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A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the 
first time in the final state with two b quarks and two τ leptons. The search is motivated in the context 
of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with 
a complex scalar singlet (2HDM + S), which include the next-to-minimal supersymmetric SM (NMSSM). 
The results are based on a data set of proton–proton collisions corresponding to an integrated luminosity 
of 35.9 fb−1, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 
13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events 
above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction 
B(h → aa → 2τ2b) assuming the SM production of the Higgs boson. Upper limits are also set on the 
branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM + S scenarios. 
Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low 
as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Within the standard model (SM), the Brout–Englert–Higgs 
mechanism [1–6] is responsible for electroweak symmetry break-
ing and predicts the existence of a scalar particle—the Higgs boson. 
A particle compatible with the Higgs boson was discovered by the 
ATLAS and CMS collaborations at the CERN LHC [7–9]. Measure-
ments of the couplings and properties of this particle leave room 
for exotic decays to beyond-the-SM particles, with a limit of 34% 
on this branching fraction at 95% confidence level (CL), using data 
collected at center-of-mass energies of 7 and 8 TeV [10].

The possible existence of exotic decays of the Higgs boson is 
well motivated [11–16]. The decay width of the Higgs boson in 
the SM is so narrow that a small coupling to a light state could 
lead to branching fractions of the Higgs boson to that light state 
of the order of several percent. Additionally, the scalar sector can 
theoretically serve as a portal that allows matter from a hidden 
sector to interact with SM particles [17]. In general, exotic decays 
of the Higgs boson are allowed in many models that are consistent 
with all LHC measurements published so far.

� E-mail address: cms -publication -committee -chair @cern .ch.

An interesting class of such processes consists of decays to a 
pair of light pseudoscalar particles, which then decay to pairs of 
SM particles. This type of process is allowed in various models, 
including two Higgs doublet models augmented by a scalar singlet 
(2HDM + S). Seven scalar and pseudoscalar particles are predicted 
in 2HDM + S. One of them, h, is a scalar that can be compatible 
with the discovered particle with a mass of 125 GeV, and another, 
the pseudoscalar a, can be light enough so that h → aa decays are 
allowed.

Four types of 2HDM, and by extension 2HDM + S, forbid flavor-
changing neutral currents at tree level [18]. In type I, all SM par-
ticles couple to the first doublet. In type II, up-type quarks couple 
to the first doublet, whereas leptons and down-type quarks cou-
ple to the second doublet. The next-to-minimal supersymmetric 
SM (NMSSM) is a particular case of 2HDM + S of type II that 
brings a solution to the μ problem [19]. In type III, quarks cou-
ple to the first doublet, and leptons to the second one. Finally, in 
type IV, leptons and up-type quarks couple to the first doublet, 
while down-type quarks couple to the second doublet [15]. The 
branching fractions of the light pseudoscalars to pairs of SM par-
ticles depend on the type of 2HDM + S, on the pseudoscalar mass 
ma, and on tan β , defined as the ratio of the vacuum expectation 
values of the second and first doublets. The value of the branch-
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Fig. 1. Predicted B(aa → bbττ ) for ma = 40 GeV in the different models of 
2HDM + S, as a function of tanβ . The picture is essentially the same for all ma hy-
potheses considered in this Letter. The branching fractions are computed following 
the formulas of Ref. [15].

ing fraction B(aa → bbττ ) is slightly above 10% in the NMSSM—or 
more generally in 2HDM + S type II—for tan β > 1, and can reach 
up to about 50% in 2HDM + S type III with tan β ∼ 2, as shown in 
Fig. 1.

Several searches for exotic decays of the Higgs boson to a pair 
of light short-lived pseudoscalar bosons have been performed by 
the CMS Collaboration with data collected at a center-of-mass 
energy of 8 TeV in different final states: 2μ2b for 25.0 < ma <

62.5 GeV [20], 2μ2τ for 15.0 < ma < 62.5 GeV [20], 4τ for 4 <
ma < 8 GeV [21] and 5 < ma < 15 GeV [20], and 4μ for 0.25 <
ma < 3.50 GeV [22]. The CMS Collaboration also studied the 2μ2τ
final state for 15.0 < ma < 62.5 GeV at a center-of-mass energy of 
13 TeV [23]. The ATLAS Collaboration reported results for the fol-
lowing final states at a center-of-mass energy of 8 TeV: 4μ, 4e, and 
2e2μ for 15 < ma < 60 GeV [24]; 4γ for 10 < ma < 62 GeV [25]; 
and 2μ2τ for 3.7 < ma < 50.0 GeV [26]. At a center-of-mass en-
ergy of 13 TeV, the ATLAS Collaboration published results for the 
4b decay channel for 20 < ma < 60 GeV [27], and 4μ, 4e, and 2e2μ
for 1 < ma < 60 GeV [28]. The 2b2τ final state has never been 
probed so far. This final state benefits from large branching frac-
tions in most models because of the large masses of τ leptons and 
b quarks with respect to other leptons and quarks. The presence 
of light leptons originating from the τ decays allows events to be 
triggered in the dominant gluon fusion production mode.

This Letter reports on the first search with the CMS experiment 
for exotic decays of the Higgs boson to a pair of light pseudoscalar 
bosons, in the final state with two τ leptons and two b quarks. The 
search focuses on the mass range between 15 and 60 GeV. For low 
ma values, between the bb threshold and 15 GeV, the decay prod-
ucts of each of the pseudoscalar bosons become collimated, which 
would necessitate the use of special reconstruction techniques.

The search is based on proton–proton (pp) collision data col-
lected at a center-of-mass energy of 13 TeV and corresponding to 
an integrated luminosity of 35.9 fb−1. Throughout this Letter, the 
term τh denotes τ leptons decaying hadronically. The ττ final 
states studied in this search are eμ, eτh, and μτh. Despite its large 
branching fraction, the τhτh final state is not considered because 
the signal acceptance is negligible with the transverse momentum 
(pT) thresholds available for the τhτh triggers. The ee and μμ fi-
nal states for the ττ pair are not considered either, because they 
have a low branching fraction and suffer from a large contribution 
of Drell–Yan background events.

2. The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field of 
3.8 T. Within the solenoid volume, there are a silicon pixel and 
strip tracker, a lead tungstate crystal electromagnetic calorime-
ter (ECAL), and a brass and scintillator hadron calorimeter, each 
composed of a barrel and two endcap sections. Forward calorime-
ters extend the pseudorapidity coverage provided by the barrel 
and endcap detectors. Muons are detected in gas-ionization cham-
bers embedded in the steel flux-return yoke outside the solenoid. 
Events of interest are selected using a two-tiered trigger sys-
tem [29]. A more detailed description of the CMS detector, together 
with a definition of the coordinate system used and the relevant 
kinematic variables, can be found in Ref. [30].

3. Simulated samples and event reconstruction

The signal and some of the background processes are modeled 
with samples of simulated events. The MadGraph5_amc@nlo [31]
2.3.2 generator is used for the h → aa → 2τ2b signal process, in 
gluon fusion (ggh), vector boson fusion (VBF), or associated vector 
boson (Wh, Zh) processes. These samples are simulated at leading 
order (LO) in perturbative quantum chromodynamics (QCD) with 
the MLM jet matching and merging [32]. The Z + jets and W + jets
processes are also generated with the MadGraph5_amc@nlo gen-
erator at LO with the MLM jet matching and merging. The Z + jets
simulation contains non-resonant Drell–Yan production, with a 
minimum dilepton mass threshold of 10 GeV. The FxFx merging 
scheme [33] is used to generate diboson background with the
MadGraph5_amc@nlo generator at next-to-LO (NLO). The tt and 
single top quark processes are generated at NLO with the powheg

2.0 and 1.0 generator [34–39]. Backgrounds from SM Higgs bo-
son production are generated at NLO with the powheg 2.0 gen-
erator [40], and the minlo hvj [41] extension of powheg 2.0 is 
used for the Wh and Zh simulated samples. The generators are 
interfaced with pythia 8.212 [42] to model the parton shower-
ing and fragmentation, as well as the decay of the τ leptons. The 
CUETP8M1 tune [43] is chosen for the pythia parameters that af-
fect the description of the underlying event. The set of parton dis-
tribution functions (PDFs) is NLO NNPDF3.0 for NLO samples, and 
LO NNPDF3.0 for LO samples [44]. The full next-to-NLO (NNLO) 
plus next-to-next-to-leading logarithmic (NNLL) order calculation 
[45–50], performed with the Top++ 2.0 program [51], is used to 
compute a tt production cross section equal to 832+20

−29 (scale) ±
35 (PDF + αS) pb setting the top quark mass to 172.5 GeV. This 
cross section is used to normalize the tt background simulated 
with powheg.

All simulated samples include additional proton–proton inter-
actions per bunch crossing, referred to as “pileup”, obtained by 
generating concurrent minimum bias collision events using pythia. 
The simulated events are reweighted in such a way to have the 
same pileup distribution as data. Generated events are processed 
through a simulation of the CMS detector based on Geant4 [52].

The reconstruction of events relies on the particle-flow (PF) 
algorithm [53], which combines information from the CMS sub-
detectors to identify and reconstruct the particles emerging from 
pp collisions: charged and neutral hadrons, photons, muons, and 
electrons. Combinations of these PF objects are used to reconstruct 
higher-level objects such as jets, τh candidates, and missing trans-
verse momentum.

Electrons are reconstructed by matching ECAL clusters to tracks 
in the tracker. They are then identified with a multivariate analy-
sis (MVA) discriminant that makes use of variables related to the 



464 The CMS Collaboration / Physics Letters B 785 (2018) 462–488

energy deposits in the ECAL, the quality of the track, and the com-
patibility between the properties of the ECAL clusters and the track 
that have been matched [54]. The MVA working point chosen in 
this search has an efficiency of about 80%. The reconstruction of 
muon candidates is performed combining the information of the 
tracker and the muon systems. Muons are then identified on the 
basis of the track reconstruction quality and on the number of 
measurements in the tracker and the muon systems [55]. The rel-
ative isolation of electrons and muons is defined as:

I� ≡
∑

charged pT + max
(

0,
∑

neutral pT − 1
2

∑
charged,PU pT

)

p�
T

. (1)

In this formula, 
∑

charged pT is the scalar sum of the transverse 
momenta of the charged particles, excluding the lepton itself, as-
sociated with the primary vertex and in a cone around the lepton 
direction, with size �R =

√
(�η)2 + (�φ)2 = 0.3 for electrons, or 

0.4 for muons. The sum 
∑

neutral pT represents a similar quantity 
for neutral particles. The last term corresponds to the pT of neutral 
particles from pileup vertices, which, as estimated from simulation, 
is equal to approximately half of that of charged hadrons asso-
ciated with pileup vertices, denoted by 

∑
charged,PU pT. The pT of 

the lepton is denoted p�
T. The azimuthal angle, φ, is measured in 

radians.
Jets are reconstructed from PF objects with the anti-kT cluster-

ing algorithm implemented in the FastJet library [56,57], using a 
distance parameter of 0.4. Corrections to the jet energy are applied 
as a function of the pT and η of the jet [58]. The jets in this search 
are required to be separated from the selected electrons, muons, 
or τh, by �R ≥ 0.5. Jets that originate from b quarks, called b
jets, are identified with the combined secondary vertex (CSVv2) 
algorithm [59]. The CSVv2 algorithm builds a discriminant from 
variables related to secondary vertices associated with the jet if 
any, and from track-based lifetime information. The working point 
chosen in this search provides an efficiency for b quark jets of ap-
proximately 70%, and a misidentification rate for light-flavor and c
quark jets of approximately 1 and 10%, respectively.

Hadronically decaying τ leptons are reconstructed with the 
hadrons-plus-strips (HPS) algorithm [60,61] as a combination of 
tracks and energy deposits in strips of the ECAL. The tracks are 
the signature of the charged hadrons, and the strips that of the 
neutral pions, which decay to a pair of photons with potential 
electron–positron conversion. The reconstructed τh decay modes 
are one track, one track plus at least one strip, and three tracks. 
The rate for jets to be misidentified as τh is reduced by applying 
an MVA discriminator that uses isolation as well as lifetime vari-
ables. Its working point has been chosen to have an efficiency of 
approximately 45% for a misidentification rate of light-flavor jets 
of the order of 0.1%. Additionally, discriminators that reduce the 
rates with which electrons and muons are misidentified as τh are 
applied. Loose working points with an efficiency above 90% are 
chosen because the Z → ee/μμ background does not contribute 
much in the region where the signal is expected.

To account for the contribution of undetected particles, such as 
the neutrinos, the missing transverse momentum, �pmiss

T , is defined 
as the negative vectorial sum of the transverse momenta of all PF 
objects reconstructed in the event. The magnitude of this vector 
is denoted pmiss

T . The reconstructed vertex with the largest value 
of summed physics-object p2

T is taken to be the primary pp inter-
action vertex. The physics objects are the objects constructed by 
a jet finding algorithm [56,62] applied to all charged tracks asso-
ciated with the vertex, and the corresponding associated missing 
transverse momentum.

Table 1
Baseline selection criteria for objects required in various fi-
nal states. The numbers given for the pT thresholds of the 
electron and muon in the eμ final state correspond to the 
leading and subleading particles. The pT threshold for the τh
candidates is the result of an optimization of the expected 
exclusion limits of the signal.

eμ eτh μτh

pT(e) >24/13 GeV >26 GeV —
pT(μ) >24/13 GeV — >20 GeV
pT(τh) — >25 GeV >25 GeV
pT(b) >20 GeV >20 GeV >20 GeV
|η(e)| <2.4 <2.1 —
|η(μ)| <2.4 — <2.1
|η(τh)| — <2.3 <2.3
|η(b)| <2.4 <2.4 <2.4
Isolation (e) <0.10 <0.10 —
Isolation (μ) <0.15 — <0.15
Ident. (τh) — MVA MVA

4. Event selection

Events are selected in three different ττ final states: eμ, eτh, 
and μτh. They are additionally required to contain at least one 
b-tagged jet. The dominant backgrounds with these objects in the 
final state are tt and Z → ττ production. Another large background 
consists of events with jets misidentified as τh, such as W + jets
events, the background from SM events composed uniquely of jets 
produced through the strong interaction, referred to as QCD multi-
jet events, or semileptonic tt events.

All events are required to have at least one b-tagged jet with 
pT > 20 GeV and |η| < 2.4. About 90% of simulated signal events 
passing this condition have only one such jet, as a result of the 
typically soft b jet pT spectrum and of the limited efficiency of 
the b tagging algorithm. Events in the eμ final state are selected 
with a trigger that relies on the presence of both an electron and 
a muon, where the leading lepton has pT > 23 GeV and the sub-
leading one pT > 12 GeV if it is an electron or 8 GeV if it is a 
muon. In the eτh final state, the trigger is based on the presence 
of an isolated electron with pT > 25 GeV, whereas in the μτh fi-
nal state events are selected with a combination of triggers that 
require either an isolated muon with pT > 22 GeV, or a muon with 
pT > 19 GeV and a τh candidate with pT > 21 GeV. During the 2016 
data taking period, none of the available triggers that required the 
presence of both an electron and a τh candidate could increase the 
signal acceptance significantly with respect to the trigger based on 
the presence of an electron only. Tighter selection criteria are ap-
plied at the reconstruction level. The electrons, muons, and τh can-
didates are required to be well identified and isolated [54,55,61], to 
have opposite charge, and to be separated by at least �R = 0.4 if 
there is a τh, or 0.3 otherwise. Table 1 details the pT, η, isolation, 
and identification criteria for the various objects, in the different 
final states.

To increase the sensitivity of the analysis, events in each final 
state are separated into four categories with different signal-to-
background ratios. The categories are defined on the basis of the 
invariant mass of the visible decay products of the τ leptons and 
the b-tagged jet with the highest pT, denoted by mvis

bττ . This vari-
able is typically low for signal events because the three objects 
originate from a 125 GeV Higgs boson, but it is on average much 
larger for background events, where the three objects do not orig-
inate from a decay of a resonance, as shown in Fig. 2 for the μτh
final state. The thresholds that define the categories depend on the 
ττ final state: they are lower in the eμ final state because there 
are more neutrinos not included in the mass calculation, and they 
are higher in the eτh final state to keep enough events despite 
the lower signal acceptance related to the electron pT thresholds. 
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Fig. 2. Visible invariant mass of the leptons and the leading b jet, mvis
bττ , after the 

baseline selection, in the μτh final state, for the signal with different mass hy-
potheses (top). Distribution of mvis

bττ in the μτh final state (bottom). The “jet → τh” 
contribution includes all events with a jet misidentified as a τh candidate, whereas 
the rest of background contributions only include events where the reconstructed 
τh corresponds to a τh, a muon, or an electron, at the generator level. The “Other” 
contribution includes events from single top quark, diboson, and SM Higgs boson 
processes. The signal histogram corresponds to 10 times the SM production cross 
section for ggh, VBF, and Vh processes, and assumes B(h → aa → 2τ2b) = 100%. 
(For interpretation of the colors in the figures, the reader is referred to the web 
version of this article.)

Signal events with ma � 25 GeV contribute mostly to the first two 
categories, whereas those with ma � 25 GeV are concentrated in 
the second and third categories. This can be explained by the fact 
that the missing b jet in the mass calculation would be closer to 
the reconstructed b jet for a signal with lower ma because of the 
boost of the pseudoscalar bosons, leading to a larger reconstructed 
mass. The last category has large background yields; it is useful to 
constrain the various backgrounds and provides some additional 
sensitivity for low-ma signal samples. The results of the search are 
extracted from a fit of the visible ττ mass (mvis

ττ ) distributions in 
each of the categories, because this is a resonant distribution for 
signal events.

Selection criteria are applied to optimize the expected limits on 
the product of the signal cross section and branching fraction. The 
same thresholds would be obtained with an optimization based on 
the discovery potential. One such criterion is based on the trans-
verse mass of �pmiss

T and each of the leptons. The transverse mass 
mT between a lepton � and �pmiss

T is defined as

mT(�, �pmiss
T ) ≡

√
2p�

T pmiss
T [1 − cos(�φ)], (2)

where p�
T is the transverse momentum of the lepton �, and �φ is 

the azimuthal angle between the lepton momentum and �pmiss
T . Se-

lecting events with low mT strongly reduces the backgrounds from 
W + jets and tt events, which are characterized by a larger �pmiss

T . 
In addition, for W + jets events in which the selected lepton comes 
from the W boson decay, mT has a Jacobian peak near the W boson 
mass. The distributions of mT(μ, �pmiss

T ) and mT(τh, �pmiss
T ) in the 

μτh final state before the mvis
bττ -based categorization are shown in 

Fig. 3 (top and center).
Another selection criterion is based on the variable Dζ , which 

is defined as

Dζ ≡ pζ − 0.85 pvis
ζ , (3)

where pζ is the component of �pmiss
T along the bisector of the 

transverse momenta of the two τ candidates and pvis
ζ is the sum 

of the components of the lepton pT along the same direction [63]. 
As shown in Fig. 3 (bottom), the Z → ττ background typically has 
Dζ values close to zero because �pmiss

T is approximately collinear 
to the ττ system, whereas the tt background is concentrated at 
lower Dζ values because of typically large �pmiss

T not aligned with 
the ττ system. The signal lies in an intermediate region because 
�pmiss

T is approximately aligned with the ττ system, but pmiss
T is 

usually small. The precise criteria for each final state and category 
are indicated in Table 2.

5. Background estimation

The Z → �� background is estimated from simulation. The dis-
tributions of the pT of the dilepton system and the visible invariant 
mass between the leptons and the leading b jet are reweighted 
with corrections derived using data from a region enriched in 
Z → μμ + ≥ 1 b events. The simulation is separated between 
Z → ττ , where the reconstructed τ candidates correspond to τ
leptons at generator level, and Z → ee/μμ decays, where at least 
one electron or muon is misidentified as a τh candidate.

Backgrounds with a jet misidentified as a τh candidate are esti-
mated from data. They consist mostly of W + jets and QCD multijet 
events, as well as the fraction of tt, diboson, and single top quark 
production where the reconstructed τh candidate comes from a jet. 
The probabilities for jets to be misidentified as τh candidates, de-
noted f , are estimated from Z → μμ + jets events in data. They 
are parameterized with Landau distributions as a function of the 
pT of the τh candidate, separately for every reconstructed τh de-
cay mode. Events that pass all the selection criteria, except that 
the τh candidate fails the isolation condition, are reweighted with 
a weight f /(1 − f ) to estimate the contribution of events with jets 
in the signal region. The contribution of events with genuine elec-
trons, muons, or τh candidates in the control region is estimated 
from simulation and subtracted from data.

In the eμ final state, the small W + jets background is estimated 
from simulation [64]. Such events typically have a genuine lepton 
coming from the W boson decay and a jet misidentified as the 
other lepton. The QCD multijet background, which also contains 
jets misidentified as leptons, is estimated from data. Its normal-
ization corresponds to the difference between the data and the 
sum of all the other backgrounds in a so-called same-sign region 
where the τ candidates have the same sign. A smooth distribu-
tion is obtained by additionally relaxing the isolation conditions of 
both leptons. A correction that is extracted from data is applied to 
extrapolate the normalization obtained in the same-sign region to 
the signal region.
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Fig. 3. Distributions of mT(μ, �pmiss
T ) (top), mT(τh, �pmiss

T ) (center), and Dζ (bottom) 
in the μτh final state before the mvis

bττ -based categorization. The “jet → τh” contri-
bution includes all events with a jet misidentified as a τh candidate, whereas the 
rest of background contributions only include events where the reconstructed τh
corresponds to a τh, a muon, or an electron, at the generator level. The “Other” 
contribution includes events from single top quark, diboson, and SM Higgs boson 
processes. The signal histogram corresponds to 10 times the SM production cross 
section for ggh, VBF, and Vh processes, and assumes B(h → aa → 2τ2b) = 100%.

Table 2
Optimized selection and categorization in the various final states. The selection cri-
terion Dζ > −30 GeV in the eμ final state reduces the large tt background. In 
the other final states the tt background is less important, and only events with 
Dζ > 0 GeV are discarded in one of the categories of the μτh final state to reduce 
the Z → ττ background. This selection criterion does not improve the sensitivity in 
the eτh final state because of the lower expected signal and background yields, and 
is therefore not applied.

Variable Category 1 Category 2 Category 3 Category 4

eμ
mvis

bττ <65 GeV ∈[65,80]GeV ∈[80,95]GeV >95 GeV

mT(e, �pmiss
T ) <40 GeV <40 GeV <40 GeV <40 GeV

mT(μ, �pmiss
T ) <40 GeV <40 GeV <40 GeV <40 GeV

Dζ > − 30 GeV > − 30 GeV > − 30 GeV > − 30 GeV

eτh

mvis
bττ <80 GeV ∈[80,100]GeV ∈[100,120]GeV >120 GeV

mT(e, �pmiss
T ) <40 GeV <50 GeV <50 GeV <40 GeV

mT(τh, �pmiss
T ) <60 GeV <60 GeV <60 GeV <60 GeV

μτh

mvis
bττ <75 GeV ∈[75,95]GeV ∈[95,115]GeV >115 GeV

mT(μ, �pmiss
T ) <40 GeV <50 GeV <50 GeV <40 GeV

mT(τh, �pmiss
T ) <60 GeV <60 GeV <60 GeV <60 GeV

Dζ — <0 GeV — —

Other processes, including diboson, tt, and single top quark pro-
duction without jet misidentified as a τh candidate, as well as 
SM Higgs boson processes in various production and decay modes, 
are estimated from simulation. The tt production is a major back-
ground, especially in the eμ final state. The tt simulation models 
the variables used in this analysis well, as it has been verified in a 
control region in the eμ final state where no selection criterion is 
applied on mT(e, �pmiss

T ) or mT(μ, �pmiss
T ), and where the Dζ selec-

tion criterion is inverted.
In the eτh and μτh final states, where all backgrounds with a 

jet misidentified as a τh candidate are estimated from data, sim-
ulated events with a reconstructed τh that is not matched to an 
electron, a muon, or a τh at the generator level are discarded to 
avoid double counting. Approximately 30% of simulated tt events 
after the selection have a reconstructed τh that is not matched to 
an electron, a muon, or a τh at the generator level.

6. Fit method and systematic uncertainties

The search for an excess of signal events over the expected 
background involves a global binned maximum likelihood fit based 
on the mvis

ττ distributions in the different channels and categories. 
The statistical uncertainty largely dominates over systematic uncer-
tainties in this search. The systematic uncertainties are represented 
by nuisance parameters that are varied in the fit according to 
their probability density functions. A log-normal probability den-
sity function is assumed for the nuisance parameters that affect 
the event yields of the various background and signal contribu-
tions, whereas systematic uncertainties that affect the distributions 
are represented by nuisance parameters whose variation results in 
a continuous perturbation of the spectrum [65] and which are as-
sumed to have a Gaussian probability density function.

To take into account the limited size of simulated samples and 
of data in the control regions used to estimate some of the back-
ground processes, statistical uncertainties in individual bins of the 
mvis

ττ distributions are considered as Poissonian nuisance parame-
ters. The uncertainty can be as large as 40% for some bins in the 
low-mvis

bττ categories. The combined effect of all these uncertainties 
is the dominant systematic uncertainty in this search.

The uncertainties in the jet energy scale [58] affect the over-
all yields of processes estimated from simulation, as well as their 
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Fig. 4. Distributions of mvis
ττ in the four categories of the eμ channel. The “Other” contribution includes events from single top quark, diboson, SM Higgs boson, and W + jets

productions. The signal histogram corresponds to the SM production cross section for ggh, VBF, and Vh processes, and assumes B(h → aa → 2τ2b) = 10%. The normalizations 
of the predicted background distributions correspond to the result of the global fit.
relative contribution to the different categories because the cate-
gorization is based on the value of mvis

bττ for each event. They are 
functions of the jet pT and η. The �pmiss

T is recomputed for each 
variation of the jet energy scale. The uncertainty in �pmiss

T related 
to the measurement of the energy that is not clustered in jets [66]
is evaluated event-by-event, and is also considered as a shape un-
certainty.

Corrections for the efficiency of the identification of electrons, 
muons, and τh candidates are derived from data using tag-and-
probe methods [67], and are applied to simulated events as a 
function of the lepton pT and η. Uncertainties related to these cor-
rections amount to 2% for electrons, 2% for muons, and 5% for τh
candidates. Additionally, events with an electron or muon misiden-
tified as a τh candidate have a yield uncertainty of 5%. Trigger scale 
factors are also estimated with tag-and-probe methods and their 
corresponding uncertainties in the yields of simulated processes 
are 1%.

The energy scale of τh candidates is corrected for each recon-
structed decay mode, and the uncertainty of 1.2% for each single 
decay mode is considered as a shape uncertainty. Uncertainties 
in the energy scales of electrons and muons are also included as 
shape uncertainties.

Corrections to the efficiency for identifying a b quark jet as a b
jet, as well as for mistagging a jet originating from a different fla-

vor, are applied to simulated events on the basis of the generated 
flavor of the jets. The uncertainties in the scale factors depend on 
the pT of the jet and are therefore considered as shape uncertain-
ties. They amount to 1.5% for a jet originating from a b quark, 5% 
from a c quark, and 10% from a light-flavor parton [59].

The uncertainty in the yield of the backgrounds with jets 
misidentified as τh candidates accounts for possibly different 
misidentification rates in Z + jets events (where the misidenti-
fication rates are measured), and in W + jets and QCD multijet 
events (which dominate the constitution of the reducible back-
ground in the signal region), and for differences between data and 
predicted backgrounds observed in a region enriched in reducible 
background events by inverting the charge requirement on the τ
candidates and removing the mT and Dζ selection criteria. This 
uncertainty amounts to 20%, and is constrained to about 7% after 
the maximum likelihood fit because of the large number of events 
contributing to the last mvis

bττ category. Uncertainties in the param-
eterization of the misidentification probability of jets as a function 
of pT result in shape uncertainties for the backgrounds with jets 
misidentified as τh candidates.

The uncertainty in the yield of the QCD multijet background in 
the eμ final state is 20%; the value comes from the uncertainty in 
the extrapolation factor from the same-sign region to the opposite-
sign region. The uncertainty in the W + jets background in this 
channel also amounts to 20%, and accounts for a potential mismod-
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Fig. 5. Distributions of mvis
ττ in the four categories of the eτh channel. The “jet → τh” contribution includes all events with a jet misidentified as a τh candidate, whereas the 

rest of background contributions only include events where the reconstructed τh corresponds to a τh, a muon, or an electron, at the generator level. The “Other” contribution 
includes events from single top quark, diboson, and SM Higgs boson processes. The signal histogram corresponds to the SM production cross section for ggh, VBF, and Vh
processes, and assumes B(h → aa → 2τ2b) = 10%. The normalizations of the predicted background distributions correspond to the result of the global fit.
eling in simulation of the misidentification rate of jets as electrons 
or muons.

The theoretical yield uncertainty of the tt background is re-
lated to the PDF uncertainty and to the uncertainty associated to 
the strong coupling constant αS in the full NNLO plus NNLL or-
der calculation of the cross section; it amounts to about 4%. The 
yield uncertainties for other backgrounds estimated from simu-
lation are taken from recent CMS measurements: 6% for diboson 
processes [68], 13% for single top quark processes [69], and 7% for 
Z + jets events with at least one b-tagged jet in the final state [70]. 
The uncertainty in the correction of the dilepton pT distribution for 
Drell–Yan events is equal to 10% of the size of the correction itself. 
The uncertainty in the correction of the mvis

bττ distribution is equal 
to the correction itself, and considered as a shape uncertainty. Un-
certainties in the production cross sections and branching fractions 
for SM Higgs boson processes are taken from Ref. [71]. The uncer-
tainty in the integrated luminosity amounts to 2.5% [72].

7. Results

The mvis
ττ distributions in the different channels and categories 

are shown in Figs. 4–6. The binning corresponds to the bins used 
in the likelihood fit.

No excess is observed relatively to the SM background pre-
diction. Upper limits at 95% CL are set on (σ (h)/σSM)B(h →
aa → 2τ2b) using the modified frequentist construction CLs in 
the asymptotic approximation [73–77], for pseudoscalar masses 
between 15 and 60 GeV. In this expression, σSM denotes the SM 
production cross section of the Higgs boson, whereas σ(h) is the 
h production cross section. The limits per channel and for the com-
bination of the three channels are shown in Fig. 7. The most sen-
sitive final state is μτh. The sensitivity of the eτh and eμ channels 
is approximately equivalent; the first channel suffers from higher 
trigger thresholds and lower object identification efficiency than 
μτh, and the second one suffers from a lower branching fraction 
than μτh. At low ma, the eμ final state has a higher signal ac-
ceptance than the other final states, especially eτh. The limits are 
more stringent in the intermediate mass range. The low-ma sig-
nals have a lower acceptance because of the overlap of the leptons 
related to the boost of the pseudoscalar bosons, and of the typ-
ically softer lepton and b jet pT spectra. The high ma signals lie 
in a region where more backgrounds contribute, leading also to 
lower sensitivity than in the intermediate mass region. The cate-
gories are complementary over the probed mass range, with the 
low-mvis

bττ signal regions more sensitive for heavy resonances, and 
the high-mvis

bττ signal regions for light resonances.
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Fig. 6. Distributions of mvis
ττ in the four categories of the μτh channel. The “jet → τh” contribution includes all events with a jet misidentified as a τh candidate, whereas the 

rest of background contributions only include events where the reconstructed τh corresponds to a τh, a muon, or an electron, at the generator level. The “Other” contribution 
includes events from single top quark, diboson, and SM Higgs boson processes. The signal histogram corresponds to the SM production cross section for ggh, VBF, and Vh
processes, and assumes B(h → aa → 2τ2b) = 10%. The normalizations of the predicted background distributions correspond to the result of the global fit.
The combined limit at intermediate mass is as low as 3% on 
B(h → aa → 2τ2b), assuming the SM production cross section and 
mechanisms for the Higgs boson, and is up to 12% for the low-
est mass point ma = 15 GeV. Computing the branching fractions 
of the light pseudoscalar to SM particles [15,78], this translates 
to limits on (σ (h)/σSM)B(h → aa) of about 20% in 2HDM + S 
type II—including the NMSSM—with tan β > 1 for ma = 40 GeV. 
This improves by more than one order of magnitude previous lim-
its on B(h → aa) obtained in the 2μ2τ final state by CMS for 15 <
ma < 25 GeV [20,23], and by up to a factor five those obtained in 
the 2μ2b final state by CMS for 25 < ma < 60 GeV [20]. In the sce-
nario with the highest branching fraction, 2HDM + S type III with 
tan β = 2, the expected limit is as low as 6% at intermediate ma. 
Fig. 8 shows the observed limits at 95% CL on (σ (h)/σSM)B(h →
aa) as a function of ma and tan β for type III and type IV 2HDM+S, 
for which there is a strong dependence with tanβ . Fig. 9 shows the 
observed limits at 95% CL on (σ (h)/σSM)B(h → aa) for a few sce-
narios of 2HDM + S, assuming the branching fractions of the light 
pseudoscalar to SM particles computed using Refs. [15,78]. The 
limit shown for type II 2HDM + S is approximately valid for any 
value of tan β > 1, and that for type I 2HDM + S does not depend 
on tan β . In the ma range considered in the analysis, the branch-
ing fraction B(aa → bbττ ) ranges between 0.10 and 0.11 in type I 
2HDM+S, between 0.11 and 0.13 for tan β = 2 in type II 2HDM+S, 

between 0.44 and 0.46 for tan β = 2 in type III 2HDM + S, and be-
tween 0.16 and 0.21 for tan β = 0.5 in type IV 2HDM + S.

8. Summary

The first search for exotic decays of the Higgs boson to pairs of 
light bosons with two b quark jets and two τ leptons in the fi-
nal state has been performed with 35.9 fb−1 of data collected at 
13 TeV center-of-mass energy in 2016. This decay channel has a 
large branching fraction in many models where the couplings to 
fermions are proportional to the fermion mass, and can be trig-
gered with high efficiency in the dominant gluon fusion produc-
tion mode because of the presence of light leptons from leptonic 
τ decays. No excess of events is found on top of the expected 
standard model background for masses of the light boson, ma, be-
tween 15 and 60 GeV. Upper limits between 3 and 12% are set 
on the branching fraction B(h → aa → 2τ2b) assuming the SM 
production of the Higgs boson. This translates to upper limits on 
B(h → aa) as low as 20% for ma = 40 GeV in the NMSSM. These 
results improve by more than one order of magnitude the sensi-
tivity to exotic Higgs boson decays to pairs of light pseudoscalars 
in the NMSSM from previous CMS results in other final states for 
15 < ma < 25 GeV, and by a factor up to five for 25 < ma < 60 GeV
[20,23].
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Fig. 7. Expected and observed 95% CL limits on (σ (h)/σSM)B(h → aa → 2τ2b) in %. The eμ results are shown in the top left panel, eτh in the top right, μτh in the bottom 
left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution 
of limits expected under the background-only hypothesis.
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