularization and prun-
ing; nonlinearities, such the now widespread use of non-differentiable
piecewise linear units [10] as opposed to the older sigmoidal func-
tions that were differentiable but also prone to stagnation [11]; and
algorithms, such as more efficient backprop [12, 13]. Within the last
four-five years, neural networks have exhibited spectacular success
at solving “hard” computational problems: playing complex games
like Atari [23] and Go [24]; object generation [15]; object detection
[25]; and image restoration: colorization [26], deblurring [27–29], and
in-painting [30].

The hypothesis that we set out to test in this paper is whether a
neural network can be trained to recover object estimates from raw
intensity images (i.e. solve the inverse problem). This is a rather
general question and may take several flavors, depending on the nature
of the object, the physical design of the imaging system, etc. We
chose to test our hypothesis in a very specific “heavy” computational
imaging scenario: a lensless optical setup where diffraction patterns of
pure phase objects under coherent illumination were captured as “raw
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Fig. 1. DNN training. Rows (a) and (b) denote the networks trained
on Faces-LFW and ImageNet dataset, respectively. (i) randomly
selected example drawn from the database; (ii) calibrated phase
image of the drawn sample; (iii) diffraction pattern generated on the
CMOS by the same sample; (iv) DNN output before training (i.e.
with randomly initialized weights); (v) DNN output after training.

images”.
Our experimental arrangement, described in more detail in Sec-

tion 2, falls in-between two categories of imaging systems that could be
traditionally called "digital holographic imaging,” [34] and “transport-
of-intensity imaging” [18, 21]. It is neither, because it violates the
necessary assumptions of sparse objects leaving most of the incoming
light unscattered to serve as reference beam for the digital hologram;
and of sparse object gradients that avoid singularities in the transport-
of-intensity equation. Hence, either technique would be expected to
require significant fine-tuning of regularization parameters to yield
satisfactory results.

The idea of using neural networks to clean up images isn’t exactly
new. For example, Hopfield’s associative memory network [31] was
capable of retrieving entire faces from partially obscured inputs, and
was implemented in an all-optical architecture [32] when computers
weren’t nearly as powerful as they are now. Recently, Horisaki et al.
[33] used support-vector machines, a form of bi-layer neural network
with nonlinear discriminant functions, also to recover face images when
the obscuration is caused by scattering media. Here, we extend upon
the aforementioned efforts and train a deep neural network to recover
images of objects given “raw image” measurements of the modulus of
their diffraction patterns.

Our results demonstrate that DNNs are capable of “learning” the
inverse mapping between raw intensity image and object directly from
experimental data. Our results also suggest that the neural network
“learns” the underlying governing equations of the system, including its
forward operator and possible deviations from underlying idealizations
and assumptions. This lack of need for a prior model is notable because
it removes the difficulty of correctly specifying the forward operator;
many optimization approaches are sensitive to errors due to inaccurate
or incomplete forward models.

Neural network approaches often come under criticism because the
quality of training depends on the quality of the examples given to
the network during the training phase. For instance, if the inputs used
to train a network are not diverse enough, then the DNN will learn
priors of the input images instead of generalized rules for “cleaning
up images.” This was the case in [33], where an SVM trained using
images of faces could adequately reconstruct faces, but when given
the task of reconstructing images of natural objects such as a pair of
scissors, the trained SVM still returned an output that resembled a
human face.

For our specific problem, an ideal training set would encompass

Fig. 2. Experimental arrangement. SF: spatial filter; CL: collimating
lens; M: mirror; POL: linear polarizer; BS: beam splitter; SLM:
spatial light modulator.

all possible “phase objects.” Unfortunately, “phase objects,” generally
speaking, constitute a rather large class of objects and it would be
unrealistic to attempt to train a network sampling from across all
possible objects from this large class. Instead, we synthesize phase
objects in the form of natural images derived from the ImageNet [36]
database because it is readily available and widely used in the study of
various machine learning problems. For comparison, we also trained
a separate network using a narrower class of (facial) images from the
Faces-LFW [35] database.

As expected, our network did well when presented with unknown
phase objects in the form of faces or natural images that it had been
trained to. Notably, the network also performed well when presented
with objects outside of its “training class” – the DNN trained using
images of faces was able to reconstruct images of natural objects, and
the DNN trained using images of natural objects was able to reconstruct
images of faces. Additionally, both DNNs were able to reconstruct
completely distinct images including: handwritten digits, characters
from different languages (Arabic, Mandarin, English), and images
from a disjoint natural image dataset.

Both trained networks yielded accurate results even when the object-
to-sensor distance(s) in the training set slightly differed from that of the
testing set, suggesting that the network is not merely pattern-matching
but instead has actually “learned” a generalizable model approximating
the underlying system.

The details of our experiment, including the physical system and the
computational training and testing results, are described in Section 2.
The neural network itself is analyzed in Section 3, and concluding
thoughts are in Section 4.

Fig. 3. Detailed schematic of our DNN architecture, indicating the
number of layers, nodes in each layer, etc.
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2. EXPERIMENT

Our experimental arrangement is as shown in Figure 2. Light from a He-
Ne laser source (Thorlabs, HNL210L, 632.8nm) first transmits through
a spatial filter, which consists of a microscope objective (Newport,
M-60X, 0.85NA) and a pinhole aperture (D = 5µm), to remove spatial
noise. After being collimated by the lens ( f = 150mm), the light is
reflected by a mirror and then passes through a linear polarizer to set the
appropriate polarization. After that, the light is split by a beam splitter.
A spatial light modulator (Holoeye, LC-R 720, reflective) is placed
normally incident to the transmitted light and acts as a pixel-wise
phase object. The SLM-modulated light is then reflected by the beam
splitter and passes through a linear polarization analyzer, before being
collected by a CMOS camera (Basler, A504k). Images recorded are
then processed on an Intel i7 CPU, with neural network computations
performed on a GTX1080 graphics card (NVIDIA).

According to its user manual, the LC-R 720 SLM can realize (ap-
proximate) pure-phase modulation if we modulate the light polarization
properly. Specifically, for He-Ne laser light, if we set the polarization of
the incident beam at 45◦ linearly polarized with respect to the vertical
direction and also set the linear polarization analyzer to be oriented at
340◦ with respect to the vertical direction, then the amplitude modula-
tion of the SLM will become almost independent of the assigned (8-bit
gray-level) input. In this arrangement, the phase modulation of the
SLM follows a monotonic, almost-linear relationship with the assigned
pixel value (with maximum phase depth: ∼ 1π). We experimentally
evaluated the correspondence between 8-bit grayscale input images
projected onto the SLM and phase values in the range [0,−π] (see
supplement). In this paper, we approximate our SLM as a pure-phase
object and computationally recover the phase using a neural network.

The CMOS detector was placed after a free-space propagation
distance d, which ranged from ∼ 37.5− 97.5cm to record diffraction
patterns. Our experiment consists of two phases: training and testing.
During the training phase, we modulate the phase SLM according to
samples randomly selected from the Faces-LFW or ImageNet database.
We resize, and pad selected images before displaying them on our
SLM. Two examples of inputs, as they are sent to the SLM, and their
corresponding raw intensity images (diffraction patterns) as captured
on the CMOS are shown in Figure 1. Our training set consisted of
10,000 such faces/images - diffraction pattern pairs. The raw intensity
images from all these training examples were used to train the weights
in our DNN. We used a Zaber A-LST1000D stage with repeatability
2.5µm to translate the camera in order to analyze the robustness of the
learnt network to perturbations (See: Network Analysis).

Our DNN uses a convolutional residual neural network (ResNet)
architecture. In a convolutional neural network (CNN), inputs are
passed from nodes of each layer to the next, with adjacent layers
connected by convolution. Convolutional ResNets extend CNNs by
adding short term memory to each layer of the network. The intuition
behind ResNets is that one should only increase the depth of the neural
network if he/she stands to gain something by adding that extra layer.
The intuition behind ResNets is that one should only adds a new layer
if you can get something extra out of adding that layer. ResNets ensure
that the N + 1th layer learns something new about the network by also
providing the original input to the output of the (N + 1)th layer and
performing calculations on the residual of the two. This forces the
new layer to learn something different from what the input has already
encoded/learned [9].

A diagram of our specific DNN architecture is shown in Fig. 3.
The input layer is the image captured by the CMOS camera. It is then
successively decimated by 7 residual blocks of convolution + down-
sampling followed by 6 residual blocks of deconvolution + upsampling,
and finally 2 standard residual blocks. Some of the residual blocks are

comprised of dilated convolutions so as to increase the receptive field
of the convolution filters, and hence, aggregate diffraction effects over
multiple scales [38]. We use skip connections to pass high frequency
information learnt in the initial layers down the network towards the
output reconstruction, and have two standard residual blocks at the
end of the network to finetune the reconstruction. At the very last
layer of our CNN, the values represent an estimate of our input signal.
The connection weights are trained using backpropagation (not to be
confused with optical backpropagation) on the L1 error between the
network output and the nominal appearance of the training samples
represented as:

min
1

wh ∑
(m,n)

‖ (Y(m, n)− G(m, n)) ‖1 (1)

Here, w, h are the width and the height of the output, Y is the output of
the last layer, and G is the ground truth phase value. G(m, n) lies in
the range [0,−π].

We collected data from six separate experiment runs using training
inputs from Faces-LFW or ImageNet and object-to-sensor distances of
37.5cm, 67.5cm , or 97.5cm. These data were used to train six separate
DNNs for evaluation.

Fig. 1(iv) shows a sample DNN’s output at the beginning of its train-
ing phase (i.e. with randomly initialized weights), and Fig. 1(v) shows
the network output after training, for the same example object-raw
image pairs. Training each network took ≈ 20 hours using Tensorflow
and a Nvidia GTX 1080 GPU. We provide analysis of the trained DNN
in Section 3.

Our testing phase consisted of: (1) sampling disjoint examples
from the same database (either Faces-LFW or ImageNet) and other
databases such as MNIST, CIFAR, Faces-ATT etc., (2) using these test
examples to modulate the SLM and produce raw intensity images on
the camera, (3) passing these intensity images as inputs to out trained
DNN, and (4) comparing the output to ground truth.

3. RESULTS AND NETWORK ANALYSIS

The standard method of characterizing neural network training is by
plotting the progression of training and test error across training epochs
(iterations in the backpropagation algorithm over all examples). These
curves are shown in Figure 5 for our network trained using the Im-
ageNet database and tested using images from: (a) Faces-LFW (b)
a disjoint ImageNet set, (c) images from an English/Chinese/Arabic
characters database, (d) the MNIST handwritten digit database, (e)
Faces-ATT, (f) CIFAR, (g) a constant-value "Null" image. Our Im-
ageNet learning curves in Figure 5d show convergence to low value
after ∼10 epochs, indicating that our network has not overfit to our
training dataset. We plot bar graphs for the mean absolute error (MAE)
over test examples in the 7 different datasets for each of the 3 object-
to-sensor distances in Figure 5. Lower MAE was reported for test
images with large patches of constant value (characters, digits, Null)
as their sparse diffraction patterns were easier for our DNN to invert.
Notably, both our bar graphs and learning curves show low test error
for the non-trained images, suggesting that our network generalizes
well across different domains.

This is an important point and worth emphasizing: despite the fact
that our network was trained exclusively on images from the ImageNet
database – i.e., images of planes, trains, cars, frogs, artichokes, etc., it
is still able to accurately reconstruct images of a completely different
class (e.g., faces, handwritten digits, and characters from different
languages). This strongly suggests that our network has learned a
model of the underlying physics of the imaging system or at the very
least a generalizable mapping of low-level textures between our output
diffraction patterns and input images.
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Fig. 4. Qualitative analysis of our trained deep neural networks for three object-to-sensor distances (37.5 cm, 67.5 cm and 97.5 cm) on different
datasets. (i) Ground truth pixel value inputs to the SLM. (ii) Corresponding phase imaged calibrated by SLM response curve. (iii) Raw intensity
images captured by CMOS detector at distance d ∼ 37.5cm. (iv) DNN reconstruction from raw images when trained using Faces-LFW dataset.
(v) DNN reconstruction when trained used ImageNet dataset. Columns (vi-viii) and (ix-xi) follow the same sequence as (iii-v) but in these sets
the CMOS is placed at a distance of ∼ 67.5cm and ∼ 97.5cm, respectively. Rows (a-f) correspond to the dataset from which the test image is
drawn: (a) Faces-LFW, (b) ImageNet, (c) Characters, (d) MNIST Digits, (e) Faces-ATT, or (f) CIFAR.

A more pronounced qualitative example demonstrating this is
shown in the columns (iv) (vii) and (x) of Figure 4. Here, we trained
our network using images exclusively from the Faces-ATT database.
Despite this limited training set, the learned network was able to accu-
rately reconstruct images from the ImageNet, handwritten digits, and
characters datasets. This is in contrast to results shown in [33], where
an SVM trained on images of faces was able to accurately reconstruct
images of faces but not other classes of objects.

How robust is our network to sensor displacement? Is it shift and
rotation invariant? To answer these questions, we fed our trained
network raw intensity images at different lateral and axial positions,
relative to that of the training set images. Quantitative results of these
perturbations are shown in Figures 6, 7, 8, and qualitative results
for the networks trained at distance 37.5 cm are shown in Figures
11, 12 and 13. Qualitative results for the other 2 distances are in
the supplement. The results show that our trained network is robust
to moderate perturbations in sensor displacement and is somewhat
shift and rotation invariant. As expected, the system fails when the
displacement is significantly greater (Figure 9).

What exactly is our network learning? To get a sense of what the
network has learned, we examined its maximally-activated patterns
(MAPs), i.e., what types of inputs would maximize network filter re-
sponse (gradient descent on the input with average filter response as
loss function [41]). Our results are shown in Figure 10 and compared
with the results of analogous analysis of a de-blurring network of simi-
lar architecture as well as an ImageNet classification DNN. Compared
with MAPs of ImageNet and a Deblurring network, the MAPs of our
phase-retrieval network show much finer/low-level textures at deep
layers in the network. This suggests that the network is utilizing low-
level textures (representative of a wide variety of localized diffraction

patterns) when learning how to invert our inverse problem.

4. CONCLUSIONS AND DISCUSSION

The architecture presented here was deliberately well controlled, with
an SLM creating the phase object inputs to the neural network for both
training and testing. This allowed us to quantitatively and precisely
analyze the behavior of the learning process. Application-specific
training, e.g. replacing the SLM with physical phase objects for more
practical applications, we judged beyond the scope of the present work.
Other obvious and useful extensions would be to include optics, e.g. a
microscope objective for microscopic imaging in the same mode; and to
attempt to reconstruct complex objects, i.e. imparting both attenuation
and phase delay to the incident light. The significant anticipated benefit
in the latter case is that it would be unnecessary to characterize the
optics for the formulation of the forward operator—the neural network
should “learn” this automatically as well. We intend to undertake such
studies in future work.
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on 7 datasets. (d) The training and testing error curves for network
trained on ImageNet at distance 37.5 cm over 20 epochs.
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Fig. 12. Qualitative analysis of the sensitivity of the trained deep convolutional neural network to lateral shifts of images on the SLM. The
baseline distance on which the network was trained is 37.5 cm.

Fig. 13. Qualitative analysis of the sensitivity of the trained deep convolutional neural network to rotation of images in steps of 90. The baseline
distance on which the network was trained is 37.5 cm.
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