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A uniform nanometric thin liquid film on a solid substrate can become unstable
due to the action of van der Waals (vdW) forces. The instability leads to dewetting
of the uniform film and the formation of drops. To minimize the total free energy of
the system, these drops coarsen over time until one single drop remains. Here, using a
thermodynamically-consistent framework, we derive a new model for thin films in partial
wetting with a free energy that resembles the Cahn–Hilliard form with a height-dependent
surface tension that leads to a generalized disjoining pressure, and revisit the dewetting
problem. Using both linear stability analysis and nonlinear simulations we show that the
new model predicts a slightly smaller critical instability wavelength and a significantly
(up to six-fold) faster growth rate than the classical model in the spinodal regime; this
faster growth rate brings the theoretical predictions closer to published experimental
observations. During coarsening at intermediate times, the dynamics become self-similar
and model-independent; we therefore observe the same scalings in both the classical
(with and without thermal noise) and new models. Both models also lead to a mean-field
Lifshitz-Slyozov-Wagner (LSW)-type droplet size distribution at intermediate times for
small drop sizes. We, however, observe a skewed drop-size distribution for larger drops
in the new model; while the tail of the distribution follows a Smoluchowski equation,
it is not associated with a coalescence-dominated coarsening, calling into question the
association made in some earlier experiments. Our observations point to the importance
of the height-dependence of surface tension in the early and late stages of dewetting of
nanometric films and motivate new high-resolution experimental observations to guide
the development of improved models of interfacial flows at the nano-scale.

1. Introduction

Understanding the underlying physics of how fluids coat solid substrates has been a
long-standing quest in fluid dynamics (Blake & Ruschak 1979; Ruschak 1985; Quéré 1999;
Weinstein & Ruschak 2004; Snoeijer & Andreotti 2013). With the advent of micro and
nano scale lithography techniques enabling manipulation at increasingly small scales (Xia
& Whitesides 1998; Gates et al. 2005; Qin et al. 2010), and with applications ranging
from micro/nano-fluidics to additive manufacturing (Stone et al. 2004; Schoch et al.
2008; Wijshoff 2010; Kumar 2015), questions arise regarding the relevant description of
fluid physics at the nano-scale and the validity of continuum modeling at such small
scales (Squires & Quake 2005; Bocquet & Charlaix 2010; Colin et al. 2012; Bocquet &
Tabeling 2014; Lohse & Zhang 2015). As the thickness of a liquid film on a solid substrate
becomes smaller than approximately 100 nm, the atoms at the liquid–solid and liquid–
gas interfaces start interacting with each other, giving rise to additional intermolecular
forces that need to be considered in continuum modeling (Israelachvili 2011; Rauscher &
Dietrich 2008; Bonn et al. 2009).
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A uniform nanometric thin liquid film on a solid substrate can become unstable due to
these intermolecular forces. The instability leads to dewetting of the film and formation
of drops. Both liquid and solid-state dewetting at the nano-scale are relevant in many
phenomena (Blossey 2012; Gentili et al. 2012; Thompson 2012; Mukherjee & Sharma
2015; Pierre-Louis 2016) such as pumping liquids using nanowires (Huang et al. 2013),
patterning via self-assembly (Gau et al. 1999; Higgins & Jones 2000; Lopes & Jaeger 2001;
Huang et al. 2005; Segalman 2005; van Hameren et al. 2006; Pokroy et al. 2009; Fowlkes
et al. 2011; Han & Lin 2012; Thiele 2014; Wu et al. 2015; Kong et al. 2015, 2016),
synthesis of core-shell nanoparticle arrays (McKeown et al. 2015), droplet generation
(Yamamoto et al. 2015; Keiser et al. 2017), needle growth (Yu et al. 2013), understanding
slip and rheology of nanometric films (Herminghaus et al. 2002; Fetzer et al. 2005, 2007a;
Bäumchen & Jacobs 2010; Bäumchen et al. 2012; Bäumchen et al. 2014; McGraw et al.
2014), tear film dynamics (Braun 2012), film flow in heat pipes (Kundan et al. 2017),
Rayleigh–Plateau instability of nano-wires or liquids in nano-channels (Molares et al.
2004; Chen et al. 2007), or stability of bubbles/drops in micro/nano-channels (Huerre
et al. 2015; Hammoud et al. 2017).

Reiter (1992, 1993) was the first to experimentally characterize the dewetting of a
nanometric polymer film on a solid substrate. He observed that, initially, some holes
form with a seemingly characteristic wavelength between them; these holes then expand
with a ridge formed at the receding front; these ridges ultimately meet and form a network
of polygonal patterns. The ridges later collapse due to the Rayleigh–Plateau instability,
forming small droplets of approximately uniform size. On a much longer time-scale still,
these droplets can coarsen to ultimately form a single drop; the time-scale associated with
this last stage, however, is very long and not readily accessible within typical experiments.

The theory for instability of thin liquid films under the influence of intermolecular
forces far predates the experimental observations, dating back to Vrij (1966); Sheludko
(1967); Ruckenstein & Jain (1974); Williams & Davis (1982); Wyart & Daillant (1990);
Brochard-Wyart et al. (1993); Sharma & Reiter (1996); Sharma & Khanna (1998); Oron
(2000). The Navier–Stokes equations describing the fluid motion can be greatly simplified
using the long-wave/lubrication approximation when the characteristic lateral length of
the flow is much larger than its characteristic height, an approach that has its origins in
the work of Reynolds to describe the pressure distribution for slider bearings (Reynolds
1886). For ultra-thin liquid films, an additional disjoining pressure term arises due to the
intermolecular interactions between the solid–liquid and liquid–gas interfaces.

Assuming a particular form for the intermolecular forces, one can use linear stability
analysis of the thin film equation to arrive at a prediction for the scaling of the wavelength
of the instability and its growth rate as a function of the initial uniform film thickness
(Oron et al. 1997; Craster & Matar 2009); this regime predicted by the linear theory is
known as the spinodal regime. In apolar systems, typically van der Waals (vdW) forces
are the main long-range attractive interactions, scaling with the film thickness as ∼ 1/h2,
leading to a scaling of ∼ h2 and ∼ 1/h5 for the most unstable wavelength and fastest
growth rate, respectively. These scalings therefore serve as a qualitative benchmark for
the experiments to determine if they are within the spinodal regime. Making quantitative
predictions, however, requires prescribing the exact form of the interface potential.

The observations by Reiter (1992, 1993) led to a wave of experimental studies focusing
on dewetting of thin liquid films. Jacobs et al. (1998) showed that the holes observed in
the experiments of Reiter (1992, 1993) have a Poisson distribution, a signature of the
nucleation regime, and that the scaling of the film-rupture time as a function of film
thickness did not match the theoretical predictions of the spinodal regime; films in the
nucleation regime are linearly stable, yet instabilities can still grow due to the presence of
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defects on the substrate or in the film itself (Jacobs et al. 1998). The first observations of
the spinodal regime were reported by Bischof et al. (1996) and Herminghaus et al. (1998)
using thin gold films on quartz substrates, where the correlations between the holes was
rigorously shown using Minkowski functionals (Mecke 1998; Mantz et al. 2008).

The presence of residual stresses in thin polymer films can further complicate the
dewetting process; Reiter et al. (2005) observed dewetting through nucleation for large
film thicknesses, where the film is expected to be linearly stable. They realized that
the number of holes is a strong function of the ageing time of the polymer before the
temperature is raised above the glass transition temperature to perform the experiments;
they further speculated that the reason behind this observation could be that during
the spin-coating process, the solvent evaporates quickly, leaving the polymer chains in
non-equilibrium configurations leading to a residual stress in the film, which can be
responsible for the unexpected instability of the films. The observations by Reiter et al.
(2005) therefore point to the need for extreme caution in conducting and interpreting
experiments on thin films in spinodal and nucleation regimes (Stange et al. 1997; Thiele
et al. 1998; Xie et al. 1998; Segalman & Green 1999; Meredith et al. 2000; Bollinne et al.
2003; Sharma 2003; Nguyen et al. 2014).

Seemann et al. (2001a) conducted a series of well-controlled experiments using
polystyrene films spin-cast on silicon (Si) wafers. They demonstrated that by tuning
the thickness of the silicone oxide coating of the Si wafer, they could alter the interface
potential and classify three categories of instabilities: 1) spinodal dewetting for linearly
unstable regions, 2) thermal nucleation at the edge of the linearly unstable region,
where thermal fluctuations can overcome the energy barrier leading to dewetting, and
3) heterogeneous nucleation within the linearly stable region, where defects on the
substrate or in the film give rise to the appearance of holes and instabilities. The
spinodal regime is easily distinguishable as it gives rise to a well-defined characteristic
wavelength of instability, from which the interface potential can be reconstructed. The
key feature distinguishing regimes 2 and 3 is that holes continuously appear throughout
the experiment in the thermal nucleation regime, whereas they all form within a limited
time window in the heterogenous nucleation regime.

Becker et al. (2003) observed good agreement between experimental observations and
theoretical predictions, with the caveat that experiments showed a faster rupture time.
To explain the time-scale mismatch between theory and experiments, Mecke & Rauscher
(2005); Grün et al. (2006); Fetzer et al. (2007b) suggested that accounting for thermal
fluctuations is necessary. They showed that thermal noise at the typical temperatures
used in the experiments can speed up the initial rupture process, thereby bringing the
theoretical predictions closer to the experimental observations.

Here, we revisit the theory of thin liquid films in partial wetting and show that the
intermolecular forces in thin films give rise to a height-dependent surface tension. We
show that the free energy of the system can be cast in the following form:

Γ =

∫ (
f(h) +

1

2
κ(h)(hx)2

)
dx , (1.1)

which resembles the Cahn–Hilliard framework for phase separation in binary alloys (Cahn
& Hilliard 1958; Langer 1971), an idea that dates back to van der Waals (Rowlinson
1979; Rowlinson & Widom 2013). Here, f(h) is the bulk free energy and κ(h) is a height-
dependent surface tension term; this feature has important consequences for stability of
liquid films, leading to a slightly smaller wavelength of instability and a faster rupture
rate than the classical theory (by up to 6 times), bringing the theory closer to the
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experimental observations, and suggesting that the height-dependence of surface tension
could play a role along with the presence of thermal noise.

Within the framework of nonequilibrium thermodynamics (Hohenberg & Halperin
1977; Bray 2002; Cross & Hohenberg 1993), our model in non-dimensional form can
be written succinctly as follows (Pahlavan et al. 2015):

∂h

∂t
=

∂

∂x

(
M ∂

∂x

(
δΓ

δh

))
, (1.2)

with the mobility M, and the pressure defined as the variational derivative of the free
energy as P̃ = δΓ/δh = df/dh −

√
κ∂/∂x (

√
κ∂h/∂x); here, h represents the height of

the liquid film, κ is the height-dependent surface tension, and f is the bulk free energy.
Our model leads to a generalized form of the disjoining pressure defined as:

Φ(h, hx, hxx) =
dφµ,1
dh

+
√
φµ,2

∂

∂x

(√
φµ,2

∂h

∂x

)
, (1.3)

with φµ,1(h) and φµ,2(h) as components of the vdW force. As indicated in Eq.(1.3), this
generalized disjoining pressure depends not only on the film height, but also on its slope
and curvature. This model allows describing the spreading and dewetting of drops and
thin films in the true partial-wetting regime (Brochard-Wyart et al. 1991; de Gennes
et al. 2004) without the need to invoke a precursor film (Pahlavan et al. 2015).

Using the new thin-film model, we revisit the instability and dewetting of a partially
wetting thin liquid film on a solid substrate. We first analyze the equilibrium film and
droplet solutions predicted by this model and contrast it with the classical model, showing
that in our model the equilibrium droplets exhibit compact support and show a nonzero
equilibrium angle at the contact line, whereas the classical thin film model cannot admit
solutions with compact support and the equilibrium droplet only asymptotically meets
the substrate through a precursor film (Brenner & Bertozzi 1993). Analyzing the stability
of uniform film solutions, we show that the new model predicts a faster growth rate
and smaller wavelength of instability in the spinodal regime than the classical model.
Upon dewetting, the newly-formed liquid droplets arrive at a metastable state; they are
connected by ultrathin fluid films of nonzero thickness and slowly coarsen to lower the
energy of the system; this coarsening process, however, occurs on very long time scales
as the dynamics is now mainly driven by drainage through the ultrathin films and the
mobility scales as ∼ h3, leading to very small rates of mass transfer between the droplets.
We show that the coarsening process arrives at a self-similar intermediate-asymptotic
behavior (Barenblatt 1996), which is independent of the details of the contact line models
and even in the presence of thermal fluctuations matches the existing predictions for the
classical thin film model (Glasner & Witelski 2003; Gratton & Witelski 2008, 2009). We,
however, observe a skewed drop-size distribution for larger drops in the new model; while
the long-tailed distribution follows a Smoluchowski equation, it is not associated with
a coalescence-dominated coarsening process, calling into question the association made
between coalescence and skewed drop-size distribution in some earlier experiments.

2. Thin film model in partial wetting

2.1. Free energy at equilibrium: emergence of Cahn–Hilliard framework with
height-dependent surface tension

Consider a nanometric thin liquid film sitting on a solid substrate as shown in Fig. 1.
When the film is perturbed, it can become unstable if the solid prefers to be in contact
with the gas phase; in this configuration the uniform film has the lowest interfacial area, so
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Figure 1. Schematic of a liquid film on a solid substrate; films with a height less than ≈ 100
nm can become unstable to infinitesimal perturbations if the liquid does not completely wet
the substrate; in such situations, the instabilities grow and the film dewets from the substrate
forming small droplets that can then coarsen to form larger drops; the shape of the small drops
is governed mainly by surface tension leading to a spherical cap shape with a macroscopic Young
contact angle θY ; deviations from the spherical cap shape can occur due to the intermolecular
forces very close to the contact line. If the height of the drop becomes comparable to the capillary
length lγ =

√
γ/(ρg), gravitational force becomes important leveling the drop and forming a

puddle shape; gravity sets the upper limit h∗ = 2lγ sin (θY /2) for the puddle height.

dewetting lowers the bulk energy of the system at the expense of increasing its interfacial
energy. We can write the energy of a half drop in 1D as:

Γ =

∫ x0

0

φ(h, hx)dx, (2.1)

where φ is the free energy density, x = 0 marks the center of the drop and x = x0 is
where the liquid, solid, and gas meet, i.e., the contact line. At equilibrium, the variation
of the free energy is zero, i.e., δΓ = 0:

δ

(∫ x0

0

(φ(h, hx)− Ph) dx

)
= 0, (2.2)

where the operator δ indicates variation of the functional and the Lagrange multiplier P
is introduced to enforce mass conservation. Expanding the above equation leads to∫ x0

0

(
∂φ

∂h
− P )δhdx+

∫ x0

0

∂φ

∂hx
δhxdx+ φ

∣∣∣
x0

δx0 = 0. (2.3)

Using integration by parts, we can rewrite the second integral in Eq. (2.3) leading to:

δ

∫ x0

0

(φ(h, hx)− Ph) dx =

∫ x0

0

[
∂φ

∂h
− d

dx

(
∂φ

∂hx

)
− P

]
δhdx

+

(
∂φ

∂hx

)
δh
∣∣∣x0

0
+ φ

∣∣∣
x0

δx0 = 0.

(2.4)

We can further use the Taylor expansion for the boundary terms and write δh|x0
=

−δx0 ∂h∂x |x0
.

At equilibrium, the integrand as well as the boundary terms need to be independently
zero. The integrand represents the Euler–Lagrange equation (Yeh et al. 1999; Starov
et al. 2007; Arfken et al. 2013) [

∂φ

∂h
− d

dx

(
∂φ

∂hx

)]
= P. (2.5)

The boundary condition at x = x0 then becomes

−hx
(
∂φ

∂hx

) ∣∣∣
x0

+ φ
∣∣∣
x0

= 0. (2.6)

This equation is known as the transversality condition or the Augmented Young
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equation. Note that the boundary terms at x = 0 automatically cancel out due to the
symmetry conditions.

We therefore have two constraints on the free energy as we approach the contact line:
1) it should satisfy the Augmented Young equation (2.6), and 2) it should recover the
solid–gas free energy at the contact line to allow for a continuous variation of the energy.
Our objective therefore is to find the functional form of the free energy, whose minimizer
at equilibrium satisfies these two conditions. Considering the macroscopic contributions
to the free energy, i.e., gravity and interfacial energies, we can write the free energy as:

ΓM =

∫ x0

0

(
1

2
ρgh2 + (γsl − γsg) + γ

√
1 + h2x

)
dx, (2.7)

where ρgh2/2 represents the gravitational potential energy, γsl, γsg represent the solid–

liquid, and solid–gas interfacial energies, and the term γ
√

1 + h2x represents the liquid–
gas interfacial energy contribution. Neglecting gravity, the Euler–Lagrange Eq. (2.5) will
simplify to the usual Laplace equation for the pressure jump across an interface. We
can now proceed to check whether the macroscopic free energy density satisfies the two
constraints given above for equilibrium.

As the film height goes to zero, φ must be equal to the solid–gas interfacial energy;
in the above representation of the free energy, we have subtracted this contribution,
so we require φ(h = 0) = 0. Therefore as we move close to the contact line, we have
(γsl − γsg) + γ

√
1 + h2x

∣∣
x0

= 0. Here we consider the true partial wetting regime, where
a droplet is surrounded by a dry solid substrate. The same arguments can be applied for
the case of pseudo partial wetting, where the droplet is surrounded by a precursor film
of height hf ; in this case, the height at the contact line goes to hf instead of zero.

The Augmented Young equation further requires the following

−hx

(
γ

hx√
1 + h2x

)∣∣∣∣∣
x0

+ γ
√

1 + h2x

∣∣∣∣∣
x0

+ (γsl − γsg) = 0. (2.8)

Note that this equation can be simplified to give us the Young equation, i.e., (γsl −
γsg) +

(
γ/
√

1 + h2x

)
|x0

= 0, which in turn simplifies to γ cos θY = (γsg − γsl), where θY

is the macroscopic Young contact angle (Young 1805).
Putting the Augmented Young equation and the continuity constraint together leads

to the following conclusion: (
γ

h2x√
1 + h2x

)∣∣∣∣∣
x0

= 0. (2.9)

The only way for this equation to be satisfied is if hx(x0) = 0; if we substitute hx(x0) =
0 back in the Augmented Young equation, we arrive at (γsl − γsg) + γ = 0; using the
Young equation, this leads to γ(1− cos θY ) = 0, indicating that θY = 0. In other words,
the liquid needs to completely wet the surface for the constraints on the free energy to be
satisfied. An alternative way of arriving at this conclusion is to consider a uniform flat
film; the energy of this film is then written as

∫ (
1
2ρgh

2 + (γsl − γsg) + γ
)
dx; as we thin

down the film and its height goes to zero, we need to recover the solid–gas interfacial
energy, therefore we require (γsl − γsg) + γ = 0, which leads to the same result.

The macroscopic contributions to the free energy are therefore insufficient to model the
partial wetting regime; we need to incorporate the physics at the nanoscale close to the
contact line. As the height of the liquid film becomes small, the liquid–solid and liquid–
gas interfaces start to interact with each other, leading to an additional contribution in
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the free energy, commonly known as the disjoining pressure (de Gennes 1985). We can
therefore write the free energy in the following form:

Γ = ΓM + Γµ =

∫ x0

0

(
1

2
ρgh2 + (γsl − γsg) + γ

√
1 + h2x + φµ(h)

)
dx, (2.10)

where φµ(h) represents the intermolecular interactions close to the contact line. We now
can check whether this form of the free energy satisfies the continuity constraint and the
Augmented Young equation. The continuity of the free energy dictates:

(γsl − γsg) + γ
√

1 + h2x

∣∣∣
x0

+ φµ(h = 0) = 0. (2.11)

The Augmented Young equation leads to the following:

−hx

(
γ

hx√
1 + h2x

)∣∣∣∣∣
x0

+ γ
√

1 + h2x

∣∣∣∣∣
x0

+ (γsl − γsg) + φµ(h = 0) = 0. (2.12)

This equation represents the so-called Derjaguin–Frumkin equation (Starov et al.
2007), relating the Young angle to the microscopic forces close to the contact line:
γ cos θY = γ cos θµ+φµ(h = 0), where θµ represents the microscopic angle at the contact
line and we have used hx|x0

= tan θµ and Young equation γsg − γsl = γ cos θY (Yeh
et al. 1999; Starov et al. 2007; Starov 2010). The above two constraints on continuity of
the energy and the augmented Young equation lead to hx(x0) = 0, or θµ = 0. Putting
hx(x0) = 0 back into either of the above equations leads to φµ(h = 0) = S, where
S ≡ γsg − γsl − γ is known as the spreading parameter. Therefore, we arrive at the
conclusion that while the macroscopic Young angle (θY ) can be non-zero, the microscopic
angle at the contact line (θµ) needs to be zero to satisfy the energetic constraints; this
regime is commonly known as pseudo-partial wetting, where a macroscopic liquid drop
is surrounded by a microscopic precursor film (Heslot et al. 1990; Brochard-Wyart et al.
1991; Sharma 1993b). To describe the true partial wetting regime, in which a liquid
droplet sits on a dry surface without a precursor film (de Gennes et al. 2004), additional
physics are needed.

Surface tension at a liquid–gas interface arises due to the collective interactions between
the liquid and gas molecules (Marchand et al. 2011; Israelachvili 2011). In the case of a
uniform thin liquid film of nanometric thickness on a solid substrate, where liquid–gas and
liquid–solid interfaces come very close to each other, the collective interactions also give
rise to an excess free energy in addition to the interfacial tensions. For a nearly uniform
thin film, this excess energy simply depends on the height of the film as represented
by φµ(h) (Israelachvili 2011). Close to the contact line, however, the interfaces are not
parallel, and therefore the collective intermolecular interactions between solid, liquid,
and gas molecules lead to a slope-dependent excess free energy, i.e., φµ(h, hx) for a liquid
wedge sitting on a solid substrate (Hocking 1993; Wu & Wong 2004; Dai et al. 2008).
Using density functional theory, this excess free energy can be represented as a non-local
integral of all the interactions (Keller & Merchant 1991; Merchant & Keller 1992; Getta
& Dietrich 1998; Snoeijer & Andreotti 2008); however, here we use a simplified local
approximation of the excess free energy, which has been shown to agree well with the
non-local formulations (Bauer & Dietrich 1999; Bonn et al. 2009). We can therefore write
the free energy as:

Γ =

∫ x0

0

(
1

2
ρgh2 + (γsl − γsg) + γ

√
1 + h2x + φµ(h, hx)

)
dx . (2.13)
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Continuity of the free energy leads to the following constraint at the contact line:

(γsl − γsg) + γ
√

1 + h2x

∣∣∣
x0

+ φµ(h, hx)
∣∣∣
x0

= 0. (2.14)

The augmented Young equation further becomes:

−hx

(
γ

hx√
1 + h2x

+
∂φµ
∂hx

)∣∣∣∣∣
x0

+ γ
√

1 + h2x

∣∣∣∣∣
x0

+ (γsl − γsg) + φµ(h, hx)

∣∣∣∣∣
x0

= 0. (2.15)

Based on the derivations of Dai et al. (2008), we propose to decompose the vdW
interactions, φµ(h, hx), into two parts: a height-dependent part, and a slope-dependent

part: φµ = (φµ,1(h) +φµ,2(h))−φµ,2(h)
√

1 + (hx)2; using the long-wave approximation,
this form further simplifies to φµ = φµ,1(h) − 1

2φµ,2(h)(hx)2; note that for parallel
interfaces, hx = 0, we recover the original height-dependent potential. An alternative
way to arrive at the proposed form for the vdW forces is based on simple symmetry
arguments: φµ cannot be linearly dependent on hx as it should have the same sign
everywhere around the droplet; therefore it must be a function of even powers of hx
leading, in the simplest case, to the proposed gradient-squared form above.

The augmented Young equation can thus be written as:

−hx

(
(γ − φµ,2)

hx√
1 + h2x

)∣∣∣∣∣
x0

+ γ
√

1 + h2x

∣∣∣∣∣
x0

+ (γsl − γsg) + φµ(h, hx)

∣∣∣∣∣
x0

= 0. (2.16)

Simplifying this equation leads to the following relation: γ cos θY = [γ − φµ,2(h =
0)] cos θµ + [φµ,1(h = 0) + φµ,2(h = 0)]. Combining the augmented Young equation
(2.16) and the continuity constraint (2.14) leads to the following condition at the contact
line: (

(γ − φµ,2)
h2x√

1 + h2x

)∣∣∣∣∣
x0

= 0. (2.17)

To satisfy this condition at the contact line, we either need to have hx(x0) = 0 leading
to a zero microscopic angle as before, or φµ,2(h = 0) = γ, which does not constrain the
value of the microscopic contact angle; this allows the microscopic angle to naturally
arise as part of the solution; this outcome is consistent with the predictions of nonlocal
density functional theory (Snoeijer & Andreotti 2008). The augmented Young equation
(2.16) simplifies to γ cos θY = φµ,1(h = 0) + γ; having φµ,1(h = 0) = S therefore leads to
the Young equation γ cos θY = γsg − γsl.

Allowing for slope-dependence of the vdW forces therefore leads to a form of the free
energy that satisfies all the constraints of the partial-wetting regime. Using the long-wave
approximation, i.e.,

√
1 + (hx)2 ≈ 1 + 1

2 (hx)2, the total Helmholtz free energy can be
written as

Γ =

∫ x0

0

(
f(h) +

1

2
κ(h)(hx)2

)
dx , (2.18)

which, interestingly, resembles the Cahn–Hilliard formulation (Cahn & Hilliard 1958).
The free energy here is divided into a bulk contribution, f(h) = 1

2ρgh
2−S+φµ,1(h), and

an interfacial contribution with a height-dependent interfacial tension, κ(h) = γ−φµ,2(h).
The above constraints on φµ,1 and φµ,2, therefore, lead to f(h = 0) = 0 and κ(h = 0) = 0,
which allow for compactly-supported droplets sitting on a dry solid substrate (Benzi et al.
2011; Cueto-Felgueroso & Juanes 2012; Pahlavan et al. 2015). Note that the height-
dependent interfacial term leads to a new nonlinear term of the Kadar–Parisi–Zhang
(KPZ) type (Kardar et al. 1986); similar forms have also been recently proposed in the
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context of active suspensions (Stenhammar et al. 2013; Wittkowski et al. 2014). The idea
of an order parameter-dependent interfacial tension has been proposed in the context of
binary alloys (Cahn 1961) and polymer blends (de Gennes 1980), and the dependence
of surface tension on height has also been recently proposed in the context of capillary
waves on thin liquid films (MacDowell et al. 2013, 2014). In the context of moving contact
lines, Shikhmurzaev (1997, 2007) has proposed that the idea of a dynamic surface tension
close to the contact line can resolve the moving contact line singularity and lead to a
natural emergence of the dynamic contact angle (Sibley et al. 2015); both these features
are also reproduced in our model (Pahlavan et al. 2015).

2.2. Thin film model: generalized disjoining pressure

Having defined the free energy, we can write the evolution equation for the height of
the liquid film in the form of a mass-conservative gradient flow as (Hohenberg & Halperin
1977; Bray 2002; Cross & Hohenberg 1993):

∂h

∂t
=

∂

∂x

(
M ∂

∂x

(
δΓ

δh

))
, (2.19)

where M represents the mobility, and the variational derivative of the free energy is
defined as δΓ/δh = ∂Γ/∂h− ∂/∂x [∂Γ/∂(hx)] (Anderson et al. 1998).

An alternative way to arrive at the same thin-film model is to start from the Navier–
Stokes equations of motion and simplify them using the lubrication approximation:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ ·T− ρgez, (2.20)

in which ρ is the liquid density, u = (u,w) is the velocity field, P is the isotropic
liquid pressure, T is the stress tensor, and the last term in the equation represents
the gravitational force. The stress tensor can be further decomposed into two parts,
T = τ + M, where τ is the deviatoric stress and M represents the stress due to external
body forces, taken to be zero in this work.

We non-dimensionalize the equations in the following way: x̃ = x/L, z̃ = z/H,
h̃ = h/H, ũ = u/U , w̃ = w/(εU), t̃ = t/

(
µL4/γH3

)
, P̃ = P/

(
γH/L2

)
, and τ̃ =

τ/
(
γH2/L3

)
, where ε = H/L and H, and L represent a characteristic height and length,

respectively. This leads to three dimensionless groups, Re = ρUH/µ, C̃a = Ca/ε3 with
Ca = µU/γ, and Bo = (L/lγ)2 with lγ =

√
γ/ρg as the capillary length.

The above equations of motion then need to be supplemented by boundary conditions
at the wall and at the liquid–gas interface. At the wall, we impose a Navier slip
boundary condition: ũ|z̃=0 = β∂ũ/∂z̃|z̃=0, where β = b/H is the non-dimensional slip
or extrapolation length (Granick et al. 2003; Neto et al. 2005; Lauga et al. 2007); we
also assume no penetration at the wall: w̃|z̃=0 = 0. At the liquid–gas interface, one must
satisfy the kinematic boundary condition w̃s = (1/C̃a)∂h̃/∂t̃ + ũs∂h̃/∂x̃, where ũs and
w̃s are the velocity components at the interface. The stress boundary condition at the
interface can be written as:

([P ]I− [T]) · n = (γK + Φ) n, (2.21)

where [−] represents the jump across the interface, n = (−hx, 1)/
√

1 + h2x is the unit

vector normal to the interface, t = (1, hx)/
√

1 + h2x is the unit vector tangent to the
interface, K = −∇s ·n = hxx/(1+h2x)3/2 represents the curvature with ∇s = (I−nn) ·∇.
The jump in the liquid pressure and stress across the interface is represented by the terms
on the right-hand side of the equation: the first term gives the Laplace pressure jump
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due to the interface curvature, Φ arises due to the intermolecular interactions between
the solid–liquid and liquid–gas interfaces and only becomes relevant when these two
interfaces are closer than a few nanometers (Israelachvili 2011; Bonn et al. 2009).

Using the above non-dimensionalization and long-wave approximation, ε � 1, and
negligible inertia, εRe � 1, and surface tension-dominated flow, C̃a = O(1), the x-
momentum equation reduces to 0 = −∂P̃ /∂x̃ + ∂τ̃zx/∂z̃. Further, assuming ε3Re �
1, the z-momentum equation further simplifies to 0 = −Bo − ∂P̃ /∂z̃. The slip and
kinematic boundary conditions remain unchanged under the lubrication approximation.
The stress boundary condition however, simplifies further; the tangential component
becomes [τ̃zx] = 0 and the normal component reduces to [P̃ ] = −h̃x̃x̃ + Φ̃. The deviatoric
stress is a function of the strain rate ε =

(
∇u +∇uT

)
/2, and for a Newtonian liquid can

be simply written as τij = µ (∂ui/∂xj + ∂uj/∂xi). Using this definition and integrating
the z-momentum equation and applying the normal stress boundary condition, we can
write the liquid pressure as follows P̃ = Bo(h̃− z̃)− h̃x̃x̃ + Φ̃.

Integrating the continuity equation and using the kinematic boundary condition, we

arrive at (1/C̃a)∂h̃/∂t̃+ ∂/∂x̃
∫ h̃
0
ũdz̃ = 0.

Replacing the x-velocity component in the above equation we therefore arrive at the
evolution equation for the height of the film:

∂h̃

∂t̃
=

∂

∂x̃

{[
h̃3

3
+ βh̃2

]
∂P̃

∂x̃

}
. (2.22)

Comparing Eq. (2.22) above and Eq. (2.19) in the main manuscript, it is evident that

they are equivalent if P̃ = δΓ̃ /δh̃ = df̃/dh̃ −
√
κ̃ ∂
∂x̃

(√
κ̃h̃x̃

)
, where Γ̃ = Γ/

(
γH2/L2

)
,

f̃ = f/
(
γH2/L2

)
, and κ̃ = κ/γ; we therefore find the disjoining pressure to be:

Φ̃(h̃, h̃x̃, h̃x̃x̃) =
dφ̃µ,1

dh̃
+

√
φ̃µ,2

∂

∂x̃

(√
φ̃µ,2h̃x̃

)
, (2.23)

where φ̃µ,1 = φµ,1/(γH
2/L2) and φ̃µ,2 = φµ,2/γ, and Φ̃ is a generalized disjoining pressure

that depends not only on the film height, but also on its slope and curvature. Similar
ideas for a generalized disjoining pressure have been proposed in the past: by integrating
the intermolecular interactions in a liquid wedge, Miller & Ruckenstein (1974); Hocking
(1993) and Indeikina & Chang (1999) derived a slope-dependent disjoining pressure,
which was later generalized by Wu & Wong (2004), who incorporated the interactions
with the molecules of the gas phase and showed that it leads to the appearance of a higher
order curvature term in the disjoining pressure. Snoeijer & Andreotti (2008) compared
these results with the predictions of Keller & Merchant (1991) and Merchant & Keller
(1992) and showed that the disjoining pressures do not recover the correct macroscopic
Young contact angle. Dai et al. (2008) later showed that the form derived by Wu & Wong
(2004) does not recover the classical Lifshitz formulation (Dzyaloshinskii et al. 1961) in
the limit of parallel interfaces, and derived a new consistent form for the disjoining
pressure. The functional form of disjoining pressure we have proposed here in Eq. (2.23)
resembles that of Dai et al. (2008), and simplifies to a height-dependent form for parallel
interfaces, recovering the classical height-dependent Lifshitz theory for parallel interfaces.

Information about the detailed form of the disjoining pressure becomes essential in
studying many phenomena such as moving contact lines (Gogotsi et al. 2001; Sibley
et al. 2012, 2015), the final stages of coalescence of drops (Yiantsios & Davis 1991; Leal
2004; Zeng et al. 2007; Li 2016) or in applications such as solidification (Tao et al. 2016).
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Here, we further show the consequences of the form of the disjoining pressure on the
instability and dewetting of thin liquid films in the partial wetting regime.

3. Equilibrium Solutions

Here, we review the analysis of Bertozzi et al. (2001); Glasner & Witelski (2003) and
Gratton & Witelski (2008) for equilibrium solutions of the thin-film equation. We use
the following form of the disjoining pressure for parallel interfaces, consisting of the
“non-retarded” attractive van der Waals interactions and a short-ranged repulsive term:
Π(h) = dφµ,1/dh = A/(h + d0)3(1 − (hf + d0)/(h + d0)), with d0 =

√
A/6πγ ≈ 0.2nm

representing the Born repulsion length (Sharma 1993b,a; de Gennes et al. 2004; Dai
et al. 2008; Israelachvili 2011; Pahlavan et al. 2015); this form of disjoining pressure is
regularized to allow for the film heights to go to zero.

Here, A represents the Hamaker constant, and hf represents the equilibrium or
precursor film thickness. In our model, the height-dependence of surface tension does
allow the droplets to have a compact support without a precursor film, i.e. hf = 0
(Pahlavan et al. 2015) (see Fig. 3 (b)). However, for the purpose of the present study, we
focus on thin films with a surrounding precursor film of non-zero height (hf > 0) since
we are interested in modeling dewetting and coarsening phenomena, and our objective
is to compare the results of the new model with the existing results on the classical
model with a constant surface tension; this regime is commonly known as pseudo-partial
wetting (Brochard-Wyart et al. 1991). We can simplify the form of the disjoining pressure
by shifting the heights by d0, i.e. h̄ = h+d0, which leads to Π(h) = A/h3(1−hf/h), where
we have dropped the overbars for convenience of notation. Since both components of the
disjoining pressure arise from the same source (intermolecular interactions between the
interfaces), we believe it is reasonable to assume they would follow the same scalings; we
therefore define φµ,2(h) = γφµ,1(h)/φµ,1(hf ), leading to κ(h) = γ (1− φµ,1(h)/φµ,1(hf )),
thereby κ(hf ) = 0. We take A = −6h2fS, which leads to φµ,1(hf ) = S.

With the above definition of the disjoining pressure, we can now write the bulk free
energy as follows:

f̃(h̃) =
1

2
Bo h̃2 − δ2

h̃2

(
1

2
− δ

3h̃

)
+

1

6
, (3.1)

where δ = hf/H is the non-dimensional precursor film height, and we have chosen
L2/H2 = γh2f/A = 1/ (6(1− cos θY )).

At equilibrium, the thin film Eq. (2.19) simplifies to:

P̃ =
δΓ̃

δh̃
=
df̃

dh̃
−
√
κ̃
d

dx̃

(
√
κ̃
dh̃

dx̃

)
, (3.2)

where P̃ is a constant pressure; the fixed points of the above equation are the solutions
of P̃ = df̃/dh̃. The typical form of the dimensionless free energy f̃(h̃) is shown in
Fig. 2. Within the range P̃node < P̃ < P̃peak, we can find three fixed points. Using a

singular perturbation analysis in the limit δ → 0, we find these points to be: h̃m = δ +
δ2P +δ3

(
4P 2 − Bo

)
+O(δ4), h̃c = P−1/3δ2/3−(1/3)δ+1/3

(
BoP−5/3 − 2/3P 1/3

)
δ4/3 +

O(δ5/3), and h̃α = P/Bo−(Bo2/P 3)δ2+(Bo3/P 4)δ3+O(δ4), where, to leading order, only
the equilibrium film thickness is independent of the pressure. The fixed points obtained
here are not affected by the height-dependence of the surface tension κ̃(h̃) as they only
depend on the bulk free energy (Gratton & Witelski 2008). The pressure in the liquid
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Figure 2. (a) The bulk free energy f̃(h̃) given by Eq. (3.1) with Bo = 2.2× 10−10 and δ = 0.1
(solid line). The blue dashed line shows the Maxwell double-tangent construction, which is

tangent to the bulk free energy at h̃∗
m, the precursor film thickness, and at h̃∗

α, the puddle
height. The inset shows a zoomed-in view of the bulk free energy for small heights. Here, an
arbitrary line with slope P̃ ∗ < P̃ < P̃peak is tangent to the free energy at h̃m and intersects

it at h̃max (blue dashed line). (b) The bulk free energy redrawn on a semilog scale. While
vdW forces act at nano-scale, gravity only becomes relevant on the mm-scale; this 6 orders of
magnitude separation of scales is shown here. Note that the tangent lines become curved in
this semilog representation. (c) The bulk pressure defined as df̃/dh̃. Droplet solutions exist for

P̃ ∗ < P̃ < P̃peak, where a typical constant pressure line (P̃ =constant) intersects the curve at

three fixed points corresponding to the three branches h̃m, h̃c, and h̃α as indicated. Uniform
films on the h̃c branch are linearly unstable since their corresponding d2f̃/dh̃2 < 0. The h̃max

branch shows the maximum height of the droplet solutions surrounded by a corresponding film
of thickness h̃m; these are solutions homoclinic to h̃m, where a line with slope P̃ is tangent to
the bulk free energy at h̃m and intersects it at h̃max (the blue dashed tangent line). In the limit

of very large drops (i.e., puddles) h̃m and h̃max approach h̃∗
m and h̃∗

α respectively and we recover

the common tangent line with slope P̃ ∗ (the blue dashed tangent line) (see also Brochard-Wyart
et al. (1991); Gratton & Witelski (2008); de Gennes et al. (2004)).

phase, however, can be affected by the non-constant surface tension, as we will show
later; this pressure change will then affect the fixed points.

The heights h̃m and h̃α are saddle points, whereas h̃c is a center (Gratton & Witelski
2008). In the range of P̃node < P̃ < P̃peak, we can find three types of solutions that are
bounded in height (Thiele et al. 2001b; Gratton 2008): localized hole/dimple solutions
that are homoclinic to h̃α in the range P̃node < P̃ < P̃ ∗, droplet solutions that are
homoclinic to h̃m in the range P̃ ∗ < P̃ < P̃peak, and heteroclinic orbits from h̃m to h̃α
at P̃ = P̃ ∗. To obtain the maximum height of these droplets, we integrate Eq. (3.2) as
follows:

R(h̃) ≡ 1

2

κ̃(h̃)

(
dh̃

dx̃

)2
 = f̃(h̃)− f̃(h̃m)− P̃ (h̃− h̃m), (3.3)
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where at the maximum height of the drop we have dh̃/dx̃ = 0, i.e., R(h̃max) = 0; in the

limit δ → 0, we can then obtain h̃max = (1/Bo)(P̃−
√
P̃ 2 − Bo/3)+(P̃ /

√
P̃ 2 − Bo/3)δ+

O(δ2), which is the branch shown in Fig. 2 (c). As the pressure decreases towards P̃ ∗,
a saddle–saddle heterogeneous orbit appears between h̃m and h̃α, and the h̃max branch
intersects with the h̃α branch. At this point, we then obtain P̃ ∗ =

√
Bo/3 + (Bo/2) δ +

O(δ2); this critical value of pressure is the slope of the Maxwell common tangent line
(Rowlinson & Widom 2013) shown in Fig. 2 and satisfies the following equations:

P̃ ∗ =
f̃(h̃∗α)− f̃(h̃∗m)

h̃∗α − h̃∗m
, (3.4a)

P̃ ∗ =
df̃

dh̃

∣∣∣
h̃∗
m

=
df̃

dh̃

∣∣∣
h̃∗
α

, (3.4b)

where h̃∗m and h̃∗α are the values of h̃m and h̃α as calculated at pressure P̃ = P̃ ∗.
At P̃node and P̃peak, the h̃c branch merges with the other two branches and we

have d2f̃/dh̃2 = 0. Following the procedure above, in the limit of δ → 0 and using a
singular perturbation analysis, we find the corresponding film heights: h̃peak = (4/3)δ +

(4/3)
5

(Bo/3)δ3 +O(δ7), and h̃node = (3/Bo)
1/4

δ1/2− (1/3)δ+O(δ2). which lead to the

following pressures: P̃peak = (27/256δ)+(4Bo/3)δ+O(δ3), and P̃node = 4 (Bo/3)
3/4

δ1/2−
(Bo/3)δ−2/3 (Bo/3)

5/4
δ3/2 +O(δ2), which mark the upper and lower boundaries of the

pressure range for which equilibrium droplet solutions exist. Note that the results we have
obtained so far are only indirectly affected by the height-dependence of surface tension
through the change of liquid pressure at equilibrium, as we show later.

The droplet solutions of Eq. (3.2) can be divided into three regions: (i) core, (ii) contact
line, and (iii) equilibrium film. Here, we focus on the limit of small drops, where gravity
can be neglected (Bo → 0). In the core (region (i)), away from the contact line and
in the absence of intermolecular forces, surface tension is the dominant force, and Eq.
(3.2) simplifies to P̃ = −h̃x̃x̃, leading to a parabolic profile, h̃core = 1

2 P̃
(
w̃2 − x̃2

)
, where

w̃ is the effective width of the droplet. The maximum height of the core region at its
center x̃ = 0 is therefore h̃max = P̃ w̃2/2. Before, we derived the maximum height of the
droplet in the presence of gravity and intermolecular forces. In the limit of zero Bond
number, we can then show h̃max = 1/(6P̃ ) + δ + O(δ2); equating this to the maximum
height of the parabolic core, we find the effective width of the drop to leading order:
w̃ = 1/(

√
3P̃ ). In the second region (region (ii)), i.e., the region near the contact line,

the drop profile asymptotically matches the droplet core to the equilibrium film outside.
In this region, we use the following transformation h̃(x̃) = δH̃(x̃) with x̃ = −w̃+ δz̃, and
defining f̃(h̃) ≡ F̃ (H̃) we re-scale Eq. (3.2) to leading order as follows:

dF̃

dH̃
−

(
1− F̃ (H̃)

F̃ (1)

)
H̃z̃z̃ +

1

2F̃ (1)

dF̃

dH̃
H̃2
z̃ = 0, (3.5)

where we have used the definition κ̃ = 1−F̃ (H̃)/F̃ (1), which appears in the second term.
This equation can be integrated to obtain H̃2

z̃/2 = −F̃ (1), relating the slope of the profile
in the contact line region to the intermolecular forces. Consistent with the experimental
observations (Pompe & Herminghaus 2000) and density functional calculations (Snoeijer
& Andreotti 2008), the height-dependence of surface tension leads to a non-zero contact
angle at the contact line. In this model the droplet width is a finite value that can be
unambiguously defined, where the droplet meets the surrounding wet or dry surface at
a non-zero angle (Fig. 3 (b)). This is in clear contrast with the classical model with a
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Figure 3. Equilibrium droplet profiles for a) constant (red dash-dotted line) and
height-dependent (solid blue line) surface tension models with a surrounding precursor film,
and b) the height-dependent surface tension model with (green dash-dotted line) and without
(solid black line) a surrounding precursor film.

constant surface tension, κ̃ = 1, for which we obtain H̃2
z̃/2 = F̃ (H̃) − F̃ (1), leading to

a zero contact angle as the droplet asymptotically meets the precursor film, i.e., H̃ → 1
(Fig. 3 (a)). In the classical model, only the macroscopic contact angle far away from
the contact line can be non-zero; we therefore need to take the limit of H̃ → ∞, where
F̃ (H̃) → 0, recovering the result H̃2

z̃/2 = −F̃ (1). Using the dimensional version of this
result leads to h2x/2 = A/(6γh2f ), which simplifies to h2x/2 = (1 − cos θY ) using the

definition A = −6h2fS; in the limit of small contact angles (θY � 1), we can therefore
relate the droplet slope to the Young contact angle: hx ≈ θY .

Figure 4 shows the variation of some of the droplet features as a function of its
equilibrium pressure (or size) for both the classical model (with constant surface tension)
and our model (with a height-dependent surface tension). The first observation is that the
difference between the two models is most pronounced for very small droplets, where their
entire profile is influenced by the intermolecular forces; as the droplets become larger,
intermolecular forces can only be felt very close to the contact line and the difference
between the two models is limited to the vicinity of this region and less relevant to
macroscopic features such as width, maximum height, or even equilibrium film thickness,
which is now determined by balancing the Laplace pressure due to the curvature of the
core region of the drops. The equilibrium contact angle also becomes size dependent for
very small droplets (Fig. 4(a)), where the entire droplet geometry is influenced by the
intermolecular forces; this dependence however, is not due to the line tension effect, which
would be relevant for axisymmetric drops (Amirfazli & Neumann 2004; Schimmele et al.
2007; Weijs et al. 2011; Giro et al. 2017). The second observation is that for small droplets,
the height-dependent surface tension model always leads to more localized profiles with
larger contact angle and smaller effective width; for equal droplet mass, the height-
dependence of surface tension leads to a lower equilibrium pressure, which according to
the tangent construction shown in Fig. 2 leads to a larger maximum height (h̃max) and
smaller equilibrium film thickness (h̃m).

All the simulations in this paper are performed assuming an equilibrium film thickness
of hf = 1nm, and characteristic height H = 10nm, which is the typical range of
dominance of vdW forces, leading to a non-dimensional equilibrium film height of
δ = hf/H = 0.1, and Bo = (L/lγ)2 = 2.2 × 10−10, i.e., negligible gravity (capillary
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Figure 4. The variation of equilibrium droplet features with the liquid pressure in the droplet.
The symbols show the result of numerical simulations with a constant surface tension (red
diamonds), and a height-dependent surface tension (blue circles). The dash-dotted lines represent
the theoretical predictions for small droplets, and the vertical dashed lines correspond to the
P̃peak beyond which no droplet solutions exist. (a) The equilibrium contact angle defined at
the inflection point of the droplet profile; the dash-dotted line represents the Young contact
angle. The inset shows two typical droplet profiles of equal mass (but different equilibrium
pressure with the new model leading to smaller liquid pressures) for the constant surface
tension (red dash-dotted line) and height-dependent surface tension (blue solid line) models.

(b) Droplet width defined as the distance from center of the drop to its edge at h̃peak.

The dash-dotted line represents w̃ = 1/(
√

3P̃ ). In the constant surface tension case, the
droplet core asymptotically meets the equilibrium film leading to a larger effective width. (c)

Maximum droplet height. The dash-dotted line represents h̃max = 1/(6P̃ ) + δ + O(δ2). The
height-dependence of surface tension results in lower equilibrium pressures, which in turn lead
to larger h̃max values in the small droplets. (d) Equilibrium film thickness. The dash-dotted line

represents h̃m = δ + δ2P + δ3
(
4P 2 − Bo

)
.

length lγ = 1.5mm); while the influence of gravity in thin films is in principle insignificant,
ignoring its role can lead to unphysical predictions (Thiele et al. 2001b).

4. Stability of Uniform Films

Here, we analyze the stability of uniform film solutions of Eq. (3.2) to infinitesimal
and finite perturbations. Consider a uniform film of thickness h̃0 that is perturbed
infinitesimally by a superposition of Fourier modes as h̃ = h̃0 + ε exp

(
βt̃+ iqx̃

)
, where β

is the growth rate of the instability, q = 2π/λ is the wavenumber, and ε� 1. Substituting
this decomposition into Eq. (2.19) and linearizing it to O(ε), we find:

β = h̃30 q
2
(
q0 − κ̃(h̃0)q2

)
, (4.1)
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Figure 5. Stability phase diagram showing the regions where the uniform film is linearly
unstable, metastable (nonlinearly unstable), and absolutely stable. (a) Shows the phase diagram

as a function of the initial film height, h̃0 = h0/H, and the equilibrium film thickness, δ = hf/H.
The full black solid line represents the marginal stability curve, where the instability growth
rate, β is zero (i.e., q0 = −d2f̃/dh̃2|h̃0

= 0); inside the curve, the film is linearly unstable to
infinitesimal perturbations, whereas outside it is linearly stable; the lower branch of the marginal
stability curve is coincident with h̃peak, whereas the upper branch represents h̃node. The blue
dashed line represents the curve of absolute stability; outside this curve, all films are absolutely
stable, whereas inside it uniform films can become unstable due to finite perturbations, i.e., they
are nonlinearly unstable. The upper and lower branches of the absolute stability curve represent
the h̃∗

α and h̃∗
m lines; these are the points tangent to the Maxwell double tangent construction.

In other words, while the curve of marginal stability represents the spinodal region, where
d2f̃/dh̃2|h̃0

6 0, the curve of absolute stability represents the binodal or coexistence curve.

The upper and lower branches meet at the critical point, where we have d2f̃/dh̃2 = 0, and

d3f̃/dh̃3 = 0, leading to h̃ = (5/3)δ and δcr ≈ 1.9 × 104, where (as shown in the inset) a
transition from a double-well to a single-well structure occurs in the free energy. The dashed
blue line in the inset represents the tangent construction. (b) Shows the phase diagram as a

function of the initial film thickness, h̃0, and the Bond number. The same transition from a
double-well to a single-well structure is observed at a critical Bond number of Bocr ≈ 7.85
where the upper and lower branches of the stability curves meet.

where q0 = −d2f̃/dh̃2
∣∣
h̃0

. A uniform film becomes unstable if the growth rate is positive

β > 0, or q0 > κ̃(h̃0)q2. This implies that wave-numbers q <
√
q0/κ̃(h̃0), or equivalently

wavelengths λ > λc = 2π
√
κ̃(h̃0)/q0 will be unstable; surface tension damps the shorter

wavelength deformations. The curve q0 = 0 separates the linearly stable and unstable
regions as shown in Figure 5; the instability phase diagram can be represented in the
phase space of the initial uniform film thickness h̃0 vs the equilibrium film thickness
δ = hf/H (Diez & Kondic 2007) or h̃0 vs Bo (Thiele et al. 2001b). The curve q0 = 0
represents the boundary of the spinodal region in the free energy, where the second
derivative of the bulk free energy becomes negative, d2f̃/dh̃2

∣∣
h̃0

< 0. This region is

bounded by the heights h̃peak and h̃node as shown in Fig. 2. The region between these
heights and the film heights corresponding to the tangent construction is called the
binodal region, where the uniform wetted liquid films are not linearly unstable, but they
can be nonlinearly unstable, i.e., if perturbed by a sufficiently large finite amplitude
perturbation they can evolve to find a lower energy state. The boundaries of the binodal
region are set by h̃∗m and h̃∗α as shown in Fig. 2. The lower and upper branches all meet
at a critical point, where the bulk free energy transitions from a double-well to a single-



Thin Films in Partial Wetting: Stability, Dewetting and Coarsening 17

Figure 6. Linear stability analysis results. (a) Dispersion curve showing the instability growth

rate β versus the wavenumber q for a film of thickness h̃0 = 4δ. All curves labeled with κc
and κ(h) represent the classical model with a constant surface tension and the new model with
a height-dependent surface tension, respectively. The new model results in a shift to larger
values for both the maximum growth rate βm and its corresponding wavenumber, leading to a
smaller wavelength of instability λm. (b) Scaling of the maximum growth rate with the thickness

of the initial uniform film h̃0. The vertical dashed line (4/3)δ represents the lower limit of
linear instability. (c) Wavelength of the instability corresponding to the most unstable mode.
(d) Ratio of predicted growth rate and instability wavelength between the new model and the
classical model. It is apparent that the maximum ratio corresponds to the smallest film thickness
h̃0 = (4/3)δ where the film is linearly unstable; below the height of h̃0 = (4/3)δ the film becomes

linearly stable and the surface tension keeps decreasing until it reaches a value of zero for h̃0 = δ.

well structure; at the critical point, we have d2f̃/dh̃2 = 0, and d3f̃/dh̃3 = 0, leading to
h̃ = (5/3)δ, δcr ≈ 1.9× 104 , and Bocr ≈ 7.85. To find the fastest growing mode, we take
dβ/dq = 0, which leads to the following expressions for the most unstable wavelength

λm =
√

2λc = 2π

√√√√ 2κ̃(h̃0)

−d2f̃/dh̃2
∣∣
h̃0

, (4.2)

and its corresponding maximum growth rate

βm =
h̃30

4κ̃(h̃0)

(
d2f̃

dh̃2

∣∣∣
h̃0

)2

. (4.3)

We observe that both the instability wavelength and growth rate are affected by the
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Figure 7. 2D simulations of dewetting in the spinodal regime with h̃0 = 2δ in a domain
of size 10λm by 10λm; 2D profiles of h̃(x̃, ỹ) with contour levels between h̃min and h̃max

as specified are shown. (a) The classical thin film equation (h̃min = 1.99δ, 1.86δ, δ, δ, and

h̃max = 2.02δ, 2.16δ, 4δ, 6.7δ, respectively). (b) The stochastic thin film equation (5.2) with

constant surface tension at temperature T = 50oC, i.e., σ = 0.039, (h̃min = δ, and

h̃max = 2.8δ, 4.3δ, 5.1δ, 7.5δ, respectively). (c) The new model with height-dependent surface

tension (h̃min = δ, and h̃max = 2.8δ, 4.3δ, 5.1δ, 7.5δ, respectively). Both thermal fluctuations and
height-dependence of surface tension lead to a faster dewetting process, bringing the theoretical
predictions closer to the experimental observations (Becker et al. 2003).

height-dependence of the surface tension. We can denote the corresponding predictions
of the classical model by λm,κc = 2π

√
1/q0 and βm,κc = (h̃30/4)q20 , where the subscript κc

represents constant surface tension. The new model therefore predicts a smaller instability

wavelength, λm/λm,κc =
√
κ̃(h̃0) 6 1, and a faster growth rate βm/βm,κc = 1/κ̃(h̃0) > 1,

as shown in Fig. 6. For very large initial thicknesses, the effect of height-dependence of
surface tension becomes insignificant and both models predict the same scaling for the
maximum growth rate βm ∼ h̃−50 (Fig. 6 (b)), showing that it drastically reduces as
the film thickness increases. The height-dependence of surface tension, however, leads
to a larger growth rate for small film thicknesses, predicting that the instability grows
faster. The largest βm corresponds to h̃0 = (28/15)δ for the classical model and h̃0 ≈
1.7δ for the new model. Both models predict a similar scaling for the most unstable
wavelength at large thicknesses λm ∼ h̃20 (Fig. 6 (c)), whereas for smaller heights, where
the effect of variability of surface tension becomes relevant, the new model predicts
smaller wavelengths. The minimum λm corresponds to h̃0 = (5/3)δ for the classical
model and h̃0 ≈ 1.52δ for the new model. Note that these heights are different from
those concerning the maximum growth rate βm. Further the instability wavelength shows
a much weaker dependence on the film thickness than the growth rate (h̃20 vs h̃−50 ). Within
the linearly unstable region, the new model predicts the instability can grow up to six
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Figure 8. The growth of perturbations in the spinodal regime (h̃0 = 2δ as in Fig. 7) for
the classical model (solid red line), stochastic model (solid green line), and height-dependent
surface tension model (solid blue line) as obtained from the nonlinear simulations. The imposed
perturbations become damped at early times due to the surface tension, but then start to grow
exponentially (as shown by the dashed-lines).

Figure 9. The ratio of the rupture times between the classical model (tr,κc) and a) the classical
model with thermal noise (green squares), b) the height-dependent surface tension model without
noise (blue circles), c) the height-dependent surface tension model with noise (cyan diamonds)).
Both the thermal noise and height-dependence of surface tension lead to a faster rupture time
compared to the classical model. While the effect of noise is almost independent of the initial film
thickness (green squares), the height dependence of surface tension leads to an increasingly faster
ruptures as the film thickness decreases (blue circles). This effect becomes even more amplified
when thermal noise is added to the new model (cyan diamonds). The solid line represents the
ratio of the growth rates between the classical and new model as predicted from the linear
stability analysis (see Figure 6(d)).

times faster than the predictions of the classical model (Fig. 6 (d)) while its corresponding
instability wavelength can be less than half of that in the classical model; the growth
rate is therefore a more sensitive measure of the height-dependence of surface tension.

To go beyond the linear stability analysis, we conducted 2D numerical simulations in
the spinodal regime to examine the dewetting rate and morphologies obtained. Figure 7
shows that thermal fluctuations (see Eq. (5.2)) and height-dependence of surface tension
both lead to a faster initial dewetting. Figure 8 shows the growth of perturbations in the
nonlinear simulations of dewetting using the different models. The linear stability analysis
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for this film thickness predicts that the growth rate of the height-dependent surface
tension model is twice faster than the classical model (βm/βm,κc = 2). From the nonlinear
simulations we find that the new model leads to a film rupture at t̃r1 ≈ 75, whereas the
classical model leads to a rupture time of t̃r3 ≈ 150, which is in agreement with the linear
stability predictions. Thermal fluctuations at T = 50oC, i.e., σ = 0.039 (see Eq. (5.2)),
lead to a rupture around t̃r2 ≈ 125, which is faster than the classical model. Figure 9
shows a more quantitative comparison of the rupture times between the classical model
and the other models. The speed up observed due to the thermal noise is independent
of the initial height of the film, whereas the height dependence of surface tension in
the new model leads to increasingly faster rupture as the initial film height decreases.
The prediction of a faster growth rate in our model deserves special attention. Earlier
studies have pointed to temporal inconsistencies between theoretical predictions and
experimental observations (Becker et al. 2003), with experiments showing a faster initial
dewetting process by more than a factor of two compared to the theoretical predictions.
Our new model therefore brings theoretical predictions closer to the earlier experimental
observations. Our results in Fig. 9 further suggest that to disentangle the roles played
by the height-dependence of surface tension and the thermal noise, experiments with
different initial heights need to be conducted.

5. Coarsening: self-similar intermediate asymptotics

5.1. Coarsening phase diagram

The drops formed after the dewetting process are in a meta-stable state; they can still
communicate through the ultra-thin films connecting them and thus coarsen in time to
lower the overall energy of the system. Multiplying both sides of Eq. (2.19) by δΓ/δh̃,
integrating in space and using the no-flux boundary conditions we can easily show (see
also Thiele et al. (2001b); Glasner & Witelski (2003)):

dΓ

dt̃
= −

∫
M
(
∂

∂x̃

(
δΓ

δh̃

))2

dx̃ 6 0, (5.1)

demonstrating that the evolution governed by the thin film equation leads to a decreasing
free energy and, therefore, a thermodynamically-admissible system.

Figure 10 shows space-time diagrams of the dewetting of thin liquid films of different
thickness and their coarsening over time. The simulations presented here are conducted
on a large domain of size 100λm and the frames shown are a zoomed-in view of a window
of size 40λm; these simulations show the results corresponding to the classical model
with a constant surface tension; the results of the height-dependent surface tension
model are very similar. In all cases we start with a uniform film of thickness h̃0 on
which random perturbations of amplitude 10−4h̃0 are imposed. While all the initial
thicknesses are within the linearly unstable regime (see Fig. 5), they lead to entirely
different morphologies.

For small initial film height of h̃0 = 4δ, we observe the characteristics of the spinodal
dewetting, a term originally coined by Mitlin (1993) due to its similarity to the spinodal
decomposition in binary mixtures (Cahn 1961). In this regime, the distance between the
drops is the same as the most unstable wavelength, i.e., we get ≈ 100 drops in a domain
of size 100λm (Diez & Kondic 2007). The coarsening here proceeds through Ostwald
ripening (Ostwald 1897), or collapse of smaller drops at the expense of growth of larger
ones (Glasner & Witelski 2003).

As the initial film height increases to h̃0 = 10δ, we can immediately see in Fig. 10
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Figure 10. Space-time diagrams showing the evolution of drop height of the classical thin film
equation (constant surface tension); the results of the height-dependent case are similar. The
simulations are done in a domain of size 100λm and the frames shown here show a zoom-in
of a size 40λm. In all the cases, a line coming to an end indicates an Ostwald ripening event,
in which a smaller drop feeds into larger neighboring drops through the ultra-thin film that
connects them. (a) h̃0 = 4δ representing the classical spinodal regime, where the number of

drops is approximately set by the most unstable wavelength λm (h̃max = 35δ), (b) h̃0 = 10δ
representing a mixed mode instability regime in between spinodal and nucleation regimes; here,
fewer drops than the spinodal regime form and the distance between the formed drops seems
to be random (h̃max = 100δ), (c) h̃0 = 25δ which is deep into the nucleation regime showing

the formation of very few drops (h̃max = 700δ), (d) h̃0 = 4δ and including thermal fluctuations

(T = 50oC, i.e., σ = 0.039) (h̃max = 25δ); thermal noise enhances the lateral motion of the
drops; the coarsening mechanism however, still seems to be dominated by Ostwald ripening.

(b) that the number of drops formed upon dewetting and their spacing do not follow
the predictions of the linear stability analysis anymore, i.e., fewer drops form and their
spacing becomes random. This behavior has signatures of nucleation dewetting within
the linearly unstable regime (Thiele et al. 2001a,b; Diez & Kondic 2007) and shows
a mixed mode instability, i.e., a behavior in-between spinodal and nucleation regimes.
Such a transition has also been reported in phase separation dynamics within the Cahn–
Hilliard framework (Novick-Cohen 1985). Figure 11 shows corresponding 2D simulations
of dewetting in this regime; in contrast with the spinodal regime, where holes appear
around the same time with a uniform spacing, here the nucleation process begins with
formation of a hole, which then laterally expands and forms a rim behind it (Seemann
et al. 2001b, 2005; Fetzer et al. 2005; Bäumchen & Jacobs 2010; Bäumchen et al. 2014). In
this mixed mode regime, the growth rate is still large enough that shortly after growth of
a hole, the depression behind the dewetting rim can lead to rupture; this behavior leads
to the satellite-hole formation observed in the experiments (Becker et al. 2003; Neto et al.
2003) and in the 2D simulations of Fig. 11. Figure 12 illustrates this nucleation process in



22 A. A. Pahlavan et al.

Figure 11. Nucleation dewetting for h̃0 = 10δ for the constant surface tension model. In this
regime, holes randomly appear and start expanding laterally, forming a growing rim behind
them (h̃max = 30δ, 54δ, 70δ, 120δ, respectively). The depression behind the dewetting rim leads
to the formation of satellite holes. The dewetting rims subsequently become unstable and lead
to fingering and pinch off to form droplets (see Reiter & Sharma (2001); Bäumchen et al. (2014)
for experimental details)

a space-time diagram of a 1D simulation of the height-dependent surface tension model
with h̃0 = 10δ.

As we keep increasing the initial film thickness further to h̃0 = 25δ (Fig. 10(c)), we
move deeper into the nucleation regime, where fewer drops form; in this case 5 drops
formed in random locations in a domain of size 40λm. In the nucleation regime two time
scales compete: the time scale associated with the growth of linearly unstable modes and
the time scale associated with the dewetting front (Thiele et al. 2001a; Diez & Kondic
2007; Snoeijer & Eggers 2010). As we showed before, the growth rate of the most unstable
mode βm scales as h̃−50 leading to significant decreases in the growth rate for thicker films,
thereby favoring growth via nucleation.

Since the dynamics of the coarsening process is slaved to the flux through the ultra-
thin equilibrium films (h̃m ≈ δ) connecting the drops and the mobility scales as h̃3, the
coarsening dynamics are extremely slow. Two time scales are involved in this process:
a fast time scale over which individual coarsening events happen, and a slow time scale
between the individual events (Glasner & Witelski 2003). A full numerical simulation
of the thin film equation therefore can be computationally very expensive. Glasner
& Witelski (2003) used the separation of time scales in this problem to reduce the
governing partial differential equation, Eq. (2.19), to a system of ordinary differential
equations for the droplet pressures and locations. Coarsening can proceed via two general
mechanisms: coalescence of droplets or Ostwald ripening (Glasner & Witelski 2005). Their
mathematical model allowed them to simulate the coarsening of a very large number
(O(105)) of drops. They observed a scaling of N ∼ t̃−2/5 for the number of drops in
time and also observed a transition from Ostwald-ripening dominated (capillary-driven
drainage and collapse) coarsening to coalescence-dominated coarsening as they increased
the total mass of liquid in the domain.

In contrast with the findings of Glasner & Witelski (2005), we do not observe such a
transition from Ostwald ripening dominated to coalescence-dominated coarsening (Fig.
10). The change in the instability mode from spinodal to nucleation leads to the formation
of fewer drops as the total mass of the liquid in the domain increases, i.e., as the initial
film height increases: the large distance between the drops favors coarsening through
Ostwald ripening rather than coalescence. The reason Glasner & Witelski (2005) observe
such a transition is that they keep the number of drops within a given domain fixed as
they increase their mass; this naturally leads to wider drops that progressively get closer
to each other, therefore favoring coalescence.
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Figure 12. Space-time diagram of the nucleation process in the height-dependent surface tension
model with h̃0 = 10δ in a domain of size 20λm (each snapshot is shifted up by 10δ = 1). The
lateral expansion of holes, growth of the rim behind the hole, and the subsequent instability of
the dip behind a growing rim can all be seen in this illustration.

5.2. Influence of thermal fluctuations

Some experiments on thin-film dewetting (Limary & Green 2002, 2003) and nanoparti-
cle growth in thin films (Meli & Green 2008; Woehl et al. 2014) have reported a crossover
from diffusion-dominated to coalescence-dominated behavior. A potential source of this
transition could be thermal noise, which may play a dominant role in thin-film systems
(Mecke & Rauscher 2005; Grün et al. 2006; Fetzer et al. 2007b; Willis & Freund 2009;
Belardinelli et al. 2016; Diez et al. 2016). To explore this possibility, we generalize the
thin film equation (2.19) by incorporating thermal noise:

∂h̃

∂t̃
=

∂

∂x̃

(
h̃3
∂P̃

∂x̃

)
+ σ

∂

∂x̃

(
h̃3/2ξ̃(x̃, t̃)

)
, (5.2)

in which P̃ = df̃/dh̃ −
√
κ̃∂/∂x̃

(√
κ̃∂h̃/∂x̃

)
with κ̃ = κ/γ and f̃ = f/

(
γH2/L2

)
,

where H and L are characteristic height and length scales. The second term on the right
hand side of the equation represents the thermal fluctuations (Mecke & Rauscher 2005;
Davidovitch et al. 2005; Grün et al. 2006) with σ =

√
kBT/γH2, where kB is Boltzmann’s

constant, T represents absolute temperature, and ξ̃ represents a spatiotemporal Gaussian
white noise: 〈ξ̃〉 = 0 and 〈ξ̃(x̃, t̃)ξ̃(x̃′, t̃′)〉 = δ(x̃ − x̃′)δ(t̃ − t̃′) with δ as the Dirac delta
function and 〈.〉 implying ensemble average over realizations of the noise.

Introducing thermal noise to the system leads to enhanced lateral motion of the
drops as seen in Fig. 10 (d), and this can promote coalescence. Our simulations for the
stochastic thin film Eq. (5.2) within the spinodal regime, however, shows the dominance
of Ostwald ripening despite the enhanced lateral motion of the drops. The crossover from
the diffusion-dominated to coalescence-dominated behavior observed in the experiments
(Limary & Green 2002, 2003) therefore could be a consequence of the dimensionality of
the problem, i.e., 2D in the experiments versus 1D in the simulations shown in Fig. 10.
In two dimensions, each drop can be surrounded and interact with multiple other drops,
whereas in 1D each drop only interacts with its two neighbors. To investigate this, we
have conducted 2D nonlinear simulations, which point to the dominance of coalescence
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Figure 13. Two-dimensional simulations of coarsening dynamics at early and late times for
the height-dependent surface tension model with h̃0 = 2δ (h̃max = 8.5δ in the colorbar). At
early times, coalescence events, as highlighted by the dashed white circles, are dominant. At
late times (once the metastable drops have formed), however, Ostwald ripening, i.e., capillary
drainage and collapse of drops, becomes the key coarsening mechanism; note that this latter
process is diffusion-dominated and therefore much slower than coarsening through coalescence
events.

events at short times and Ostwald ripening at long times as shown in Fig. 13, which
corresponds to the height-dependent surface tension model; similar results are obtained
for both the classical and stochastic models. Our observations are in agreement with the
2D simulations of Glasner (2008) using a reduced order model that suggest the dominance
of the coalescence mechanism.

5.3. Coarsening statistics

The statistics of the coarsening process for (i) the spinodal regime, h̃0 = 4δ (for both
constant and height-dependent surface tension models as well as the classical stochastic
thin film equation with thermal noise) and (ii) for the mixed-mode instability regime
h̃0 = 10δ (for the constant surface tension model) are shown in Fig. 14. In the spinodal
regime, the number of drops follows the scaling N ∼ t̃−2/5 in time (Fig. 14 (a)) as
computed by Glasner & Witelski (2003); incorporating the height-dependence of surface
tension does not alter this scaling. Introducing thermal noise does not affect the scaling
either—an observation that is consistent with recent studies (Nesic et al. 2015). In the
mixed-mode instability regime (h̃0 = 10δ), fewer drops form, so our simulations have
limited statistics and do not clearly reach the self-similar intermediate regime (Gratton
& Witelski 2009), but it seems that the results for this case are also in general agreement
with the t̃−2/5 scaling (Fig. 14 (a)). Due to mass conservation, it is easy to show that
the mean width of drops should then follow the scaling t̃1/5 as shown in Fig. 14 (b). An
interesting feature of the variation of the mean width in time, particularly at late times,
is the jumps observed as smaller drops shrink and feed into the larger drops.

As argued above, the thin film evolution equation predicts a monotonically decreasing
free energy for the system (Eq.(5.1)). We can further check this by looking at the variation
of the numerically calculated total energy of the system Et ≡ Γ =

∫
f̃(h̃)+(κ̃/2)(h̃x)2dx̃.

In agreement with the predictions of Otto et al. (2006), we find a t̃−1/5 scaling for the
decrease of the free energy (Fig. 14(c)). An interesting observation here is that for the
thicker film of h̃0 = 10δ, we observe a lower total free energy at early times that later
converges to the t̃−1/5 scaling. To understand the reason behind the difference at early
times, it is instructive to look at the typical variation of the different components of the
free energy during the entire dewetting process, as shown in Fig. 14 (d). Here, Eb =∫
f̃(h̃)dx̃ is the bulk free energy and Ei =

∫
(κ̃(h̃)/2)(h̃x)2dx̃ is the interfacial energy. As

an initially uniform film becomes unstable, it must increase the interfacial energy to dewet
and create droplets. This increase in the interfacial energy, however, is compensated by
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Figure 14. Coarsening statistics; red circles and squares correspond to the classical model with
h̃0 = 4δ and h̃0 = 10δ, respectively; blue diamonds show the results of the new model with
h̃0 = 4δ; green stars correspond to the stochastic thin film model with h̃0 = 4δ. (a) Evolution of

the number of drops in time shows the scaling t̃−2/5 as suggested by Glasner & Witelski (2003).
(b) Evolution of mean width of drops in time; as expected from conservation of mass and the

scaling of the number of drops in time, the mean width scales as t̃1/5 in time. (c) Evolution of

the total energy in time shows a decrease in the energy with coarsening with a scaling of t̃−1/5,
which is expected for the 1D case (Otto et al. 2006); the h̃0 = 10δ case results in fewer drops
upon dewetting, therefore the majority of the domain is covered by the equilibrium film, which
means the initial energy is lower than the h̃0 = 4δ case; at long times the dynamics becomes
self-similar and both follow the same scaling. (d) Evolution of the bulk Eb, interfacial Ei, and

total Et = Eb +Ei energies for a typical simulation (here h̃0 = 4δ and height-dependent surface
tension model); at short times, creation of drops increases the interfacial energy, but the total
energy is still lowered due to the reduction in the bulk energy; at long times, as drops coarsen,
both the bulk and interfacial energy contribution decrease.

the reduction in the bulk free energy as the ultra thin films connecting the drops are in
their near-equilibrium states. The drops connected by these ultra-thin films however are
only metastable and after a long intermediate plateau state the system starts lowering its
total energy through coarsening, which lowers both the interfacial energy as well as the
bulk free energy due to the creation of new ultra-thin films. With this observation in mind,
we can now go back to Fig. 14(c); here, the thicker film (h̃0 = 10δ) leads to the formation
of fewer drops upon dewetting, meaning a lower interfacial and bulk free energies in the
mixed-mode instability regime compared to the spinodal regime (formation of fewer drops
means a higher fraction of the total surface is covered by the ultrathin films that have a
lower bulk free energy). This is why right after dewetting, the thicker film case h̃0 = 10δ
leads to a lower total free energy compared to the h̃0 = 4δ case in the spinodal regime.
At long times, however, as the coarsening sets in, the dynamics become self-similar and
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the total system energies per unit length of the substrate corresponding to the different
regimes all collapse on top of each other.

5.4. LSW mean-field description of coarsening: self-similar drop size distribution

In the late stages of a first-order phase transition of a binary alloy mixture, Ostwald
ripening is quite common (Ostwald 1897; Siggia 1979; Voorhees 1985). The curvature-
dependence of the chemical potential leads to a flow from higher curvature regions
(smaller clusters) to lower curvature regions (larger clusters). The result of this coarsening
is a decrease in the total interfacial energy of the system. Lifshitz & Slyozov (1961) were
the first to place experimental measurements of Ostwald ripening within a consistent
theoretical framework: they considered a spherical cluster in a supersaturated solution
and developed a mean-field description for the evolution of the size of the cluster at long
times, 〈r(t)〉 ∼ t1/3. This scaling is an intermediate-asymptotic behavior (Barenblatt
1996) for a quasi-steady system in isolation, i.e., the interactions with other clusters are
neglected, so it is expected to hold in the limit of dilute solutions. Lifshitz & Slyozov
(1961) originally assumed the transport in the medium to be diffusion dominated; later,
Wagner (1961) independently studied the Ostwald ripening process and considered the
case where the attachment/detachment of particles from the clusters is the rate-limiting
factor and derived a scaling 〈r(t)〉 ∼ t1/2. Apart from the mode of mass transport
considered, the two theories are essentially the same and are known as the LSW model
for coarsening (Kahlweit 1975). An alternative generalized view of the same problem is
to consider all the clusters of size greater than rc ∼ tβ to grow and all with a smaller
size to shrink, where β = 1/3 in the diffusion-dominated case and β = 1/2 in the
attachment/detachment-dominated case.

Theories of LSW-type appear in many diverse phenomena, such as stability of emul-
sions (Imhof & Pine 1997; Taylor 1998; Bibette et al. 1999; Solans et al. 2005; Gupta
et al. 2016), droplet size distribution in liquid jet fragmentation (Eggers & Villermaux
2008), coarsening of granular clusters (Aranson & Tsimring 2006), phase separation in
polymer blends (Geoghegan & Krausch 2003), growth of silicone nanowires (Schmidt
et al. 2010), quantum dots (Liu & Risbud 1990), growth of nanoparticles in colloidal
solutions (Talapin et al. 2001), and grain growth in thin films (Thompson 1990), or
even loss of electrocatalyst coating in low temperature fuel cells (Shao-Horn et al. 2007).
There is a close connection between the LSW theory and coarsening of drops connected
by thin films. The drops formed upon dewetting are in a metastable quasi-equilibrium
configuration, so one can treat a droplet connected to a near equilibrium film in isolation
from the other drops. The transport through the surrounding thin film is diffusion-
dominated since curvature becomes negligible in the film. Diffusion here is set by the
interface potential and mobility reaches a constant value set by the film thickness, so the
transport between droplets can formally be written as a diffusion equation similar to the
LSW theory.

At long times, the clusters or drops follow a size distribution function F (r, t̃), or

equivalently F (m, t̃) where m =
∫ w̃
−w̃ h̃dx̃ is the mass of a 1D drop, which satisfies the

following continuity equation (Voorhees 1985; Gratton & Witelski 2009):

∂F (m, t̃)

∂t̃
+

∂

∂m

(
F (m, t̃)v(m)

)
= 0, (5.3)

where v(m) = dm/dt̃ determines the flux of particles. The number of drops can then be
related to the distribution function as N =

∫∞
0
F (m, t̃)dm. The problem then reduces to

defining the flux v(m). Gratton & Witelski (2009) showed that an equivalent LSW mean
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Figure 15. Droplet mass distribution for the spinodal regime with h̃0 = 4δ obtained from
ensemble averaging of 10 realizations in domains of size 250λm with z = m/m∗; vertical
lines show the error bars computed from the standard deviation of the 10 realizations; red
squares represent classical model with a constant surface tension; green diamonds represent
the stochastic thin film model; blue circles represent the new model wth height-dependent
surface tension; the solid line represents the mean-field LSW theory (Eq. (5.4)); the dashed
line represents the Smoluchowski distribution (Eq. (5.5)).

field model can be defined for a system of drops, where a drop is considered to be at a
mean distance L̄(t̃) = L/N(t̃) from two neighboring drops of mass m∗; since the mass
transport between the drops takes place through the ultra-thin films with nearly zero
curvature connecting them, the transport through the films becomes purely diffusive and
its dynamics can be approximated as ∂h̃/∂t̃ ∼ ∂2/∂x̃2(V(h̃)), where dV/dh̃ = h̃3d2f̃/dh̃2

(Glasner & Witelski 2003). The mean flux between the drops can then be approximated
as v(m) = 2(V(m∗)−V(m))/L̄, where the mean-field potential is defined as V(m∗(t̃)) =
(1/N)

∫∞
0
V(m)F (m, t̃)dm. The non-locality in this mean-field description comes from

the mean quantities L̄ and m∗, both of which evolve in time. At long times, we expect
the distribution of the drop sizes to become self-similar, for which we can postulate
F (m, t̃) = g(m/m∗)/t̃

α and m∗ = ct̃β . Using conservation of mass, one then arrives at
the following ODE for the self-similar distribution function g(z) (Gratton & Witelski
2009):

dg

dz
=

(
27/2− 8z3/2

4z5/2 + 27z(1−
√
z)

)
g, (5.4)

where 0 6 z ≡ (m/m∗) 6 9/4, and the solution of the above equation can be obtained

in the analytical form to be g(z) = C
(√

ze2/(−3+2
√
z)
)
/
(
(3− 2

√
z)28/9(3 +

√
z)17/9

)
with C ≈ 70 as a normalization constant. From the conservation of mass, one can
further find m∗ ≈ 0.846m̄ (with m̄ = Mtot/N(t̃) being the total liquid mass divided
by the instantaneous number of drops), which separates growing and shrinking drops,
i.e., v(m∗) = 0. This mean-field treatment is expected to hold in the dilute limit, where
local interactions between drops can be neglected and each drop only interacts with a
background field.

The normalized distribution of the droplet mass (
〈
F (z, t̃)/N(t̃)

〉
with z = m/m∗)

in the self-similar intermediate regime, where the LSW model is applicable is shown
in Fig. 15. The results of the simulations closely follow Eq. (5.4) (solid line) for small
droplets. The close agreement we observe between the classical and new models, as well
as in the presence of thermal fluctuations, indicates that in the self-similar coarsening
regime the details of the thin-film interfacial dynamics are not critical. For larger size
droplets, i.e. z > 1 (m > m∗), however, we do observe deviations from the LSW model.
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While some deviations have also been observed by Gratton & Witelski (2009) in their
dynamical system treatment of coarsening and is a known issue in the LSW model, there
is a distinct skewness in the distribution of the droplets in the new model. The long tail
observed in the distribution of droplet sizes in our model has also been reported in some
experiments and Monte Carlo models of thin-film coarsening (Lo & Skodje 2000; Limary
& Green 2002, 2003; Green 2003; Meli & Green 2008; Woehl et al. 2014) and is typically
associated with coarsening through coalescence. This type of drop-size distribution is
modeled with the Smoluchowski equation (Smoluchowski 1917; Sholl & Skodje 1996; Lo
& Skodje 2000; Eggers & Villermaux 2008):

g(z) =

(
dW (Wz)d(α+1−1/d)

Γ (α+ 1)

)
e−(Wz)d , (5.5)

where W = Γ (α + 1 + 1/d)/Γ (α + 1) with Γ is the gamma function, and d represents
the dimension of the system. When mass transport is dominated by diffusion around
the periphery of the droplet, α = 3/2; when diffusion away from the boundaries is
the dominant transport mechanism, α = 1, and when evaporation-condensation in the
periphery of the drops is the main transport avenue, α = 1/2 (Lo & Skodje 2000). Here,
we find the best fit for the tail of the distribution in a 1D system of droplets is obtained
for the periphery-diffusion dominated case with α = 3/2. It is interesting, however,
that the change in the tail of the drop-size distribution in our model is not associated
with a change in the coarsening mechanism, i.e., Ostwald ripening remains the dominant
coarsening mechanism (Fig. 10); perhaps, it is the lower lateral motion of the larger-
size droplets that leads to the asymmetry in the distribution. While our 1D simulation
results cannot be directly compared with the experiments, the long-tailed distribution in
our model calls into question whether the reported distributions in the experiments are
uniquely a signature of the coalescence-dominated coarsening and this motivates further
detailed experimental observations.

6. Conclusions

We have shown, using a consistent thermodynamic framework, that the intermolecular
forces between liquid–gas and liquid–solid interfaces of a thin film in the partial wetting
regime lead to an expression for the system free energy with a height-dependent surface
tension. In the long-wave approximation, this free energy resembles the Cahn–Hilliard
formulation for the free energy of binary alloys (Cahn & Hilliard 1958). We have shown
that this new form of free energy leads to a generalized disjoining pressure that is
consistent with recent calculations (Dai et al. 2008).

Using our model, we have revisited the dewetting and coarsening of thin liquid films on
solid substrates in the partial wetting regime. We have first shown that the equilibrium
droplet solutions obtained in the new model have compact support and meet the contact
line with a non-zero equilibrium angle, whereas equilibrium droplets in the classical model
only asymptotically meet the surrounding precursor film with a zero angle. While the
classical model cannot admit solutions without a precursor film (Brenner & Bertozzi
1993), our model does not require the precursor film, allowing us to recover the true
partial wetting regime (Brochard-Wyart et al. 1991).

Analyzing the stability of uniform liquid films, we have shown that in the spinodal
dewetting regime, our model predicts a faster growth rate βm for the most unstable
mode, and a smaller corresponding instability wavelength λm than those predicted by
the classical model with a constant surface tension. While the instability wavelength is
only weakly dependent on the height-dependence of the surface tension, we have shown
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that the instability growth rate can be up to six times faster than the predictions of the
classical model. This faster growth rate brings the theoretical predictions closer to the
experimental observations (Becker et al. 2003).

Experimental observations by Limary & Green (2003) indicate a crossover in the
coarsening from Ostwald ripening-dominated to coalescence-dominated as the film thick-
ness increases. They infer the coarsening mechanism from the droplet-size distribution,
i.e., they associate the Ostwald ripening and coalescence processes with LSW-type and
Smoluchowski-type distributions, respectively (Limary & Green 2002, 2003; Green 2003).
Our nonlinear simulations of the dewetting and subsequent coarsening on large domains
L ∼ 100λm have shown that the coarsening process at intermediate times becomes self-
similar (Glasner & Witelski 2003) and independent of the details of the models used,
i.e., we observe the same scalings for the classical model (with and without thermal
noise) and in our new model with height-dependent surface tension. We have shown that
the crossover reported in the experiments cannot be observed in 1D simulations of the
thin-film equation. This is in contrast to the predictions of Glasner & Witelski (2005),
who used a reduced-order model of thin-film equation and predicted a crossover. As the
thickness of the initial uniform film increases the instability mechanism changes from
spinodal, (i.e., equally-distanced droplets after dewetting) to nucleation, (i.e., randomly-
spaced droplets). This change in the instability mechanism is a result of the competition
of two time scales: the growth rate of the instability, which scales as βm ∼ h̃−50 , versus
the rate of lateral expansion of dewetted holes (Thiele et al. 2001a; Diez & Kondic 2007).
This change of instability mechanism from spinodal to nucleation prevents the crossover
from Ostwald ripening-dominated to coalescence-dominated coarsening. We have also
shown that while thermal noise enhances lateral motion of droplets, it does not lead to a
crossover in the coarsening mechanism. We therefore conclude that the crossover observed
in the experiments is a result of the 2D nature of the experiments versus the initial 1D
simulations presented here and in earlier studies. To investigate this hypothesis, we have
conducted 2D nonlinear simulations, which indeed indicate the dominance of coalescence
events at early times following the dewetting and a crossover to Ostwald-ripening at late
times in the coarsening process.

We also have shown that the droplet-size distribution in the self-similar coarsening
regime follows a LSW-type distribution (Lifshitz & Slyozov 1961; Wagner 1961; Voorhees
1985; Gratton & Witelski 2009) and becomes model-independent at least for small
droplets. For larger drops, we have found that the new model leads to a long-tailed
drop-size distribution, which follows the Smoluchowski Eq. (5.5) in 1D for peripheral
diffusion-dominated transport. Our observation of a skewed distribution associated with
an Ostwald-ripening-dominated coarsening calls into question the associations made
before between the long-tailed distribution and coalescence-dominated coarsening in the
earlier experiments (Limary & Green 2002, 2003; Green 2003) and motivates further
detailed experimental observations.

An important open question is how to characterize the predicted height-dependence of
surface tension in typical dewetting experiments. As we have shown, the characteristic
instability wavelength, which is most readily observed in the experiments, is only weakly
dependent on the height-dependence of surface tension and perhaps not a reliable indi-
cator. The instability growth rate, however, varies more significantly due to the height-
dependence of surface tension and could serve as a distinguishing factor. Experimental
measurements of growth rate are exceptionally challenging, particularly in the spinodal
regime and for very thin liquid films for which the height-dependence of surface tension
becomes relevant. Further, the viscosity of thin polymer films changes drastically from
its bulk values due to a shift in the glass transition temperature (Herminghaus et al.
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2001), making it potentially difficult to distinguish between consequences of the changes
in surface tension from those in viscosity. Spreading of droplets in the partial-wetting
regime can therefore serve as an alternative test for the height-dependence of surface
tension; we have shown that our new model allows investigations of the spreading process
without the need for precursor films (Pahlavan et al. 2015). Visualization of the contact-
line motion at micro/nano-scales (Chen et al. 2014; Qian et al. 2015; McGraw et al.
2016; Deng et al. 2016) could therefore lead the way in refining and validating models
for interfacial flows.
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