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Abstract

We determine the limiting distribution of the normalized Euler factors of an abelian
threefold A defined over a number field k when A is Q-isogenous to the cube of a CM
elliptic curve defined over k . As an application, we classify the Sato–Tate distributions of
the Jacobians of twists of the Fermat and Klein quartics, obtaining 54 and 23,
respectively, and 60 in total. We encounter a new phenomenon not visible in
dimensions 1 or 2: the limiting distribution of the normalized Euler factors is not
determined by the limiting distributions of their coefficients.
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1 Introduction
LetA be an abelian variety of dimension g ≥ 1 defined over a number field k . For a prime �,
let V�(A) := Q ⊗ lim←−nA[�

n] be the (rational) �-adic Tate module of A, and let

�A : Gk → Aut(V�(A))

be the �-adic representation arising from the action of the absolute Galois group Gk on
V�(A). Let p be a prime of k (a nonzero prime ideal of the ring of integers Ok ) not lying
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above the rational prime �. The L-polynomial of A at the prime p is defined by

Lp(A, T ) := det(1 − �A(Frobp)T ; V�(A)Ip ) ∈ Z[T ],

where Frobp denotes a Frobenius element at p and Ip is the inertia subgroup at p; it does
not depend on the choice of �. Let S be a finite set of primes of k that includes all primes
of bad reduction for A and all primes lying above �. For p /∈ S the polynomial Lp(A, T )
has degree 2g and coincides with the numerator of the zeta function of the reduction of A
modulo p. The L-function ofA is defined as the analytic continuation of the Euler product

L(A, s) :=
∏

p

Lp(A,N (p)−s)−1,

whereN (p) := [Ok :p] is the (absolute) norm of p. The normalized L-polynomial of A at p
is themonic polynomial Lp(A, T ) := Lp(A,N (p)−1/2T ) ∈ R[T ]; its roots come in complex
conjugate pairs and lie on the unit circle, as shown by Weil in [36].
As constructed by Serre in [26], the Sato–Tate group ST(A) is a compact real Lie sub-

group of USp(2g), defined up to conjugacy in GL2g (C), that comes equipped with a map
that assigns to each prime p /∈ S a semisimple conjugacy class s(p) of ST(A) for which

det(1 − s(p)T ) = Lp(A, T ).

Let μ be the pushforward of the Haar measure of ST(A) to its set of conjugacy classes
X , and let {s(p)}p denote the sequence of conjugacy classes s(p) arranged in an order
compatible with the partial ordering of primes p by norm. The generalized Sato–Tate
conjecture predicts that:

(ST) The sequence {s(p)}p is equidistributed on X with respect to the measure μ.

This conjecture has been proved for abelian varieties of dimension one (elliptic curves)
over a totally real [15] or CM number field [1], and in several special cases for abelian
varieties of higher dimension, including abelian varieties with potential CM [19].
For each s ∈ X , we write det(1 − sT ) =:

∑2g
j=0 ajT

j , and define

Ij :=
[
−
(
2g
j

)
,
(
2g
j

)]
, and I :=

g∏

j=1
Ij .

For 0 ≤ j ≤ 2g we have aj ∈ Ij and aj = a2g−j for 0 ≤ j ≤ 2g , since the eigenvalues of any
conjugacy class of USp(2g) come in complex conjugate pairs on the unit circle. Consider
the maps

� : X−→I, �j := X �−→ I
�j−→ Ij ,

where � is defined by �(s) = (a1, . . . , ag ) and �j is the projection to the jth component.
Let μI (resp. μIj ) denote the projection of the measure μ by the map � (resp. �j). We
will call μI the joint coefficient measure and the set of measures {μIj }j , the independent
coefficient measures.
The measures μI and μIj are, respectively, determined by their moments

Mn1 ,...,ng [μI ] :=
∫

I
an11 · · · angg μI (a1, . . . , ag ), Mn[μIj ] :=

∫

Ij
anj μIj (aj), (1.1)

for n1, . . . , ng ≥ 0 and n ≥ 0. We denote by aj(A)(p), or simply aj(p), the jth coeffi-
cient �j(s(p)) of the normalized L-polynomial, and by a(A)(p), or simply a(p), the g-tuple
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�(s(p)) of coefficients of the normalizedL-polynomial.We can now consider the following
successively weaker versions of the generalized Sato–Tate conjecture:

(ST′) The sequence {a(p)}p is equidistributed on I with respect to μI .
(ST′′) The sequences {aj(p)}p are equidistributed on Ij with respect toμIj , for 1 ≤ j ≤ g .

Let π (x) count the number of primes p /∈ S for which N (p) ≤ x. If we define

Mn1 ,...,ng [a]:= lim
x→∞

1
π (x)

∑

N (p)≤x
a1(p)n1 · · · ag (p)ng , Mn[aj]:= lim

x→∞
1

π (x)
∑

N (p)≤x
aj(p)n,

(1.2)

then (ST′) holds if and only if Mn1 ,...,ng [μI ] = Mn1 ,...,ng [a] for every n1, . . . , ng ≥ 0, while
(ST′′) holds if and only if Mn[μIj ] = Mn[aj] for every n ≥ 0 and 1 ≤ j ≤ g .
Let A′ be an abelian variety defined over a number field k ′ also of dimension g , and let

X ′, μ′, μ′
I , μ

′
Ij be the data associated with A′ corresponding to X , μ, μI , μIj , respectively.

The following implications are immediate:

ST(A) = ST(A′) ⇒ μI = μ′
I ⇒ {μIj }j = {μ′

Ij }j . (1.3)

The classification of Sato–Tate groups of elliptic curves and abelian surfaces together with
the explicit computation of their Haar measures implies that for g ≤ 2 the converses of
the implications in (1.3) both hold; see [10]. In this article, we show that for g = 3, there
are cases in which the converse of the second implication of (1.3) fails to hold.1

Main result. In this article, we obtain the counterexamples alluded to in the previous
paragraph by searching among abelian threefolds defined over a number field that are
Q-isogenous to the cube of an elliptic curve with complex multiplication (CM). More
precisely, we obtain a complete classification of the Sato–Tate groups, the joint coefficient
measures, and the independent coefficient measures of the Jacobians of twists of the
Fermat and the Klein quartics (which are both Q-isogenous to the cube of a CM elliptic
curve). The Fermat and Klein quartics are, respectively, given by the equations

C̃0
1 : x

4 + y4 + z4 = 0, C̃0
7 : x

3y + y3z + z3x = 0, (1.4)

and they have the two largest automorphism groups among all genus 3 curves, of sizes 96
and 168, respectively. Our main result is summarized in the following theorem.

Theorem 1 The following hold:

(i) There are 54 distinct Sato–Tate groups of twists of the Fermat quartic. These give
rise to 54 (resp. 48) distinct joint (resp. independent) coefficient measures.

(ii) There are 23 distinct Sato–Tate groups of twists of the Klein quartic. These give rise
to 23 (resp. 22) distinct joint (resp. independent) coefficient measures.

(iii) There are 60 distinct Sato–Tate groups of twists of the Fermat or the Klein quartics.
These give rise to 60 (resp. 54) distinct joint (resp. independent) coefficient measures.

1Using Gassmann triples, one can construct examples (of large dimension) where the converse of the first implication
in (1.3) also fails to hold, but we will not pursue this here.
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Onemotivation for our work is a desire to extend the classification of Sato–Tate groups
that is known for dimensions g ≤ 2 to dimension 3. Of the 52 Sato–Tate groups that
arise for abelian surfaces (see [10, Table 10] for a list), 32 can be realized as the Sato–
Tate group of the Jacobian of a twist of one of the two genus 2 curves with the largest
automorphism groups, as shown in [12]; these groups were the most difficult to treat
in [10] and notably include cases missing from the candidate list of trace distributions
identified in [21, Table 13]. While the classification of Sato–Tate groups in dimension 3
remains open, the 60 Sato–Tate groups identified in Theorem1 and explicitly described
in Sect. 3.3 are likely to include many of the most delicate cases and represent significant
progress toward this goal.

Overview of the paper. This article can be viewed as a genus 3 analog of [12], where the
Sato–Tate groups of the Jacobians of twists of the curves y2 = x5 − x and y2 = x6 + 1
were computed. However, there are two important differences in the techniques we use
here; these are highlighted in the paragraphs below that outline our approach. We also
note [13], where the Sato–Tate groups of the Jacobians of certain twists of the genus 3
curves y2 = x7 − x and y2 = x8 +1 are computed, and [2], where the Sato–Tate groups of
the Jacobians of twists of the curve y2 = x8 − 14x4 + 1 are determined. Like the Fermat
and Klein quartics we consider here, these three curves represent extremal points in the
moduli space of genus 3 curves, but they are all hyperelliptic, and their automorphism
groups are smaller (of order 24, 32, 48, respectively).
As noted above, the Sato–Tate conjecture is known for abelian varieties that are Q-

isogenous to a product of CM abelian varieties [19, Cor. 15]. It follows that we can deter-
mine the set of independent coefficient measures {μIj }j by computing the sequences
{Mn[aj]}j,n, and similarly for μI and the sequences {Mn1 ,...,ng [a]}n1 ,...,ng . Closed formu-
las for these sequences are determined in Sect. 2 in the more general setting of abelian
threefolds defined over a number field k that are Q-isogenous to the cube of an elliptic
curve defined over k ; see Proposition 2.2 and Corollary 2.4. This analysis closely follows
the techniques developed in [12, §3].
In Sect. 3, we specialize to the case of Jacobians of twists of the Fermat and Klein quar-

tics. In Sect. 3.2, we obtain a complete list of possibilities for {Mn[aj]}j,n: there are 48 in
the Fermat case, 22 in the Klein case, and 54 when combined; see Corollary 3.12. We also
compute lower bounds on the number of possibilities for {Mn1 ,n2 ,n3 [a]}n1 ,n2 ,n3 by com-
puting the number of possibilities for the first several terms (up to a certain conveniently
chosen bound) of this sequence. These lower bounds are 54 in the Fermat case, 23 in the
Klein case, and 60 when combined; see Proposition 3.13.
The first main difference with [12] arises in Sect. 3.3, where we compute the Sato–Tate

groups of the twists of the Fermat and Klein quartics using the results of [3]. Such an
analysis would have been redundant in [12], since a complete classification of Sato–Tate
groups of abelian surfaces was already available from [10].We show that there are at most
54 in the Fermat case, and at most 23 in the Klein case; see Corollaries 3.23 and 3.26.
Combining the implications in (1.3) together with the lower bounds of Sect. 3.2 and upper
bounds of Sect. 3.3 yields Theorem1.
The second main difference with [12] arises in Sect. 3.4, where we provide explicit

equations of twists of the Fermat and Klein quartics that realize each of the possible
Sato–Tate groups. Here, the computational search used in [12] is replaced by techniques
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developed in [22,23] that involve the resolution of certain Galois embedding problems,
and a moduli interpretation of certain twists XE(7) of the Klein quartic as twists of the
modular curve X(7), following [14]. In order to apply the latter approach, which also plays
a key role in [25], we obtain a computationally effective description of the minimal field
over which the automorphisms of XE(7) are defined (see Propositions 3.34 and 3.35), a
result that may have other applications.
Finally, in Sect. 3.5, we give an algorithm for the efficient computation of the L-

polynomials of twists of the Fermat and Klein quartics. This algorithm combines an
average polynomial-time for computing Hasse–Witt matrices of smooth plane quartics
[18] with a result specific to our setting that allows us to easily derive the full L-polynomial
at p from the Frobenius trace using the splitting behavior of p in certain extensions; see
Proposition 3.38. Our theoretical results do not depend on this algorithm, but it played a
crucial role in our work by allowing us to check our computations and may be of inde-
pendent interest.

Notation. Throughout this paper, k denotes a number field contained in a fixed algebraic
closure Q of Q. All the field extensions of k , we consider are algebraic and assumed to lie
in Q. We denote by Gk the absolute Galois group Gal(Q/k). For an algebraic variety X
defined over k and a field extension L/k , write XL for the algebraic variety defined over L
obtained from X by base change from k to L. For abelian varieties A and B defined over k ,
we write A ∼ B if there is an isogeny from A to B that is defined over k . We use MT to
denote the transpose of a matrix M. We label the isomorphism class ID(H ) = 〈n,m〉 of
a finite group H according to the Small Groups Library [4], in which n is the order of H
and m distinguishes the isomorphism class of H from all other isomorphism classes of
groups of order n.

2 Equidistribution results for cubes of CM elliptic curves
Let A be an abelian variety over k of dimension 3 such that AQ ∼ E3

Q
, where E is an

elliptic curve defined over k with complex multiplication (CM) by an imaginary quadratic
field M. Let L/k be the minimal extension over which all the homomorphisms from EQ
to AQ are defined. We note that kM ⊆ L, and we have Hom(EQ, AQ) � Hom(EL, AL) and
AL ∼E3

L.
Let σ and σ denote the two embeddings ofM into Q. Consider

Hom(EL, AL) ⊗M,σ Q

(
resp. End(AL) ⊗M,σ Q

)
,

where the tensor product is taken via the embedding σ : M ↪→ Q. Letting Gal(L/kM) act
trivially onQ, it acquires the structure of aQ[Gal(L/kM)]-module of dimension 3 (resp. 9)
over Q, and similarly for σ .

Definition 2.1 Let θ := θM,σ (E, A) (resp. θM,σ (A)) denote the representation afforded
by the module Hom(EL, AL) ⊗M,σ Q (resp. End(AL) ⊗M,σ Q), and let us similarly define
θ := θM,σ (E, A) and θM,σ (A). Let θQ := θQ(E, A) (resp. θQ(A)) denote the representation
afforded by the Q[Gal(L/k)]-module Hom(EL, AL) ⊗ Q (resp. End(AL) ⊗ Q).

For each τ ∈ Gal(L/kM), we write

det(1 − θ (τ )T ) = 1 + a1(θ )(τ )T + a2(θ )(τ )T 2 + a3(θ )(τ )T 3,

so that a1(θ ) = −Tr θ and a3(θ ) = − det(θ ).
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Fix a subextension F/kM of L/kM, and let S be the set of primes of F for whichAF or EF
has bad reduction. Note that by [27, Thm. 4.1] the set S contains the primes of F ramified
in L. For z ∈ M, write |z| := √

σ (z) · σ (z). For p /∈ S, there exists α(p) ∈ M, such that
|α(p)| = N (p)1/2 and

a1(EF )(p) = −σ (α(p)) + σ (α(p))
N (p)1/2

. (2.1)

Proposition 2.2 Let A be an abelian variety of dimension 3 defined over k with AL ∼ E3
L,

where E is an elliptic curve defined over k with CM by the imaginary quadratic field M.
Suppose that a3(θ )(τ ) is rational for every τ ∈ G := Gal(L/kM). Then, for i = 1, 2, 3,
the sequence ai(AkM) is equidistributed on Ii =

[
−(2gi

)
,
(2g
i
)]

with respect to a measure
that is continuous up to a finite number of points and therefore uniquely determined by its
moments. For n ≥ 1, we haveM2n−1[a1(AkM)] = M2n−1[a3(AkM)] = 0 and:

M2n[a1(AkM)] = 1
|G|
∑

τ∈G |a1(θ )(τ )|2n
(2n
n
)
,

Mn[a2(AkM)] = 1
|G|
∑

τ∈G
∑n

i=0
(n
i
)(2i

i
)|a2(θ )(τ )|i

(|a1(θ )(τ )|2 − 2 · |a2(θ )(τ )|
)n−i ,

M2n[a3(AkM)] = 1
|G|
(∑

τ∈G
∑n

i=0
(2n
2i
)∑2i

j=0
∑n−i

k=0
(2i
j
)
(r1(τ ) − 3)2i−j

·r2(τ )2n−2i(n−i
k
)
4k (−1)n−i−k(2j+2n−2k

j+n−k
))

.

Here, r1(τ ) and r2(τ ) are the real and imaginary parts of a3(θ )(τ )a2(θ )(τ )a1(θ )(τ ), respec-
tively.

Proof The proof follows the steps of [12, §3.3]. Define

Vσ (A) = V�(AkM) ⊗M⊗Q�
Q�,

where the tensor product is taken relative to the map of Q�-algebras M ⊗ Q� → Q�

induced by σ ; similarly define Vσ (A), Vσ (E), and Vσ (E). We then have isomorphisms of
Q�[GkM]-modules

V�(AkM) � Vσ (A) ⊕ Vσ (A), V�(EkM) � Vσ (E) ⊕ Vσ (E).

It follows from Theorem 3.1 in [9] that

Vσ (A) � θM,σ (E, A) ⊗ Vσ (E), Vσ (A) � θM,σ (E, A) ⊗ Vσ (E).

We thus have an isomorphism of Q�[GkM]-modules

V�(AkM) � (θM,σ (E, A) ⊗ Vσ (E)
) ⊕ (

θM,σ (E, A) ⊗ Vσ (E)
)
. (2.2)

For each prime p /∈ S, let us define

α1(p) := σ (α(p))
N (p)1/2

, α1(p) := σ (α(p))
N (p)1/2

,

where σ (α(p)), as in equation (2.1), gives the action of Frobp on Vσ (E). It follows from
(2.2) that

a1(AkM)(p) = a1(p)α1(p) + a1(p)α1(p),
a2(AkM)(p) = a2(p)α1(p)2 + a2(θ )α1(p)2 + a1(p)a1(p),
a3(AkM)(p) = a3(p)α1(p)3 + a3(p)α1(p)3 + a1(p)a2(p)α1(p) + a1(p)a2(p)α1(p),

(2.3)
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where to simplify notation we write ai(p) := ai(θ )(Frobp) and ai(p) := ai(θ )(Frobp). Let
r1(p) and r2(p) denote the real and imaginary parts of a3(p)a2(p)a1(p), respectively. We
have a3(p)2 = 1, since a3(p) is a rational root of unity, and we can rewrite the above
expressions as

a1(AkM)(p) = |a1(p)| (z1(p)α1(p) + z1(p)α1(p)) ,
a2(AkM)(p) = |a2(p)| (z2(p)α1(p) + z2(p)α1(p))2 − 2|a2(p)| + |a1(p)|2,
a3(AkM)(p) = a3(p)

(
(α1(p) + α1(p))3 + (r1(p) − 3) (α1(p) + α1(p))

±r2(p)
√
4 − (α1(p) + α1(p))2

)
,

where

z1(p) = a1(p)
|a1(p)| , z2(p) =

(
a2(p)
|a2(p)|

)1/2
∈ U(1).

Let α1 denote the sequence {α1(pi)}i≥1 and, for each conjugacy class c of Gal(L/kM),
let α1,c denote the subsequence of α1 obtained by restricting to primes p of /∈ S such that
Frobp = c. By the translation invariance of the Haar measure and [12, Prop. 3.6], for
z ∈ U(1) and i ≥ 1 we have

Mi[zα1,c + z α1,c] = Mi[α1,c + α1,c] =
⎧
⎨

⎩

( i
i/2
)

if i is even,

0 if i is odd.
(2.4)

The formulas for M2n[a1(AkM)], Mn[a2(AkM)], M2n[a3(AkM)] follow immediately from
(2.4) and the Chebotarev Density Theorem (see [12, Prop. 3.10] for a detailed explanation
of a similar calculation). ��

Remark 2.3 In the statement of the proposition, we included the hypothesis that a3(θ )
is rational, which is satisfied for Jacobians of twists of the Fermat and Klein curves (see
Section 3.1), because this makes the formulas considerably simpler. This hypothesis is not
strictly necessary; one can similarly derive a more general formula without it.

Corollary 2.4 Let A be an abelian variety of dimension 3 defined over k with AL ∼E3
L,

where E is an elliptic curve defined over k with CM by the quadratic imaginary field
M, with k �= kM. Suppose that a3(θ )(τ ) is rational for τ ∈ G := Gal(L/kM). Then,
for i = 1, 2, 3, the sequence ai(Ak ) is equidistributed on Ii =

[
−(2gi

)
,
(2g
i
)]

with respect
to a measure that is continuous up to a finite number of points and therefore uniquely
determined by its moments. For n ≥ 1, we haveM2n−1[a1(Ak )] = M2n−1[a3(Ak )] = 0 and:

M2n[a1(Ak )] = 1
2|G|

∑
τ∈G |a1(θ )(τ )|2n

(2n
n
)
,

Mn[a2(Ak )] = 1
2|G|
(∑

τ∈G
∑n

i=0
(n
i
)(2i

i
)|a2(θ )(τ )|i

(|a1(θ )(τ )|2 − 2 · |a2(θ )(τ )|
)n−i

+ o(2)3n + o(4)(−1)n + o(8) + o(12)2n
)
,

M2n[a3(Ak )] = 1
2|G|
(∑

τ∈G
∑n

i=0
(2n
2i
)∑2i

j=0
∑n−i

k=0
(2i
j
) · (r1(τ ) − 3)2i−j

· r2(τ )2n−2i(n−i
k
)
4k (−1)n−i−k(2j+2n−2k

j+n−k
))
.

Here, o(n) denotes the number of elements in Gal(L/k) not in G of order n, and r1(τ ) and
r2(τ ) are the real and imaginary parts of a3(θ )(τ )a2(θ )(τ )a1(θ )(τ ), respectively.

Proof For primes of k that split in kM, we invoke Proposition 2.2. Let N be such that
τN = 1 for every τ ∈ Gal(L/k) \G (the present proof shows a posteriori that one can take
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N = 24, but for the moment it is enough to know that such an N exists). For primes p of
k that are inert in kM, we will restrict our analysis to those also satisfy:

(a) p has absolute residue degree 1, that is, N (p) = p is prime.
(b) p is of good reduction for both A and E.
(c) Q(√p) ∩ Q(ζ4N ) = Q, where ζ4N is a primitive 4N th root of unity.

These conditions exclude only a density zero set of primes and thus do not affect the
computation of moments.
Now define D(T, τ ) := det(1 − θQ(E, A)(τ )T ) for τ ∈ Gal(L/k) \ G, and let p be such

that Frobp = τ . In the course of the proof of [12, Cor. 3.12], it is shown that:

(i) The polynomial Lp(A, T ) divides the Rankin–Selberg polynomial Lp(E, θQ(E, A), T ).
(ii) The roots of D(T, τ ) are quotients of roots of Lp(A, T ) and Lp(E, T ).

Since Lp(E, T ) = 1+ T 2 and the roots of D(T, τ ) are N th roots of unity, it follows from
(i) that the roots of Lp(A, T ) are 4N th roots of unity. In particular, a1(A)(p), a2(A)(p),
a3(A)(p) ∈ Z[ζ4N ]. But (a) implies that

√p · a1(A)(p) ∈ Z, p · a2(A)(p) ∈ Z, p√p · a3(A)(p) ∈ Z, (2.5)

which combinedwith (c) implies a1(A)(p) = a3(A)(p) = 0. This yields the desiredmoment
formulas for a1(Ak ) and a3(Ak ), leaving only a2(Ak ) to consider.
From (2.5), we see that L(A, T ) has rational coefficients. Both Lp(E, T ) and D(T, τ ) have

integer coefficients, hence so does Lp(E, θQ(E, A), T ). Moreover, Lp(E, θQ(E, A), T ) is also
primitive, which by (i) and Gauss’ Lemma implies that L(A, T ) has integer coefficients.
TheWeil bounds then imply (see [20, Prop. 4], for example) that the polynomial Lp(A, T )
has the form

1 + aT 2 + aT 4 + T 6 =: Pa(T ), (2.6)

form some a ∈ {−1, 0, 1, 2, 3}. To compute the moments of a2(Ak ), it remains only to
determine how often each value of a occurs as τ ranges over G. We have

P−1(T ) = (1 − T )2(1 + T )2(1 + T 2),
P0(T ) = (1 + T 2)(1 − T 2 + T 4),
P1(T ) = (1 + T 2)(1 + T 4),
P2(T ) = (1 − T + T 2)(1 + T + T 2)(1 + T 2),
P3(T ) = (1 + T 2)3.

(2.7)

The integer ord(τ ) is even and then condition (ii) and the specific shape of the Pa(T )
imply that the only possible orders of τ are 2, 4, 6, 8, 12. If ord(τ ) = 2, then all the roots
of Lp(E, θQ(E, A), T ) are of order 4. By (i), so are the roots of Pa(T ), and (2.7) implies that
a = 3.
If ord(τ ) = 4, then all the roots of Lp(E, θQ(E, A), T ) are of order dividing 4. Thus so are

the roots of Pa(T ), which leaves the two possibilities a = −1 or a = 3. But (ii) implies that
the latter is not possible: if a = 3, then the roots of D(T, τ ) would all be of order dividing
2 and this contradicts the fact that τ has order 4. Thus a = −1.
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If ord(τ ) = 6, then by (ii) we have a �= −1, 1, 3 (otherwise the order of τ would not be
divisible by 3). If a = 2, then again by (ii) the polynomial D(T, τ ) would have a root of
order at least 12, which is impossible for ord(τ ) = 6. Thus a = 0.
If ord(τ ) = 8, then Lp(E, θQ(E, A), T ) has at least 8 roots of order 8 and thus Pa(T ) has

at least a root of order 8. Thus a = 1.
If ord(τ ) = 12, then by (ii) we have a �= −1, 1, 3 (otherwise the order of τ would not be

divisible by 3). If a = 0, then again by (ii) the polynomialD(T, τ ) would only have roots of
orders 1, 2, 3 or 6, which is incompatible for ord(τ ) = 12. Thus, a = 2. ��

3 The Fermat and Klein quartics
The Fermat and the Klein quartics admit models overQ given by the equations C̃0

1 and C̃
0
7

of (1.4), respectively. The Jacobian of C̃0
1 is Q-isogenous to the cube of an elliptic curve

defined over Q (see Proposition 3.1), but this is not true for C̃0
7 , which leads us to choose

a different model for the Klein quartic. Let us define C0
1 := C̃0

1 and

C0
7 : x

4 + y4 + z4 + 6(xy3 + yz3 + zx3) − 3(x2y2 + y2z2 + z2x2)

+ 3xyz(x + y + z) = 0.

The model C0
7 is taken from [7, (1.22)], and its Jacobian is Q-isogenous to the cube of an

elliptic curve defined over Q, as we will prove below. One can explicitly verify that the
curve C0

7 is Q-isomorphic to the Klein quartic by using (3.3) below to show that

ID(Aut((C0
7 )Q(

√−7))) = 〈168, 42〉.
One similarly verifies that C0

1 is Q-isomorphic to the Fermat quartic by using (3.2) below
to show

ID(Aut((C0
1 )Q(i))) � 〈96, 64〉.

Let E0
1 and E0

7 be the elliptic curves over Q given by the equations

E0
1 : y

2z = x3 + xz2, E0
7 : y

2z = x3 − 1715xz2 + 33614z3, (3.1)

with Cremona labels 64a4 and 49a3, respectively. We note that j(E0
1 ) = 26 · 33 and

j(E0
7 ) = −33 ·53, thus E0

1 has CM by the ring of integers ofQ(i), and E0
7 has CM by the ring

of integers of Q(
√−7). For future reference, let us fix some notation. The automorphisms

⎧
⎪⎪⎨

⎪⎪⎩

s1([x : y : z]) = [z : x : y],

t1([x : y : z]) = [−y : x : z],

u1([x : y : z]) = [ix : y : z]

(3.2)

generate Aut((C0
1 )Q), whereas the automorphisms

⎧
⎪⎪⎨

⎪⎪⎩

s7([x : y : z]) = [y : z : x],

t7([x : y : z]) = [−3x − 6y + 2z : −6x + 2y − 3z : 2x − 3y − 6z],

u7([x : y : z]) = [−2x + ay − z : ax − y + (1 − a)z : −x + (1 − a)y − (1 + a)z],
(3.3)
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with

a := −1 + √−7
2

= ζ7 + ζ 2
7 + ζ 4

7 ,

generate Aut((C0
7 )Q).

Proposition 3.1 For d = 1 or 7, the Jacobian of C0
d is Q-isogenous to the cube of E0

d.

Proof For d = 1, we have a nonconstant map ϕ1 : C0
1 → E0

1 , given by

ϕ1([x : y : z]) = [−x3zy : x2z3 : zxy3].

Thus there exists an abelian surface B defined over Q with Jac(C0
1 ) ∼ B × E0

1 . Suppose
that E0

1 was not a Q-factor of B. Then, the subgroup 〈s1, t1〉 ⊆ Aut(C0
1 ), isomorphic to the

symmetric group on 4 letters S4, would inject into (End(Jac(C0
1 )) ⊗ C)×. There are two

options for this C-algebra: it is either GL1(C)r or GL2(C) × GL1(C)s, with r, s ∈ Z≥0. In
either case, we reach a contradiction with the fact that S4 has no faithful representations
whose irreducible constituents have degrees at most 2. Thus, E0

1 is a Q-factor of B and
Jac(C0

1 ) ∼ (E0
1 )2 × E, where E is an elliptic curve defined over Q. Applying the previous

argument again shows E ∼ E0
1 , so Jac(C0

1 ) ∼ (E0
1 )3.

For d = 7, we have a nonconstant map ϕ7 : C0
7 → E0

7 , given by

ϕ7([x : y : z])

= [−7(x + y + z)(3x − y − 9z) : 22 · 72(−x2 − 3xy − xz + 2z2) : (x + y + z)2
]
,

thus Jac(C0
7 ) ∼ B× E0

7 for some abelian surface B defined over Q. Since S4 is contained in
Aut((C0

7 )M) � PSL2(F7), whereM = Q(
√−7), we may reproduce the argument above to

show that Jac(C0
7 )M ∼ (E0

7 )
3
M . It follows that

Jac(C0
7 ) ∼ E × E′ × E′′.

where E, E′, and E′′ are either E0
7 or E

0
7 ⊗ χ , where χ is the quadratic character ofM. But

E0
7 ⊗ χ ∼ E0

7 , since E
0
7 has CM byM, and the result follows. ��

Remark 3.2 To simplify notation, for the remainder of this article d is either 1 or 7, and
we write C0 for C0

d , E
0 for E0

d , M for Q(
√−d), and s, t, u for sd , td , ud . When d is not

specified, it means we are considering both values of d simultaneously.

3.1 Twists

Let C be a k-twist2 of C0, a curve defined over k that is Q-isomorphic to C0. The
set of k-twists of C0, up to k-isomorphism, is in one-to-one correspondence with
H1(Gk,Aut(C0

M)). Given an isomorphism φ : CQ

∼→ C0
Q
, the 1-cocycle defined by

ξ (σ ) := φ(σ φ)−1, for σ ∈ Gk , is a representative of the cohomology class corresponding
to C .
Let K/k (resp. L/k) denote the minimal extension over which all endomorphisms of

Jac(C)Q (resp. all homomorphisms from Jac(C)Q to E0
Q
) are defined. Let K̃/k (resp. L̃/k)

denote theminimal extensionoverwhich all automorphismsofCQ (resp. all isomorphisms
from CQ to C0

Q
) are defined.

2When we need not specify the number field k over which C is defined, we will simply say that C is a twist of C0 . Thus,
by saying that C is a twist of C0 , we do not necessarily mean that C is defined over Q.
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Lemma 3.3 We have the following inclusions and equalities of fields:

M ⊆ K̃ = K ⊆ L̃ = L.

Proof The inclusionM ⊆ K̃ follows from the fact that Tr(Au) ∈ M \ Q, where Au is as in
(3.12) and (3.13). From the proof of Proposition 3.1, we know that Jac(C)K̃ ∼ E3, where E
is an elliptic curve defined over K̃ with CM byM. This implies K = K̃M and L = L̃M, as
in the proof of [12, Lem. 4.2]. ��
We now associate with C0 a finite group G0 that will play a key role in the rest of the

article.

Definition 3.4 Let GC0 := Aut(C0
M) � Gal(M/Q), where Gal(M/Q) acts on Aut(C0

M) in
the obvious way (coefficient-wise action on rational maps). It is straightforward to verify
that

ID(GC0
1
) = 〈192, 956〉, ID(GC0

7
) = 〈336, 208〉. (3.4)

We remark that GC0
7

� PGL(F7).

As in [12, §4.2], we have a monomorphism of groups

λφ : Gal(L/k) = Gal(L̃/k) → GC0 , λφ(σ ) = (ξ (σ ),π (σ )),

where π : Gal(L/k) → Gal(M/Q) is the natural projection (which by Lemma3.3 is well
defined). For each α ∈ Aut(C0

M), let α̃ denote its image by the embedding Aut(C0
M) ↪→

End((E0
M)3). The 3-dimensional representation

θE0 ,C0 : Aut(C0
M) → AutQ(Hom(E0

M, Jac(C0
M)) ⊗M,σ Q),

defined by θE0 ,C0 (α)(ψ) := α̃ ◦ ψ satisfies

θE0 ,C0 ◦ ReskkM λφ � θM,σ (E0, Jac(C)), (3.5)

where ReskkM λφ denotes the restriction of λφ from Gal(L/k) to Gal(L/kM).

Lemma 3.5 Let C be a twist of C0. Then:

Tr θE0 ,C0 =
⎧
⎨

⎩
χ8 if C0 = C0

1 (see Table 3a),

χ3 if C0 = C0
7 (see Table 3b).

Proof In the proof of Lemma3.18, we will construct an explicit embedding

Aut(C0
M) ↪→ End((E0

M)3) ⊗ Q, α �→ α̃.

Fix the basis B = {id×0 × 0, 0 × id×0, 0 × 0 × id} for Hom(E0
M, Jac(C0

M)). In this basis,
with the above embedding the representation θE0 ,C0 is given by

θE0 ,C0 (s) = A−1
s , θE0 ,C0 (t) = A−1

t , θE0 ,C0 (u) = A−1
u ,

where As, At , and Au are as in (3.12) and (3.13). The lemma follows. ��

Remark 3.6 Observe that since det(θE0 ,C0 ) is a rational character of Aut(C0
M), by (3.5) so

is a3(θ ) = det θM,σ (E0, Jac(C)). Thus, Corollary 2.4 can be used to compute the moments
of ai(Jac(C)) for i = 1, 2, 3.
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Proposition 3.7 The fields K and L coincide.3

Proof Note that L/K is the minimal extension over which an isomorphism between E0
Q

and EQ is defined. It follows that L = K (γ 1/n) for some γ ∈ K , with n = 4 for d = 1
and n = 2 for d = 7; see [28, Prop.X.5.4]. In either case, Gal(L/K ) is cyclic of order
dividing 4 (note that Q(ζn) ⊆ K ). Suppose that L �= K , let ω denote the element in
Gal(L/K ) of order 2, and write K 0 = L〈ω〉. Fix an isomorphism ψ1 : E0

L → EL and an
isogeny ψ2 : (EK 0 )3 → Jac(C)K 0 . For i = 1, 2, 3, let ιi : EK 0 → (EK 0 )3 denote the natural
injection to the ith factor. Then, {ψ2 ◦ ιi ◦ψ1}i=1,2,3 constitute a basis of theQ[Gal(L/M)]-
module Hom(E0

L, Jac(C)L) ⊗M,σ Q. Since ωψ1 = −ψ1, ωψ2 = ψ2, and ωιi = ιi, we
have Trace θM,σ (E0, Jac(C))(ω) = −3. But this contradicts (3.5), because there is no α in
Aut(C0

M) for which Trace θE0 ,C0 (α) = −3. ��
Remark 3.8 By Proposition 3.7, and the identities (2.3) and (3.5), the independent and
joint coefficient measures of Jac(C) depend only on the conjugacy class of λφ(Gal(K/k))
in GC0 . In Proposition 3.22, we will see that this also applies to the Sato–Tate group of
Jac(C). For this reason, henceforth, subgroups H ⊆ GC0 will be considered only up to
conjugacy.

Definition 3.9 Let G0 := Aut(C0
M) × 〈1〉 ⊆ GC0 , and for subgroups H ⊆ GC0 , let

H0 := H ∩G0.Wemay viewH0 as a subgroup of Aut(C0
M) � G0 whenever it is convenient

to do so.

Noting that [GC0 : G0] = 2, for any subgroup H of GC0 there are two possibilities:

(c1) H ⊆ G0, in which case [H : H0] = 1;
(c2) H � G0, in which case [H : H0] = 2.

Remark 3.10 Wemake the following observations regardingH ⊆ GC0 and cases (c1) and
(c2):

(i) In Sect. 3.4, we will show that for each subgroup H ⊆ GC0 , there is a twist C of
C0 such that H = λφ(Gal(K/k)). From the definition of λφ , we must then have
H0 = λφ(Gal(K/kM)). The case (c1) corresponds to kM = k , and the case (c2)
corresponds to k �= kM.

(ii) There are 83 subgroupsH ⊆ GC0
1
up to conjugacy, of which 24 correspond to case

(c1) and 59 correspond to case (c2). In Table 4 we list the subgroups in case (c2).
For any subgroup H in case (c1), there exists a subgroup H ′ in case (c2) such that
H ′
0 = H ; thus the subgroups in case (c1) can be recovered from Table 4 by looking

at the column for H0.
(iii) There are 23 subgroupsH ⊆ GC0

7
up to conjugacy, of which 12 correspond to case

(c1) and 11 correspond to case (c2). For all but 3 exceptional subgroups H in case
(c1), there exists a subgroup H ′ in case (c2) such that H ′

0 = H . In Table 5, we list
the subgroups in case (c2) as well as the 3 exceptional subgroups, which appear in
rows #3, #8, and #12 of Table 5. As in (ii), the non-exceptional subgroups in case
(c1) can be recovered from Table 5 by looking at the column for H0, which for the
exceptional groups is equal to H .

3Note that this does not hold for the hyperelliptic curves considered in [12] where [L :K ]may be 1 or 2.
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(iv) The subgroupsH ⊆ GC0 inTables 4 and5 arepresented as follows. First, generators
of H0 ⊆ G0 � Aut(C0

M) are given in terms of the generators s, t, u for Aut(C0
M)

listed in (3.2) and (3.3). For the 3 exceptional subgroups of Table 5 we necessarily
haveH = H0, and for the others,H is identified by listing an element h ∈ Aut(C0

M)
such that

H = H0 ∪ H0 · (h, τ ) ⊆ GC0 , (3.6)

where τ is the generator of Gal(M/Q).

3.2 Moment sequences

We continue with the notation of Sect. 3.1. If C is a k-twist of C0, we define the joint and
independent coefficient moment sequences

Mjoint(C) := {Mn1 ,n2 ,n3 [a(C)]}n1 ,n2 ,n3 , Mindep(C) := {Mn[ai(C)]}j,n,
where a(C) and aj(C) denote a(Jac(C)) and aj(Jac(C)), respectively, as defined in Sect. 1;
recall that thesemoment sequences are defined by and uniquely determine corresponding
measures μI and μIj , respectively.
Using Lemma3.5 and (3.5), we can apply Corollary 2.4 to compute the moments

Mn[aj(C)] for any n, and as explained in Sect. 3.2.2, it is easy to compute Mn1 ,n2 ,n3 [a(C)]
for any particular values of n1, n2, n3. Magma scripts [6] to perform these computations
are available at [11], which we note depend only on the pairs (H,H0) (or just H0 when
k = kM) listed in Tables 4 and 5, and are otherwise independent of the choice of C .

3.2.1 Independent coefficientmoment sequences

We now show that for any twist of the Fermat or Klein quartic, each of the independent
coefficient moment sequences (and hence the corresponding measures) is determined by
the first several moments.

Proposition 3.11 Let C and C ′ be k-twists of C0. For each i = 1, 2, 3 there exists a positive
integer Ni such that if

Mn[ai(C)] = Mn[ai(C ′)] for 1 ≤ n ≤ Ni

then in fact

Mn[ai(C)] = Mn[ai(C ′)] for all n ≥ 1.

Moreover, one can take N1 = 6, N2 = 6, N3 = 10.

Proof For the sake of brevity, we assume k �= kM (the case k = kM is analogous and
easier). It follows from Corollary 2.4 that, for i = 1, 2, 3, the sequence {Mn[ai(C)]}n≥0 is
determined by |a1(C)|, |a2(C)|, a3(C)a2(C)ā1(C), and ō(2), ō(4), ō(8) (note that GC0

1
and

GC0
7
contain no elements of order 12, so we ignore the ō(12) term in the formula for

Mn[a2(C)]). We consider the Fermat and Klein cases separately.
For the Fermat case, with the notation for conjugacy classes as in Table 3a, let x1 (resp.

x2, x3, x4, x5) denote the proportion of elements inGal(L/k) lying in the conjugacy class 1a
(resp. 2a∪2b∪4c∪4d, 3a, 4a∪4b, 8a∪8b); note that by Lemma3.5, we are interested in
the representation with character χ8 listed in Table 3a, which motivates this partitioning
of conjugacy classes.
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Let y1 (resp. y2, y3) denote the proportion of elements in Gal(L/k) which do not lie in
Gal(L/kM) and have order 2 (resp. 4, 8). Applying Corollary 2.4, one finds that for n ≥ 1
we have

M2n[a1(C)] = x1 · 9n
(
2n
n

)
+ (x2 + x5)

(
2n
n

)
+ x4(−1)n

(
2n
n

)
. (3.7)

Evaluating (3.7) at n = 1, 2, 3 yields an invertible linear system in x1, x2 + x5, x4 of
dimension 3. The moments M2n[a1(C)] for n = 1, 2, 3 thus determine x1, x2 + x5, x4 and
therefore determine all the M2n[a1(C)].
For Mn[a2(C)], one similarly obtains an invertible linear system in x1, x2 + x5, x4, y1, y2,

y3 of dimension 6, and it follows that the moments Mn[a2(C)] for n ≤ 6 determine all the
Mn[a2(C)].
For M2n[a3(C)], one obtains an invertible linear system in x1, x2, x3, x4, x5 of dimension

5, and it follows that the moments M2n[a2(C)] for n ≤ 5 determine all the M2n[a3(C)].
In the Klein case one proceeds analogously. With the notation of Table 3b, let x1 (resp.

x2, x3, x4) denote the proportion of elements in Gal(L/k) lying in the conjugacy class 1a
(resp. 2a ∪ 4a, 3a, 7a ∪ 7b), and let y1, y2, y3 be as in the Fermat case. Now x1, x2, x4
determine Mn[a1(C)]; x1, x2, x4 and y1, y2, y3 determine Mn[a2(C)]; and x1, x2, x3, x4
determine Mn[a3(C)]. These proportions are, as before, determined by the first several
moments (never more than are needed in the Fermat case), and the result follows. We
spare the reader the lengthy details. ��

With Proposition 3.11 in hand we can completely determine the moment sequences
Mn[ai(C)] that arise among k-twists C of C0 by computing the moments Mn[ai(C)] for
n ≤ Ni for the 59 pairs (H,H0) listed in Table 4 in the case C0 = C0

1 , and for the 14 pairs
(H,H0) listed in Table 5 (as described in Remark 3.10). Note that each pair (H,H0) with
H �= H0 gives rise to two moments sequences Mn[ai(C)] for each i, one with k �= kM and
one with k = kM.
After doing so, one finds that in fact Proposition 3.11 remains true with N2 = 4 and

N3 = 4. The value of N1 cannot be improved, but one also finds that the sequences
Mn[a2(C)] and Mn[a3(C)] together determine the sequence Mn[a1(C)], and in fact just
two well-chosen moments suffice.

Corollary 3.12 There are 48 (resp. 22) independent coefficient measures among twists of
C0
1 (resp. C0

7 ). In total, there are 54 independent coefficient measures among twists C of
either C0

1 or C0
7 , each of which is uniquely distinguished by the moments M3[a2(C)] and

M4[a3(C)].

The moments M3[a2(C)] andM4[a3(C)] correspond to the joint moments M0,3,0[a(C)]
and M0,0,4[a(C)] whose values are listed in Table 6 for each of the 60 distinct joint coef-
ficient moment measures obtained in the next section (this includes all the independent
coefficient measures).

3.2.2 Joint coefficientmoments

Instead of giving closed formulas for Mn1 ,n2 ,n3 [a(C)], analogous to those derived for
Mn[aj(C)] in Corollary 2.4, let us explain how to compute Mn1 ,n2 ,n3 [a(C)] for specific
values of n1, n2, n3 (this will suffice for our purposes). Suppose k �= kM (the other case is
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similar). By (2.3), we may naturally regard the quantity

a1(C)n1a2(C)n2a3(C)n3 (3.8)

as an element of the formal polynomial ring Q[α1, ᾱ1]/(α1ᾱ1 − 1). The moment
Mn1 ,n2 ,n3 [a(C)] is simply the constant term of (3.8). For N ≥ 0 and each pair (H,H0)
in Tables 4 and 5, one can then compute truncated joint moment sequences

M≤N
joint(C) := {Mn1 ,n2 ,n3 [a(C)] : n1, n2, n3 ≥ 0, n1 + n2 + n3 ≤ N }.

By explicitly computing M≤4
joint(C) for all the pairs (H,H0) listed in Tables 4 and 5, we

obtain the following proposition.

Proposition 3.13 There are at least 54 (resp. 23) joint coefficient measures (and hence
Sato–Tate groups) of twists of the Fermat (resp. Klein) quartic, and at least 60 in total. These
60 joint coefficient measures are listed in Table 6, in which each is uniquely distinguished
by the three momentsM1,0,1[a(C)],M0,3,0[a(C)], andM2,0,2[a(C)].

Computing M≤N
joint(C) with N = 5, 6, 7, 8, does not increase any of the lower bounds

in Proposition 3.13, leading one to believe they are tight. We will prove this in the next
section, but an affirmative answer to the following question would make it easy to directly
verify such a claim.

Question 3.14 Recall the setting of the first paragraph of Sect. 1. In particular, A is an
abelian variety defined over a number field k of dimension g ≥ 1, and μI is the measure
induced on I. By [10, Prop. 3.2] and [10, Rem. 3.3], one expects a finite list of possibilities for
the Sato–Tate group of A. One thus expects a finite number of possibilities for the sequence
{Mn1 ,...,ng [μI ]}n1 ,...,ng . In particular, one expects that there exists Ng ≥ 1, depending only
on g, such that for any abelian variety A′ defined over a number field k ′, if

{Mn1 ,...,ng [μI ]}n1 ,...,ng = {Mn1 ,...,ng [μ′
I ]}n1 ,...,ng (3.9)

for all n1 + · · · + ng ≤ Ng , then (3.9) holds for all n1, . . . , ng ≥ 0. Is there an explicit and
effectively computable upper bound for Ng?

Lacking an answer to Question, 3.14, in order to determine the exact number of distinct
joint coefficientmeasures, we take a different approach. In the next section, wewill classify
thepossible Sato–Tate groupsof twists of theFermat andKleinquartics.This classification
yields an upper bound that coincides with the lower bound of Proposition 3.13.
Table 6 also lists z1 = [z1,0], z2 = [z2,−1, z2,0, z2,1, z2,2, z2,3], and z3 = [z3,0], where zi,j

denotes the density of the set of primes p for which ai(C)(p) = j. For these, we record the
following lemma.

Lemma 3.15 Let C be a k-twist of C0 and let H0 := λφ(Gal(K/kM)). Then,

z1(Jac(C)) =
⎧
⎨

⎩

o(3)
|H0| if M ⊆ k,
1
2 + o(3)

2|H0| if M � k,
z3(Jac(C)) =

⎧
⎨

⎩
0 if M ⊆ k,
1
2 if M � k,

z2(Jac(C)) =
⎧
⎨

⎩

1
|H0| [0, o(3), 0, 0, 0] if M ⊆ k,
1

2|H0| [ō(4), o(3) + ō(6), ō(8), 0, ō(2)] if M � k.
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Here, ō(n) is as in Corollary 2.4 and o(n) denotes the number of elements of order n in H0.

Proof The formula for z1 is immediate from (2.3) and the study of the polynomial (2.6) in
the proof of Corollary 2.4, together from the fact that τ ∈ Gal(L/k) satisfies a1(θ )(τ ) = 0
if and only if τ has order 3 (as can be seen from Table 3).
The formula for z2 follows from a similar reasoning, once one observes that again

a2(θ )(τ ) = 0 if and only if τ has order 3, and the discussion of the end of Corollary 2.4.
Note also that, as GC0 contains no elements of order 12, we have ō(12) = 0.
For z3, it suffices to note that a3(τ ) does not vanish. ��

3.3 Sato–Tate groups

In this section, for any twist C of C0, we explicitly construct ST(Jac(C)), which to simplify
notation we denote by ST(C). The first step is to compute a (non-canonical) embedding

ι : Aut(C0
M) → USp(6)

(see [24] for a very similar approach). Let �1(E0
M) (resp. �1(C0

M)) denote the M-vector
space of regular differentials of E0

M (resp. C0
M). Define

ι1 : Aut(C0
M) → Aut(�1(C0

M)), ι1(α) = (α∗)−1,

where α∗ : �1(C0
M) → �1(C0

M) is the map induced by α.

Remark 3.16 Let f (X, Y ) = 0 be an affine model of the plane quartic C0
M . Then,

{
W1 := X

dX
fY

,W2 := Y
dX
fY

,W3 := dX
fY

}
, (3.10)

with fY = ∂f
∂Y , is a basis of the regular differentials �1(C0

M). If we denote by ωi the regular
differential of the ith copy of E0

M in (E0
M)3, then

{ω1, ω2, ω3} (3.11)

is a basis of the regular differentials �1(E0
M)3.

Consider the isomorphism

ι2 : End(�1(C0
M)) → End(�1(E0

M)3)

induced by the isomorphism �1(C0
M) � �1(E0

M)3 that sendsWi to ωi.
Fix an isomorphism [ ] : M → End(E0

M) ⊗ Q such that for any regular differential
ω ∈ �1(E0

M), one has [m]∗(ω) = mω for every m ∈ M (see [29, Chap. II, Prop. 1.1]) and
then define

ι3 : End(�1(E0
M)3) → End((E0

M)3) ⊗ Q, ι3((mjk )) = ([mjk ]),

where mij ∈ M. Let f1 = i and let f7 = a. For d = 1, 7, let γd ∈ H1((E0
d)

top
C

,Q) be such
that {γd, [fd]∗γd} is a symplectic basis of H1((E0

d)
top
C

,Q) with respect to the cup product,
and use this basis to obtain an isomorphism

�d : End(H1((E0
d)

top
C

,Q)) → GSp2(Q).

Then, define

ι4 : End((E0
d)

3
M) → GSp6(Q), ([mjk ]) → (�d([mjk ]∗)).
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Finally, define the matrices

I2 =
(
1 0
0 1

)
, J2 =

(
0 −1
1 0

)
, K2 =

(
0 −2
1 −1

)
.

Remark 3.17 From now on, we fix the following notation: denote by A3 the 3-diagonal
embedding of a subset A of GL2 in GL6. Throughout this section, we consider the general
symplectic group GSp6/Q, the symplectic group Sp6/Q, and the unitary symplectic group
USp(6) with respect to the symplectic form given by the 3-diagonal embedding (J2)3.

Lemma 3.18 The map

ι : Aut(C0
M) ↪→ι1 End(�1(C0

M)) �ι2 End(�1(E0
M)3) �ι3 End((E0

M)3) ⊗ Q ↪→ι4 GSp6(Q)

is a monomorphism of groups that for C0 = C0
1 is explicitly given by

ι(s1) =
⎛

⎜⎝
0 0 I2
I2 0 0
0 I2 0

⎞

⎟⎠ , ι(t1) =
⎛

⎜⎝
0 −I2 0
I2 0 0
0 0 I2

⎞

⎟⎠ , ι(u1) =
⎛

⎜⎝
−I2 0 0
0 −J2 0
0 0 −J2

⎞

⎟⎠ ,

and for C0 = C0
7 is explicitly given by ι(s7) = ι(s1)T and

ι(t7) = 1
7

⎛

⎜⎝
−3I2 −6I2 2I2
−6I2 2I2 −3I2
2I2 −3I2 −6I2

⎞

⎟⎠ , ι(u7) = 1
7

⎛

⎜⎝
−2I2 − 4K2 3I2 − K2 −I2 − 2K2
3I2 − K2 −I2 − 2K2 −2I2 + 3K2

−I2 − 2K2 −2I2 + 3K2 −4I2 − K2

⎞

⎟⎠ .

Proof We first consider the case C0 = C0
1 . In the basis of (3.10), the elements s∗1, t∗1 , and

u∗
1 of End(�1(C0

M)) are given by the matrices

As1 =
⎛

⎜⎝
0 1 0
0 0 1
1 0 0

⎞

⎟⎠ , At1 =
⎛

⎜⎝
0 1 0

−1 0 0
0 0 1

⎞

⎟⎠ , Au1 =
⎛

⎜⎝
−1 0 0
0 i 0
0 0 i

⎞

⎟⎠ . (3.12)

Thus, in the basis of (3.11), the elements ι2ι1(s1), ι2ι1(t1), ι2ι1(u1) of End(�1(E0
M)3) are

given by thematricesA−1
s1 ,A−1

t1 ,A−1
u1 . It is then enough to check that in the basis {γ1, [i]∗γ1}

we have �1(1) = I2 and �1(i) = J2.
We now assume C0 = C0

7 . In the basis of (3.10), the matrices associated with s∗7, t∗7 , u∗
7

are:

As7 =
⎛

⎜⎝
0 0 1
1 0 0
0 1 0

⎞

⎟⎠ , At7 = 1
7

⎛

⎜⎝
−3 −6 2
−6 2 −3
2 −3 −6

⎞

⎟⎠ , Au7 = 1
7

⎛

⎜⎝
2 + 4a 4 + a 1 + 2a
4 + a 1 + 2a −5 − 3a
1 + 2a −5 − 3a −3 + a

⎞

⎟⎠ .

(3.13)

Thus, in the basis of (3.10), the elements ι2ι1(s7), ι2ι1(t7), ι2ι1(u7) of End(�1
M(E0

7 )3) are
given by thematricesA−1

s7 ,A−1
t7 ,A−1

u7 . It is then enough to check that in the basis {γ7, [a]∗γ7}
we have �7(1) = I2 and �7(a) = K2. But this is clear, since

[a]∗(γ7) = 0 · γ7 + 1 · ([a]∗γ7),
[a]∗([a]∗γ7) = [a2]∗γ7 = [−a − 2]∗γ7 = −2 · γ7 − 1 · ([a]∗γ7),

and this completes the proof. ��
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Remark 3.19 Note that since Aut(C0
M) has finite order, the image of ι is contained in

USp6(Q).

Remark 3.20 It is easy to check that the matrices ι(s1), ι(t1), ι(u1) (resp. ι(s7), ι(t7), ι(u7))
are symplectic with respect to J := (J2)3.

The following theorem gives an explicit description of the Sato–Tate group of a twist
of the Fermat or Klein quartic corresponding to a subgroup H of the group

GC0 := Aut(C0
M) × Gal(M/Q)

associated with C0 (see Definition 3.4).

Theorem 3.21 The following hold:

(i) The monomorphism of Lemma3.18 extends to a monomorphism

ι : GC0 ↪→ USp(6)/〈−1〉
by defining

ι((1, τ )) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1√
2

⎛

⎝i i

i −i

⎞

⎠

3

if C0 = C0
1 ,

⎛

⎝ i −i

0 −i

⎞

⎠

3

if C0 = C0
7 ,

where τ denotes the non-trivial element of Gal(M/Q).
(ii) Let φ : CQ → C0

Q
denote a k-twist of C0 and write H := λφ(Gal(K/k)) ⊆ GC0 . The

Sato–Tate group of Jac(C) is given by

ST(C) = ST(E0, 1)3 · ι(H ),

where

ST(E0, 1) =
{(

cos(2πr) sin(2πr)
− sin(2πr) cos(2πr)

)
| r ∈ [0, 1]

}

if C0 = C0
1 , and

ST(E0, 1) =
{(

cos(2πr) − 1√
7
sin(2πr) 4√

7
sin(2πr)

− 2√
7
sin(2πr) cos(2πr) + 1√

7
sin(2πr)

)
| r ∈ [0, 1]

}

if C0 = C0
7 .

Proof To prove (i) it is enough to note that ι((1, τ ))2 = 1 in USp(6)/〈−1〉 and that ι((1, τ ))
acts by matrix conjugation on ι(Aut(C0

M)) as τ acts by Galois conjugation on Aut(C0
M). If

C0 = C0
1 (resp. C0 = C0

7 ), the latter is equivalent to

ι((1, τ ))−1J2ι((1, τ )) = −J2,
(
resp. ι((1, τ ))−1K2ι((1, τ )) = −I2 − K2

)
,

which is straightforward to check.
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For (ii), we consider only the case kM �= k , since the case k = kM can be easily deduced
from the case kM �= k . Recall from [3] that ST(E0) is a maximal compact subgroup of the
algebraic Sato–Tate group AST(E0) ⊗ C attached to E0. Recall that we have AST(E0) =
L(E0, 1) ∪ L(E0, τ ), where for σ ∈ Gal(kM/k) one has

L(E0, σ ) := {γ ∈ Sp2 | γ −1αγ = σ α for all α ∈ End(E0
Q
) ⊗ Q}. (3.14)

This induces a decomposition ST(E0) = ST(E0, 1)∪ST(E0, τ ) that can be explicitly deter-
mined.
For the case C0 = C0

1 , we have

L(E0, 1)(C) = {A ∈ M2(C)|ATJ2A = J2, A−1J2A = J2}

=
{(

c b
−b c

)
| c, b ∈ C, c2 + b2 = 1

}
.

Thus, a maximal compact subgroup of L(E0, 1)(C) is

ST(E0, 1) =
{(

cos(2πr) sin(2πr)
− sin(2πr) cos(2πr)

)
| r ∈ [0, 1]

}
.

Analogously,

L(E0, τ )(C) = {A ∈ M2(C)|ATJ2A = J2, A−1J2A = −J2}

=
{(

ic ib
ib −ic

)
| c, b ∈ C, c2 + b2 = 1

}
.

Thus, a maximal compact subgroup of L(E0, τ )(C) is

ST(E0, τ ) = ST(E0, 1) · 1√
2

(
i i
i −i

)
. (3.15)

There is a relation between the algebraic Sato–Tate groups AST(C) and AST(C0)
attached to Jac(C) and Jac(C0), respectively, given by [12, Lemma 2.3]. If we put
H0 := λφ(Gal(K/kM)), this relation implies that

AST(C) = L(E0, 1)3 · ι(H0) ∪ L(E0, τ )3 · ι((1, τ )−1(H \ H0)).

Then, (3.15) implies

ST(C) = ST(E0, 1)3
(
ι(H0) ∪ ι(H \ H0)

) = ST(E0, 1)3 · ι(H ). (3.16)

Note that, even if ι(H ) is only defined as an element of USp(6)/〈−1〉, the product
ST(E0, 1)3 · ι(H ) is well defined inside USp(6), provided that −1 ∈ ST(E0, 1)3.
For the case C0 = C0

7 , we have

L(E0, 1)(C) = {A ∈ M2(C)|ATJ2A = J2, A−1K2A = K2}

=
{(

c − b 4b
−2b c + b

)
| c, b ∈ C, c2 + 7b2 = 1

}
.
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Thus, a maximal compact subgroup of L(E0, 1)(C) is

ST(E0, 1) =
{(

cos(2πr) − 1√
7
sin(2πr) 4√

7
sin(2πr)

− 2√
7
sin(2πr) cos(2πr) + 1√

7
sin(2πr)

)
| r ∈ [0, 1]

}
.

Analogously,

ST(E0, τ ) = {A ∈ M2(C)|ATJ2A = J2, A−1K2A = −I2 − K2}

=
{(

ic − ib 4ib
ic
2 + 3ib

2 ib − ic

)
| c, b ∈ C, c2 + 7b2 = 1

}
.

Thus, a maximal compact subgroup of L(E0, τ )(C) is

ST(E0, τ ) = ST(E0, 1) ·
(
i −i
0 −i

)
.

We can now apply [12, Lemma 2.3] exactly as in the case C0 = C0
1 to complete the proof.

��
The previous theorem describes the Sato–Tate group of a twist C of C0. Now suppose

that C and C ′ are both twists of C0. The next proposition gives an effective criterion to
determine when ST(C) and ST(C ′) coincide. Let H ⊆ GC0 (resp. H ′) be attached to C
(resp. C ′) as in Remark 3.10.

Proposition 3.22 If H and H ′ are conjugate in GC0 , then ST(C) and ST(C ′) coincide.

Proof Since the Sato–Tate group is defined only up to conjugacy, is suffices to exhibit
A ∈ GL6(C) such that A−1ST(C)A = ST(C ′). Let g ∈ GC0 be such that H ′ = g−1Hg . It
is straightforward to check that ι(GC0 ) normalizes the group ST(E0, 1)3. In particular, by
Theorem3.21 (ii), we have

ST(C ′) = ST(E0, 1)3ι(H ′) = ι(g)−1ST(E0, 1)3ι(H )ι(g) = ι(g)−1ST(C)ι(g). (3.17)

��

Corollary 3.23 There are at most 23 Sato–Tate groups of twists of the Klein quartic C0
7 .

Proof There are 23 subgroups of GC0
7
, up to conjugacy. ��

In the Fermat case, ST(C) and ST(C ′) may coincide when H and H ′ are not conjugate
in GC0 . We thus require a sharper criterion.

Definition 3.24 Let C and C ′ be twists of C0 and C0′, respectively (here C0 and C0′ both
denote one of C0

1 or C0
7 , but possibly not the same curve in both cases), and let H and H ′

be the corresponding attached groups.We say thatH andH ′ are equivalent if there exists
an isomorphism

� : H → H ′ (3.18)

such that �(H0) = H ′
0 and for every h ∈ H0, we have

Tr(j(h)) = Tr(j(�(h))), (3.19)
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where H0 and H ′
0 are defined as in Definition 3.9 and j denotes compositions ι2 ◦ ι1 of the

embeddings defined in Lemma3.18 for C0 and C0′ (two different maps j if C0 �= C0′).

Proposition 3.25 Let C and C ′ be twists of C0 and C0′. If H and H ′ are equivalent, then
ST(C) and ST(C ′) coincide.

Proof Let us first assume that C0 = C0′. By Theorem3.21 (ii), we can consider the group
isomorphism

� : ST(C) = ST(E0, 1)3 · ι(H ) � ST(C ′) = ST(E0, 1)3 · ι(H ′)

defined by sending an element of the form g = g0ι(h) to g0ι(�(h)). We aim to show that
ST(C) and ST(C ′) are conjugate inside GL6(C). This amounts to showing that ST(C) and
ST(C ′) are equivalent representations of the same abstract group, for which it suffices to
prove the following claim: for every g ∈ ST(C), we have Tr(g) = Tr(�(g)). To prove the
claim distinguish the cases: (a) h ∈ H0, and (b) h ∈ H \ H0.
Suppose we are in case (a). By (3.19), there exists A ∈ GL3(M) such that we have

Aj(h)A−1 = j(�(h)) for every h ∈ H0. Moreover, if we let r denote the composition ι4 ◦ ι3
of the embeddings defined in Lemma3.18, the fact that A has entries in M easily implies
that r(A) centralizes ST(E0, 1), and thus we have

�(g) = g0r(A)ι(h)r(A)−1 = r(A)g0ι(h)r(A)−1 = r(A)gr(A)−1,

from which the claim follows. In case (b), we have that both g and �(g) have trace 0, as
follows for example from the proof of Corollary 2.4 and the Chebotarev Density Theorem.
The claim follows immediately.
If C0 �= C0′, then we may assume without loss of generality that C is a twist of C0

7 and
C ′ is a twist of C0

1 . Now consider the isomorphism

� : ST(C) = ST(E0
7 , 1)3 · ι(H ) � ST(C ′) = ST(E0

1 , 1)3 · ι(H ′)

defined by sending an element of the form g = g0ι(h) to Tg0T−1ι(�(h)), where

T =
(

1 0
−1/

√
7 4/

√
7

)
.

We now note that TST(E0
1 , 1)T−1 = ST(E0

7 , 1), and the proof then proceeds exactly as
above; the hypothesis C0 �= C0′ implies that we have

Tr(j(h)) = Tr(j(�(h))) ∈ Q(
√−1) ∩ Q(

√−7) = Q

for every h ∈ H0, and thus the matrix A from above can be taken in GL3(Q).
��

Corollary 3.26 The following hold:

(i) There are at most 54 distinct Sato–Tate groups of twists of the Fermat quartic.
(ii) There are at most 60 distinct Sato–Tate groups of twists of the Fermat and Klein

quartics.

Proof Determining whether two subgroups H and H ′ are equivalent is a finite problem.
Using the computer algebra program [6], one can determine a set of representatives for
equivalence classes of subgroups H that turn out to have size 54 in case (i), and of size 60
in case (ii). For the benefit of the reader, here we give a direct proof of (ii), assuming (i).



 41 Page 22 of 40 Fité et al. Res Math Sci (2018) 5:41 

The 6 Sato–Tate groups of a twist of the Klein quartic that do not show up as the Sato–
Tate group of a twist of the Fermat quartic are precisely those ruled out by the fact that
H0 contains an element of order 7 (those in rows #10, #13, #14 of Table 5), since 7 does
not divide #GC0

1
.

To show that the other 17 Sato–Tate groups of twists of the Klein quartic also arise for
twists of the Fermat quartic, we proceed as follows. LetH ⊆ GC0

7
correspond to a twist C

of C0
7 such that H0 does not contain an element of order 7, and let H ′ ⊆ C0

1 correspond
to a twist C ′ of C0

1 . In this case, from Table 3a, b, to ensure that H and H ′ are equivalent
it suffices to check that:

(1) There exists an isomorphism � : H → H ′ such that �(H0) = H ′
0;

(2) Tr(j(h)) = 1 for every h ∈ H ′
0 such that ord(h) = 4.

From Tables 4 and 5, it is trivial to check that for every H as above, one can always find a
subgroup H ′ such that condition (1) is satisfied. Condition (2) is vacuous except for rows
#6, #7, #11, and #12 of Table 5. In these cases, a subgroup H ′ for which condition (2) is
also satisfied can be found by noting that both j(t1) and j(t31u1t1u

3
1) have trace 1. More

precisely, one finds that the Sato–Tate groups corresponding to these cases coincide with
the Sato–Tate groups of rows #13, #20, #34, and #55 of Table 4, respectively. ��

Combining the lower and upper bounds proved in this section yields our main theorem,
which we restate for convenience.

Theorem 1 The following hold:

(i) There are 54 distinct Sato–Tate groups of twists of the Fermat quartic. These give
rise to 54 (resp. 48) distinct joint (resp. independent) coefficient measures.

(ii) There are 23 distinct Sato–Tate groups of twists of the Klein quartic. These give rise
to 23 (resp. 22) distinct joint (resp. independent) coefficient measures.

(iii) There are 60 distinct Sato–Tate groups of twists of the Fermat or the Klein quartics.
These give rise to 60 (resp. 54) distinct joint (resp. independent) coefficient measures.

Proof This follows immediately from Corollaries 3.12, 3.23, 3.26, and Proposition 3.13.��

Corollary 3.27 If C and C ′ are twists of C0 corresponding to H and H ′, respectively, then
ST(C) and ST(C ′) coincide if and only if H and H ′ are equivalent.

Remark 3.28 One could have obtained the lower bounds of Proposition 3.13 by com-
puting the joint coefficient measures μI of the Sato–Tate groups explicitly described in
Theorem3.21. This is a lengthy but feasible task that we will not inflict on the reader.
We note that this procedure also allows for case-by-case verifications of the equalities
Mn1 ,n2 ,n3 [μI ] = Mn1 ,n2 ,n3 [a] and thus of the Sato–Tate conjecture in the cases considered.

Remark 3.29 Let Xd denote the set of Sato–Tate groups of twists of C0
d . Theorem3.21

gives a map from the set of subgroups of GC0
d
to Xd that assigns to a subgroup H ⊆ GC0

the Sato–Tate group ST(E0, 1)3 · ι(H ). It also shows that Xd is endowed with a lattice
structure compatible with this map and the lattice structure on the set of subgroups of
GC0

d
. Moreover, Proposition 3.22 says that this map factors via

εd : Cd → Xd,
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where Cd denotes the lattice of subgroups of GC0
d
up to conjugation. Parts (i) and (ii) of

Theorem1 imply that while the map ε7 is a lattice isomorphism, the map ε1 is far from
being injective. Corollary 3.27 can now be reformulated by saying that two subgroups
H, H ′ ∈ C1 lie in the same fiber of ε1 if and only if they are equivalent.

In virtue of the above remark, one might ask about conditions on twists C and C ′

corresponding to distinct but equivalent groupsH andH ′ that ensure their Jacobians have
the same Sato–Tate group. One such condition is that Jac(C) and Jac(C ′) are isogenous
(recall that the Sato–Tate group of an abelian variety is an isogeny invariant). The next
proposition shows that, under the additional hypothesis that K and K ′ coincide, the
previous statement admits a converse.

Proposition 3.30 Let C and C ′ be k-twists of C0. Suppose that the corresponding sub-
groupsH andH ′ of GC0 are equivalent and that the corresponding fields K andK ′ coincide.
Then, Jac(C) and Jac(C ′) are isogenous.

Proof Let S be the set of primes of k which are of bad reduction for either Jac(C) or Jac(C ′)
or lie over the fixed prime �. Note that by [27, Thm. 4.1] the set S contains the primes of k
ramified in K or K ′. By Faltings’ Isogeny Theorem [8, Korollar 2], it suffices to show that
for every p /∈ S, we have

Lp(Jac(C), T ) = Lp(Jac(C ′), T ). (3.20)

If Frobp /∈ GkM , by the proof of Corollary 2.4, both polynomials of (3.20) have the same
expression, which depends only on the order of (the projection of) Frobp in Gal(K/kM).
To obtain (3.20) for those p such that Frobp ∈ GkM , we will show that V�(Jac(C)kM)
and V�(Jac(C ′)kM) are isomorphic as Q�[GkM]-modules. Indeed, the fact that H and H ′

are equivalent pairs implies that the restrictions from Aut(C0
M) to H0 and H ′

0 of the
representations θE0 ,C0 attached toC andC ′ are equivalent. Together with (3.5), this shows
that θM,σ (E0, Jac(C)) and θM,σ (E0, Jac(C ′)) are equivalent representations. The desired
Q�[GkM]-module isomorphism follows now from (2.2). ��

Remark 3.31 LetH andH ′ be any two equivalent pairs attached to twists C and C ′ of the
same curveC0. As one can read fromTables 4 and 5 (and aswewill see in the next section),
one can choose C and C ′ so that K and K ′ coincide. It follows from Proposition 3.30 that
on Table 4 (resp. Table 5) two curves C and C ′ satisfy ST(C) = ST(C ′) if and only if
Jac(C) ∼ Jac(C ′).

We conclude this section with an observation that is not directly relevant to our results
but illustrates a curious phenomenon arising among the twists of the Fermat quartic in
Table 4. Let

C5 : 9x4 + 9y4 − 4z4 = 0 and C8 : 9x4 − 4y4 + z4 = 0

be the curves listed in rows #5 and #8 of Table 4. As can be seen in Table 4, the groups
ST(C5) and ST(C8) coincide, as do the respective fields K . Proposition 3.30 thus implies
that the Jacobians of C5 and C8 are isogenous, but in fact more is true.

Proposition 3.32 The curves C5 and C8 are not isomorphic (over Q), but their reductions
C̃5 and C̃8 modulo p are isomorphic (over Fp) for every prime p > 3.



 41 Page 24 of 40 Fité et al. Res Math Sci (2018) 5:41 

Proof The twists C5 are C8 of C0
1 are not isomorphic because they arise from non-

conjugate subgroups H of GC0
1
. For the reductions C̃5 and C̃8, we first consider the case

p ≡ 1 (mod 4). We claim that −4 is a fourth power modulo p; this follows from the
factorization

x4 + 4 = (x2 − 2x + 2)(x2 + 2x + 2) in Q[x]

together with the fact that x2 − 2x + 2 and x2 + 2x + 2 have discriminant −4. It follows
that C̃5 and C̃8 are both isomorphic to 9x4 + 9y4 + z4 = 0 (over Fp).
Suppose now that p ≡ −1 (mod 4). Then, 9 is a fourth power modulo p since

x4 − 9 = (x2 − 3)(x2 + 3) and
(−3

p

)
= −

(
3
p

)
.

It follows that C̃5 and C̃8 are both isomorphic to x4 + y4 − 4z4 = 0 (over Fp). ��

3.4 Curve equations

In this section, we construct explicit twists of the Fermat and the Klein quartics realizing
each of the subgroups H ⊆ GC0 described in Remark 3.10. Recall that each H has an
associated subgroupH0 := H ∩G0 of index at most 2 (see Definition 3.9), and there exists
a twist corresponding to H with k = kM if and only if H = H0, where, as always, M
denotes the CM field of E0 (the elliptic curve for which Jac(C0) ∼ (E0)3).
Equations for these twists are listed in Tables 4 and 5 in Sect. 4. As explained in

Remark 3.10, in the Fermat case every subgroup H ⊆ GC0
1
with [H : H0] = 1 (case

(c1) of Definition 3.9) arises as H ′
0 for some subgroup H ′ ⊆ GC0

1
for which [H ′ : H ′

0] = 2
(case (c2) of Definition 3.9), and a twist corresponding to H can thus be obtained as the
base change to kM of a twist corresponding to H ′. We thus only list twists for the 59
subgroups H in case (c2), since base changes of these twists to kM then address the 24
subgroups H in case (c1). In the Klein case, we list twists for the 11 subgroups H in case
(c2) and also the 3 exceptional subgroups H in case (c1) that cannot be obtained as base
changes of twists corresponding to subgroups in case (c2); see Remark 3.10.
Our twists are all definedover basefields k ofminimal possible degree, never exceeding 2.

For the 3 exceptional subgroups H in the Klein case noted above, we must have k = kM,
and we use k = M = Q(

√−7). In all but 5 of the remaining cases with [H : H0] = 2,
we use k = Q. These 5 exceptions are all explained by Lemma3.33 below (the second of
the 4 pairs listed in Lemma3.33 arises in both the Fermat and Klein cases, leading to 5
exceptions in total). In each of these 5 exceptions with [H : H0] = 2, the subgroupH0 also
arises as H ′

0 for some subgroup H ′ ⊆ GC0
1
with [H ′ : H ′

0] = 2 that is realized by a twist
with k = Q, allowing H0 to be realized over a quadratic field as the base change toM of a
twist defined over Q.

Lemma 3.33 Twists of the Fermat or Klein quartics corresponding to pairs (H,H0) with
the following pairs of GAP identifiers cannot be defined over a totally real field:

(〈4, 1〉, 〈2, 1〉), (〈8, 1〉, 〈4, 1〉), (〈8, 4〉, 〈4, 1〉), (〈16, 6〉, 〈(8, 2〉).

Proof If k is totally real, then complex conjugation acts trivially on k but not on kM, giving
an involution inH = Gal(K/k) with non-trivial image inH/H0 = Gal(K/k)/Gal(K/kM).
For the four pairs (H,H0) listed in the lemma, no such involution exists. ��
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In addition to listing equations and a field of definition k for a twist C associated
with each subgroup H , in Tables 4 and 5 we also list the minimal field K over which
all the endomorphisms of Jac(C) are defined, and we identify the conjugacy class of ST(C)
and ST(CkM), which depends only on H , not the particular choice of C . As noted in
Remark 3.31, we have chosen twists C so that twists with the same Sato–Tate group
have the same fields K and thus have isogenous Jacobians, by Proposition 3.30 (thereby
demonstrating that the hypotheses of the proposition can always be satisfied).

3.4.1 Constructing the Fermat twists

The twists of the Fermat curve over any number field are parametrized in [23], and we
specialize the parameters in Theorems 4.1, 4.2, 4.5 of [23] to obtain the desired examples.
In every case, we are able to obtain equationswith coefficients inQ, but as explained above,
we cannot always take k = Q; the exceptions can be found in rows #4, #13, #27, #33 of
Table 4. The parameterizations in [23] also allow us to determine the field L over which
all the isomorphisms to (C0

7 )Q are defined, which by Lemma3.3 and Proposition 3.7, this
is the same as the field K over which all the endomorphisms of Jac(C0

7 )Q are defined.
Specializing the parameters for each of the 59 cases with k �= kM involves a lot of easy

but tedious computations. The resulting equations are typically not particularly pleasing
to the eye or easy to format in a table; in order to make them more presentable, we
used the algorithm in [30] to simplify the equations. To give just one example, for the
unique subgroup H with ID(H ) = 〈24, 13〉, the equation we obtain from specializing the
parameterizations in [23] is

14x4 − 84x3y + 392x3z + 588x2y2 − 2940x2yz + 4998x2z2 − 980xy3 + 9996xy2z

− 28812xyz2 + 30184xz3 + 833y4 − 9604y3z + 45276y2z2

− 90552yz3 + 69629z4 = 0,

but the equation listed for this curve in row #48 of Table 4 is

3x4+4x3y+4x3z+6x2y2+6x2z2+8xy3+12xyz2 + 5y4 + 4y3z + 12y2z2 + z4 = 0.

We used of the number field functionality in [6] and [34] to minimize the presentation of
the fields K listed in the tables (in particular, the function polredabs in PARI/GP).

3.4.2 Constructing the Klein twists

Twists of the Klein curve over arbitrary number fields are parametrized in Theorems 6.1
and 6.8 of [23], following the method described in [22], which is based on the resolution
of certain Galois embedding problems. However, in the most difficult case, in which
H = GC0

7
has order 336, this Galois embedding problem is computationally difficult to

resolve explicitly. This led us to pursue an alternative approach that exploits the moduli
interpretation of twists of theKlein curve as twists of themodular curveX(7). As described
in [14, §3] and [25, §4], associated with each elliptic curve E/Q is a twist XE(7) of the
Klein quartic defined over Q that parameterizes isomorphism classes of 7-torsion Galois
modules isomorphic to E[7], as we recall below. With this approach, we can easily treat
the case H = GC0

7
, and we often obtain twists with nicer equations. In one case, we also

obtain a better field of definition k , allowing us to achieve the minimal possible degree
[k : Q] in every case.
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However, as noted in [25, §4.5], not every twist of the Klein curve can be written as
XE(7) for some elliptic curve E/Q, and there are several subgroups H ⊆ GC0

7
for which

the parameterizations in [23] yield a twist of the Klein quartic defined overQ, but no twists
of the formXE(7) corresponding toH exist.We are thus forced to use a combination of the
two approaches. For twists of the formXE(7), we need to determine theminimal field over
which the endomorphisms of Jac(XE(7)) are defined; this is addressed by Propositions 3.34
and 3.35.
Let E/Q be an elliptic curve and let E[7] denote the F7[GQ]-module of Q-valued points

of the kernel of the multiplication-by-7 map [7] : E → E. The Weil pairing gives a GQ-
equivariant isomorphism

∧2 E[7] � μ7, where μ7 denotes the F7[GQ]-module of 7th
roots of unity. Let YE(7) be the curve defined over Q described in [14, §3] and [25,
§4]. For any field extension L/Q, the L-valued points of YE(7) parametrize isomorphism
classes of pairs (E′,φ), where E′/L is an elliptic curve and φ : E[7] → E′[7] is a symplec-
tic isomorphism. By a symplectic isomorphism, we mean a GL-equivariant isomorphism
φ : E[7] → E′[7] such that the diagram

2 E[7]

2 φ

µ7

id

2 E [7] µ7 , (3.21)

commutes, where the horizontal arrows are Weil pairings. Two pairs (E′,φ) and (Ẽ′, φ̃)
are isomorphic whenever there exists an isomorphism ε : E′ → Ẽ′ such that φ̃ = ε ◦ φ.
In [14] it is shown that XE(7), the compactification of YE(7), is a twist of C0

7 , and an
explicitmodel forXE(7) is given by [14, Thm. 2.1], which states that ifE has theWeierstrass
model y2 = x3 + ax + b with a, b ∈ Q, then

ax4+7bx3z+3x2y2−3a2x2z2−6bxyz2−5abxz3+2y3z+3ay2z2+2a2yz3−4b2z4 = 0

(3.22)

is a model for XE(7) defined over Q.
We will use the moduli interpretation of XE(7) to determine the minimal field over

which all of its automorphisms are defined. Recall that the action of GQ on E[7] gives rise
to a Galois representation

�E,7 : GQ → Aut(E[7]) � GL2(F7).

Let �E,7 denote the composition π ◦ �E,7, where π : GL2(F7) → PGL2(F7) is the natural
projection.

Proposition 3.34 The following field extensions of Q coincide:

(i) The minimal extension over which all endomorphisms of Jac(XE(7)) are defined;
(ii) The minimal extension over which all automorphisms of XE(7) are defined;
(iii) The field Q

ker �E,7 ;
(iv) The minimal extension over which all 7-isogenies of E are defined.

In particular, if K is the field determined by these equivalent conditions, then

Gal(K/Q) � Im(�E,7) � Im(�E,7)/(Im�E,7 ∩ F×
7 ).
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Proof The equivalence of (i) and (ii) follows from 3.3, since XE(7) is a twist of C0
7 .

Following [25], let Aut∧(E[7]) denote the group of symplectic automorphisms of E[7].
Given a field extension F/Q, let us write E[7]F for the F7[GF ]-module obtained from E[7]
by restriction from GQ to GF . Note that E[7]Q � (Z/7Z)2. Under this isomorphism, for
any g ∈ Aut∧(E[7]Q), diagram (3.21) becomes

2(Z/7Z)2

det(g)

Z/7Z

id

2(Z/7Z)2 Z/7Z ,

from which we deduce

Aut∧(E[7]Q) � SL2(F7). (3.23)

Each g ∈ Aut∧(E[7]Q) acts on YE(7)Q via (E′,φ) �→ (E′,φ ◦ g−1). This action extends to
XE(7), from which we obtain a homomorphism

Aut∧(E[7]Q) → Aut(XE(7)Q). (3.24)

This homomorphism is non-trivial, since elements of its kernel induce automorphisms of
EQ, but Aut(EQ) is abelian and Aut∧(E[7])Q � SL2(F7) is not, and it cannot be injective,
since the group on the right has cardinality 168 < #SL2(F7) = 336. The only non-trivial
proper normal subgroup of SL2(F7) is 〈±1〉, and thus (3.24) induces a GQ-equivariant
isomorphism

Aut∧(E[7])/〈±1〉 → Aut(XE(7)Q). (3.25)

By transport of structure, we now endow SL2(F7) with a GQ-module structure that
turns (3.23) into aGQ-equivariant isomorphism ϕ : Aut∧(E[7]Q)

∼→ SL2(F7). Now define
� : GQ → Aut(SL2(F7)) to be the representation associated with this GQ-module struc-
ture. Since the action of σ ∈ GQ on each g ∈ Aut∧(E[7]Q) is defined by

(σ g)(P) = σ (g(σ
−1
P)),

for P ∈ E[7], we have �(σ )(ϕ(g)) = �E,7(σ ) · ϕ(g) · �E,7(σ )−1. The GQ-action is trivial on
〈±1〉 and thus descends to PSL2(F7). Let us write PSL2(F7)� for PSL2(F7) endowed with
theGQ-action given by conjugation by �E,7. Then, (3.23)with (3.25) yield aGQ-equivariant
isomorphism

PSL2(F7)� � Aut(XE(7)Q).

This implies that the field described in (ii) coincides with Q
Ker(�), and we now note that

ker(�) = {σ ∈ GQ | �E,7(σ ) · α · �E,7(σ )−1 = α, for all α ∈ PSL2(F7)}
= {σ ∈ GQ | �E,7(σ ) ∈ F×

7 }
= ker(�E,7),

thus Q
ker(�) = Q

ker(�E,7) is the field described in (iii).
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Now let P(E[7]) denote the projective space over E[7], consisting of its 8 linear F7-
subspaces, equivalently, its 8 cyclic subgroups of order 7. The GQ-action on P(E[7]) gives
rise to the projective Galois representation

�E,7 : GQ → Aut(P(E[7])) � PGL2(F7).

The minimal field extension K over which the GK -action on P(E[7]) becomes trivial is
precisely the minimal field over which the cyclic subgroups of E[7] of order 7 all become
Galois stable, equivalently, theminimal field overwhich all the 7-isogenies ofE are defined.
It follows that the fixed field of ker �E,7 identified in (iii) is also the field described in (iv).��

To explicitly determine the field over which all the 7-isogenies of E are defined, we rely
on Proposition 3.35 below, in which �7(X, Y ) ∈ Z[X, Y ] denotes the classical modular
polynomial; the equation for �7(X, Y ) is too large to print here, but it is available in [6]
and can be found in the tables of modular polynomials listed in [33] that were computed
via [5]; it is a symmetric in X and Y , and has degree 8 in both variables.
The equation �7(X, Y ) = 0 is a canonical (singular) model for the modular curve Y0(7)

that parameterizes 7-isogenies. If E1 and E2 are elliptic curves related by a 7-isogeny
then �7(j(E1), j(E2)) = 0, and if j1, j2 ∈ F satisfy �7(j1, j2) = 0, then there exist elliptic
curves E1 and E2 with j(E1) = j1 and j(E2) = j2 that are related by a 7-isogeny. However,
this 7-isogeny need not be defined over F ! The following proposition characterizes the
relationship between F and the minimal field K over which all the 7-isogenies of E are
defined.

Proposition 3.35 Let E be an elliptic curve over a number field k with j(E) �= 0, 1728. Let
F be the splitting field of �7(j(E), Y ) ∈ k[X], and let K be the minimal field over which all
the 7-isogenies of E are defined. The fields K and F coincide.

Proof Let S be the multiset of roots of �7(j(E), Y ) in Q, viewed as a Gk-set in which the
action of σ ∈ Gk preserves multiplicities: we have m(σ (r)) = m(r) for all σ ∈ Gk , where
m(r) denotes the multiplicity of r in S. Let P(E[7]) be the Gk-set of cyclic subgroups 〈P〉
of E[7] of order 7. In characteristic zero every isogeny is separable, hence determined by
its kernel up to composition with automorphisms; this yields a surjective morphism of
Gk-sets ϕ : P(E[7]) → S defined by 〈P〉 �→ j(E/〈P〉) with m(r) = #ϕ−1(r) for all r ∈ S
(note #P(E[7]) = 8 = ∑

r∈S m(r)). The Gk-action on S factors through the Gk-action on
P(E[7]), and we thus have group homomorphisms

Gk
�̄E,7−→ Aut(P(E[7]) φ−→ Aut(S),

whereφ : �̄E,7(Gk ) → Aut(S) is defined byφ(σ )(ϕ(〈P〉) := ϕ(σ (〈P〉)) for eachσ ∈ �̄E,7(Gk ).
We then have K = Q

ker �̄E,7 and F = Q
ker(φ◦�̄E,7), so F ⊆ K .

If E does not have complex multiplication, then m(r) = 1 for all r ∈ S, since otherwise
over Q we would have two 7-isogenies α,β : EQ → E′ with distinct kernels, and then
(α̂ ◦ β) ∈ End(EQ) is an endomorphism of degree 49 which is not ±7, contradicting
End(EQ) � Z. It follows that ϕ and therefore φ is injective, so ker �̄E,7 = ker(φ ◦ �̄E,7) and
K = F .
If E does have complex multiplication, then End(EQ) is isomorphic to an order in an

imaginary quadratic field M. We now consider the isogeny graph whose vertices are j-
invariants of elliptic curves E′/FM with edges (j1, j2) present with multiplicity equal to
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the multiplicity of j2 as a root of �7(j1, Y ). Since j(E) �= 0, 1728, the component of j(EFM)
in this graph is an isogeny volcano, as defined in [31]. In particular, there are at least 6
distinct edges (j(EFM), j2) (edges with multiplicity greater than 1 can occur only at the
surface of an isogeny volcano and the subgraph on the surface is regular of degree at most
2). It follows thatm(r) > 1 for at most one r ∈ S.
The image of �̄E,7 is isomorphic to a subgroup of PGL2(F7), and this implies that if

�̄E,7(σ ) fixes more than 2 elements of P(E[7]) then σ ∈ ker �̄E,7. This necessarily applies
whenever �̄E,7(σ ) lies in ker φ, since it must fix 6 elements, thus ker �̄E,7 = ker(φ ◦ �̄E,7)
and K = F . ��

Corollary 3.36 Let E be an elliptic curve over a number field k with j(E) �= 0, 1728. The
minimal field K over which all the 7-isogenies of E are defined depends only on j(E).

Remark 3.37 The first part of the proof of Proposition 3.35 also applies when j(E) is 0
or 1728, thus we always have F ⊆ K . Equality does not hold in general, but a direct
computation finds that [K :F ] must divide 6 (resp. 2) when j(E) = 0 (resp. 1728), and this
occurs when k = Q.

We now fix E as the elliptic curve y2 = x3 + 6x + 7 with Cremona label 144b1. Note
that �E,7 is surjective; this can be seen in the entry for this curve in the L-functions and
Modular Forms Database [35] and was determined by the algorithm in [32]. It follows
that Gal(Q(E[7])/Q) � GL2(F7), and Proposition 3.34 implies that we then have H :=
Gal(K/Q) � PGL2(F7).
For our chosen curve E, we have a = 6 and b = 7. Plugging these values into equation

(3.22) and applying the algorithm of [30] to simplify the result yields the curve listed in
entry #14 of Table 5 for H = GC0

7
. To determine the field K , we apply Proposition 3.35.

Plugging j(E) = 48384 into �7(x, j(E)) and using PARI/GP to simplify the resulting poly-
nomial, we find that K is the splitting field of the polynomial x8 + 4x7 + 21x4 + 18x + 9.
We applied the same procedure to obtain the equations for C and the polynomials

defining K that are listed in rows #4, #6, #9, #10 of Table 5 using the elliptic curves
E with Cremona labels 2450ba1, 64a4, 784h1, 36a1, respectively, with appropriate
adjustments for the cases with j(E) = 0, 1728 as indicated in Proposition 3.35. The curve
in row #11 is a base change of the curve in row #6, and for the remaining 7 curves we used
the parameterizations in [23].

3.5 Numerical computations

In the previous sections, we have described the explicit computation of several quantities
related to twists C of C0 = C0

d , where C
0
d is our fixed model over Q for the Fermat quartic

(d = 1) or the Klein quartic (d = 7), with Jac(C0) ∼ (E0)3, where E0 = E0
d is an elliptic

curve over Q with CM byM = Q(
√−d) defined in (3.1). These include:

• Explicit equations for twists C of C0 corresponding to subgroups H of GC0 ;
• Definingpolynomials for theminimalfieldK forwhichEnd(Jac(C)K ) = End(Jac(C)Q);
• Independent and joint coefficient moments of the Sato–Tate groups ST(Jac(C)).

These computations are numerous and lengthy, leaving many opportunities for errors,
both by human and by machine. We performed several numerical tests to verify our
computations.
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3.5.1 Naïve point-counting

A simple but effective way to test the compatibility of a twistC/k and endomorphism field
K is to verify that for the first several degree one primes p of k of good reduction for C
that split completely inK , the reduction of Jac(C) modulo p is isogenous to the cube of the
reduction of E0 modulo the prime p := N (p). By a theoremof Tate, it suffices to check that
Lp(Jac(C), T ) = Lp(E0, T )3. For this task, we used optimized brute force point-counting
methods adapted from [20, §3]. The L-polynomial Lp(Jac(C), T ) is the numerator of the
zeta function of C , a genus 3 curve, so it suffices to compute #C(Fp), #C(Fp2 ), #C(Fp3 ),
reducing the problem to counting points on smooth plane quartics and elliptic curves
over finite fields.
To count projective points (x : y : z) on a smooth plane quartic f (x, y, z) = 0 over a finite

field Fq , one first counts affine points (x : y : 1) by iterating over a ∈ Fq , computing the
number r of distinct Fq-rational roots of ga(x) := f (x, a, 1) via r = deg(gcd(xq − x, ga(x))),
and then determining the multiplicity of each rational root by determining the least n ≥ 1
for which gcd(ga(x), g (n)a (x)) = 1, where g (n)a denotes the nth derivative of ga ∈ Fq[x];
note that to compute gcd(xq − x, ga(x)) one first computes xq mod ga(x) using a square-
and-multiply algorithm. Having counted affine points (x : y : 1), one then counts the
Fq-rational roots of f (x, 1, 0) and finally checks whether (1 : 0 : 0) is a point on the curve.
To optimize this procedure, one first seeks a linear transformation of f (x, y, z) that

ensures ga(x) = f (x, a, 1) has degree at most 3 for all a ∈ Fq ; for this, it suffices to translate
a rational point to (1 : 0 : 0), which is always possible for q ≥ 37 (by the Weil bounds).
This yields an O(p3(log p)2+o(1))-time algorithm to compute Lp(Jac(C), T ) that is quite
practical for p up to 212, enough to find several (possibly hundreds) of degree one primes
p of k that split completely in K .
Having computed Lp(Jac(C), T ), one compares this to Lp(E0, T )3; note that the poly-

nomial Lp(E0, T ) = pT 2 − apT + 1 is easily computed via ap = p + 1 − #E0(Fp). If this
comparison fails, then either C is not a twist of C0, or not all of the endomorphisms of
Jac(C)Q are defined overK . The converse is of course false, but if this comparison succeeds
for many degree-1 primes p it gives one a high degree of confidence in the computations
of C and K .4 Note that this test will succeed even when K is not minimal, but we also
check that H � Gal(K/k), which means that so long as C is a twist of C0 corresponding
to the subgroup H ⊆ GC0 , the field K must be minimal.

3.5.2 An average polynomial-time algorithm

In order to numerically test our computations of the Sato–Tate groups ST(C), and to verify
our computation of the coefficient moments, we also computed Sato–Tate statistics for
all of our twists C/k of the Fermat and Klein quartics. This requires computing the L-
polynomials Lp(Jac(C), T ) at primes p of good reduction for C up to some bound N , and
it suffices to consider only primes p of prime norm p = N (p), since nearly all the primes
of norm less than N are degree-1 primes. In order to get statistics that are close to the
values predicted by the Sato–Tate group one needsN to be fairly large.We usedN = 226,
which is far too large for the naive O(p3(log p)2+o(1))-time algorithm described above to
be practical, even for a single prime p ≈ N , let alone all good p ≤ N .

4The objective of this test is not to prove anything, it is simply a mechanism for catching mistakes, of which we found
several; most were our own, but some were due to minor errors in the literature, and at least one was caused by a defect
in one of the computer algebra systems we used.
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In [18], Harvey and Sutherland give an average polynomial-time algorithm to count
points on smooth plane quartics over Q that allows one to compute Lp(Jac(C), T ) mod p
for all good primes p ≤ N in time O(N (logN )3+o(1)), which represents an average cost of
O((log p)4+o(1)) per prime p ≤ N . This is achieved by computing theHasse–Wittmatrices
of the reductions of C modulo p using a generalization of the approach given in [16,17]
for hyperelliptic curves. In [18], they also give an O(√p(log p)1+o(1))-time algorithm to
compute Lp(Jac(C), T ) mod p for a single good prime p, which allows one to handle
reductions of smooth plane quartics C defined over number fields at degree one primes;
this increases the total running time for p ≤ N toO(N 3/2+o(1)), which is still feasible with
N = 226.
Having computed Lp(Jac(C), T ) mod p, we need to lift this polynomial for (Z/pZ)[T ] to

Z[T ], which is facilitated by Proposition 3.38 below. It follows from theWeil bounds that
the linear coefficient of Lp(Jac(C), T ) is an integer of absolute value at most 6√p. For p >

144, the value of this integer is uniquely determined by its valuemodulo p, and for p < 144
we can apply the naive approach described above. This uniquely determines the value in
the column labeled F1(x) in Tables 1 and 2 of Proposition 3.38, which then determines the
values in columns F2(x) and F3(s), allowing the integer polynomial Lp(Jac(C), T ) ∈ Z[T ]
to be completely determined.

Proposition 3.38 For τ in Gal(L/k), let s = s(τ ) and t = t(τ ) denote the orders of τ and
the projection of τ on Gal(kM/k), respectively. For C a twist of C0, the following hold:

(i) The pair (s, t) is one of the 9 pairs listed on Table 1 if C0 = C0
1 , and one of the 9 pairs

listed on Table 2 if C0 = C0
7 .

(ii) For each pair (s, t), let

F(s,t) := F1 × F2 × F3 : [−2, 2] → [−6, 6] × [−1, 15] × [−20, 20] ⊆ R3

be the map defined in Table 1 if C0 = C1
0 or Table 2 if C0 = C7

0 . For every prime p
unramified in K of good reduction for both Jac(C) and E0, we have

F(fL(p),fkM (p))(a1(E0)(p)) = (a1(Jac(C))(p), a2(Jac(C))(p), a3(Jac(C))(p)
)
, (3.26)

where fL(p) (resp. fkM(p)) is the residue degree of p in L (resp. kM).

Proof For every prime p unramified in K of good reduction for both Jac(C) and E0, write
xp := a1(E0)(p) and yp := ±

√
4 − x2p. It follows from the proof of Proposition 2.2 that

a1(Jac(C))(p) = −Re(a1(p))xp + Im(a1(p))yp,

a2(Jac(C)(p)) = Re(a2(p))(x2p − 2) − Im(a2(p))xpyp + |a1(p)|2,
a3(Jac(C)(p)) = −a3(p)(x3p − 3xp) − Re(a1(p)a2(p))xp + Im(a1(p)a2(p))yp,

from which one can easily derive the assertion of the proposition. ��

Tables 7 and 8 show Sato–Tate statistics for the Fermat and Klein twists C/k and
their base changes CkM . In each row, we list moment statistics M101,M030,M202 for the
three momentsM101,M030,M202 that uniquely determine the Sato–Tate group ST(C), by
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Table 1 For each possible pair (s, t), the corresponding values of F(s,t)(x) if C0 = C0
1 . In the

table below, y denotes±√
4 − x2

(s, t) F1(x) F2(x) F3(x)

(1, 1) 3x 3x2 + 3 x3 + 6x

(2, 1) or

⎧
⎨

⎩
−x

x

−x2 + 3

−x2 + 3

x3 − 2x

−x3 + 2x

(3, 1) 0 0 x3 − 3x

(4, 1) or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−x + 2y

x

−x

−x2 + 7 − 2xy

x2 − 1

x2 − 1

x3 − 6x + 4y

x3 − 2x

−x3 + 2x

(8, 1) y −xy + 1 x3 − 4x

(2, 2) 0 3 0

(4, 2) 0 −1 0

(6, 2) 0 0 0

(8, 2) 0 1 0

Table 2 For each possible pair (s, t), the corresponding values of F(s,t)(x) if C0 = C0
7 . In the

table below, y denotes±√
(4 − x2)/7

(s, t) F1(x) F2(x) F3(x)

(1, 1) 3x 3x2 + 3 x3 + 6x

(2, 1) −x −x2 + 3 x3 − 2x

(3, 1) 0 0 x3 − 3x

(4, 1) x x2 − 1 x3 − 2x

(7, 1) − x
2 + 7

2 y − x2
2 + 3 − 7

2 xy x3 − 9
2 x + 7

2 y

(2, 2) 0 3 0

(4, 2) 0 −1 0

(6, 2) 0 0 0

(8, 2) 0 1 0

Proposition 3.13. These were computed by averaging over all good primes of degree one
and norm p ≤ 226.
For comparison, we also list the actual value of each moment, computed using the

method described in Sect. 3.2.2. In every case, the moment statistics agree with the corre-
sponding moments of the Sato–Tate groups to within 1.5 percent, and in almost all cases,
to within 0.5 percent.

4 Tables
In this final section, we present tables of characters, curves, Sato–Tate distributions, and
moment statistics referred to elsewhere in this article. Let us brieflydescribe their contents.
Table 3 lists characters of the automorphism groups of the Fermat and Klein quartics

specified via conjugacy class representatives expressed using the generators s, t, u defined
in (3.2) and (3.3).
Tables 4 and 5 list explicit curve equations for twists C of the Fermat and Klein quar-

tics corresponding to subgroups H of GC0 := Aut(C0
M) � Gal(M/Q), as described in

Remark 3.10. The group H0 := H ∩ Aut(C0
M) is specified in terms of the generators s, t, u

listed in (3.2) and (3.3). When kM = k we have H = H0, and otherwise H is specified by
listing an element h ∈ Aut(C0

M) for which H = H0 ∪ H0 · (h, τ ), where Gal(M/Q) = 〈τ 〉;
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Table3 Character tables of Aut(C0
M). See (3.2) and (3.3) for the generators s, t, u

(A) Aut((C0
1 )M) � 〈96, 64〉

Class 1a 2a 2b 3a 4a 4b 4c 4d 8a 8b

Repr. 1 u2 u2t s u u3 tut t tu tu3

Order 1 2 2 3 4 4 4 4 8 8

Size 1 3 12 32 3 3 6 12 12 12

χ1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 −1 1 1 1 1 −1 −1 −1

χ3 2 2 0 −1 2 2 2 0 0 0

χ4 3 3 −1 0 −1 −1 −1 −1 1 1

χ5 3 3 1 0 −1 −1 −1 1 −1 −1

χ6 3 −1 1 0 −1 − 2i −1 + 2i 1 −1 i −i

χ7 3 −1 1 0 −1 + 2i −1 − 2i 1 −1 −i i

χ8 3 −1 −1 0 −1 + 2i −1 − 2i 1 1 i −i

χ9 3 −1 −1 0 −1 − 2i −1 + 2i 1 1 −i i

χ10 6 −2 0 0 2 2 −2 0 0 0

(B) Aut((C0
7 )M) � 〈168, 42〉

Class 1a 2a 3a 4a 7a 7b

Repr. 1 t s u2tu3tu2 u u3

Order 1 2 3 4 7 7

Size 1 21 56 42 24 24

χ1 1 1 1 1 1 1

χ2 3 −1 0 1 a a

χ3 3 −1 0 1 a a

χ4 6 2 0 0 −1 −1

χ5 7 −1 1 −1 0 0

χ6 8 0 −1 0 1 1

see (3.6). The isomorphism classes of H and H0 are specified by GAP identifiers ID(H )
and ID(H0). The minimal field K over which all endomorphisms of Jac(CQ) are defined is
given as an explicit extension of Q, or as the splitting field Gal(f (x)) of a monic f ∈ Z[x].
In the last 2 columns of Tables 4 and 5 we identify the Sato–Tate distributions of ST(C)
and ST(CkM) by their row numbers in Table 6. Among twists with the same Sato–Tate
group ST(C) (which is uniquely identified by its distribution), we list curveswith isogenous
Jacobians, per Remark 3.31.
In Table 6, we list the 60 Sato–Tate distributions that arise among twists of the Fermat

and Klein quartics. Each component group is identified by its GAP ID, and we list the joint
moments M101, M030, M202 sufficient to uniquely determine the Sato–Tate distribution,
alongwith the first twonon-trivial independent coefficientmoments fora1, a2, a3.We also
list the proportion zi,j of components on which the coefficient ai takes the fixed integer
value j; for i = 1, 3 we list only z1 := z1,0 and z3 := z3,0, and for i = 2 we list the vector
z2 := [z2,−1, z2,0, z2,1, z2,2, z2,3]; see Lemma3.15 for details. There are 6 pairs of Sato–Tate
distributions whose independent coefficient measures coincide; these pairs are identified
by roman letters that appear in the last column.
Tables 7 and 8 list moment statistics for twists of the Fermat and Klein quartics com-

puted over good primes p ≤ 226, along with the corresponding moment values. Twists
with isogenous Jacobians necessarily have the same moment statistics, so we list only one
twist in each isogeny class.
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Table 4 Twists of the Fermat quartic corresponding to subgroups H ⊆ GC0
1
. See (3.2) for

the definitions of s, t, u and (3.6) for the definition of h. We identify STk = ST(C) and
STkM = ST(CkM) by row numbers in Table 6; hereM = Q(i)

# Gen(H0) h ID(H) ID(H0) k K STk STkM

1 id id 〈2, 1〉 〈1, 1〉 Q Q(i) 3 1

C0
1 x4 + y4 + z4

2 id u2t 〈2, 1〉 〈1, 1〉 Q Q(i) 3 1

x4 − 6x2y2 + y4 − 2z4

3 id t3utu 〈2, 1〉 〈1, 1〉 Q Q(i) 3 1

4x4 − y4 − z4

4 t2 t 〈4, 1〉 〈2, 1〉 Q(
√−5) Gal(x4−x2−1) 5 2

12x4 + 40x3y − 100xy3 − 75y4 − 2z4

5 t2 t3utu 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

9x4 + 9y4 − 4z4

6 t2 u2t 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

9x4 − 54x2y2 + 9y4 − 2z4

7 t2 id 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

9x4 + y4 + z4

8 t2 u 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

9x4 − 4y4 + z4

9 u2t id 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

2x4 + 36x2y2 + 18y4 + z4

10 u2t t3utu 〈4, 2〉 〈2, 1〉 Q Q(
√
3, i) 9 2

9x4 + 18x2y2 + y4 − 2z4

11 s u2t 〈6, 1〉 〈3, 1〉 Q Gal(x3−3x−4) 11 4

x4 + 4x3y + 12x2y2 − 12x2yz − 6x2z2 + 36xyz2 + 6y4 − 36y2z2 − 12yz3 + 9z4

12 s id 〈6, 2〉 〈3, 1〉 Q Gal(x6+5x4+6x2+1) 12 4

5x4 + 8x3y − 4x3z + 6x2y2 + 12x2z2 + 12xyz2 + 4xz3 + 2y4 + 4y3z + 6y2z2 + 4yz3 + 2z4

13 t3utu3 tu 〈8, 1〉 〈4, 1〉 Q(
√−5) Gal(x8−2x4−4) 14 6

x4 − 10x3z + 30x2z2 − 2y4 − 100z4

14 t t3utu 〈8, 2〉 〈4, 1〉 Q Gal(x8+15x4+25) 16 6

3x4 − 4x3y + 12x2y2 + 4xy3 + 3y4 − 5z4

15 t3utu3 u2t 〈8, 2〉 〈4, 1〉 Q Gal(x8+15x4+25) 16 6

12x4 + 40x3y − 100xy3 − 75y4 + 10z4

16 t id 〈8, 2〉 〈4, 1〉 Q Gal(x8+15x4+25) 16 6

3x4 + 4x3y + 12x2y2 − 4xy3 + 3y4 + 20z4

17 u2t, t2 t3utu3 〈8, 3〉 〈4, 2〉 Q Gal(x4−6x2+10) 19 8

11x4 + 12x3y + 54x2y2 − 12xy3 + 11y4 − 2z4

18 t2 , u2 u2t 〈8, 3〉 〈4, 2〉 Q Gal(x4−6x2+10) 19 8

x4 + 5x3y − 25xy3 − 25y4 + z4

19 u2t, t2 u2 〈8, 3〉 〈4, 2〉 Q Gal(x4−6x2+10) 19 8

19x4 − 12x3y + 6x2y2 + 12xy3 + 19y4 + 2z4

20 t u2 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 20 6

9x4 − 18x2y2 − 12xy3 − 2y4 + 12z4

21 t t3utu3 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 20 6

9x4 − 18x2y2 − 12xy3 − 2y4 − 3z4

22 t3utu3 u 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 20 6

9x4 + 3y4 − 4z4

23 t3utu3 id 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 20 6

9x4 + 3y4 + z4

24 t3utu u2t 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 21 7
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Table 4 continued

# Gen(H0) h ID(H) ID(H0) k K STk STkM

x4 − 6x2y2 + y4 − 6z4

25 t3utu u 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 21 7

3x4 − 4y4 + z4

26 t3utu id 〈8, 3〉 〈4, 1〉 Q Gal(x4−6x2+12) 21 7

3x4 + y4 + z4

27 t3utu t 〈8, 4〉 〈4, 1〉 Q(
√−2) Gal(x8+9) 23 7

3x3y − 3xy3 − 2z4

28 t2 , u2 id 〈8, 5〉 〈4, 2〉 Q Q(
√
3,

√
5, i) 24 8

9x4 + 25y4 + z4

29 t2 , u2 u 〈8, 5〉 〈4, 2〉 Q Q(
√
3,

√
5, i) 24 8

9x4 + 25y4 − 4z4

30 u2t, t2 t3utu 〈8, 5〉 〈4, 2〉 Q Q(
√
3,

√
5, i) 24 8

x4 + 30x2y2 + 25y4 − 18z4

31 u2t, t2 id 〈8, 5〉 〈4, 2〉 Q Q(
√
3,

√
5, i) 24 8

2x4 + 60x2y2 + 50y4 + 9z4

32 s, u2t id 〈12, 4〉 〈6, 1〉 Q Gal(x6+2x3+2) 26 10

4x3y − 3x2z2 + 12xy2z − 2y4 − 2yz3

33 t3utu, u2 ut 〈16, 6〉 〈8, 2〉 Q(
√−5) Gal(x8−2x4+5) 29 17

x4 − 30x2y2 − 80xy3 − 55y4 − 2z4

34 t3utu3 , u2t u 〈16, 7〉 〈8, 3〉 Q Gal(x8−6x4−8x2−1) 31 18

x4 − 12x2y2 − 32xy3 − 28y4 + z4

35 tu2tut tutu2 〈16, 7〉 〈8, 1〉 Q Gal(x8−8x4−2) 32 15

2x3y − xy3 − z4

36 u2tu u 〈16, 8〉 〈8, 1〉 Q Gal(x8−2) 34 15

x3y + 2xy3 + z4

37 t3utu3 , t u 〈16, 8〉 〈8, 4〉 Q Gal(x8−10x4−100) 33 22

x4 + 10x3y + 30x2y2 − 100y4 − 10z4

38 t, u2 utu 〈16, 11〉 〈8, 3〉 Q Gal(x8−2x4+9) 35 18

4x4 + 4x3y + 6x2y2 − 2xy3 + y4 − 2z4

39 t, u2 id 〈16, 11〉 〈8, 3〉 Q Gal(x8−2x4+9) 35 18

4x4 + 4x3y + 6x2y2 − 2xy3 + y4 + 2z4

40 t3utu3 , u2t id 〈16, 11〉 〈8, 3〉 Q Gal(x8−2x4+9) 35 18

5x4 − 8x3y + 12x2y2 + 16xy3 + 20y4 + 2z4

41 t3utu, u2 id 〈16, 11〉 〈8, 2〉 Q Gal(x8+5x4+25) 36 17

9x4 + 5y4 + z4

42 t3utu, u2 u 〈16, 11〉 〈8, 2〉 Q Gal(x8+5x4+25) 36 17

9x4 + 5y4 − 4z4

43 utu, t3 u2 〈16, 11〉 〈8, 2〉 Q Gal(x8+5x4+25) 36 17

7x4 + 8x3y + 6x2y2 + 8xy3 + 7y4 + 10z4

44 t3utu, u2 u2t 〈16, 13〉 〈8, 2〉 Q Gal(x8−8x4+25) 39 17

x4 + 5x3y − 25xy3 − 25y4 + 2z4

45 t, utu id 〈16, 13〉 〈8, 2〉 Q Gal(x8−8x4+25) 39 17

19x4 + 32x3y + 21x2y2 + 8xy3 + 3y4 + 2y3z + 6y2z2 + 8yz3 + 4z4

46 t3utu3 , t id 〈16, 13〉 〈8, 4〉 Q Gal(x8+12x4+9) 37 22

x4 − 2x3y + 6x2y2 + 4xy3 + 4y4 + 3z4

47 s, u2 u2t 〈24, 12〉 〈12, 3〉 Q Gal(x4−16x−24) 42 25

x4 − 3x3z − 12x2yz + 16xy3 − xz3 + 9y4 + 12y3z + 6y2z2

48 s, u2 id 〈24, 13〉 〈12, 3〉 Q Gal(x6−x4−2x2+1) 43 25

3x4 + 4x3y + 4x3z + 6x2y2 + 6x2z2 + 8xy3 + 12xyz2 + 5y4 + 4y3z + 12y2z2 + z4

49 tu2tut, u2 id 〈32, 7〉 〈16, 6〉 Q Gal(x8−10x4+20) 44 30
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Table 4 continued

# Gen(H0) h ID(H) ID(H0) k K STk STkM

4x4 − 8x3y + 12x2y2 + 2y4 + 5z4

50 u, u2tu3t u2t 〈32, 11〉 〈16, 2〉 Q Gal(x8−2x4+5) 45 28

x4 − 30x2y2 − 80xy3 − 55y4 − 2z4

51 u, t3ut id 〈32, 34〉 〈16, 2〉 Q Gal(x16−4x12+6x8+20x4+1) 47 28

2x4 + 3y4 + z4

52 t3utu, u2 , t u 〈32, 43〉 〈16, 13〉 Q Gal(x8+6x4−9) 48 38

3x4 − 36x2y2 − 96xy3 − 84y4 + 2z4

53 tu2tut, u2 u 〈32, 43〉 〈16, 6〉 Q Gal(x8−10x4+45) 49 30

9x4 + 36x3y − 24xy3 − 4y4 − 10z4

54 utu, u2 , t id 〈32, 49〉 〈16, 13〉 Q Gal(x8+8x4+9) 50 38

x4 + x3y + 24x2y2 + 67xy3 + 79y4 + 2z4

55 s, t id 〈48, 48〉 〈24, 12〉 Q Gal(x6−x4+5x2+1) 53 41

3x4 + 2x3z + 6x2yz + 12xy3 − 30xy2z + 2xz3 − 27y4 + 38y3z + 18y2z2 − 10yz3

56 t, u id 〈64, 134〉 〈32, 11〉 Q Gal(x8−4x4−14) 54 46

x4 − 42x2y2 − 168xy3 − 203y4 + z4

57 s, u u2t 〈96, 64〉 〈48, 3〉 Q Gal(x12+6x4+4) 55 52

6x3z + 3x2y2 + 27x2z2 + 6xy3 + 18xyz2 + 4y4 + 2y3z + 18yz3 − 36z4

58 s, u id 〈96, 72〉 〈48, 3〉 Q Gal(x12+x8−2x4−1) 57 52

x3y − x3z + 3x2y2 + 28xy3 − 84xy2z + 84xyz2 + 28y4 − 56y3z + 98z4

59 s, t, u id 〈192, 956〉 〈96, 64〉 Q Gal(x12+48x4+64) 59 56

44x4 + 120x3y + 36x3z + 60x2yz + 9x2z2 − 200xy3 + xz3 − 150y4 − 15y2z2

Table 5 Twists of the Klein quartic corresponding to subgroups H ⊆ GC0
7
. See (3.3) for the

definitions of s, t, u and see (3.6) for the definition of h. We identify STk = ST(C) and
STkM = ST(CkM) by row numbers in Table 6; hereM = Q(

√−7) and a := (−1 + √−7)/2
# Gen(H0) h ID(H) ID(H0) k K STk STkM
1 id id 〈2, 1〉 〈1, 1〉 Q Q(a) 3 1
C0
7 x4 + y4 + z4 + 6(xy3 + yz3 + zx3) − 3(x2y2 + y2z2 + z2x2) + 3xyz(x + y + z)

2 t id 〈4, 2〉 〈2, 1〉 Q Q(a, i) 9 2
3x4 + 28x3y + 105x2y2 − 21x2z2 + 196xy3 + 147y4 + 147y2z2 − 49z4

3 ustu6 , sutu6s2 – 〈4, 2〉 〈4, 2〉 Q(a) Q(
√
2,

√
3, a) 8 8

x4 + 9ax2y2 + 6ax2z2 + 9y4 + 18ay2z2 + 4z4

4 s t 〈6, 1〉 〈3, 1〉 Q Gal(x3−x2+2x−3) 11 4
x4 + 3x3y − 9x3z + 9x2y2 − 6x2z2 + 18xy3 + 3xy2z − 3xyz2 + y4 + 4y3z − 3y2z2 + 7yz3

5 s id 〈6, 2〉 〈3, 1〉 Q Q(ζ7) 12 4
x3y + xz3 + y3z

6 u2tu3tu2 u5tu2 〈8, 1〉 〈4, 1〉 Q(i) Gal(x8+2x7−14x4+16x+4) 14 6
x4 + 3x2y2 − 3x2z2 + 2y3z + 3y2z2 + 2yz3

7 u2tu3tu2 id 〈8, 3〉 〈4, 1〉 Q Gal(x4−4x2−14) 20 6
12x4 − 80x3y + 60x2y2 − 24x2z2 − 104xy3 + 24xyz2 + 83y4 + 36y2z2 − 2z4

8 su, tu – 〈12, 3〉 〈12, 3〉 Q(a) Gal(x6−147x2+343) 25 25
3x4 + (−18a + 12)x3y + (12a + 4)x3z + (−27a + 36)x2y2 + (9a + 6)x2z2 + 36xy2z + 27y4

+ (54a − 36)y3z + (−54a + 36)y2z2 + (18a − 12)yz3 + (−3a + 2)z4

9 s, t id 〈12, 4〉 〈6, 1〉 Q Gal(x3−x2+5x+1) · Q(a) 26 10
7x3z + 3x2y2 − 6xyz2 + 2y3z − 4z4

10 u id 〈14, 1〉 〈7, 1〉 Q Gal(x7+7x3−7x2+7x+1) 27 13
x3y − 21x2z2 + xy3 − 42xyz2 − 147xz3 + 2y4 + 21y3z + 63y2z2 − 196z4

11 u2tu3tu2 , u5tu2 id 〈16, 7〉 〈8, 3〉 Q Gal(x8+2x7−14x4+16x+4) 31 18
x4 + 3x2y2 − 3x2z2 + 2y3z + 3y2z2 + 2yz3

12 sust, su6s2tu2 – 〈24, 12〉 〈24, 12〉 Q(a) Gal(x4+2x3+6x2−6) · Q(a) 41 41
(3a − 2)x4 + (30a − 20)x3y + (90a − 60)x2y2 + (9a + 6)x2z2 + (150a − 100)xy3 + 60xy2z
+ (12a + 4)xz3 + (150a − 25)y4 + (−45a + 60)y2z2 + (30a − 20)yz3 + 3z4

13 u, s id 〈42, 1〉 〈21, 1〉 Q Gal(x7−2) 51 40
2x3y + xz3 + y3z

14 t, u, s id 〈336, 208〉 〈168, 42〉 Q Gal(x8+4x7+21x4+18x+9) 60 58
2x3y − 2x3z − 3x2z2 − 2xy3 − 2xz3 − 4y3z + 3y2z2 − yz3
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Table 6 The 60 Sato–Tate distributions arising for Fermat and Klein twists

# ID M101 M030 M202 M200 M400 M010 M020 M002 M004 z1 z2 z3

1 〈1, 1〉 54 1215 4734 18 486 9 99 164 47148 0 0 0 0 0 0 0

2 〈2, 1〉 26 611 2374 10 246 5 51 84 23596 0 0 0 0 0 0 0

3 〈2, 1〉 27 621 2367 9 243 6 54 82 23574 1/2 0 0 0 0 1/2 1/2

4 〈3, 1〉 18 405 1578 6 162 3 33 56 15720 2/3 0 2/3 0 0 0 0

5 〈4, 1〉 13 305 1187 5 123 2 26 42 11798 1/2 1/2 0 0 0 0 1/2

6 〈4, 1〉 14 309 1194 6 126 3 27 44 11820 0 0 0 0 0 0 0 a

7 〈4, 1〉 24 443 1614 10 198 5 43 68 14444 0 0 0 0 0 0 0

8 〈4, 2〉 12 309 1194 6 126 3 27 44 11820 0 0 0 0 0 0 0 a

9 〈4, 2〉 13 319 1187 5 123 4 30 42 11798 1/2 0 0 0 0 1/2 1/2

10 〈6, 1〉 8 206 796 4 84 2 18 30 7882 1/3 0 1/3 0 0 0 0

11 〈6, 1〉 9 216 789 3 81 3 21 28 7860 5/6 0 1/3 0 0 1/2 1/2

12 〈6, 2〉 9 207 789 3 81 2 18 28 7860 5/6 0 2/3 0 0 1/6 1/2

13 〈7, 1〉 12 201 732 6 90 3 21 32 6936 0 0 0 0 0 0 0

14 〈8, 1〉 7 155 597 3 63 2 14 22 5910 1/2 0 0 1/2 0 0 1/2

15 〈8, 1〉 12 225 812 6 102 3 23 36 7236 0 0 0 0 0 0 0

16 〈8, 2〉 7 161 597 3 63 2 16 22 5910 1/2 1/4 0 0 0 1/4 1/2 b

17 〈8, 2〉 12 225 814 6 102 3 23 36 7244 0 0 0 0 0 0 0

18 〈8, 3〉 6 158 604 4 66 2 15 24 5932 0 0 0 0 0 0 0 c

19 〈8, 3〉 6 161 597 3 63 2 16 22 5910 1/2 1/4 0 0 0 1/4 1/2 b

20 〈8, 3〉 7 168 597 3 63 3 18 22 5910 1/2 0 0 0 0 1/2 1/2 d

21 〈8, 3〉 12 235 807 5 99 4 26 34 7222 1/2 0 0 0 0 1/2 1/2

22 〈8, 4〉 8 158 604 4 66 2 15 24 5932 0 0 0 0 0 0 0 c

23 〈8, 4〉 12 221 807 5 99 2 22 34 7222 1/2 1/2 0 0 0 0 1/2

24 〈8, 5〉 6 168 597 3 63 3 18 22 5910 1/2 0 0 0 0 1/2 1/2 d

25 〈12, 3〉 4 103 398 2 42 1 9 16 3944 2/3 0 2/3 0 0 0 0

26 〈12, 4〉 4 112 398 2 42 2 12 15 3941 2/3 0 1/3 0 0 1/3 1/2

27 〈14, 1〉 6 114 366 3 45 3 15 16 3468 1/2 0 0 0 0 1/2 1/2

28 〈16, 2〉 12 183 624 6 90 3 21 32 4956 0 0 0 0 0 0 0

29 〈16, 6〉 6 113 407 3 51 2 12 18 3622 1/2 0 0 1/2 0 0 1/2

30 〈16, 6〉 6 116 412 4 54 2 13 20 3636 0 0 0 0 0 0 0

31 〈16, 7〉 3 86 302 2 33 2 10 12 2966 1/2 0 0 1/4 0 1/4 1/2 e

32 〈16, 7〉 6 126 406 3 51 3 16 18 3618 1/2 0 0 0 0 1/2 1/2

33 〈16, 8〉 4 86 302 2 33 2 10 12 2966 1/2 0 0 1/4 0 1/4 1/2 e

34 〈16, 8〉 6 119 406 3 51 2 14 18 3618 1/2 1/4 0 0 0 1/4 1/2

35 〈16, 11〉 3 89 302 2 33 2 11 12 2966 1/2 1/8 0 0 0 3/8 1/2 f

36 〈16, 11〉 6 126 407 3 51 3 16 18 3622 1/2 0 0 0 0 1/2 1/2

37 〈16, 13〉 4 89 302 2 33 2 11 12 2966 1/2 1/8 0 0 0 3/8 1/2 f

38 〈16, 13〉 6 116 414 4 54 2 13 20 3644 0 0 0 0 0 0 0

39 〈16, 13〉 6 119 407 3 51 2 14 18 3622 1/2 1/4 0 0 0 1/4 1/2

40 〈21, 1〉 4 67 244 2 30 1 7 12 2316 2/3 0 2/3 0 0 0 0

41 〈24, 12〉 2 55 206 2 24 1 6 10 1994 1/3 0 1/3 0 0 0 0

42 〈24, 12〉 2 58 199 1 21 1 7 8 1972 5/6 1/4 1/3 0 0 1/4 1/2

43 〈24, 13〉 2 56 199 1 21 1 6 8 1972 5/6 0 2/3 0 0 1/6 1/2

44 〈32, 7〉 3 65 206 2 27 2 9 10 1818 1/2 0 0 1/4 0 1/4 1/2

45 〈32, 11〉 6 95 312 3 45 2 12 16 2478 1/2 1/8 0 1/4 0 1/8 1/2

46 〈32, 11〉 6 95 318 4 48 2 12 18 2496 0 0 0 0 0 0 0

47 〈32, 34〉 6 105 312 3 45 3 15 16 2478 1/2 0 0 0 0 1/2 1/2

48 〈32, 43〉 3 65 207 2 27 2 9 10 1822 1/2 0 0 1/4 0 1/4 1/2

49 〈32, 43〉 3 68 206 2 27 2 10 10 1818 1/2 1/8 0 0 0 3/8 1/2
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Table 6 continued

# ID M101 M030 M202 M200 M400 M010 M020 M002 M004 z1 z2 z3

50 〈32, 49〉 3 68 207 2 27 2 10 10 1822 1/2 1/8 0 0 0 3/8 1/2

51 〈42, 1〉 2 38 122 1 15 1 5 6 1158 5/6 0 2/3 0 0 1/6 1/2

52 〈48, 3〉 4 61 208 2 30 1 7 12 1656 2/3 0 2/3 0 0 0 0

53 〈48, 48〉 1 33 103 1 12 1 5 5 997 2/3 1/8 1/3 0 0 5/24 1/2

54 〈64, 134〉 3 56 159 2 24 2 9 9 1248 1/2 1/16 0 1/8 0 5/16 1/2

55 〈96, 64〉 2 34 104 1 15 1 5 6 828 5/6 1/8 1/3 1/4 0 1/8 1/2

56 〈96, 64〉 2 34 110 2 18 1 5 8 846 1/3 0 1/3 0 0 0 0

57 〈96, 72〉 2 35 104 1 15 1 5 6 828 5/6 0 2/3 0 0 1/6 1/2

58 〈168, 42〉 2 19 52 2 12 1 4 6 366 1/3 0 1/3 0 0 0 0

59 〈192, 956〉 1 21 55 1 9 1 4 4 423 2/3 1/16 1/3 1/8 0 7/48 1/2

60 〈336, 208〉 1 12 26 1 6 1 3 3 183 2/3 0 1/3 1/4 0 1/12 1/2

Table 7 Sato–Tate statistics for Fermat twists over degree one primes p ≤ 226

# ST(Ck ) ST(CkM)

M101 M101 M030 M030 M202 M202 M101 M101 M030 M030 M202 M202

1 26.99 27 620.72 621 2365.83 2367 53.99 54 1214.69 1215 4732.64 4734

4 12.98 13 304.55 305 1185.12 1187 25.98 26 610.36 611 2371.23 2374

5 12.99 13 318.75 319 1185.94 1187 25.99 26 610.61 611 2372.38 2374

11 8.99 9 215.63 216 787.39 789 17.98 18 404.33 405 1575.11 1578

12 9.00 9 206.88 207 788.45 789 18.00 18 404.84 405 1577.24 1578

13 6.98 7 154.56 155 595.23 597 13.97 14 308.25 309 1190.96 1194

14 6.99 7 160.84 161 596.37 597 13.99 14 308.75 309 1192.99 1194

17 5.99 6 160.80 161 596.20 597 11.99 12 308.67 309 1192.65 1194

20 6.99 7 167.74 168 595.89 597 13.98 14 308.54 309 1192.02 1194

24 11.99 12 234.80 235 806.10 807 23.99 24 442.70 443 1612.54 1614

27 11.99 12 220.64 221 805.56 807 23.98 24 442.43 443 1611.64 1614

28 5.99 6 167.77 168 596.03 597 11.98 12 308.60 309 1192.31 1194

32 4.00 4 111.98 112 397.87 398 8.00 8 205.99 206 795.91 796

33 6.00 6 112.89 113 406.55 407 12.00 12 224.88 225 813.43 814

34 3.00 3 85.98 86 301.92 302 6.00 6 157.99 158 603.96 604

35 5.99 6 125.77 126 405.04 406 11.98 12 224.57 225 810.25 812

36 5.99 6 118.74 119 404.95 406 11.98 12 224.52 225 810.06 812

37 4.00 4 85.99 86 301.98 302 8.00 8 158.00 158 604.09 604

38 2.99 3 88.81 89 301.24 302 5.99 6 157.65 158 602.60 604

41 5.99 6 125.74 126 405.90 407 11.98 12 224.53 225 811.97 814

44 6.00 6 118.88 119 406.47 407 11.99 12 224.80 225 813.12 814

46 3.99 4 88.73 89 300.88 302 7.98 8 157.50 158 601.89 604

47 2.00 2 57.88 58 198.48 199 3.99 4 102.77 103 397.05 398

48 1.99 2 55.81 56 198.20 199 3.99 4 102.64 103 396.49 398

49 2.99 3 64.85 65 205.42 206 5.99 6 115.72 116 410.92 412

50 6.00 6 94.92 95 311.67 312 12.00 12 182.87 183 623.48 624

51 5.99 6 104.72 105 310.80 312 11.98 12 182.47 183 621.72 624

52 3.00 3 64.94 65 206.72 207 6.00 6 115.89 116 413.52 414

53 2.99 3 67.84 68 205.30 206 5.99 6 115.71 116 410.68 412

54 3.00 3 67.88 68 206.50 207 5.99 6 115.78 116 413.08 414
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Table 7 continued

# ST(Ck ) ST(CkM)

M101 M101 M030 M030 M202 M202 M101 M101 M030 M030 M202 M202

55 1.00 1 32.93 33 102.73 103 1.99 2 54.86 55 205.50 206

56 2.99 3 55.77 56 158.06 159 5.98 6 94.56 95 316.20 318

57 1.99 2 33.87 34 103.46 104 3.99 4 60.76 61 206.96 208

58 2.00 2 34.93 35 103.71 104 4.00 4 60.87 61 207.45 208

59 1.00 1 20.99 21 54.95 55 2.00 2 33.98 34 109.92 110

Table 8 Sato–Tate statistics for Klein twists over degree one primes p ≤ 226

# ST(Ck ) ST(CkM)

M101 M101 M030 M030 M202 M202 M101 M101 M030 M030 M202 M202

1 26.99 27 620.78 621 2366.04 2367 53.99 54 1214.67 1215 4732.50 4734

2 12.99 13 318.73 319 1185.85 1187 25.98 26 610.52 611 2371.92 2374

3 11.99 12 308.67 309 1192.59 1194 11.99 12 308.67 309 1192.59 1194

4 8.99 9 215.76 216 787.97 789 17.98 18 404.55 405 1576.08 1578

5 9.00 9 206.95 207 788.79 789 18.00 18 404.94 405 1577.71 1578

6 7.00 7 154.90 155 596.58 597 14.00 14 308.88 309 1193.45 1194

7 6.99 7 167.80 168 596.13 597 13.99 14 308.63 309 1192.36 1194

8 4.01 4 103.36 103 399.55 398 4.01 4 103.36 103 399.55 398

9 3.99 4 111.68 112 396.63 398 7.98 8 205.37 206 793.34 796

10 5.99 6 113.83 114 365.24 366 11.99 12 200.67 201 730.55 732

11 3.00 3 85.94 86 301.73 302 6.00 6 157.89 158 603.51 604

12 2.01 2 55.11 55 206.43 206 2.01 2 55.11 55 206.43 206

13 2.00 2 37.97 38 121.81 122 4.00 4 66.94 67 243.65 244

14 1.00 1 11.94 12 25.70 26 2.00 2 18.87 19 51.40 52
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