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Abstract

We develop a mathematical programming approach for formulating and solving optimal
dynamic and stochastic resource allocaticn protlems. The approach is based on formu-
lating an optimal resource allocation problem as a mathematical program over the region
spanned by performance vectors achievable under admissible resource allocation policies
(performance region). These formulations are constructed in a unifying way, by identifying
physical laws (conservation laws) satisfied by the underlying system, and expressing them
as linear constraints on performance vactors. The set of constraints so obtained defines a
polyhedron that contains the performance region, thus yielding a relaxed formulation for the
problem. In some cases, that polyhedron coincides with the performance region, in which
case the formulation is exact. Solving the resulting mathematical program yields bounds on
the optimal value of the problem, which can be used to assess the degree of suboptimality
of proposed resource allncation policies. It also yields, when the formulations are exact,
optimal policies for the problem. The approach is developed in three problem areas in the
field of stochastic scheduling, with an increasing level of complexity: scheduling problems
solved by simple priority-index rules, such as multi-armed bandit problems, restless bandit
problems, and problems of dynamic scheduling in Markovian multiciass queueing networks.
For the first class of problems, a unified framework for constructing and solving exact lin-
ear programming formulations is developed, based on a generalized concept of conservation
laws. It is shown that the strong structural properties of these linear programs translate into
corresponding properties of the scheduling problems. For the restless bandit problem, a se-
quence of increasingly strenger linear programming relaxations is constructed. by applying
conservation laws satisfied by underlying Markov decision chains. A primal-dual heuristic is
proposed, based on the optimal solution to the first-order relaxation. For dynamic schedul-
ing problems in multiclass queueing networks, we identify a set of flow conservation laws,
and apply them for constructing a sequence of increasingly stronger linear programming
relaxations.
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Chapter 1

Introduction and background

1.1 Introduction

In a wide variety of 1eal-world settings one has to decide how to allocate over time scarce
resources to alternative activities with uncertain outcomes. Consider the problem faced
by the manager of a commercial laboratory with several research projects vying for the
attention of the scientists at her disposal. She must determine how to allocate research
effort to the projects, in a sequential manner, in order to maximize the resulting expected
reward. Similar problems are faced by a police department that tries to control a number
of illegal drug markets by deploying dynamically its police units, or by the manager of a
manufacturing facility or a computer-communication network, whose goal is to optimize
system performance by controlling the way jobs are scheduled for processing.

It is to problems like these that the methods developed in this dissertation can be
applied. They concern a system in which effort may be spent over time in alternative
ways, thus guiding its evolution. Relevant features of the long-run operation of the system
are captured by suitable measures of performance. Furthermore, rewards and/or costs are
associated with effort allocation decisions. The two fundamental questions we shall address

are:
1. How should effort be allocated in order to achieve a specified performance objective?
2. What is the best performance objective that can be achieved?

Answers to these questions are important for improving the productivity of technologicai

systems: an answer to the first question would provide guidelines for designing good resource
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allocation policies: an answer to the second question could be used to assess a priori the
relative performance of alternative system designs. as well as a benchmark for evaluating
the performance of proposed policies.

Real-world resource allocation problems are represented mathematically by dynamic and
stochastic optimization models. which have traditionally been formulated within a dynamic
programming framework. The resulting formulations, based on Bellman’s (1957) optimality
equation. exhibit typically a prohibitively large —even infinite— size. which hinders their
application.

Consequently, progress in the area of stochastic resource allocation has been hard won.
fn a number of important problems. researchers have overcome that difficuity, obtaining
insightful structural results that have led to efficient solution procedures. A celebrated
example of these successes was the solution by Gittins and Jones (1974) of the classical
multi-armed bandit problem by a simple priority-index policy. This and other results have
been derived using an array of techniques. such as interchange arguments. that exploit the
structure of the problem at hand. A disadvantage of this ad hoc approach is that every
problem seems to require its own solution techniques. Moreover. when heuristic policies are
proposed. their performance is often compared with that of other heuristics. instead of with
the optimal performance itself. This unsatisfactory state of affairs has prompted Lawler,

Lenstra. Rinnooy Kan and Shmoys (1989) to remark:

The results in stochastic scheduling are scattered and they have been obtained
through a considerable and sometimes disheartening effort. In the words of
Coffman. Hofri and Weiss (1989). there is great need for new mathematical

techniques useful for simplifying the derivation of results.

It is this need for new simplifying techniques that motivates the present work. Since
dynamic programming formulations are often too general to exploit special structure, and
ad hoc techniques are too specialized. the approach we shall develop pursues a middle
ground: to identify physical properties shared by relevant resource allocation models. and
to apply them in order to construct improved mathematical programming formulations.
The properties we have sought to identify are conservation laws: physical relations in the
underlying systems that remain invariant under different resource allocation policies.

Given a stochastic resource allocation problem, the solution approach we propose may

be articulated as follows:
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1. Define suitable performance measures. The objective to be optimized must be a

function of the corresponding performance vector.

2. Identify physical laws (conservation laws) satisfied by the system. These conservation
laws must be expressed as linear equalities or inequalities satisfied by performance

vectors.

3. Formulate the problem as a mathematical program. The feasible region of this pro-
gram is a polyhedron defined by the set of linear constraints given by the conservation
laws. This polyhedron contains or, in some cases, coincides with, the region spanned
by perfor...7nce vectors achievable under admissible resource ailccation policies (per-

formance region).

4. Translate a solution to the mathematical programming formulation into a correspond-
ing solution to the resource allocation problem. The formulation should yield bounds
on the optimal problem value, as well as optimal or heuristic resource allocation poli-

cies.

The purpose of this dissertation is to demonstrate the effectivenes of such an approach.
We have thus tested it in three important problems areas, with an increasing level of com-

plexity, in the field of stochastic resource allocation:

1. Stochastic scheduling problems solved by simple priority-index rules, such as the muiti-

armed bandit problem.
2. Restless bandit problems.
3. Optimal scheduling problems in queueing networks with multiple job classes.

The conservation laws we identify yield exact formulations in the well-solved problems in
the first area, whereas they provide relaxed formulations in the computationally intractable
problems in the second and third areas.

The thesis is structured as follows: In the remainder of this chapter we survey previ-
ous work in the mathematical programming approach to stochastic scheduling problems.
Chapter 2 develops structural and algorithmic properties of certain polyhedra (extended
polymatroids) that arise as the performance region in a variety of scheduling problems,

thus laying the groundwork for the approach to be presented in the next chapter.
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Chapter 3 addresses stochastic scheduling problems that are solved by priority-index
rules (indexable scheduling problems). A unified framework for formulating exactly such
problems as linear programs is developed. based on a generalized notion of conservation
laws. Properties of the resulting linear programs are shown to translate into corresponding
properties of the scheduling problems.

Chapter 4 applies that framework to a wide variety of indexable scheduling problems.
which correspond to special cases of the versatile model of branching bandits. Several
performance measures for branching bandits are shown to satisfv generalized conservation
laws, thus casting the corresponding problems into the framework presented in Chapter 3.
The resulting exact formulations and solutions are developed in the special cases of multi-
armed bandits. multiclass queues with feedback. and scheduling problems. obtaining new
results and insights in the process.

Chapter 5 deals with a computationally intractable variant of the classical multi-armed
bandit problem: the restless bandit problem. A sequence of increasingly stronger compact
linear programming formulations is developed. by identifying conservation laws that account
for increasingly higher-order interactions in the system. This sequence of formulations is
interpreted geometrically as corresponding to a lift-and-project procedure: each formulation
is lifted into a higher-dimensional space (introducing new variables). and then projected
back into the original space. thus obtaining the next one. A priority-index heuristic policy
is also proposed. where the indices are computed from the optimal solution to the first-order
formulation. The quality of the performance bounds given by the formulations and of the
heuristic is investigated empirically.

Chapter 6 is concerned with optimal scheduling problems in queueing networks with
multiple job classes. A classical flow conservation law of queueing systems is applied to
construct a cequence of increasingly stronger compact linear programming formulations,
which yield correspondingly tighter bounds on optimal performace. Analogously as in the
previous chapter. these sequence of formulations is shown to correspond geometrically to a
lift-and-project procedure.

Chapter 7 provides a summary of our work. iacludes our conclusions and discusses
directions for further research.

Appendix A reviews some basic concepts and results from the Palm calculus of point

processes. These resuits are applied in Chapter 6 in order to translate certain flow conser-
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vation laws into corresponding linear constraints on performance vectors.

1.2 Background

The mathematical programming approach to stochastic resource allocation problems was
pioneered by Gelenbe and Mitrani (1980), and Coffman and Mitrani (1980). Investigating
the optiraal dynamic scheduling problem in a multiclass M/G/1 queue with linear delay
costs, they associated with every scheduling policy u a corresponding performance vector
of mean delays (WP,...,W¥) for all customer classes. By identifying work-conservation
laws of the system and expressing them as linear constraints on performance vectors, they
were able to characterize the performance region as a polyhedron well known in polyhedral
combinatorics (a polymatroid). The vertices of such a polyhedron were shown to correspond
to performance vectors of index-priority rules. thus providing a new geometric explanation
for the optimality of such policies.

Federgruen and Groenevelt (198£.), (1988b) extended the approach to multiclass M /G /c
and G/M/c queues, showing that their performance regions are also polymatroids. A uni-
fied axiomatic framework for these earlier results was developed by Shanthikumar and Yao
(1992), who identified physical properties of the system (strong conservation laws) that
guarantee the performance region to be a polymatroid.

Tsoucas (1991) addressed a problem that does not fit in the Shanthikumar and Yao
framework: The optimal dynamic scheduling of a multiclass Af/G/1 queue with Bernouilli
feedback, first solved by Klimov (1974) by a priority-index rule. By identifiying work-
conservation laws and expressing them as linear constraints, he characterized the perfor-
mance region of mean delays as a new kind of polyhedron, with properties that generalize
those of polymatroids (a so-called extended polymatroid). He then rederived Klimov’s
algorithm for finding the optimal priority ranking using linear programming argumenis.

Bertsimas, Paschalidis and Tsitsiklis (1994) investigated the optimal scheduling problem
in Markovian multiclass queueing networks. Using potential function ideas, they developed
an algebraic procedure for constructing a sequence of increasingly stronger linear and non-
linear programming relaxations for the problem. Kumar and Kumar (1994) developed
independently some of their results. The constraints that appear in these linear programs

are not given, however, a physical interpretation.
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Chapter 2

Extended polymatroids

2.1 Introduction

Extended polymatroids are polyhedra whose role in the field of stochastic scheduling is
analogous to that played by classical polymatroids (see Edmonds (1970)) in combinatorial
optimization. Polymatroids arise as the convex hull of feasible solutions in comnbinatorial
optimization problems solved by a greedy algorithm, such as that of finding the minimum
spanning tree in a graph. Similarly, extended polymatroids appear as the convex hull of
performance vectors achievable under admissible scheduling policies (i.e., as the performance
region) in stochastic scheduling problems solved by priority-index policies, including multi-
armed bandit problems. Problems such as finding a minimum spanning tree or scheduling
optimally a multi-armed bandit can thus be formulated as linear programs over polymatroids
or extended polymatroids, respectively. These linear programs possess strong structural
and algorithmic properties, which explain in a unifying way the optimality of greedy-like
solution schemes for the problems they represent. They further provide insight on how
to solve variations on the original problems, such as incorporating a nonlinear objective
function, or imposing side constraints.

In the remainder of this section we establish the notation to be used, and present
the formal definition of extended polymatroid. Section 2.2 develops the theory of linear
programs over such polyhedra. Section 2.3 presents a class of extended polymatroids which
can be reformulated explicitly as the projection of a higher dimensional polyhedron with a
polynomial — as opposed to exponential — number of facets.

Let N = {1,...,n} be a finite set. Let r denote a real n-vector, with components z;,
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fori € N. For S C N, let §¢ = N\ S, and let |S| denote the cardinality of S. Let zs
be the subvector of T corresponding to components in S. i.e.. ts = (T,)es. Let 2N denote
the class of all subsets of V. Let b:2%¥ — R, be a nonnegative set function that satisfies

b(@) = 0. Let A = (A¥)ien. sca be a matrix that satisfies

A7 >0, forieSand SCWN. (2.1)

Given a permutation m = (my,...,m,) of N, and a vector x = (rj,....z,) let us write

Tn = (Tmys---+Zn,), and
by = (b({ﬂ'l,...,n’n},...,b({ﬂ'n_[, Tfn}),b({"'n}))l-

Let A, be the upper triangular submatrix of A given by

A{ﬂ’l LCY S A1(r:l. ..... Ta} A’{rz. ..... Tn}
A = 0 A1{r"'l°' n} Agﬂ'n—-luﬂn)
0 - 0 Asr’rn}

Let v(r) denote the unique solution of triangu’ar system

Y AL ST | il P T O )
(2.2)
A!r‘:n-;lﬂn)xﬂn-l + A(ﬂ’n lﬂn) Tn, — b({nn—ia"n})
Al = b({ma))

Consider now the following polyhedra associated with matrix A and set function b:

'P,,-(A,b)={:z:eﬂi:}:A;sa:.-zb(S), forSCN  and ZA‘,'VJ:.-=b(N)}
i€S ieN

and

P(A,b):{xé&ti:ZAfxisb(S), for SCN  and ZA',Vz,:b(N)}.

i€S 1EN

Polyhedra P.(A,b) and P(A, b) possess, under the consistency assumption on parameters A
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and b we present next, strong structural and algorithmic properties, that generalize those

of classical polymatroids.
Assumption 1 For every permutation m of N, v(r) € P(A,b).

Definition 1 (Extended Polymatroid) We say that polyhedron P(A4,b) is an extended
polymatroid with ground set NV, if Assumption 1 holds:
If Assumption 1 holds for polyhedron P.(A,b), we say that P.(A,b) is an extended contra-

polymatroid.

Remark. Extended polymatroids were introduced by Tsoucas (1991), who characterized
the region of achievable performance in Klimov's problem (see Klimov (1974)) as a polyhe-
dron with special structure, not previously identified in the literature. He established that
the optimality of static-priority policies under linear performance objectives, first proven by
Klimov (1974) using dynamic programming arguments, follows from structural properties
of such polyhedra. Bhattacharya, Georgiadis and Tsoucas (1992) called this polyhedron an
ertended polymatroid, and developed further its properties.

2.2 Linear programming over extended polymatroids

Extended polymatroids are polyhedra defined by an exponentiai number of inequality con-
straints. This exponential-size representation turns out to be “nice,” however, as linear
programs over extended polymatroids possess strong structural properties that allow them
to be efficiently solved.

In this section we develop structural properties of such linear programs. First, we present
a new duality proof that such a linear program is solved by a one-pass adaptive greedy
algorithin. It is then shown that its optimal solutions are characterized by certain allocation
indices defined as sums of optimal dual variables. Finaliy, we identify a condition under
which these indices exhibit a decomposition property, which simplifies their computation.
The significance of these results in the field of stochastic scheduling is that they explain
in a unifying way corresponding properties of indexable scheduling problems, as the next
section will demonstrate.

Let us thus consider the problem of maximizing a given linear reward objective } ;. s i Z;
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over extended contra-polymatroid P.(A,b),

(LPC) Z = max Z TiT{
€N

subject to

ZA,S&:, > b(S), for SCN

i€S

Y ANz = b(N)
ieN

zi 2 0, fori e N.

Since 7.(A,b) is a nonempty bounded polyhedron, linear program (LF,) must have a finite
optimal solution. Therefore, its dual program —by strong linear programming duality—
will have the same optimum value Z. We shall have a dual variable y° for every S C N.

The dual program of (LF,) is

(LD.) Z = min Y b(S)y®

subject to

Z A;-Sys >, forie N
S:N2S3i

y® <o, for SC N.
Adaptive greedy algorithm

We present next a one-pass adaptive greedy algorithm for solving linear program (LP;)
and its dual (LD.). The input data for the algorithm consists of reward vector r = (7;)ien/,
and an oracle (see Grotschel, Lovasz and Schrijver (1588)) that produces the value A7
when called with input (i, S). Its output includes a ranking permutation 7 of ground set
N, an optimal dual solution %, and optimal allocatior: indices {7;}ien that, as will be seen,
characterize optimal solutions to (LF;).

As shown in Figure 2-1, the algorithm constructs in n steps a vector §j = (¥°)scn,
which will later be proved to be an optimal solution to program (LD.). This dual solution
has at most n nonzero components, which correspond to a nested (laminar) family (see e.g.
Schrijver (1986))

S51CSHC---CS=N.

The algorithm identifies in an adaptive greedy manner a permutaton 7 = (my,...,7y,) of
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Input: (r, A).
Output: (m,¥,7), where 7 = (m,...,m,;) is a permutation of N, § = (y
Y = (My---1Mn)-

Step 0. Set S) = N; set §°! =max{l37:iesl};

Al
pick m; eargmax{—b 165‘1};
set m, =y
Step k. Fork=2,...,n

"'_Zk 1 5
set Sk = Sk_1 \ {mk-1}; set §°* = max ‘;‘ 11 € Sk p;

k- S-s
pick m € argma.x{ i ZA ieSk};

set Y, = Ymp_, + 375"-

Step n. For S C N: set
75=0, iSE{S,....5}

Figure 2-1: Adaptive greedy algorithm AG.

N such that, defining Sk = {m,...,m} for k = 1,...,n, the unique solution of triangular

system
A;Sr‘:ysl = T'm
s Sact_ s (2.3)
Aﬂ’.‘;-nys’ +---4 AxtIly®n- = T,
ABYS 4ot AT+ AR = e,
satisfies

5 <0, fork=2....,n

A corresponding primal solution is obtained by complementary slackness, as the solution
v(m) of system (2.2). We present next an optimality proof, based on linear programming

duality.

Proposition 1 (Optimality of adaptive greedy algorithm) Let (7,3,7) be an outpul
of algorithm AG. Tnen v(w) and§ are an optimal primal-dual pair for linear programs (LP;)

and (LD.).

Proof
We shall show that v(r) and § are primal and dual feasible solutions, respectively, and

that they satisfy complenientary slackness. We shall first show by induction that % is dual
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feasible. By definition of #5! in AG, it follows that
ri—-AD§51 <0, forie$,

and since S C S; we must have §52 < 0.

Similarly, for k = 2,...,n, we have, by definition of 75

k
ri=Y AP§% <0, fori€ Sy,
Jj=1
and since Sk4+) C Sk, it follows that %+ < 0. Therefore §% < 0, for j = 2,...,n, and by
definition of 7, it follows that §° < 0, for S C NV.

We also have, by construction,

Z i?s—zr‘ix J—r,.-k, fork=1,...,n
S-JVQSank

Therefore % is a dual feasiple solution.

Now, by definition of extended contra-polymatroid, v(m) is a primal feasible solution.
Let T = (). Let us show that T and § satisfy complementary slackness. Assume 7° # 0
for some S C N. Then, by construction it must be the case that S = S, = {m,...,m},

for some k € N. Now, since T is the solution of system (2.2), it follows that

iGCS j=k

Therefore, by strong linear programing duality, v(7) and 7 are an optimal primal-dual pair,

which completes the proof. O

Remarks:

1. The result that adaptive greedy algorithm AG solves program (LP,) was first estab-
lished by Tsoucas (1991), who provided a direct optimality proof — not involving
duality theory—. He showed that when the underlying extended polymatroid cor-
responds to the performance region in Klimov’'s {1974) queueing model, algorithm

AG yields classical Klimov's algorithm for computing the optimal priority scheduling



policy.

2. The renning time of algorithm AG is polynomial in a well-defined sense. Given its
input (r, &), the algrrithm performs O(n®) multiplications and O(n?) pairwise com-
parisons. The number of required calis to the oracle that produces the AJ's is O(n?).
Therefore, AG is an oracle-polynomial-timz algorithm {sce (irétschel et al. (1988)).
In some applications the oracle that returns the A®’s runs in polynomial time in the

size of the model data, in which case the algorithm is polynomiai in the usuai sense.

3. Recently, Bertsimas and Teo (1994) have developed a unified primal-dual approxima-
tion algorithm for problems of the covering type. When specialized to the case of

extended polymatroids, this algorithm coincides with adaptive greedy algorithm AG.

The optimality of adaptive greedy algorithm allows us to characterize explicitly the

vertices of an extended polymatroid.

Theurem 1 (Characterization of extreme points) The set of eztreme points of ez-

tended contra-polymatroid P.(A,b) is
{v(m) : m is a permutation of N'}.

Proof.

First, it is easy to see that for any permutation 7 of A, u(m) is an extreme point of
P.(A,b). Second, we shall show that any extreme point of P.(4, b) is of the form v(m) for
some permutation 7. This follows from the well known result that every extreme point of
a polyhedron is the unique maximizer of some linear objective, and the fact that algorithm

AG produces an optimal primal solution of such form. O

Remark. Edmonds (1570) proved the classical result that the greedy algorithm solves the
linear programming problem over a polyhedron for every linear objective function if and
only if the polyhedron is a polymatroid. Now, in the case that AS =1, fori € S and
S C N, it is easy to see that adaptive greedy algorithm AG reduces indeed to the classical
greedy algorithm that sorts the r;'s in nonincreasing order. Since we know that algorithm
AG solves problem (LP.) optimally it follows that, in this special case, Pc(4,b) is indeed a

polymatroid, and therefore function b is submedular (see also Dunstan and Welsh (1973)).
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Extended polymatroids are therefore natural genera!izations of polymatroids, and adaptive

greedy algorithm .AG is a natural extension of the greedy algorithm.

Indexability

The optimality of adaptive greedy algorithm .AG leads naturally to the definition of certain
allocation indices, that characterize the optimal sclutions of a linear programs over an
extended polymatroid. We will show later that these allocation indices correspond to the

well-known Gittins indices in stochastic scheduling problems.

Definition 2 (Allocation indices) Let § be the optimal dual solution produced by adap-
tive greedy algorithm AG. Let

Y= Z 7, fori e N.
S: N2S3i

We say that «;,...,yn are the allocation indices of linear program (LF).

Remarks:

1. If permutation 7 is produced by algorithm 4G, then

Ya, = -g{vn ..... Tn) ot y{"’u ----- ’fn}' forie N. (24)

2. Notice that the allocation indices of linear program (LP,) depend only on (r, A) (not
on the right-hand side b).

3. Notice that in order for the allocation indices of linear program (LPF;) to be well
defined, the optimal dual solution § computed by algorithm AG must be uniquely
determined by its input (r, A).

Consistency of the definition of allocation indices. We address next the issue of
whether the allocation indices v,. .., v of linear program (LFP,) are indeed uniquely deter-
mined by the input (r, A) of algorithm AG. This question arises because ties may occur in
some of the maximizations performed by the algorithm. In the presence of ties, the permu-
tation 7 produced by the algorithm is not uniquely determined by its input (r, A): it clearly

depends on the way ties are broken. We shall establish next that, however, the optimal dual
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Input: (r, A).
Output: (P, j), where P = {P,,...,P,} is a partition of N and y = (gs)scN'

Step 1. Set k := 1; set U, = N;
set § = max{ i€V} and Py = ergmax{ i€ U ).

Step k. While Uy # Py do:

begin
Set k:=k + 1;sez Uy = Up=1 \ Pe-y;
r - t—nAU, U,
set Thd = ma.x{ E,::]* LM i€ Uy and
n-Tios A Y
P, = argmax e 1 € Ui

end {while}

Step m. Set m = k;
for S C N: set
=0, ifS¢g{U,....Un).

Figure 2-2: Algorithm AG’: Unambiguous version of adaptive greedy algorithm AG.

solution produced by the algorithm remains invariant under different tie-breaking rules, and
therefore our definition of allocation indices of linear program (LP,) is consistent. We shall
also characterize the structure of the permutations that can produced by algorithm AG.

In order to prove that the dual solution produced by algorithm AG is uniquely de-
termined by its input, we iutroduce next algorithm .AG’, which is simply an unambigous
version of the former — its output is uniquely determined by its input—. Algorithm AG’,
shown in Figure 2-2, produces a partition P = { Py, ..., Py} of the ground set, in addition
to a dual vector y. Each subset in that partition groups together elements of the ground set
that would attain the same maximum in the maximizations performed by algorithm AG,
thus eliminating the ambiguity due to different tie-breaking rules.

The next result, which is easily seen to hold by induction, shows the relation between
the outputs of both algorithms. It establishes that the dual solution returned by adaptive
greedy AG is invariant under tie-breaking rules. It also characterizes the structure of the

permutations that can be returned by algorithm AG.

Proposition 2 Let (m,§,v) and (P,y) be outputs of algorithms AG and AG’, respectively,

coTespondirg to the same input (r, A). Then

(a) § =7.
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(b) Permutation n satisfies
Pi = {mpu.uPeyists - MPu.opg), fork=10...m (2.5)

Optimality conditions. We present next several equivalent optimality conditions for a
linear program over an extended polymatroid, including one based on ranking its indices.
Let R. = {z € R:z <0}. Let v;,..., 7 be the allocation indices of program (LF.). Let

T be the following n x n upper triangular matrix:

11 ... 1\

01 1
T=

c 0 ... 1

Proposition 3 (Equivalent optimality conditions) The following statements are equiv-
alent:

(a) Permutation 7 satisfies (2.5);

(b) permutation 7 is produced by algorithm AG;

(c) re A7l € R x R"7!, and then the allocation indices are given by vr = r-A;'T;

(d) Yan < Yrned S0 < Ty -

Proof
(a) = (b): This is the result in Proposition 2(b).

(b) = (c): It is clear, by construction in AG, that
(gmemd, L glmemd gmad) = g, (2.6)
Now, in the proof of Proposition 1 we showed that
j° <0, for SC N,
which together with (2.6) implies r,A;! € R x R?~!. Furthermore, by (2.4) we have

Ve = (g{m ....,1r..), ey g{ﬁ'"_l.nn}, ﬂ(""}) T,
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and by (2.6) it follows that
Yo =TxA; IT.

(c) = (d): By (c) we have

(7ﬂ’n 'hrz—')’tp ey 'y,,”—'y,,ﬂ_,)T"=r,,A;’eRx?R'_‘_",

whence the result follows.
(d) = (a): By construction of § in algorithm .AG’, the fact that §j = § and the definition of

allocation indices, it follows that
= 7 =Ux ; —_
vi=glt+---+ gk, forieU, andk=1,...,m,

where the Uy's are as constructed in algorithm AG’. Also, it is easy to see that 37 < 0, for

J 2 2. These two facts imply that 7 must satisfy (2.5), which completes the proof. O

Combining the result that algorithm AG solves linear program (LP,) optimally with
the equivalent conditions in Proposition 3, we obtain the sufficient optimality conditions

presented next.

Theorem 2 (Sufficient optimality conditions and indexability) Assume that any of
the conditions (a)-(d) of Proposition 3 holds. Then v(w) solves linear program (LP,) opti-
mally.

The following results follow from our previous analysis:

1. Indexability: Optimality condition (d) of Proposition 3 shows that any permutation
that sorts the allocation indices of linear program (LP.) provides a corresponding
optimal solution. Condition (d) therefore shows that this class of linear programs has

an indezability property.

2. Sensitivity analysis: Optimality condition (c) of Proposition 3 is specially well
suited for performing sensitivity analysis. Consider the following question: given a

permutation 7 of N, for what vectors r and matrices A does v() solve problem (LP,)
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optimally? Ve know that v(w) is optimal for r and A that satisfy the condition
A7l eRx R

We may also ask: For which permutations = is it guaranteed that »(r) is optimal?

By Proposition 3(d). we know that v(w) is optimal for permutations = that satisfy
‘7ﬁn S 7’?“-] s e S ‘Yﬂ'lv

thus providing an O(n log n) optimality test for m. Glazebrook (1994) has recentiy ap-
plied these polyhedral results to provide a range of index-based suboptimality bounds

for general policies in a variety of stochastic scheduling problems (see also Glazebrook

(1987)).

3. Closed formulae for allocation indices: Proposition 3(c) provides a closed formula
for the vector of allocation indices. It shows that the indices are piecewise linear

functions of the reward vector.

4. Optimal objective value. The optimal objective value. Z, is given by:

Z = TpIg
= rpA;lby
= “/nT_lbn
b({ﬂ']._....ﬂ’n})—b({7l'2,....7l'n})

= (‘yﬂ'[l 71!2r ceey 71!’,‘ ) (27)

b({mn-1,mn}) — b({mn})
b({mn})

Index decomposition

We show in this section that the allocation indices of linear program (LF.) possess. un-
der a certain assumption, a strong decomposition property. In that case, the indices can
be computed by solving a number of smaller subproblems, thus reducing the amount of
computations required. We will show later that this property explains en analogous decom-

position property of the optimal priority-indices in some stochastic scheduling problems,
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including multi-armed bandits.

In this setting the ground set . / is partitioned into subsets AV}, ... ANk. Let Ak denote
the submatrix of A corresponding to subsets o{ N, i.e.. A¥ = (A%)ien, sen,. Let r =
(r)ien» 8nd r* = (7,)ien,, for k = 1,..., K. Let v be the vector of ailocation indices of
linear program (L P.), and let v* be the index vector produced by adaptive greedy algorithm
AG when fed with input (r*, A%).

The required decomposition assumption on the parameters of matrix A is:

Assumption 2
AS = ASWi forie SNN: and SCN. (2.8)

We show next that, under Assumption 2, vector of allocation indices v extends vectors

41, ..., 9% over their respective ranges.
Theorem 3 (Index decomposition) If Assumption 2 holds, then
¥i =k, forie Ny andk=1,... K.

Proof

Let us define b*: 2V — R by b¥(S) = b(S), for S C Ni. Since P,(A,b) is an extended
contra-polymatroid, it is easily seen that P.(A¥, b*) is also an extended contra-polymatroid
— with ground set Ni. For k=1, ..., K, let us write z* = (z¥),en,, and let (LPy) be the

linear program

(LP) max{ S° rizk 2t e P(ARBY) } .
1ENK

By definition, the allocation indices of linear program (LP;) are obtained by running algo-
rithm AG with input (¥, A¥), and are therefore given by vector k.

Let us define
gi=1% fori€N; andk=1,... K. (2.9)

t us renumber, for simplicity, the elements of N, so that
gn<gn-1 < S q1 (2.10)

Let 7 = (1,...,n). Permutation = of A induces permutations m* of Ni, fork=1,...,K,
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that satisfy

k k
<o <L .
’7,,'3“__ S Ynk

Hence, by Proposition 3 it follows that

“I:k = T,‘,'A(A,‘;s)”'Tk, fork=1,.... K
or. equivalently,
'4, 0 ... 0
(’7:”73,'---"7:&) 0 T{I'A,Q,, = (r,',..r?,g,....r,‘,',,), (2.11)
0 0 ... T;'Ak
where T} is an |Ni| x |[Nk| matrix with the same structure as matrix T', for k = 1, ..., K.

On the other hund, we have

(1 -1 0 ... 00 0)
01 -1 ... 00 O
T4, = Do Do s Ay
0 0 O 01 -1
\0 0 0 ... 00 1)
1,....n} A {l...., . -1 1,.... 1..... -1
{A{ n} Ar(:—l n} Ay{11— n-1} A!; n}__A’{1 n-1}
B 0o .. Al Afrtn _ afmd
\ o .. 0 AfM

Alimd — glienh i =A.(j+l ..... npWi __ 4li+l..n} (2.12)

Hence. by (2.9) and (2.12) it follows that system (2.11) can be written equivalently as

9eT ™ A =14, (2.13)
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Problem Allocation indices | Optimal solution
(LP)mingepaphz | (RA) 2%y | yo, < <,
fn - A;lbn
(LP;) maxzep (ab) TZ (r, A) 22 ~ Yrea S 000 S Yy
— S _fﬂ'_= Ailb"

Table 2.1: Linear programming over extended polymatroids.
Now, (2.10) and (2.13) imply that
reA;' =T =(g91, 92-91, - Gn—9gn-1) ERXRI,
and by Proposition 3 it follows that the allocation indices of linear program (LPF;) satisfy
Yo =TnAy T,

Therefore, by (2.13),
i = Vi, forie N,

which completes the proof. O

A useful consequence of Theorems 2 and 3 is the following:

Corollary 1 Under the assumptions of Theorem 3, en optimal solutior. of linear program

(LP.) can be computed by running algorithm AG with inputs (r*, A*), fork =1,...,K.

Remark: It is important to emphasize that the index decomposition property is much
stronger that the indexability property. We will see later in the context of stochastic
scheduling that the classical multi-armed bandit problem exhibits the index decomposition
property. This condition is not satisfied in general. however, by the optimal priority-indices
in Klimov’s problem (see Klimov (1974)).

We have focused our discussion in properties of linear programs over extended contra-
polymatroids. The properties of linear programs over extended polymatroids are analogous.
In Table 2.1 it js shown how to solve linear program (LP) — that minimizes a cost function
hz over extended polymatroid P(A, b)— by running algorithm AG with input (h, A), thus

obtaining corresponding allocation indices that characterize the optimal solution
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2.3 A polynomial projection representaticn for a class of

extended polymatroids

As will be shown in Chapters 3 and 4, extended polymatroids arise in applications as
the performance region corresponding to a variety of stochastic scheduling problems. For
example, the region spanned by the vector of expected flow times in a multiclass queue with
feedback (see Klimov (1974)) is an extended polymatroid. as established by Tsoucas (1991).
It may be of interest in applicsiions to impose side performance constraints to such systems,
that may represent. e.g., bounds on expected flow times (see e.g. Nain and Ross (1986),
and Makowski and Shwartz (1993)). The region of achievable performance corresponding to
the modified system is still a polyhedron. which may be represented by the constraints that
define the extended polymatroid. augmented with a polynomial number of side constraints.

As a consequence of the polynomial-time solvability of a linear program over an extended
polymatroid (see Section 2.2), and of the polynomial-time equivalerice between linear pro-
gramming separation and optimization (see Grotschel et al. (1988)), it follows that a
linear program over such an augmented polyhedron can be solved in polynomial time. This
theoretical result relies, however, on using the ellipsoid method for solving the separation
problem over an extended polymatroid, which hinders its application, as that method has
not proven to be efficient in practice (see e.g. Nemnauser and Wolsey (1988)). There is
thus a need for practically efficient methods for solving those linear programs.

In this section we present a compact (polyncmial-size) projection representation for a
class of extended polymatroids, that includes those arising in stochastic scheduling appli-
cations such as Klimov’s (1974) problem. This polynomial-size reformulation is obtained
by representing the extended polymatroid as the projection of a higher dimensional polyne-
dron (introducing additional variables). A linear program over these extended polymatroids,
augme with a polynomial number of side constraints, can thus be reformulated as a
polynomial-size linear program, which can then be solved in polynomial time by practically
efficient interior-point methods for linear programming (see e.g. Nesterov and Nevirovskii
(1994)).

Our work generalizes results of Bertsimsas, Paschalidis and Tsitsiklis (1994a), and Bert-
simas, Paschalidis and Tsitsiklis (1994b), in which they present polynomial-size reformula-

tions of the performance region corresponding to Klimov's problem, and branching bandits,
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respectively.

We present next the class of extended polymatroids mentioned above. Let N' = {1,...,n}.
Let p = (pi)ien be a vector with positive components, and let Q = {q;),;en and B =
(bij)1.;en» be matrices with nonnegative components. with Q symmetric.

We shall define a matrix 4 = (A,-S).-E ~.sca and a set function b : 2N . R, as functions
of p, Q and B. The following notation will be used throughout the section: given subsets
S, T of N, we write ps = (p)ien, AF = (A )ier, @st = (@ij)esyer (Bsr is defined

similarly). For every S C WV, let us define vector A,SV as the solution of the linear system
A$ = ps + Qss A3,

A3 = pse + Qse5A3,

and let

1
b(S) = §A§'BSSA§.

We can now consider the polyhedron P.(A, b), defined earlier as

'PC(A,b)={:J:ER';:ZA;S:rga(S), for SCN and ZA{‘/rg=b(N)}.
i€S iEN

Let us introduce a related polyhedron P(p, Q, B), in higher dimension, as
P(p.QB) ={(zX) e R} xR : (I-QYX+X'(I-Q)=B, and z'=pX 3

We shall prove next that, under a certain consistency assumption on parameters p,
and B, which is equivalent to Assumption 1, polyhedron P.(A,b) is an extended contra-
polymatroid. We shall further show that, in that case, the projection of polyhedron
P(p,Q, B) over the space of the z-variables, deroted proj, (P(p,Q, B)), is precisely ex-
tended contra-polymatroid P.(A, b), thus providing a polynomial-size projection represen-
tation.

Let us first present the consistency assumption. Given a permutation 7 of N and matrix
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X, let us denote
L - 0 e 0
Tnymy, Tmamg .- 0

r"n"'l r”nﬂn-l e Iﬂ'nﬂ'n J

Xx =

Assumption 3 For every permutation m of N, linear system
(I-Q)YX.+X:'"I-Q)=B (2.14)

has a non.egative solution.

We can now state the main result of this section.

Theorem 4 (Polynomial projection representation for extended polymatroids)
Under Assumption 3, the following results hold:
(a) Polyhedron P.(A,b) is an eztended contra-polymatroid;

(b) Pc(A,b) = proj; (P(p,Q, B)).

FProof

(a) We shall first show that proj, (P(p,Q, B)) C P.(A,b). Let (r,X) be such that z €
proj, (P(p,Q, B)), and let S C M. We have

1 o
b(S) = §A§ BssA3
1 , A3
= (45 0)W-x+xU-Q)
s\ [ as
={ag-f C x| F
0
_ (Is — Qss)A% X Az
—QsesAS 0
! AS
= p- X 5
AS, 0
= S Afz - AL XsesAf (2.15)
1€ES
< Y Afz, (2.16)
I€S
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which proves that proj, (P(p.Q, B)) C P.(A.b).

We shall now show that P.(4, b) is an extended contra-polymatroid. Let 7 = (=,..... )
be a permutation of V. Since Assumption 3 holds. we can pick a nonnegative solution X,
to system (2.14). Letting #/, = p. X,. and substitgting into equation (2.15) we obtain that.
Z is the solution of system (2.2). This solution. by (2.16). lies in P,(A, b), which proves that
Pc(A, b) is an extended contra-polymatroid.
(b) In the proof of part (a) we established that P,(A.b) is an extended contra-polymatroid
whose vertices lie in proj, (P(p, Q, B)). Therefore. P.(A,b) C proj, (P(p, Q, B)), thus com-

pleting the proof. O
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Chapter 3

A unified approach to indexable

scheduling problems

Researchers have cstablished over the last four decades that a wide variety of stochastic
scheduling problems are solved optimally by simple priority-index rules. In these problems
a uumerical index may be associated with each kind of job, in such a way that the policy
that serves at each time a job with largest current index is optimal. Well known examples
include Smith’s rule (see Smith (1956)) in single-machine deterministic scheduling, the
cp rule (see Cox and Smith (1961)) and Klimov's rule (see Klimov (1974)) in dynamic
scheduling of multiclass queues, and the Gittins index policy (see Gittins and Jones (1974))
in multi-armed bandit problems.

These results have been obtained through a variety of techniques. such as dynamic
programming formulations and interchange arguments, tailored to each particular problem.
This approach is not completely satisfactory, both from a theoretical and from a practical
viewpoint. On the theoretical side, it would be desirable to understand in a unifying way the
reason that some scheduling problems are indezable (i.e., solved optimally by priority-index
rules). Such understanding should provide a method for testing whether a given scheduling
problem is indexable, and a unified index-computing algorithm. On the practical side,
one often needs to consider variations on the original problem. such as incorporating a
nonlinear performance objective, or imposing side constraints on performance measures.
Ad hoc techniques for analyzing the original problem do not usually yield insight on how

to solve such variations.
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This chapter develops a mathematical programming approach. as outlined in Chapter
1, to the solution of indexable scheduling problems. A unified framework is thus obtained
for formulating and solving such problems as linear programs with special structure. In
an abstract setting of general multiclass queueing systems, we introduce the concept of
generalized conservation laws. and prove that the performance region corresponding to a
performance measure that satisfies these laws is necessarily a specific kind of polyhedron:
an extended polymatroid. The problem of optimizing a linear performance objective by
controlling the dynamic scheduling policy used is thus translated into a linear program over

an extended polymatroid. The structural and algorithmic properties of these underlying
linear programs, developed in Chapter 2, are shown to correspond to related properties of
the scheduling problems. such as the optimality of priority-index rules.

The chapter is structured as follows: Section 3.1 introduces the applicaiion of the ap-
proach through an example: a simple two-armed bandit problem. Section 3.2 presents
a unified framework for formulating and solving indexable scheduling problems, which is
based on exploiting the relation between physical conservation laws and the geometrical

structure of the performance region.

3.1 Optimal dynamic scheduling of a two-armed bandit

Class 1 Class 2 Class 3

[ ¢ K Vo

| (|-

—J — L

Pss Paxn

Figure 3-1: A two-armed bandit.

This section introduces the main ideas of the mathematical prograinming approach to
stochastic scheduling, as described in Chapter 1, through an example: a simiple two-armed
bandit problem.

Let us first describe the example problem. Although it may be regarded as a two-armed

bandit problem (see e.g. Gittins (1989)), we shall introduce and analyze it as a scheduling
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problem in a multiclass queue. for consistency with the general framework to be presented
later. Tn the terminology of queueing theory, the problem may be stated as the optimal
dynamic scheduling of the closed queue in discrete time with three job classes and two jobs
shown in Figure 3-1. Initially one of the jobs is in class 1 and the other in class 2. Jobs may
change class after completing service, according to Markovian transition probabilities. A
class 2 job may thus either remain in the same class. with probability p2, or transfer to class
3 with probability pa3 = 1 —p22. A class 3 job behaves analogously. as shown in Figure 3-1.
The class 1 job, however. always remains in the same class. There is a discounted reward
structure associated with service completions: Each time a class-j job completes its service,
a raward r; is earned. discounted in time by a discount factor 0 < 3 < 1. The problem is to
finc a scheduling policy that decides which job to serve at each time. in order to maximize
the expected present value of the rewards earned over an infinite horizon.

"T"wo natural requirements are imposed on the class of scheduling policies that may be
used. First. a policy must be nonanticipative (i.e.. decisions may not be based on future
information on the evolution of the system), thus obeying the principle of causality. Second,
a policy has to be nonidling (i.e.. the server never stops working while there are jobs in the
system). WWe shall refer to the class U of policies that satisfy these two conditions as the

class of admissible policies. By defining the indicator

1, if a class-j job is serviced at time t:
Ii(t) =

0, otherwise.

we can write this optimal dvnamic scheduling problem as

oo 3
(SP) Z=max{ E, | Y Y rL(t)3' | :ueld p. (3.1)

t=0)=1

3.1.1 Performance measures

The first step of the approach involves expressing the objective to be optimized as a function
of suitably defined performance measures. For the above problem. a natural performance

measure is the total expected discounted number of service completions for each job class,

A} = E, [ZI,(:)&'] , for j =1.2.3. (3.2)
t=0
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As scheduling policies range over the class of admissible policies. the corresponding

performance vectors span the region of achievable performance

A= {(A%, 2508 : uw e U).

The problem of finding an optimal performance vector can now be written as the mathe-

matical program

(MP) Z = max rA + rodg + r3i;

o
5
—

subject to (
(A1, A2, A3) € AL

3.1.2 Conservation laws

We shall construct a complete polyhedral description of performance region A, by identifying
conservation laws satisfied by the system and expressing them as linear constraints on
performance vectors. First, since at each time exactly one job completes its service, it
follows that the total expected discounted number of completed jobs is the same under any

admissible scheduling policy. This conservation law may be written as

1

AT+ A5+ ) = =5 foruel. (3.4)

We shall outline next how to construct a family of conservation laws associated with

subsets of job classes. Consider. for example, the subset {2} corresponding to class 2 jobs.

Let us be a scheduling policy that gives priority to class-2 jobs over jobs in other classes

(i.e., the job in service must be a class-2 job whenever there is one present). Under such a
policy, the conservation law

uz

1
A T e————— +
2 T 1- B Opsz

1
_—\2 3.5
1 - 3py2 ° (35)
holds. Equation (3.5) expresses the intuitive fact that the total expected discounted number
of class-2 jobs completed, A3?, can be decomposed into two terms: A first constant term,
1/(1 = Bp22), that accounts for the class 2 jobs completed until the job that was initially

in class 2 transfers for the first time to class 3; and a second term, that accounts for the
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class 2 jobs compieted afterwards. using the following accounting argument: After a class
3 job completes its service at time t. the expected discounted number of successive class 2

job completions is

3*'p3a/(1 — Bpa2).
It should be intuitively clear that. under other admissible policies, the right-hand side
of equation (3.5) overestimates the expected discounted number of successive class 2 job
completions, i.c.,

+ ﬂpsgi—l—)\g, foru e Y. (3.6)
- 2

1
Ay < ————
2= 1- 3p2

Bpa2

Using conservation law (3.4), we may rewrite inequality (3.6) as

D32 1 1

1+(1+8———)25 > - . foru e l. 3.7

‘ T B 2 T-8 1= prma (3.7

with equality holding under any policy u that gives priority to class 2 jobs. Inequality (3.7)
yields a corresponding linear inequality constraint on performance region A.

By applying a similar argument to policies that give priority to other subsets of job

classes. we may derive corresponding conservation laws and linear constraints on perfor-

mance vectors.

3.1.3 Linear programming formulation

As will be shown later, the linear constraints obtained through the procedure outlined above
represent a complete polyhedral description of performance region A. Proceeding in this

way, we obtain the following explicit linear programming formulation of problem (AfP):
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Z = max rA + 22 + 33

subject to
A2 + A3 > 0
A+ Q+835)% 2 55— =5
M+ (48BN > =3
Al > 0
A2 > 0
A3 > 0
A+ A2 + Az = =3

where each inequality constraint holds with equality under a scheduling policy that gives
priority to the corresponding subset of job classes.
It will be shown in Chapter 4 that the feasible region of linear program (AfP) is an

extended polymatroid. as defined in Chapter 2.

3.1.4 Optimal solution

We will show in the next section that the extreme points of that extended polymatroid are
the performance vectors achieved under static-priority scheduling policies (i.e., the service
priority of a class remains constant through time). Since the optimal value of a linear
program is attained by some extreme point in its feasible region. it follows that static-
priority policies are optimal for this scheduling problem. In the next section we will also see
how to identify the optimal extreme point, and its associated optimal static-priority policy,
by running a one-pass algorithm.

Figure 3-2 depicts an extended polymatroid in dimension three, representing the per-
formance region of a 3-class bandit problem. Notice that it has 3! = 6 extreme points,

corresponding to all static-priority policies.
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Figure 3-2: An extended polymatroidal performance region (priority policies are associated
with its extreme points, with job classes ranked by increasing priority).

3.2 A mathematical programming approach to indexable

scheduling problems

In this section we develop a unified framework for formulating and solving stochastic
scheduling problems solved by priority-index rules. This framework is obtained by ap-
plying the mathematical programming approach to stochastic resource allocation problems
described in Chapter 1.

Section 3.2.1 introduces a concept of conservation laws that generalizes other definitions
used in the literature. We show that the performance region corresponding to a scheduling
problem that satisfies these laws is necessarily a polyhedron with special structure: an
extended polymatroid. The vertices of the performance region are shown to be achieved by
static-priority scheduling policies.

Section 3.2.3 shows how to formulate the problem of optimizing a linear performance
objective, in a system that satisfies generalized conservation laws, as a linear program

over an extended polymatroid, and how to obtain an optimal scheduling policy from the

49



solution the formulation. We establish the optimality of priority-index rules and we present
an assumption under which the optimal indices satisfy a decomposition property, which

simplifies their computation.

3.2.1 Generalized conservation laws

The wide variety of stochastic scheduling problems solved optimally by priority-index rules
leads us naturally to consider the question: What physical properties of the system account
for that indexability property? We provide in this section an answer to that question,
by introducing and applying a general concept of conservation laws. We thus show that
the performance region corresponding to a performance measure that satisfies such laws
is necessarily an extended polymscroid, whose vertices are achievable under static-priority
scheduling policies. As will be shown in the next section. the indexability property of linear
programs over extended polymatroids (see Appendix A) translates into the optimality of
priority-index policies in the scheduling problems that satisfy those laws.

Consider a general dynamic and stochastic multiclass queueing system. There are n
job classes, which we label i € M = {1,...,n}. Jobs have to be scheduled for service
in the system under an admissible scheduling policy. Let U denote the class of admissible
scheduling policies. Let z{ be a performance measure of class-i jobs under scheduling policy
u. We assume that z}' is an expectation. Let z* denote the corresponding performance
vector. Let " be the performance vector corresponding to a static-priority policy (i.e.,
the service priority of a job depends only on its class and does not change over time) that
assigns priorities to the job classes according to permutation 7 = (7y,....7,) of N, where

class-m, has the highest priority.

Definition 3 (Generalized conservation laws) Performance vector =* is said to satisfy
generalized conservation laws if there exist a set function b:2V — R, and a matrix A =
(A‘,-s)ie ~N.sca that satisfies A;q > 0, for S C N, such that:

(a)

b(S) =Y _ Aa], for all w: {my,...,mge} =S° and SCN. (3.8)
i€S

(b) For every admissible policy u € U,
S APzl > 6(S), forall SCN and 3 AVzE = bN), (3.9)
i€S iEN
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or respectively,

S Afzr <b(S), forallScN and S ANzE = b(N). (3.10)
i€S iEN
Remarks:

1. In words, a performance vector is said to satisfy generalized conservation laws if
there exist weights A7 such that the total weighted performance over all job classes
is invariant under any admissible policy, and the minimum (or maximal) weighted
performance over job classes in any subset S C A is achieved by any static-priority

policy that gives priority to all other classes (in §¢) over classes in S.

2. Shanthikumar and Yao (1992) formalized a definition of strong conservation laws
for performance measures in general multiclass queues. that implies a polymatroidal
structure in the performance space. These laws correspond to the special case that

all weights are A7 = 1 in Definition 3.

The connection between generalized conservation laws and extended polymatroids is

given by the following theorem:

Theorem 5 (Performance region characterization) Assume that performance vector
T" satisfies generalized conservation laws (3.8) and (3.9) (resp. (3.8) and (3.10}). Then
(a) The performance vectors corresponding to static-priority policies are the vertices of
Pc(A,b) (resp. P(A,b)), and =™ = v(r), for every permutation © of N.

(b) The performance region is the extended contra-polymatroid P.(A,b) (resp. the extended
polymatroid P(A,b)).

Proof

We shall prove the theorem in the case that z“ satisfies generalized conservation laws (3.8)
and (3.9). The other case ((3.8) and (3.10)) is analogous.

(a) By (3.8) it follows that z™ = v(w). By Theorem 1 the result follows.

(b) Let P = {z“: u € U} be the performance space. Let P’(A,b) be the set of extreme
points of P.(A,b). By (3.9) it follows that P C P,(A,b). By (a), P’(A,b) C X. Hence,

since P is a convex set (U contains randomized policies) we have

Pc(A,b) = conv(P.(A,b)) C X,
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where conv(-) denotes the convex hull operator. Hence P = P.(A,b). which completes the

proof. O

Consider the problem of designing an admissible policy that achieves a given performance
vector z. It easily follows from Theorem 5 and Carathéodory theorem (see ¢.g. Bazaraa and
Shetty (1979)) that any given performance vector r can be achieved by a randomization of

at most n static-priority rules.

3.2.2 Strong flow conservation laws

The generalized conservation laws presented in the previous section may often be interpreted
in applications in terms of physical work conservation relations satisfied by the underlying
system. We will see examples of this fact in the applications developed in Chapter 4.
In some stochastic scheduling models. though, such as the ones considered in Chapter 6.
it may be easier to establish that a system satisfies a different set of conservation laws.
that represent physical flow conservation relations. These laws. when translated into linear
constraints on performance measures. give rise to a set of equality constraints satisfied by
tile performance vector to be optimized and a certain auxiliary performance matrix.

In this section we present a general definition of strong flow conservation laws and
prove that they imply the generalized conservation laws introduced in Section 3.2.1. Let
us consider a general multiclass queueing system. with job classes : € N = {l..... n}.
as described in Scction 3.2.1. Let 1* = (r}),en” and X" = (r}))i en be a vector and a
matrix. respectively. of associated performance measures. Let p = (pe)ien be an n-vector
with positive components. and let Q = (gi)): e and B = (b)), e be n x n matrices with

nonnegative matrices. with B symmetric.

Definition 4 (Strong flow conservation laws) 1We say that performance measures r*,
X satisfy strong flow conservation laws if the following conditions hold:

(i) For any admussible scheduling policy u € U.
(I-Q) X"+ X¥(I-Q)=B.

™ =p' X"

52




and

(ii) For any pair of job classes i.j € N, and any admissible scheduling policy u that gives

priority to class-i over class-j jobs,

The following result shows that a system that satisfies strong flow conservation laws
must necessarily satisfy generalized conservation laws. As in Section 2.3, we shall define a
matrix 4 = (A;s Jien.sca and a set function b : 2V — R+ as functions of p, Q and B. We
shall also write, for subsets S, T of N, ps = (pi)ien, A% = (A;g)ier, @sT = (gij)ies.jeT
(Bsr is defined similarly).

For every S C N, let us define vector Af, as the solution of the linear system
A3 = ps + Qss A3,

Ade = pse + QsesAS,

and let
1
b(S) = §A§'BSSA§.

Theorem 6 If performance measures ¥, X* satisfy strong flow conservation laws with
parameters p, Q, B, then performance vector t* satisfies the following generalized conser-

vation laws:

(a) For every policy u € U that gives priority to jobs whose class belongs in S°¢,

bS) =) Alzl.  for SCAN;
i€S

(b) For every scheduling policy u € U,

DA’z 2b(S), forallSCN and ¥ ANz' =b(N),
teS iEN

Proof
Let S C N. The same algebraic manipulations carried out in the proof of Theorem 4 yield
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that, for any admissible policy u,

b(S) = S ATzt S AfxiaAT

i€S €SS jeS
< ) A (3.11)
€S
with equality being achieved at (3.11) by any scheduling policy u that gives priority to jobs
with classes in S¢ (§¢-jobs) over S-jobs. since by definition zi; = 0 if job class i has priority
over job class j. O
Theorem 6 together with Theorem 5 imply directly that the performance region spanned

by perfurmance vectors z* under admissible scheduling policies is the extended contra-

polymatroid

P(A,b) = {:c ERT:Y Air, >b(S), for SCN  and ST ANz, = b(N)} .
i€S IEN
A second consequence of Theorem 6 is that the performance region of performance
vectors £%'s can be represented as the projection of a higher dimensional polyhedron defined

by a polynomial number of constraints. Let us define polyhedron P(p, Q, B) by
P(p,Q,B) = {(:t,X) € R} x R’f (I-Q)X+X'(I-Q)=B, and '=p'X }

Theorem 7 If performance measures =%, X" satisfy strong flow conservation laws with
parameters p, Q, B, then

(a) The performance region {z": u € U} is the extended contra-polymatroid P.(A.b);

(b) Pc(A, b) = proj, (P(p,Q, B)).

Proof

Part (a) follows directly from Theorems 6 and 5.

Part (b) follows from Theorem 4, and the fact that for any permutation m of N. the
performance matrix X*(™ corresponding to the static-priority scheduling policy u(m) that
assigns priorities to job classes according to permutation 7, with class m| having the highest

priority, is easily seen to be a nonnegative solution of system

(I-Q)YXx+ X+'(I-Q)=B.
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Therefore, Assumption 3 holds, and Theorem 4 vields the required result. O

3.2.3 Optimization over systems that satisfy conservation laws

Let z* be a performance vector for a multiclass queueing system that satisfies generalized
conservation laws (3.8) and (3.9). Suppose that we want to find an admissible policy u that
maximizes a linear reward function ), riz¥. This optimal scheduling control problem

can be expressed as

(LPy) max[Zr.x,“:uGU}.
1N

By Theorem 5. problem (LPy) can be translated into linear program

(LP,) max{ Y riz iz €PADb) } .

€N

The strong structural properties of extended polymatroids lead to strong structural
properties in the control problem. Suppose that to each job class-i *ve attach an index.
Y- A policy that selects for service at each decision epoch a job of currently largest index
will be referred to as a priority-indez policy. Let +,, ..., 7, be the allocation indices of
linear program (LF¢), obtained by running adaptive-greedy algorithm with input (r, A), as
described in Chapter 2. As a direct consequence of the results of Section 2.2 we obtain that
control problem (LFy) is solved by an index policy, with optimal priority indices given by

- Yn

Theorem 8 (Indexability under generalized conservation laws) (a) Let v(r) be an
optimal solution of linear program (LP,): then the static-priority policy that assigns prior:-
ties to job classes according to permutation m (class my has highest priority) solves problem
(LPy) optimally;

(b) A policy that selects at each decision epoch a job of currently largest allocation index

solves problem (LPy) optimally.

Index decompaosition

A stronger indez decomposition property holds under certain conditions. Assume N}, ..., Nk
is a given partition of the set of job classes M. Job classes in N, may be interpreted as

corresponding to a class-k project. Assume also that submatrix A* = (A%)icn, scn, of
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A (as a function on the parameters of the system) depends only on characteristics of job

classes in N} (i.e., of project class-k). If Assumption 2 holds. i.c..
AF = ASWe, forie SAN, and SCN.

then the Index decomposition theorem for extended polymatroids (Theorem 3) applies, and

therefore

wi=1f,  fori€ N,

where the 'y,-k(rk. A*Y's, for i € N, are the indices obtained by algorithm AG with input

(r*, A¥), and 7* = (ri)ier;,. Combining this result with Theorem 8 we obtain:

Theorem 9 (Index decomposition for multiclass queueing systems) The allocation

indices corresponding to job classes in Ny only depend on characteristics of project class-k.

The previous theorem identifies a sufficient condition for the indices of an indexable
system to have a strong decomposition property. Therefore, systems that in addition to
generalized conservation laws further satisfy Assumption 2 are decomposable. For such
systems the solution of optimal scheduling control problem (L P;;) can be obtained by solving
K smaller independent subproblems using algorithm AG.

An example of a decomposable system is the multiclass-A{/G/1 queue with performance
measure

N+
)= —L i €N, (3.12)

Hi
where N is the time average number of class-i jobs (with mean processing time 'ul_.) in the
system under scheduling policy u. Given a holding cost ¢, per unit time for each job class-i,

the goal is to assign the jobs to the server according to a nonanticipative. nonidling and

nonpreemptive scheduling poliry in order to minimize time average holding cost:

min z NP = Z(c.u,)x:‘.

1EN tEN

Gelenbe and Mitrani (1980) first showed that performance measure " given by (3.12)

satisfies the following conservation iaws:

Y ozt > b(S), for Sc W, (3.13)
1€ES
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Z !t = b(N).
lEJV

with equality in (3.13) if policy u gives priority to jobs with classes in S. Assumption 2
clearly holds in this case, since all A;" =1,fori€ S and S C N. This is the reason that
the optimal index for each job class depends only on characteristics of that job class: the
allocation indices are given by v; = ¢,u,, thus explaining the optimality of the cj rule from
a linea: programming perspective.

Another well known example of decomposable system is the multi-armed bandit prob-
lem. We will see later that in this case the allocation indices reduce indeed to the original
Gittins indices. Furthermore, Theorem 9 explains the fact that the Gittins indices corre-
sponding to the states of project k only depend on characteristics of that project.

Let us consider briefly the problem of optimizing a nonlinear cost function on the perfo:-
mance vector. Analogously as what we did in the linear rewards case. the optimal scheduling
control problem in the case of a nonlinear reward function can be translated into a nonlinear
program whose feasible region is an extended polymatroid. See Bhattacharva et al. (1991)
for a discussion of algorithmic methods for solving separable convex, min-max, lexicographic

and semi-separable convex optimization problerns over an extended polymatroid.
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Chapter 4

Applications: multi-armed bandits
and other indexable scheduling

problems

In this chapter we apply the framework developed in Chapter 3 to formulate and solve in a
unifying way a variety of stochastic scheduling problems whose optimal policies are known
to be of priority-index type. They include the classical multi-armed bandit problem (see
e.g;. Gittins (1989)), Klimov's problem (sze Klimov (1974)), and the minimum weighted
flow time problem in deterministic scheduiing (see Smith (1956)). These and other index-
able sclieduling problems correspond to special cases of the branching bandit problem (see
Meilijson and Weiss (1977), and Weiss (1988)).

The chapter is structured as follows: Section 4.1 introduces the branching bandit model,
defines associated optimal scheduling problems. and shows how to cast thern in the frame-
work presented in Chapter 3. Suitable performance measures are defined, and it is es-
tablished that they satisfy generalized conservation laws. The scheduling problems are
thus formulated as linear programs over extended polymatroids, and they are shown to be
solved by a priority-index policy, with the optimal indices being computed by a one-pass
adaptive-greeay algorithm.

Section 4.2 specializes the previous results to several cases of the branching bandit model.
which correspond to some classical problems in stochastic scheduling. The cases developed

include the multi-armed bandit problem. the problem of optimal dynamic scheduling in a




multiclass queue with feedback, and deterministic scheduling probiems.

4.1 Branching bandit problems

A branching bandit is a versatile model of 2 multiclass single-server queue. The systems that
can be modeled as branching bandits include multiciass queues in discrete or continuous
time, and with or without arrivals, as well as multi-armed bandits. This model was first
introduced by Meilijson and Weiss (1977).

In a branching bandit model. a single server must be allocated over time to jobs
demanding its service attention. Jobs are classified in a finite number of job classes
i € N = {1,....n}. We associate with job class i a random service time v; and ran-
dom arrivals (NV,;);en- When a class-i job completes its service. it is replaced by new jobs
Ni; of class-j, for j € N. Given the job class-i, the service time and the descendants
(v, (Nij);en) are random variables with an arbitrary joint distribution. independent of all
other jobs. Jobs are to be selected for service under an admissible policy u, which must be
nonanticipative (decisions may be based on past and present information on the evolution
of the system. but not on future information. such as the service time of the next job to
be serviced), nonidling (the server is busy as long as there are jobs in the system) and
nonpreemptive (the service of a job, once started. must proceed without interruption until
its completion). Let us denote U the class of admissible policies. The decision cpochs are
t = 0 and the instants at which a job is completed and there is some other job present.

We next introduce some notation and concepts that will be useful for analyzing the
sample-path of a branching bandit process. Let S C A be a subset of job classes. We shall
refer to jobs whose classes are in S as S-jobs. \We are interested in studying the busy period
of a branching bandit process. This busy period may be represented as a tree. We say that
S-job 7, is an S-descendant of job i if 7} belongs in the subtree of the busy period that is
rooted at ig. Given a job i in a busy period. the union of intervals where S-descendants
of i are being processed is called an (i, S)-period. Notice that under a policy that gives
complete priority to S-jobs, these intervals will be consecutive. Let T,S be the duration
(possibly infinite) of an (i, S)-period. We define Tf(o) as the time needed for first clearing
the system of S-jobs, under a policy that gives priority to S-jobs. The distributions of T

and of Tf(o) are independent of the admissible policy used. as long as it gives priority to S-
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jobs. Notice that an (i,)-period is distributed as the service time v;. It will be convenient

to introduce the following additional notation:

vjx = service time corresponding to the kth selection of a class-i job; notice that the dis-

tribution of v is independent of k (v;).
Tix = time at which the kth selection of a class-i job occurs:
v;i = number of times a class-i job is selected (can be infinite);

{T3}x>1= duration of the (i, S)-period that starts with the kth selection of a class-i job

for the kth tirne. Notice that the distribution of T,Sk is independent of k (T5).
I;(t) = 1, if a class-i job is in service at time ¢; 0. otherwise.
L;(t) = number of class-i jobs in the system at time t. We denote L(t) = (L,(t))ien-

Tf(o) = time until the system is first cleared of S-jobs (can be infinite) under a policy that

gives priority to S-jobs: notice that Ti‘(fo) is the length of the busy period.

The busy period of a branching bandit process has a simple structure under priority
policies. This fact. which will be needed later for proving that certain performance measures

satisfy conservation laws. is made precise and shown next. Let S C V.

Proposition 4 Under an admassible policy that gives priority to S¢-jobs. the busy period
[0, Tl\(fo)) can be partitioned as follows:

v,

0, 7o) = 0.T56)) |J U [k e + T). (4.1)
1€S k=1

Proof outline

Identity (4.1) simply expresses the intuitive fact that under a policy that gives complete

priority to S°-jobs, the busy period is partitioned into: (1) an initial interval. in which

the system is first cleared of S¢-jobs; and (2) a sequence of consecutive intervals, each of

which starts with the service of an S-job, and lasts until the system is first cleared of its

descendant S¢-jobs. O
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4.1.1 Discounted branching bandits
The discounted reward-tax problem

Consider the following linear discounted reward-tax structure on a branching bandit process:
an instantaneous reward r; is received at the completion epoch of a class-i job. In addition,
a holding tax ah; is incurred continuously while a class-i job is in the system. Rewards and
taxes are discounted in time with a discount factor a > 0.

The discounted reward-tax proltlem consists in finding an admissible scheduling policy
that maximizes the total expected discounted va.:~ nf rewards earned minus taxes incurred.
This problem was first introduced and shown to be solved by a priority-index policy by Weiss
(1988).

Let us define the objective to be maximized as Z.(f‘h)(a), where

,(,r‘h) (a) = expected total discounted value of rewards received minus taxes incurred under

scheduling policy u.

The problem can now be written as

mex Z{"M(a).
uelU

We shall show how to formulate and solve this problem in the framework developed in

Chapter 3.

Performance measures

We introduce next two families of performance 1.1easures for branching bandits. {A\*(a)}a>0
and {L;“(a)}a>0, that are appropriate for modeling the linear discounted reward-tax struc-
ture described above. For a given a > 0, we define performance measure AY(a) of class-j
jobs under policy u to be total expected discounted number of class-j job service comple-

tions, i.e.,

Y,
Nia) = EU[Ze atr) k*um]

k=1

= E "°“"]E [Ze ‘“J"], for j € N, (4.2)

and we shall write \*(a) = (A](a))jen-
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Let us define L;%(a) as the total expected discounted number of class-j jobs in the

system under policy u € U, i.e.,

ou T;xo) —at e N p
L] (a)=Eu/0 L(t)e=®dt|. forjeN. (4.3)

ey — s 3
and let L*%(a) = (LJ (a))jeN'
We shall show next that the objective to be maximized. Z.(f'h)(a), can be expressed as
a linear function of performance vector A\¥(a).

In the pure rewards case, i.e. when h = 0.

Zl(‘ruo)(a) — Eu Z Z: r'e—a(flk +Uik)
iEN k=1

3" Ak (a). (4.4)

1EN

We show now how to reduce the general reward-tax problem to the pure rewards case,
using an accounting argument introduced by Bell (1971). The total expected discounted
value of holding taxes is the same whether they are charged continuously in time. or accord-
ing to the following charging scheme: At the arrival epoch of a class-i job. charge the system
with an instantaneous entrance charge of h,, equal to the total discounted holding cost that
would be incurred if the job remained within the system forever; at the departure epoch
of the job (if it ever departs), credit the systen: with an instantaneous departure refund of
hi, thus refunding that portion of the entrance cost corresponding to residence beyond the

departure epoch. We can thus write

Z"™(a) = E.[Rewards]— E,[Charges at t = 0]+
( Eu[Departure refunds| — Ey[Entrance charges|)
= ZI%a) = ST b Li(0) + 2V (a)

1EN
= Zl(‘H'r“'o)(a) - Z h,L,(0)
1EN
= Y (rn+ra)Aia)= 3 hL(0). (4.5)
iEN 1EN
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where the components of vector 7o = (riq)sen are given by

E[Ni]e—au'] . /
Tia = hi — ————h,;. for jeN. 4.6
t.a ? Jg/ E[e av; ] J ( )

Notice that by letting r = 0, h; = 1 and h; = 0 for ¢ # j in (4.5) we obtain a linear

relation between performance vectors L**(a) and A*(a):

E[Nl.]e av ] u

ali¥(a) = Ly(0) = A(o) + Y —rms E[e-°] —rar g M(a),  forjeN. (4.7)

IEN

Generalized conservation laws

We show in this section that the performance measure for branching bandits A“(a) satisfies

generalized conservation laws. Let us define. for S C .V,

aFE [f(;r‘s e~at dt]
Ele>v]

- Tlf{ﬂ) ~at Tf(co) —at
ba(S) = aE / et dt| — aF / eotd] . (4.9)
0 0

The conservation laws we present next represent physical work conservation relations in

A, = forie S, (4.8)

a brancaing bandit process. In particular, the total expected discounted amount of work

performed by the serve: during the busy period is

N
E [ / Tio ot dt] ,
1]

under any admissible scheduling policy u € Y.
Notice that coefficient Afa may be interpreted as the total expected discounted amount
of work performed by the server during and (7, S¢)-period under a policy that gives priority

to S¢-jobs (and hence under which that (i, S¢)-period is a single interval). The sum
S AT M)
€S

is thus an overestimate of the total expected discounted work performed after the server

first starts servicing S-jobs. This estimate is exact under a policy that gives priority to
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S¢-jobs. In this case, the expected discounted work done until the system is first cleared of
P

S¢-jobs is

T
e[ [™a)
0

The remaining work is, in that case,

T TS
E[/ “°’e-°‘dt] —E[/ o e"°‘dt].
4] 0

which is precisely b,(S). This intuitive interpretation is made precise in the proof of the

next result.

Theorem 10 (Generalized conservation laws for discounted branching bandits)
The performance vector for branching bandits \*(a) satisfies the following generalized con-
servation laws:

(@) Lies Afa/\}‘(a) 2 ba(S), for S C N, with equality if policy u gives complete priority to
S¢-jobs.

(b) Tiea ALGN (@) = ba(N).

Proof

Let S C N. Let us assume that jobs are selected under an admissible policy u. Let us define
two random vectors. (r;)iex and (d7);es, as functions of the sample path of thz generated

branching bandit process as follows:

0o Y Tek+Uik
T o= / Ii(t)e™ ' dt = Z/ e ! dt
0 k=17Tk
Ve Uk
= Ze"’"“/ e~ dt, (4.10)
k=1 0
and
< Ty
d? = Z e""“‘/ e ®dt. i€S
k=1 0

Now, we have

Y v,
Eu[ri] = Eu[zeﬁar'k/o ke-atdt]

k=1
Vi Uik

= E, Ze"""‘/ e % dt |, ]
k=1 0




= E, [?‘; Ele ™|y, | E [/OM e ! dtH (4.11)

E [/0" e""dt] E, [ge"”‘k}

E[fretat] ,
E“[e_au' ] Al(a). (4.12)

Notice that equality (4.11) holds because. since u is nonanticipative, 7,; and v, are inde-

pendent random variables. Furthermore.

v, 1?‘ v, TFC
E,[d7] = E, [Ze"m“‘/o * e'“'dt] =E, [E[Ze"""‘[) * e %l dt | u,]}
k=1

Lk=1

vy TS‘
= E, E|]"’ ‘°‘dt]E -t i} (4.13)
[; [ [ [eom 1]

T3¢ v
= F [/0 ' e'°'dt} E, [g e'°"*J
= AfaE [/ov' e~ dt] E, [ie"’""] . (4.14)

Notice that equality (4.13) holds because. since u is nonanticipative. 7, and T,‘;’;c are inde-

pendent. Hence, by (4.12) and (4.14)
E.[d’]) = AS A%(a), fori€S.

and we thus obtain

E, [Z df} Y AP A(a) (4.15)

1€S 1€S
We first show that if policy u = 7 gives complete priority ty S°-jobs then generalized

conservation law (a) holds with equality. Applying Proposition 4, we obtain

T —at to _ T+l
e dt = / e dt + / et dt
j£ 0 2;;22; Tok

TS TS

= / Lw)e""' dt+5_: Ze'm"‘/ *oemat g
0 1€S k=1 0
5

- / e=otdt + 3 dS. (4.16)
0 €S
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Hence, taking expectations and using equation (4.15) we obtain

TN TS,
E [/ O gat dt] =F [/ HO emat gy
0 0

or cquivalently, by (4.9),

+ Z A;S.‘a’\:r((’)

€S

Y A7 AT (@) = ba(S),

€S
which proves that generalized conservation law (a) holds with equality. Notice that by
letting S = @ we obtain the conservation law in part (b).
We next show that generalized conservation law (a) is satisfied in the inequality case.

We will use a sample path interchange argument.

8

et -
v 772N =

u's i
ot
— -

A B C

Figure 4-1: Interchange argument.

Let the jobs be selected under an admissible policy u. For a given sample path of the

branching bandit process let us consider the sum

le+

=Y &= ZZ/ eo dt.

i€S 1€S k=17 Tk

Suppose that at time 7;- x- a class-i® job. with i* € S is selected for the k*th time. Suppose
that at that time a class-j° job, with j* € S° is also available, but it is selected later, at time
T)-4-. Let us consider the effect of selecting instead that class-j* job in §¢ at time 7. 4.,
and selecting immediately afterwards the class-i” job. Let us call the corresponding policy

u'. Let A, B and C be the segments shown in Figure 4-1. The sum d° can be decomposed
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vV,

le'*'T.b:
¢ =¥ ¥ [T emta
€S k—l'rkeA Tik

3 Z /T"£+ e~ dt +

€S k=1:1,,€8B
.k+Ts

) Z / *ematyy, (4.17)

i€S k=l:r,,€C YTk

Let d’S be the sum corresponding to policy u'. It is clear from Figure 4-1, (4.17) and the

fact that the function e~2! is decreasing in ¢ that

T.k+
d’ = / e % dt +
..-—d
1€S k= lTkEA
Tik tUy= 1o+
/ e'°'dt+
xESL lrkeB ’-k*"; £
rlk+
£ [ e
:eSk IR Toadul
< d°. (4.18)

It follows that for this sample path a policy that gives complete priority to S¢-jobs minimizes
the sum d. Hence this result holds taking expectations, and by equation (4.15) conservation
law {a) follows, which completes the proof of the theorem. O

Since performance measure AY(a) satisfies generalized conservation laws. the results of

Section 3.2 apply. Direct application of Theorem 5 yields the next result.

Corollary 2 The performance region for branching bandits corresponding to performance
vector A“(a) is the extended contra-polymatroid P.(Aa,ba); furthermore, the vertices of

Pc(Aa,ba) are the performance vectors corresponding to static-priority policies.

Optimal solution

From equation (4.5) it is clear how to apply the results of Section 3.2 to solve the reward-tax
problem: run adaptive-greedy algorithm AG (see Appendix A) with input (r +ro, Aa). Let

T1(@),...,vn(a) be the allocation indices so obtained. Then we have, by Theorem 8,
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Theorem 11 (Indexability: discounted hranching bandits) An optimal scheduling pol-

icy is to serve at each decision epoch a job with largest current allocation index v;(a).

The previous theorem characterizes the structure of the optimal policy. We will see
later that we can also compute the performance of the optimal policy, as we will present in

Proposition 6 closed formulae for matrix A, and set function b,,.

Economic interpretation of allocation indices in discounted branching bandits

The original definition of dynamic allocation indices in multi-armed bandit problems (see
e.g. Gittins (1989)) characterized them as optimal reward rates with respect to a family
of stopping times. Our definition of allocatio. indices. on the other hand. involves sums of
optimal dual variables in a certain linear program. In this section we clarify the relation
between these two definitions. and show that they are. indeed. equivalent.

Given a discounted branching bandit problem. as described above, we shall define a
modified problem by adding an additional job class, which we label 0, with infinite service
time (i.e., vo = 20). A reward of rg, continuously discounted in time. is received for each
unit of time that a class-0 job is in service. Notice that the option to serve a class-0 job may
be interprcted as an option to retire from the game modeled by the origiual problem for a
pension of rg, discounted in time. Notice also that the modified problem is still a branching
bandit problem.

Let us now assume that at time ¢t = 0 there are only *wo jobs present. a class-0 and
a class-i job, with i € A/. We may then consider the following question: What is the
smallest value of the pension ro that makes the option of retirement (serving the class-0
job) preferable to the option of continuation (serving the class-i job)? Let us call this
break-even value rg(i). Let vy, ..., vn be the allocation indices corresponding to the original

branching bandit problem.

Proposition 5

Y= To(2).

Proof

Let 43,7%.....~2 be the allocation indices for the modified problem. Let us partition the

corresponding modified state space as N = {0} UN. It is easily seen that Assumption 2
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holds for the modified problem. Hence Thecrem 3 applies. and the problem is decomposabie.

Consequently,

w=ro and W=, JEN.

Now, since by Theorem 11 it is optimal to serve a job with largest current allocation index.
it follows that the break-even reward ry which makes the options of continuation and of
retirement (with reward ) equally attractive is ro = 4J. But, by definition. r(i) is such

a breakpoint. Therefore r§(i) = 73, which completes the proof. O

Remark. Whittle (1980), (1982) introduced the idea of a retirement option in his analysis
of the muiti-armed bandit problem, and provided an interpretation of the Gittins indices
as break-even values. \Weber (1992) also made use of this characterization of the Gittins
indices in his intuitive proof. Here we extend this interpretation to the more general case of
branching bandits. From this characterization it follows that the allocation indices ceincide

with the well known Gittins indices in the classical multi-armed bandit problem.

Parameter computation

The results of the previous sections are structural. but do no. lead to explicit computations
of matrix A, and set function b, appearing in the generalized conservation laws for the
branching bandit problem. Our goal in this section is to compute from the model data
matrix A, and set function b,. Combined with the previous results these computations
make possible to evaluate the performance of specific policies.

As generic data for the branching bandit model. we assume that the joint distribution

f (vj, (Nyj);en) is given by the transform

b (a,z,....2;) =E [e"’"':fv" . .z,?/"‘] . (4.19)
Notice that
o}
1 -au = - 1 \ . 4-2()
E[N,e "] aZ)(I)(a 1) (4.20)

In addition, we are given the Laplace transform of the marginal distribution of service
time v,

Yi(a)=E[e™"].




Finally the vector L(0) = (L(0),...,Ln(0)) of jobs present at the start is assumed to be
known.
As we saw in the previous section the duration of an (i. S)-period. T2, plays a crucial

role. We will compute its Laplace transform function.
¥i(a) = E[e™°T7).

For this reason we decompose the duration of an (i.S)-period as a sum of independent

random variables as follows:

h'
d ~
TS =i+ 3 T (4.21)

JES k=1

where v,, {Tj?‘k}kzl are independent. Therefore.

¥ (a)

E [e—au, e [e_a,.f],v,,}

JES

®, (a, ¥3(a). 15:) . fori e NV. (4.22)

Given S, fixed point system (4.22) provides a way to compute the values of ¥3(a), for

i € N. We can now prove the following result:

Proposition 6 (Computation of A, and b,) For a branching bandit process. matnz

Aq and set function b, satisfy the following rclations:

— o€
AS, = l—\p\-?('a)ﬂ forie S and SCN; (4.23)
t
ba($) = [] 17" (a)]"@ ~ I,IVIW',"(anL""’. SCN (4.24)
5¢ JE

Proof

Relation (4.23) follows directly from the definition of A°,. Furthermore.

L,(0)

Tiio) = > N T (4.25)

1€S k=1
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Hence,

. TS g
E [/ L e—at dt} — _]; _— lE [e—a Z(GS Zt;(IO) T?c
0 [0 [0
1 1 ‘
= 5 5 @, (4.26)
@ Xies

Therefore, from (4.9), (4.24) follows. O
Remarks:

1. Notice that AV, = 1;:__‘:)), for i € N, and bo(N) = L — L []jen (¥4 (@)]5, for
SCWN.

2. From Proposition 6 we can compute matrix A, and set function b, provided we can
solve system (4.22). As an example, we illustrate the form of the equations in the
special case, in which the class-j jobs that arrive during the time that we work on

class-i job form a Poisson process with rate \,,. i.e..
®(a.z1,....20) = E [e‘”""*Z:eN*'J““J“] =y, (a + Y a1 -2) ).
JEN
In this case. (4.22) yields
¥S(a) =", (Q+Z/\,] (1 —\p;‘-‘(a))) AEN (4.27)
JES

As a result. an algorithm to compute ¥7(a) is as follows:

(1) Find a fixed point for the system of nonlinear equations (4.27) in terms of ¥5(a).

Although in general (4.27) might not have a closed form solution, in special cases (v
exponential) a closed form solution can be obtained.

(2) From Proposition 6 compute (Aq, bs) in terms of 3 (a).

4.1.2 Undiscounted branching bandits

In this section we apply the framework developed in Chapter 3 to the branching bandit
problem with a linear undiscounted cost criterion. This problem was first introduced and
solved by Meilijson and Weiss (1977) using dynamic prograrnming ideas.

We shall assume in what follows that matrix E[N] = (E[N,;]), jen satisfies the following

]
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condition:
Assumption 4 Matriz E[N] has spectral radius smaller than 1.

Bertsimas. Paschalidis and Tsitsiklis (1994b) proved that under Assumption 4. the branch-

ing bandit process is stable, in the sense that the first and second moments of its busy

period are finite.

The undiscounted tax problem

In the undiscounted tax problem. a holding tax h, per unit time is incurred continuously
while a class-i job is in the system We do not consider undiscounted rewards (i.e. a reward
r, is earned on completion of a class-i job) since the total expected reward carned is the

same under all policies. Let us define the objective to be maximized. Z*, as

Zh = —(total expected tax incurred under policy u).

The tax problem can now be written as the optimal control problem

max Z".
ueld

Performance measures

We introduce next two performance measures. C* = (C})jen and W = (W}),e v, that are
appropriate for modeling a linear undiscounted delay cost structure. \Ve assume in what
follows that all the expectations that appear are finite. Later we will show necessary and

sufficient conditions for this assumption to hold. Using the indicator

1) [ 1, ifaclass-j job is in service at time t:
(t) =
! 1 0, otherwise,

we introduced earlier. let us define performance measure C} as the total expected completion

time of class-j jobs under policy u, i.e..

Ct = E, [Z(rjk + u,-k)] . (4.28)
k=1

Let us define another performance measure. 1V ', as the total expected system time of
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class-j jobs under policy u, i.e.,
u Ti.\;O)
we = E, /0 Li(t)dt|. (4.29)

We show rnow how to express objective Z? as a linear function of performance vectors

W4 or CU. First, it is clear from the definition of the undiscounted tax problem that

Zh=-% hWr (4.30)
JEN

As for the relation with performance vector C*, it is obtained by taking the limit as o \, 0

on equation (4.7), which yields

sUu d u d u -
L3*(0) = -d—&xj(m + %}E[MJ] —X\(0) +9), for j € N.
where g, is given by
9, = 9 E[n](E[W]E[N,] - E[viN,]) . (4.31)
iEN
Since
d . y

we thus obtain the following linear relation hetween performance vectors I{'* and C*:

We=Cr-3Y E[N,C!+g;, forjeN. (4.32)
1EN

We can also express objective Z" as a linear function of performance vector C". By

(4.32),

zh o= =y Wy (4.33)
JEN
= 3 (h, -y E[A’,,]h,) Ct =Y ha, (4.34)
ieEN JEN 1eN

74




Conservation laws for the completion times

We show next that performance measures C" satisfies generalized conservation laws. Let

us define
AS=E [TS] . fori€sS. (4.35)
and
1 2 1 2
b(S) = ;E[(Ti{o,) ] - ;E[( Tio) ]+Zb (4.36)
- - €85
where

b:(S) = Elui] (E[vg]E' [1;5‘]-%5[<:r,5°)2_]) for i € S.

Theorem 12 (Generalized conservation laws for the completion times) The per-
formance vector for branching bandits C* satisfies the following generalized conservation
laws:

(a) Ties ASCH < b(S), for S C N. with equality if policy u gives complete priority to
S¢-jobs.

(b) Tienw ANCE = b(N).

Proof

Let S C V. Let us assume that jobs are selected under an admissible policy u. This gen-
erates a branching bandit process. Let us define two random vectors. (r,),en and (d7)es.

as functions of the sample path as follows:

' Tkt Uk
/ tdt
k=17 Tk

Z (v,k e + -QL) i€ N, (4.37)

k=1

- / L(t)tdt =

and

Now, we have

Eu[Tz] = Eu[u. El:(v,k‘r,k-i-—)ll/,]]
k=1

- =;

Ay

' (Elv.IElr.uu.] + [2])] (4.38)

]
—_
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— Ep)E. KZT‘X Bl Elu] (439)

Note that equality (4.38) holds because, since u is nonanticipative. 7, and v are indepen-

dent random variables. Furthermore.

c
Tik +T,i

Y i Y r+T3
E,df] = Eu{ tdt =Eu[13[ T tdt u,”
(5] g[ S/ |

'k k=1

[ £ e fnt + B
u Tik 4Ly )lt
A=1

Li=1 =

I

(4.40)

Note that equality (4.40) holds because. since pelicy u is nonanticipative. 7, and T3 % are

independent random variables. Hence, by (4.39) and (4.40).

Eulr] ~ $E{w] Ep?) _ EldS] - SEWE[T)
Efvl) BT

— E[u)E[v] = , IES

and therefore we obtain

Y_AlCt=E, [de } - S b(S). (4.41)

€S 1€S €S

We will first show that if policy u = 7 gives complete priority to S¢ jobs then generalized

conservation law (a) holds with equality. Applying Proposition 4 we obtain:

Tﬁo» L(O) Tty
tdt = / tdt + /
./0 V] Z T

1€S k=1"Tik

(7% L“” +Y ds. (4.42)

1€S

Hence. taking expectations and using equation (4.41) and the definition of b(S) we obtain

Y ATCT = b(S).

1€S

which proves that generalized conservation law (a) holds with equality. Notice that by

. letting S = 0 part (b) follows.




T

We next show that generalized conservation law (a) is satisfied in the inequality case. We
will use a sample path interchange argument. Let the jobs be selected under an admissible

policy u. For a given sample path of the branching bandit process let us consider the sum

Saay s [

1ES €S k=1
Suppose that at time 7,- ;- a class-i* job. with i* € S is selected for the k*th time. Suppose
that at that time a class-j* job. with j* € S¢ is also available. but it is selected later. at time
7)-4-- Let us consider the effect of selecting instead that class-j* job in S¢ at time 7, 4,
and selecting immediately afterwards the class-i* job. Let us call the corresponding policy

u’. Let A. B and C be the segments shown in Figure 4-1. The sum d° can be decomposed

“ T.k-f-Ti(
d5 = Z Z tdt +
i€S k=1t €A’ Tk
T.k+Tsc

3 i / *otdt +

1€S k=l"r,k€B Tik
T.k+T
/ (4.43)
-

Let d'> be the sum corresponding to policy u’. It is clear from Figure 4-1. (4.43) and the

165 k=11, eC

fact that the function ¢ is increasing in ¢ that

rlk*’r,ic :
= > Z /T tdt +

1€S k=Lt €eA” 04
le+Uo‘-1T
S0 S AP
1€S k=)t eB Tk Tl
1 T"‘+Tuk
oy [
1€8 k=l:1,,€C 7ok
> d°.

It follows that for this sample path a policy that gives complete priority to S°jobs max-
imizes the sum d°. Hence this result holds taking expectations. and by equation (4.11)

conservation law (a) follows. which completes the proof of the theorem. O




Corollary 3 The performance space for branching bandits corresponding to performance
vector C* is the extended polymatroid P(A.b): furthermore, the vertices of P(A,b) are the

performance vectors corresponding to static-priority rules.

Conservation laws for the number in system

We show next that the performance measure for branching bandits '* defined by (4.29)

satisfies generalized conservation laws. Let us define. for S C N.

A7 = E[T?]. fori€ S, (4.44)
and
b(S) = bN) - b(S°) + > _ g, E[T7). (4.45)
JES

Theorem 13 (Generalized conservaticn laws for the number in system) The per-
formance vector for branching bandits W" satisfies the following generalized conservation
laws:

(@) Tics ASWE > b(S), for S C N, with equality if policy u gives complete priority to
S-jobs.

(b) Sien AV IVY = b(N).

Proof
By applying equation (4.32) for relating C* with 11"%. we obtain

) E|TS ;
Y Aw! = C¥(I-E[N)) ( [05] ) + 95" E[T3]
JES

o ((Is - E[Nss))E [Tss]

~E[Nses) E [T§] ) +95'E[T5]

- v ( ls ) +gs'E [TS] (4.46)
1se~ E([T8]) s
= bN) - 3 AFCr+ Y gE [T, (4.47)
1ES*C JES

where (4.46) follows from the results in Section 4.1.2 below. Now. by the conservation laws

satisfied by C" (see Theorem 12) the result follows. O




Corollary 4 The performance space for branching bandits corresponding to performance
vector W' is the extended contra-polymatroid P.(A.b); furthermore, the vertices of P.(A, b)

are the performance vectors corresponding to static-priority rules.

Optimal solution

From equations (4.33) and (4.34) and the conservation laws satisfied by C* and W* we
obtain two different algorithms for solving the control problem: the first one corresponds
to running algorithm AG with input (—h, A), and it is a bottom-up algerithm (priorities
are computed from lowest to highest); the second one corresponds to running algorithm AG

with input (7, A), where

Fi=hy = Y E[Nylh,, (4.48)
JEN

and it is a top-down algorithm (i.e., priorities are computed from highest to lowest).

Parameter computation

In this section we show how to compute matrix A and set function b from the branching

model data. Recall that
A =E[T¥], fories.

and

b(S) = %E [ (T’/‘\(")YJ : %E [(Tffo)f] +Y 2w (E[v,]E [T'sc] N %E [(rrtsc)z]) ‘

€S

From equation (4.21) we obtain, taking expectations:

E(Tf] = Ef) + 3 EIN,) E [77],  forien. (4.49)
JES

Solving this linear system we obtain E [T,S] Note that the computation of A7 is much
easier in the undiscounted case compared with the discounted case. where we had to solve

a system of nonlinear equations. Also, applying the conditional variance formula to (4.21)
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we obtain:
s] _ , s1\’ 3 s SN s]
Var [T7] = Varlu |+ (E [T])_ Cov[(Ny)ses] (E 1; ])165+,ez§ E[Ny|Var [Tf] i€ N,
(4.50)
Solving this linear system we obtain Var [T,s] and thus £ [(T,S )2]. Morecver. the expected
number of class j jobs serviced during the busy period, E[v;], for j € N. can be obtained

by solving the linear sy:tem

Ely] = Ly(0)+ Y E(N,|Eln], forjeN.
EN

Furthermore, from equation (4.25) we obtain

E [Tf(o)] =S LOE [T,S] , (4.51)
€S
and
Var [Tfg)| = 3 Li(0) Var [T7]. (4.52)
1€ES

For computing b(S) the quantity E [v,N, ,] is needed. It is easy to see that

0

EfuN,] =5 oz,

®,(1, 1v).

4.1.3 Summary

Table 4.1 summarizes the problems we considered. the performance measures used. the

conservation laws, the corresponding performance region. as well as the input to algorithm

AG.

4.2 Special cases

In this section we specialize the previous formulations for branching bandit problems to
several classical stochastic scheduling problems. For each problem we define suitable perfor-
mance measures, characterize explicitly the corresponding performance region and show how
to compute the optimal priority indices. Table 4.2 summarizes these and other indexable

scheduling problems that can be modeled and solved using the mathematical programming
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[ Problem [ Performance measure |

Perfomance region

I

Indices

|

max Z{"*)(a) X () P:(Aa, ba) (o Aa) = 1(a)
Ag, ba: see (4.23). (4.24) ra: see (4.6)
max Z} ce P(A,b) (7, A) 2 o
A. b: see (4.35). (4.36) 7: see (4.48)
W _ PAD) (~h, A) 2% 4
A, b: see (4.44). (4.45)

Table 4.1: Branching bandit problems: formulation and solution.

framework developed in Chapter 3.
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System Criterion Indexability Perforinance Space
Batch of jobs LCe Smith (1956): D? Queyranne (1993): D, I'7
Rothkopf (1966b) This thesis: P
D Rothkopf (19G6a): D This thesis: P
Gittins & Jones (1974)
Batch of jobs LC Horn (1972): D This thesis: EP¢
with ost-tree Meilijson & Weiss (1977)
prec. constraints DC Glazebrook (1976) This thesis: EP
[ Multiclass A1/G/1 LC Cux & Smith (1961) Coffman & Mitrani (1980) P
Gelenbe & Mitrani (1989): P
DC Harrison (1975a, 1975b) This thesis: EP
Multiclass 7 Af/G /¢ LC Federgruen & Groenevelt (1988b) Federgruen & Groenevelt (1988b): P
Shanthikumar & Yan {199%) Shanthikumar & Yao (1992): P
Multiclass G/Af /e LC Federgruen & Groenevelt (1988a) | Federgruen & Groenevelt (1988a): P
Shanthikumar & Yao (1992) Shanthikumar & Yao (1992): P
Multiciass LC Ross & Yao (1989) Ross & Yao (1989): P
Jackson network 9
Multiclass A7/G/1 LC Klimov (1974) Tsoucas (1991): EP
with feedback DC ‘cha & Pliska (1977) This thesiz: EP
Multi-armed bandits ne litting & Joncs (1974) This thesis: EI’
Branching bandits LC Mueilijson & Weiss (1977) This thesis: EI’
LC Weiss (1988) T'his thesis: EP

Table 4.2: Indexable problems and their performance regions.

“Lincear comt

*Deterministic processing tines

"Polyimatnil

“Discounted linear reward-cost

“Extended polymatroid
ISame service tine dimtribntion for all clases

*Sante servien time distribution ad ronting probabilition (e all clasen (can be peode dependent)
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4.2.1 The multi-armed bandit problem

Problem definition

The multi-armed bandit problem can ke described as follows: There are K parallel projects,
indexed k = 1,..., K. Project k can be in one of a finite number of states j; € V. At
each instant of discrete time t = 0,1,... one must work on exactly one project. If one
works on project & in state ji(¢) at time t, then an immediate reward of Tkye(r) 18 earned.
Rewards are additive and are discounted in time by a discount factor 0 < 3 < 1. The state
Jk(t) changes to ji(t + 1) by a homogeneous Ma.kov transition rule. with transition matrix
P* = (p})).en. while the states of the projects one has not engaged remain frozen. The
problem is how to allocate one's resources to projects in a sequential manner. according to
a policy u which must belong in the class U of nonanticipative and nonidling policies, in

order to maximize the total expected discounted reward earned over an infinite horizon,

[o o]
Z= E ‘e .
max E, [;ﬁ"wm(,,(r)}

Modeling the problem as a branching bandit

We shall model the problem as a discounted branching bandit problem in order to apply
the results of Section 4.1.1. We shall thus identify project states with job classes. in such
a way that working on a project in state i corresponds to serving a class-i job. Using the

notation of Section 4.1.1, let us define N = U{.(=,Nk, e~ % =/, and v, = 1. We also define

matrix P = (py;)i;en by
JPS. ifi.j &€ Ny, forsomek=1,... K,
P =
\ 0, otherwise.

In this model, a class-i job has only one descendant. which is of class-j with probability Py
Let us also define the discrete-time indicator
1) { 1, if a project in state j is engaged at time t;
() =
J

0, otherwise.
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Performance measures

The performance measure A*(a) = (A¥(a) for discounted branching bandits introduced
J 1EN

in Section 4.1.1 is easily seen to simplify into

A(e)t =B E, {i I,(t)ﬁ‘] . for j € N.

t=0

We may interpret A,(a) as the total expected discounted time spent working on class-j

projects under policy u.

In terms of these performance measures, the multi-armed bandit problem can be written

BZ = max lg/ rAl(a).

Performance region

By Theorem 10, we know that performance measure A\%(a) satisfies generalized conservation

laws, and that the performance region it spans is an extended contra-polymatroid.

Parameter computaticn. We shall show next how to compute the corresponding pa-
rameters A, o aid ba(S). For S C N, let vector t2 = (t7)ien be defined as the solution of

linear system

tS =14 ﬁZp,th. fori € S, (4.53)
JES

Let us also define

1, if there is a project in state j at the start;

L;(0) = {

0, otherwise.

Proposition 7 Matriz A, and set function b, are given by the following expressions:

(a)

Ay = 1-8 (1 +85 p.,tf‘) . fori€S; (4.54)
ﬂ JES*
(b)
ba(8)= ] (1-01-p5)"",  forscw (4.55)
JES*®
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Proof
We have, by equation (4.18),

Q‘(Cx‘ P4 AN Zn) = FE [e—ovl:i\lll L :’{:’m]
= e° Z P2
1EN
= 8Y pyz  forie Ny
JEN
and, by (4.22),
¥a) = & (. (\Ils(a)) e
1 1 \ J Jes

= 3 (Zp,,\pf(a)+ ) p.,)

JES J€S*C
= 4 (1 -5y (1 - \pf(a))) . fori€eN.
JES
Now, it follows from (4.57) that
1-¥3(a) .
S "7
t; = ¥.(a)’ fori € S,

and part (a) follows by (4.57) and Propositicn 6.

Moreover, since \Ilff (a) = 0, Proposition 6 yields

ba(S) =[] (¥ ()@
JESC

H (1 _ (1 _ B)tfc)L)(O).

J€ES*

which proves (b). O

Proposition 7 together with Corollary 2 yield directly the following result.

(4.57)

Proposition 8 (Performance region for multi-armed bandits) The performance re-

gion spanned by perfcrmance vectors A“(a) mn the multi-armed bandit problem 1s the extended

87




contra-polymatroid defined by

/
z (1 + 0 Z p.,-tjsc) A > 1—‘-3— H (1 -1 -—ﬁ)tfc)L’(O). for SC N,

1EN J€ES*

Optimal soluticn

Gittins and Jones (1974) first showed that the optimal policy for the multi-armed bandit
problem is a priority-index policy. These optimal priority indices can be computed by

running adaptive greedy algorithm AG with input (r, A,).

Index decomposition. Gittins and Jones (1974) further showed that the optimal indices
associated with states of a project only depend on characteristics of that project (rewards

and transition probabilities).

Theorem 14 (Gittins and Jones (1974)) For each project k there ezist indices {v*},cn, ,
depending only on characteristics of project k, such that an optimal policy is to work at each

time on a project with argest current indez.

This classical result follows in our framework as a consequence of Theorem 3 on the
decomposition of optimal indices. In particular, the structure of matrix P = (pi;) implies

that
Aﬁa = Af;w", for 7 € SN AN,

so that Assumption 2 holds.

By the results of Section 4.1.1 we know that the aliocation indices for this bandit prob-
lem are precisely the dynamic allocation indices introduced by Gittins and Jones(1974) (also
called Gittins indices). Furthermore, by definition of allocation indices. weobtain a charac-
terization of Gittins indices as sums of cual variables, a purely algebraic characterization.
By Theorem 9, the Gittins indices can be computed by solving K subproblems, applying
adaptive greedy algorithm AG, presented in Chapter 2, to subproblem k, which has ||
jobcl_ses, fork=1,... K.
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The index-computing algorithm proposed by Varaiya, Walrand and Buyukkoc (1985)
has the same time complexity as adaptive greedy algorithm AG. In fact, both algorithms

are closely related, as we will see next. Let t,s be as given by (4 53). Let r,s be given by

r,s=r.+ﬁ2p,]r]$, forie S.
JES
The algorithm of Varaiya, Walrand and Buyukkoc can be stated as follows:

Algorithm VWB:

(s} (+}
Step 0. Pick m, € argmax {:h‘ :iGN}; let gx, =max{fh- :ie./\/};

t! )

set J, = {m,}.

Stepk. Fork=1,...,n-1:
) r.ln_-‘l.l(l} ‘ r.ln_ku(l)
pick 7, _; € argmax ;f,m CHEN\Jnok pisetgn, , = ~“—onT L €N\ Jnok s
1 ll

set Jnk = Jn_ks+1 U {Tn_i}.

Varaiya et al. (1985) proved thetg,,...,gn, as given by algorithm VWB. are the Gittins
indices of the multi-armed bandit problem. Let (7,7,v,S) be an output of algorithm AG.
The following relation between algorithms AG and VWB can be easily seen to hold by

induction:

Proposition 9 The following relations hold: For j =2,...,n

rl{n, ..... T JU(i} ri— Z?:] Ai(.:k‘ ..... m}Vl ~ r1(r1;, ..... Ta) ‘
RERREN IV - Almm ) = RN Jorie {m... .. m-1h
1 La ™
and
) no 0 €N
Z(‘T - Aw"a- = U, fOr‘l s

and therefore, algorithms AG and VWB are equivalent.

Algorithm AG thus provides a new off-line top-down method (i.e., priorities are com-
puted from highest to lowest) for computing Gittins indices. As shown above. it has the
same coraputational complexity as the algorithm of Varaiya et al. (the fastest off-line
algorithm for cornputing Gittins indices known). The algorithms presented by Chen and
Katehakis (1986) and by Katehakis and Veinott (1987) are on-line methods (they compute

the Gittins index of a given state).
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A closed formula for the optimal value function; submodularity

In this section we present a closed formula for the optimal value of a multi-armed bandit
problem. We apply that formula to prcvide a new proof that the optimal value of the
problem. seen as a function of the subset of projects involved. is a submodular set function.

Given a multi-armed bandit problem with K" projects. let us consider subproblem ¥, the

one-armed bandit problem corresponding to project k. for k=1, .... K. Let
7&, for iy € N

be the Gittins indices corresponding to subproblem (project) k. Let b% be the set function

corresponding to subproblem & as given by equation (4.58). i.c..

. ryve. \L,(0
sy = [I (1-0-3%) "% for 5. c M.
JENK\Sk

Proposition 10 For each k, [:
b(Sk U S1) = b5(SK)b(S)),  for Sk C Nk, 51 S M. (4.59)

Proof Outline Using the fact that tf = tfm{". if 7 € Ny the result follow trivially. O
Now, in order to solve the maximum reward protlem, we run algorithm AG with input
(r,Aa). Let m be a permutation of N produced by the algorithm. If {v,},ear are the

corresponding Gittins indices, ™ must satisfy
Yrn S0 S Uy

Permutation 7 of A induces permutations 7% of N, for k=1,.... K.

If {'y,k),eNk are the Gittins indices corresponding to subproblem k, #* must satisfy

’\Ilﬂlh'NkI S T S A’ﬂf'
Let us define independent raudom variables n, n. € Ny, for k= 1...., K by
P{ne{m,....m}}=b{m,....m}), fori=1..... n, (4.60)

90



and
P{r)ke {x*, ..,n{jvk‘}}=bk({1rf,...,7r|‘)vkl}). fori=1,... |Nl. (4.61)

Given a subset of projects H C {1,..., K}, let us denote Z{H) the optimal reward that
can be obtained in the muiti-armed bandit problem when only projects in subset H are

available. We have the following result:

Theorem 15 (Optimal reward of the multi-armed bandit problem) The optimal re-
ward Z(H) can be ezxpressed as

Z(H)=E [rkréa.}),c ~,,§k] . (4.62)

Proof

Since projects can be aggregated, it is enough to prove the theorem for the case of two
projects, i.e. K = 2. First, notice that by equation (2.7), the expression for the optimal
objective value of a linear program over an extended contra-polymatroid. and the charac-
terization of the performance space of the muiti-armed band't as an extended pclymatroid.

we obtain:

b({my,....mn}) = b({m2,....7n})
A2 = G e |
Tpn-11vMnyt)— 0 nl)

b({mn})
Elvy).

Now, let H = {1,2}. In order to prove that equaticn (4.62) holds, it is enough to show that

the following two random variables have the same distribution:

d ”
max (7}, ¥2,) = 1. (4.63)
We have, for a given ~,-:
P{max(vy,70,) S %} = Pl < 1w }P{7d, < v}

= b ({i1 e Miiv), S v DB ({12 € Moyl < w )
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= b{ie Nivi <w-})

Hence. the equality in distribution (4.63) holds. and the result follows. O

Corollary 5 (Submodularity of the optimal reward function) The optimal reward

function Z(H) of the multi-armed bandit problem is a submodular set function.

Proof
Since the function H — maxyey di is submodular. for any given vector of d,'s, the result
follows directly from formula (4.62). O

The fact that the optimal reward function of the multi-armed bandit problem is sub-
modular was first shown by Weber (1992), who proved it from first principles. Tsitsiklis

(1986) provided ar early result in this direction.

v

4.2.2 Scheduling control of a multiclass queue with Bernoulli feedback

A multiclass M/G/1 queue with Bernouilli feedback can be described as follows: A single
server provides service to jobs. which are classifed in a finite number n of classes. External
arrivals of class-i jobs follow a Poisson process of rate A,, for i € N' = {1,...,n}. Service
times for class-z jobs are independent and identically distributed as a random variable v,
with distribution function G,. When the service of a class-i job is completed, the jol, may
either join the queue of class-) jobs. with probability p,, (thus becoming a class-j job) or,
with probability 1 — 3, ¢ » pi;, leave the system.

The server must select the jobs for service according to an admissible scheduling policy
u € U. which must be nonidling, nonpreemptive and nonanticipative; the decision epochs
are t = 0 (if there is initially some job present), epochs at which a job arrives to find the
system empty, and epochs at which a job completes service.

Klimov (1974) solved, by direct methods, the associated optimal control problem over
U with a time-average holding cost criterion. Hariison (1975a) solved, using dynamic pro-
gramming, the optimal control problem over &, with a discounted reward-cost criterion.
in the special case that there is no feedback. Tcha and Pliska (1977) extended Harrison's
results to the case with feedback. They also solved the control problem over L{?. in the case

rhat the service times are exponential.
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Problem description: the discounted case

Let us consider the following reward-cost structure: a centinuous holding cost h, is incurred
per unit time that a class class-i job stays in the system. Furthermore. an instantaneous
reward r, is earned at the service completion epoch of a class-i job. We shall also consider
an instantaneous idleness reward rg at the end of an idle period. All costs and rewards are
continuously discounted in time by a discount factor a > 0.

The optimal control problem is to find an admissible policy to schedule the server that
maximizes the total expected discounted value of the rewards earned minus the holding

costs incurred over an infinite horizon. Let us denote L P, the optimal control problem.

Modeling as a discounted branching bandit problem

We will model the problem as a discounted branching bandit problem. thus casting them
into the framework presented in Sectio.. 4.1.1.

First, let us consider problem LF,. This problem can be modeled as a branching bandit
problem with n job classes, as follows: The class-j descendants N,; of a class-i job are
composed of the internal job transfers from class 7 into class j. and of the external Poisson
arrivals. The service times and reward/cost structure in the corresponding branching bandit

model follow directly from the problem definition.

Performance measures

For a given a > 0. we define performance measure A}(a) of class-) jobs under policy u to

be total expected discounted number of class-j job service completions. i.c..

Yy
/\;‘(a) = E, [ZE—Q(T;le.')k)} , for J € N,
Lk=1

exactly as we did in the discounted branching bandit problem.
The optimal value of the problem, Z,(,r'h)(a), can be written in terms of performance

measure \*(a) as

Z‘(‘r.h)(o) = Z (ri+riqa) A:‘(O) - Z hL(0).

1EN 1IEN

by (4.5). where vector r, == (1, 4 )ien 15 given by (4.6).
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Performance region

By Theorem 10, we know that nerformance measure A%(a) satisfies generalized conservation

laws, and that the performance region it spans is an extended contra-polymatroid.

Parameter computation. We shall show next how to compute the corresponding pa-
rameters A, o and b,(S). Ju the notation introduced in Section 4.1.1, we have that transform

®,(.) is given by

®i(a,2y,...,20n) = E [e"’”‘z‘lv" ...z,l:""‘]
= E (1 - Z py(1 - 11)> e_u‘(°+z)€/\/'\’“_z’))
JEN
= (1- Y piy(1 - z,)) v, <a+ Yo A= :J)) . (4.65)
JEN JEN

Therefore. by (4.22) and (4.65) we obtain that the values of ¥i(a), for i € N, satisfy

the system of equations

\I’;s(a) = (1 - Zpu (1 - \I!f(a))) v, (a + Z’\J (l - \Ilf(a))) . fori e N.

JES JES

Proposition 6. yields closed formulae for computing matrix A, and set function b,. By
the results in Section 4.1.1, the performance region spanned by performance vector A*(a)
is the extended contra-polymatroid P.(Aq, bs), and it shown there how to apply adaptive
greedy algorithm AG in order to compute the priority indices corresponding to the optinal

scheduling policy.

Problem definition: the undiscounted case

Klimov (1974) first considered the problem of optimal control of a single-server multiclass
queue with Bernoulli feedback, with the criterion of minimizing the time average holding cost
per unit time. He proved that the optimal nonidling, nonpreemptive and nonanticipative
policy is a fixed priority policy, and presented an algorithm for computing the priorities
(starting with the lowest priority class and ending with the highest priority). Tsoucas (1991)

modeled Klimov's problem as an optimization problem over an extended polymatroid using
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as performance measures
Q! = time average length of queue 1 under policy .

Algorithm AG applied to this problem is exactly Klimov's original algorithm. A disadvan-
tage in this case is that Klimov's is a bottom-up algorithm: priorities are computed from
lowest to highest priority. Also, Tsoucas does not obtain closed form formulae for the right
hand sides of the extended polymatroid, so it is not possible to evaluate the performance of
an optimal policy. Our approach provides a top-down algorithm, gives explicit formulae for
all the parameters of the extended polymatroid and also explains the somewhat surprising
property that the optimal priority rule does not depend in this case on the arrival rates.
The key observation is that an optimal policy under the time average holding cost criterion
also minimizes the expected total holding cost in each busy period (see Nain et al. (1989)
for further discussion).

We shall model the first busy period of Klimov's problem as a h-anching bandit process

with the undiscoun: 1 tax criterion, as conc.dered in Section 4.1.2. Assuming that the

system is stable, we apply the results of Section 4.1.2. By (4.49).

E(T¥| = Elv) +J§§C(p.-, + E))E([TT], ieN,

which in vector notation becomes

E[T5] = Elvse] + (Psese + Elvse) Nsc) E [TE],

E T} = (Ise ~ Psese ~ Elvse] Xse) ™' Elvse],

and

E[T§] = Elvs) + (Ps.se + E [vs] Moe) t37.

Let us define
_ det(lsc - Pscgc)
det([sc - PScSc - E[Usc]Agc)

Kge
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The following algebraic invariance relations can be shown to hold:
E [TSJ] = Kse (Ise — Psese)™" F[vge],

and

E[T§] = K (Elvs) + Pgge (Ise ~ Psese)™ E [vse]) .

Therefore, by definition of A7 in (4.35). we have that A5 = E [Tlsc]. for i € S, while b(S) is
given by (4.36). Now, we may define A;9 = AS/Kse, and b(S) = b(S)/Kse, thus elim‘nating
the dependence on the arrival rates of matrix A. As for the objective function, by (4.34),
and the fact that

E[N;]=p; + X Elv]

we obtain:

Zi=3 (h, - Pith) Cl = bN) 3 hy\Elvs) - 3~ hugs,

1EN JEN IEN 1EN

where h and b are as given in Section 4.1.2. Therefore the control problem can be solved

by running algorithm AG with input (7, 4), where
f,:h.—z:p,]h,. for:1 e N,
JEN

and since (7, fi) does not depend on the arrival rates neither does the optimal policy. No-
tice that in contrast to Klimov's algorithm,with this method priorities are computed from
highest to lowest. This top-down algorithm was proposed by Lai and Ying (1988) and by
Nain et al. (1989), who proved its optimality using interchange arguments. Bhattacharya
et al. (1991) provided a direct optimality proof. They proved that the resulting optimal
index rule is also optimal among idling policies for general service time distributions, and
among preemptive policies when the service time distributions are exponential. It is also
easy to verify these result using our approach (in particular. the index of the idling state is
0, whereas all other indices are nonnegative).

Notice that by modeling the busy period of Klimov's problem as a branching bandit’s
tax problem, using performance measure V", we obtain exactly Klimov's algorithm.

Moreover, in the case that the arriving jobs are divided into K projects. where a class-k
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project consists of jobs with classes in a finite set Ny, jobs in Ay can only make transitions
within N, and N is partitioned as N' = Uf_ | NVj, then it is easy to see that the Index de-
composition theorem 9 applies, and therefore we can decompose the problem into K smaller

subproblems.

4.2.3 Optimal scheduling problems without job arrivals; deterministic

scheduling

There is a batch of n jobs to be processed by a single server. Job i has a service requirement
distributed as the random variable v;, with Laplace transform ¥,. It is clear how to model
this job scheduling process as a branching bandit process in which jobs have no descendants.
Let us consider first the discounted case: For a > 0 it is clear by definition of Afa, in (4.8),
that A;—":a = q, for 1 € §. Therefore the performance space of the vectors A*(a) studied in
Section 4.1.1 is a polymatroid. Consider the discounted reward-tax problem discussed in
Section 4.1.1, in which a instantaneous reward r, is received at the completion of job i, and
a holding tax ah; is incurred for each unit of time that job i is in the system. Rewards and

taxes are discounted in time with discount factor a. By (4.5) it follows that the allocation

index for job 7, in the problem of maximizing rewards minus taxes, is

a¥l,(a)

'y.'(a) = (7'|’ +h;) m

Let us consider now the problem of minimizing the total weighted expected completion time
of the jobs, where a holding cost h, is incurred per unit of time that a class i job is in the
system. By definition of A7 in (4.35), AS =1, lor i € S. Hence the performance region of
the performance vectors E[v,JCY studied in Section 4.1.2 is also the base of a polymatroid.
Thus by equation (4.34) it follows that the allocation index for job i in the undiscounted

tax problem is
e
7! E[U‘] .

We thus obtain that for every nonanticipative, nonpreemptive and nonidling scheduling

policy u,
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2
> EfwW > (Z E[v,-]) for SC N, (4.66)

i€S i€eS
and

2
Y EuwW! = (Z E[v,-]) :

iEN iEN
with equality in (4.66) if policy u gives priority to S-jobs. Queyranne (1993) characterized
this performance space in the case that the processing times v; are deterministic.
In the case that there are precedence constraints among the jobs that form out-forests,
i.e., each job can have at most one immediate predecessor, the problem can also be modeled

as a branching bandit problem. The formulations developed in this chapter apply therefore

to it (see also Horn (1972) and Glazebrook (1976)).
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project consists of jobs with classes in a finite set NV, jobs in ANy can only make transitions
within N, and N is partitioned as N = Uf_ | N, then it is easy to see that the Index de-
composition theorem 9 applies, and therefore we can decompose the problem into K smaller

subproblems.

4.2.3 Optimal scheduling problems without job arrivals; deterministic

scheduling

There is a batch of n jobs to be processed by a single server. Job i has a service requirement
distributed as the random variable v;, with Laplace transform ¥;. It is clear how to model
this job scheduling process as a branching bandit process in which jobs have no descendants.
Let us consider first the discounted case: For o > 0 it is clear by definition of Afa, in (4.8),
that Afa = r, for i € §. Therefore the performance space of the vectors A\*(a) studied in
Section 4.1.1 is a polymatroid. Consider the discounted reward-tax problem discussed in
Section 4.1.1, in which » instantaneous reward r; is received at the completion of job 7, and
a holding tax ah; is incurred for each unit of time that job ¢ is in the system. Rewards and
taxes are discounted in time with discount factor a. By (4.5) it follows that the allocation
index for job i, in the problem of maximizing rewards minus taxes, is
vi(a) = (ri + hi) l_a-:\_Il_&_’_(fc)y_).

Let us consider now the problem of minimizing the total weighted expected completion time
of the jobs, where a holding cost h; is incurred per unit of time that a class i job is in the
system. By definition of A;-S in (4.35), A7 =1, for i € S. Hence the performance region of
the performance vectors E[v;]C* studied in Section 4.1.2 is also the base of a polymatroid.
Thus by equation (4.34) it follows that the allocation index for job i in the undiscounted

tax problem is
=i
71 E[vi] .

We thus obtain that for every nonanticipative, nonpreemptive and nonidling scheduling

policy u,
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Chapter &

The restless bandit problem

In this chapter we develop a mathematical programming approach, as outlined in Chapter
1, to a computationally intractable variation on the classical multi-armed bandit problem:
the restless bandit prcblem.

Our contributions are the following;:

1. We present a series of N linear programming relaxations for the restless bandit prob-
lem on N bandits (see next section). These relaxations capture increasingly higher
order interactions among the bandits. These relaxations are increasingly stronger at
the expense of higher computational times, the last one (Nth) being exact. These re-

laxations utilize the following projection representation idea nicely outlined in Lovasz

and Schrijver (1991):

It has been recognized recently that to represent a polyhedron as the pro-
jection of a higher-dimensional, but simpler, polyhedron, is a powerful tool
in polyhedral combinatorics ... The idea is that a projection of a polytope
may have more facets than the polytope itself. This remark suggests that
even if P has exponentially many facets, we may be able to represent it as
the projection of a polytope @ in higher (but still polynomial) dimension,

having only a polynomial number of facets.

2. We propose a primal-dual heuristic that defines indices based on dual variables of the
first order linear programming relaxation. Under a natural assumption, we interpret
the heuristic as an fixed-priority index heuristic. We report computational results that

suggest that the heuristic is exceptionally accurate. Primal-dual heuristics construct
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a linear programming relaxation of the problem, compute optimal primal and dual
solutions of the relaxed formulation, and then construct a feasible solution for the
original problem using information contained in the optimal primal and dual solutions.
They have been proven quite effective for solving hard discrete optimization problem

(see for example Bertsimas and Teo (1994)).

The chapter is structured as follows: In Section 5.1 we introduce the restless bandit
problem and review previous research efforts. In Section 5.2 we review and strengthen a
classical result on the performance region of a Markov decision chain and use it to present
a monotone sequence of linear programming relaxations for the problem, the last one being
exact. In Section 5.3 we introduce a primal-dual heuristic for the restless bandit problem,
based on the optimal solution to the first-order relaxation. In Section 5.4 we address the

tightness of the relaxations and the performance of the heuristic via computational testing.

5.1 The restless bandit problem: description and background

The restless bandit problem is defined as follows: There is a collection of N projects. Project
n € N ={1,...,N} can be in one of a finite number of states i, € E,, forn =1,...,N. At
each instant of discrete time ¢t = 0,1,2,..., exactly M < N projects must be operated. If
project n, in sta*r. i, is in operation, then an active reward R}" is earned, and the project
state changes into j, with an active transition probability p,-lnj". If the project remains
idle, then a passive reward R?n is received, and the project state changes into j, with a
passive transition probability p?"jn. Rewards are discounted in time by a discount factor
0 < B < 1. Projects are to be selected for operation according to an admissible scheduling
policy u: the decision as to which M projects to operate at any time ¢ must be based only
on information on the current states of the projects. Let U denote the class of admissible
scheduling policies. The goal is to find an admissible scheduling policy that maximizes the

expected present value of the rewards earned,

[0 o]
* a1(t) an(t)\ ot
Z= max Bu [Z (Ril(t) +"'+Ri~(¢))ﬂ J ) (5.1)

where i,(t) and an(t) denote the state and the action (active or passive), respectively,

corresponding to project n at time t. We assume that the initial state of project n is i,
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with probability a;,, independently of all other projects.

The restless bandit problem was introduced by Whittle (1988), as an extension of the
classical multi-armed bandit problem (see e.g. Gittins (1989)). The latter corresponds to
the special case that exactly one project must be operated at any time (i.e., A/ = 1), and
passive projects are frozen: they do not change state (p?"in =1, p?n jo =0forallne N
and i, # jn).

As already mentioned, in contrast to the classical multi-armed bandit problem, the
restless bandit problem is computationally intractable. Papadimitriou and Tsitsiklis (1993)
have proved that the problem is PSPACE — hard, even in the special case of deterministic
transition rules and M = 1. In the multi-armed bandit case, Gittins and Jones (1974) first
showed that the optimal scheduling policy is a priority indez policy: to each project state
is assigned an index. and the policy operates at each time a project with largest index. The
optimal Gittins indices are computable in polynomial time.

The restless bandit problem provides a very flexible modeling framework and, as a
result, a number of interesting practical problems can be modeled naturally as restless
bandits. As an indication of its modeling power we include the following examples: Clinical
trials (Whittle (1988)), Aircraft surveillance (Whittle (1988)), Worker scheduling (Whittle
(1988)), Police control of drug markets, Control of a make-to-stock production facility
(Veatch and Wein (1992)).

Whittle approached the restless bandit problem with dynamic programming methods.
He presented a relaxed version of the problem, solvable in polynomial time. He then pro-
posed a fixed-priority index heuristic based on the optimal solution of the relaxation. This
index heuristic reduces to the Gittins index optimal policy when applied to the classical
multi-armed bandit problem. A disadvantage is that Whittle’s index heuristic only applies
to a restricted class of restless bandits: those that satisfy a certain indexability property,

which is difficult to check.

5.2 A sequence of relaxations for the restless bandit prob-

lem

In this section we first strengthen a classical result on the polyhedral characterization of

the performance region for a finite discounted Markov decision chain (MDC) (see Heyman
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and Sobel (1984)). Then we formulate the restless bandit problem as a linear program
over a certain restless bandit polytope. By applying the previous extension on polyhedral
representation of MDCs, we present a monotone sequence of approximations to the rest-
less bandit polytope (each approximation is tighter than the previous one), that yields a
corresponding sequence of polynomial-size linear programming relaxations for the problem.
These relaxations provide a monotone sequence of polynomial-time bounds for the optimal

value of the restless bandit problem.

5.2.1 Polyhedral representation of Markov decision chains

Markov decision processes provide a general framework to model stochastic optimization
problems. In this section we strengthen a classical result on the polyhedral characterization
of the performance region for a finite discounted Markov decision chain.

Let E = {1,...,n} be the finite state space. At state i € E there is a finite set A; of

actions available. Let us denote C the state-action space.
C={(i,a):i € E,a € A;}.

Let a; be the probability that the initial state is i. If action a € A; is taken in state 7, then
the chain moves to state j with probability pf;. Let 0 < 3 < 1 denote the discount factor.

Let
1, if action a is taken at time t in state j;

I3(t) = {

An admissible policy is specified by a probability distribution on the actions A; corre-

0, otherwise.

sponding to every state i. If at state i action a is drawn from the corresponding distribution,
then action a is taken. Let us denote U the class of a!l admissible policies. We call a policy
admissible if the decision as to which action to take at any time ¢ depends only on the current
state. An admissible (i.e., nonanticipative) policy u € Y for selecting the actions generates

a Markov chain. Let us associate with policy u the following performance measures:

z5(u) = Ey [i[;(t)ﬂ‘] .

t=0
Notice that z7(u) is the total expected discounted time spent taking action a in state j

under policy u.
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We are interested in finding a complete description of the corresponding performance

region X = {z%,u € U}. Let us consider the polyhedron

P= {1:68?2,‘_: z i =a;+0 Z Pz, JE€E, }
a€A, (i.a)eC
Notice that by summing over all j € E we obtain that }_; 5)ec Z{ = ﬁ and therefore P
is a bounded polyhedron.

It was first shown by d’Epenoux (1960) that, if all the initial probabilities a; > 0, then
polytope P is a complete description of the performance region X (see also Heyman and
Sobel (1984)). He also showed that polytope P always contains the performance region,
ie., X CP.

We strengthen next that classical result, by proving that polytope P is always a complete
description of performance region X, even if the assumption that all initial probabilities o;

are positive is dropped.

Theorem 16 (Performance region of discounted MDCs) (a) X = P.

(b) The vertices of polytope P are achievable by stationary det~rministic policies.

Proof In Heyman and Sobel [49] it is shown that X C P always. We will thus prove only
the other inclusion, i.e., P C X.

Since P is a bounded polyhedron, any point in P can be written as a convex combination
of its extreme points. Therefore, it suffices to show that any extreme point of P is achievable
by some stationary deterministic policy, since any point of P can be achieved using a policy
that randomizes over deterministic policies that achieve the corresponding extreme points.

Let Z be an extreme point of polytope P. By standard linear programming theory, T is
the unique maximizer of a linear objective function. Let 3 ; ;)¢ R{x{ be such an objective.
Since T is an extreme point, it has at most n positive components.

Let us now partition the state space E into two subsets, ) and E», in the following way:

i

Ey={j€E: ;>0 forsomea€ A;},and E; ={j € E: Tj =0 for all a € 4;}.
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Let ZTg, = {Z}, j € E1}. Consider now the following linear program:

(LP) Zg, = max Y > Rzt

JEE, a€A;
subject to
2z =B) Y phai=aj JjEE,
acA; 1i€E) a€A;

.’E?ZO, jEEl,(J,EAj.

By construction, Tk, is the unique optimal solution of linear program (LP;), otherwise T
would not be the unique maximizer. T, is therefore an extreme point of (LP,), and it has
at most |E)| positive components. But by definition of E}, it follows that Zg, has exactly
|E1| positive components, and for each state j € E| there is exactly one action @; € Aj such
that 7% > 0.

We can now define a stationary deterministic policy % that achieves Z: For each state
Jj € E3 pick an arbitrary action @; € A;. Now, policy @ deterministically takes action @; in
state j. Clearly, this policy achieves the vector Z, which completes the proof of (a) and (b).

a

5.2.2 The restless bandit polytope

In order to formulate the restless bandit problem as a linear program we define decision

variables and characterize the corresponding feasible region. We introduce the indicators

1, if project n is in state i, and active at time ¢;

I (t) = {

0, otherwise,

and

12, () =

n

1, if project n is in state i, and passive at time t;
0, otherwise.

Given an admissible scheduling policy u € U let us define performance measures

00

= (u)=E, | Y 1L )8 |,

L t=0 J

and

oo

zo (w)=Ey | > 1D (t)ﬂ‘-

=i J
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Notice that performance measure m,ln(u) (resp. ;r?n(u)) represents the total expected dis-
counted time that project n is in state i, and active (resp. passive) under scheduling policy

u. Let us denote P the corresponding performance region,

—_ — an .
P= {x - (zi" (u)) in€En.an€{0,1},neN | weu } ’

It is clear that performance region P is a polytope. This follows from the fact that the
restless bandit problem can be viewed as a discounted MDC (in the state space FEy X + -+ x
Ey), and the performance region of the latter is a polytope from Theorem 16.

We will refer to P in what follows as the restless bandit polytope. The restless bandit

problem can thus be formulated as the linear program

(LPy 2" = max} 3 > Rirar
nEN in€En ane{0,1}

In chapter 4 we showed how to characterize polyhedron P in the special case of the
classical multi-armed bandit problem as a polytope with special structure (an eztended
polymatroid). This characterization leads to strong structural properties of the optimal
scheduling policy (Gittins priority index policy). For general restless bandits, however, it is
highly unlikely that a complete description of polytope P can be found, since as mentioned
above the problem is PSPACE — hard.

Our approach will be to construct approximations of polytope P that yield polynomial-
size relaxations of the linear program (LP). We will represent these approximations P D P
as projections of higher dimensional polytopes Q. An advantage of pursuing this projection
representation approach is that we will be able to represent approximations P of P with
exponentially many facets as projections of polytopes Q with a polynomial number of facets,
thus providing polynomial-time bounds on the optimal value Z*. The approximations we
develop are based on exploiting the special structure of the restless bandit problem as an

MDC, and on applying Theorem 16.

5.2.3 A first-order linear programming relaxation

Whittle (1988) introduced a relaxed version of the restless bandit problem, solvable in
polynomial time. The original requirement that exactly M projects must be active at any

time is relaxed to an averaged version: the total expected discounted number of active
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projects over the infinite horizon must be Af/(1 — J). Whittle showed that this relaxed
version can be interpreted as the problem of controlling optimally N independent MDCs
(one corresponding to each project), subject to one binding constraint on the discounted
average number of active projects. In this section we formulate Whittle's relaxation as a
polynomial-size linear program.

The restless bandit problem induces a first-order MDC over each project n in a natural
way: The state space of this MDC is E,. its action space is .A! = {0,1}, and the reward
received when action a, is taken in state i, is R;’: Rewards are discounted in time by
discount factor 8. The transition probability from state i, into state j,, given action a,, is
p?:jn. The initial state is i, with probability ;.

Let

lel={xn= (m?,;‘(u)) lueu}.

in€En.an€ Al

From a polyhedral point of view, Q) is the projection of the restless bandit polytope P
over the space of the variables z{" for project n. From a probabilistic point of view, Q. is
the performance region of the first-order MDC corresponding to project n. In order to see
this, we observe that as policies u for the restless bandit problem range over all admissible
policies U, they induce policies u, for the first-order MDC corresponding to project n that

range over all admissible policies for that MDC. Applying Theorem 16 we obtain:

Proposition 11 A complete polyhedral description of Q) is given by

QL = {xn >0| x?ﬂ + m}n =aj, +0 Z Z Piti Tir, Jn € En} . (5.2)
in€En an€{0,1}
Remark: A consequence of Proposition 11 is that the general restless bandit problem,
with active and passive rewards, can be reduced to the case with active rewards only. This
follows since by (5.2) the passive performance vector x3(u) is a linear transformation of the
active one, x} (u).
Now, Whittle's condition on the discounted average number of active projects can be

written as

> >z = iEu[z > ['.l"(t)JIBt

neN in€E, t=0 neN in€En
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= (5.3)

Therefore, the first-order relaxation can be formulated as the linear program

(LPY) Z' = max)_ > 5 Ringi

nEN in€En an€{0,1}
subject to

Xn € Q}, neN

E Z xln=—-—'6

neN ineby

We will refer to the feasible region of linear program (LP!) as the first-order approximation
of the restless bandit polytope, and will denote it as P!. Notice that linear program (LP!)

has O(N|Enax|) variables and constraints, where |Emax| = maxpep |En|.

5.2.4 A second-order linear programming relaxation

In this section we present a second-order polynomial-size linear programming relaxation for
the restless bandit problem, which is represented as the projection of a higher-dimensional
polytope (introducing new variables). The new decision variables we introduce correspond
to second-order performance measures for the restless bandit problem, associated with pairs
of projects. Given a pair of projects, n; < ng, the valid actions that can be taken over each

pair of states, (i1,i2) € E,, x Ep,, range over
={(na) € (0,11 || +ar < M}.

Given an admissible scheduling policy u, let us define the second-order performance mea-

sures by

22123 (u) = Eu[ZI DI }

t=0
Similarly as in the first-order case, the restless bandit problem induces a second-order
MDC over each pair of projects n; < ng, in a natural way: The state space of the MDC

is Eg., X Ey,, the action space is .A%, and the reward corresponding to state (in,,in,) and
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action (an,,an,) is R?:l‘ + Rf:: Rewards are discounted in time by discount factor 3. The
transition probability from state (in,,in,) into state (jn,,jn,). given action (an,,an,), is
Piylin, p?::jnz. The initial state is (in,,in,) with probability aj, «;,,. Let

2 — — ( aiaz )
Q =<¢{x = uel ;,
m.n2 { mna = (Zi,' (U) i1€En, ,i2€ Eny.(a1,a2)€A2 I }

be the projection of P over the space of the variables (z7\’*),cE, i Eny.(a1.a2)eA2- An ad-

missible scheduling policy u for the restless bandit problem induces an admissible scheduling
policy un, n, for the MDC corresponding to projects n; and na. It is easy to see that as
u ranges over all admissible scheduling policies for the restless bandit problem, the corre-
sponding induced policy up, n, ranges over all admissible policies for the MDC. Therefore,
the projection Q',z,h,12 is the performance region of the discounted MDC corresponding to

the pair cf projects (n;, ny), (n; < na2). Therefore, from Theorem 16 we obtain:

Proposition 12 A complete polyhedral description of Q?u np 18 given by

Z x;:;: = aj, g, *‘ﬂ Z p;111p1212 :1111022’ (jlvj?) € El X E21 (5‘4)
a1,a2)€A?
( ne ilGEnl,iQEEnz
(a1,a2)€A?
i >0,  (i1,i2) € En, X En,, (a1,a2) € A% (5.5)

We can show some other second-order conservation laws to hold, based on combinatorial

arguments. For all admissible scheduling policies u, we have, if N > M + 2,

(N—M)

2 X X =mhM=1Eg (5.6)

1<ny<na<N ileE..l izGEnz

since the V — Af passive projects required at any time correspond to (N ;M ) passive-passive

project pairs. Moreover,

M(N - M)

Z Z Z (Iutz l[lz(u)) = —-]_.Tﬂ_—’ (5.7)

1<n1<n2<N i1€En, i2€En,

since at any time the Af active and N — M passive required projects give rise to M(N — M)

active-passive project pairs.
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Furthermore, in the case that Al > 2, we have

(*)
2 2 2 Tl )= 125 (5.8)

1<n1<n2<N i{1€En, i2€E,,

since at any time the Af > 2 active projects give rise to (AQ! ) active-active project pairs.

In order to lift the first-order approximation to the restless bandit polytope into a
higher dimensional space with variables z;'°? we need to relate the first and second-order
performance measures. It is easy to see that, for any admissible policy u,

w = Y z82(u), i € En,a1€{0,1},1<n <na <N, (5.9)
i2€En,

az:(a;,a2)€A?

and

32 (u) = Z 1P (u), iz € En,,a2 € {0,1},1 <n; <ny < N. (5.10)

1132
i]GEnl

a1:(a1,a2)€A?

We define now the second-order relaxation, based on the above identities, as the linear

program

(LP*) Z® = maxy > Y Rirain

nEN in€En an€{0,1}
subject to

Xny,np € Qn, ngy 1Sm <ng <N,
N-M
("37)

Z Z Z xmz— _/3’

1<n1<n2<N 1€Eq, i2€En,

D D I R

1<ni<n2<N ileE,,l izEEnz
M
)SRED DI DR
tltz ,3
1<n;<n2<N 1€E,, i2€E,,
"‘— Z Z 2 i € Ep,,a; € {0,1},1 < n; <ng <N,

nz !
i2€En, az:(ay,a2)€A?
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%2 = Z Z rd182 ip € Ep,,a7 € {0,1},15711 <ng <N,

i2 i1ig ?
ilEEnl ay:(uy ,a2)€A2

> Y Y der

neN in€En an€{0,1}
zi > 0.

We define the second-order approximation to the restless bandit polytope P as the
projection of the feasible region of linear program (LP?) into the space of the first-order
variables, z¢, and will denote it as P2.

Notice that the second-order relaxation (LP?) has O(N?|Epax|?) variables and con-

straints, (recall |Emay| = maxpep |Enl.)

5.2.5 A kth-order linear programming relaxation

In this section we generalize the results of the previous sections to present a kth-order
linear programming relaxation for the restless bandit problem, corresponding to a kth-
order approximation for the restless bandit polytope, for any k = 1,..., N. This kth-order
approximation corresponds again to lifting the first-order approximation polytope into a
higher dimensional space, and then projecting back into the original first-order space.

In the kth-order case, we introduce new decision variables corresponding to perfor-
mance measures associated with kth-order project interactions. For each k-tuple of projects

1 < n <:--+ < ng < N, the admissible actions that can be taken at a corresponding

k-tuple of states (iy,...,1) range over
Ak = {(ala---,ak)e {O,I}k |lay + -+ +ap < A'I}.

Given an admissible scheduling policy u for the restless bandit problem, we define kth-

order performance measures, for each k-tuple 1 < n; < --- < np < N of projects, by

[o o]

:r;ll;: (u) = Ey [Z I;l‘(t) . -I;:(t)ﬂt] v J1 € Eny, ..., jk € Ey,. (5.11)
t=0

Analogously as in the first and second-order cases, the restless bandit problem induces
a kth-order MDC over each k-tuple of projects n; < --- < ny in a natural way: The state

space of the MDC is E,,, x - - - x E,,, the action space is .A*, and the reward corresponding
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to state (in,,....%n,) and action (an,,...,an,) is RZ:‘ + -+ R:-I:k". Rewards are dis-
counted in time by discount factor 8. The transition probability from state (i,,,...,in,)

. . . . . . . a « ey .
into state (jn,, ..., Jn,), given action (an,,...,an,), is pi:l‘jnl . The initial state is

n. "tk
plnklnk

(inys- -+ in,) with probability i, ---ai, . Introducing the projection

k _ _ aj...ax
in...nk - {xnl---nk - (zil...ik u

|meu}.

))ileEnl.--.,ikeEnk,(al,-...ak)€/4k
and arguing as before, we conclude that the projection qu...nk is the performance region

of the discounted MDC corresponding to the k-tuple of projects n; < -+ < ng.

Proposition 13 A complete polyhedral description of Qﬁ;...nk is given by the following
system of equations: For j; € Ey,,...,jx € Ey,,

ai..agp __ o X n ar . ag Q1.0

Y. T =encooa+ S > Piyjy " Pigje Tiy iy 0 (5.12)
(a1,....,ax)EAK
ixéEnl.---,ikGEnk
(a1,...,.ax)EAF
and
. k
T3l 7k >0, i1 € Eny,y. ..yt € Eny, (a1, ax) € A% (5.13)

Similarly as in the second-order case, we show that some additional kth-order conservation

laws hold, by using combinatorial arguments. If u is an admissible scheduling policy, then

aran gy — () Cicr)
2 2 > Tiy iy (W) = 1= (5.14)

1<n1 < <nxg <N i]GEn‘ .....ikEEnk

(a;,...'ak)GAk :
ay+--+ap=r
for
max(0,k — (N — M)) < r < min(k, M). (5.15)

Conservation law (5.14) follows since at each time the number of k-tuples of projects that

M
r

contain exactly r active projects is )(A,’c__f_” ), for r in the range given by (5.15).

In order to lift the first-order approximation to the restless bandit polytope into a

ai...ag

higher dimensional space with variables z;' ;¥ we need to relate the first and kth-order
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performance measures. It is easy to see that if u is an admissible scheduling policy, then

forneN,i€E,,a€{0,1},1<r<k,n.=n,and n, < ... < ng, we have

i (u) = > Zgl ok (u), (5.16)
(al,...,a.k)e.A"
11€En ,...,ik€En, !

ir=i,ar=a

We noﬁv define the kth-order relaxation of the restless bandit problem as the linear

program

(LP¥)  2F = maxy Y > Rirzin

neN in€E, ane{ovl}
subject to

Xny..ng € Qﬁl...nk’
D)

2 2 X S =TTE

1<n1 < <nip <N ileEnl ,...,ikGEnk

(a1,....ax)EAF ¢
ay+---t+ag=r
max(0,k — (N — M)) < r < min(k, M),
zf = >, TH i
(a1,...,ax)€A*

11€En, v----ikEEnk :
ir=iar=a

zi > 0.

We define the kth-order approximation to the restless bandit polytope P as the projec-
tion of the feasible region of linear program (LP*) into the space of the first-order variables,
z¢, and denote it P*. It is easy to see that the sequence of approximations is monotone, in
the sense that

P'o>P2>...0PN=p

Notice that the kth-order relaxation (LP¥) has O(N*|Epax|¥) variables and constraints,

for k fixea. Therefore, the kth-order relaxation has polynomial size, for k fixed.
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The last relaxation of the sequence, (LPN), is exact (i.e., ZV = Z*), since it corresponds
to the linear programming formulation of the restless bandit problem modeled as a MDC

in the standard way.

5.3 A primal-dual heuristic for the restless bandit problem

In this section we present a heuristic for the restless bandit problem, which uses information
contained in an optimal primal and dual solution of the first-order relaxation, (LP!). Under
some mixing assumptions on the active and passive transition probabilities, we can interpret

the primal-dual heuristic as an index heuristic. The dual of the linear program (LP?!) is

(DY Z' = min) Y ai N, + ll)\
NEN jn€En -8
subject to

Ao =B > Pl A 2RY, in€E, newN,
Jn€En

Xio =B Y Pl X +AZRL, in€E, neWN,
anEn

A>0. (5.17)

Let {Z{"}, {Ai,, A}, in € En, n € N be an optimal primal and dual solution to the
first-order relaxation (LP') and its dual (D'). Let {¥{"} be the corresponding optimal

reduced cost coefficients, i.e.,

7}" = -Xin - ﬂ Z pgan,‘X]n + X - R}'ﬂ
Jn€En

which are nonnegative. It is well known (cf. Murty (1983), pp. 64-65), that the optimal

reduced costs have the following interpretation:

7}" is the rate of decrease in the objective-value of linear program (LP') per unit increase

in the value of the variable z} .

7& is the rate of decrease in the objective-value of linear program (LP!) per unit increase

in the value of the variable r .
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The proposed heuristic takes as input the vector of current states of the projects,
(¢1,...,in), an optimal primal solution to (LP!), {z;7}, and the corresponding optimal
reduced costs, {7‘;":}, and produces as output a vector with the actions to take on each
project, (a*(i1),...,a*(in)). An informal description of the heuristic, with the motivation
that inspired it, is as follows:

The heuristic is structured in a primal and a dual stage. In the primal stage, projects
n whose corresponding active primal variable T}n is strictly positive are considered as can-
didates for active selection. The intuition is that we give preference for active selection to
projects with positive T} with respect to those with T} =0, which seems natural given the
interpretation of performance measure z} (-) as the total expected discounted time spent
selecting project n in state i, as active. Let p represent the number of such projects. In
the case that p = M, then all p candidate projects are set active and the heuristic stops. If
p < M, then all p candidate projects are set active and the heuristic proceeds to the dual
stage that selects the remaining M — p projects. If p > M none of them is set active at this
stage and the heuristic proceeds to the dual stage that finalizes the selection.

In the dual stage, in the case that p < M, then M — p additional projects, each with
current active primal variable zero (’:E}" = 0), must be selected for active operation among
the N — p projects, whose actions have not yet been fixed. As a heuristic index of the
undesirability of setting project n in state i, active, we take the active reduced cost 7}".
This choice is motivated by the interpretation of 7,-1” stated above: the larger the active
indezx 'y}n is, the larger is the rate of decrease of the objective-value of (LP!) per unit
increase in the active variable z} . Therefore, in the heuristic we select for active operation
the M — p additional projects with smallest active reduced costs.

In the case that p > M, then M projects must be selected for active operation, among
the p projects with Z; > 0. Recall that by complementary slackness, 3., =0ifz} >0.
As a heuristic index of the desirability of setting project n in state 7, active we take the
passive reduced cost 7?". The motivation is given by the interpretation of 7?" stated above:
the larger the passive index 'y?" is, the larger is the rate of decrease in the objective-value of
(LP') per unit increase in the value of the passive variable x?n. Therefore, in the heuristic we
select for active operation the M projects with largest passive reduced costs. The heuristic

is described formally in 5.1.

An index interpretation of the primal-dual heuristic
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Input:
e (iy,...,in) { current states of the N projects }
e {7;7} { optimal primal solution to first-order relazation (LPY) }
o {7;r} { optimal reduced costs for first-order relazation (LPY) }
Output:
e (a*(i1),...,a*(in)) { actions to take at the projects }

{ Initialization: }
set S:=0; {S: set of projects whose actions have been set}

set a*(ip) := 0, for n € N; {actions are initialized as passive}

{ Primal Stage: }

set p:= |{i}n : ?z:',!" > 0,n € N'}| { p: number of projects with positive active primals }
if p < A then { set active the projects with positive active primals, if no more than M }
for n € N do
if 7} > 0 then

begin

set a*(ip) :=1;
set S :=SU{n}
end

{ Dual Stage: }

if p < M then { set active the M — p additional projects with smallest active reduced costs }
until |S| = M do
begin
select 7@ € argmin {J} :n € M\ S}
set a*(i7) := 1;
set S := SU {7}

end

if p > M then { set active the M projects with largest passive reduced costs }
until |S| = M do
begin
select 7 € argmax {¥;, : n € N'\ §}
set a*(iz) = 1;
set S :=SU {7}
end

Table 5.1: Primal-dual heuristic for the restless bandit problem.
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We next observe that under natural mixing conditions, the primal-dual heuristic reduces to
an indexing rule. For each project n € N' we consider a directed graph that is defined
from the passive and active transition probabilities respectively as follows: G, = (En, An),
where A, = {(in, Jn)| p?“ jn >0, and p}"j" > 0 in, jn € E,}. We shall assume that for every
n € N, at least one of the following two conditions is satisfied:
a) aj, > 0 for all j, € Ep; b) the directed graph G,, is connected.

Given that the polytope P! has independent constraints for every n € A and only one

global constraint, elementary linear programming theory establishes that

Proposition 14 Under assumption A, every optimal extreme point E solution of the poly-
tope P! has the following properties: a) There is at most one project k and at most one
state ix € Ey, for which T}, > 0 and 20 > 0.
b) For all other projects n and all other states eit;er ’:f}n >0 or T?" > 0.

Therefore, starting with an optimal extreme point solution Z and a complementary dual
optimal solution, with corresponding reduced costs ¥, let us consider the following index
rule:

Index heuristic:

1. Given the current states (iy,...,in) of the N projects, compute the indices
6‘” = ’711'\ - :7?'1.

2. Set active the projects that have the M smallest indices. In case of ties, set active

projects with Z} > 0.

We next remark that under Assumption A, the primal-dual and the index heuristics
are identical. In order to see this we consider first the case p < M. The primal-dual

heuristic, would set active first the projects that have T > 0. From complementarity,

in
these projects have 7,-1" = 0 and therefore, §;, < 0. Then, the primal-dual heuristic sets

active the remaining M — p projects with the smallest 5! . Since for these projects T, =0

and therefore, T

in

>0, ie., 7?" = 0, we obtain that ¢, = 7}" > 0. Therefore, the choices of
the two heuristics are indeed identical.
If p > M, the primal-dual heuristic sets active the projects that have the largest values

of 7?". For these projects 7},. = 0, and therefore, §;, = —7?" < 0. Since the remaining
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projects have §;, = "7}n > 0, the choices of the two heuristics are identical in this case as
well.
In contrast with the Gittins indices for usual bandits, notice that the indices é;, for a

particular project depend on characteristics of all other projects.

5.4 Computational experiments

In this section we address the tightness of the relaxations and the performance of the
primal-dual heuristic introduced previously.

In order to address the tightness of the relaxations and the heuristic for restless bandit
problems we performed a series of computational experiments. For each test problem we

computed the following measures:

ZGreedy: Estimated (through simulation) expected value of the greedy heuristic (at each
time M projects with largest active reward are operated). We simulate a run using
the heuristic policy and we obtain a value for the reward for the particular run. In
order to obtain the value for a particular run, we truncated the infinite summation
in (5.1) ignoring terms after time ¢, such that 3 > 10~1°, Even if we used a smaller
tolerance, the results did not change. The stopping criterion for the simulation was
that the difference between the average from the first [ + 1 runs and the average from
the first ! runs is less than 1075 (using a smaller tolerance, did not change the results

in this case as well).

Zppn: Estimated expected value of primal-dual heuristic. The estimation was achieved

through simulation as before.

Z*: Optimal value, which is equal to ZV (due to the size of the formulation, this value was

calculated only for small instances).
Z?: Optimal value of the second-order relaxation (LP?).
Z': Optimal value of the first-order relaxation (LP!).

The heuristics and the simulation experiments were implemented in C. The linear pro-

gramming formulations were implemented using GAMS and solved using CPLEX. All the
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experiments were performed in a SUN 10 workstation. In order to test the proposed ap-
proach we generated the following 7 problem instances.

Problems 1 and 2 involve 10 projects with 7 states each, with Af = 1, and their data (the
reward vectors and the passive and active transition probabilities) was randomly generated.
For these problems we were not able to compute the optimal solution because of the large
size of the instance. Since these instances were randomly generated we expected that the
greedy heuristic would perform very close to the optimal solution. To test the last statement
we generated Problem 3 that has 5 projects with 3 states each, for which the data was also
randomly generated and M = 1.

Problem 4 has 5 projects with 3 states each, with A/ = 1. The data was designed so that
the greedy algorithm would not perform optimally. Problems 5 through 7 have the same
data as problem 4, except that the number of active projects ranges from Al = 2 through
M = 4, respectively. The data sets are available upon request from thec authors.

In Table 5.2 we report the results of our experiments for various values of the discount

factor 3. Some observations on the results, shown in Table 5.2, are:

1. The primal-dual heuristic performed exceptionally well. It was essentially optimal
in Problems 3-7 and it was slightly better than the greedy heuristic in Problems 1
and 2. Given that we expect that the greedy heuristic is near optimal for randomly
generated instances (as a verification Problem 3 had also randomly generated data
and the greedy heuristic was extremely close to the optimal solution), we believe that
the heuristic is extremely close to the optimal solution for Problems 1 and 2 as well.
For this reason, we did not experiment with other heuristics, as we feel that the quality
of solutions produced by the primal-dual heuristic is adequate for solving realistic size

problems.

2. Regarding the performance of the relaxations, the bounds from the second-order re-
laxation improve over the first-order ones, and in most instances the bound was very
close to the exact optimal value. In Problem 1 there is a wider gap between the
value of the primal-dual heuristic and the value of the second-order relaxation. The
closeness of the value of the heuristic with the value of the greedy solution (which is
expected to be near optimal in this case), suggests that the main source of this gap

is the inaccuracy of the second-order bound.
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[ Problem instance | 3 | Zgreedy | Zron | 2° | Z° A
Problem 1 0.20 59.9 59.9 70.62 | 74.67
0.50 1242 | 124.3 162.05 | 166.35
0.90 814.4 | 819.1 898.99 | 913.40
Problem 2 0.20 117.1 117.3 117.92 | 118.46
0.50 180.2 | 180.2 183.89 | 186.10
0.90 863.1 | 863.4 894.18 | 915.44
Problem 3 0.50 14.7 14.7 | 14.72 | 1533 | 16.10
0.90 81.3 81.5| 81.55| 84.54 | 85.29
0.95 164.5 | 164.9 | 164.98 | 169.60 | 171.07
Problem 4 0.50 10.8 114 11.40 11.65 11.92
0.90 65.1 75.1 | 75.15| 75.99 | 78.36
0.95 135.5 | 156.0 | 156.09 | 157.81 | 162.12
Problem 5 0.50 19.2 215} 21.63 | 21.93( 21.93
0.90 122.5 | 144.5 | 144.73 | 146.50 | 147.29
0.95 257.2 | 300.1 | 300.35 | 303.73 | 305.68
Problem 6 0.50 28.0 30.8 | 30.95( 31.33 | 31.53
0.90 167.5 | 209.5 { 209.56 | 209.56 | 209.56
0.95 345.2 | 434.7 | 434.74 | 434.74 | 434.74
Problem 7 0.50 10.7 10.9 10.93 | 10.93 10.93
0.90 58.0 743 | 7435 T74.37| 74.55
0.95 119.2 1 154.0 | 154.09 | 154.09 | 154.42

3. As expected, the performance of the greedy heuristic deteriorates as the discount
factor approaches 1, since in that case the long-term impact of current decisions is
more heavily weighted. The primal-dual heuristic outperforms the greedy heuristic
over the sample problems (it performs significantly better in instances with higher

discount factors, and never worse. even for 3 = 0.2). Notice that in the randomly

Table 5.2: Numerical experiments.

generated instances both heuristics yield very close rewards.
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Chapter 6

Optimal scheduling of multiclass
queueing networks: from flow
conservation laws to linear

programming formulations

Designers of a wide variety of real-world systems arz faced with the task of managing a
flow of diverse jobs with limited service resources in order to achieve desired performance
characteristics. Consider, for example, a manufacturing plant that produces several product
parts. As parts flow through the plant floor for completing their processing requirements,
they compete for the service capacity of the available workstations. A scheduling policy
is thus needed that decides dynamically how to allocate workstations to parts demanding
simultaneously their attention. Economic criteria for comparing the performance charac-
teristics of different policies typically involve factors such as the value of the parts produced
and/or the cost of the inventories held. Similar scheduling problems arise in other important
application areas such as computer and communication networks.

Two fundamental problems faced by designers of real-world scheduling systems are:

1. The performance evaluation problem: given a proposed scheduling policy, evaluate its

performance characteristics.

2. The performance optimization problem: Given an economic performance objective,
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design a scheduling policy with optimal (or close to optimal) performance character-

istics.

An analytical approach to these problems represents the real-world system by an appropriate
queueing network model (see e.g. Walrand (1988)). Solutions to the corresponding problems
in the queueing model would thus provide guidelines for evaluating and designing scheduling
policies in the real system.

The application of this approach has been hindered by the fact that only a relatively
small range of relevant queueing network models seem to yield exact analytical results.
These include mainly models whose equilibrium distribution admits a product-form solution.
Starting with the pioneering works of R. R. P. Jackson (1954) and of J. R. Jackson (1963),
researchers have significantly extended the range of queueing network models known to
possess that property (see e.g. Kelly (1979) and Walrand (1988)). For these models one can
evaluate, for certain simple scheduling policies, the distribution of performance measures of
interest, thus solving the performance evaluation problem. Most relevant models, however,
are known not to admit a product-form equilibrium solution. That is the case, for example,
with such a simple model as a multiclass M/M/1 queue in which each class has its own rate
of service, under a first-come first-serve scheduling policy. It is not surprising, therefore,
that the most widespread approach to performance evaluation among practitioners is based
on computer simulation.

As for the performance optimization problem, it can be formulated in principle in the
framework of dynamic programming. The key difficulty with this approach is the large
— or even infinite — size of the resulting formulations, which hinders their application.
Researchers have overcome this difficulty in several important problems whose optimal
policies have a simple structure, as was shown in Chapter 4. For most important models,
though, it has not been possible to characterize the structure of optimal scheduling policies
nor, as a result, to provide efficient solution schemes. A theoretical explanation of this fact
has been recently provided by Papadimitriou and Tsitsiklis (1994), who have established
that the problem of scheduling optimally a queueing network is EXPTIME — complete:
its solution requires an amount of time which is at least exponential in the size of the input
data, independently of the P = NP conjecture.

Given that situation, practitioners rely on heuristic considerations for designing schedul-

ing policies. The performances of alternative heuristic policies — estimated by simulation
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— are often compared only among themselves, instead of with the optimal performance.

The purpose of this chapter is to develop the mathematical programming approach to
scheduling problems, outlined in Chapter 1. in the domain of multiclass queueing networks.
The approach is based on constructing compact polyhedral relaxations of the performance
region corresponding to a queueing network model. These relaxations lead to approximate
linear programming formulations of the associated scheduling problem. Their solution pro-
vides an estimate of the optimal performance vector, as well as polynomial-time bounds on
the optimum performance value, which can be used as a benchmark for assessing the degree
of suboptimality of a proposed policy.

As has been shown in the previous chapters, the key for constructing strong formulations
for the problems investigated seems to lie in identifying a “complete” set of conservation laws
that, when translated into corresponding constraints characterize the performance region.
Thus the set of work conservation laws led to complete polyhedral characterizations of the
performance region in indexable scheduling problems, as was shown in Chapters 3 and 4.

That result leads naturally to the question: What are the laws of multiclass queueing
networks, that allow to characterize their performance region? We provide in this chapter a
partial answer to that question, by identifying a set of flow conservation laws, and applying
them to construct corresponding linear programming formulations.

Higher-order flow conservation laws, that account for higher-order interactions in the sys-
tem, lead to additional constraints, and therefore to stronger formulations and performance
bounds. A sequence of formulations may thus be obtained, which correspond geometrically
to a lift-and-project approach: a new formulation in the sequence is obtained by lifting
the feasible region of the previous one into a higher-dimensional space — introducing new
variables and constraints — and then projecting back into the original performance space.
This sequence of formulations was first obtained by Bertsimas, Paschalidis and Tsitsiklis
(1994) using potential function methods, and independently by Kumar and Kumar {(1994).

The chapter is structured as follows: Section 6.1 reviews a classical flow conservation
law of queueing theory, that is the basis for the formulations to be developed in the chapter.
Section 6.2 presents an exact compact reformulation of the undiscounted branching bandit
problem. Section 6.3 develops a sequence of relaxations for dynamic scheduling problems in
Markovian multiclass queueing networks. The formulations are derived in a unifying way,

by identifying and applying flow conservation laws satisfied by the underlying queueing
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systems.

6.1 Stochastic flow conservation

In this section we review a classical flow conservation law of queueing systems. The law
ronghly states that, under mild conditions, the state of a queueing system as found by
arriving jobs is equal in distribution to the state left behind by departing jobs.

We shal! present two version of the flow conservation law of a queueing system: a
busy period sample-path version, that asserts total flow conservation over a busy period
of the system, and a stationary version, that may be interprested as stating long-run flow
conservation over the system in equilibrium. In the applications of the law to be presented
later, we will show that the first version is useful for analyzing systems with a single busy
period, such as branching bandits, whereas the second one is appropriate for studying
systems that reach stochastic equilibrium, such as Markovian queueing networks.

Consider a generic queueing system where jobs arrive with random demands for service,
wait until a server is assigned to them, and leave after their service is completed. The key
assumption for the flow conservation law to be presented below to hold is that jobs arrive

to and leave the system one at a time.

6.1.1 The flow conservation law L~ = L*: busy period version

We next describe the flow conservation law over the first busy period of such a queueing
system. Let us denote the length of the first busy period T, which we assume to be finite.
Assuming that the system starts servicing jobs at time t = 0, the busy period is thus the
interval [0, T').

Let L(t) denote the number of jobs in the system (waiting or in service) at time t. We
assume that process {L(t)};¢(o,) has right-continuous sample paths. We denote L(t—) the
left limit of the process at time t. The corresponding right limit is L(t+) = L(t), because
of the right-continuity.

Let v be the total number of jobs serviced during the busy period. Let us denote {78}%_,
and {Tg}z=l the sequences of job arrival and departure epochs, respectively. Let L(t¢-)

be the number of jobs in the system that the kth arriving job sees just before his arrival.
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Clearly,
Lirg-) = L(v%) - 1.

Similarly, L(7f) may be interpreted as the number of jobs in the system that the kth

departing job sees just after his departure. Let us define

v
A
7= % L),
k=1

and
v
L* £ 3 L(rf).
k=1

Notice that L™ represents the total number of jobs in the system seen by arriving jobs, while
L* is the total number of jobs in the system seen by departing jobs. The flow conservation

law states the equality of L~ and L*.

Theorem 17 (Flow conservation law: busy period version) If jobs enter and leave

the system one at a time, then the following sample-path identity holds:
L~ =L"%

Proof

Consider a given realization of the busy period (see Figure 6-1). Since the system becomes
empty at the end of the busy period, and arrivals and departures occur one at a time, it
follows that for each time that there is an upward transition for the number in the system
from i to i + 1, there is a corresponding downward transition for the number in the system
from i + 1 to i. That is, every L(7¢—) is equal to a distinct L(7{), thus proving the result.
a

6.1.2 The flow conservation law L~ = L*: stationary version

Consider now a stationary queueing system with number in system process {L(t)}.ex.
Analogously as in the busy period version case, we assume that process {L(t)},c has
right-continuous sample paths. We denote L(¢—) the left limit of the process at time ¢. The
corresponding right limit is L(¢+) = L(t), because of the right-continuity.

Let A = {72} and D = {rf} denote the sequences of arrival and departure epochs of
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L)

Figure 6-1: The flow conservation law L~ = L* over a busy period.

jobs, respectively. Let us define

and

Lt 2 L(d).

Since we assumed the system to be in equilibrium, L™ may be interpreted as the number
of jobs in the queue seen by a typical arriving job, while L* corresponds to the number in

the system seen by a typical departig job.

Theorem 18 (Flow conservation law: stationary version) If jobs enter and leave the

system one at a time, then the identity

holds in distribution.

6.2 A compact linear programming formulation for branch-

ing bandit problems

In Chapter 3 we derived an exponential-size linear programming formulation of the undis-
counted branching bandit problem, by identifying work conservation laws satisfied by the

system and expressing them as linear constraints on performance vectors. In this section we
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construct a compact linear programming formulation of the problem based on identifying
and applying stochastic flow conservation laws. In contrast to the previous formulation,
the resulting reformulation has polynomial-size which has practical implications for solving
variations of the problem involving, e.g., a nonlinear objective function, or additional side
constraints. This reformulation was first obtained by Bertsimas, Paschalidis and Tsitsiklis
(1994b) using potential function methods.

Let us review the description of the branching bandit model, which was presented in
Chapter 4. A single server must complet~ the service requirements of a stream of arriving
jobs, which come in a finite set of classes N = {1,...,n}. Jobs in the same class have
the same stochastic characteristics: a class-i job has a service time v; and, just before
completing its service, a number Nj; of new class-j descendant jobs enter the system, for
J € N. The random ve:ctor of service time and descendants of a job is drawn, independently
of other jobs, from an arbitrary joint distribution that only depends on its class. Jobs are to
be selected for service under a scheduling policy, which must be nonanticipative (decisions
may only use past or current information on the evolution of the system), nonidling (the
server is busy while there are jobs in the system), and nonpreemptive (the service of a job,
once started, proceeds until its completion). We shall refer to scheduling policies with these
three properties as the class U of admissible policies.

We consider now economic criteria for comparing the system performance characteristics
under different scheduling policies, and define a corresponding optimization problem. A
holding cost h; is incurred per unit time that a class-j job is in the system (waiting or in
service). The undiscounted branching bandit problem may be now stated as follows: find an
admissible scheduling policy under which the total expected holding cost is minimized.

As seen in Chapter 3, this optimization problem is well defined only when the total
expected number of jobs that complete service is finite or, equivalently, when the length of
the busy period is finite. We will assume in what follows that this is the case.

In order to analyze the sample-path of a branching bandit process, it will be useful to

introduce the following variables:

T = length of the busy period;

vik = service time corresponding to the kth service of a class-i job; notice that the distri-

bution of v;; is independent of k (v;).
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Tik = starting time of the kth service of a class i job;
v; = total number of class-i jobs served (may be infinite);
Ii(t) = 1 ifaclass{ job is in service at time ¢; 0 otherwise;

Li(t) = number of class-i jobs in the system (waiting or in service) at time t. We denote

L(t) = (Li(t))icn

6.2.1 Performance measures

Our approach to the undiscounted branching bandit problem is based on formulating the
problem as a linear program over a suitably defined performance region. For that purpose,
we introduce the following performance measures: given an admissible scheduling policy

u € U, let us define W;(u) as the total system time of class-j jobs, i.e.,

T
Wj(u) = E, [ st dt] , (6.1)

and z;;(u) as the total system time of class-j jobs while class-i jobs are in service, scaled

by the expected class-i jobs service time, i.e.,

zij(u) = ﬁla [ / " LoL) dt] . (6.2)

Let us also write W(u) = (Wj(u)) jep and X(u) = (zij(w); jen
The branching bandit problem we introduced above can now be stated, in terms of these

performance measures, as the optimal control problem
(OCBB) Z=min{KW():vueld}.

In Chapter 3 we used work conservation laws to characterize the performance region
spanned by performance vectors W(u) as a special kind of polyhedron defined by an expo-
nential number of inequality constraints (an extended polymatroid), thus reducing control
problem (OCBB) to a linear program with special structure. In this section we shall see that
the same performance region can be represented as the projection of a higher-dimensional
polyhedron with a polynomial number of constraints, by identifying certain strong flow

conservation laws and expressing them in terms of performance measures W* and X*.
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6.2.2 Strong flow conservation laws

The conservation laws we shall use correspond to applying the stochastic flow conservation
law L= = L% (busy period version) described in Section 6.1 to certain subsets of job
classes. Consider first the subsystem consisting only of class-j jobs. for a given j € M. This
subsystem can be seen as a queueing system in its own right. Let L(;;(t) = L;(t) denote the
corresponding number in system at time ¢. Consistently with the definition of L~ in Section
6.1, we define L{—j} as the total number of class-j jobs seen by arriving class-j jobs, and
L?}} as the total number of class-j jebs seen by departing class-j jobs. Similarly, we may
consider the the subsystem that consists only of jobs of classes i and j, for given i,j € N,
with i < j. Let Ly; ;3(t) = Li(t) + L;j(t) denote the corresponding number in system at time
t. Analogously as above, we define L{'l.’ il (resp. L?’i'j} as the total number of jobs of classes
i or j seen by arriving (resp. departing) jobs of classes ¢ or j. Direct application of the law

L~ = L%, in its busy period version, to these subsystems yields the following result.

Proposition 15 (Stochastic flow conservation laws for branching bandits) The fol-
lowing sample-path flow conservation laws hold, under any admissible scheduling policy,
(@) Ly, = Li"j}, forj eN.
(b) Ly 5y = L'{"i'j}, fori,j €N, withi < j.

We shall express expectation versions of the flow conservation laws in Proposition 15
as linear equations on performance measures W* and X*. In order to achieve that goal,
we shall first show how to express these performance measures in terms of the sample-path

variables of the process.

Proposition 16 Under any admissible scheduling policy u, the following relations hold:
(a)
Vi
m};':EU[ZLj(Tik)], fori,j EN.
k=1

(b)
Wi = Z E[vi]z;, forjeN.
iEN
Proof

(a) We can write

% = B, [/OTI,-(t)L,-(t) dt]
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_ [ > / T L) dt}
= E, [z Lj(Tik)vik]
k=1
= E[v,']Eu [z': LJ(T,‘k):I .
k=1

(b) Since u is nonidling, ¥ ;e Ii(t) = 1, for t € [0, T). Therefore,

wp = E, [/OTL,-(t)dt]

E [2 L(8) Ly(®) dt]

k=1

= Z E'[v,-]:r:‘j.

iEN

The next result expresses the expected values of L{‘j}, Li"j}, Li'i’j} and Li"i, j} 88 linear

functions of performance measures W* and X*.

Proposition 17 Under every admissible scheduling policy u, the following relations hold:

(a)

Ey [L{J}] > E[Nrj)zrj + 5 E[Ly(O)(L 0)-1)]+= ZE[VT]E[N,.](N,J 1];

r€calN reN

(b)

Ey [ij}] = zj; + E[y;] E[Nj; — 1];
(c)

Ballin] = Bllg]+ BlLg]+ 3 Blst+
TE

ZA:/E [Nri] 275 + Ew [Li(0) L;j(0)] + E(vr] E[Nr:i Nrjl;

TE.
(d)

Eu L] = Bu[LYy] + Bu [Lfy] + 2% + 23 + EINy) Elwi] + E[Nz Elv;).
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Proof

a) We can decompose L7, into two terms:
{4}

1. The total number of class-j jobs seen by class-j jobs present at the start (we assume

they all arrive at time ¢ = 0, but in an arbitrary order).

2. The total number of class-j jobs seen by class-; jobs that arrive later.

As for the first term, there are initially L;(0) class-j jobs in the system. Assuming that
they arrive in an arbitrary order, the first one to arrive will see 0 class-j jobs in the system,
the second one will see 1, and so on. In this way, the L;(0)th class-j job to arrive will see

L;(0) — 1 class j jobs in the system. The total for this first term is therefore
1
O+1+4+---+(L;(0)—1) = EL,-(O)(LJ-(O) -1).

As for the second term, notice that for every class r € N, the kth job of class r that
completes service generates Nr’;- descendant jobs of class j. By definition of the branching
bandit process, these descendants are assumed to arrive immediately before the departing
class-r job leaves the system. Again, ordering these class j arrivals in an arbitrary order,
we obtain that the nth of them to arrive sees L;(77«) +n — 1 class-j jobs in the system, for

n=1,. ., N,ffj. The total for the second term is thus

Nk —1
(Li(mek) + ”2 )NE,.
Therefore, the sample-path identity
Py ! S Nrkj — 1k
Lizy = 3L30)(L;(0) - 1) + %Z(L,-(.—,k) + —5—)N (6.3)
reN k=1

holds. Now, taking expectations in both sides of equation (6.3) under an admissible policy

u, and simplifying the resulting expressions using Proposition 16(a), we obtain (a).

(b) Notice that the kth job of class-j that completes service leaves behind on departure
Lj(mjk) -1+ NJ’-"J- class-j jobs. Therefore,

ij} = Z(Lj(fjk) -1+ N}‘,—)- (6.4)

k=1
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Taking expectations in equation (6.4) with respect to scheduling policy u, we obtain
Vi
E[L};] = By [z Lj(m.)] — Ely;}(1 - E[Nj;))
k=1
which, when simplified using Proposition 16(a) yields (b).

(c) Applying a similar counting argument as in part (a), we obtain

Liyy = l(13:'(0) + L;j(0))(Li(0) + L;(0) — 1) +
k k _
Z Z(N" + N’c Y(Li(Tri) + Lj(7rk) + %)
reEN k=1

Vr
= L7 + L7 + L(0)L;(0) + Y_ (3 Li(re)NK + Lj(7ox) N + NENE), (6.5)
reN k=1

from which (c) follows by taking expectations with respect to u and simplifying as in parts

(a) and (b).
(d) Applying a similar counting argument as in part (b), we obtain

Vi
Ly = Y (Li(rik) + Lj(ae) = 1+ NE + NE) +

k=1
Vi
> (Li(mje) + Lj(rjx) — 1+ Nf + NE)
k=1
Vi Vj
= L+ LF+ D (Li(ma) + N§) + Y (Li(e) + NE), (6.6)
k=1 k=1

from which (d) follows by taking expectations with respect to u and simplifying as in parts
(a) and (b). O
We shall next show that performance measures W*, X* for branching bandits satisfy

strong flow conservation laws, as defined in Section 3.2.2. Let A = Diag(E[v;]).

Theorem 19 (Strong flow conservation laws for branching bandits) Performance mea-
sures W* and X* for branching bandits satisfy the following flow conservation laws: for

any admissible scheduling policy u,
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(a)
(I - EIN)Y X"+ X¥(I — E[N]) = E[LO)L(0)] + E[(I - NYA(I - N)],  (6.7)

and

WY = E[v) X*". (6.8)

(b) For any pair of job classes i,j € N, and any admissible scheduling policy u that gives

priority to class-j over class-i jobs,

I
=

SR

Proof
(a) Matrix equation (6.7) follows by taking expectations with respect to u in the stochastic
flow conservation laws stated in Proposition 15, and simplifying the resulting expressions
using the relations in Proposition 17.

In this way, the identity E, [L{'j}] = E, [L?}}] in Proposition 15(a) may be written
equivalently as

= 2 ke = 38 [E07] + 5Bl -
Elvs] E[N;) + 5 > Blle (2], (6.9)
TE

by using Proposition 17(a),(b) and simplifying the resulting equation using the identity

E[vj] = Lj(0) + ) _ E[]E[N,], forjeN. (6.10)
reN

Equation (6.9) expresses the equality between the jth diagonal elements in matrix equation
(6.7).

Moreover, the identity FE, [L{'l .j}] = E, [L'{"i'j}] in Proposition 15(b) may be written
equivalently as

T+ zh — Z};{E[Nrj] z¥ — ZENE[N,,-]:I;;‘J. = Li(0)L;(0) — E[w] E[Nyj] -
TE. T
Elv;] E[Nj] +
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ezj;{E[u,]E[N,.,‘ rils (6.11)

by using Proposition 17(c),(d). Equation (6.11) expresses the equality between the elements
in position (¢, j) in matrix equation (6.7).
Furthermore, relation (6.8) follows from (16).

Part (b) follows directly from the definition of rj;. C

6.2.3 Linear programming formulation
As a direct consequence of Theorem 7, on the polyhedral characterization of the performance

region in a system that satisfies strong flow conservation laws, the following result follows:

Theorem 20 The performance region of branching bandits corresponding to performance

measures W*" is the projection over the space of the variables W;’s of the polyhedron

(I - E[N)YX + X'(I - E[N]) = E [L(0)L(0)'] + E [(I — NYA(I — N)], (6.12)
W' = E[]'X, (6.13)
X >0. (6.14)

As a consequence of Theorem 20, branching bandit problem (OC B B) may be formulated
as a linear program over the feasible region defined by constraints (6.12), (6.13) and (6.14),
having thus O(n?) variables and constraints.

The polynomial-size projection representation of the performance region for branching
bandits presented in Theorem 20 was first obtained by Bertsimas, Paschalidis and Tsitsiklis

(1994b) using potential function methods.

6.3 Linear programming formulations for scheduling prob-

lems in Markovian multiclass queueing networks

In this section we apply the stationary version of the flow conservation law L~ = L* to
construct a sequence of increasingly stronger compact linear programming relaxations for

dynamic scheduling problems in open Markovian multiclass queueing networks.
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A Markovian open multiclass queueing network can be described as follows: A finite set
of single-server stations M = {1,..., M} provides service to jobs which belong in a finite
set of classes N = {1,..., N}. We shall refer to the set of job claszes served at station m
as its constituency, and shall denote it Cp,. Jobs of class i € A enter the system according
to a Poisson process of rate A;g. Class ¢ jobs demand service at server m(i) € M. and their
service time is exponentially distributed with rate p;. Just after completing its service, a
class i job transfers to class j with probability p;;, or leaves the systam with probabiliy
pio. Service times for different jobs are independent, and they are also independent of the
arrival streams.

Servers are to be allocated to jobs at arrival and departure epochs (internal as well as

external), according to a scheduling policy which must satisfy two requirements:

1. It must be nonanticipative, i.e., scheduling decisions may be based only on past or

current information on the evolution of the process.

2. It must be stable, i.e., the queueing network must admit an equilibrium distribution

under the scheduling policy.

We shall refer to the class U of scheduling policies satisfying these requirements as the class
of admissible policies. A sufficient condition for the existence of a stable policy is that the

system of traffic equations

Aj = Aoj + Z PrjAr. forjeWN, (6.15)
TeN
has a unique positive solution (Ay,...,A,) that satisfies
p(m) <1, for m € M, (6.16)

where

p(m) = Z ’\—':, for m € M.
i€Cm M

In this case, A; represents the total arrival rate (internal plus external) of class-j jobs (see
e.g. Walrand (1988)).
We consider now economic criteria for comparing the system performance characteristics

under different scheduling policies, and define a corresponding optimization problem. A
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holding cost h; is incurred per unit time that a class-j job is in the system (waiting or
in service). The open multiclass queueing network scheduling problem may be now stated
as follows: find an admissible scheduling policy under which the expected holding cost in
equilibrium is minimized.

Let us denote {L(t)};ex the number in system process, which we assume to be in
equilibrium, where L;(t) is the number of class-i jobs in the system at time t.

We shall show next how the stationary version of the flow conservation law can be used
to obtain partial polyhedral characterizations of the perfomance region for open multiclass
queueing networks. The approach can be summarized as follows: We apply the flow conser-
vation law L~ = L* to subsets of job classes; we then express the corresponding identities
in terms of job averages, applying Theorem 23 on the superposition of point processes;
finally, we translate the resulting relations into equations involving time averages, using
Papangelou’s Theorem 24, which yields corresponding equality constraints on achievable
performance vectors.

In order to analyze the sample-path of a multiclass queueing network, it will be useful

to introduce the following variables: Let

By (%) 1 if a class-j job is in service at time t;
j =
0 otherwise,

B™(t) = 1 if service node m is busy at time t;
0 otherwise.

Our approach to the multiclass queueing network scheduling problem is based on for-
mulating a sequence of linear programming relaxations. The feasible regions of these linear
programs contain a suitably defined performance region of the problem. For that purpose,
we introduce the following Kth-order performance measures, for a given K > 1: given an
admissible scheduling policy u € U, let us define z,(i1,...,ix) as the expected value of the
product of the number in system corresponding to classes iy, ...,ix at a typical time (such
as t =0), i.e.,

Zu(ity -+ ik) = By [Liy(0)- - Liye (0)];

let zy(i1,...,ix | i) denote the same expected product, but conditional on the event that
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there is a ciass-i job in service. i.e., and
. NN
ZTy(i1, ..., ik | 1) = Ey[Li;(0)-- - Lij (0) | B;(0) = 1};

finally, let z7'(71,...,ix | 0) denote the same expected p.oduct, but conditional on the

event that station m is idle, i.e.,
iy, ..., ik | 0) 2 Ey[Li,(0)- - L (0) | B™(0) = 0].

The open multiclass queueing network scheduling problem we introduced above can now

be stated, in terms of these performance measures, as the optimal control problem

(OCON) Z=min{2h,~zu(i):u€U}.
ieN

We shall show in this section that the performance region corresponding to performance
measures T, (Z)’s may be approximated as the projection of higher-dimensional polyhedra, by
identifying certain flow conservation laws and expressing them in terms of the performance
measures introduced above.

The conservation laws we shall use correspond to applying the stochastic flow conserva-
tion law L~ = L* described in Section 6.1 to certain subsets of job classes. Let S C N be
a subset of job classes. Consider first the subsystem consisting only of jobs whose classes
belong in S, which we shall refer to as S-jobs. This subsystem can be seen as a queueing
system in its own right. Let Ls(t) = Y, s Li(t) denote the corresponding number in system
at time t. Consistently with the definition of L~ in Section 6.1, we define Lg as the total
number of S-jobs seen by arriving S-jobs, and L¥ as the total number of S-jobs seen by
departing S-jobs. Direct application of the law L~ = L*, in its stationary version, to this

subsystem yields the following result.

Proposition 18 (Stochastic flow conservation laws for queueing networks) The fol-

lowing distributional flow conservation laws hold, under any admissible scheduling policy,

Ly=LY, forSCN.

We shall express expectation versions of the flow conservation laws in Proposition 18 as
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linear equations on performance measures zy (1, .. ., ik), Tu(i1,...,ix | 7) and z*(iy,. .., ik

0) introducz21 above. Let us denote

p(i,8) =" pij,

JES

pE,SU{0) = > py,

jeSu{o}
and
A0(8) =" 0.
i€S
Let us denote i = (4y,...,ik), and let S* be the set of all k-tuples i = (i1,...,ix), with

components in S.

Theorem 21 (Kth-order flow conservation laws) The following relations hold, under
any admissible scheduling policy u:

(a) For a subset S of job classes,

X(S) Yzl (iF)+

iKesx
K
YooY e, Szl i) = ST (—1)""°(’,f)x,-p(i,5‘-‘u{0})xu(z”°|i>+
1ESCiKeGK i€ESk=1ikeSk
(-DES " Nip(i, S U {0}). (6.17)
i€S
(b)
2u(i¥) = 3 2y K | 4) + (1 — p(m))z (i | 0). (6.18)
i€Cm I
Proof

The evolution of the state vector is driven by events corresponding to external job arrivals,
internal job transfers, and external job departures. We shall reiate expectations with respect
to these event epochs with expectations in equilibrium using the theory of Palm calculus,
reviewed in Appendix A. We denote the point process of external class i job arrivals A?.
Its intensity is A?, which coincides with its stochastic intensity at any time, i.e., Ai(t) = A?.
The point process corresponding to internal job transfers from class i to class j is denoted
Ti;. Its intensity is easily seen to be A;j = A\ip;j, whereas its stochastic intensity is \;(t) =

kiPijl{p,(t)=1}- The process of external job departures is denoted Dg, and it has intensity
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p- = Ajpjo and stochastic intensity p; O(t) = KjpjolB;(t)=1}- Let PAo Pr,; and PDo denote
the Palm probability distributions associated to the corresponding point processes.

We next apply the flow conservation law L~ = L*. Let S C A be a subset of job classes.
As mentioned before, the queues corresponding to S-jobs may be considered as constituting
a queueing system in their own right, which we shall refer to as Qg. The number of jobs in

this subsystem at time ¢, which we denote Lg(t), is given by

Ls(t) =) Li(t)
€S
Let As be the point process corresponding to arrivals to system Qg, and let Dg be the

corresponding point process for departures. These arrival and departure processes can be

expressed as the superposition of elementary processes as follows:

AS=ZA_?+ z ZT;ja

j€ES i€Sc jES
and

Ds= 08+ % 3T

j€s i€S jeSe
This is because arrivals to queueing system Qg correspond in the original system either
to external arrivals, or to internal job transfers from classes in S€ to classes in S. Similarly,
departures from queueing system Qg correspond in the original system either to external
departures, or to internal job transfers from classes in S to classes in S¢.
On the other hand, we may apply the flow conservation law law L~ = L* to subsystem
Qs. By the equality of distribution between Lg and L§ it follows that we may equate the

correspoding Kth-order moments, for any K, which yields
E4s [Ls(0-)¥] = Epy [Ls(0)¥].

Direct application of the superposition theorem of point processes (Theorem 23) allows

us to express the Ath-order flow conservation identity E4,[Ls(0—)X] = Epg[Ls(0)K] as

i‘OEAo [Ls(0- )K]+ZZ’\"’"E [Ls0-)%] = Z":\p"‘EDo [Ls(0)¥] +
i€S i€Se jes ies 'S
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>3 % [Ls(0)¥]. (6.19)

i€eSjese 'S
Gur next goal is to express the Palm expectations that appear in equation (6.19) in terms
of stationary expectations (and hence of performance measures). Papangelou’s theorem
(see Appendix A) allows us to relate the distribution of the state of the system observed
at the elementary event epochs, which is easy to characterize, with the state observed in
equilibrium, which is not immediately evident. Let e; denote the ith unit coordinate vector
in R™. Straightforward application of Papangelou’s theorem yields the following relations

between Palm probabilities and stationary probabilities:

Pyp{L(0)=1+e} = Pup{L(0-)=1}
= P{L(0) =1}, (6.20)

Pr,{L(0)=l-ei+e;} = Pr,{L(0-)=1}
= P{L(0)=1] Bi(0) = 1}, (6.21)

and

PoolL() =l-¢;} = Ppo{L(0-)=1}
= P{L(O) =1 | Bj(O) = l}. (6.22)

Identities (6.20), (6.21) and (6.22) are obtained by applying Papangelou’s theorem (Theorem
24) with
1, if L(t—) =1,
f(L(t) =

0, otherwise.

Now, using the formulae (6.20), (6.21) and (6.22), that express the relation between Palm
and stationary probabilities for point processes A, T;; and DY, we obtain corresponding
relation between Palm and stationary moments. For external arrival process AS-’, we thus

have

Ey [Ls(0-)"] = E [Ls(0)¥];
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for transfer process T;;, with i € S€ and j € S,
Br, |Ls(0-)¢] = E [Ls(0)* | Bi(0) = 1] ;
for transfer process Tj;, with i € S and j € S¢,

Er, [Ls@¥] = Er, [(Ls(0-) - 1¥]
= _N\K-k (K) [ Le(0=)¢
,gl( 1) k ETu' [ s(0 ) ]

S K
= Z(—l)"“k( k)E [Ls(0)F | Bi(0) =1],

k=0

and for external departure process D_?,

Epp [Ls(0)] = Eps[(Ls(0-) - 1)¥]
= g(*l)K_k(I:)Eog [Ls(0-)]

K K
= Z(—l)""‘( k)E [Ls(0)* | B;(0) = 1]

k=0

Now, substituting in identity (6.19), and simplifying, we obtain:

X(S)E. [Ls(0)¥] +

K
> Ap(i, S)Bu [Ls(0)X | Bi=1] = ZZ(—I)K“"’(I:)/\W(LSCU{0})Eu [Ls(0)F | Bi=1] +

i€se i€S k=1

(-1)% 3" p(i, SCU{0}) Ay,

i€S
which proves (a).
As for (b), it follows from the relation
Ai
Eu[Liy(0)-- Lig (0) = ) ;;E'u[Ln(O) -+ Liy (0) | Bi(0) = 1] +
i€Cm M

(1= p(m))E[Li, - - - Li, (0) | B™(0) = 0].
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Solving the linear programming problem of minimizing objective 3" ;¢ hiz(i) subject
to the constraints induced by conservation relations (6.17) and (6.18) yields a lower bound
on the optimal value of scheduling problem (OCON).

By varying the subset S of job classes, and the order K of the interactions considered,
the constraints induced by conservation relations (6.17) and (6.18) yield an infinite family
of linear constraints on performance measures. If ordered according to the order K of the
interactions taken into account, this family can be viewed as a sequence of increasingly
stronger relaxations.

This sequence of relaxations may be interpreted geometrically as corresponding to a
lift-and-project approach. The exact performance region spanned by performance measures

zy(), for i € N, is contained in the projection of higher-dimensional polyhedra.

6.3.1 Second-order relaxation for multiclass queueing networks

Let us denote z, = (Zy(n))nen, Xu = (zu(n1, n2))ny,n2eN, and X3 = (z7(n))meM,nen-

Also, let us define the constituency matrizc C = (cmn)meM.nen by

{ 1, if job class n is served at service node m;
Cmn =

0, otherwise,

Let A? = (A3)nenr be the vector of external arrival rates, and let A = Diag()), where vector
A of total arrival rates is given by traffic equations (6.15).

Direct application of Theorem 21, in the case of second-order interactions, yields the
following result, first obtained by Bertsimas, Paschalidis and Tsitsiklis (1994a) using poten-
tial function methods. We use the notation 14 to denote a vector of ones with components

indexed by set M = {1,...,M}.

Proposition 19 (Second-order flow conservation laws) For any admissible schedul-

ing policy u € N, performance measures x4, X, and X2 satisfy the following equations:

A%+ 2XY 4 (I - PYX + X'(I - P) = (I — PYA + N'(I — P), (6.23)
xl

Imzr=] ! | =CX+ X°. (6.24)
xl
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6.3.2 Projection of the second-order relaxation

By exploiting the structure of the second-order polyhedron defined by equations (6.23) and
(6.24) it is possible to obtain an explicit partial characterization of the performance region
spanned by vectors z,, thus projecting out other variables from the formulation.

We shall define next a parametric family of polyhedra, that generalize those arising as
the second-order relaxation of the performarce region of open multiclass queueing networks.
We shall present a partial characterization of the projection of such polyhedra over the space
of certain variables. This result will later be applied to the specific case of polyhedra arising
in open multiclass queueing networks.

Let N = {1,...,N}, M = {1,...,M}. Let ap = (aon)nenr = 0, Q = (gij)ijen = 0,
B = (bij)ijen 2 0. Let matrix C be an M x N 0 — 1 matrix with the following structure:

there is a partition of set N'= {1,..., N} into subsets C,...,Cypy, in such a way that

{ 1, if job class n is served at service node m;
Cmn =

0, otherwise,

When matrix C arises from a queueing network model, C,, is the constituency of service
node m. Let 1o denote a vector of ones with components indexed by set M.

Consider polyhedron P defined by the equations

a0z’ +zag+ (I - Q)X + X'(I - Q) = B,

x
Imz'=| ' | =CX+ X°,
Z’
a:,X,XOZO.

Let us define, for SC N, and me M = {1,..., M},

&5 - {1, imer‘tS;éﬂ;.

0, otherwise,

For a given vector p = (p;)iens > 0, let us define vector Fj\s, = (F3)nen as the solution

of the system of equations

F§ = ps + QssF5.
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Proposition 20 The projection of polyhedron P over the space of the x-variables is con-

tained in the polyhedron defined by the following equations:

1 F_g'Bsst‘?

Fiz;>-—-S87958 SCN
_7‘;9 Jx]_zllds—a:)ng for § C
Proof
We have, for
f= £
0

2I'Bf = SFUI-QYX+X'(I - Q) — ape’  za}f
= S0~ QX ~aoz'}f
= (- QFYXS - (fao)(f'z)

!

Is— —Qsse F$ F$
_ s —Qss Qss 5 x| 75 | = (Fao)(f'z)
—Qscs  Ige — Qsese 0
X, Xgge F$
= (s —(FEY(Qses)) | °%° 7% S| - (Fao)(f'x)
Xses Xsese
F§

= ( PsXss — (F5)(Qses) Xses ps'Xsse — (FS) Qses' Xsese ) o |7

(f'a0)(f'z).
Notice also that, for any m =1,..., M,

— 0
xn - Z $|n + Z xgn + xmn.
1€ESNC 1€ESNCm

Hence, we obtain

M M M
( dg) =Yt 38 S et 3 dal
m=1 m=1

i€S m=1 1€ESSNCm

Therefore,
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%(Fg)’Bsngg = Y S pizy) - S Y Q¥ QSpizi; - (3 a0 FP) (Y Ffx))

JES i€s i€S¢ jGS €S Jj€ES

= S F ((Zd;i)xJ st ) x,-j—f m:ci’n,)—
m=1

JES m=1 €S NCm
Q_anFY)(Y Fiz;)
i€S j€S
M
< (X dm—> auF?)Y Fiz,
m=1 i€S jes

whence the result follows. O
Specializing Proposition 20 to the second-order polyhedra arising from open queueing
networks (see Proposition 19) we obtain the following result. Let A = diag()\;), and let

p = (pi)ien, where p; = X\;/p; is the traffic intensity of class-i jobs.

Theorem 22 (Workload relaxation for open networks) For any admissible schedul-
ing policy u, the first-order performance vector z, of an open multiclass queueing network

is contained in the polyhedron defined by the equations

F

F§ SCN. .25
Is ~ VdS + AScPScst - lfgps for S ¢ (6 )

Proof
We apply Proposition 20 to the second-order flow polyhedron describefd in Proposition 19.
Let Q@ = P, B = (I -~ PYA+ A'(I - P), ap = Mo, and p = v, where v = (v;);en, and
vi = 1/p;.

As for the numerator, we have

1 1 F§
51.!-"5‘?’3351?33 = 3 ( F§' o ) {I-PYA+A'(I-P)}]| 7
0
FS
= ( 0 ) (I-Pya| %
0
!
_ Is— Pss  —Psse F§ A F§
—Pgeg  Isc — Pgese 0 0
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FS
= (v’s vgc—FSc')A s

= F§'ps.

As for the denominator, we have (using Ao = (I — P)')),

F$ )
NsF§ = x| °
o)
( Fs
= NXI-pP)| S
\ 0
Y (Is — Pss)F§
—PscsF_g
= )\ vs
vSC_Fgc

= /\fchscng - 1sps

The inequalities (6.25) appearing in Theorem 22 were first obtained by Bertsimas,
Paschalidis and Tsitsiklis (1994a). The contribution of Theorem 22 is that it simplifies
the formulae derived by Bertsimas, Paschalidis and Tsitsiklis. It reveals the simple struc-
ture of the right-hand side in inequality (6.25), which extends similar formulae for the single
queue (M/M/1) case (see e.g. Gelenbe and Mitrani (1980)).
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Chapter 7

Summary, conclusions and

directions for future research

This thesis has developed a mathematical programming approach to optimal dynamic and
stochastic resource allocation problems. The goal in such problems is to obtain an optimal
resource allocation policy, as well as to compute the optimal value of the problem.

Given a resource allocation problem, the proposed approach can be articulated as fol-

lows:

1. Define suitable performance measures. The objective to be optimized must be a

function of the corresponding performance vector.

2. Identify physical laws (conservation laws) satisfied by the system. These conservation
laws must be expressed as linear equalities or inequalities satisfied by performance

vectors.

3. Formulate the problem as a mathematical program. The feasible region of this pro-
gram is a polyhedron defined by the set of linear constraints given by the conservation
laws. This polyhedron contains or, in some cases, coincides with, the region spanned
by performance vectors achievable under admissible resource allocation policies (per-

formance region).

4. Translate a solution to the mathematical programming formulation into a correspond-

ing solution to the resource allocation problem. The formulation should yield bounds
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on the optimal problem value, as well as optimal or heuristic resource allocation poli-

cies.

The approach was tested in three problem areas in the field of stochastic scheduling,
with an increasing level of complexity: scheduling problems solved by priority-index rules
(indexable problems), the restless bandit problem, and problems of dynamic scheduling
control in Markovian multiclass queueing networks.

In the first area of indexable scheduling problems, the approach yielded a unified frame-
work for constructing and solving exact linear programming formulations. The framework
was grounded on identifying a set of conservation laws that have enough power to charac-
terize completely the performance region of such problems. Optimal scheduling policies as
well as the optimal value of the problem are readily obtained from such formulations. The
approach provides further new results (such as closed formulae for the optimal value of the
problem and the representation of Gittins indices as sums of dual variables) and insights.

In the second area, that deals with the computationally intractable restless bandit
problem, the approach yielded a sequence of increasingly stronger linear programming re-
laxations of the problem, that give correspondingly tighter bounds on the optimal value.
These relaxations are based on exploiting certain Markov decision chain conservation laws.
A primal-dual index heuristic was designed, based on the optimal solution of the first-order
relaxation. Limited computational experience suggested that the heuristic seems to generate
a near optimal policy.

In the third area of scheduling problems in Markovian multiclass queueing networks,
we identified a set of flow conservation laws that can be translated into a sequence of
increasingly stronger linear programming relaxations for the problem, with correspondingly
tighter bounds on the optimal value.

Consequently, the approach has proved to be fruitful for addressing the problems inves-
tigated. In each problem area, we were able to identify a set of conservation laws that were
translated into corresponding linear programming formulations.

The results obtained paralled those observed in the application of mathematical pro-
gramming in the field of combinatorial optimization. In particular, they confirm the insight
that our ability to solve a problem seems to be related to our ability to construct strong
formulations for it. Researchers in combinatorial optimization have thus been able to con-

struct exact formulations for well-solved problems, such as that of computing a minimum
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spanning tree in a graph (see e.g. Nemhauser and Wolsey (1988)). On the other hand, only
relaxed formulations have been developed for computationally hard problems, such as that
of finding a minimum length hamiltonian tour in a graph.

There are several directions in which the approach developed in this dissertation can be

further extended:

e Strengthening the formulations with nonlinear positive semidefinite constraints. Since
the variables that appear in the formulations we presented represent moments of
random variables, further nonlinear positive semidefinite constraints can be added to

them. See Bertsimas, Paschalidis and Tsitsiklis (1994a).

¢ Heuristics from formulations. An important open problem is how to design good
heuristic policies in a unifying way from the solution to the relaxed formulations we

presented.

e Extensions of the approach to other dynamic and stochastic optimization problems.
Finally, it would be interesting to extend the mathematical programming approach
to other classes of dynamic and stochastic optimization problems, such as inventory

control problems.
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Appendix A

A review of the Palm calculus of

point processes

In this appendix we review some basic concepts and results from Palm calculus (see e.g.
Baccelli and Brémaud (1994)).

Given a system whose evolution is driven by certain events (a discrete-event system),
Palm calculus is concerned with the relation between the distribution of the system state
at a typical time and that at a typical event epoch. For example, in the context of a
queueing system, it may be of interest to find the relation between th: mean number of
job in the system, when averaged over time, and when averaged over embedded job arrival
epochs. This is because performance measures of queueing systems are usually defined in
terms of time-averages (e.g. time-average number of jobs in the system). Moreover, certain
conservation relations are naturally expressed in terms of job-averages (e.g. average number
in the system seen by arriving jobs = average number in the system seen by departing jobs).
Palm calculus thus provides a tool for bridging the gap between the two kinds of averages
and, as a result, it is the key for translating well-known job-average conservation laws into
corresponding laws that involve only time-averages. The latter laws, in turn, are the key for
obtaining the linear programming formulations for queueing network scheduling problems
developed in Chapter 6.

Let Z = {Z(t)} be a continuous-time staticnary stochastic process (i.e., the distribution

of Z(t) is the same at every time t). Let N = {T,,} be a point process (see Baccelli and
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Brémaud (1994)) in the real line. We shall normalize the point process N so that
< T <Ty=0<T1 <+,

i.e. the Oth point occurs at time ¢t = 0. The number of points that lie in a subset B of the
real line is denoted N(B). In applications to discrete-event systems, Z(t) represents the
state of the system at time ¢, while T}, represents the epoch at which the nth event takes
place. The notion of stationary point process captures mathematically the intuitive idea
that the sequence of points {T,,} corresponds to a time-homogeneous stream of events.

We assume that processes Z and N are defined in a common underlying probability
space (2, F, P). Furthermore, both processe: are adapted to a common history {F;} (which
is a family of sub-o-fields of F such that F; C F; whenever s < t). That is, for any time
t € R, the random variable Z(t) is F;-measurable, and the event {T,, < t} € F;. Intuitively,
F¢ represents the information available up to and including time ¢. The value of Z(t), and
the event that the nth point T}, occurs before or at time ¢, can thus only depend on events
that happen up to time ¢.

Given a real-value function f(-) defined on the state-space of process Z, we may consider

the expected value of f(Z) at a typical time, such as t = 0,
E[f(2(0))] = E[f(2(t)), foranyte R.

The Palm probability distribution of process Z with respect to point process N may be
described intuitively as the distribution of process Z at point/event epochs (see e.g. Baccelli
and Brémaud (1994) for a formal definition). We denote Ey[-] the expectation operator
with respect to the Palm probability associated to point process N. We may thus consider

the expected value of process f(Z) at a typical point/event epoch, such as Ty = 0,

En[f(Z(0))] = En[f(Z(T2))], for any n.

In both cases we assume that the corresponding expectations exist.

Intensity. A basic quantity associated with a stationary point processes is its intensity.

It may be interpreted as a global measure of the density of points/frequency of events in
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the process.

Definition 5 (Intensity) Given a stationary point process, the expected number of points

chat lie in a unit length interval,
A=E[N([0,1))],
is calied the intensity of the process.

Stochastic intensity. In some applications, such as queueing systems, the frequency at
which events take place may vary locally, depending on the current state of the system. For
example, in an M/M/2 queue, events happen “more often” around a given time when the
two servers are busy than when they are both idle. This intuitive notion of local density
of points/frequency of events in a point process is captured by the concept of stochastic
intensity.

Let N be a point process, not necessarily stationary, let {#;} be a history of N, and let

{A(t)} be a nonnegative process adapted to the history.

Definition 6 (Stochastic Intensity) The process {A(t)} is called a (P, F;) stochastic in-
tensity of N if
(i) it is locally integrable; that is, [5 A(s)ds < oo for all bounded Borel sets B; and
(ii) For all a < b,
E[N(a,b]| Fa] = E [ / " \s)ds | .7-',,] .

The value A(t) may be interpreted as the instantaneous intensity of points at time ¢.

Superposition of point processes. In some applications we are interested in evaluating
the average value of some quantity over certain event epochs, which can be expressed as
the superposition of several simpler kinds of events. Thus in a queueing system the events
can be classified into external arrivals at each of queue, service complations at each server,
etc. It is often easier to evaluate averages over each of the separate kinds of events than
over their superposition. Fortunately, expectations with respect to the superposition can
be easily expressed in terms of expectations with respect to each kind of event. This is a
well-known result from the theory of point processes (see e.g. Baccelli and Brémaud (1994),

and Miyazawa (1983)), that we present next.
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Let Ny, ..., Nk be stationary point proceses, defined in a common probability space.
Let Aj,..., Ak be their respective intensities, which we assume to be finite and positive.
Consider the point process N defined by the superposition of Ny,..., Nx: Process N has a
point at time ¢ if any of the processes Ny,..., Ng has a point at that time. Let us denote
N = Nj + --- + Ng. The intensity of N can be shown to be A = \; + --- + Ag. Let
Z = {Z(t)} be a stationary process, and let f(-) be a function on the state space of Z such
that the expectation Exn[f(Z(0))] exists.

Theorem 23 (Superposition of point processes) The following relation holds:

K
Exf(ZO)] = Y X Ew /(2(0)]
k=1

Papangelou’s formula It is often of interest to find relations between time and event
averages of a given process. As we mentioned above, some conservation laws of queueing
systems are naturally expressed in terms of jcb averages. Such relations may be useful for
translating those conservation laws into laws involving only time averages, which are more
often used as performance measures.

Under certain assumptions, there is an easy relation between time and event averages.
For example, a classical result of queueing theory, known as PASTA (see Wolff (1982),
asserts that “Poisson arrivals see time averages.” This fact, and extensions of it such as
ESTA (Events See Time Averages) (see e.g. Walrand (1988) and conditional PASTA (see
Kénig and Schmidt (1990)) correspond to special cases of Papangelou’s formula.

Papangelou’s formula (see Papangelou 1972 and Baccelli and Brémaud (1994)) repre-
sents the link between stationary probability, Palm probability and stochastic intensity. Let
N is a stationary point process with intensity 0 < A < oo, adapted to the history {F},
{Z(t)} is a process also adapted to {F;}.

Theorem 24 (Papangelou (1972)) If N admits a (P,F;) stochastic intensity {\(t)},

and Z(0) is Fy- -measurable, then

E[f(Z(0))M(0)] = AEN[f(2(0))].

In words, Papangelou’s theorem asserts that, under certain conditions, the value of

function f(Z(t)) times the stochastic intensity A(t) observed at a typical time coincides
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with the process intensity A times the value of process f(Z(t)) observed at a typical event

epoch.
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