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By quenched-randomly mixing local units of different spatial dimensionalities, we have studied Ising spin-
glass systems on hierarchical lattices continuously in dimensionalities 1 � d � 3. The global phase diagram
in temperature, antiferromagnetic bond concentration, and spatial dimensionality is calculated. We find that, as
dimension is lowered, the spin-glass phase disappears to zero temperature at the lower-critical dimension dc =
2.431. Our system being a physically realizable system, this sets an upper limit to the lower-critical dimension
in general for the Ising spin-glass phase. As dimension is lowered towards dc, the spin-glass critical temperature
continuously goes to zero, but the spin-glass chaos fully subsists to the brink of the disappearance of the spin-
glass phase. The Lyapunov exponent, measuring the strength of chaos, is thus largely unaffected by the approach
to dc and shows a discontinuity to zero at dc.
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I. INTRODUCTION: SPIN-GLASS
LOWER-CRITICAL DIMENSION

The lower-critical dimension dc of an ordering system,
where the onset of an ordered phase is seen as spatial di-
mension d is raised, has been of interest as a singularity of
a continuous sequence of singularities, the latter being the
phase transitions to the ordered phase which change contin-
uously as d is raised from dc. The lower-critical dimension
of systems without quenched randomness has been known
for some time as dc = 1 for the Ising-type (n = 1 component
order-parameter) systems and dc = 2 for XY , Heisenberg,
etc. (n = 2, 3, . . .) systems, highlighted with a temperature
range of criticality at dc = 2 of the XY model [1,2]. In
systems with quenched randomness, a controversy on the
lower-critical dimension of the random-field Ising system has
settled at dc = 2 [3–10]. Quenched bond randomness affects
the first- versus second-order nature of the phase transition
in an ordered phase that exists without quenched randomness
(such as the ferromagnetic phase), rather than the dimensional
onset of this ordered phase.

The situation is inherently different with an ordered phase
that is caused by the quenched randomness of competing
ferromagnetic-antiferromagnetic (and more recently right-left
chirality or helicity [11]) interactions, namely, the Ising spin-
glass phase. Replica-symmetry-breaking mean-field theory
yields dc = 2.5 [12], which is of immediate high interest as an
example of a noninteger lower-critical dimension. The numer-
ical fit to spin-glass critical temperatures [13] and free-energy
barriers [14] for integer dimensions also suggests dc = 2.5.
Numerical fits to the exact renormalization-group solutions of
two different families of hierarchical lattices with a sequence
of decreasing dimensions yield dc = 2.504 [15,16] and dc =
2.520 [17], which are of further interest by being nonsimple
fractions. The strength of hierarchical lattice approaches is
that they present exact (numerical) solutions [18–20], but they
involve nonunique continuations between integer dimensions,

being based on different families of fractal graphs. However,
in the hunt for the lower-critical dimension, since each hier-
archical lattice constitutes a physical realization, calculating a
finite-temperature spin-glass phase at d automatically pushes
the lower-critical dimension to dc < d, which is an important
piece of information.

The exact numerical renormalization-group solution of
hierarchical lattices, used in the present study, has been fully
successful in all aspects of lower-critical-dimension behavior
mentioned in the first paragraph of this section. Whereas
previous studies with hierarchical lattices have used in each
calculation a lattice with the same dimensionality at every
locality (these include but are not confined to hierarchical
lattices that are simultaneously approximate solutions [21,22]
for hypercubic and other Euclidian lattices), we quenched-
randomly mix units with local dimensionality d = 2 and
d = 3. By varying the relative concentration of these two
units, we continuously span from d = 2 to d = 3. In this
physically realizable system, we find dc = 2.431, lower than
previously found values and thus setting an upper limit to the

FIG. 1. Local graphs with d = 2 (bottom) and d = 3 (top) con-
nectivity. The cross-dimensional hierarchical lattice is obtained by
repeatedly imbedding the graphs in place of bonds, randomly with
probability 1 − q and q for the d = 2 and d = 3 units, respectively.
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FIG. 2. Calculated exact global phase diagram of the Ising spin glass on the cross-dimensional hierarchical lattice, in temperature 1/J ,
antiferromagnetic bond concentration p, and spatial dimension d . The global phase diagram is symmetric about p = 0.5; the mirror image
portion of 0.5 < p < 1 is not shown. The spin-glass phase is thus clearly seen, taking off from zero temperature at dc = 2.431.

actual lower-critical dimension of the Ising spin-glass phase.
By physically realizable system, it is meant that this lattice
can actually be constructed as a physical object. In fact, this
guarantees that the fundamental laws of thermodynamics are
obeyed and underlies the robustness of hierarchical lattices
used as an approximation for Euclidian lattices [18]. Other
examples of physically realizable approximations have been
used in turbulence [23], disordered alloys [24], and polymers
[25,26]. Further, hierarchical lattices are more appropriate
for many actual (physical) systems such as climate; internet,
transportation, and neural networks; finance [27]; and DNA-
binding [28] problems. By lower-critical dimension dc of
the spin-glass phase, the lowest dimension in any physically
realizable system that has a spin-glass phase is meant. Such a
threshold dimension of spin-glass order can be found higher
(but not lower) by restricting a study to a certain class of
systems, such as a given family of hierarchical lattices.

In the present study, as our spin-glass phase disappears at
zero temperature at dc = 2.431, it is fully chaotic, with a cal-
culated Lyapunov exponent of λ = 1.56 (this exponent equals
1.93 at d = 3), which is in sharp contrast to the disappearance,
as frustration is microscopically turned off, of the spin-glass
phase to the Mattis-gauge-transformed ferromagnetic phase,
where the Lyapunov exponent (and chaos) continuously goes
to zero [29]. In the present work we also obtain a global phase
diagram in the variables of temperature, antiferromagnetic
bond concentration, and spatial dimensionality.

II. MODEL AND METHOD: MOVING BETWEEN SPATIAL
DIMENSIONS THROUGH LOCAL DIFFERENTIATION

The Ising spin-glass system has the Hamiltonian

−βH =
∑

〈ij〉
Jij sisj , (1)

where β = 1/kT , at each site i of the lattice the spin si = ±1,
and 〈ij 〉 denotes summation over all nearest-neighbor site
pairs. The bond Jij is ferromagnetic J > 0 or antiferromag-
netic −J with respective probabilities 1 − p and p. This
Hamiltonian is lodged on the hierarchical lattice constructed
with the two graphs shown in Fig. 1. The lower graph has a
length rescaling factor (distance between the external vertices)
of b = 3 and a volume rescaling factor (number of internal
bonds) of bd = 9. Thus, self-imbedding the lower graph into
its bonds ad infinitum results in a d = 2 spatial dimensional
lattice that is numerically exactly soluble. The upper graph
similarly yields d = 3. Other graphs have been used to sys-
tematically obtain intermediate noninteger dimensions [17].

For recent exact calculations on hierarchical lattices, see
Refs. [27,28,30–36]. Thus, previous works have generally
used a hierarchical lattice generated by a single graph and spa-
tial dimensionality that is microscopically uniform throughout
the system. By contrast, we mix the two graphs with local
d = 2 and d = 3 in frozen randomness and definite propor-
tionality: Starting with either graph (in the thermodynamic
limit, this choice does not matter), each bond is replaced
by the d = 2 or d = 3 graph, with probability 1 − q and q,
respectively. This random imbedding is repeated ad infinitum.
Thus, the dimensionality of the macroscopic system is
(1 − q ) × 2 + q × 3 = 2 + q.

The exact renormalization-group solution of this system
works in the opposite direction from the lattice construction
just described. As described after Eq. (1), we start with
the double-valued distribution of +J or −J bonds, with
probabilities 1 − p and p, respectively, on a d = 2 or d = 3
unit with probabilities 1 − q and q, respectively. The lo-
cal renormalization-group transformation proceeds by bd−1

bond movings followed b = 3 (to preserve the ferromagnetic-
antiferromagnetic symmetry) decimations, generating a distri-
bution of 500 new interactions, which is of course no longer
double valued [36]. (In fact, for numerical efficiency, these
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FIG. 3. Constant dimensionality d cross sections of the global
phase diagram in Fig. 2. The cross sections are, starting from high
temperature, for d = 3, 2.9, 2.8, 2.7, . . . , 2.1, 2. It can be seen that,
as the dimensionality d approaches dc = 2.431 from above, the spin-
glass phase disappears at zero temperature.

operations are broken down to binary steps, each involving
two distributions of 500 interactions.) In the disordered phase,
the interactions converge to zero. In the ferromagnetic and
antiferromagnetic phases, under renormalization group, the
interaction diverges to strong coupling as the renormalized
average J ′ ∼ byF

R J , where the prime refers to the renor-
malized system and yF

R > 0 is the runaway exponent of the
ferromagnetic sink of the renormalization-group flows. In the
spin-glass phase, under renormalization group, the distribu-
tion of interactions continuously broadens symmetrically in
ferromagnetism and antiferromagnetism, the absolute value of
the interactions diverging to strong coupling as the renormal-
ized average |J | ′ ∼ bySG

R |J |, where ySG
R > 0 is the runaway

exponent of the spin-glass sink of the renormalization-group
flows. The runaway exponents yF

R and ySG
R are given below

as a function of dimensionality d. Our method has been
described in detail in Refs. [11,17,29,36].

III. TRANSITIONAL DIMENSIONAL GLOBAL PHASE
DIAGRAM AND FULL CHAOS EVEN AT

SPIN-GLASS DISAPPEARANCE

Figure 2 shows our calculated global phase diagram in the
variables of temperature 1/J , antiferromagnetic bond
concentration p, and spatial dimensionality 2 � d � 3.
In addition to the high-temperature disordered phase,
ferromagnetic, antiferromagnetic (the phase diagram is
ferromagnetic-antiferromagnetic symmetric about p = 0.5
and the mirror-image antiferromagnetic part of p > 0.5 is not
shown; however, see Figs. 3 and 4), and spin-glass ordered
phases are seen. As dimensionality d is lowered, the spin-glass
phase disappears at zero temperature at the lower-critical di-
mension of dc = 2.431. Constant-dimension d cross sections
of the global phase diagram are in Fig. 3, where the gradual
temperature lowering of the spin-glass phase, as the lower-
critical dimension dc = 2.431 is approached from above, can
be seen. However, such gradual disappearance is not the case
for the chaos [37–39] inherent to the spin-glass phase, as
shown below.

FIG. 4. Zero-temperature phase diagram of the Ising spin-glass
system on the cross-dimensional hierarchical lattice, in antiferro-
magnetic bond concentration p and and spatial dimension d . The
lower-critical dimension of dc = 2.431 is clearly visible.

Figure 4 shows the calculated zero-temperature phase dia-
gram in the variables of antiferromagnetic bond concentration
p and spatial dimensionality 1 � d � 3. For this figure, the
calculation is continuously extended down to d = 1 by again
quenched-randomly mixing our d = 2 graph (Fig. 1) and a lin-
ear three-segment strand. The smoothness of the boundaries at
d = 2 validates our method. The independence of dc from p

is noteworthy.
An inherent signature of the spin-glass phase is the

chaotic behavior [37–44] of the interaction at a given locality
as a function of scale change, namely, under consecutive
renormalization-group transformations. This chaos is shown
in Fig. 5 for a variety of dimensions, including the lower-
critical dimension dc = 2.431. For each chaos, the Lyapunov
exponent

λ = lim
n→∞

1

n

n−1∑

k=0

ln

∣∣∣∣
dxk+1

dxk

∣∣∣∣, (2)

where xk = J (ij )/|J | at step k of the renormalization-group
trajectory, measures the strength of the chaos and is calculated
and shown for the spatial dimensions in Fig. 5. It can be seen
that the system shows strong chaos (positive Lyapunov ex-
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FIG. 5. Chaotic renormalization-group trajectory of the inter-
action Jij at a given location 〈ij〉, for various spatial dimensions
between the lower-critical dimension dc = 2.431 and d = 3. Note
that strong chaotic behavior, as reflected by the shown calculated
Lyapunov exponents λ, nevertheless continues as the spin-glass
phase disappears at the lower-critical dimension dc, as seen in Fig. 6.

ponent λ = 1.56) even at dc = 2.431, namely, at the brink of
the disappearance of the spin-glass phase, after an essentially
slow numerical evolution from the d = 3 value of λ = 1.93.
This is in sharp contrast with the disappearance of the spin-
glass phase, into a Mattis-gauge-transformed ferromagnetic
phase, as frustration is gradually turned off microscopically,
where chaos gradually disappears and the Lyapunov exponent
continuously goes to zero, as shown in Fig. 6 of Ref. [29].

FIG. 6. Spin-glass critical temperature T SG
C at p = 0.5, spin-

glass chaos Lyapunov exponent λ, spin-glass-phase runaway ex-
ponent ySG

R , and ferromagnetic-phase runaway exponent yF
R , as a

function of dimension d . Note that the ferromagnetic-phase runaway
exponent yF

R correctly tracks d − 1.

As shown in Fig. 6, the Lyapunov exponent, shown continu-
ously as a function of dimension, is essentially unaffected by
the disappearance of the spin-glass phase and thus shows a
discontinuity at dc. The runaway exponent of the spin-glass
phase, on the other hand, correctly goes to zero at dc, as is
expected by the renormalization-group flow structure. Also
shown in Fig. 6 is the spin-glass critical temperature going
to zero at dc.

IV. CONCLUSION: LOWER LOWER-CRITICAL
DIMENSION AND LYAPUNOV DISCONTINUITY

By quenched-randomly mixing local units of different
spatial dimensionalities, we have studied Ising spin-glass sys-
tems on hierarchical lattices continuously in dimensionalities
1 � d � 3. We have calculated the global phase diagram in
temperature, antiferromagnetic bond concentration, and spa-
tial dimensionality. We find that, as dimension is lowered, the
spin-glass phase disappears at zero temperature at dc = 2.431.
Our system being a physically realizable system, this sets
an upper limit to the lower-critical dimension of the Ising
spin-glass phase. As dimension is lowered towards dc, the
spin-glass critical temperature continuously goes to zero. The
Lyapunov exponent, measuring the strength of chaos, is, on
the other hand, largely unaffected by the approach to dc and
shows a discontinuity to zero at dc.
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