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Abstract

In this thesis, a comprehensive study of Bernstein-Greene-Kruskal (BGK) mode electron
holes in a collisionless plasma where strong kinetic effects are important is presented.
Kinematic theory based on momentum conservation is derived treating the electron hole
as a composite object to study the dynamics of electron holes. A novel 1-D Particle-In-
Cell simulation code that can self-consistently track the electron hole motion has been
developed for the purpose of this thesis work. Quantitative agreement is achieved between
analytic theory and simulation observations. The thesis reports a new kind of instability
for electron holes. Slow electron holes traveling slower than a few times the cold ion sound
speed in the ion frame are observed to be unstable to the oscillatory velocity instability.
A complete theoretical treatment for the instability is presented in this thesis. Numerical
simulations yield quantitative agreement with the analytic theory in instability thresholds,
frequencies and partially in instability growth rates. It is further shown that an electron
hole can form a stable Coupled Hole Soliton (CHS) pair with an ion-acoustic soliton. A
stable CHS travels slightly faster than the ion-acoustic velocity in the ion frame and is
separated from a typical BGK mode electron hole in the velocity range by a gap, which is
set by the oscillatory velocity instability. Transition between the two states is possible in
both directions. A CHS exhibits a soliton-like behavior. The thesis sheds light on solving
the ambiguity between an electron hole and a soliton. This thesis work also has important
implications for interpreting space probes observations.
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Nomenclature

𝜖0 Vacuum permittivity

𝜇0 Vacuum permeability

𝜔𝑏 Bounce frequency of deeply trapped electrons:
√︀
𝑒𝜓/𝑚𝑒/𝐿

Ω𝑒 Electron cyclotron frequency:

√︂
𝑒𝐵

𝑚𝑒

𝜔𝑝𝑒 Electron plasma frequency:

√︂
𝑛𝑒2

𝜖0𝑚𝑒

𝜑 Electrostatic potential

𝜓 The maximum of 𝜑

𝜑 Normalized electrostatic potential: 𝜑/𝜓

𝑐 Speed of light in vacuum

𝑐𝑠 Cold ion sound speed:

√︂
𝑇𝑒
𝑚𝑖

ℎ Planck constant

𝐿 Spatial dimension of an electron hole parallel to the magnetic field direction

𝑀 Mach number of a velocity normalized to 𝑐𝑠

𝑁 Number of particles

𝑇 Temperature in electron-volt
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𝑈 Electron hole velocity in the plasma or the ion frame

𝑉 Volume

𝑣th,e Electron thermal speed:

√︂
𝑇𝑒
𝑚𝑒

𝑣th,i Ion thermal speed:

√︂
𝑇𝑖
𝑚𝑖

𝑣ℎ Electron hole velocity in the rest frame of background electrons

𝑣𝑑,𝑒 Drift velocity of bulk electrons in the ion frame

𝑣𝑝,𝑒 Marginal passing velocity for electrons:

√︂
𝑒𝜓

𝑚𝑒

𝑣𝑝,𝑖 Marginal passing velocity for ions:

√︂
𝑒𝜓

𝑚𝑖
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Chapter 1

Background

Plasma is the ionized matter that makes up more than 99% [1] of the visible matter in

our universe. Understanding plasma is thus crucial for the understanding of our uni-

verse. Plasma physics is the branch of physics that studies this particular state of matter.

Research in plasma physics is also driven by the numerous industrial applications. To

name a few, the entire modern semiconductor industry is made possible by high precision

plasma etching tools [2]. Plasma is also widely used in surface treatment [3] and indus-

trial pollution control [4]. Plasma technology based ion thrusters provide a much higher

specific impulse alternative to the traditional chemical rockets [5], potentially powering

spacecrafts for deep space travel. Plasma wake-field acceleration [6] is expected to create

highly-efficient compact particle accelerator in the future. The most sought-after appli-

cation of plasma physics is nuclear fusion [7], the holy grail of all forms of energy. The

extreme physical conditions required by nuclear fusion necessarily demands dealing with

matter in form of plasma. Despite great scientific and technological hurdles, mankind has

been pursuing controlled nuclear fusion relentlessly for decades. The enormous amount

of resources put into fusion research greatly advanced the state of plasma physics in the

last decades.

The Sun is the fusion reactor at the center of the Solar System. Fusion energy from

the Sun radiates out both in form of electromagnetic radiations and particle fluxes [1].

The extremely hot particles coming out of the solar atmosphere are in form of plasma and
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are known as solar wind [1]. The solar wind is blown out into the entire Solar System,

forming a giant plasma bubble known as the heliosphere [1]. Near Earth, the dynamics

of plasma is strongly controlled by Earth’s magnetic field. This region of space is known

as Earth’s magnetosphere [1]. Earth’s magnetosphere is partially responsible for blocking

highly energetic harmful cosmic rays [8] from reaching the surface of Earth. Closer to

Earth, the upper Earth atmosphere is ionized by radiation and forms the inner edge of

the magnetosphere. This plasma layer is known as ionosphere [9]. The ionosphere is very

important for telecommunication on Earth as it influences the propagation of electromag-

netic waves [9]. Most man-made satellites travel in the magnetosphere, ionosphere or the

heliosphere. The study of these plasma bodies near Earth and in the Solar System is

a particular branch of physics known as space physics [1]. In addition to better under-

standing space environment, space physics is particularly important for the operation of

satellites and manned flight in space [10]. Many spacecraft have been launched in the last

few decades to provide in situ measurements for space physics research. This thesis is at

the intersection of plasma physics and space physics.

I Modeling plasma dynamics: kinetic equations

A plasma consists of charged particles. The force felt by a charged particle traveling in

the electromagnetic field is the Lorentz force

F = 𝑞 (E+ v ×B) . (1.1)

We adopt SI units throughout this thesis. When the particle velocity is much slower

than the speed of light and the inter-particle distance is much bigger than the thermal de

Broglie wavelength, namely,

𝑣 ≪ 𝑐 ,
ℎ√

2𝜋𝑚𝑇
≪
(︂
𝑉

𝑁

)︂ 1
3

, (1.2)
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the plasma is in the classical limit where relativistic and quantum mechanics effects are

negligible [11]. The plasma bodies studied in space physics are mostly in this classical limit

[11]. A classical plasma can be described by solving simultaneously Newton’s equations of

motion and Maxwell’s equations for the electromagnetic field. A plasma is a collection of

particles interacting with one another through self-consistent electromagnetic interactions,

the density of a plasma ranges from for example 106 particles per cubic meter in solar

wind to 1021 particles per cubic meter in a fusion reactor and higher still within stars

[7]. In principle, the equations of motion are solved for each particle simultaneously while

the Maxwell’s equation takes into account more macroscopic quantities such as charge

and current density. A mathematical way to describe this particle ensemble needs to be

introduced to make the problem more tractable. A complete description of a plasma can

be specified given the coordinate x𝑖(𝑡) and velocity v𝑖(𝑡) of each particle 𝑖 of species 𝛼.

We define a function 𝐹

𝐹𝛼(x,v, 𝑡) =
𝑁𝛼∑︁
𝑖=1

𝛿(x− x𝑖)𝛿(v − v𝑖), (1.3)

where subscript 𝛼 designates particle species. We can thus write down the charge density

and current density in the following forms

𝜌 =
∑︁
𝛼

𝑞𝛼

∫︁
𝐹𝛼(x,v, 𝑡) 𝑑v, (1.4)

𝑗 =
∑︁
𝛼

𝑞𝛼

∫︁
v𝐹𝛼(x,v, 𝑡) 𝑑v. (1.5)
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The electric and magnetic fields due to the plasma particles are given by

∇ · E =

∑︁
𝛼

𝑞𝛼

∫︁
𝐹𝛼(x,v, 𝑡) 𝑑v

𝜖0
, (1.6)

∇ ·B = 0, (1.7)

∇× E = −𝜕B
𝜕𝑡
, (1.8)

∇×B = 𝜇0(
∑︁
𝛼

𝑞𝛼

∫︁
v𝐹𝛼(x,v, 𝑡) 𝑑v + 𝜖0

𝜕E

𝜕𝑡
). (1.9)

From the equation of motion and the conservation of particles, we get an equation that

governs the evolution of 𝐹𝛼(x,v, 𝑡)

𝜕𝐹𝛼(x,v, 𝑡)

𝜕𝑡
+ v · 𝜕𝐹𝛼(x,v, 𝑡)

𝜕x
+

𝑞𝛼
𝑚𝛼

(E+ v ×B) · 𝜕𝐹𝛼(x,v, 𝑡)
𝜕v

= 0. (1.10)

Equation (1.10) is the Klimontovich-Dupree equation [12] of plasma dynamics. However,

it is not particularly useful as 𝐹𝛼(x,v, 𝑡) is composed of Dirac delta functions, which are

distributions in the strict mathematical sense instead of being a classically differentiable

statistical function. The common way to remedy this is to introduce a differentiable

and non-negative phase-space probability function 𝜌𝛼,𝑁(x1, ...,x𝑁 ;v1, ...,v𝑁 , 𝑡) defined as

the density of probability at a time 𝑡 to find particles of species 𝛼 to have coordinates

and velocities of the values x1,x2, ...,x𝑁 ;v1,v2, ...,v𝑁 . 𝜌𝛼,𝑁 is a probability density so its

integral over the entire 6𝑁 -dimensional phase space is 1. The total amount of information

contained in this 6𝑁 -dimensional phase space is much more than what we need to describe

the bulk properties of a plasma and 𝜌𝛼,𝑁 as a function of 6𝑁 + 1 arguments is difficult

to deal with. We need to simplify this problem even more at the expense of losing some

unimportant detailed information. We introduce a one particle density function 𝑓𝛼,1 given

by

𝑓𝛼,1(x,v, 𝑡) = ⟨𝐹𝛼(x,v, 𝑡)⟩ (1.11)

= 𝑁𝛼

∫︁
𝜌𝛼,𝑁(x1 = x,x2, ...,x𝑁 ;v1 = v,v2, ...,v𝑁 , 𝑡) 𝑑x2...𝑑x𝑁𝑑v2...𝑑v𝑁 .
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𝑓𝛼,1(x,v, 𝑡) represents the expectation value of finding any of the 𝑁 particles of species 𝛼

at coordinate x and velocity v. We have assumed that the probability density function

is symmetric with respect to permuting the particles. In a similar way, we can define the

general 𝑠-particle density function 𝑓𝛼,𝑠 as the follow

𝑓𝛼,𝑠(x1,v1, ...,x𝑠,v𝑠, 𝑡) =
𝑁 !

(𝑁 − 𝑠)!

∫︁ 𝑁∏︁
𝑖=𝑠+1

𝑑x𝑖𝑑v𝑖 𝜌𝛼,𝑁 . (1.12)

By averaging the Klimontovich-Dupree equation using the probability density function,

one can transform [12] the original equation (1.10) into an infinite chain of statistical

equations involving the 𝑠-particle density functions 𝑓𝛼,𝑠 defined above, with 𝑓𝛼,𝑠 being

involved in the equation of 𝑓𝛼,𝑠−1. It is very difficult to solve this infinite chain of equations.

However, it is possible to take advantage of the statistical property of the system to

terminate the chain at the first few orders and give an approximation for the higher

order terms. In a plasma, the small parameter is often chosen as 𝑔 = 1/𝑛𝜆3De ≪ 1, the

inverse of the number of particles in the Debye sphere. Debye length 𝜆De =
√︀
𝜖0𝑇/𝑛𝑞2

is the characteristic electric field shielding distance in a plasma. A plasma satisfying this

property is said to be weakly-coupled or ideal. The plasma studied in space physics and

the fusion plasma are typically ideal plasma with 𝑔 < 10−5. It can be proved in this case

that each hierarchy of statistical equation is of order 𝒪(𝑔) smaller than the previous one

[12, 13]. To the lowest order, the kinetic equation for the plasma can be written as

(︂
𝜕

𝜕𝑡
+ v · ∇x +

𝑞𝛼
𝑚𝛼

(E+ v ×B) · ∇v

)︂
𝑓𝛼(x,v, 𝑡) = 0, (1.13)

where we have used interchangeably 𝑓𝛼(x,v, 𝑡) and 𝑓𝛼,1(x,v, 𝑡) to simplify the notation.

Equation (1.13) is called the Vlasov equation or the collisionless Boltzmann equation.

Coupled with Maxwell’s equations, it describes the behavior of the plasma on a time scale

shorter than the typical collision time scale: 𝜏collective ≪ 𝜏collision. The Vlasov equation cou-

pled with Maxwell’s equations give a complete description of a plasma in the collisionless
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regime:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︂
𝜕

𝜕𝑡
+ v · ∇x +

𝑞𝛼
𝑚𝛼

(E+ v ×B) · ∇v

)︂
𝑓𝛼(x,v, 𝑡) = 0,

∇ · E =

∑︁
𝛼

𝑞𝛼

∫︁
𝑓𝛼(x,v, 𝑡) 𝑑v

𝜖0
,

∇ ·B = 0,

∇× E = −𝜕B
𝜕𝑡
,

∇×B = 𝜇0(
∑︁
𝛼

𝑞𝛼

∫︁
v𝑓𝛼(x,v, 𝑡) 𝑑v + 𝜖0

𝜕E

𝜕𝑡
).

(1.14)

This approximation corresponds to the mean field approach in statistical mechanics [13],

modeling plasma particle dynamics with self-consistent long-range electromagnetic inter-

actions. It is well-adapted for the dilute plasma studied in space physics. The mean free

path for both the electrons and the ions are bigger than the Earth radius in the magne-

tosphere [1]. We are in a highly collisionless regime for the kind of plasma phenomenon

we are going to introduce in the next section. The collisional corrections appearing in the

higher order kinetic equations are often lumped into a single collision operator 𝐶(𝑓𝛼, 𝑓𝛼)

to be placed at the right hand side of Equation (1.13) instead of 0. This hierarchy of

kinetic equations is called the BBGKY hierarchy [13], named after Bogolyubov, Born,

Green, Kirkwood and Yvon. For the purpose of this thesis, we are going to focus on the

collisionless mean field model.

The equation system (1.14) can be further simplified for an electrostatic plasma. This

approximation gives rise to an equation system called the Vlasov-Poisson system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︂
𝜕

𝜕𝑡
+ v · ∇x −

𝑞𝛼
𝑚𝛼

∇𝜑 · ∇v

)︂
𝑓𝛼(x,v, 𝑡) = 0,

∇2𝜑+

∑︁
𝛼

𝑞𝛼

∫︁
𝑓𝛼(x,v, 𝑡) 𝑑v

𝜖0
= 0.

(1.15)

This is the most simplified kinetic model of a plasma, valid when the interaction between

plasma particles is mainly the Coulomb interaction with the electrostatic potential 𝜑.
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This collisionless model of the plasma offers very rich physics and is of fundamental

importance not only in plasma physics but also in other fields such as galactic dynamics.

The mathematical similarity of the gravitational field to the electrostatic field leads to an

almost identical set of equations for the evolution of mass distribution in galaxies under

gravitational interaction [14]. Understanding the quantitative behavior of the Vlasov-

Poisson system turns out to be challenging. Arguable the most important feature of such

a system is Landau damping, the physical mechanism first predicted by physicist Lev

Landau [15, 16] through which a wave is damped in such a collisionless system. It was

later confirmed in the experiment by Malmberg and Wharton [17]. Entropy is conserved

in a Vlasov plasma. The information about the Landau-damped wave does not go away

and is stored at a much finer scale in the particle distribution function. The damped wave

can be “resurrected” using a well-calculated second excitation. This phenomenon is called

the plasma echo [18]. The study of Vlasov-Poisson system is also a frontier research topic

in Mathematics and Mathematical Physics. The Fields Medal-winning proof of Landau

damping in the fully nonlinear perturbative regime given by Villani and Mouhot [19] is a

recent breakthrough in this field.

The more macroscopic properties of the plasma can be obtained by taking the moments

of the kinetic equations and perform a fluid closure [20]. For example, the macroscopic

continuity equation is obtained by taking the zeroth order moment and the macroscopic

momentum conservation equation is obtained taking the first order moment. The quan-

tities

𝑛𝛼 =

∫︁
𝑓𝛼 𝑑

3v, (1.16)

V =
1

𝑛𝛼

∫︁
v𝑓𝛼 𝑑

3v, (1.17)

are fluid density and flow velocity.
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II Computer simulation tools for kinetic plasma

The understanding of plasma physics has been greatly advanced by the use of modern

computers. The exponentially growing computing power offers an unprecedented way

to study plasma dynamics via computer simulation. This is particularly important for

plasma kinetics as the analytic theory is often intractable. This thesis work relies heavily

on computing tools to study phenomena in kinetic plasma. In this section, we are going

to survey two major computer simulation schemes for a kinetic plasma.

II.1 Vlasov code

We have established in the last section that the collisionless behavior of a plasma is

governed by the Vlasov equation. A Vlasov code solves the Vlasov equation by direct

numerical integration and treats the phase space as a continuum. The Vlasov equation

is a continuity equation. It can be solved by the method of characteristics. The Vlasov

equation states that the distribution function 𝑓 is constant on the characteristics which

are the particle orbits

𝑑x

𝑑𝑡
= v ,

𝑑v

𝑑𝑡
=

𝑞

𝑚
(E+ v ×B) . (1.18)

The constancy of the distribution function on the orbits implies for a time step Δ𝑡 that:

𝑓(x+ vΔ𝑡,v +
𝑞

𝑚
(E+ v ×B)Δ𝑡, 𝑡+Δ𝑡) = 𝑓(x,v, 𝑡). (1.19)

From this point, it may seem obvious that the Vlasov system can be solved numerically by

following a phase-space fluid parcel and solving self-consistently for the fields. However,

the entropy-conserving nature of the Vlasov equation dictates that large scale perturba-

tions will result in finer and finer filamentation of the distribution function in phase-space,

eventually causing strong phase-space gradients and numerical instabilities. To overcome

this difficulty, a semi-Lagrangian scheme [21] is used where the time-advanced distribution

function 𝑓 is projected onto the neighboring Euler-grid points in both space and velocity.
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Time splitting is also used to split the Vlasov equation into two advection equations to

make the numerical scheme more efficient. In the one-dimensional electrostatic case, this

time splitting scheme can be written as [21]

𝑓 *(𝑥, 𝑣) = 𝑓𝑛(𝑥− 𝑣Δ𝑡/2, 𝑣), (1.20)

𝑓 **(𝑥, 𝑣) = 𝑓 *(𝑥, 𝑣 + 𝑞𝐸(𝑥)Δ𝑡/𝑚), (1.21)

𝑓𝑛+1(𝑥, 𝑣) = 𝑓 **(𝑥− 𝑣Δ𝑡/2, 𝑣). (1.22)

This time splitting method is a special case of Strang splitting [22]. Fourier filtering or

artificial dissipation is often applied to the distribution function 𝑓 to remove the phase-

space filamentation wrinkles from the simulation [23]. This procedure, necessary for the

numerical stability of the simulation, introduces numerical dissipation and needs to be

implemented carefully not to sacrifice the nonlinear physics.

II.2 Particle-In-Cell (PIC) code

Another popular numerical scheme to simulate kinetic plasma is the Particle-In-Cell (PIC)

code [24]. Particle-In-Cell simulation solves the equivalent Klimontovich-Dupree problem

with random macroparticles. Typically in a PIC simulation, we solve the first-principles

equation of motion for a large number of computing particles indexed from 1 to 𝑁

𝑑x𝑖
𝑑𝑡

= v𝑖 ,
𝑑v𝑖
𝑑𝑡

=
𝑞

𝑚
(E(x𝑖) + v𝑖 ×B(x𝑖)) , 1 ≤ 𝑖 ≤ 𝑁. (1.23)

However, it is difficult to perform the calculations of the position and the velocity si-

multaneously to the required accuracy as they are interdependent. The most common

numerical method to integrate such a system in the electrostatic regime is the leap-frog

algorithm [24], where the position and the velocity are integrated separately with half a

time-step offset. The schematic of such an algorithm is shown in Figure 1-1. The advan-

tage of such an algorithm is that each integration is done centered in time. A leapfrog

scheme is of second order accuracy.
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Figure 1-1: Schematic of the leapfrog algorithm.

Figure 1-2: Left: Computing particles with spatial ”cells” in PIC.
Right: the processes involved in advancing one time step in PIC.

Electric and magnetic fields need to be solved self-consistently while advancing the

particles. In a PIC simulation, the fields are solved on a spatial grid. The spatial grid

forms the “cells” in which plasma particles reside. The charge and current carried by the

plasma particles are interpolated onto the neighboring grid points for solving the fields.

These processes and the associated flow chart are shown in Figure 1-2. Because their

influence on one another is conveyed by the grid, the computing particles used in PIC

simulation are effectively of finite-size. Instead of being a point charge, they are more

like grid-spacing-sized charged rigid clouds that can move through each other. Hence the

particle weighting onto the grid points needs to take into account the finite particle size. A

very common particle weighting used in PIC is the cloud-in-cell model. In a cloud-in-cell

scheme, if a macroparticle 𝑖 has position 𝑥𝑖, charge 𝑞𝑐 and its nearest grid points are 𝑋𝑗
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and 𝑋𝑗+1, the grid assignment for a cloud-in-cell model in 1-D can be written as

𝑞𝑗 = 𝑞𝑐
𝑋𝑗+1 − 𝑥𝑖

Δ𝑥
, (1.24)

𝑞𝑗+1 = 𝑞𝑐
𝑥𝑖 −𝑋𝑗

Δ𝑥
. (1.25)

This weighting produces a triangular particle shape of width 2Δ𝑥. The fields are solved on

the grid. In the electrostatic case, Poisson’s equation can be solved using a standard finite

difference scheme. The force weighting on the particles can then be done in a similar way

as the charge weighting. As the computing particle moves though the grid, it contributes

to density more smoothly than a point charge. This is a crucial point for PIC simulation.

In a weakly-coupled plasma, the electric field of a single particle is electrically screened

by the presence of many other particles, this phenomenon is called Debye shielding. It

can be shown [24] that the finite particle size leads to Debye shielding effect so that we

can simulate a plasma with much fewer particles than the actual number. One computing

particle represents a large number of physical particles and has the same charge-to-mass

ratio as a physical particle. The task becomes immediately more manageable as we have

seen that the typical number of particles per Debye sphere in the plasma we are interested

in is 105 − 108. From a Monte-Carlo viewpoint, the computing particles can be regarded

as Lagrangian markers embedded randomly in the Vlasov phase-space fluid, interacting

through the self-consistent fields. The use of random particles is an efficient way to sample

the Vlasov phase-space fluid. Despite the smoothing effect associated with finite particle

size, there is still statistical noise associated with particles moving from one cell to the

next. If there are 𝑁𝑐 particles per cell on average in a PIC simulation, then the variance in

the particle number count is given by the counting statistics to be 1/
√
𝑁𝑐. Other things

being equal, this noise level can be reduced by using more computing particles. The noise

problem plagued the earliest PIC simulations. Limited by available computing power,

the earliest PIC practitioners had to settle for rather noisy simulations, which made the

quantitative study of some plasma phenomena difficult. This problem has been alleviated

by today’s more powerful modern computers.
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PIC simulation, like other numerical schemes, is susceptible to numerical instabilities.

The grid size Δ𝑥 and the time step Δ𝑡 need to be chosen to ensure numerical stability.

Typically, Δ𝑥 must not exceed several times the Debye length and Δ𝑡 needs to be smaller

than electron plasma period: Δ𝑡 < 𝜔−1
𝑝𝑒 . While simulating electromagnetic plasma, the

time step also needs to satisfy the Courant-Friedrichs-Lewy condition [24]:

Δ𝑡 ≤ Δ𝑥/𝑐, (1.26)

where 𝑐 is the speed of light.

While simulating a kinetic plasma, it is crucial to choose a simulation method that

is the most suitable for the problem. Both the Vlasov and the PIC simulations have

their advantages and drawbacks. It is important to know their boundaries. Choosing and

implementing the right simulation tool is essential to success.

III BGK mode electron holes

In the seminal paper published by Bernstein, Greene and Kruskal [25], the authors de-

scribed a family of exact nonlinear stationary solutions of the Vlasov-Poisson plasma. In

the rest frame of the stationary solution, the particle distribution is a function of the

total particle energy. The authors showed by manipulating the particle distribution on

the orbits trapped in potential energy troughs, that essentially arbitrary exact nonlinear

solutions can be constructed. These nonlinear solutions are commonly called BGK modes.

There are many different kinds of BGK modes, ranging from solitary solutions to periodic

solutions. The most commonly studied ones are electron holes, ion holes and double layers

[26]. In this thesis, we are going to focus on electron holes. An electron hole is a localized

density deficit of electrons. The positive charge gives rise to a solitary positive potential

pulse that in turn traps electrons. This self-consistent trapping is made possible by the

reduced phase-space density on trapped electron orbits. An electron hole can be regarded

as an electron phase-space vortex. It is coherent and not intermittent by nature.

It is commonly thought that in nature, electron holes are generated by kinetic plasma
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instabilities, which are also called micro-instabilities. Essentially, any plasma distribution

satisfying the Penrose instability criterion is unstable to electrostatic perturbations. Pen-

rose instability criterion [12] states that for a combined plasma distribution 𝐹0 = 𝑓𝑒+
𝑚𝑒

𝑚𝑖
𝑓𝑖,

if 𝐹0 has one local minimum at 𝑢0, then the plasma is unstable to electrostatic perturba-

tions if and only if

P.V.

∫︁ +∞

−∞

𝐹 (𝑢0)− 𝐹 (𝑢)

(𝑢0 − 𝑢)2
𝑑𝑢 < 0, (1.27)

where we took the Cauchy principal value of the integral. Two stream and bump-on-tail

instabilities can be considered as special cases of Penrose-unstable distribution functions.

During the nonlinear saturation stage of the instability in 1-D, electron holes form as

a result of strong particle trapping. Such an example is shown in Figure 1-3 for a two

stream instability simulation using a one-dimensional PIC code. In addition to the kinetic

instabilities, electron holes can also form at the nonlinear stage of Landau damping [27]

and by chirped autoresonance [28] in a plasma.

Figure 1-3: (a) Counter propagating electron beams unstable to two stream instability
(b) Formation of phase space vortices due to particle trapping (c) A single electron hole in
phase space after coalescence (d) Charge density associated with the electron hole. Plot
adapted from reference [29], courtesy of I. H. Hutchinson

Electron holes are not only an object of theoretical interest. The study of these

nonlinear structures in plasma gained increasing interest after space probe measurements
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confirmed their wide-spread existence in the Earth’s auroral zone [30], magnetosphere [31]

and in the solar wind [32]. They are implicated in magnetic reconnection [33], electron

acceleration [34], collisionless shocks [35] and other important plasma dynamics in space.

Electron holes are also detected in the laboratory plasma during magnetic reconnection

[36] and beam injection [37]. We are going to discuss more in Subsection III.3 about

observational evidence.

In the next subsection, we are going to show how an electron hole solution is con-

structed in a one-dimensional Vlasov-Poisson plasma.

III.1 Integral equation approach

To construct an electron hole solution, we need to start from the basic Vlasov equation.

Suppose that a stationary solution is moving with a velocity 𝑣ℎ in the background electron

rest frame. In the rest frame of the moving solution, the electron orbits are constant energy

contours with energy ℰ defined as ℰ = 1
2
𝑚𝑒𝑣

2 − 𝑒𝜑(𝑥). An orbit is said to be trapped if

ℰ < 0. The Vlasov equation says that distribution function is constant on particle orbits;

𝑓 is thus a function of ℰ . For the purpose of introduction, we take the ions to be a fixed

neutralizing background of density 𝑛𝑖∞, Poisson’s equation then gives

𝑑2𝜑

𝑑𝑥2
= 𝑒(𝑛𝑒 − 𝑛𝑖∞)/𝜖0. (1.28)

If we specify the shape of stationary potential profile 𝜑(𝑥), then the electron density

profile 𝑛𝑒(𝜑) can be obtained by taking its second derivative 𝑑2𝜑/𝑑𝑥2. Taking 𝜑(𝑥) to be

a solitary and half-monotonic (meaning monotonic from its center to infinity) function,

the passing electron orbits are determined everywhere. If we further suppose that the

electron distribution is known at infinity as 𝑓∞,𝑒, then the contribution from passing

electrons 𝑛𝑝(𝜑) to the total electron density can be expressed as

𝑛𝑝(𝜑) =

∫︁ +∞

−∞

𝑣√︀
𝑣2 + 2𝑒𝜑/𝑚𝑒

𝑓∞,𝑒(𝑣 + 𝑣ℎ) 𝑑𝑣, (1.29)

36



where we have used the constancy of distribution function on a particle orbit. We need

the trapped electron distribution to match

𝑛𝑡(𝜑) =

∫︁ +
√

2𝑒𝜑/𝑚𝑒

−
√

2𝑒𝜑/𝑚𝑒

𝑓𝑡(𝑣) 𝑑𝑣 = 2

∫︁ 0

−𝑒𝜑
𝑓(ℰ) 𝑑ℰ√︀

2𝑚𝑒(ℰ + 𝑒𝜑)
, (1.30)

where ±
√︀

2𝑒𝜑/𝑚𝑒 are the velocities of marginally trapped electrons. Knowing 𝑛𝑡(𝜑) =

𝑛𝑒(𝜑)−𝑛𝑝(𝜑), this integral can be inverted using the Abel transform [38] to find 𝑓(ℰ) for

ℰ < 0. This final step gives the particle distribution in the trapped region:

𝑓(ℰ) =
∫︁ −ℰ

0

1√
2𝜋

𝑑𝑛𝑡
𝑑𝜑

𝑑𝜑√︀
(−ℰ − 𝑒𝜑)/𝑚𝑒

, (1.31)

A schematic of an electron hole is shown in Figure 1-4. A given potential 𝜑(𝑥) and the

background distribution completely determines the values of 𝑓 on the trapped orbits,

which are shaded in the plot.

0

ψ

φ

x

v Trapped

Figure 1-4: Top: electrostatic potential 𝜑(𝑥) of an electron hole. Bottom: electron phase
space orbits, the shaded orbits are trapped.
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III.2 Differential equation approach

The alternative way to the above method is the differential equation approach. It is also

called the Sagdeev potential [39] approach. Starting with Poisson’s equation for a charge

density 𝜌(𝜑), we multiply both sides of Poisson’s equation by 𝑑𝜑/𝑑𝑥:

−𝑑𝜑
𝑑𝑥

𝑑2𝜑

𝑑𝑥2
=
𝑑𝜑

𝑑𝑥

𝜌

𝜖0
. (1.32)

Notice that the left hand side of the equation can be readily written as a total derivative

with respect to 𝑥. We integrate the equation to give

−1

2
𝜖0

(︂
𝑑𝜑

𝑑𝑥

)︂2

=

∫︁ 𝜑

0

𝜌(𝜑) 𝑑𝜑. (1.33)

𝜑 is a solitary solution, which means both 𝜑 and its derivatives vanish at infinity: 𝑑𝜑/𝑑𝑥 =

0 at 𝜑 = 0. We have used this relation in the integration to get Equation 1.33. The right

hand side of Equation 1.33 is called a Sagdeev or classical potential and is often denoted

by 𝑉 (𝜑)

𝑉 (𝜑) =

∫︁ 𝜑

0

𝜌(𝜑) 𝑑𝜑. (1.34)

The potential 𝜑 can be thought of as the position of a particle moving in the potential

𝑉 (𝜑), with 𝑥 playing the role of time. For a proper solitary solution to exist, 𝑉 (𝜑) = 0 has

two solutions, one at 𝜑 = 0 and the other at 𝜑 = 𝜓, where 𝜓 is the maximum of hole poten-

tial 𝜑. The differential equation approach consists of specifying the particle distribution

𝑓 and thus 𝜌(𝜑). 𝜌(𝜑) is then integrated to get 𝑉 (𝜑). 𝑉 (𝜑) can be used to calculate the

potential 𝜑(𝑥) recognizing that Equation (1.33) gives 𝑑𝜑/𝑑𝑥 = ±
√︀
−2𝑉 (𝜑)/𝜖0. Therefore

we have

𝑥(𝜑) =

∫︁ 𝜓

𝜑

𝑑𝜑√︁
−2𝑉 (𝜑)/𝜖0

. (1.35)

This formula is valid for positive 𝑥, 𝜑(𝑥) for negative 𝑥 is obtained by mirror symmetry

𝜑(−𝑥) = 𝜑(𝑥).

Thus we have obtained 𝜑(𝑥). However, the separatrix imposed by 𝜑may not align with

38



that of 𝑓 we start with. A self-consistency equation needs to be solved that relates different

model parameters. This consistency equation can be solved numerically by iterations or

algebraically in some simple cases. Schamel [40] introduced a parametric hole model that

is particularly influential, it consists of considering a Maxwell-Boltzmann distribution for

the trapped species

𝑓𝑒(𝑥, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓∞,e(0) exp

[︃
−
𝑚𝑒(𝜎

√︀
2ℰ/𝑚𝑒 + 𝑣ℎ)

2

2𝑇𝑒

]︃
if ℰ > 0

𝑓∞,e(0) exp(−
𝑣2ℎ

2𝑣2th,e
) exp(−𝛽ℰ

𝑇𝑒
) if ℰ < 0

. (1.36)

Here 𝜎 is the sign of velocity 𝑣, 𝑣ℎ is the electron hole velocity in the rest frame of

background electrons, 𝛽 is the particle trapping parameter and 𝑣th,e =
√︀
𝑇𝑒/𝑚𝑒. A

negative 𝛽 gives a “hole” in the trapped region of electron phase space. In Figure 1-5,

Figure 1-5: (a) Electron velocity distribution at the hole center (b) Electron phase-space
density assuming a Maxwellian background plasma (c) Sagdeev potential 𝑉 as a function
of 𝜓 − 𝜑 (d) Electrostatic potential profile of the solitary electron hole

we give an example solution of a Maxwell-Boltzmann or Schamel electron hole solved

by iteration with the differential approach. The method first specifies the distribution

function on axis (panel a), then 𝜌(𝜑) is known by constancy of 𝑓 on constant energy

contours, the Sagdeev potential is computed to determine 𝜓 (panel c). These steps are

iterated until a self-consistent solution is found. Finally, the electrostatic potential 𝜑

(panel d) can be determined from Equation (1.35) by computing the inverse of 𝑥(𝜑).
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The condition for the existence of a solitary solution requires the Sagdeev potential 𝑉

to be zero at 𝜑 = 𝜓:

𝑉 (𝜓; 𝑣ℎ, 𝛽) = 0. (1.37)

This condition relates the wave velocity to its amplitude and is often referred to as the

nonlinear dispersion relation [40]. Schamel [40] derived an algebraic form of the nonlinear

dispersion relation for shallow holes 𝜓 ≪ 𝑇𝑒/𝑒. It was proved using Schamel’s model

that there is a maximum velocity for a shallow Maxwell-Boltzmann electron hole to travel

in the bulk electrons, beyond which the solitary solution no longer exists: 𝑣ℎ < 1.3𝑣th,e.

Nevertheless, electron holes are sometimes observed [41] to travel faster than this threshold

velocity, implying deviation from the Schamel’s model. Another useful result is obtained

making a further assumption that the shallow electron hole is slowly moving 𝑣ℎ ≪ 𝑣th,e,

a simple analytic form of the potential 𝜑 was obtained in this case [40]

𝜑 = 𝜓 sech4(𝑥/4𝜆𝐷𝑒). (1.38)

This potential profile is sometimes referred to as Schamel’s electron hole potential [40].

III.3 Observational features of electron holes

Electron holes have been widely observed in space and laboratory plasma. Early space

plasma probes sent back electric field measurements showing random noise in the electric

field component parallel to the magnetic field direction with a wide range of frequencies

[42]. Modern satellites with highly time-resolved (0.1ms resolution or better [29]) electric

field measurements enabled scientists to look at the fine details of this “noise”. Strikingly,

this “noise” is mainly composed of a series of bipolar electric field pulses. An example of

this measurement is shown in Figure 1-6. Electron holes have been then widely accepted as

the explanation for these observations. On a satellite the electric field signal is measured

by Langmuir probes. Modern satellites often have three pairs of Langmuir probes, one in

each direction [43]. The schematic of a THEMIS satellite and the positions of its electric

field sensors is shown in Figure 1-7. The time delay in the measurement on different probes
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is used to deduce the velocity of such a structure. Sometimes, the measurement between

two adjacent satellites can also be used [44]. Measurements from space often show that

these electron holes travel at a velocity on the order of the local electron thermal velocity

𝑣th,e =
√︀
𝑇𝑒/𝑚𝑒 and extend several or several tens of Debye lengths [45]. In the more

terrestrial units, they travel at the order of 1000 km/second and their spatial extent is on

the order of 100m to 1000m. Electron holes have been reported to be present in a wide

range of space plasma regions. Different satellite missions have reported their existence

all the way from Earth’s auroral zone [30] to free solar wind [32]. These observations are

often made when there is strong plasma dynamics nearby such as magnetic reconnection

[46, 47] and collisionless shocks [32]. Satellite missions that have reported the observations

of electron holes include: FAST [30], WIND [48], Cluster [49], THEMIS/ARTEMIS [50],

GEOTAIL [47], Van Allen Probes [51] and MMS [34].

Figure 1-6: Parallel electric field measurement showing electron holes within magnetic re-
connection diffusion region at magnetopause, measured by Cluster satellite. Plot adapted
from reference [49].

In laboratory, electron holes have been observed during magnetic reconnection exper-

iments on Versatile Toroidal Experiment (VTF) [36]. An array of small 60 µm diameter

Langmuir probes are used and phase shift on a pair of probes separated by 2mm is used

to deduce the electron hole velocity. These electron holes generated by magnetic recon-
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Figure 1-7: Schematic of a THEMIS mission satellite with six electric field sensors.
Adapted from reference [43]

nection travel at nearly 4000 km/s (2.21𝑣th,e) and have a parallel dimension of 1.5mm

(60𝜆𝐷𝑒). More recently, Lefebvre et al. [37] reported observation of electron holes on

the LAPD basic plasma facility excited by electron beam injection. Langmuir probes as

small as 10 µm in diameter are used to make the observation. Measuring electron holes in

laboratory plasma requires sub-Debye-length Langmuir probes, which often need special

development.

III.4 Electron holes in higher dimensions

Up to now, we have mainly talked about the theory of electron holes in one spatial

dimension. This section reviews some existing literature results on electron holes in higher

dimensions.

It can be proved that electron holes cannot exist in unmagnetized isotropic plasma [52].
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In this case, there is not enough phase space volume for trapped particles to provide charge

for the formation of an electron hole as the phase space volume of trapped electrons scales

like 𝜓𝑁𝑑/2 with 𝑁𝑑 the dimensionality [52]. Having a strong magnetic field can bypass

this difficulty by reducing the effective dimensionality. It has been confirmed by various

PIC simulations that the magnetic field needs to be higher than a threshold value for

electron holes to stably exist in three dimensions. The most frequently cited stability

criterion is due to Muschietti et al. [53], which states that the stability threshold is

Ω𝑒 > 𝜔𝑏. Ω𝑒 =
√︀
𝑒𝐵/𝑚𝑒 is the electron cyclotron frequency and 𝜔𝑏 =

√︀
𝑒𝜓/𝑚𝑒/𝐿‖ is the

bounce frequency for trapped electrons with parallel hole length 𝐿‖. If the magnetic field

is not strong enough, an electron holes is observed to “kink” in the transverse direction

and its amplitude shrinks until the hole is localized transversely or dissipates. The exact

threshold and the instability mechanism remain not completely solved and are subjects

of ongoing research [54, 55]. Electron holes are therefore intrinsically lower dimensional

objects moving along magnetic field lines. Simplified 1D models are widely used to study

electron holes and often produce reasonable agreement with measurements from space

[45]. Even in strongly magnetized plasma, electron holes are observed in simulations to

resonantly interact with whistler waves and may break up as a result [56]. The three

dimensional structure of electron holes in space gives rise to a mono-polar [44] electric

field signal perpendicular to the magnetic field direction and sometimes magnetic field

perturbations are also observed [50] to be associated with electron holes. Electron holes

having a magnetic field signature are often referred to as electromagnetic electron holes

as opposed to electrostatic electron holes.

III.5 Electron holes in plasma wake of an object

Electron holes can also be found in kinetic simulations of the plasma wake behind an

unmagnetized object in cross-field flow of strongly magnetized plasma [57]. When a

plasma flows through an object, the ions fill in the void behind the object more slowly

than the electrons, forming an electrostatic potential structure that repels electrons and

attracts ions. This particular electrostatic energy landscape makes some electrons, having

43



barely enough energy to overcome the repelling force or barely reflected by it, stay in the

central wake for the longest time. The drifting orbit effect forms a “dimple” in the

electron distribution function in the vicinity of these electrons [58]. The dimples get

more pronounced further away the orbits drift from the object. Eventually, the dimpled

distribution is Penrose unstable and electron holes form from it. A snapshot of the

simulation in reference [57] is shown in Figure 1-8. The bottom panel shows the formation

of electron holes along the S-shaped “dimple” in electron phase space. Most of the electron

holes are observed to move out very fast while one electron hole at central wake remains

almost stationary and grows. In this plot, the central electron hole has grown large enough

to significantly perturb the ion density (see the top panel).

Figure 1-8: Kinetic simulation of plasma wake. Top: ion phase space. Bottom: electron
phase space showing the formation of holes. The electron phase space density contours
are the difference between the PIC simulation 𝑓𝑒 and a Maxwellian distribution for better
visibility of holes. Plot adapted from reference [29].

The simulation prediction that kinetic instability in plasma wake behind an unmag-

netized object generates electron holes is supported by actual spacecraft data. ARTEMIS

mission is a NASA mission of two satellites orbiting the moon. A statistical study of the

solitary electrostatic waves encounters by these satellites shows a higher concentration of

electron holes in the lunar wake compared to free solar wind. A plot illustration is shown

in Figure 1-9. The data show a significantly higher concentration of electron hole events

in the lunar plasma wake. The dwell time of satellites is quite uniform around the moon
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and the space is uniformly sampled. The results are presented in the Geocentric Elliptic

Coordinate system centered around the moon.

Figure 1-9: Event density of electron hole encounters around the moon, colors show the
number of events. The contours are iso-density contours for protons showing the shape
of lunar wake. Courtesy of David Malaspina.

IV Other nonlinear solitary wave phenomena in plasma

In this section, we are going to introduce other nonlinear solitary wave phenomena in

plasma, with a focus on ion-acoustic solitons. In linear wave theory, the higher order

terms in wave amplitude are neglected in linearization. However, when the wave ampli-

tude becomes significant, the linear approach breaks down and nonlinear effects must be

taken into account. Nonlinearity plays an important role in plasma physics. The BGK

mode electron holes we have presented before in this chapter have strong trapped-particle
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nonlinearity. Other nonlinearity such as the convective nonlinearity is responsible for the

existence of fluid solitons and shock fronts in plasma [59]. Similar nonlinear waves are

also actively studied in hydrodynamics for surface water waves [60] and in optics for light

pulses traveling in optical fibers [61]. Plasma is inherently a nonlinear medium, which

makes the study of nonlinear phenomena in plasma both important and fruitful.

IV.1 Ion-acoustic soliton and the Korteweg-de Vries equation

Ion-acoustic solitons are solitary pulses of ion perturbations traveling at a velocity slightly

higher than the cold ion sound speed 𝑐𝑠 =
√︀
𝑇𝑒/𝑚𝑖. They bear some similarities to

electron holes. As a localized enhancement of ion density, an ion-acoustic soliton carries

positive charge and is thus a positive potential pulse. Bipolar electric fields of the same

polarity as an electron hole are associated with an ion-acoustic soliton. Its spatial width is

also on the order of several Debye lengths. However, it is fundamentally different, because

the ion accumulation provides the excess charge in an ion-acoustic soliton and it emerges

from fluid equations rather than kinetic ones. To derive the governing equation of an ion-

acoustic soliton, we start by assuming that ions are cold (𝑇𝑖 ≪ 𝑇𝑒) and nondrifting relative

to the electrons. Furthermore, electron inertia is neglected (𝑚𝑒 → 0) and electrons are

assumed to be isothermal with an equation of state 𝑃𝑒 = 𝑛𝑒𝑇𝑒. Conservation of electron

momentum under these assumptions gives what is often referred to as the Boltzmann

electron approximation for electron density

𝑛𝑒 = 𝑛0 exp (𝑒𝜑/𝑇𝑒) , (1.39)

where 𝑛0 is the background electron density. For the ions, we have conservation of density

and momentum equations

𝜕𝑛𝑖
𝜕𝑡

+
𝜕(𝑛𝑖𝑣𝑖)

𝜕𝑥
= 0, (1.40)

𝜕𝑣𝑖
𝜕𝑡

+ 𝑣𝑖
𝜕𝑣𝑖
𝜕𝑥

= − 𝑒

𝑚𝑖

𝜕𝜑

𝜕𝑥
. (1.41)
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To simplify notation, we nondimensionalize the equations with the following normaliza-

tion: 𝑛𝑖/𝑛0 = 𝑛, 𝑣𝑖/𝑐𝑠 = 𝑢, 𝑥/𝜆𝐷𝑒 = 𝜂, 𝜔𝑝𝑖𝑡 = 𝜏 , 𝑒𝜑/𝑇𝑒 = Φ. Equations (1.40) (1.41)

together with Poisson’s equation can be written in the dimensionless form

𝜕𝑛

𝜕𝜏
+
𝜕(𝑛𝑢)

𝜕𝜂
= 0, (1.42)

𝜕𝑢

𝜕𝜏
+ 𝑢

𝜕𝑢

𝜕𝜂
+
𝜕Φ

𝜕𝜂
= 0, (1.43)

𝜕2Φ

𝜕2𝜂
= exp(Φ)− 𝑛. (1.44)

We first look for a solitary stationary solution that travels with a Mach number 𝑀 . A

solitary solution implies the vanishing of all perturbations at the boundary, thus we have

the boundary conditions: Φ → 0, 𝑢 → 0, 𝑛 → 1 as |𝜂 − 𝑀𝜏 | → ∞. We integrate

Equations (1.42), (1.43) with the boundary conditions and use the calculated density 𝑛

in Equation (1.44). Multiplying Equation (1.44) by Φ′ = 𝜕Φ/𝜕𝜂 and integrating with the

boundary conditions, we have

1

2
(Φ′)2 =

[︀
exp(Φ) +𝑀(𝑀2 − 2Φ)1/2 − (𝑀2 + 1)

]︀
. (1.45)

The right hand side of this equation is minus the Sagdeev potential 𝑉 (Φ) we introduced

while constructing an electron hole solution using the differential approach. We look for

a solution that travels slightly faster than 𝑐𝑠 with a small amplitude such that Φ ≪ 1

and 𝛿𝑀 = 𝑀 − 1 ≪ 1. Expand Equation (1.45) in Φ and 𝛿𝑀 and integrate it with the

solitary boundary conditions; we get

Φ = 3𝛿𝑀 sech2

[︂
(
1

2
𝛿𝑀)1/2(𝜂 −𝑀𝜏)

]︂
. (1.46)

This is the stationary ion-acoustic soliton solution in small-amplitude limit. It gives the

relation between the soliton amplitude and its velocity: 𝑀 = 1+𝜓/3. Larger ion-acoustic

solitons travel faster. The width of a soliton is of order (𝛿𝑀)−1/2, therefore a faster soliton

is narrower. There is one-to-one relationship between amplitude, width and velocity.

47



Furthermore, it also gives the scaling of 𝜂 and 𝜏 . We introduce 𝜖 as the scale of 𝛿𝑀

and a new coordinate 𝜉 = 𝜂 − 𝜏 . This is equivalent to changing the reference frame to

a moving frame with velocity 𝑐𝑠. The argument in Equation (1.46) can be expressed as

(1/
√
2)
[︀
𝛿𝑀1/2𝜉 − 𝛿𝑀3/2𝜏

]︀
. Therefore, the partial derivatives scale like 𝜕/𝜕𝜉 ∼ 𝜖1/2 and

𝜕/𝜕𝜏 ∼ 𝜖3/2. We can rewrite the equations with the new variables

𝜕𝑛

𝜕𝜏
+
𝜕(𝑛(𝑢− 1))

𝜕𝜉
= 0, (1.47)

𝜕𝑢

𝜕𝜏
+ (𝑢− 1)

𝜕𝑢

𝜕𝜉
+
𝜕Φ

𝜕𝜉
= 0, (1.48)

𝜕2Φ

𝜕2𝜉
= exp(Φ)− 𝑛. (1.49)

Now we expand the equations near a stationary solution of small amplitude traveling near

𝑐𝑠. We introduce the following expansions

𝑛 = 1 + 𝜖𝑛(1) + 𝜖2𝑛(2) + ... , (1.50)

Φ = 𝜖Φ(1) + 𝜖2Φ(2) + ... , (1.51)

𝑢 = 𝜖𝑢(1) + 𝜖2𝑢(2) + ... . (1.52)

The lowest order equations with the solitary solution boundary conditions give 𝑛(1) =

Φ(1) = 𝑢(1). To next order in 𝜖, the equations can be combined into one nonlinear partial

differential equation only involving Φ(1)

𝜕Φ(1)

𝜕𝜏
+ Φ(1)𝜕Φ

(1)

𝜕𝜉
+

1

2

𝜕3Φ(1)

𝜕𝜉3
= 0. (1.53)

This is the Korteweg-de Vries (KdV) equation, which was first derived by Korteweg and

de Vries [62] studying long surface waves in water in a channel of constant depth. It

governs a wide range of nonlinear phenomena in physics. The second term Φ(1)𝜕Φ(1)/𝜕𝜉

in Equation (1.53) is the nonlinear convective term responsible for wave steepening, the

last term 1
2
𝜕3Φ(1)/𝜕𝜉3 is the dispersive term responsible for wave dispersion. A solitary

solution forms and propagates without changing its shape at the balance of these two
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different effects.

The KdV equation has many interesting properties. The key property is that it admits

solitary solutions. More importantly, these solitary solutions have a particle-like behavior.

They emerge from collisions without changing their shape. For this reason, the solitary

solution was given the name “soliton” by Zabusky and Kruskal [63] (Kruskal was also one

of the discoverers of the BGK modes). The initial value problem of the KdV equation can

be solved analytically by inverse scattering transform [64]. It has important implications

in partial differential equation theory, as it is one of the prototypical exactly solvable

nonlinear partial differential equations [65].

IV.2 Schamel’s modified Korteweg-de Vries equation with res-

onant electrons

The derivation of Korteweg-de Vries equation in the context of an ion-acoustic soliton

assumes isothermal electrons, which does not take into account the resonant electrons.

Resonant electrons trapped inside the wave trough can interact strongly with the ion

acoustic soliton and they do not typically obey the isothermal behavior. In fact, obser-

vations [66] indicate that flat-topped or dimpled electron distribution is possible inside

ion-acoustic waves. Schamel [67] suggested a new kind of electron equation of state, tak-

ing into account the possibility of having a plateaued or hole-like distribution with the

Maxwell-Boltzmann distribution for the resonant particles. It suffices to replace the Boltz-

mann electron equation of state by the Schamel’s electron equation of state and follow

the same approach we have introduced. One then arrives at a modified KdV equation

exhibiting a stronger nonlinearity

𝜕Φ

𝜕𝜏
+ (1 + 𝑏Φ

1
2 )
𝜕Φ

𝜕𝜉
+

1

2

𝜕3Φ

𝜕𝜉3
= 0. (1.54)

The constant 𝑏 = (1−𝛽)/𝜋1/2 is related to the particle trapping coefficient 𝛽 of Equation

(1.36). The trapped region of electron distribution function is a plateau if 𝛽 = 0 and a

hole if 𝛽 < 0. Schamel found that the numerical solutions of this modified KdV equation
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satisfy qualitatively the same behavior as that of a KdV equation. The stationary solution

of Schamel’s mKdV equation gives solitons with smaller width and higher speeds than

the KdV solitons because of its stronger nonlinearity.

V Thesis motivation and outline

This thesis aims to understand the time dependent behavior of electron holes on a quanti-

tative level, namely how the velocity of an electron hole evolves over time and the stability

of a stationary electron hole. Another aspect of this thesis is to study the ion coupling

effect of electron holes and understand the boundary between an electron hole and a

soliton.

The past theoretical work in this field has a strong focus on constructing stationary

electron hole solutions and studying their structural properties [67, 52, 68, 45, 69]. Dupree

[70] studied the dynamics of phase-space holes using global momentum conservation. His

main interest was the growth mechanism and he had a focus on ion holes. As we shall see

in Chapter 2 and Chapter 3 of this thesis, his theory is flawed as he introduced approxi-

mations too early in his derivations and therefore cannot account for what is observed in

numerical simulations. Stability theory for BGK electron holes was attempted by Lewis

and Symon [71], Schamel and Jovanović [72, 73]. The past theoretical work on hole sta-

bility often consists of abstruse mathematical operator theory and was never successfully

applied to explain instabilities observed in simulations to the best of our knowledge. Fur-

thermore, some of these analyses have adopted a symmetric potential eigenmode as an

approximation and expand in inverse powers of frequency [72, 73]. However, as we shall

see in this thesis, the observed destabilizing eigenmode is approximately a low-frequency

antisymmetric mode so these assumptions would be inappropriate. The past numerical

simulations in the literature, on the other hand, are relatively empirical and qualitative

[74, 75, 76, 77, 78, 79], making it difficult to compare with existing theory. This knowledge

gap constitutes motivation for this thesis.

The current thesis work starts from first principles and lays out a new theoretical and
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simulation framework to study these nonlinear objects. The results from the theory and

simulations are compared quantitatively to one another. The questions that this thesis

tries to answer are of fundamental importance and have potential applications in space

physics. The chapters in this thesis are organized in the following way:

Chapter 2 introduces the novel approach of hole kinematics and derives the momentum

rate of change that governs the hole velocity. The “jetting” effect is found to be crucial

to the hole velocity. Constant acceleration and growth are considered in this chapter.

This chapter mainly consists of analytic treatment and the phenomena predicted by the

theory will be verified by numerical simulations in the following chapter. The materials

presented in this chapter have been published as a journal paper which can be found in

reference [80].

Chapter 3 introduces a novel Particle-In-Cell simulation code. A hole tracking tech-

nique enables us to follow the trajectory of a fast-moving solitary hole and study quanti-

tatively hole acceleration and coupling to ions. We observe a transient at the initial stage

of hole formation when the hole accelerates to several times the cold-ion sound speed.

Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to

change even when the ion stream speed in the hole frame greatly exceeds the ion thermal

speed, so there are no reflected ions. The behavior that we observe in numerical simu-

lations agrees very well with our analytic results presented in Chapter 2. The materials

presented in this chapter have been published as a journal paper which can be found in

reference [81].

Chapter 4 reports a new type of instability of electron holes interacting with passing

ions. The nonlinear interaction of electron holes and ions is investigated by extending the

theory presented in Chapter 2 to the frequency domain. It is shown that the oscillation in

the velocity of an electron hole parallel to the magnetic field direction becomes unstable

when the hole velocity in the ion frame is slower than a few times the cold ion sound

speed. The instability mechanism can drive significant perturbations in the ion density.

The instability threshold, oscillation frequency and instability growth rate derived from

the theory yield quantitative agreement with the observations from the novel high-fidelity
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hole-tracking Particle-In-Cell (PIC) code we have introduced in Chapter 3. The materials

presented in this chapter have been published as a journal paper which can be found in

reference [82].

Chapter 5 demonstrates that an electron hole can form a stable coupled state with an

ion-acoustic soliton, namely a coupled hole-soliton pair. This combined structure travels

at a velocity slightly higher than the ion sound speed in the ion frame. It exhibits soliton-

like behavior during collisions though different from a classical KdV soliton. A velocity

gap between the coupled state and the free state of an electron hole is explored and the

velocity gap is observed to be set by the hole oscillatory velocity instability introduced in

Chapter 4. Transition between these two states is shown to be possible in both directions

by going through an unstable phase. Finally, the implications of these results for space

observations are discussed. The materials presented in this chapter is a journal paper in

preparation.

Chapter 6 summarizes this thesis and briefly introduces the extension of this thesis

work to future work such as understanding electron hole transverse instability in higher

dimensions.

52



Chapter 2

Electron hole kinematics deduced

from momentum conservation

This chapter explains the analysis of reference [80], of which Ian H. Hutchinson was

the principal author, but to which Chuteng Zhou made significant contributions. The

derivations in this chapter serve as the foundation for what follows. The exposition here

is in the words of the present author.

In this chapter, we are going to analyze the kinematic properties of electron holes and

develop an analytic theory governing how their velocities change. The aim is to explain

the velocity of electron holes observed in simulations and space with this theoretical frame-

work. The essence of this theory is conservation of plasma momentum in the direction

parallel to the magnetic field. In a Vlasov-Poisson plasma, the total particle momentum

is conserved with vanishing boundary conditions for the fields. When the plasma is mag-

netized, the Vlasov-Poisson system is a reasonably good description of plasma dynamics

parallel to the magnetic field. The electromagnetic momentum of the field can be ignored

for a field aligned electrostatic structure and the sum of electron and ion momentum is

conserved

𝑃̇𝑖 + 𝑃̇𝑒 = 0, (2.1)

where 𝑃̇𝑖 and 𝑃̇𝑒 are respectively the rates of momentum change for ions and electrons.
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The electron hole kinematics and the evolution of its velocity are determined by this

momentum conservation relation. The treatment is one-dimensional and is intended to

describe the parallel motions of electron holes. Electron holes need a strong enough

magnetic field to stably exist (see Chapter 1) and therefore can be modeled by structures

moving along the field lines. This analytic theory also quantitatively characterizes the

strength of momentum coupling between an electron hole and the ions.

I Ion momentum rate of change

We consider the effects of hole acceleration and change of hole shape on ion momentum.

First, we clarify some terms. The electron hole potential is denoted by 𝜑(𝑥). It is a solitary

pulse that extends from 𝑥1 to 𝑥2 in its rest frame. 𝑥1 and 𝑥2 are taken to be far away

enough from the hole center such that 𝜑 and its derivatives vanish at these boundaries.

The exact choice of 𝑥1 and 𝑥2 is unimportant given that there is no potential difference

between 𝜑(𝑥1) and 𝜑(𝑥2). So we consider a symmetric electron hole while asymmetric

holes can also exist. Subscripts 1 and 2 denote values at 𝑥1 and 𝑥2. Electron hole velocity

in the lab frame is denoted by 𝑈 . The principles of our method are illustrated in Figure

2-1. Hole acceleration and deformation induce change in the particle velocity and density.

The momentum rate of change in the region outside the hole region [𝑥1, 𝑥2] is given by

𝑃̇out − 𝑃̇in. The total momentum rate of change can be obtained adding the momentum

rate of change inside the hole region 𝑃̇contained with the momentum outflow rate

𝑃̇total = 𝑃̇contained + (𝑃̇out − 𝑃̇in). (2.2)

For the purpose of calculating 𝑃̇total for ions, we consider a single ion stream. This method

can be generalized to a distribution of particles with trapped species as we are going to

show in the case of electrons. It is important to note that the final momentum rate of

change will be evaluated in an inertial frame, while for the simplicity of calculation, we

are also going to use the rest frame of the electron hole, which may not be an inertial

frame of reference. If it is not stated otherwise, the variables are evaluated in the hole
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Ṗin Ṗout

x1 x2

Figure 2-1: Top: a passing particle exits the hole region with exactly the same velocity as
it enters when the hole has a constant velocity and does not change its shape. Bottom:
there is change in passing particle velocity and density thus momentum transfer when the
hole is accelerating or changing its shape.

rest frame. All the inertial frame quantities are denoted with primes. For example, 𝑣′ is

related to 𝑣 by 𝑣′ = 𝑣+𝑈(𝑡), where 𝑈(𝑡) is the instantaneous velocity of the electron hole

in the lab/inertial frame.

I.1 Momentum change due to hole acceleration

We first introduce ion transit time

𝛿𝑡𝑖 =

∫︁ 𝑥2

𝑥1

𝑑𝑥

𝑣
. (2.3)
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This duration is the time it takes for an ion to transit the hole region. We first fix the

hole shape 𝜑(𝑥) and only consider the acceleration effect. In the rest frame of the electron

hole, an ion admits a constant of motion by integrating its equation of motion

1

2
𝑚𝑖𝑣

2 + 𝑒𝜑+𝑚𝑖𝑈̇𝑥 = Constant, (2.4)

where 𝑈̇ is the hole acceleration. For this analysis, we study the constant acceleration

case where 𝑈̇ is constant. We first calculate net momentum outflow rate

𝑃̇out,i − 𝑃̇in,i = 𝑚𝑖(𝑛2𝑣2𝑣
′
2 − 𝑛1𝑣1𝑣

′
1)

= 𝑚𝑖(𝑛2𝑣2𝑣
′
2 − 𝑛2𝑣2𝑣

′
1 + 𝑛2𝑣2𝑣

′
1 − 𝑛1𝑣1𝑣

′
1)

= 𝑚𝑖 [𝑛2𝑣2(𝑣
′
2 − 𝑣′1) + (𝑛2𝑣2 − 𝑛1𝑣1)𝑣

′
1] . (2.5)

This expression should be evaluated simultaneously at time 𝑡 for all the quantities in-

volved. The first term in the final expression accounts for the change in ion velocity in

the inertial frame. 𝑣′2(𝑡)− 𝑣′1(𝑡) can be related to hole rest frames quantities by

𝑣′2(𝑡)− 𝑣′1(𝑡) =𝑣2(𝑡)− 𝑣1(𝑡) (2.6)

=𝑣2(𝑡)− 𝑣1(𝑡− 𝛿𝑡𝑖) + 𝛿𝑡𝑖𝑈̇ .

We use the constant of motion along the ion orbit to determine 𝑣2(𝑡)− 𝑣1(𝑡− 𝛿𝑡𝑖)

𝑣2(𝑡)− 𝑣1(𝑡− 𝛿𝑡𝑖) =
2𝑈̇(𝑥1 − 𝑥2)

𝑣1(𝑡− 𝛿𝑡𝑖) + 𝑣2(𝑡)

= 𝑈̇

∫︁ 𝑥2

𝑥1

−2

𝑣1(𝑡− 𝛿𝑡𝑖) + 𝑣2(𝑡)
𝑑𝑥. (2.7)

Therefore, the first term of the net momentum outflow rate in Equation (2.5) is

𝑚𝑖𝑛2𝑣2(𝑣
′
2 − 𝑣′1) = 𝑚𝑖𝑛2𝑈̇

∫︁ 𝑥2

𝑥1

(︂
−2𝑣2(𝑡)

𝑣1(𝑡− 𝛿𝑡𝑖) + 𝑣2(𝑡)
+
𝑣2
𝑣

)︂
𝑑𝑥. (2.8)
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Up to now, no approximations have been made. We make a first approximation here

assuming that ion transit time 𝛿𝑡𝑖 is much shorter than the typical acceleration time scale

𝑣/𝑈̇

|𝑈̇𝛿𝑡𝑖/𝑣| ≪ 1. (2.9)

This approximation is going to be referred to as the short transit-time approximation. The

net momentum transfer effects can be expanded as a power series of the small expansion

parameter |𝑈̇𝛿𝑡𝑖/𝑣|. We only retain the lowest order contributions. For this reason,

we can be more liberal about using interchangeably the values within one transit time

in the following algebra, knowing that this approximation only leads to higher order

corrections. Using the short transit-time approximation for ions, we can replace 𝑛2 by

𝑛1, 2𝑣2(𝑡)/(𝑣1(𝑡− 𝛿𝑡𝑖) + 𝑣2(𝑡)) by 1 and 𝑣2 by 𝑣1 in Equation (2.8) to lowest order and we

have

𝑚𝑖𝑛2𝑣2(𝑣
′
2 − 𝑣′1) ≃ 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

(︁
−1 +

𝑣1
𝑣

)︁
𝑑𝑥. (2.10)

The second term in Equation (2.5) accounts for net momentum outflow due to accu-

mulation of ions inside the hole region. Continuity equation for ions gives

𝑛2𝑣2 − 𝑛1𝑣1 = −
∫︁ 𝑥2

𝑥1

𝜕𝑛

𝜕𝑡
𝑑𝑥 = −𝑁̇ (2.11)

The density 𝑛 can be considered as the sum of steady state density and a small correction

first order in small expansion parameter |𝑈̇𝛿𝑡𝑖/𝑣|

𝑛 =
𝑛1𝑣1
𝑣

(1 +𝒪(|𝑈̇𝛿𝑡𝑖/𝑣|)) (2.12)

To the lowest order, the ion accumulation rate is

∫︁ 𝑥2

𝑥1

𝜕𝑛

𝜕𝑡
𝑑𝑥 ≃

∫︁ 𝑥2

𝑥1

(︂
𝑛1

𝑣

𝜕𝑣1
𝜕𝑡

− 𝑛1𝑣1
𝑣2

𝜕𝑣

𝜕𝑡

)︂
𝑑𝑥. (2.13)

The density of ion stream 𝑛1 when it enters hole region is determined by the background

ion density, it is thus a constant in time. 𝜕𝑣1/𝜕𝑡 is simply −𝑈̇ as the hole frame is
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accelerating. 𝜕𝑣/𝜕𝑡 can be obtained from the constant of motion

1

2
𝑚𝑖𝑣

2
1 +𝑚𝑖𝑈̇𝑥1 =

1

2
𝑚𝑖𝑣

2 + 𝜑(𝑥) +𝑚𝑖𝑈̇𝑥. (2.14)

Take the partial derivative of the above equation with respect to time while fixing 𝑥 gives

𝜕𝑣

𝜕𝑡
=
𝑣1
𝑣

𝜕𝑣1
𝜕𝑡

= −𝑣1
𝑣
𝑈̇ . (2.15)

Now choose the inertial frame as the instantaneous rest frame of the electron hole such

that 𝑣′1 = 𝑣1 and the second term in Equation (2.5) can be written as

𝑚𝑖𝑣
′
1(𝑛2𝑣2 − 𝑛1𝑣1) = −𝑚𝑖𝑣1𝑁̇

= 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

(︂
𝑣1
𝑣

− 𝑣31
𝑣3

)︂
𝑑𝑥. (2.16)

We have only retained the lowest order terms. To lowest order in |𝑈̇𝛿𝑡𝑖/𝑣|, the net

momentum outflow rate is obtained by adding Equations (2.10) and (2.16) together

𝑃̇out,i − 𝑃̇in,i = 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

[︂
−1 + 2

𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂
𝑑𝑥. (2.17)

Last we calculate the contained ion momentum rate of change

𝑃̇contained,i =
𝑑

𝑑𝑡

∫︁ 𝑥2

𝑥1

𝑚𝑖𝑛𝑣
′ 𝑑𝑥 (2.18)

=
𝑑

𝑑𝑡

∫︁ 𝑥2

𝑥1

𝑚𝑖𝑛(𝑣 + 𝑈) 𝑑𝑥. (2.19)

Recall that to lowest order, 𝑛𝑣 = 𝑛1𝑣1 and again we choose the inertial frame as the

instantaneous rest frame of the electron hole such that instantaneously 𝑈 = 0. Therefore

we get

𝑃̇contained,i = 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

(︁
−1 +

𝑣1
𝑣

)︁
𝑑𝑥. (2.20)
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The total rate of momentum change for ions due to hole acceleration is thus

𝑃̇i,a = 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

[︂
−2 + 3

𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂
𝑑𝑥. (2.21)

To lowest order, we can use the steady state velocity 𝑣(𝑥) =
√︀
𝑣21 − 2𝑒𝜑(𝑥)/𝑚𝑖 in the

above expression.

So far, we have not made any assumptions about the magnitude of 𝜑. Expression

(2.21) can be further simplified if we make the shallow hole approximation: 2𝑒𝜑≪ 𝑚𝑖𝑣
2
1.

Define a small parameter of expansion 𝜖 = 2𝑒𝜑/𝑚𝑖𝑣
2
1, the integrand in Equation (2.21)

can then be expanded as

−2 + 3
𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3
= −3

4
𝜖2 +𝒪(𝜖3)

≃ −3

(︂
𝑒𝜑

𝑚𝑖𝑣21

)︂2

. (2.22)

In the shallow hole limit, the total ion momentum rate of change due to hole acceleration

can be approximately expressed as

𝑃̇𝑖,𝑎 ≃ 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

−3

(︂
𝑒𝜑

𝑚𝑖𝑣21

)︂2

𝑑𝑥. (2.23)

The short transit time approximation holds when the ions are not in the vicinity of being

reflected. The momentum effect of reflected ion streams will be discussed at the end of

next section.

I.2 Momentum change due to hole growth

In this section, we calculate the effect of hole potential change on the ion momentum.

Instead of considering a hole accelerating without changing its shape, we assume right

now that the hole is stationary 𝑈̇ = 0 while its potential is subject to temporal variation

𝜑̇ ̸= 0. In this section, there is no difference between the hole rest frame and the inertial

frame. The short transit-time approximation we are going to use in this case is similar in
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nature to the one before. It consists of assuming that any change in the velocity of an ion

transiting the hole due to 𝜑̇ is a first order correction to its orbit. In a more mathematical

language, this approximation can be expressed as

|𝜑̇𝛿𝑡𝑖/𝜑| ≪ 1. (2.24)

Recall that the net momentum outflow rate is 𝑃̇out,i−𝑃̇in,i = 𝑚𝑖 [𝑛2𝑣2(𝑣
′
2 − 𝑣′1) + (𝑛2𝑣2 − 𝑛1𝑣1)𝑣

′
1].

The difference in ion velocity can be calculated integrating its equation of motion. The

energy difference of an ion between 𝑥1 and 𝑥2 is

1

2
𝑚𝑖𝑣

2
2 −

1

2
𝑚𝑖𝑣

2
1 =

∫︁ 𝑡2

𝑡1

𝑒𝜑̇ 𝑑𝑡

=

∫︁ 𝑥2

𝑥1

𝑒𝜑̇

𝑣
𝑑𝑥. (2.25)

This energy difference comes from energization/de-energization due to hole potential

change during the transit time. To lowest order in 𝜑̇𝛿𝑡𝑖/𝜑, the velocity difference can

be expressed as

𝑣′2 − 𝑣′1 = 𝑣2 − 𝑣1 ≃
1

𝑚𝑖𝑣21

∫︁ 𝑥2

𝑥1

𝑣1
𝑣
𝑒𝜑̇ 𝑑𝑥. (2.26)

The accumulation of ion density inside the hole due to 𝜑̇ can be expressed using the lowest

order expression 𝑛1𝑣1 = 𝑛𝑣[1 +𝒪(𝜑̇𝛿𝑡𝑖/𝜑)]. To lowest order, we have

𝑁̇ ≃
∫︁ 𝑥2

𝑥1

𝑛1
𝜕

𝜕𝑡

(︁𝑣1
𝑣

)︁
𝑑𝑥

= 𝑛1

∫︁ 𝑥2

𝑥1

−𝑣1
𝑣2
𝜕𝑣

𝜕𝜑
𝜑̇ 𝑑𝑥

≃ 𝑛1

𝑚𝑖𝑣21

∫︁ 𝑥2

𝑥1

𝑣31
𝑣3
𝑒𝜑̇ 𝑑𝑥. (2.27)

The contained ion momentum rate of change due to hole growth is zero to relevant order

as 𝑛𝑣 ≃ 𝑛1𝑣1 is constant in time. Thus the total rate of change of ion momentum due to
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hole growth 𝜑̇ is

𝑃̇𝑖,𝑔 ≃ 𝑚𝑖 [𝑛2𝑣2(𝑣
′
2 − 𝑣′1) + (𝑛2𝑣2 − 𝑛1𝑣1)𝑣

′
1]

≃ 𝑚𝑖𝑛1𝑣1

∫︁ 𝑥2

𝑥1

[︂
𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂ 𝑒𝜑̇

𝑚𝑖𝑣21
𝑑𝑥. (2.28)

With shallow hole approximation, we can again expand the 𝑣1/𝑣 − 𝑣31/𝑣
3 as −𝜖 +𝒪(𝜖2).

Then to lowest order in 𝜖 = 2𝑒𝜑/𝑚𝑖𝑣
2
1. The final result for a shallow electron hole is

𝑃̇𝑖,𝑔 ≃ −𝑚𝑖𝑛1𝑣1

∫︁ 𝑥2

𝑥1

𝜕

𝜕𝑡

(︂
𝑒𝜑

𝑚𝑖𝑣21

)︂2

𝑑𝑥. (2.29)

So far, we have only considered the situation where ions are much faster than the

reflection velocity limit in the hole frame. The short transit-time approximation will first

break down when the ion velocity approaches the minimum required to overcome the

potential barrier in the hole frame. When the ion stream does not have enough energy

to go through the electron hole potential barrier in the hole frame, it is reflected. The

momentum change of an reflected ion is −2𝑚𝑖𝑣1. For ion arrival rate of 𝑛1|𝑣1|, the total

rate of change of ion momentum due to reflection is

𝑃̇𝑖,𝑟 = −2𝑚𝑖𝑣1𝑛1|𝑣1|. (2.30)

This momentum rate of change is predominant when present and cannot be balanced

by other effects. Therefore it is impossible for an electron hole to reflect ions at steady-

state. Previously, Dupree [70] derived a momentum conservation relation for electron holes

which only takes into account the reflected ion momentum change. Our results reveal the

important jetting effects, which were previously ignored. We will see in Chapter 3 that

jetting effects have important implications for electron hole motions.
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II Electron momentum rate of change

We have calculated the momentum rate of change for a single ion stream in the previous

section. The results can be readily applied to a distribution of passing ions or electrons

given that the short transit-time approximation still holds. The major complication here is

that electrons have both passing and trapped populations. Suppose that in the rest frame

of the electron hole, the background electron population has a velocity distribution 𝑓1(𝑣1).

Electrons are attracted by the hole potential and an electron arriving with velocity 𝑣1 in

the hole frame has a velocity
√︀
𝑣21 + 2𝑒𝜓/𝑚𝑒 at the hole center, where 𝜓 is the maximum

of 𝜑(𝑥). The majority of passing electrons satisfy finite transit-time approximation for

moderate hole accelerations and growths that we are interested in. Nevertheless, there is

narrow band of orbits near the separatrix where finite transit-time approximation breaks

down. It is only a tiny fraction of the total electron population, therefore we proceed

ignoring these marginally passing electrons. When the electron hole is accelerating, the

passing electrons have a momentum rate of change which is

𝑃̇𝑒,𝑝 = 𝑚𝑒𝑈̇

∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

[︂
−2 + 3

𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂
𝑓1(𝑣1) 𝑑𝑣1𝑑𝑥. (2.31)

Similarly, the momentum rate of change due to hole growth for passing electrons is

𝑃̇𝑒,𝑔 = 𝑚𝑒𝑈̇

∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

[︂
𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂ −𝑒𝜑̇
𝑚𝑒𝑣21

𝑓1(𝑣1) 𝑑𝑣1𝑑𝑥. (2.32)

The above expressions are for passing electrons. Trapped electrons move with the solitary

potential. They accelerate together with the wave such that

𝑃̇𝑒,𝑡 = 𝑚𝑒𝑈̇

∫︁ 𝑥2

𝑥1

𝑛𝑡(𝑥)𝑑𝑥. (2.33)

𝑛𝑡(𝑥) is the number density of trapped electrons. There is no hole growth acceleration for

trapped electrons as on average a trapped electron has zero net momentum in the hole

frame. The passing orbits near separatrix become trapped when an electron hole grows

in size. We can neglect the momentum change of electrons associated with newly trapped
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phase-space by the same argument.

To calculate the total electron momentum rate of change 𝑃̇𝑒, we need to know the

number of trapped electrons in an electron hole. This quantity can be obtained by a

global charge neutrality argument. An electron hole has a solitary potential profile 𝜑(𝑥),

thus Poisson’s equation indicates that the total charge of an electron hole over the entire

space is zero. We have seen in Chapter 1 that the distribution function of passing orbits

is determined by the background distribution and the hole potential 𝜑. With the short

transit-time approximation, we use the electron orbits at steady state to calculate the

total passing electrons number by constancy of distribution function on these orbits

𝑁𝑝 =

∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

𝑣1
𝑣
𝑓1(𝑣1) 𝑑𝑣1. (2.34)

Total charge neutrality gives 𝑁𝑝 + 𝑁𝑡 = 𝑁𝑖. The total number of ions can be obtained

integrating steady-state ion density for an electron hole traveling at a velocity 𝑈 in the

ion frame

𝑁𝑖 = 𝑛1

∫︁ 𝑥1

𝑥1

|𝑈 |√︀
𝑈2 − 2𝑒𝜑(𝑥)/𝑚𝑖

𝑑𝑥. (2.35)

We have used the steady-state ion density 𝑛𝑖 = 𝑛1|𝑈 |/
√︀
𝑈2 − 2𝑒𝜑(𝑥)/𝑚𝑖 here, which is

obtained by conservation of ion flux: 𝑛𝑖𝑣𝑖 = 𝑛1𝑣1. The momentum rate of change for

trapped electrons can be evaluated as

𝑃̇𝑒,𝑡 = 𝑚𝑒𝑈̇

[︃∫︁ 𝑥2

𝑥1

𝑛1|𝑈 |√︀
𝑈2 − 2𝑒𝜑(𝑥)/𝑚𝑖

𝑑𝑥−
∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

𝑣1
𝑣
𝑓1(𝑣1) 𝑑𝑣1 𝑑𝑥

]︃
. (2.36)

When 𝑒𝜓 ≪ 𝑚𝑖𝑣
2
1, the ion density perturbation is negligible inside the electron hole and

the above expression can be rewritten as

𝑃̇𝑒,𝑡 ≃ 𝑚𝑒𝑈̇

∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

(︁
1− 𝑣1

𝑣

)︁
𝑓1(𝑣1) 𝑑𝑣1 𝑑𝑥. (2.37)

The total electron momentum rate of change due to hole acceleration is obtained by
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adding Equations (2.31) and (2.37)

𝑃̇𝑒,𝑎 = 𝑚𝑒𝑈̇

∫︁ 𝑥2

𝑥1

∫︁ +∞

−∞

[︂
−1 + 2

𝑣1
𝑣

−
(︁𝑣1
𝑣

)︁3]︂
𝑓1(𝑣1) 𝑑𝑣1𝑑𝑥. (2.38)

The integral over velocity can be performed to give a closed-form expression when the

background electrons have a Maxwellian distribution in the hole frame

𝑓1(𝑣1) =
𝑛1√
2𝜋𝑣th,e

exp(− 𝑣21
2𝑣2th,e

), (2.39)

we can use an unshifted Maxwellian when the hole velocity 𝑈 is significantly slower

than the background electron thermal speed: |𝑈 | ≪ 𝑣th,e. Defining 𝜒 =
√︀
𝑒|𝜑(𝑥)|/𝑇𝑒, a

integration over velocity gives

𝑃̇𝑒,𝑎 = −𝑚𝑒𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

ℎ(𝜒) 𝑑𝑥. (2.40)

The function ℎ is defined as

ℎ(𝜒) = − 2√
𝜋

∫︁ +∞

0

[︂
−1 +

2𝜉

(𝜒2 + 𝜉2)1/2
− 𝜉3

(𝜒2 + 𝜉2)3/2

]︂
𝑒−𝜉

2

𝑑𝜉

= − 2√
𝜋
𝜒+

[︁
(2𝜒2 − 1)𝑒𝜒

2

erfc(𝜒) + 1
]︁
. (2.41)

It is useful to remark the asymptotic behaviors of the function ℎ(𝜒) at shallow (𝜒 → 0)

and deep hole (𝜒 → ∞) limits: ℎ(𝜒) → 𝜒2 − 8
3
√
𝜋
𝜒3 as 𝜒 → 0 and ℎ(𝜒) → 1 − 2√

𝜋𝜒
as

𝜒→ ∞. In Figure 2-2, we have plotted the function ℎ and its asymptotic approximations

in two different limits. The term −𝑚𝑒

∫︀ 𝑥2
𝑥1
ℎ(𝜒) 𝑑𝑥 in Equation (2.40) can be viewed as the

effective mass of an electron hole. An electron hole has a negative effective mass because

it is a density deficit.

One important aspect of electron hole dynamics is that it accelerates like an electron

in the absence of ion response. Suppose there is a background force field 𝐹 (gravity,

large scale electric field) giving rise to a background acceleration 𝑣̇𝑏 = 𝐹/𝑚𝑒. Then in a

reference frame that is accelerating with the same acceleration 𝑣̇𝑏, the electron momentum
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Figure 2-2: Plot of ℎ(𝜒) compared with its asymptotic approximations.

rate of change is given by Galilean relativity

𝑃̇𝑒,𝑎 = −𝑚𝑒𝑛1(𝑈̇ − 𝑣̇𝑏)

∫︁ 𝑥2

𝑥1

ℎ(𝜒) 𝑑𝑥. (2.42)

Neglecting ion contributions, the electron momentum rate of change should be zero in

this accelerating frame, which is possible only if 𝑈̇ = 𝑣̇𝑏. A fast electron hole with little

ion response accelerates like an electron. In Dupree’s terminology [70], an electron hole

has the same effective charge-to-mass ratio as an electron.

III Acceleration caused by hole growth

Having derived all the basic equations for hole kinematics, now we apply the previous

results to hole acceleration when its potential 𝜑 grows. Electron holes grow in amplitude

during their formations by particle trapping. The evolution of their velocity during this

growth stage is studied in this section. During hole growth, the momentum balance

is between hole growth ion jetting effect, hole acceleration ion jetting effect and hole

acceleration electron term. The hole growth electron term is small if the hole remains

near the peak of electron distribution function such that 𝑓 ′
1 ≃ 0 and 𝑃̇𝑒,𝑔 is zero to lowest

order. The momentum balance equation can therefore be written in the rest frame of

65



background ions (𝑣1 = −𝑈) as

−ℎ(𝜒)𝑚𝑒𝑈̇ − 3

(︂
𝑒𝜓

𝑚𝑖𝑈2

)︂2

𝑚𝑖𝑈̇ +

(︃
2𝑒2𝜓̇𝜓

𝑚𝑖𝑈3

)︃
= 0. (2.43)

To a first degree approximation, we model the hole potential by a rectangular pulse that

is 𝜓 in height. We have used the shallow hole approximation for the hole growth ion

jetting and hole acceleration ion jetting terms. Defining a new variable 𝑣𝑝 =
√︀
2𝑒𝜓/𝑚𝑖

which is the ion passing velocity, we write the above equation in terms of 𝑣𝑝 and 𝑈 as

−𝑚𝑒

𝑚𝑖

ℎ(
𝑣𝑝√
2𝑐𝑠

)𝑈̇ − 3

4

𝑣4𝑝
𝑈4
𝑈̇ +

𝑣3𝑝
𝑈3
𝑣̇𝑝 = 0. (2.44)

This equation can be integrated numerically for an initial set of values (𝑈0, 𝑣𝑝0). We use

a standard Runge-Kutta method to solve the equation numerically for different initial

values. These growth curves are shown in Figure 2-3. When an electron hole grows in

amplitude thus 𝑣𝑝, its velocity 𝑈 should follow one of the curves. An electron hole born

with a low velocity in the ion frame gets significant acceleration after the initial growth

while those born at higher velocities are accelerated less. These phenomena shall be

verified in numerical PIC simulations in Chapter 3.

IV Electron hole momentum coupling to ions by hole

pushing and pulling

Suppose a shallow electron hole is accelerated at 𝑈̇ without changing its shape. It induces

change in ion and electron momentum at rates

𝑃̇𝑒,𝑎 = −𝑚𝑒𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

ℎ(𝜒) 𝑑𝑥, (2.45)

𝑃̇𝑖,𝑎 = 𝑚𝑖𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

−3

(︂
𝑒𝜑

𝑚𝑖𝑣21

)︂2

𝑑𝑥. (2.46)
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Figure 2-3: 𝑈 as a function of 𝑣𝑝 obtained by solving Equation (2.44) with 𝑚𝑖/𝑚𝑒 = 1836
and different 𝑈0.

The relative magnitude of the ion effect and electron effect is equal when

|𝑣1|
𝑐𝑠

=𝑀𝑖,𝑒 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
3𝑚𝑖

𝑚𝑒

∫︁ 𝑥2

𝑥1

(︂
𝑒𝜑

𝑇𝑒

)︂2

𝑑𝑥

∫︁ 𝑥2

𝑥1

ℎ

⎛⎝√︃𝑒𝜑(𝑥)

𝑇𝑒

⎞⎠ 𝑑𝑥

⎤⎥⎥⎥⎥⎥⎥⎦

1

4

. (2.47)

𝑀𝑖,𝑒 is the critical Mach number at which ion jetting effect is comparable to the electron

jetting effect. For a shallow electron hole, this velocity is typically a few times 𝑐𝑠. An

electron hole traveling at a speed slower than𝑀𝑖,𝑒𝑐𝑠 in the ion frame has strong momentum

coupling to ions.

When momentum is injected into the ions, a part of it is going to leak into the electrons

through the momentum coupling by the electron hole. We model the momentum injection

rate using a background acceleration 𝑣̇𝑏 for the ions. Now the momentum balance between
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the electron and ion terms gives

−𝑚𝑒𝑛1𝑈̇

∫︁ 𝑥2

𝑥1

ℎ(𝜒) 𝑑𝑥− 3𝑚𝑖𝑛1(𝑈̇ − 𝑣̇𝑏)

∫︁ 𝑥2

𝑥1

(︂
𝑒𝜑

𝑚𝑖𝑣21

)︂2

𝑑𝑥 = 0. (2.48)

Recognizing that 𝑈̇ − 𝑣̇𝑏 = −𝑣̇1 and we have the following relation

𝑈̇

𝑐𝑠
=

(︂
𝑀4

𝑖,𝑒𝑐
4
𝑠

𝑣41

)︂
𝑣1
𝑐𝑠
. (2.49)

This relation says that any finite momentum injection rate for ions will cause the electron

hole to accelerate through 𝑣̇1, resulting in momentum change of electrons. This momentum

coupling is proportional to 𝑣−4
1 , thus it is stronger for slower electron holes in the ion frame.

Equation (2.49) can be further integrated to give

[︂
𝑈

𝑐𝑠

]︂𝐵
𝐴

=

[︂
𝑀4

𝑖,𝑒𝑐
3
𝑠

−3𝑣31

]︂𝐵
𝐴

. (2.50)

The initial state is A and the final state is B. This expression shows quantitatively how

the hole velocity changes as a function of the ion velocity in the hole frame. Thus the

momentum coupling can be revealed through hole “pushing” (decrease in |𝑣1|) and hole

“pulling” (increase in |𝑣1|). When the ions are accelerated, the electron hole should

accelerate in the same direction as the ions. Pushing and pulling is asymmetric because

of the 1/𝑣31 dependency. It is easy to “push” an electron hole with ion acceleration and

more difficult to “pull” it. This also reflects the fact that the coupling strength increases

as the electron hole slows down in the ion frame. These predicted phenomena have been

explored and quantitatively verified using PIC simulation. The results are presented in

the next chapter.

V Conclusions

We have given an analytic treatment of electron hole kinematics by treating the elec-

tron hole as a composite object. This theoretical framework of hole kinematics shall be
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extensively used in this thesis. The analytic results shall be verified against numerical

simulations in Chapter 3.
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Chapter 3

Hole tracking Particle-In-Cell

simulation

We have presented an analytic theory for electron hole kinematics in Chapter 2. In

order to verify our analytic theory and better understand the movement of these phase

space electron holes, we use a one-dimensional electrostatic hole tracking Particle-In-

Cell simulation code to simulate electron hole motion. It gives a good representation of

electron holes in the presence of a relatively strong magnetic field such as in the Earth’s

magnetosphere. We have fully kinetic ions in our simulation, as the effect of ion dynamics

on electron holes is what we are interested in. Simulation of a single solitary electron hole

is performed in a modest sized box with open boundary conditions rather than periodic.

Electrons and ions have fixed Maxwellian distributions outside the boundaries.

This Chapter is organized in the following way: the hole tracking particle simulation

implementation is described in detail in Section I. Section II presents results from hole

tracking PIC simulation of electron holes in initial transient and steady state motion. Ob-

servations from simulations are compared with an analytic theory. Section III is devoted

to numerical experiments where we artificially accelerate ion streams to push or pull the

hole. They show important momentum coupling between electron hole and ions. Final

summary comments are given in Section IV.
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I Hole tracking simulation

Periodic boundary conditions are avoided in this study because the hole can interact with

itself through the periodic boundaries, masking the phenomena we are studying. Open

boundary conditions for particles are used in our simulation. Particles are free to leave

the computation domain and new particles are injected at every time step to represent the

Maxwellian distribution of ions and electrons in surrounding plasma. Boundary conditions

for potential 𝜑 are homogeneous with 𝜑′(±𝐿𝑥) = ±𝜑(±𝐿𝑥)/𝜆De at the two ends of our

simulation domain. These boundary conditions assume that electrostatic potential falls

exponentially to zero on the Debye length scale in surrounding plasma. Electron holes

move at several times the cold ion sound speed up to electron thermal speed [26] relative to

bulk species, while the spatial extent of an electron hole is only a couple of Debye lengths.

The total distance traveled by an electron hole for a long run is therefore hundreds or

thousands of its own size. A non-periodic simulation of the long term evolution of an

electron hole would require thousands of Debye lengths in domain size if a fixed domain

is used. An electron hole is sensitive to the statistical noise level in PIC simulation. For

𝑁𝑠 particles per computation cell, the statistical noise level on charge density scales like

1/
√
𝑁𝑠 [24] . To have a clear resolution of the hole, we need a large number of particles

per Debye length. The combination of a large simulation domain with the requirement of

a high number of particles per length would demand excessive computational resources.

Simulating a fast moving electron hole using a fixed domain is not efficient.

Therefore, we adopt a more adaptive approach to this problem. A 1-D Particle-In-

Cell (PIC) code is used which detects the hole signal and moves the computation domain

accordingly so that the hole always stays inside it. We refer to this method as “hole

tracking”. The major component of hole tracking is a feedback control mechanism. The

hole position is detected with an automated search algorithm. At every time step, electric

field from the simulation is convolved with a bipolar hole electric field signal. The hole

potential in its moving frame is considered to follow approximately the analytic solution
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[40]:

𝜑(𝑥) = 𝜓 sech4(
𝑥

𝐿
) , (3.1)

which gives rise to a bipolar electric field of the form 𝐸(𝑥) = −4𝜓
𝐿
tanh( 𝑥

𝐿
) sech4( 𝑥

𝐿
). The

typical hole half width 𝐿 is taken to be 4𝜆De. This choice will be justified later in Section

II. However, we observe that the choice of 𝐿 has very little effect on hole tracking results

as long as it is in the vicinity of a few Debye lengths. The position of the filtered signal

maximum is taken to be where the electron hole is. Hole search algorithm for on board

solitary wave detection [32] of space probes is generally more sophisticated than the one

presented here. However, our algorithm achieves good performance for the purpose of

this study and is easy to implement.
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Figure 3-1: Block diagram of hole tracking. 𝜌(𝑥) and 𝜑(𝑥) are charge density and potential
in the simulation, 𝑥ℎ and 𝑣ℎ are position and velocity of electron hole, 𝑣ℎ is the hole velocity
after smoothing is applied, 𝑣𝑏 and 𝑎𝑏 are velocity and acceleration of simulation box.

Figure 3-1 gives a block diagram of the code’s major components. At every time

step 𝑘, the hole search algorithm gives the position of electron hole 𝑥ℎ[𝑘] relative to the
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simulation domain. Lab frame hole velocity 𝑣ℎ[𝑘] is given by (𝑥ℎ[𝑘]−𝑥ℎ[𝑘−1])/𝛿𝑡+𝑣𝑏[𝑘],

where 𝛿𝑡 is the time step size of simulation and 𝑣𝑏[𝑘] is the velocity of simulation domain

from time step 𝑘−1 to 𝑘. The hole speed calculated this way is subject to high frequency

noise. There is statistical noise that is intrinsic to PIC simulation and sampling noise

reflecting the fact that hole position can only be evaluated with a finite precision limited

by search algorithm spatial grid step. The noise is amplified by taking the numerical time

derivative. Consequently, a low-pass filter is required to filter out high frequency noise in

measured hole velocity. We adopt a causal Butterworth filter [83] of second order in our

simulation. The cutoff frequency is empirically chosen as 0.005𝜔𝑝𝑒. The higher the cutoff

frequency, the faster the control law will respond to changes in the hole velocity but it will

also make it more sensitive to noise. The filtered hole velocity 𝑣ℎ[𝑘] is used as an input of

control law to extrapolate the simulation box velocity 𝑣𝑏[𝑘 + 1] that is required to follow

the hole motion. The control law takes both hole velocity 𝑣ℎ[𝑘] and relative position 𝑥ℎ[𝑘]

as input for robust feedback control on both velocity and position. The control law can

be expressed as

𝑣𝑏[𝑘 + 1]− 𝑣𝑏[𝑘]

𝛿𝑡
= 𝐾1𝑥ℎ[𝑘] +𝐾2(𝑣ℎ[𝑘]− 𝑣𝑏[𝑘]) , (3.2)

where 𝐾1 and 𝐾2 are respectively control coefficients on position and velocity.

There is a certain freedom in the choice of control coefficients 𝐾1 and 𝐾2. The control

law should respond fast enough so that the electron hole does not leave the domain but

not induce instability or excessive overshoot. In our simulation, position is normalized

to 𝜆De and velocity is normalized to 𝑐s =
√︁

𝑇𝑒
𝑚𝑖
. The control coefficients we adopt are

then 𝐾1 = 0.0025𝜔2
𝑝𝑒 and 𝐾2 = 0.75𝜔𝑝𝑒. The exact values of 𝐾1 and 𝐾2 have been

determined empirically.

The particle pushing and particle injection parts of the PIC code need to take into

account the fact that the simulation domain is moving relative to the background plasma

and is accelerating. As a consequence of acceleration, the simulation domain is no more

an inertial frame of reference. In addition to the force due to the electric field, particles

feel an extra acceleration which is the opposite of box acceleration 𝑎𝑏. This term is
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included during particle pushing. Background plasma particle distribution relative to

simulation domain is now a Maxwellian shifted by minus the box velocity −𝑣𝑏. The

velocity distribution of particle fluence across simulation boundaries can be written as

|𝑣|𝑓(𝑣)𝑑𝑣 =
𝑛0|𝑣|√
2𝜋𝑣th

exp

[︂
−(𝑣 + 𝑣𝑏)

2

2𝑣2th

]︂
𝑑𝑣 , (3.3)

where 𝑣th =
√︁

𝑇𝑖/𝑒
𝑚𝑖/𝑒

. Eq. (3.3) can be integrated to obtain the total number of particles

that need to be injected into the simulation box during a time step of length 𝛿𝑡:

𝑁injection =
2𝑛0𝑣th𝛿𝑡√

2𝜋
exp

(︂
− 𝑣2𝑏
2𝑣2th

)︂
+ 𝑛0𝑣𝑏𝛿𝑡 erf

(︂
𝑣𝑏√
2𝑣th

)︂
. (3.4)

At each iteration, 𝑁injection particles are injected following a distribution given by eq. (3.3)

for both ions and electrons. The velocity sign of a particle determines which boundary it

will be injected from. 𝑁injection and eq. (3.3) need to be evaluated at every iteration as

𝑣𝑏 is constantly changing as a result of feedback control. A standard acceptance-rejection

method [84] is implemented to draw random velocities from a distribution expressed by

eq. (3.3). The particle injection is considered to be uniform in time. Once injected,

they will experience a partial kick and drift. The time duration of this partial particle

push is 𝜃𝛿𝑡, where 𝜃 is a random number uniformly distributed between 0 and 1. The PIC

simulation uses a leapfrog integration scheme. As a consequence, velocities of particles are

always at half a time step behind their positions. Injection is made consistent with this

leapfrog scheme, otherwise, unphysical density perturbations are excited at the simulation

boundaries. The standard PIC component of the code is a 1-D electrostatic Particle-In-

Cell code, which is referred to as ESPIC [57]. Charge weighting in the code uses a

cloud-in-cell [24] approach and Poisson equation is solved by a direct tridiagonal method.

We choose the length of simulation domain to be 48𝜆De across. By virtue of hole

tracking, we do not need a very big domain size to simulate a fast moving hole. However,

it should be large enough so that electron holes stay away from boundaries during simu-

lations. In this way, unphysical boundary effects can be avoided. The longest excursion

that a hole makes from the center of simulation box is around 15𝜆De before it is caught
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up by hole tracking in all of our simulations. This choice of domain size guarantees a

safety margin from boundaries without being too demanding on computational resources.

In order to seed a phase space hole, we initialize the electron distribution with a phase

space perturbation. The details of this initialization will be discussed in Section II.
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Figure 3-2: Velocity of an electron hole in two different runs, in the fixed domain run, the
electron hole hits the boundary at 𝜔𝑝𝑒𝑡 = 590 while the hole tracking run can successfully
simulate hole motion for a much longer period of time. Velocity data shown here are
smoothed using a low-pass filter of cutoff frequency 0.15𝜔𝑝𝑒.

Figure 3-2 compares velocity evolution of an electron hole in an ordinary fixed domain

PIC run to what we obtain from a hole tracking PIC run using the same initialization

setting. The fixed domain run uses a domain which is 192𝜆De across with 2×108 particles

and 4000 spatial cells. The hole tracking run uses a standard 48𝜆De domain and thus

only requires a quarter as many particles and spatial cells. The agreement between the

two runs demonstrates the strength of hole tracking, which is able to resolve hole motion

to the same precision with less computational resources. And for longer time durations,

the gain would be even greater.

We use 107 − 109 particles in our simulations depending on the size of hole we want

to simulate. Simulating a shallower hole requires more particles to keep the same signal-
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to-noise ratio. The number of cells is chosen to be 103 so that we have ∼ 20 grid-points

per Debye length, making sure that the hole structure is well resolved. The code is fully

parallelized to meet the challenge of the large number of particles and time steps required

to resolve the phenomena we are interested in. It is observed that a choice of time step

size bigger than 0.5/𝜔𝑝𝑒 may drive the simulation numerically unstable. We have explored

a range of different time step sizes in our simulation from 0.01/𝜔𝑝𝑒 to 0.4/𝜔𝑝𝑒. The choice

of time step size does not affect simulation results if it is below the stability threshold.

𝛿𝑡 = 0.3/𝜔𝑝𝑒 is the choice we adopt in our simulations.

Feature tracking PIC simulation is a very versatile tool by its nature. A similar

approach can be used to investigate the highly resolved dynamics of a wide class of

nonlinear plasma phenomena, such as the formation and kinematics of ion holes.

II Initial transient to steady state

There are different ways to seed a phase space hole at the initial stage of a numerical sim-

ulation. Schamel derived an analytic solution for electron hole structure in the absence of

ion response [40]. This analytic expression of electron distribution function has been used

as initialization of hole simulation by Eliasson et al.[74]. However, we adopt a different

approach in our simulation which can be divided into the following steps:

Step 1: for a given electron density 𝑛0, each electron is initialized with a random po-

sition which is uniformly distributed in spatial domain. A Quiet Start [24] technique is

used for position initialization to make sure that the number of particles in each spatial

cell is uniform.

Step 2: for a given electron thermal velocity 𝑣th,e =
√︁

𝑇𝑒
𝑚𝑒

, each electron is initialized

with a random velocity according to a probability distribution which is a Maxwellian

𝑓𝑒,0 =
1√

2𝜋𝑣th,e
exp

(︃
− 𝑣2

2𝑣2th,e

)︃
. (3.5)
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Step 3: for each electron with a position 𝑥 and a velocity 𝑣, a random number 𝛼 is drawn

uniformly between 0 and 1. The velocity is rejected if 𝛼 is smaller than a predefined value

𝑓𝑑(𝑥, 𝑣), where

𝑓𝑑(𝑥, 𝑣) = ℎ𝑑 exp

(︂
−(𝑣 − 𝑣𝑑)

2

2𝜎2
𝑑

)︂
exp

(︂
−𝑥2

2𝜆2𝑑

)︂
. (3.6)

This is a bell-shaped function in space and velocity: ℎ𝑑 is the dimple depth which is

smaller than 1; 𝜎𝑑 is the dimple velocity width; 𝑣𝑑 is the dimple initial velocity and 𝜆𝑑 is

the dimple spatial width.

If a velocity is rejected in Step 3, we return to Step 2 and choose a new velocity

and then move on to Step 3 to go through another rejection test with this new velocity,

iterating until the velocity is accepted. By this process we initialize a dimple in the

velocity distribution, localized in position and velocity, but maintain the initial density

uniform by enhancing the rest of the electron distribution. Since at each rejection step,

the same fraction of velocities (determined by 𝑓𝑑) is rejected, the final distribution is

proportional to 𝑓𝑒0(1 − 𝑓𝑑). And since the total density is uniform, the normalization

gives (a complete proof of the distribution function generated by the rejection method

can be found in Appendix A)

𝑓𝑒,0 = 𝑛0
𝑓𝑒,0 − 𝑓𝑒,0𝑓𝑑

1−
∫︁ +∞

−∞
𝑓𝑒,0𝑓𝑑 𝑑𝑣

, (3.7)

where 𝑓𝑒,0 is the initial electron distribution in our simulation. This hole seeding process

is simple to implement but does not give an initial electron hole potential. However, the

initial phase space perturbation will evolve into a self-consistent hole and the electron

hole potential will grow out of a uniform background. We refer to the process described

above as “uniform density initialization”. The uniform density initialization reduces the

initial plasma oscillations in the simulation due to charge imbalance.
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Figure 3-3: a) Normalized electron phase space density contours b) Potential, c) Ion
density, d) Electron density. Position 𝑥 and velocity 𝑣 are relative to lab frame. The plots
shown on the same row are from the same time step in the simulation.
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Figure 3-3 shows a run with uniform density initialization and the subsequent tran-

sient. The ions are initialized and injected as a Maxwellian distribution with a tempera-

ture 𝑇𝑖 and a drift velocity of −1𝑐𝑠 in lab frame. The temperature ratio 𝑇𝑒/𝑇𝑖 is 20, mass

ratio 𝑚𝑖/𝑚𝑒 = 1836. The ions are therefore a cold beam. Initialization parameters for

electron phase space density deficit are ℎ𝑑 = 0.9, 𝑣𝑑 = 0, 𝜎𝑑 = 0.15 𝑣th,e , 𝜆𝑑 = 4𝜆De.

The number of particles used in this run is 𝑁𝑒 = 𝑁𝑖 = 5.12× 107.

The first row of Figure 3-3 shows the initialization of simulation. Notice the initial

dimple shape of deficit in electron phase space density. Ion and electron density are equal

and uniform by virtue of Quiet Start. As a consequence, the initial potential is zero for

our initialization. Once simulation starts, the 2nd and 3rd rows of column a) in Figure

3-3 show that the initial perturbation in electron phase space begins to rotate, following

phase space flow. Its aspect ratio changes during this process. The same rows of column

d) show that a cavity quickly appears in electron density, giving rise to a positive potential

pulse which in turn traps the low energy electrons inside. Row 4 shows that after ions

have time to respond to this potential (𝜔𝑝𝑒𝑡 > (𝑚𝑖/𝑚𝑒)
1
2 ), a cavity of depth ≃ 5% forms

in ion density at the initial position of the hole. The initial ion density perturbation is

deeper for a smaller mass ratio (≃ 13% for 𝑚𝑖/𝑚𝑒 = 100). The electron hole is ejected

by this ion density cavity, speeding up during this process. Ions are initialized with a

negative drift velocity in the lab frame so that the electron hole is ejected in the positive

𝑥 direction in this run. Once ejected, the electron hole leaves the ion perturbation and

other transient remnants behind it and moves into uniform background plasma. The fully

formed self-consistent hole has a shorter spatial width than initialization in this case.

The ion density perturbation eventually moves out of the simulation domain and our

simulation tracks the hole into background plasma. The 𝑥 axis labels in Figure 3-3 give the

absolute position in lab frame. The last row shows that the electron hole has traveled more

than 200𝜆De but is still well-centered in our simulation domain thanks to hole tracking.

A steady state hole can be observed in its rest frame. The potential height of the fully

formed electron hole 𝑒𝜓/𝑇𝑒 is approximately 0.23 for this run, where 𝜓 is the maximum of

hole potential. The attached ion-acoustic soliton structure described by Saeki et al. [75] is
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not very visible in the steady state hole because the ions are all traveling at approximately

8𝑐𝑠 in the hole frame. The average ion kinetic energy in the hole frame is much bigger

than 𝑒𝜓. The perturbation in the ion density due to the hole is therefore negligible. The

electron density has a deep cavity with excess of electrons around it due to shielding,

which is typical of an electron hole [26].
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Figure 3-4: Lab frame velocity of electron hole and simulation domain. The plot on the
right is a close-up examination of the initial transient for the same run. Hole velocity is
smoothed using a low-pass filter of cutoff frequency 0.15𝜔𝑝𝑒.

The lab frame velocity of electron hole and simulation domain are plotted in Figure

3-4 for this same run. The feedback control law expressed by eq. (3.2) has both propor-

tional and integral terms of velocity error. As a consequence, both differences in velocity

and position between electron hole and simulation domain eventually vanish. We can

observe the detailed evolution of electron hole dynamics in Figure 3-4. At the beginning,

there is an initial dwell in the hole velocity. It corresponds approximately to the growth

time of initial ion density perturbation. Then the electron hole is rapidly accelerated and

its velocity reaches 8.9 𝑐𝑠 at 𝜔𝑝𝑒𝑡 = 60, this corresponds to the time it leaves the initial

ion density cavity. Once moving into uniform background plasma which has a higher ion

density, the electron hole is decelerated and its velocity finally stabilizes around 6.9 𝑐𝑠 at

𝜔𝑝𝑒𝑡 ≈ 130.

An important question arises: what determines the final steady state velocity of an elec-

81



tron hole? To answer this question, we have performed a detailed quantitative study of

this transient acceleration. 50 runs have been carried out using hole tracking PIC for

different ion to electron mass ratios 𝑚𝑖/𝑚𝑒, hole depths 𝜓 and initial ion drift velocity

𝑣𝑖. We take advantage of the flexibility of our code to explore a wide range of param-

eters. Mass ratio can be easily changed in our simulation. Hole depth is controlled by

parameters of uniform density initialization described at the beginning of this section. A

deeper dimple depth ℎ𝑑 combined with a bigger dimple velocity width 𝜎𝑑 will give rise

to a deeper and wider deficit in initial electron phase space density. It will then evolve

into a deeper self-consistent hole. The dimple spatial width 𝜆𝑑 is kept constant at 4𝜆De.

We shall see that the spatial widths of electron holes in our simulation are close to 4𝜆De

despite difference in their depths. A choice of 𝜆𝑑 which is too wide can give rise to multiple

holes. We also use 𝑣𝑑 = 0 for initialization, which means the initial electron phase density

deficit has zero average velocity in lab frame. Electrons are initialized and injected with

zero drift velocity in lab frame, ions are initialized and injected with a drift velocity 𝑣𝑖

in lab frame. This initial drift velocity between ions and electron hole is very important

to hole dynamics. Electron to ion temperature ratio 𝑇𝑒/𝑇𝑖 is 20. We have 𝑣𝑖 < 𝑣th,e for

all our runs so that Buneman type of instability is avoided [85]. Ion-electron acoustic

type of instability in principle can be excited for some of these runs but it has very weak

growth rate [86] and is not observed in our simulation. No disruptive plasma instabilities

are observed in the runs presented and hole tracking works properly. Each run consists

of a hole tracking simulation of 10000 time steps with a step size of 0.3/𝜔𝑝𝑒. All of the

runs except for two use 𝑁𝑖 = 𝑁𝑒 = 2.56×107 as the total number of particles. It becomes

more and more computationally challenging as we try to push the runs to shallow hole

limit. The two shallowest holes we have explored require 109 particles for successful hole

tracking.

Each run is examined individually to determine when exactly the hole enters steady

state motion. Steady state quantities such as hole depth and hole velocity are calculated

by taking their average value over 1000 time steps right after the steady state is reached.

Figure 3-5 gathers the results from these runs we have done using different parameters.
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𝑈 is the velocity of an electron hole in the initial rest frame of ions. Therefore, we

have 𝑈 = 𝑣ℎ − 𝑣𝑖 with our initialization process and its initial value 𝑈0 is equal to

−𝑣𝑖. 𝑣𝑝/𝑐𝑠 =
√︀

2𝑒𝜓/𝑇𝑒 is the normalized ion passing velocity at hole center, which is

proportional to the square root of hole depth.
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Figure 3-5: Steady state hole velocity in initial ion rest frame as a function of mass ratio,
steady state hole depth and initial hole velocity, solid curves in each plot are obtained
from hole momentum conservation theory.

Our hole momentum conservation theory presented in Chapter 2 predicts the hole

kinematics. The theory assumes no specific hole structure and can be applied to electron

holes in our simulation. It is our goal here to compare simulation results with our analytic

theory. For an electron hole generated from uniform density initialization, the theory

provides an explanation for the initial hole acceleration. The change in ion momentum

due to hole potential growth must be balanced by change in hole velocity. This initial

transient acceleration is governed by Equation (2.44)

−𝑚𝑒

𝑚𝑖

ℎ(
1√
2

𝑣𝑝
𝑐𝑠
)𝑈̇ − 3

4

𝑣4𝑝
𝑈4
𝑈̇ +

𝑣3𝑝
𝑈3
𝑣𝑝 = 0 , (3.8)
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where the function ℎ for holes that move slowly compared with electron thermal speed

(𝑣ℎ ≪ 𝑣th,e) is

ℎ(𝜒) = − 2√
𝜋
𝜒+

[︁
(2𝜒2 − 1)𝑒𝜒

2

erfc(𝜒) + 1
]︁
. (3.9)

Eq. (3.9) comes from the expression of electron momentum rate of change when an elec-

tron hole is present in electron distribution function and a detailed derivation can be

found in Chapter 2. 𝑣𝑝 =
√︀

2𝑒𝜙/𝑚𝑖 the ion passing velocity is a function of the growing

potential 𝜙(𝑡). The initial conditions are 𝑈(𝑡 = 0) = 𝑈0 and 𝜙(𝑡 = 0) = 0. Thus, we have

𝑈(𝑣𝑝 = 0) = 𝑈0. Eq. (3.8) can then be solved for 𝑈 as a function of 𝑣𝑝 using a standard

Runge-Kutta scheme for different initial values of 𝑈0 and mass ratio 𝑚𝑖/𝑚𝑒. Solutions are

plotted as solid lines in Figure 3-5. The theory predicts that the velocity of an electron

hole in ion rest frame follows 𝑈(𝑣𝑝) curve when its depth grows. In the lab frame, this

would mean that uniform density initialization with an ion drift velocity −𝑈0 gives rise to

a steady state hole of velocity 𝑈(𝑣𝑝)−𝑈0 when its potential grows from 0 to 𝑒𝜓 = 1
2
𝑚𝑖𝑣

2
𝑝.

Figure 3-5 shows quite good agreement between simulation results and theoretical 𝑈(𝑣𝑝)

solutions. In terms of change in hole velocity Δ𝑈 = 𝑈(𝑣𝑝)− 𝑈0, the quantitative agree-

ment between theory and simulations is within 20%. The cases where the prediction of

analytic theory deviates from simulation results are the ones with small 𝑈0. Our theory

assumes a short-transit-time approximation for ions. The transit time of ions through the

hole region needs to be much shorter than the typical acceleration timescale 𝑈/𝑈̇ . This

approximation is barely adequate when the ion velocity is slow relative to the hole and

important initial acceleration occurs, which corresponds to the runs with small 𝑈0.

The steady state hole we obtain in our simulation is a very stable coherent structure

whose amplitude hardly decays over thousands of electron plasma periods if the noise level

in the simulation is kept low by using a sufficient number of particles. Schamel derived an

analytic solution [40] for the shape of a slowly moving (𝑣ℎ ≪ 𝑣th,e) steady state electron

hole in the limit of small amplitudes (𝑒𝜓/𝑇𝑒 ≪ 1). Electron holes in our simulations

generally satisfy these two conditions. The form of this solution is given in eq. (3.1). The
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Figure 3-6: Potential and electron density profile for two steady state electron holes of
different depths and speed compared with Schamel’s analytic solution, 𝑒𝜓 = 0.23𝑇𝑒 , 𝑣ℎ =
6.9𝑐𝑠 on the left and 𝑒𝜓 = 0.05𝑇𝑒 , 𝑣ℎ = 3.8𝑐𝑠 on the right, simulation results are averaged
over 100 time steps to reduce fluctuations.

hole half width 𝐿 is given by the nonlinear dispersion relation [26]:

𝐿 =

(︂
− 32

𝑍 ′
Re(𝑣ℎ/

√
2𝑣th,e)

)︂ 1
2

𝜆De . (3.10)

𝑍Re is the real part of plasma dispersion function [87]. For |𝑥| ≪ 1,

𝑍Re(𝑥) ≈ −2𝑥

[︂
1− 2

3
𝑥2 +

4

15
𝑥4 + ...

]︂
. (3.11)

These expressions yield 𝐿 → 4𝜆De when 𝑣ℎ/𝑣th,e → 0. For 𝑣ℎ = 6.9 𝑐𝑠, 𝐿 ≈ 4.05𝜆De

by evaluating eq. (3.10). Schamel’s analytic expression and the steady state holes in our

simulation are plotted in Figure 3-6.

Analytic curves are generated with 𝐿 = 4𝜆De and the maximum of potential measured

in the simulation is taken as 𝜓. The analytic expression for electron density is derived

by taking the second derivative of Schamel’s expression for hole potential. The steady

state holes in our simulations are slightly narrower than Schamel’s analytic form and

also have a deeper dip in electron density. Nevertheless, 𝐿 ≃ 4𝜆De holds for holes

of different depths and using Schamel’s form in hole search algorithm is an acceptable

approximation and yields good performance. For the hole tracking simulation, we can
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find the electron distribution in the rest frame of an electron hole. The velocity and

position of an electron in the simulation domain are the same as their values in the hole

frame when the hole is in steady-state motion. We compare the distribution from our

simulation with Schamel’s solution. Figure 3-7 shows the value of hole-frame electron

distribution function 𝑓𝑒 as a function of total energy, ℰ = 1
2
𝑚𝑒𝑣

2 − 𝑒𝜑(𝑥), normalized to

its separatrix value 𝑓𝑠 = 𝑓∞,𝑒(0) exp(−𝑣2ℎ/2𝑣2th,e). Electrons that have negative energy in
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Figure 3-7: Electron distribution on constant energy ℰ orbit in hole frame, 𝑒𝜓 =
0.23𝑇𝑒 , 𝑣ℎ = 6.9𝑐𝑠. Dashed line is Schamel’s solution for an electron hole with the
same depth traveling at the same speed relative to bulk electrons.

hole frame are trapped and those with positive energy are passing. Schamel’s solution

[40] is given by

𝑓𝑒(𝑥, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑓∞,e(0) exp

[︃
−
𝑚𝑒(𝜎

√︀
2ℰ/𝑚𝑒 + 𝑣ℎ)

2

2𝑇𝑒

]︃
if ℰ > 0

𝑓∞,e(0) exp(−
𝑣2ℎ

2𝑣2th,e
) exp(−𝛽ℰ

𝑇𝑒
) if ℰ < 0

(3.12)

where 𝜎 = sign 𝑣 and 𝛽 is the trapped particle parameter. It can be shown that for a

slowly moving shallow hole [26], 𝛽 is given by

𝛽 ≃ 1− 15

16
𝜋1/2(𝑒𝜓/𝑇𝑒)

−1/2 . (3.13)
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For 𝑒𝜓 = 0.23𝑇𝑒, the value of 𝛽 is −2.47.

Schamel’s solution coincides with a Maxwellian distribution shifted by minus the hole

velocity −𝑣ℎ for passing electrons. In the trapped region, Schamel’s solution is Maxwell-

Boltzmann shaped. The distribution obtained from our simulation agrees with Schamel’s

solution for passing electrons; but the trapped distribution is different. The deeply

trapped orbits in our simulation are less populated than in Schamel’s solution, which

explains why the electron hole in our simulation is narrower at its center. The trapped

electron distribution in a steady-state hole is determined by its initialization. We can gen-

erate electron holes with different shapes of 𝑓trapped by changing the shape of function 𝑓𝑑

in our initialization. Our analytic kinematic theory is not affected by the exact structure

of an electron hole as it applies to generic electron holes with global charge neutrality.

Hole tracking simulation enables us to visualize directly trapped electrons in a steady

state hole. As the simulation domain is moving at the same speed as the electron hole,

electrons that are on passing orbits are quickly exchanged out of the domain and only

the ones on trapped orbits stay and travel with the solitary wave. Our simulation tracks

the step at which a particle is injected. The middle panel of Figure 3-8 shows the phase

space density of electrons from initialization 𝑓𝑒,𝑡=0 normalized to current electron phase

space density 𝑓𝑒 in a steady state hole of potential profile 𝜑(𝑥). The velocity half-width of

densely populated orbits by initial particles in phase space is around 28𝑐𝑠 at hole center,

which is approximately equal to 𝑣𝑝,𝑒 =
√︁

2𝑒𝜓
𝑚𝑒

for 𝑒𝜓 = 0.23𝑇𝑒 as expected. Trapped

orbits are therefore almost entirely populated by electrons from initialization. These

electrons are trapped from the beginning of the simulation and stay inside the simulation

domain with the hole.

In the run with a relatively high 𝑈0 (𝑈0 > 5𝑐𝑠), the ions are less perturbed by the

initial hole potential as a result of their high relative speed to the hole. This initialization

gives a smaller initial transient speed-up as shown in Figure 3-5. In this case, possible

formation of more than one electron hole from our initialization is observed. When this

happens, one principal hole is formed which is much deeper than all others. The attrac-

tion and coalescence behavior of holes with similar velocity reminiscent of the previous
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Figure 3-8: The hole potential (top panel), the relative phase space density of initial
electrons (middle panel) and the normalized electron phase space density (bottom panel)
at time 𝜔𝑝𝑒𝑡 = 2100, the hole has a lab frame velocity of 6.9𝑐𝑠, 𝑥 and 𝑣 are relative to
lab frame.
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experimental and numerical investigations [88] [89] [90] is observed in our simulations.

Our hole tracking algorithm tracks the most significant hole signal which is given by the

deeper hole. Figure 3-9 shows a case of two electron holes moving in the same direction

with similar speed for a long period of time (∼ 1000/𝜔𝑝𝑒) until they get close to one

another and subsequently their main bulk parts coalesce to one due to mutual attraction.

The smaller hole experiences “tidal” deformations [89] during the interaction and a part

of it eventually escapes. A transient increase of magnitude ∼ 0.5𝑐𝑠 is observed in the

velocity of the principal hole when it interacts with the smaller one. The interaction is

relatively smooth because of the disparities between the sizes of two holes.
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Figure 3-9: Coalescence of electron holes of different size in our simulation, a shallow
hole is followed by a much deeper one and they eventually partly coalesce. A piece of the
shallower hole is sprayed out. This run is performed with 𝑈0 = 7𝑐𝑠,𝑚𝑖/𝑚𝑒 = 1836 and the
deeper hole at the center of simulation domain has a depth of 𝑒𝜓 = 0.23𝑇𝑒, the shallower
hole has a depth of 𝑒𝜓 = 0.03𝑇𝑒.

89



III Hole pushing and pulling

One of the big advantages of the hole tracking simulation is in that it allows us to study

kinematics of an electron hole with slight deviation from its steady state without worrying

about losing it from the simulation domain. This feature enables us to probe momentum

coupling between ions and an electron hole in quasi steady state. In the theory developed

by Dupree et al., the only momentum exchange [70] between electron hole and ions is

through ion reflection by hole potential. This would imply that an electron hole can only

“feel” a change in ion momentum when ions begin to reflect from hole potential. For

beam-like ions and a shallow electron hole, this only happens when the drift velocity of

ions is within several 𝑣th,i in the rest frame of the electron hole. However, our numerical

experiments contradict this conclusion. We clearly see ion influence on electron hole

kinematics even when there are effectively zero reflected ions.

The way we investigate this problem is through applying an artificial acceleration to

ions. The acceleration is applied by adding an artificial linear background potential to the

electrostatic potential that is used to move ions but not electrons in the particle mover of

PIC code. The linear artificial potential gives rise to a constant field which accelerates ions

at a constant rate. At the same time, ions are injected from a distribution of background

ions which is accelerating at the same rate. The overall effect is that all ions experience

a constant background field in addition to the field that electrons experience. When ions

are accelerated so that their velocity approaches the hole velocity, this is called “pushing”.

The opposite case is called “pulling”. We artificially accelerate ions only after the hole

is in steady state. The value of this artificial acceleration is chosen to be on the order of

𝑐𝑠𝜔𝑝𝑒/1000. The velocity of an ion in the rest frame of a steady state hole is typically a

few times the sound speed 𝑐𝑠 in our simulation. The hole spatial width is generally a few

times 𝜆De the Debye length. The time it takes for an ion to transit through hole region

is therefore on the order of 50/𝜔𝑝𝑒. During this time, the change in ion velocity due to

this artificial background acceleration is around 0.05𝑐𝑠, which is much smaller compared

to its velocity in hole frame. This choice of artificial acceleration guarantees that short

transit-time approximation is valid for ions in these runs.
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Figure 3-10: Hole velocity response to artificial ion acceleration, 𝑇𝑒/𝑇𝑖 = 20 , 𝑒𝜓 = 0.1𝑇𝑒.
Solid line is the “pushing” run and dashed line is the “pulling” run. Dashed dot line is a
reference run where no artificial acceleration is applied.

Figure 3-10 shows the electron hole velocity evolution in our hole pushing and pulling

runs. In the pushing run, constant artificial ion acceleration is applied from 𝜔𝑝𝑒𝑡 = 1500

to 𝜔𝑝𝑒𝑡 = 3600(phase 1 ), which accelerates the drift velocity of ions from 0 to 5𝑐𝑠

in its initial rest frame. Then acceleration of the same magnitude but opposite sign is

applied from 𝜔𝑝𝑒𝑡 = 4500 until 𝜔𝑝𝑒𝑡 = 6600 (phase 2 ) to bring the ions back to their

initial velocity. The pulling run is the same except that we exchange the order of the

two acceleration phases ( 3 4 instead of 1 2 ). Contrary to what Dupree’s theory

would predict, the velocity of the electron hole changes immediately after the artificial

acceleration is applied to ions before any ions are reflected by the hole potential. Moreover,

the change in hole velocity is always in the same direction as ion acceleration. Results in

Figure 3-10 also show a strong asymmetry in pushing and pulling. For the same initial

velocity of the electron hole in ion rest frame, pushing gives larger hole velocity response

than pulling. Both pulling and pushing are reversible.

We need the theory of hole momentum conservation presented in the previous chapter
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to understand the phenomena we see in our simulations. The theory can be generally ap-

plied to cases where one or both species in plasma are subjected to a uniform background

force. Hole pushing and pulling can be described by the Equation (2.49) relating initial

and final states A and B during the process of pushing or pulling:

Δ𝑈

𝑐𝑠
=

𝑈B − 𝑈A

𝑐𝑠
=

𝑀4
𝑖𝑒

3

(︃
1

|𝑣1,B/𝑐𝑠|3
− 1

|𝑣1,A/𝑐𝑠|3

)︃
, (3.14)

where 𝑀𝑖𝑒 is the Mach number of hole velocity at which electron momentum rate magni-

tude is equal to ion momentum rate magnitude. 𝑀4
𝑖𝑒/3 is given by

𝑀4
𝑖𝑒

3
=

𝑚𝑖

𝑚𝑒

⎡⎣∫︁ 𝑥2

𝑥1

(︂
𝑒𝜑(𝑥)

𝑇𝑒

)︂2

𝑑𝑥

⧸︂∫︁ 𝑥2

𝑥1

ℎ

⎛⎝√︃𝑒𝜑(𝑥)

𝑇𝑒

⎞⎠ 𝑑𝑥

⎤⎦ . (3.15)

𝜑(𝑥) is the electron hole potential profile with 𝑥1 and 𝑥2 denoting its spatial extent (theory

assumes that 𝜑 and its derivative vanish at 𝑥1 and 𝑥2). The special function ℎ is defined

by eq. (3.9). The definitions of 𝑈A, 𝑈B, 𝑣1,A, 𝑣1,B are illustrated by arrows in Figure 3-10

for a pushing run. 𝑈 is the velocity of an electron hole in the initial rest frame of ions

and 𝑣1 is the drift velocity of ions in the hole frame.

The theory assumes that the hole does not change its shape during pushing or pulling,

so 𝑀ie is a constant for a hole of given potential. Eq. (3.14) can give us some important

insight on how pushing and pulling would behave according to the theory. First, the

influence of artificial ion acceleration on hole velocity 𝑈 is instantaneous. Any finite

change in 𝑣1 will result in change in hole velocity. Second, pushing and pulling are

asymmetric. There is no limit on how much a hole can be pushed in its velocity, while

pulling is limited by −𝑀4
𝑖𝑒/3|𝑣1,A/𝑐𝑠|3. Third, pushing and pulling are independent of

path and thus reversible. These properties agree qualitatively with what we see in our

simulations.

A quantitative comparison between the theory and our simulations is shown in Figure

3-11. The theoretical curves of Δ𝑈(𝑣1,B) shown in solid lines are calculated from eqs.

(3.14) (3.15). The reference velocity 𝑣1,A is chosen as the velocity of ions in the hole
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frame right before the artificial acceleration is applied to ions. Its value is determined by

the initialization that generates the steady state hole. The calculation of multiplication

factor 𝑀4
𝑖𝑒/3 depends on the exact hole potential profile 𝜑(𝑥). Since ℎ(𝜒) → 𝜒2 as

𝜒 → 0, the value of 𝑀4
𝑖𝑒/3 is ∼ (𝑚𝑖/𝑚𝑒)(𝑒𝜓/𝑇𝑒) for the holes in our simulations which

are relatively shallow. We use the potential output from our simulation to calculate a

more precise value. The interval [𝑥1, 𝑥2] over which the integrals are performed in eq.

(3.15) is determined with the electric field. The theory assumes that hole electric field

vanishes at its boundaries. Thus we can practically consider 𝑥1 and 𝑥2 to be the two

positions where the electric field in our simulation first changes its sign outside the hole

center. Once the electric field begins to oscillate on its thermal level, we are in background

plasma. The values of integrals in eq. (3.15) are evaluated numerically at each time step

of acceleration and its average value is used in eq. (3.14). The theory is compared with

Figure 3-11: Hole pushing and pulling runs for holes of different depths using two different
mass ratios. The value of 𝜓 is the average value during acceleration. 𝑇𝑒/𝑇𝑖 = 20 , 𝑁𝑖 =
𝑁𝑒 = 2.56× 107.

simulation results in Figure 3-11. The simulation velocity is just the hole velocity obtained

from the hole tracking algorithm. The hole velocity is filtered by a low-pass filter of cutoff
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frequency 0.005𝜔𝑝𝑒. The ions are beam-like and their drift velocity is considered to follow

the constant acceleration that is artificially applied. This assumption is adequate as the

momentum imparted by ions to electrons is a fraction smaller than ∼ 𝑚𝑒/𝑚𝑖 of the total

momentum injected by the background artificial field.

Numerical experiments show good agreement with the theory. The agreement is fur-

ther improved by including ion density variation due to hole potential in the theory. This

modified solution is plotted in dashed lines in Figure 3-11. The original theory presented

in Chapter 2 assumes no ion density perturbation in the derivation of trapped electron

density from charge balance. However, when an electron hole is pushed, the relative ve-

locity of ions in the hole frame decreases. The ion density accumulation inside the hole,

which is an ion-acoustic response attached to the hole in Saeki et al.’s terminology [75],

becomes more important as ions are slowed down by hole potential. If we account for ion

density variation to order (𝑐𝑠/𝑣1)
2(𝑒𝜑/𝑇𝑒), then ℎ(𝜒) is replaced by ℎ(𝜒)−(𝑐𝑠/𝑣1)

2(𝑒𝜑/𝑇𝑒)

in the derivation of eq. (3.14). This leads to the modified solution:

[︂
𝑈

𝑐𝑠

]︂𝐵
𝐴

= 𝑀4
𝑖𝑒

[︂
1

𝐾2(𝑣1/𝑐𝑠)
+

1

2𝐾3
ln

⃒⃒⃒⃒
𝑣1/𝑐𝑠 −𝐾

𝑣1/𝑐𝑠 +𝐾

⃒⃒⃒⃒]︂𝐵
𝐴

, (3.16)

where 𝐾 =
∫︀ 𝑥2
𝑥1

(𝑒𝜑(𝑥)/𝑇𝑒) 𝑑𝑥/
∫︀ 𝑥2
𝑥1
ℎ
(︁√︀

(𝑒𝜑(𝑥)/𝑇𝑒

)︁
𝑑𝑥 is a constant. 𝐾 is evaluated in

the same way as 𝑀4
𝑖𝑒/3 by performing numerical integration over [𝑥1, 𝑥2]. For shallow

holes, we have 𝐾 ≃ 1 as 𝑒𝜓/𝑇𝑒 ≪ 1. This correction is more important for small |𝑣1|.

In deriving function ℎ, we assume an electron hole situated near the top of the electron

distribution. This approximation is no longer adequate when a hole is pushed to an

important fraction of 𝑣𝑡ℎ,𝑒. It is also observed in our simulations that the depth and

shape of an electron hole changes slightly (< 5%) during pushing and pulling. This can

have several important implications. The derivation of eq. (3.14) assumes no change in

the hole potential. Hole growth and shrinkage will induce hole velocity change as we see

in the initial transient. This effect is ignored in our analysis. The change and fluctuations

of hole potential in our simulations also make it difficult to evaluate accurately 𝑀4
𝑖𝑒/3.

We observe 5% to 10% fluctuations in its value at different time steps. It is the average
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value that is used in Figure 3-11.

Figure 3-12: Illustration of reversibility and hysteresis in pushing and pulling. (a) Pushing,
pulling and no ion acceleration runs showing spontaneous hole velocity decay and hystere-
sis. (b) The same runs as (a) with eight times as many particles, the spontaneous velocity
decay and hysteresis are reduced by using more particles. The number of computation
cells is 1000 in these runs and the domain length is 48𝜆De across. 𝑇𝑒/𝑇𝑖 = 20 , 𝑒𝜓 = 0.1𝑇𝑒.

In hole pushing and pulling experiments, we are trying to resolve small changes in

hole velocity to the extent that statistical noise in our simulation needs to be treated

carefully. We observe slow spontaneous decay in the velocity of a steady-state hole during

long time hole tracking simulation. This effect is shown in Figure 3-12. The three runs

in plot (a) correspond to the pushing-pulling-back run( 1 2 ), the pulling-pushing-back

run ( 3 4 ) and the reference run with no artificial ion acceleration presented in Figure

3-10. Notice the decay in hole velocity even when there is no ion acceleration at all. The

change is in diagonal direction for the run with no ion acceleration because 𝑈 = −𝑣1
when ion drift velocity stays constant. The same effect in pushing and pulling runs leads

to hysteresis, which can also be seen in plot (a). This slow hole velocity decay is reduced

by using more particles in the simulation. The runs shown in the plot (b) of Figure 3-12
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exhibit less velocity decay by virtue of using more particles. Pushing-pulling process is

also more reversible, which agrees better with our theory predictions. This effect can

be explained by detrapping of trapped electrons in an electron hole due to statistical

fluctuations in the PIC simulation. The depth of an electron hole 𝑒𝜓 slowly shrinks

when the marginally trapped orbits are intermittently connected to background plasma

by fluctuating electric fields. Its velocity 𝑈 decreases as a consequence of its shrinking

size. Eq. (3.8) relates the depth of an electron hole to its velocity. For the run with no ion

acceleration shown in plot (a), the hole depth 𝑒𝜓 decreases from 0.1025𝑇𝑒 at 𝜔𝑝𝑒𝑡 = 1500

to 0.098𝑇𝑒 at 𝜔𝑝𝑒𝑡 = 7500. The decrease in hole velocity calculated from eq. (3.8) for the

amount of depth shrinkage is Δ𝑈Decay ≃ −0.1𝑐𝑠. The actual decay in velocity observed in

our simulation is Δ𝑈Decay ≃ −0.2𝑐𝑠. Though small in magnitude, this effect is important

for pulling runs as Δ𝑈Decay can be an important fraction of the predicted Δ𝑈 . By taking

into account this correction, the agreement between our theory and simulation in high

|𝑣1| limit is within ±10%.

Eq. (3.14) gives no lower limit on how small |𝑣1| can get by pushing the hole. This is

unphysical as ions will be reflected by hole potential if |𝑣1| < 𝑣𝑝,𝑖, where 𝑣𝑝,𝑖 =
√︀

2𝑒𝜓/𝑚𝑖

is the marginal ion passing velocity. The modified solution given in eq. (3.16) shows

that ions cannot approach the hole velocity closer than |𝑣1| = 𝐾𝑐𝑠 with 𝐾 > 1. In our

simulations, we observe that instability occurs before |𝑣1| can get close to this limit. Ion

density is perturbed in the case of instability and the electron hole can be disrupted if

pushed further. The exact nature of this instability is beyond the scope of this chapter.

A complete treatment of this instability is given in Chapter 4.

IV Summary

In this chapter, we introduce a new way of simulating a moving electron hole by tracking

its motion. The full dynamics of electron hole interacting with ions are studied quan-

titatively using this computer simulation technique in both transient and steady-state

regimes. We find that an electron hole generated using a uniform density initialization
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approach can be accelerated to several times the ion sound speed by initial ion density

perturbation. The final steady-state velocity reached by electron hole depends on ion-to-

electron mass ratio, hole depth and the initial hole velocity in the ion frame. Dynamical

coupling of a steady-state hole and ions is investigated by applying a slow artificial accel-

eration to ions. The velocity of an electron hole reacts instantaneously to changes in ion

momentum. An electron hole can be pushed or pulled in velocity by artificially imposed

ion acceleration. Pulling and pushing are asymmetric. Simulations are compared with

the newly developed analytic theory of hole momentum conservation. Good qualitative

and quantitative agreement is presented in this study.
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Chapter 4

Plasma electron hole velocity

oscillatory instability

The early theoretical research of electron holes (EHs) neglected the ion dynamics for

simplicity and considered them as a uniform neutralizing background [40]. Later, Saeki

et al. [75] showed using PIC simulations that an EH can be disrupted by ions when its

velocity is slower than the ion sound speed. Eliasson et al. [74] reported that a standing

EH in the ion frame can be ejected from the ion density cavity it created and is attracted to

ion density maxima. The recent observations of “slow” EHs also suggest a more important

role for the ions. EHs traveling with the ion sound speed 𝑐𝑠 have been recently reported

at a magnetic reconnection site [91] and the magnetopause [92] measured by the Cluster

spacecrafts, a velocity much slower than what was frequently observed before (∼ 𝑣th,e).

The authors suggested that Buneman instability resulting from dynamic reconnecting

current sheets generated these slow EHs. Schamel gave an upper limit [26] for the speed

of the EHs by a structural existence argument. How slow can an EH travel? Saeki et

al. [75] briefly touched upon this question by deriving the nonlinear dispersion relation

using the Sagdeev pseudo-potential method. However, the nonlinear dispersion relation is

based on the existence of a stationary solution of which the stability is not guaranteed. An

EH can experience different kinds of instabilities in higher dimensions, e.g. the whistler

instability [56] in the strongly magnetized case and the transverse instability [53] in the
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weakly magnetized case. These instability mechanisms do not involve ion dynamics. Ion-

acoustic wave radiation from a solitary structure in plasma has been studied in the case

of Langmuir soliton [93] and ion hole [94]. Dyrud et al. [76] reported the observation of

ion-acoustic waves emitted from a chain of electron holes in PIC simulations. Dokgo et

al. [95] reported the generation of coherent ion-acoustic solitary waves from an EH as it

propagates from a lower plasma density region to a higher plasma density region. In this

chapter, we show that the ion dynamics is important for the stability of an EH even in the

1-D equilibrium, causing an oscillatory velocity instability for slow electron holes to decay

into ion-acoustic waves. This discovery suggests that the solitary solutions constructed

using the Sagdeev pseudo-potential method can be unstable to small perturbations when

the ion dynamics becomes important.

The instability mechanism discussed in this chapter is closely related to the velocity,

and thus to the kinematics of an EH. The EH kinematics has been studied in Chapter

2 treating the EH as a composite object. Chapter 3 shows our theory is successful in

explaining quantitatively the dynamics of EHs observed in PIC simulations, such as the

transient self-acceleration and the “hole pushing/pulling” effect due to steady-state hole

momentum coupling to the ions. In this chapter, we extend our theory to the frequency

domain and use multiple-scale analysis to give a mathematically rigorous treatment of

the instability.

This chapter summarizes the research work that is published in reference [82]. It is

organized as follows: in Section I, we report the observational details of this instability

from our PIC simulation. In Section II, a first principle analytic calculation using hole

kinematics theory is presented, the instability boundary, unstable mode frequency and

growth rate are analytically derived and compared with the PIC simulation observation.

Section III justifies the eigenmode ansatz that we have adopted in this chapter. In Sec-

tion IV, we are going to discuss the nonlinear stage of the instability and its potential

implication in space plasma. Section V is the summary.
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I PIC observation of the instability

The simulations are performed using a 1-D electrostatic PIC code with fully kinetic ions,

which is designed to study highly-resolved EH dynamics. A solitary EH is created in

our simulation using an electron phase-space density deficit as the initial seed [81]. The

thermal noise in our PIC simulation is controlled by using more than 106 particles per cell.

There are ∼ 10 cells per Debye length to resolve the detail of an EH. We performed box

simulation of a solitary EH with an open boundary computation domain that can self-

consistently follow the EH motion [81] (also see Chapter 3). The size of the computation

domain is only ∼ 50𝜆De by virtue of using hole tracking. Our hole-tracking PIC allows

us to study the detail of hole motion with reasonable computational cost. Once a steady-

state EH is obtained in our simulation, we apply an artificial slow ion acceleration to

slowly “push” the EH with ions so that it slows down in the ion frame. This “pushing”

process has been demonstrated to be quasi steady-state and reversible [81]. We discovered

when performing these “pushing” runs that there is a limit velocity of the EH in the ion

frame, below which the EH becomes unstable. This threshold velocity is well above other

physical limits of the system such as the ion reflection velocity limit.

An example of the instability observed in our PIC simulation is presented in Figure

4-1. For this particular case, we initialized the EH with a Gaussian shaped phase-space

density deficit defined as

𝑓𝑑(𝑥, 𝑣) = ℎ𝑑 exp

(︂
−(𝑣 − 𝑣𝑑)

2

2𝜎2
𝑑

)︂
exp

(︂
− 𝑥2

2𝜆2𝑑

)︂
, (4.1)

with ℎ𝑑 = 0.9, 𝑣𝑑 = −3𝑐𝑠, 𝜎𝑑 = 0.15𝑣th,e and 𝜆𝑑 = 4𝜆De. The initial electron distribution

function is given by

𝑓𝑒(𝑥, 𝑣) =
𝑛∞√
2𝜋𝑣th,e

exp

(︃
− 𝑣2

2𝑣2th,e

)︃
1− 𝑓𝑑(𝑥, 𝑣)

1−
∫︁ +∞

−∞

1√
2𝜋𝑣th,e

exp

(︃
− 𝑣2

2𝑣2th,e

)︃
𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

. (4.2)

The normalization factor in the expression of 𝑓𝑒(𝑥, 𝑣) ensures that the initial electron
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density is spatially uniform in order to have a relatively “quiet” initialization (see Chapter

3). An EH forms after this initial electron distribution function is allowed to evolve self-

consistently as we have shown in Chapter 3. Initially, the cold ion stream of temperature

𝑇𝑖 = 𝑇𝑒/20 has a mean velocity of −10𝑐𝑠 in the lab frame. We slowly accelerate the

ions towards the EH velocity with an acceleration of 0.008𝜔𝑝𝑒𝑐𝑠 to continuously explore

different EH velocities in the ion frame. On the top left, we show the characteristic

solitary potential structure of a stable EH that extends over several Debye lengths. In

a steady-state EH, the ions are slowed down by the hole potential and their density is

slightly higher inside the EH. This ion density compressional pulse is the ion-acoustic

response attached to the phase-space EH described by Saeki et al. [75] It is clearly visible

inside the stable EH shown on the left. When the EH slows down in the ion frame,

the oscillation amplitude in its velocity begins to grow once its speed is slower than a

threshold value. The EH potential and the ion density at a later time step (𝜔𝑝𝑒𝑡 = 2925)

after the instability has grown are presented on the right for comparison. The EH keeps

its potential shape while its velocity oscillates. The down stream ion density becomes

unsteady as the velocity oscillation amplitude grows. Unsteady ion density perturbations

are emitted from the EH after the instability onset. The perturbations propagate in the

ion frame with the ion sound speed, mainly in the opposite direction to the EH velocity.

The EH velocity was obtained from the hole-tracking module in our code [81] and a low

pass filter has been applied to it to filter out the statistical noise. The “hole pushing” can

be turned off at any moment before the instability onset and the EH will enter a stable

steady-state with the same velocity, but not after the EH is slower than the threshold

velocity.

A similar phenomenon also happens in a plasma with counter-streaming ions. We

initialize 1 an EH at rest (𝑈 = 0 initially) in the lab frame on top of the electron dis-

tribution with counter-streaming ions traveling at ±𝑣𝑖 in the laboratory frame. We do

not need to apply any special technique such as the hole pushing and hole tracking. The

initialization will naturally favor the formed EH to stay at 𝑈 = 0 and we can do a regular

1This initialization corresponds to ℎ𝑑 = 1, 𝑣𝑑 = 0, 𝜎𝑑 = 0.98𝑣th,e and 𝜆𝑑 = 4𝜆De.

102



10 0 10 20 30
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

φ
[T
e
/e

] ωpet = 2400. 0

10 0 10 20 30
x [λDe]

0.90

0.95

1.00

1.05

1.10
n
i
[n
∞

] ωpet = 2400. 0

80 90 100 110 120
0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30

ωpet = 2925. 0

80 90 100 110 120
x [λDe]

0.90

0.95

1.00

1.05

1.10

ωpet = 2925. 0

2000 2200 2400 2600 2800 3000
ωpet

0
1
2
3
4
5
6
7

U
−
v i

[c
s
] Instabilitygrowth

10 5 0 5 10
xion [λDe]

2800

2850

2900

2950

3000

ω
p
e
t cs

0.99

1.00

1.01

1.02

n
i

n
∞

Figure 4-1: The hole potential (first row) and the ion density (second row) before (left)
and after (right) the instability growth. Bottom left panel shows the EH velocity in the
ion frame and the bottom right panel shows the ion density perturbations due to the EH
and the instability. The bulk electrons are Maxwellian at rest in the laboratory frame
and 𝑇𝑒/𝑇𝑖 = 20.

box simulation of the EH with a static domain. We observe that there is a minimum

value of 𝑣𝑖 below which the system is unstable. A case of the observed instability is shown

in Figure 4-2. The self-consistently formed EH is unstable. Perturbations in its veloc-

ity grow exponentially. Ion-acoustic perturbations grow and are emitted from both sides

of the EH because the ions are counter-streaming. The simulation was performed with

warm ions 𝑇𝑖 = 𝑇𝑒, corresponding to a case where ion-acoustic waves are strongly Landau

damped, ion counter-streaming type of instability and Buneman instability are ruled out

by the simulation parameter setting. For this particular case shown in Figure 4-2, using

a slightly higher 𝑣𝑖 = 7𝑐𝑠 can stabilize the instability. We shall see later in Section II that

from the stability point of view, the counter-streaming ion case is equivalent to the single

ion stream case.

We have repeated the numerical experiments with different parameter settings. It is

observed that for the same EH, the instability only depends significantly on the relative
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Figure 4-2: The hole potential (first row) and the ion density (second row) before (left)
and after (right) the instability growth in a plasma with counter-streaming ions. Bottom
left panel shows the EH velocity and the bottom right panel shows the ion distribution
function with counter-streaming Maxwellians. The ion streams have an average velocity
of ±6.7𝑐𝑠 and 𝑇𝑖 = 𝑇𝑒. The bulk electrons are Maxwellian at rest in the lab frame.

velocity between the EH and the ions 𝑈 − 𝑣𝑖. The EH velocity with respect to the

bulk electrons 𝑈 and the relative velocity drift between the ions and the bulk electrons

𝑣𝑖 alone have no significant influence on the instability onset and its growth. We have

performed simulations with an electron-to-ion temperature ratio 𝑇𝑒/𝑇𝑖 from 20 down to

0.5. We observe that this velocity instability clearly persists in the regime 𝑇𝑒 ≤ 𝑇𝑖, where

ion-acoustic type of instability is unexpected. A hotter ion population leads to a higher

threshold value of 𝑈 − 𝑣𝑖 and damped ion-acoustic wings. We shall discuss the finite ion

temperature effect on the instability in detail in Section II.

It is clear that a self-consistent solitary solution with a complete ion response can

be constructed in the case of instability using the Sagdeev pseudo potential or the BGK

approach. Our PIC code actually does this by solving Poisson’s equation numerically.

However, once this steady-state solitary solution is allowed to evolve in time, it becomes

unstable. The characteristics of this instability does not fit into any existing linear plasma
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stability theory. The core of this problem is very nonlinear because of the strong par-

ticle trapping nonlinearity in the EH. We need to adopt a new approach to analyze its

mechanism.

II Hole velocity stability deduced from kinematics

II.1 Frequency response of the momentum rate of change

To analyze this instability, we first consider the steady-state solution of an EH. The

steady-state EH potential 𝜑(𝑥) is considered to extend from 𝑥𝑎 to 𝑥𝑏 in the hole frame,

with 𝑥𝑎 and 𝑥𝑏 taken to be far away from the center of the hole so that both 𝜑(𝑥) and

its derivatives vanish at these limits: 𝜑(𝑥𝑎) = 𝜑(𝑥𝑏) = 𝜑′(𝑥𝑎) = 𝜑′(𝑥𝑏) = 0. The ions

and the bulk electrons are assumed to be Maxwellian at rest in the lab frame with their

background density being denoted by 𝑛∞. The EH moves at a velocity 𝑈 in the lab frame.

The sign convention is such that 𝑈 < 0. We first adopt a cold beam approximation for ions

and the finite ion temperature effect will be treated later on in this chapter. The distance

is normalized to 𝜆De, 𝜑 is measured in 𝑇𝑒/𝑒, the velocity is in units of 𝑐𝑠 =
√︀
𝑇𝑒/𝑚𝑖 and

the time is normalized to 1/𝜔𝑝𝑖. The schematic of a steady-state EH is shown in Figure

4-3. The steady-state velocity and density of the ions in the hole frame can be derived

from conservation of energy and the continuity equation:

⎧⎪⎪⎨⎪⎪⎩
𝑣0(𝑥) = − 𝑈

|𝑈 |
√︀
𝑈2 − 2𝜑(𝑥)

𝑛0(𝑥) = 𝑛∞
|𝑈 |√︀

𝑈2 − 2𝜑(𝑥)

(4.3)

In Chapter 2, we have established that the motion of an EH is governed by the mo-

mentum conservation when acceleration or growth are steady. The parallel momentum

contained in the electromagnetic field can be ignored for a field-aligned solitary electro-

static structure. The momentum balance is between the two components of the plasma:

𝑃̇𝑖 + 𝑃̇𝑒 = 0, where 𝑃̇𝑖/𝑒 represents the total inertial-frame momentum rate of change for

the two species. Here we extend the analysis to oscillatory acceleration or the frequency
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Figure 4-3: Schematic of a steady-state EH with the associated phase-space structure and
the ion response. Top: EH potential, middle: electron phase space orbits, the trapped
orbits are shaded. Bottom: the steady-state ion velocity 𝑣0 and density 𝑛0 in the hole
frame.

domain. To a first approximation, we are going to assume that the EH potential 𝜑(𝑥)

in the hole frame does not change and there is a small perturbation in the hole velocity

represented by 𝑈̇ ∼ Re(exp[−𝑖𝜔𝑡]). Our ansatz corresponds to an eigenmode which re-

sults in a displacement of the steady-state equilibrium. It is sometimes referred to as the

Goldstone mode of a soliton solution [96]. This ansatz of eigenmode is justified through a

linearized Vlasov-Poisson approach in Section III. The frequency 𝜔 we consider is much

lower than the average passing electron transit frequency. The passing electrons feel a

nearly constant hole acceleration during their transit (this amounts to a short-transit-time

approximation for electrons), so that we can use the previous expression of 𝑃̇𝑒 in Chapter

2 for 𝑈 ≪ 𝑣𝑡ℎ,𝑒 with a full ion response correction

𝑃̇𝑒 = −𝑚𝑒𝑈̇𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) + 1− |𝑈 |√︀

𝑈2 − 2𝜑(𝑥)
𝑑𝑥, (4.4)
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where ℎ(𝜒) = − 2√
𝜋
𝜒 + (2𝜒2 − 1)𝑒𝜒

2
erfc(𝜒) + 1. The ion response correction accounts

for the ion density accumulation inside the EH. The exact shape of the trapped electron

distribution does not appear in our approach. The total number of trapped electrons

inside the EH is deduced from global charge neutrality of the solitary structure. Our

ansatz treats the trapped electron phase-space structure as a holistic object.

The ions however feel an oscillating potential when they transit the hole region. The

ion momentum change can be decomposed into two different terms, a momentum outflow

term 𝑃̇𝑖𝑜 at the boundaries and a contained momentum term 𝑃̇𝑖𝑐. The conservation of

momentum needs to be evaluated at a fixed time. Let subscripts 𝑠 and 𝑓 refer to the

starting time and the final time, 𝑎 and 𝑏 refer to the positions 𝑥𝑎 and 𝑥𝑏 in the hole frame

and bar denote velocities in the inertial frame (the unbarred velocities are evaluated in

the hole frame, notice that prime was adopted to denote the inertial frame quantity in

Chapter 2). An ion particle enters the control volume at 𝑥𝑎 when 𝑡 = 𝑡𝑠 exits at 𝑥𝑏 when

𝑡 = 𝑡𝑓 . At 𝑡 = 𝑡𝑓 , we have therefore

𝑃̇𝑖𝑜
𝑚𝑖

= 𝑛𝑏𝑓𝑣𝑏𝑓𝑣𝑏𝑓 − 𝑛𝑎𝑓𝑣𝑎𝑓𝑣𝑎𝑓

= 𝑛𝑏𝑓𝑣𝑏𝑓𝑣𝑏𝑓 − 𝑛𝑏𝑓𝑣𝑏𝑓𝑣𝑎𝑓 + 𝑛𝑏𝑓𝑣𝑏𝑓𝑣𝑎𝑓 − 𝑛𝑎𝑓𝑣𝑎𝑓𝑣𝑎𝑓

= 𝑛𝑏𝑓𝑣𝑏𝑓 (𝑣𝑏𝑓 − 𝑣𝑎𝑓 ) + (𝑛𝑏𝑓𝑣𝑏𝑓 − 𝑛𝑎𝑓𝑣𝑎𝑓 )𝑣𝑎𝑓 .

(4.5)

The term 𝑣𝑏𝑓 − 𝑣𝑎𝑓 represents the “jetting” effect [80] due to the hole acceleration. In the

comoving frame of the EH, the equation of motion of a single ion particle admits a first

integral
1

2
𝑣2 + 𝜑(𝑥) +

∫︁
𝑈̇𝑣 𝑑𝑡 = Constant. (4.6)

Applying this conservation law between the time 𝑡𝑠 and 𝑡𝑓 , we have

𝑣2𝑏𝑓 − 𝑣2𝑎𝑠 + 2

∫︁ 𝑡𝑓

𝑡𝑠

𝑈̇𝑣 𝑑𝑡 = 0. (4.7)

The equilibrium velocity for 𝑈̇ = 0 is 𝑣0(𝑥) = − 𝑈
|𝑈 |

√︀
𝑈2 − 2𝜑(𝑥). The idea is to do an

expansion around the equilibrium orbit. Perturbation expansion gives 𝑣 = 𝑣0 + 𝑣1 and
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|𝑣1|/|𝑣0| ∼ |𝑡𝑎𝑏𝑈̇/𝑈 | ≪ 1 where 𝑡𝑎𝑏 = 𝑡𝑓− 𝑡𝑠 is the single ion transit time. In principle, the

amplitude of the hole acceleration can be made arbitrarily small to satisfy this ordering.

To leading order in the small parameter 𝑡𝑎𝑏𝑈̇/𝑈 , we expand the difference between the

ion velocity exiting and entering the hole region 𝑣𝑏𝑓 − 𝑣𝑎𝑠

𝑣𝑏𝑓 − 𝑣𝑎𝑠 =
−2

𝑣𝑏𝑓 + 𝑣𝑎𝑠

∫︁ 𝑡𝑓

𝑡𝑠

𝑈̇𝑣 𝑑𝑡

≃
∫︁ 𝑥𝑏

𝑥𝑎

𝑈̇(𝑡(𝑥, 𝑥𝑏))

𝑈
𝑑𝑥.

(4.8)

where 𝑡(𝑥, 𝑥𝑏) = 𝑡𝑓 −
∫︀ 𝑥𝑏
𝑥

𝑑𝑢
𝑣(𝑢)

is an intermediate time. To keep notations simple, we will

omit its explicit form while keeping in mind that unless stated otherwise, 𝑈̇ and 𝑣 are

evaluated when the considered ion particle is at the position indicated by the dummy

variable of the integration. Taking into account the change in the hole velocity between

𝑡𝑠 and 𝑡𝑓 , we have

𝑣𝑏𝑓 − 𝑣𝑎𝑓 = 𝑣𝑏𝑓 − 𝑣𝑎𝑠 +

∫︁ 𝑡𝑓

𝑡𝑠

𝑈̇ 𝑑𝑡

≃
∫︁ 𝑥𝑏

𝑥𝑎

(
1

𝑈
+

1

𝑣0
)𝑈̇ 𝑑𝑥.

(4.9)

Thus we have obtained the “jetting” effect due to the acceleration of the EH to the

relevant order and the first term in Eqn. (4.5) can be evaluated as

𝑛𝑏𝑓𝑣𝑏𝑓 (𝑣𝑏𝑓 − 𝑣𝑎𝑓 ) ≃ 𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

(−1− 𝑈

𝑣0
)𝑈̇ 𝑑𝑥. (4.10)

To calculate the second term in Eqn. (4.5), we need to know how the ion flux changes

with 𝑈̇ . We apply the continuity of an ion fluid element from 𝑥𝑎 to 𝑥𝑏

𝑛𝑎𝑠𝑣𝑎𝑠𝛿𝑡𝑎𝑠 = 𝑛𝑏𝑓𝑣𝑏𝑓𝛿𝑡𝑏𝑓 , (4.11)

where 𝛿𝑡𝑎𝑠 and 𝛿𝑡𝑏𝑓 are two infinitesimal time durations for the same ion fluid element to

enter and exit the control volume. They are related by the derivative of transit time 𝑡𝑎𝑏
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with respect to the starting time 𝑡𝑠: 𝛿𝑡𝑏𝑓 ≃ 𝛿𝑡𝑎𝑠(1 +
𝑑𝑡𝑎𝑏
𝑑𝑡𝑠

). Thus, to leading order,

𝑛𝑏𝑓𝑣𝑏𝑓 − 𝑛𝑎𝑓𝑣𝑎𝑓 = 𝑛𝑏𝑓𝑣𝑏𝑓 − 𝑛𝑏𝑓𝑣𝑏𝑓
𝛿𝑡𝑏𝑓
𝛿𝑡𝑎𝑠

𝑣𝑎𝑓
𝑣𝑎𝑠

= 𝑛𝑏𝑓𝑣𝑏𝑓

[︂
1− 𝛿𝑡𝑏𝑓

𝛿𝑡𝑎𝑠
(1 +

𝑣𝑎𝑓 − 𝑣𝑎𝑠
𝑣𝑎𝑠

)

]︂
≃ 𝑛𝑏𝑓𝑣𝑏𝑓 (−

𝑑𝑡𝑎𝑏
𝑑𝑡𝑠

− 𝑣𝑎𝑓 − 𝑣𝑎𝑠
𝑣𝑎𝑠

),

(4.12)

where we used the constancy of inflow density 𝑛𝑎𝑠 = 𝑛𝑎𝑓 = 𝑛∞ and that 𝑑𝑡𝑎𝑏/𝑑𝑡𝑠 is of the

same order as (𝑣𝑎𝑓 − 𝑣𝑎𝑠)/𝑣𝑎𝑠. The derivative 𝑑𝑡𝑎𝑏/𝑑𝑡𝑠 describes the non-constancy of the

ion transit time due to the hole acceleration. It can be evaluated to the first order using

𝑡𝑎𝑏 =
∫︀ 𝑥𝑏
𝑥𝑎

𝑑𝑥
𝑣
and the conservation law of Eqn. (4.6)

𝑑𝑡𝑎𝑏
𝑑𝑡𝑠

=
𝑑

𝑑𝑡𝑠

∫︁ 𝑥𝑏

𝑥𝑎

1

𝑣
𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

− 1

𝑣3
𝜕(𝑣2/2)

𝜕𝑡𝑠

⃒⃒⃒⃒
𝑥

𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

− 1

𝑣3
𝜕

𝜕𝑡𝑠

⃒⃒⃒⃒
𝑥

(︂
𝑣2𝑎𝑠/2− 𝜑(𝑥)−

∫︁ 𝑥

𝑥𝑎

𝑈̇ 𝑑𝑥1

)︂
𝑑𝑥

≃
∫︁ 𝑥𝑏

𝑥𝑎

1

𝑣3
[−𝑈𝑈̇(𝑡𝑠) +

∫︁ 𝑥

𝑥𝑎

𝑈̈ 𝑑𝑥1] 𝑑𝑥.

(4.13)

𝑈̈ is the rate of change of hole acceleration, or the jerk, evaluated when the ion particle is

at 𝑥1. We used interchangeably 𝜕/𝜕𝑡𝑠 and 𝜕/𝜕𝑡 as 𝑑𝑡 = 𝑑𝑡𝑠(1 +𝒪(𝑡𝑎𝑏𝑈̇/𝑈)) for 𝑥1 fixed.

We can further get rid of the 𝑈̇(𝑡𝑠) term in Eqn. (4.13) performing integration by parts

𝑈̇(𝑡𝑠)−
1

𝑈

∫︁ 𝑥

𝑥𝑎

𝑈̈ 𝑑𝑥1 = 𝑈̇(𝑡𝑠)−
1

𝑈

∫︁ 𝑥

𝑥𝑎

𝑣 𝑑𝑈̇

≃ 𝑈̇(𝑡𝑠)−
[︂
𝑈̇(𝑡)𝑣0(𝑥)

𝑈
− 𝑈̇(𝑡𝑠)𝑣0(𝑥𝑎)

𝑈

]︂
+

1

𝑈

∫︁ 𝑥

𝑥𝑎

𝑈̇
𝑑𝑣0
𝑑𝑥1

𝑑𝑥1

≃ − 𝑈̇(𝑡)𝑣0(𝑥)
𝑈

− 1

𝑈

∫︁ 𝑥

𝑥𝑎

𝑈̇𝜑′(𝑥1)

𝑣0(𝑥1)
𝑑𝑥1.

(4.14)

We used here 𝑑𝑣0/𝑑𝑥1 = −𝜑′/𝑣0, where 𝜑
′ is the spatial derivative of 𝜑. Combining Eqns.

109



(4.13) and (4.14), we can evaluate the right hand side of Eqn. (4.12) as

𝑛𝑏𝑓𝑣𝑏𝑓 (−
𝑑𝑡𝑎𝑏
𝑑𝑡𝑠

− 𝑣𝑎𝑓 − 𝑣𝑎𝑠
𝑣𝑎𝑠

) ≃ 𝑛∞(−𝑈)
∫︁ 𝑥𝑏

𝑥𝑎

− 1

𝑣30

[︂
− 𝑈𝑈̇(𝑡𝑠) +

∫︁ 𝑥

𝑥𝑎

𝑈̈ 𝑑𝑥1

]︂
− 1

𝑈

𝑈̇

𝑣0
𝑑𝑥

≃ 𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈2

𝑣30

[︂
𝑈̇𝑣0
𝑈

+
1

𝑈

∫︁ 𝑥

𝑥𝑎

𝑈̇𝜑′

𝑣0
𝑑𝑥1

]︂
+
𝑈̇

𝑣0
𝑑𝑥

= 𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈

𝑣20
𝑈̇ +

𝑈

𝑣30

(︂∫︁ 𝑥

𝑥𝑎

𝑈̇𝜑′

𝑣0
𝑑𝑥1

)︂
+
𝑈̇

𝑣0
𝑑𝑥.

(4.15)

We choose the inertial frame as the instantaneous rest frame of the EH so that 𝑣𝑎𝑓 =

𝑣𝑎𝑓 ≃ −𝑈 , we have a final expression for the total rate of momentum outflow by using

Eqns. (4.10) and (4.15). It is first order in 𝑡𝑎𝑏𝑈̇/𝑈 , thus linear in 𝑈̇

𝑃̇𝑖𝑜 = 𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

(−1− 2
𝑈

𝑣0
− 𝑈2

𝑣20
)𝑈̇ − 𝑈2

𝑣30

(︂∫︁ 𝑥

𝑥𝑎

𝑈̇𝜑′

𝑣0
𝑑𝑥1

)︂
𝑑𝑥. (4.16)

Now we proceed to calculate the rate of change of ion momentum contained inside the

control volume between 𝑥𝑎 and 𝑥𝑏 in the same inertial frame at 𝑡 = 𝑡𝑓

𝑃̇𝑖𝑐 = 𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕(𝑛𝑣)

𝜕𝑡
𝑑𝑥+𝑚𝑖𝑈̇

∫︁ 𝑥𝑏

𝑥𝑎

𝑛 𝑑𝑥. (4.17)

The derivation of 𝑃̇𝑖𝑐 is similar in spirit to what we have shown for 𝑃̇𝑖𝑜 but involves heavier

algebra, we leave it to the Appendix B. The final result which is the same order as 𝑃̇𝑖𝑜 in

Eqn. (4.16) can be expressed as

𝑃̇𝑖𝑐 = −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝑈

𝑣30

∫︁ 𝑥1

𝑥𝑎

𝑈̇(𝑡(𝑥2, 𝑥))𝜑
′′(𝑥2) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥. (4.18)

We combine Eqs. (4.16) and (4.18) to give a full expression for 𝑃̇𝑖 = 𝑃̇𝑖𝑜 + 𝑃̇𝑖𝑐. The

conservation of total momentum gives an eigenmode equation for 𝜔:

𝑃̇𝑖(𝜔) + 𝑃̇𝑒(𝜔) = 0. (4.19)

The imaginary part of 𝜔 determines the stability of the corresponding eigenmode.We
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apply Nyquist stability analysis [97] to determine the stability.

The equation can be rewritten as 𝑃̇𝑖/𝑃̇𝑒+1 = 0, where 𝑃̇𝑖/𝑃̇𝑒 is given by a long integral

expression

𝑃̇𝑖

𝑃̇𝑒
(𝜔, 𝑈, 𝜑) =− 𝑚𝑖

𝑚𝑒

[︂ ∫︁ 𝑥𝑏

𝑥𝑎

(︂
−1− 2

𝑈

𝑣0(𝑥)
− 𝑈2

𝑣20(𝑥)

)︂
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥

−
∫︁ 𝑥𝑏

𝑥𝑎

𝑈2

𝑣30(𝑥)

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1)

𝑣0(𝑥1)
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥1

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥1 𝑑𝑥

−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝑈

𝑣30(𝑥1)

∫︁ 𝑥1

𝑥𝑎

exp

(︂
𝑖𝜔

∫︁ 𝑥

𝑥2

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝜑′′(𝑥2) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

]︂
⧸︂(︃∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) + 1− |𝑈 |√︀

𝑈2 − 2𝜑(𝑥)
𝑑𝑥

)︃
.

(4.20)

𝑃̇𝑖/𝑃̇𝑒 can be expanded to give a much simpler form in the limit where the ion kinetic

energy in the hole frame is much greater than their electrostatic potential energy 𝑈2 ≫ 2𝜓

with 𝜓 being the maximum of 𝜑. This approximation is very well satisfied at the onset

of instability observed in our simulation. The leading term of the expanded form is

𝑃̇𝑖

𝑃̇𝑒
(𝜔, 𝑈, 𝜑) ≃ −𝑚𝑖

𝑚𝑒

𝜓2

𝑈4

4𝑖
𝜔

𝑈
𝐼
(︁𝜔
𝑈

)︁
+ 𝑖

𝜔2

𝑈2
𝐼 ′
(︁𝜔
𝑈

)︁
− 3𝐼0∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥))− 𝜑(𝑥)

𝑈2
𝑑𝑥

, (4.21)

where

𝐼0 =

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥, (4.22)

𝐼
(︁𝜔
𝑈

)︁
=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑦

𝑥𝑎

𝜑(𝑥)𝜑(𝑦) exp

[︂
𝑖
𝜔(𝑥− 𝑦)

𝑈

]︂
𝑑𝑥 𝑑𝑦, (4.23)

with 𝜑(𝑥) = 𝜑(𝑥)/𝜓 being the normalized potential profile function. This leading term

is second order in the small expansion parameter 2𝜓/𝑈2. The details of this expansion

are given in Appendix C. Both the full expression and the leading order expansion of

𝑃̇𝑖/𝑃̇𝑒(𝜔) can be evaluated numerically for real frequencies 𝜔 using for example the widely

cited Schamel type of EH potential 𝜑(𝑥) = 𝜓 sech4(𝑥/4). In the evaluation, we use the
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sign convention that 𝑥𝑎 is −∞ and 𝑥𝑏 is +∞ in the hole frame. The resulting contours

are plotted in the panel (a) of Figure 4-4. The number of encirclements of the point −1

in the complex plane by the 𝑃̇𝑖/𝑃̇𝑒(𝜔) contour gives the number of unstable 𝜔 solutions

to the eigenmode Eqn. (4.19). There is a critical speed 𝑈𝑐 for |𝑈 | below which the system

is unstable. The leading order term is within a few percent of the full expression at the

onset of instability. From now on, we will work with the leading order term instead of

the full expression for the purpose of studying this instability. This approximation makes

the mathematics much more tractable. Our analysis is general and can be applied to any

type of equilibrium EH potential, including but not limited to Schamel type of EHs.

The 𝑃̇𝑖/𝑃̇𝑒(𝜔) contour is essential to the study of this instability. We are going to

take advantage of its scaling property to solve for the critical speed 𝑈𝑐. To simplify the

notation, we introduce two auxiliary functions 𝐹 and 𝐺 defined as

𝐹 (
𝜔

𝑈
) = 4𝑖

𝜔

𝑈
𝐼(
𝜔

𝑈
) + 𝑖

𝜔2

𝑈2
𝐼 ′(

𝜔

𝑈
)− 3𝐼0, (4.24)

𝐺(𝑈) =
𝑚𝑒

𝑚𝑖

1

𝜓2

[︂
𝑈4

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) 𝑑𝑥− 𝑈2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥

]︂
. (4.25)

We have therefore

𝑃̇𝑖

𝑃̇𝑒
(𝜔, 𝑈) = −

𝐹 (
𝜔

𝑈
)

𝐺(𝑈)
. (4.26)

We look for the critical speed 𝑈𝑐 for a given equilibrium hole potential 𝜑 such that the

𝑃̇𝑖/𝑃̇𝑒(𝜔) contour crosses the point −1 in the complex plane. 𝐹 depends on 𝑈 through

𝜔/𝑈 , it gives the same contour for different 𝑈 values when 𝜔 is evaluated on the real axis,

although at different 𝜔 values. While 𝐹 is a complex-valued function, function 𝐺 only

takes real values. 𝑈 scales the size of the 𝑃̇𝑖/𝑃̇𝑒(𝜔) contour through 𝐺. This property is

demonstrated in Figure 4-4. The identical 𝐹 (𝜔/𝑈) contour for different values of 𝑈 using

a Schamel type of EH potential is shown in the panel (b) of Figure 4-4. We denote its

intersection with the positive real axis by 𝐶(𝜑). The existence of this intersection 𝐶(𝜑) is

guaranteed for a general class of admissible hole potential 𝜑(𝑥), which we will show later

in this chapter. The critical speed 𝑈𝑐, below which the system is unstable, satisfies an
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Figure 4-4: (a): 𝑃̇𝑖/𝑃̇𝑒 evaluated on the real axis for 𝜑 = 0.23 sech4(𝑥/4) ,𝑚𝑖/𝑚𝑒 = 1836
and three different hole speeds. 𝑃̇𝑖/𝑃̇𝑒(𝜔)+1 = 0 has two unstable zeros when |𝑈 | < 𝑈𝑐 =
4.6𝑐𝑠 here. (b): 𝐹 (𝜔/𝑈) function defined in Eqn. (4.24) evaluated for 𝜔 on the real axis
using 𝜑(𝑥) = sech4(𝑥/4). 𝐹 contour is invariant for different hole velocity 𝑈 .

equation

− 𝐶(𝜑)

𝐺(−𝑈𝑐)
= −1. (4.27)

The above equation gives a quadratic equation in 𝑈2
𝑐

𝑈4
𝑐

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) 𝑑𝑥− 𝑈2

𝑐

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥− 𝜓2𝑚𝑖

𝑚𝑒

𝐶(𝜑) = 0. (4.28)

The unique real and positive solution of 𝑈2
𝑐 is

𝑈2
𝑐 =

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥+

√︃(︂∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥

)︂2

+ 4𝜓2
𝑚𝑖

𝑚𝑒

𝐶(𝜑)

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) 𝑑𝑥

2

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) 𝑑𝑥

. (4.29)

Now we calculate the oscillation frequency of the unstable eigenmode. At marginal

instability, the 𝑃̇𝑖/𝑃̇𝑒(𝜔) contour crosses −1. We need to find the frequency for which this
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crossing happens. The imaginary part of 𝑃̇𝑖/𝑃̇𝑒 is

Im

(︃
𝑃̇𝑖

𝑃̇𝑒
(𝜔)

)︃
= −

Im
(︁
𝐹 (

𝜔

𝑈
)
)︁

𝐺(𝑈)
, (4.30)

where

Im
(︁
𝐹 (

𝜔

𝑈
)
)︁

= 4
𝜔

𝑈
Re
(︁
𝐼(
𝜔

𝑈
)
)︁
+
𝜔2

𝑈2
Re
(︁
𝐼 ′(

𝜔

𝑈
)
)︁
. (4.31)

To calculate the imaginary part of 𝑃̇𝑖/𝑃̇𝑒, we need to evaluate Re(𝐼( 𝜔
𝑈
)). It can be shown

by taking 𝑥𝑎 and 𝑥𝑏 to infinity that

Re
(︁
𝐼(
𝜔

𝑈
)
)︁

=
1

2

(︂∫︁ ∞

−∞
𝜑(𝑥) exp

(︁
𝑖
𝜔

𝑈
𝑥
)︁
𝑑𝑥

)︂(︂∫︁ ∞

−∞
𝜑(𝑦) exp

(︁
−𝑖 𝜔
𝑈
𝑦
)︁
𝑑𝑦

)︂
=

1

2
Φ̃(
𝜔

𝑈
)2,

(4.32)

where Φ̃ is the modulus of the Fourier transform of 𝜑. Thus Im(𝑃̇𝑖/𝑃̇𝑒)(𝜔) = 0 gives

Im
(︁
𝐹 (

𝜔

𝑈
)
)︁

≡ 𝜔

𝑈
Φ̃(
𝜔

𝑈
)
[︁
2Φ̃(

𝜔

𝑈
) +

𝜔

𝑈
Φ̃′(

𝜔

𝑈
)
]︁
= 0 (4.33)

Eqn. (4.33) admits three real solutions for 𝜔, one is the trivial 𝜔 = 0, the other two

solutions are given by the equation

−
Φ̃′(

𝜔

𝑈
)

2Φ̃(
𝜔

𝑈
)
=

1

𝜔/𝑈
. (4.34)

Since 𝜑 is real, we have Φ̃ is an even function and Eqn. (4.34) gives two solutions that

have the opposite sign. We define the positive 𝜔 solution of Eqn. (4.34) as 𝜔0 and a

length scale 𝐿

𝐿 ≡ |𝑈 |
𝜔0

. (4.35)

The 𝑃̇𝑖/𝑃̇𝑒 contour crosses the real axis at frequency 𝜔0 for a given EH potential 𝜑 and 𝑈 .

𝐿 is the characteristic length of the EH and it is entirely determined by the EH potential

shape 𝜑. At the onset of instability, we have 𝑃̇𝑖/𝑃̇𝑒(𝜔0(𝑈𝑐),−𝑈𝑐) = −1, 𝜔0 evaluated for

114



the critical speed 𝑈𝑐 is therefore the angular frequency of the initially growing unstable

eigenmode. We define this frequency as

𝜔𝑐 ≡ 𝜔0(𝑈𝑐) ≡ 𝑈𝑐
𝐿
. (4.36)

It is the critical ion transit frequency through the hole potential. The frequency of the

growing oscillation corresponds to a physical frequency of the system.

The existence of this critical frequency 𝜔𝑐 and the crossing point 𝐶(𝜑) are guaranteed

by the continuous differentiablility of the EH potential 𝜑(𝑥). A physical EH potential 𝜑(𝑥)

should possess a second derivative as it satisfies Poisson’s equation 𝜑′′(𝑥)+𝜌(𝑥)/𝜖0 = 0, and

a physical 𝜌(𝑥) should have bounded variation. This smoothness requirement constrains

the asymptotic behavior of its Fourier transform. Function Φ̃(𝑝) decays at least as fast as

𝑝−3 when 𝑝 → ∞ [98]. Thus we have −Φ̃′(𝑝)/2Φ̃(𝑝) = −1
2
𝑑 ln(Φ̃(𝑝))/𝑑𝑝 ≥ 3/2𝑝 > 1/𝑝 as

𝑝 → ∞. While as 𝑝 → 0, we have −Φ̃′(𝑝)/2Φ̃(𝑝) → −Φ̃′(0)/2Φ̃(0) ≪ 1/𝑝. Solutions are

guaranteed for Eqn. (4.34). The behavior of the 𝐹 contour is as follows. As 𝜔/𝑈 → 0+,

we have Re(𝐹 (𝜔/𝑈)) → −3𝐼0 < 0 and Im(𝐹 (𝜔/𝑈)) → 0+. Asymptotic analysis as

𝜔/𝑈 → +∞ gives Re(𝐹 (𝜔/𝑈)) → 0+ and Im(𝐹 (𝜔/𝑈)) → 0−. In other words, with

𝜔/𝑈 increasing from 0 to infinity, the 𝐹 contour starts from a point on the negative real

axis, goes into the upper half plane, crosses the positive real axis at 1/𝐿 and returns to

zero. The crossing point 𝐶(𝜑) shown in Figure 4-4(b), which is crucial to this instability,

is an universal feature for all physically admissible hole potentials 𝜑(𝑥) and we have

𝐶(𝜑) = 𝐹 (1/𝐿). Contours without a crossing can be obtained only from unphysical hole

shapes. For example, 𝜑 = exp(−|𝑥|/𝜆) does not give a crossing point and is therefore

stable; but it is unphysical, as the electric field is undefined at 𝑥 = 0.

Having obtained the analytic solution for the critical speed and the unstable oscil-

lation frequency, we now compare these results with our PIC observations. The hole

pushing technique enables us to explore continuously the EH velocity in the ion frame.

We performed a series of runs with different initialization to create EHs of different sizes.

Then we determined the critical speed 𝑈𝑐 by inspecting the onset of unstable velocity

oscillations as the hole speed is decreased. It is compared with the threshold speeds ob-
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Figure 4-5: The critical values of hole speed in the ion frame below which the instability
occurs for different sized EHs and two different mass ratios. The theoretical stability
boundaries (𝛾 = 0) and the 𝛾 = 0.1 growth rate boundaries for Schamel type of EHs
𝜑(𝑥) = 𝜓 sech4(𝑥/4) are plotted as reference lines. The observational data point and the
numerical calculation of the same 𝜓 correspond to the same run. The ion reflection limit
is much lower than the instability threshold, hence our approximation 𝑈2 ≫ 2𝜓 is well
satisfied. All the PIC runs have 𝑇𝑒/𝑇𝑖 = 20.

tained by solving the Nyquist stability problem numerically using the 𝜑(𝑥) right before

the instability onset from the same run. The electrostatic potential output 𝜑(𝑥) from

our PIC simulation is used to construct the 𝐹 contour numerically from Eqn. (4.24) and

find its crossing point 𝐶(𝜑). We use the formula for 𝑈𝑐 in Eqn. (4.29) to calculate its

predicted value. This method takes into account the exact potential shape of the EH in

our PIC simulation which is different from one run to another 2. The results are presented

in Figure 4-5. The solid lines are obtained using Eqn. (4.29) assuming a Schamel type of

2Our hole-tracking PIC simulation produces relatively low-noise and highly resolved EH potential.
We applied some post processing to the PIC potential output to make the numerical calculation more
accurate. In our analysis, 𝜑(𝑥) is considered to fall to zero far away from the hole center. However, there
is always some non-zero intrinsic statistical noise in the PIC simulation. In post processing, we find the
positions where the electric field first becomes zero outside the hole center and consider them to be the
limits of the hole spatial extent. The values of 𝜑(𝑥) beyond these limits are forced to decay to zero by
multiplying a Debye decaying exponential to them. We use this slightly smoothed 𝜑(𝑥) in our numerical
calculation of 𝑈𝑐.
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Figure 4-6: The oscillations seen in our simulation are Fourier analyzed to extract its
main frequency for the first few periods of unstable oscillations. The uncertainty in the
theoretically predicted frequency due to the uncertainty of 𝑈𝑐 used in Eqn. (4.36) is shown
by the gray uncertainty bands. Notice that the unstable oscillation frequency is in general
a few times the ion plasma frequency.

EH potential. This solution’s asymptotic behavior comes from the special function ℎ(𝜒)

[80]: ℎ(𝜒) → 𝜒2 − 8
3
√
𝜋
𝜒3 as 𝜒 → 0 and ℎ(𝜒) → 1 − 2√

𝜋𝜒
as 𝜒 ∼ 1. For shallow holes

𝜓 ≪ 1, we have 𝑈𝑐 ≃ 1 + 𝒪(𝜓) and for deep holes 𝜓 ∼ 1, 𝑈𝑐 ∼ (𝑚𝑖/𝑚𝑒)
1/4𝜓1/2. The

slight deviation of our data points from the solid curves represents the deviation of the

hole potential in our PIC simulation from the Schamel type. The full calculation using

the exact hole potential yields a good agreement with the observation. We have runs with

two different mass ratios and our results show the (𝑚𝑖/𝑚𝑒)
1/4 scaling of 𝑈𝑐 with the mass

ratio as predicted by the theory. The linear growth rate 𝛾 = Im(𝜔) of the instability

when |𝑈 | < 𝑈𝑐 can be evaluated by solving the equation 𝑃̇𝑖/𝑃̇𝑒(𝜔)+1 = 0 numerically for

given 𝜑(𝑥), 𝑈 and the mass ratio. In Figure 4-5, we show in dashed lines the EH velocity

calculated as a function of 𝜓 for 𝛾 = 0.1 and Schamel type of EH potential as a useful

reference line. We shall give a detailed analysis of the growth rate in II.3.

In Figure 4-6, we show the frequencies of the unstable velocity oscillations seen in our
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simulation. The EH position and hence velocity 𝑈 is obtained from the hole-tracking

module for each PIC time step of 0.3/𝜔𝑝𝑒. A discrete Fourier transform of 𝑈 during the

first few unstable periods gives a sharp peak centered at the oscillation frequency. The

error bar is given by the frequency range above half peak power. They are plotted against

the characteristic hole width 𝐿 defined in Eqn. (4.35) calculated using the potential 𝜑(𝑥)

right before the oscillation onset from our PIC simulations. 𝜑(𝑥) gives numerically the 𝐹

contour and it crosses the positive real axis at 𝐹 (1/𝐿). EH initialization is adjusted in our

PIC code to give EHs of different width 𝐿 and a narrow range of potential height 𝜓 ∼ 0.45,

hence 𝑈𝑐. The oscillation frequency predicted by our theory is inversely proportional to

the hole width 𝐿: 𝜔𝑐 = 𝑈𝑐/𝐿. Good quantitative agreement is achieved between the

observations and our theory. Our analysis captures the correct scaling with the mass

ratio, which highlights the importance of ion dynamics for this instability.

The instability threshold 𝑈𝑐 is scale invariant. If we apply a change of scale 𝑥 → 𝜆𝑥,

the Eqn. (4.28) giving the critical speed 𝑈𝑐 is invariant under this change of scale as each

term is multiplied by the same factor 1/𝜆. This property is obvious for the first two terms

in Eqn. (4.28). For the third term, it can be shown that

𝐹𝜆(
𝜔

𝑈
) =

1

𝜆
𝐹 (

𝜔

𝑈𝜆
). (4.37)

Hence the crossing point satisfies the same scaling relation 𝐶𝜆(𝜑) = (1/𝜆)𝐶(𝜑) and 𝑈𝑐

remains invariant. However, the oscillation frequency scales linearly with 𝜆: 𝜔𝑐,𝜆 = 𝜆𝜔𝑐.

For example, two different EH potentials 𝜑(𝑥) = 𝜓 sech4(𝑥) and 𝜑(𝑥) = 𝜓 sech4(𝑥/4)

have the same threshold 𝑈𝑐, while the unstable oscillation frequency for the first potential

profile is four times as high. This argument explains why the runs in Figure 4-6 have a

similar 𝑈𝑐 but different oscillation frequencies.

II.2 Counter-streaming ions

We have shown an example of the instability observed in a plasma with counter propagat-

ing ions in Figure 4-2. If the EH potential 𝜑(𝑥) is symmetric, then the counter-streaming
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situation with an EH at rest 𝑈 = 0 and two ion streams traveling at ±𝑣𝑖 is equivalent

to having one single ion stream at rest and the EH traveling at 𝑈 = 𝑣𝑖 for the described

instability mechanism. The sign convention is our analysis is such that the ions enter from

−∞ and exit at +∞. The change of hole velocity from 𝑈 to −𝑈 in the ion frame results in

flipping the sign convention thus 𝑥𝑎 and 𝑥𝑏. When the potential 𝜑(𝑥) is symmetric so that

𝜑′(−𝑥) = −𝜑′(𝑥) and 𝜑′′(−𝑥) = 𝜑′′(𝑥), Eqns. (4.16) (4.18) show that the resulting 𝑃̇𝑖 is

exactly the opposite as 𝑈̇ has an opposite sign under the two sign conventions. Therefore,

the contribution to the total 𝑃̇𝑖 from the two ion streams, evaluated with the same sign

convention, should be exactly equal and add up. More concretely, an ion particle arriving

from the left sees the same potential as an ion particle arriving from the right. However,

the same EH acceleration 𝑈̇ works in an opposite way for them. This argument explains

why the instability threshold observed in the counter-streaming ion plasma is identical to

the threshold value for the single ion stream case. The two situations are equivalent in

terms of linear stability. Once the instability has fully grown, the nonlinear stage of the

instability can be different for the two cases.

II.3 Linear growth rate

The linear growth rate of the instability is obtained by solving the eigenmode equation
𝑃̇𝑖

𝑃̇𝑒
(𝜔, 𝑈) + 1 = 0, where 𝑃̇𝑖/𝑃̇𝑒 is given by Eqn. (4.21). The growth rate 𝛾 is the

imaginary part of the solution 𝜔: 𝛾 = Im(𝜔). Although analytic solution for arbitrary 𝑈

is too difficult, we can obtain 𝛾 by an expansion near marginal instability. Recall that at

marginal instability, we have

𝑃̇𝑖

𝑃̇𝑒
(𝜔𝑐 =

𝑈𝑐
𝐿
,−𝑈𝑐) = −1. (4.38)

If the hole velocity is 𝑈 = −𝑈𝑐+Δ𝑈 such that |Δ𝑈/𝑈𝑐| ≪ 1. We need to find 𝜔 = 𝜔𝑐+Δ𝜔

with |Δ𝜔/𝜔𝑐| ≪ 1 that satisfies the eigenmode equation 𝑃̇𝑖/𝑃̇𝑒(𝜔, 𝑈) = −1. A linear

expansion gives

Δ𝜔
𝜕(𝑃̇𝑖/𝑃̇𝑒)

𝜕𝜔

⃒⃒⃒⃒
𝜔𝑐,−𝑈𝑐

+Δ𝑈
𝜕(𝑃̇𝑖/𝑃̇𝑒)

𝜕𝑈

⃒⃒⃒⃒
𝜔𝑐,−𝑈𝑐

= 0. (4.39)
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Substituting 𝑃̇𝑖/𝑃̇𝑒(𝜔, 𝑈) = −𝐹 (𝜔/𝑈)/𝐺(𝑈), the two partial derivatives in Eqn. (4.39)

can be evaluated with functions 𝐹 and 𝐺

𝜕(𝑃̇𝑖/𝑃̇𝑒)

𝜕𝜔

⃒⃒⃒⃒
𝜔𝑐,−𝑈𝑐

=
𝐹 ′(−𝜔𝑐/𝑈𝑐)
𝑈𝑐𝐺(−𝑈𝑐)

, (4.40)

𝜕(𝑃̇𝑖/𝑃̇𝑒)

𝜕𝑈𝑐

⃒⃒⃒⃒
𝜔𝑐,−𝑈𝑐

=
𝐹 ′(−𝜔𝑐/𝑈𝑐)𝐺(−𝑈𝑐)(𝜔𝑐/𝑈2

𝑐 ) + 𝐹 (−𝜔𝑐/𝑈𝑐)𝐺′(−𝑈𝑐)
𝐺(−𝑈𝑐)2

. (4.41)

Hence

Δ𝜔 =Δ𝑈

{︂
− 𝜔𝑐
𝑈𝑐

− 𝑈𝑐
𝐹 (−𝜔𝑐/𝑈𝑐)
𝐺(−𝑈𝑐)

𝐺′(−𝑈𝑐)
𝐹 ′(−𝜔𝑐/𝑈𝑐)

}︂
=Δ𝑈

{︂
− 𝜔𝑐
𝑈𝑐

− 𝑈𝑐
𝐺′(−𝑈𝑐)

𝐹 ′(−𝜔𝑐/𝑈𝑐)

}︂
,

(4.42)

where we used 𝐹 (−𝜔𝑐/𝑈𝑐)/𝐺(−𝑈𝑐) = 1. 𝐺 is an even polynomial function defined in

Eqn. (4.25) and −𝑈𝑐𝐺′(−𝑈𝑐) ≡ 𝑈𝑐𝐺
′(𝑈𝑐) can be evaluated as

𝑈𝑐𝐺
′(𝑈𝑐) = 4𝐹 (

𝜔𝑐
𝑈𝑐

) + 2𝑈2
𝑐

𝑚𝑒

𝑚𝑖

1

𝜓2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥. (4.43)

Hence the final expression for Δ𝜔 is

Δ𝜔 = Δ𝑈

{︂
− 𝜔𝑐
𝑈𝑐

+
4𝐹 (𝜔𝑐/𝑈𝑐)

𝐹 ′(−𝜔𝑐/𝑈𝑐)
+ 2𝑈2

𝑐

𝑚𝑒

𝑚𝑖

1

𝐹 ′(−𝜔𝑐/𝑈𝑐)
1

𝜓2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥

}︂
. (4.44)

The growth rate 𝛾 is the imaginary part of Δ𝜔. The real part of Δ𝜔 gives a small

correction to the oscillation frequency 𝜔𝑐 when 𝑈 is different from 𝑈𝑐. We also have

𝜔𝑐/𝑈𝑐 = 1/𝐿, a constant only depending on the hole shape, and 𝐹 (𝜔𝑐/𝑈𝑐) = 𝐹 (1/𝐿) =

𝐶(𝜑). While 𝐹 (𝜔𝑐/𝑈𝑐) is a real number, the derivative 𝐹 ′(−𝜔𝑐/𝑈𝑐) is complex and 𝛾 is

given by

𝛾 = Δ𝑈 Im

{︂
4𝐹 (1/𝐿)

𝐹 ′(−1/𝐿)
+ 2𝑈2

𝑐

𝑚𝑒

𝑚𝑖

1

𝐹 ′(−1/𝐿)

1

𝜓2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥) 𝑑𝑥

}︂
. (4.45)

The first term is only a function of the hole shape 𝜑 while the second term depends on

hole size 𝜓 and the mass ratio 𝑚𝑖/𝑚𝑒. However, this second term is not important except

for extremely shallow EHs such that 𝜓 ≪ 1. For example, for a Schamel type of EH of

size 𝜓 = 0.1 and 𝑚𝑖/𝑚𝑒 = 1836, the magnitude of the second term is about 4% of the
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first one. It is thus a good approximation that for not too shallow EHs we have

𝛾 ≃ Δ𝑈 Im

{︂
4𝐹 (1/𝐿)

𝐹 ′(−1/𝐿)

}︂
= Δ𝑈 Im

{︂
4𝐹 (1/𝐿)

𝐹 ′(1/𝐿)

}︂
= −Δ|𝑈 | Im

{︂
4𝐹 (1/𝐿)

𝐹 ′(1/𝐿)

}︂
. (4.46)

We define Δ|𝑈 | = |𝑈 | − 𝑈𝑐 and the imaginary part of 𝐹 is odd so its derivative is

even: Im(𝐹 ′(−1/𝐿)) = Im(𝐹 ′(1/𝐿)). This growth rate scales linearly with Δ|𝑈 |. If the

hole potential shape is of Schamel type, a numerical evaluation of the constants gives

𝛾 ≃ −Δ|𝑈 |/1.74 for |𝑈 | evaluated in 𝑐𝑠 and 𝛾 evaluated in 𝜔𝑝𝑖. The instability grows fast

once |𝑈 | is slower than 𝑈𝑐.
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Figure 4-7: Instability growth rate 𝛾 as a function of Δ𝑈 . The linear relation represents
Eqn. (4.46) for fixed hole shape. Its uncertainty bands represent the small variation of
shape from one run to another, giving uncertainty in the comparison. The triangles are
obtained from solving numerically the full eigenmode equation 𝑃̇𝑖/𝑃̇𝑒 + 1 = 0 using the
PIC potential output. Circles are the growth rate observed in PIC runs.

In the PIC simulations, we measured the growth rate of unstable velocity oscillations

by fitting an exponential growth model to it. We used the unstable runs with different

counter-streaming ion velocity and 𝜓 ∼ 0.8, in which Δ|𝑈 | can be precisely measured. The

growth rates and the error bars are obtained from the regression. They are compared with

the expanded linear solution in Eqn. (4.46) and numerical solutions of the full eigenmode

equation. The results are shown in Figure 4-7. Our analytic theory agrees with the
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observed instability growth rate for the weakly unstable cases up to 𝛾 ∼ 0.1 and the

linear expansion gives a very good approximation to the solution of the full eigenmode

equation. The growth rates for strongly unstable cases are smaller than the predicted

values. The sign of discrepancy is two-fold: First, it is difficult to observe the instability

in its true linear stage when the growth rate is important. Second, the approximations

used in our analytic theory break down when we are deeply below the stability boundary.

We are going to discuss the nonlinear aspects of the instability in Section IV.

II.4 Finite ion temperature

So far, we have treated the ions as a cold beam. In reality, they have a thermal velocity

spread. For an ion of velocity 𝑣, the EH has a velocity 𝑈 − 𝑣 in its frame. Let us

consider the ion thermal speed to be small compared to |𝑈 | such that 𝑣th,i ≪ |𝑈 | and

there are no reflected ions by the hole potential. As 𝑈𝑐 is several times 𝑐𝑠, this assumption

holds approximately even when 𝑇𝑖 ≥ 𝑇𝑒. We can integrate the contributions from ions of

different velocities to get the total 𝑃̇𝑖

𝑃̇𝑖(𝜔, 𝑈, 𝜑, 𝑣th,i) = 𝑚𝑖𝑈̇

∫︁ ∞

−∞
𝑓∞,𝑖(𝑣)

𝜓2

(𝑈 − 𝑣)4
𝐹 (

𝜔

𝑈 − 𝑣
) 𝑑𝑣. (4.47)

We apply a Taylor series expansion to Eqn. (4.47) assuming |𝑣| ≪ |𝑈 |. Consider 𝑓∞,𝑖(𝑣)

to be a Maxwellian and only the even order moments of 𝑣 survive after the integration

over velocity. This expansion gives

𝑃̇𝑖(𝜔, 𝑈, 𝜑, 𝑣th,i) = 𝑛∞𝑚𝑖𝑈̇
𝜓2

𝑈4

{︂
𝐹 (

𝜔

𝑈
) + 𝐹2(

𝜔

𝑈
)(
𝑣th,i
𝑈

)2 +𝒪
(︁
(
𝑣th,i
𝑈

)4
)︁}︂

= 𝑛∞𝑚𝑖𝑈̇
𝜓2

𝑈4

{︂
𝐹th,i(

𝜔

𝑈
) +𝒪

(︁
(
𝑣th,i
𝑈

)4
)︁}︂

,

(4.48)

where

𝐹2(
𝜔

𝑈
) = 10𝐹 (

𝜔

𝑈
) + 5𝐹 ′(

𝜔

𝑈
)(
𝜔

𝑈
) +

1

2
𝐹 ′′(

𝜔

𝑈
)(
𝜔

𝑈
)2. (4.49)

We have right now 𝑃̇𝑖/𝑃̇𝑒(𝜔, 𝑈, 𝜑, 𝑣th,i) = −𝐹th,i(𝜔/𝑈)/𝐺(𝑈) to leading order in |𝑣th,i/𝑈 |.

It suffices to substitute 𝐹 with 𝐹th,i in our previous analysis and everything follows as
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before.

The leading order term of the finite ion temperature correction is second order in

|𝑣th,i/𝑈 |. The effect of finite ion temperature can be visualized through the 𝐹th,i contours.

In Figure 4-8, we show the 𝐹th,i contours evaluated on the real axis for different values of

|𝑣th,i/𝑈 | using Schamel type of EH potential. The most salient effect is that the finite ion

temperature moves the crossing point 𝐶(𝜑) outwards, resulting in a higher value for 𝑈𝑐.

Because of the leading 𝑈4 term in 𝐺(𝑈), the resulting change in 𝑈𝑐 is actually relatively

small. In terms of 𝑈𝑐, this correction is ∼ 5% when |𝑈 | = 5𝑣th,i, it grows to ∼ 10% for

|𝑈 | = 4𝑣th,i and ∼ 20% when |𝑈 | = 3𝑣th,i. This property holds similarly for other EH

potential models such as the Gaussian. The same trend is noticed in our PIC simulation.

A higher ion temperature 𝑇𝑖 leads to a slightly higher threshold velocity 𝑈𝑐.

When |𝑈 | < 3𝑣th,i, the ion reflection from the EH potential becomes important and

can no longer be neglected in the global momentum balance. The unbalanced scattering

of ions tends to accelerate the EH to a higher velocity in the ion frame [80]. With the hole

pushing technique, we were able to explore the situation with the presence of mild ion

reflection from the hole potential, the instability is still observed in these cases. After the

onset of instability, we stopped hole pushing and observed the hole velocity to oscillate

while its mean velocity accelerates due to the ion reflection. Resonant ion effects such as

ion Landau damping or reflection only become important when |𝑈 | ∼ 𝑣th,i, which requires

the ions to be extremely hot. Our analysis holds well for the usual range of 𝑇𝑒/𝑇𝑖 in space

plasmas.

III Eigenmode ansatz derived from linearized Vlasov-

Poisson system

This section serves as a supplement to the previous hole kinematics approach. It is inspired

by the comments from an anonymous referee that we have received. We will justify the

Goldstone mode ansatz (the hole changes its velocity while maintaining its shape) from the

linearized Vlasov-Poisson system. We shall see that this mode stems from a low-frequency
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Figure 4-8: Finite ion temperature effect on the 𝐹 contour for a Schamel type of EH. The
contour shape is approximately preserved while its size grows with a larger 𝑇𝑖.

adiabatic assumption for the electrons and a negligible ion response. This section also

establishes some connection between the method we have presented so far and the more

“traditional” kinetic theory approach.

First, we linearize the Vlasov-Poisson system about an EH equilibrium. The Vlasov

equation in coordinate system (𝑡, 𝑥, ℰ) with ℰ = 𝑚𝑞𝑣
2/2 + 𝑞𝜑(𝑥, 𝑡) is given by 𝑑𝑓𝑞/𝑑𝑡 = 0

as (︂
𝜕

𝜕𝑡
+ 𝑣

𝜕

𝜕𝑥
+ 𝑞

𝜕𝜑

𝜕𝑡

𝜕

𝜕ℰ

)︂
𝑓𝑞 = 0, (4.50)

where ℰ is the instantaneous particle energy and 𝑞 is the particle charge. The charge

density 𝜌 can thus be written as

𝜌 =
∑︁
𝑞

𝑞

∫︁
𝑓+
𝑞 + 𝑓−

𝑞

𝑚𝑞|𝑣|
𝑑ℰ , (4.51)

where superscripts + and − designate particles having positive and negative velocities.

For a particle with positive/negative velocity, we have 𝑣 = ±
√︀
2(ℰ − 𝑞𝜑)/𝑚𝑞. Poisson’s
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equation can be written as

𝜖0
𝜕2𝜑

𝜕𝑥2
+
∑︁
𝑞

𝑞

∫︁
𝑓+
𝑞 + 𝑓−

𝑞

𝑚𝑞|𝑣|
𝑑ℰ = 0. (4.52)

We write 𝜑 = 𝜑0 + 𝜑1 + ..., 𝑓±
𝑞 = 𝑓±

𝑞,0 + 𝑓±
𝑞,1 + ... and 𝜌 = 𝜌0 + 𝜌1 + ..., with subscript 0

denoting equilibrium quantities and subscript 1 denoting first-order perturbations. The

linearized Vlasov-Poisson system in the co-moving frame of the equilibrium EH can be

written as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑓±

𝑞,1

𝜕𝑡
±
√︁

2(ℰ − 𝑞𝜑0(𝑥))/𝑚𝑞

𝜕𝑓±
𝑞,1

𝜕𝑥
+ 𝑞

𝜕𝜑1

𝜕𝑡

𝜕𝑓±
𝑞,0

𝜕ℰ
= 0,

𝜖0
𝜕2𝜑1

𝜕𝑥2
+ 𝜑1

𝑑𝜌0(𝜑0)

𝑑𝜑0

+
∑︁
𝑞

𝑞

∫︁
𝑓+
𝑞,1 + 𝑓−

𝑞,1√︀
2𝑚𝑞(ℰ − 𝑞𝜑0(𝑥))

𝑑ℰ = 0.
(4.53)

We look for localized eigenmodes that vanish far away from the hole center when 𝑥→ ±∞.

Also we look for perturbed quantities that depend on 𝑡 as exp(−𝑖𝜔𝑡) such that 𝜕/𝜕𝑡 can

be replace by −𝑖𝜔 while taking the Fourier transform. The linearized Vlasov equation

is a first-order ordinary differential equation about variable 𝑥 after taking the Fourier

transform in time. It can be solved to give an expression for 𝑓±
𝑞,1 with vanishing boundary

conditions:

𝑓±
𝑞,1(𝑥, ℰ) =

±𝑖𝜔𝑞
∫︁ 𝑥

𝑥𝑎

1

|𝑣0|
𝜑1(𝑥1)

𝜕𝑓±
𝑞,0

𝜕ℰ
exp(∓𝑖𝜔

∫︁ 𝑥1

𝑥𝑎

1

|𝑣0|
𝑑𝑥′) 𝑑𝑥1

exp(∓𝑖𝜔
∫︁ 𝑥

𝑥𝑎

1

|𝑣0|
𝑑𝑥′)

. (4.54)

We use 𝑣0 to express ±
√︀
2(ℰ − 𝑞𝜑0)/𝑚𝑞. It is easy to notice that 𝑓±

𝑞,1 will vanish when

𝜔 → 0. In this limit, the linearized Poisson’s equation becomes

𝜖0
𝑑2𝜑1

𝑑𝑥2
+ 𝜑1

𝑑𝜌0(𝜑0)

𝑑𝜑0

= 0. (4.55)

The eigenvalue problem associated with this equation and vanishing boundary conditions

can be solved with 𝜑1 = 𝐶
𝑑𝜑0

𝑑𝑥
, where 𝐶 is a constant. Use this expression in the left
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hand side of Equation (4.55) and we have

𝜖0
𝑑2𝜑1

𝑑𝑥2
+ 𝜑1

𝑑𝜌0(𝜑0)

𝑑𝜑0

= 𝜖0𝐶
𝑑2

𝑑𝑥2

(︂
𝑑𝜑0

𝑑𝑥

)︂
+ 𝐶

𝑑𝜑0

𝑑𝑥

𝑑𝜌0(𝜑0)

𝑑𝜑0

= 𝐶
𝑑

𝑑𝑥

(︂
𝜖0
𝑑2𝜑0

𝑑𝑥2

)︂
+ 𝐶

𝑑𝜑0

𝑑𝑥

𝑑𝜌0(𝜑0)

𝑑𝜑0

= 𝐶
𝑑

𝑑𝑥
(−𝜌0(𝜑0)) + 𝐶

𝑑𝜑0

𝑑𝑥

𝑑𝜌0(𝜑0)

𝑑𝜑0

= −𝐶𝑑𝜑0

𝑑𝑥

𝑑𝜌0(𝜑0)

𝑑𝜑0

+ 𝐶
𝑑𝜑0

𝑑𝑥

𝑑𝜌0(𝜑0)

𝑑𝜑0

= 0. (4.56)

The eigenmode 𝜑1 = 𝐶
𝑑𝜑0

𝑑𝑥
corresponds to a displacement of the steady-state equilibrium.

This zero-frequency shift mode is the so-called Goldstone mode, resulting from the soliton

solution breaking the continuous translational symmetry of the system. We shall see that

when the frequency 𝜔 is much lower than some time scales of the system, the Goldstone

mode is still the valid eigenmode to the lowest order at the onset of instability. For passing

species, we introduce a time of flight function 𝜏±(𝑥, ℰ):

𝜏+(𝑥, ℰ) =
∫︁ 𝑥

𝑥𝑎

1

|𝑣0|
𝑑𝑥′, (4.57)

𝜏−(𝑥, ℰ) =
∫︁ 𝑥𝑏

𝑥

1

|𝑣0|
𝑑𝑥′. (4.58)

Equation (4.54) can then be expressed as

𝑓+
𝑞,1(𝑥, ℰ) = 𝑖𝜔𝑞

∫︁ 𝑥

𝑥𝑎

1

|𝑣0|
𝜑1(𝑥1)

𝜕𝑓+
𝑞,0

𝜕ℰ
exp(𝑖𝜔(𝜏+(𝑥)− 𝜏+(𝑥1))) 𝑑𝑥1, (4.59)

𝑓−
𝑞,1(𝑥, ℰ) = 𝑖𝜔𝑞

∫︁ 𝑥𝑏

𝑥

1

|𝑣0|
𝜑1(𝑥1)

𝜕𝑓−
𝑞,0

𝜕ℰ
exp(𝑖𝜔(𝜏−(𝑥)− 𝜏−(𝑥1))) 𝑑𝑥1. (4.60)

An estimate of these integrals gives for passing species 𝑓±
𝑞,1 ∼ 𝑖(𝜔𝜏±)𝑞

𝜕𝑓±
𝑞,0

𝜕ℰ
𝜑1. Thus

the last term in the linearized Poisson’s equation of Equation (4.53) is of order 𝒪(𝜔𝜏±)

compared to the second term, which is an adiabatic contribution. For the bulk of passing

electrons, we have 𝜔𝜏± ≪ 1. Therefore this contribution can be ignored to the lowest

order. Recall that we used the same argument in the beginning of Section II while
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discussing the electron response. Passing electron orbits violating this short-transit-time

approximation are the ones near separatrices, it is only a small fraction of the total passing

electron population. We can therefore neglect the contributions from these marginally

passing electrons. However, the short-transit-time argument does not hold for ions. We

have seen that the unstable oscillation frequency is the order of inverse ion transit time

such that 𝜔𝜏𝑖 ∼ 1. Another ordering of the system helps us here. We know that the ion

contribution to the total charge density is of order 𝜓/𝑈2 ≪ 1 at the onset of instability.

Hence the ion correction to 𝜑1 is of order 𝒪(𝜓/𝑈2) smaller than the electron term.

Now we treat the trapped electrons. Trapped electrons have bounded orbits but they

all go through 𝑥 = 0, which is the center of the electron hole. We introduce a time 𝜏

𝜏(𝑥, ℰ) =
∫︁ 𝑥

0

1

|𝑣0|
|𝑑𝑥′|. (4.61)

𝜏 takes its value between −𝑇/4 and 𝑇/4. 𝑇 is the period of a trapped orbit of energy

ℰ . 𝜑1 is a function of 𝑥 and thus a function of 𝜏 defined between −𝑇/4 and 𝑇/4. We

extend its definition to the entire real axis by completing it as a periodic function of 𝜏

with a period 𝑇 where 𝑥(𝜏) for 𝜏 ∈ [𝑇/4, 3𝑇/4] is obtained by reflection with axis 𝑇/4.

In this way, we can define a Fourier series expansion for 𝜑1(𝜏). Plugging in the trial

eigen-function 𝜑1 = 𝐶
𝑑𝜑0

𝑑𝑥
which is an odd function of 𝑥 and hence 𝜏 , we have

𝜑1 = 𝐶
𝑑𝜑0

𝑑𝑥
= 𝐶

+∞∑︁
𝑛=1

𝑆𝑛 sin(𝜔𝑛𝜏), (4.62)

where 𝑆𝑛 is the Fourier coefficient of 𝑑𝜑0/𝑑𝑥 associated with frequency 𝜔𝑛 = 2𝑛𝜋/𝑇 . The

linearized Vlasov equation Fourier transformed in time can be written with 𝜏

−𝑖𝜔𝑓±
𝑒,1 ±

𝜕𝑓±
𝑒,1

𝜕𝜏
− 𝑖𝜔𝑞𝐶

𝑑𝜑0

𝑑𝑥

𝜕𝑓±
𝑒,0

𝜕ℰ
= 0. (4.63)

Now expand 𝑓±
𝑒,1 in Fourier series of 𝜏 : 𝑓±

𝑒,1 =
𝑛=+∞∑︁
𝑛=−∞

𝐶±
𝑛 exp(𝑖𝜔𝑛𝜏). The steady state

distribution is only a function of the energy, 𝜕𝑓±
𝑒,0/𝜕ℰ is thus independent of 𝑥 hence 𝜏 .
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The coefficients 𝐶±
𝑛 can be identified from Equation (4.63) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐶±
𝑛 =

𝜔𝑞𝐶𝑆𝑛
2𝑖(±𝜔𝑛 − 𝜔)

𝜕𝑓±
𝑒,0

𝜕ℰ
for 𝑛 > 0,

𝐶±
0 = 0,

𝐶±
𝑛 =

−𝜔𝑞𝐶𝑆𝑛
2𝑖(±𝜔𝑛 − 𝜔)

𝜕𝑓±
𝑒,0

𝜕ℰ
for 𝑛 < 0.

(4.64)

We can expand 𝑓±
𝑒,1 only with sinusoidal functions

𝑓±
𝑒,1 =

𝑛=∞∑︁
𝑛=1

𝜔𝑞𝐶𝑆𝑛
±𝜔𝑛 − 𝜔

𝜕𝑓±
𝑒,0

𝜕ℰ
sin(𝜔𝑛𝜏). (4.65)

The non-adiabatic contribution due to trapped electrons in the linearized Poisson’s equa-

tion is evaluated using 𝑓+
𝑒,1 + 𝑓−

𝑒,1 as

(−𝑒)
∫︁
trapped

𝑓+
𝑒,1 + 𝑓−

𝑒,1√︀
2𝑚𝑒(ℰ + 𝑒𝜑0(𝑥))

𝑑ℰ

=
𝑛=∞∑︁
𝑛=1

P.V.

∫︁
ℰ<0

2𝜔2

𝜔2
𝑛 − 𝜔2

𝑒2𝐶𝑆𝑛√︀
2𝑚𝑒(ℰ + 𝑒𝜑0(𝑥))

𝜕𝑓𝑒,0
𝜕ℰ

sin(𝜔𝑛𝜏) 𝑑ℰ + 𝑖𝜋𝒪
(︂
𝜕𝑓𝑒,0
𝜕ℰ

|𝜔𝑛=𝜔

)︂
(4.66)

In an EH, the trapped electrons have bounce frequencies 𝜔1 as low as zero. No matter how

low the frequency of the mode 𝜔 is, there is always finite number of resonant particles such

that 𝜔𝑛 = 𝜔. This is the reason why we need to take the Cauchy principal value of the

resonant integral in Equation (4.66) and add back the damping term. Like in the case for

passing particles, these resonant orbits cluster near the separatrix and constitute a small

fraction of the electron phase-space. The resonant effect is proportional to 𝜕𝑓𝑒,0/𝜕ℰ . We

shall neglect the resonant particle effect and focus on deeply trapped electrons. Deeply

trapped electrons have a bounce frequency on the order of
√
𝜓/𝐿, where 𝐿 is the width of

the EH. Expressed with the normalization in this chapter, this frequency is measured in

𝜔𝑝𝑒. We also know that the frequency of the unstable mode we consider is 𝜔 = 𝑈/𝐿, which

is measured in 𝜔𝑝𝑖. In the parameter regime we are interested in, we have 𝑚𝑖

𝑚𝑒
𝜓 ≫ 𝑈2.
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Therefore for deeply trapped electrons we have 𝜔1 ≫ 𝜔 and this ordering holds even

better for higher-order harmonics 𝜔𝑛. The lowest order non-adiabatic contribution from

trapped electrons is of order 𝒪 (𝜔2/𝜔2
𝑛), which can be seen from Equation (4.66).

The Goldstone mode ansatz (the EH oscillates in velocity while maintaining its shape)

we have used in our momentum balance calculation is therefore a very good one when the

frequency of the mode is significantly lower than average electron transit frequency and

the bounce frequency for deeply trapped electrons. The electrons approximately maintain

an adiabatic behavior and the ion contribution to 𝜑1 is small.

Now if we multiply the linearized Poisson’s equation by 𝑑𝜑0/𝑑𝑥 and integrate it be-

tween 𝑥𝑎 and 𝑥𝑏 using integration by parts and the boundary conditions, we get

∫︁ 𝑥𝑏

𝑥𝑎

𝑑𝜑0

𝑑𝑥

∑︁
𝑞

𝑞

∫︁
𝑓+
𝑞,1 + 𝑓−

𝑞,1√︀
2𝑚𝑞(ℰ − 𝑞𝜑0(𝑥))

𝑑ℰ = 0. (4.67)

This is the momentum conservation condition that we have used in the hole kinematics

approach.

IV Discussion

The deformation of hole potential during oscillation has been neglected in our analysis.

It is a next order correction for the “jetting” effect we have calculated. We now show

that the ion momentum change due to the hole potential variation can be ignored in the

parameter regime we are interested in. When an ion transits through the EH potential,

its momentum changes when there is a temporal variation of the hole potential height.

We call this the hole growth “jetting” effect and a formula is given in Chapter 2

(𝑣𝑏𝑓 − 𝑣𝑎𝑠)growth ≃ − 1

𝑈

∫︁ 𝑥𝑏

𝑥𝑎

1

𝑣

𝜕𝜑

𝜕𝑡
𝑑𝑥, (4.68)

where 𝜕𝜑/𝜕𝑡 represents the temporal variation of the hole potential in its rest frame. It is

related to the change in charge density by Poisson’s equation. To a first approximation,

we assume that the frequency of velocity oscillation is low so that the electron density
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remains the same in the hole frame. Therefore, the only density variation comes from the

ions and we have approximately 𝛿𝜑/𝜑 ∼ 𝛿𝑛𝑖/𝑛𝑖. Using 𝑛𝑖𝜕𝜑/𝜕𝑡 ∼ 𝜑𝜕𝑛𝑖/𝜕𝑡, we get

(𝑣𝑏𝑓 − 𝑣𝑎𝑠)growth ∼ 1

𝑈

∫︁ 𝑥𝑏

𝑥𝑎

𝜑

𝑣𝑛𝑖

𝜕𝑛𝑖
𝜕𝑡

𝑑𝑥

∼ 1

𝑈

∫︁ 𝑥𝑏

𝑥𝑎

𝜑

𝑣𝑛𝑖

𝑛𝑖𝑈̇

𝑣
𝑑𝑥

∼ 𝜓

𝑈2
(𝑣𝑏𝑓 − 𝑣𝑎𝑠)accel.

(4.69)

The (𝑣𝑏𝑓 − 𝑣𝑎𝑠)accel is the “jetting” effect due to hole acceleration. It was shown in Eqn.

(4.8). The ion momentum change due to self-consistent EH potential variation is on the

order of a factor 𝜓/𝑈2 ≪ 1 smaller than the momentum change due to EH acceleration.

Thus we can ignore it in the momentum balance.

In our analysis, the trapped electrons are assumed to move with the hole potential

while remaining on their trapped orbits in an oscillating hole. However, there are always

shallowly trapped electrons whose slow orbits will resonate with the oscillation frequency.

The fraction of these resonant particles is small and they do not much affect the linear

stability analysis. Once the instability has fully developed, some resonant particles become

detrapped, causing the EH to shrink in size. This is the nonlinear stage of the instability.

Trapped electrons in a steady-state EH are tagged in our simulations to follow their

motion [81]. The detrapping of trapped electrons by the instability is shown in Figure

4-9. It is observed that the instability can be nonlinearly saturated by the shrinking of the

EH. In some other cases, the oscillation amplitude in the hole velocity grows until the EH

velocity is in the close vicinity of the ion velocity. The EH is then disrupted by the ions

through the mechanism described by Saeki et al. [75] The presence of a parallel electric

field can slow down the EHs in the ion frame and lead to the instability. Happening in

space, this instability can cause ion heating by ion Landau damping and drive anomalous

resistivity [76]. The EHs are considered to stem from phase-space instability and they are

reservoirs of wave energy. The described instability provides a mechanism to couple the

stored wave energy in the EH to the ion and electron plasma energy.

Our solitary wave velocity stability theory is generic and appears to apply to ion-
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Figure 4-9: Phase-space density of trapped electrons in our hole-tracking PIC simulation
before and after the instability onset. The EH is broken into smaller pieces by this
instability.

acoustic solitons. Why are ion-acoustic solitary waves, propagating at a velocity slightly

higher than 𝑐𝑠 in the ion frame, stable? 𝑃̇𝑒 goes to 0 when |𝑈 | approaches 𝑐𝑠 for small

wave amplitude 𝜓. Hence, for a solitary wave propagating around this velocity, solutions

of our dispersion relation, 𝑃̇𝑖/𝑃̇𝑒 + 1 = 0, exist only at very high frequencies where the

short-transit-time approximation for electrons break down. So it is possible to have a

stable propagation region for the solitary wave at a speed around 𝑐𝑠. For a solitary wave

in this regime, |𝑃̇𝑖/𝑃̇𝑒(𝜔)| ≫ 1 for all physical frequencies of the system. The ion dynamics

therefore dominates over the electron dynamics inside the solitary wave and it propagates

like a Korteweg-de Vries-type ion-acoustic soliton even though an electron phase-space

structure might be attached to it.

In contrast, a solitary wave propagating much faster than 𝑈𝑐 is dominated by electron

dynamics: |𝑃̇𝑖/𝑃̇𝑒(𝜔)| ≪ 1 for all physical 𝜔, and can be considered a pure electron

hole. When the ion dynamics and electron dynamics are comparable inside a propagating

solitary wave, our stability theory predicts that the propagation can be driven unstable

by positive dynamical feedback between the two species. The velocity instability reported

in this chapter naturally separates these two major types of plasma electrostatic solitary

waves. We will address this point in greater detail in Chapter 5
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V Conclusion

In this chapter, we have reported a new kind of instability for an EH propagating with

the presence of heavier ions and we have presented the theoretical understanding behind

it. An EH at low speed in the ion frame experiences unstable velocity oscillations that

can be understood treating it as a holistic object. Our analytic treatment is in full

agreement with the PIC simulation observations for instability thresholds and frequencies,

partial agreement is achieved for instability growth rates. The “slow” EHs that are

observed in space might be susceptible to this instability. We demonstrated that the

velocity oscillations initially take place at the critical ion transit frequency through the

hole potential and it grows quickly to a noticeable level once the speed is below the

threshold. The instability happens when the electron and ion dynamics are 180 degrees

out of phase. Our discovery is a type of solitary wave instability driven by the different

inertial scales of the two constituent species of the plasma.
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Chapter 5

Slow electron hole coupled to an

ion-acoustic soliton

Electrostatic Solitary Waves (ESWs) traveling in the ion frame at velocities on the order of

ion sound speed 𝑐𝑠 measured by Cluster satellites have been reported by Khotyaintsev et

al. [91] at a magnetic reconnection site. The authors have also reported non-Maxwellian

electron distribution suggesting the existence of electron phase-space structures. Since the

first discovery of such kind, more ESW observations have been reported with velocities in

a similar range [92, 99]. These velocities are significantly slower than what was previously

observed in space plasma for ESWs, which are considered to be electron phase-space

holes created by kinetic micro-instabilities in a highly collisionless plasma. There have

been different explanations for the slow velocities of these ESWs. Some authors argued

that slow electron holes are generated by Buneman instability from an electron beam

interacting with bulk ions [92]. Others are hinting at ion-acoustic solitons in a multi-

species plasma to account for these slow ESWs [100].

The current chapter explores slow electron holes using one-dimensional fully kinetic

PIC simulation. Our study shows that in order to travel at a slow velocity in the ion

frame on the order of 𝑐𝑠, an electron phase-space hole must form a stable coupling with

an ion density perturbation, which is a hybrid of an electron hole with an ion-acoustic

soliton (IAS). In this stable coupling, the electron phase-space hole is dragged along by
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the compressional ion pulse and its dynamics deviates significantly from its free state. We

demonstrate that this Coupled Hole Soliton (CHS) exhibits behavior that is intermediate

between a BGK electron hole and an ion-acoustic soliton. They survive collisions instead

of merging even with a small velocity difference. However, the collision process of two

such solitary waves differ from what is described by KdV equation or the modified KdV

equation obtained by Schamel for an ion acoustic soliton with resonant electrons [40, 67].

These results suggest that strong electron dynamics during collision of two CHS violates

the simple electron equation of state 𝑝𝑒(𝜑) that is used to derive the canonical nonlinear

partial differential equations.

Furthermore, we demonstrate that there is a velocity gap between a stable CHS and

a “free” electron hole. This gap in the velocity of an ESW is set by the electron hole

velocity oscillatory instability studied in Chapter 4.

We further show that transition between these two states is possible. Ion Landau

damping damps the ion-acoustic soliton of the CHS and triggers the oscillatory velocity

instability that eventually releases the electron hole from the CHS. An electron hole

may become stably trapped in an ion-acoustic soliton excited by its potential when it

is experiencing fast growth. We demonstrate this in a plasma with rising background

density, mimicking the plasma wake of an object. If the background density growth rate

is not high enough, the electron phase-space hole collapses as a result of the oscillatory

velocity instability. However, with enough growth rate from the rising density, a phase-

space hole may go through the unstable stage and become stably coupled to an ion density

perturbation.

We performed simulations of Buneman instability, showing the production of both

types of electron phase-space density holes with distinct velocities. Electron holes that

are coupled to an ion-acoustic soliton are more likely to be produced with a cold ion

population during Buneman instability.

This study is important for better understanding the distinct velocities and dynamics

of electron phase-space holes observed in space and computer simulations [101]. Two

species of electron phase-space holes exist; fast electron holes are not significantly inter-
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acting with ions and therefore have electron-like dynamics; in a stable CHS, the electron

hole is trapped and is dominated by ion scale dynamics. The velocity gap separating

these two species can potentially be verified using space measurement data for ESWs.

I Coupling an electron phase space hole to an IAS

In Chapter 3, we have demonstrated uniform density initialization of an electron phase-

space hole in our PIC simulation. Transient acceleration from the initial hole growth

propels the formed electron hole to a velocity of several times 𝑐𝑠. In this section, we are

going to introduce a different initialization scheme to stably embed an electron phase-space

hole into an ion density compressional pulse. For this study, we use the one dimension

electrostatic PIC code ESPIC that we have introduced in Chapter 3 with open boundaries.

Its hole tracking function is turned off if not stated otherwise. A Gaussian perturbation

is applied to the ion density, creating localized accumulation of ion density. An initial

velocity perturbation is applied to the entire ion population with the same spatial width

as the density perturbation. The ion distribution function generated with this method is

𝑓𝑖(𝑥, 𝑣) =
𝑛∞√
2𝜋𝑣th,i

[︂
1 +

𝛿𝑛

𝑛∞
exp

(︂
−𝑥2

2𝐿2
𝛿𝑛

)︂]︂
exp

(︃
−(𝑣 − 𝛿𝑣 exp (−𝑥2/2𝐿2

𝛿𝑛))
2

2𝑣2th,i

)︃
, (5.1)

where 𝛿𝑛 is the amplitude of the initial density perturbation; 𝛿𝑣 is the amplitude of the

initial ion velocity perturbation; 𝐿𝛿𝑛 is the half width of the initial perturbations and

𝑣th,i =
√︀
𝑇𝑖/𝑚𝑖. The need to have both density and velocity perturbation is motivated

by an ion-acoustic soliton having perturbations in both density and velocity. In order to

achieve “quiet” start-up, the same density perturbation is applied to the bulk electron

distribution, creating effectively zero net charge for the initialization. In this way, we

eliminate the long wave length oscillations resulting from initial charge imbalance, making

the simulation significantly less noisy. The same rejection scheme as the one described

in Chapter 3 is used to create the initial electron phase space density perturbation that

self-consistently evolves into a phase-space hole. The initial electron distribution is thus
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given by

𝑓𝑒(𝑥, 𝑣) = 𝑛∞
𝑓𝑒,0(1− 𝑓𝑑)

1−
∫︁ +∞

−∞
𝑓𝑒,0𝑓𝑑 𝑑𝑣

, (5.2)

where

𝑓𝑒,0(𝑥, 𝑣) =
1√

2𝜋𝑣th,e

[︂
1 +

𝛿𝑛

𝑛∞
exp

(︂
−𝑥2

2𝐿2
𝛿𝑛

)︂]︂
exp

(︃
− 𝑣2

2𝑣2th,e

)︃
, (5.3)

and the dimple function 𝑓𝑑 is given by

𝑓𝑑 = ℎ𝑑 exp

(︂
−(𝑣 − 𝑣𝑑)

2

2𝜎2
𝑑

)︂
exp

(︂
−𝑥2

2𝜆2𝑑

)︂
. (5.4)

Recall that ℎ𝑑 is the dimple depth which is smaller than 1; 𝜎𝑑 is the dimple velocity width;

𝑣𝑑 is the dimple initial velocity and 𝜆𝑑 is the dimple spatial width.
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Figure 5-1: a) Normalized electron phase space density contours b) Potential, c) Ion
density, d) Electron density. The plots shown on the same row are from the same time
step in the simulation.
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An example of an electron hole coupled to an IAS generated by this method is shown

in Figure 5-1. At initialization (𝑡 = 0), the charge density is uniformly zero across the

simulation domain. There is localized density perturbation in both ions and electrons

around 𝑥 = 0. The simulation was performed with 𝛿𝑛/𝑛∞ = 0.24, 𝛿𝑣 = 0.5𝑐𝑠, 𝐿𝛿𝑛 =

1.6𝜆De. 6.4 × 106 computing particles with 1000 spatial cells are used in this simulation

and the time step is Δ𝑡 = 0.3/𝜔𝑝𝑒. A “dimple” perturbation is seeded into the initial

electron distribution with following parameters: ℎ𝑑 = 1, 𝜎𝑑 = 0.95𝑣th,e, 𝑣𝑑 = 0, 𝜆𝑑 = 8𝜆De.

Physical mass ratio 𝑚𝑖/𝑚𝑒 = 1836 was used and 𝑇𝑒/𝑇𝑖 = 20 so the ions are a cold beam.

The second row shows that shortly after the initialization, an electron phase-space hole

forms self-consistently and a positive pulse appears in the electrostatic potential. Later

in time (𝜔𝑝𝑒𝑡 = 420, third row), the initial ion density pulse breaks into a chain of

ion-acoustic perturbations, with a leading compressional ion density pulse which is an

ion-acoustic soliton. The initial positive Gaussian perturbation to the ion velocity makes

the leading ion-acoustic soliton propagate with a positive velocity. The formed electron

phase space hole is trapped in the soliton and propagates with it. The characteristic dip

in the electron density associated with a hole can be seen. However, the electron density

inside the solitary wave is still higher than the background density even at its lowest point.

The positive charge in this newly formed solitary wave is provided by the compressional

ion pulse rather than the electron phase-space hole. The solitary wave propagates with

a steady velocity of 1.6𝑐𝑠 in the plasma frame and has a wave amplitude of 0.4𝑇𝑒/𝑒,

leaving behind the slower trailing ion-acoustic perturbations. The formed solitary wave is

a few Debye lengths wide and stably propagates in the bulk plasma, resembling an ESW

observed in space.

The final solitary wave is formed as a stable coupled state of an ion-acoustic soliton

and an electron phase-space hole. This kind of nonlinear wave phenomenon in plasma has

been previously documented in literature through simulations [75, 78] (though generated

via different methods). The terminology differs from author to author because of the

admittedly unsolved ambiguity [78] between a soliton that is described by KdV type of

equation and an electron hole that emerges from Vlasov-Poisson system. We will be
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addressing their key differences later in this chapter. We use the term Coupled Hole

Soliton or CHS to refer to this coupled state in our PIC simulation. This term, first

coined by Saeki and Genma [75], better portrays the nature of this nonlinear structure as

we shall see later in this chapter.

It is worth pointing out that without the dimple in the initial electron distribution,

the initial ion density perturbations tend to form an ion-acoustic wave train rather than

the distinct soliton in Figure 5-1. The existence of an electron phase-space hole helps

with the formation of the ion-acoustic soliton. These resonant trapped electrons change

the dispersion relation of the wave so that it travels faster than the bulk ion-acoustic

perturbations.

Study of the structure or the nonlinear dispersion relation of a steady-state CHS solu-

tion using Sagdeev’s pseudo potential approach has been performed by previous authors.

Saeki and Genma [75] assumed the water bag model1 for the electron hole and Schamel

[67] used Maxwell-Boltzmann distribution for the trapped electrons. In this chapter,

we focus on the time dependent dynamics of these CHSs and their connections to both

electron holes and ion-acoustic solitons.

II Collision of Coupled Hole Soliton (CHS) pairs

The CHS has different dynamical properties than a pure BGK mode electron hole. One

characteristic that is often cited to differentiate an electron hole from a soliton is that holes

merge [102, 89] during collisions when the velocity difference is small (some criterion uses

the term “overlap in velocity range”), while solitons, by definition, survive collisions with

other solitons unchanged. In this section, we show evidence that these CHSs have soliton-

like behavior and emerge from head-on collisions that would otherwise cause electron

holes to merge. Furthermore, the detailed process of their collision shows deviation from

that of ion-acoustic solitons described by the KdV equation or Schamel’s modified KdV

1The water bag model is a simplified kinetic model of a plasma. In a water bag model, the distribution
function 𝑓(𝑥, 𝑣) can only take two discreet values: either 𝑓(𝑥, 𝑣) = 𝐴 > 0 when there are particles in the
phase space volume centered around (𝑥, 𝑣) or 𝑓 = 0 when there are no particles.
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equation [67] with resonant electrons. A hybrid behavior between a BGK mode electron

hole collision and an ion-acoustic soliton collision is observed for collisions between CHSs.

To perform a collision test, we initialized two counter-propagating CHSs at locations

separated by 128𝜆De, using the initialization method described in the previous section.

Different perturbations are applied to generate CHSs of different sizes. Four time slices

of this simulation are shown in Figure 5-2. In the top two rows, two positive potential

pulses representing two CHSs are propagating towards one another. Solitary ion density

compressional pulses can be seen in these CHSs. Row three shows the moment when they

collide. Before the two ion-acoustic solitons completely merge, the wave amplitude has

already risen. This behavior is not described by the KdV type of equations for ion-acoustic

solitons, in which the potential has the same shape as the ion density perturbation.

At a later time step (row four), the two solitary waves re-emerge from the collision,

with some distortions to their shape. The wave amplitudes are damped after collision

but their velocities remain approximately unchanged. Each CHS encounters the trailing

ion-acoustic perturbations behind the other after collision, contributing to their shape

distortion.

For comparison, we studied the head-on collision of pure electron phase space holes

with negligible ion response. We apply no density perturbations to ions nor electrons

(𝛿𝑛 = 0). The ions have no initial velocity perturbations (𝛿𝑣 = 0) and are initialized

with a drift velocity of −10𝑐𝑠 to minimize their influence on electron holes (cf. Chapter

3). Electron distribution function is initialized with similar phase-space perturbations

as we used in the previous experiment, the only difference being that now the dimples

have a nonzero initial velocity in order to produce counter-propagating electron holes

(previously the velocity of a CHS was determined by the initial ion velocity perturbation).

Two counter propagating electron holes of similar size as before are produced and their

collision is shown in Figure 5-3. The wave amplitudes are smaller because of the lack of

ion contribution. The velocity difference between the two pulses is approximately 3𝑐𝑠,

comparable to the value used in the previous experiment. With this velocity difference,

the two electron holes have significant overlap in velocity range and theory [102] predicts
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that they will merge during a head-on collision. In Figure 5-3, the last two rows show

clearly that these electron holes alone don’t survive a collision and they merge forming a

bigger electron hole.
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Figure 5-2: Head-on collision of two CHSs, the left CHS travels at 1.5𝑐𝑠 and the right
CHS travels at −1.5𝑐𝑠. Both electrostatic potential (solid line) and ion density (dashed
line) are shown in this plot.

The collision test demonstrates a crucial difference between a CHS and a pure BGK

mode electron hole. A collision of two CHSs is also different from a collision of two ion-

acoustic solitons. During a collison between two typical ion-acoustic solitons described by

the KdV or mKdV equation, the amplitude of the merged solitary wave follows the ion

density perturbation. Wayne et al. [103] showed that the head-on collision of two KdV

solitons can be well approximated by their linear superposition. Row three of Figure 5-2

shows a deviation from this linear superposition and an early rise in the merged waved

amplitude during a CHS collision. A CHS collision exhibits important contributions from

electron phase space dynamics, resulting in kinetic effects not captured by the KdV type

of approach.

Electron phase space density contours are plotted to illustrate the kinetic aspect of

such a collision. In Figure 5-4, we show the electron phase space and ion density side by
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Figure 5-3: Head-on collision of similar-sized electron phase space holes with comparable
velocity difference as in Figure 5-2 without ion-acoustic solitons attached, the left electron
hole travels at 1.2𝑐𝑠; the right electron hole travels at −2𝑐𝑠 and the merged hole travels
at −1.2𝑐𝑠. The electrostatic potential is shown in solid line.

side during a CHS collision. The complete picture of this collision can be decomposed

into the following stages:

First, two counter-propagating CHSs encounter one another as shown in the first

row of Figure 5-4. During the collision, before the two ion-acoustic solitons completely

merge, the two electron holes are seen rotating around one another, which is shown in

the second row. This rotation is a standard precursor of two electron holes merging [102].

Similar behavior is also observed during the merging of fluid vortices [104]. Electron

holes are effectively vortices of the electron phase-space fluid. During the CHS collision,

the ion dynamics are lagging behind that of the electrons due to their heavier mass.

Two electron holes interact with each other and merge on a time scale faster than the

ion-acoustic soliton collision can fully happen. The merged electron hole is a significant

deficit of electron density between the two ion density peaks, causing a faster growth in

wave amplitude during the collision. By growing the wave amplitude, the merged hole

also stabilizes itself in the wave trough between the two ion density peaks. The merged

electron hole can be seen in row three of Figure 5-4. By this time, the two ion-acoustic
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solitons have fully merged, causing further compression in ion density as predicted by

the KdV equation behavior. Ion momentum effect eventually prevails in this collision,

splitting the newly formed electron hole into two parts. The hole splitting process can

be seen in row four. The last row shows that each ion-acoustic soliton re-emerging from

the collision then carries a part of the merged electron hole and moves away from each

other. Each ion-acoustic soliton may have different resonant electrons trapped in their

wave trough and the detailed trapped electron distribution is different from before the

collision. This redistribution of trapped electron phase-space is entirely determined by

the complex and nonlinear process of hole merging and splitting. Electron phase mixing

can be clearly seen in the electron phase-space holes re-emerging from the collision, which

is reminiscent of Alfvénic MHD turbulence arising from the collision of nonlinear Alfvén

wave packets [105]. These effects contribute to the distortion of emerging CHS solitary

waves. In this sense, the two CHSs have lost a part of their identity during this collision.
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Figure 5-4: Left: electron phase space density during a CHS head-on collision. Right: ion
density during the collision at the same time slices.
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Figure 5-5: Pure electron holes not coupled to ion-acoustic solitons merging during a
head-on collision.

The derivation of KdV or mKdV equations for ion-acoustic solitons generally assumes

an electron equation of state 𝑝𝑒(𝜑). The electron equation of state corresponds to a quasi-

stationary approximation for electrons and is therefore violated during hole interaction or

merging. Finer scale electron dynamics have been lost in these derivations, which explains

the observed discrepancy.

For comparison, we show two pure electron holes merging during a head-on collision

in Figure 5-5. This is the same run as in Figure 5-3. Similar dynamics is observed for

the hole merging process. Two holes rotate around each other and then merge. Ions are

much less involved in this collision than in the previous case. Only slight ion-acoustic

perturbations are noticed after the dwell time of hole merging.

III Velocity gap and transition between two states

III.1 Velocity gap between CHS and BGK states

We have extensively explored the generation of CHSs with different initializations. Our

data show that stable CHSs have extensive overlap in wave amplitude with electron holes,

143



but there is a distinct gap between their velocities in the ion frame. This velocity gap is

caused by the oscillatory velocity instability that we discussed in Chapter 4.

In Figure 5-6, we plot the velocity of stationary solitary waves in the ion frame (also

the plasma center of mass frame) measured in cold ion sound speed 𝑐𝑠 versus the solitary

wave amplitude measured in 𝑇𝑒/𝑒. All the data points are from our PIC simulation.

Different initial perturbations are applied to generate different sized solitary waves. In

general, when the initial ion density and velocity perturbations are reduced, BGK mode

electron holes are generated instead of the CHSs. These electron holes only have small

ion compressional pulses attached to them as ion response to their potential. Most of

the positive charge in these electron holes is provided by the deficit of electrons rather

than the compression of ions. Their velocity is determined by the velocity at which they

are generated in the electron distribution and the transient acceleration from ions as we

discussed in Chapter 2 and 3. For this reason, there is no obvious correlation between

their wave amplitude and velocity. Space observations also confirm that electron holes

can have a wide range of velocity at similar amplitude [99].

However, when an electron hole forms a stable coupling with an ion-acoustic soliton,

the combined CHS has a velocity that is positively correlated to its amplitude as shown

by triangles in Figure 5-6. Again this property confirms the soliton-like nature of a CHS.

A bigger CHS travels faster like in the case of a soliton. A CHS travels slightly faster than

its typical ion-acoustic soliton counterpart, which can be confirmed from the nonlinear

dispersion relation [67] taking into account the fewer resonant electrons.

The velocity gap between the CHSs (“coupled state”) and BGK mode electron holes

(“free state”) is clearly shown in Figure 5-6. We know from our analysis in Chapter 4 that

when the velocity of an electron hole is slower than a threshold value, it encounters the

oscillatory velocity instability. This explains why the upper points representing electron

holes do not go significantly below the oscillatory velocity stability boundary plotted for

Schamel type of hole potential. The existence of another stable branch of CHS deeply

beneath the stability boundary was not covered by our analysis, although we hinted at the

possibility of its existence in the last section of Chapter 4. The linear stability analysis
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Figure 5-6: Velocity and amplitude of the solitary waves observed in our PIC simulation
showing the velocity gap between two different states of electron holes.

we performed was based on approximations that are valid in the vicinity of the stability

boundary. However, these assumptions break down when the wave velocity is significantly

lower than the threshold value. When we approach the CHS branch, the ion contribution

to the total wave potential becomes important and the principal eigenmode is no more

the Goldstone mode that we have assumed in our analysis. The approximation 𝜓/𝑈2 ≪ 1

also deteriorates when the wave velocity approaches 𝑐𝑠. We take the singular points where

𝑃̇𝑒 = 0 for a Schamel type of hole potential in our previous stability analysis to delimit

the lower stability boundary. It is plotted by the dashed line in Figure 5-6. Our stability

analysis should break down above this line. A mathematically rigorous treatment for

the stability of CHSs and the exact lower stability boundary is beyond the scope of this

thesis. The lower bound of the shaded gap region in Figure 5-6 should be taken from a

qualitative perspective rather than quantitative. Empirically, it is found that these stable

CHS solutions indeed cluster around this boundary as shown in Figure 5-6.
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This velocity gap is caused by an instability mechanism that involves the dynamics of

both species in plasma. It is thus absent from the theory of CHS using Sagdeev’s potential

by Saeki and Genma [75]. A Sagdeev’s potential approach constructs a stationary solution

of which the stability is not guaranteed. Furthermore, it is important to perform the

simulation with the physical ion-to-electron mass ratio for the clear observation of this

velocity gap. As we have demonstrated in Chapter 4, an artificially reduced mass ratio

will lower the upper stability boundary because of its mass ratio scaling, reducing the

velocity gap. The use of significantly reduced mass ratio as low as 𝑚𝑖/𝑚𝑒 = 100 makes it

difficult for some previous studies to observe this velocity gap.

When the electron hole happens to be generated in the unstable region of the parameter

space, instability is observed and the electron hole eventually settles down to one of

the two stable states. Deviation from the oscillatory velocity instability is observed for

unstable electron holes that are significantly below the upper stability boundary. Both

deformation and shift of the solitary wave are observed during the instability. The details

of this instability will be discussed in the following subsections.

III.2 Transition from CHS to BGK by ion Landau damping

In this subsection, we show that the ion-acoustic soliton in a CHS can be significantly

damped by ion Landau damping when finite ion temperature effects are important. The

CHS becomes unstable with damping and the electron phase-space hole breaks the cou-

pling during instability, becoming a “free” BGK electron hole.

Ion-acoustic solitons are known to be subject to ion Landau damping [106]. A CHS

travels at a velocity slightly higher than the ion acoustic velocity. When the ion tem-

perature becomes comparable to or higher than the electron temperature, there is a non-

negligible number of ions traveling at the same phase velocity as the wave. These ions

damp the ion compressional pulse of the CHS. With a disappearing ion-acoustic soliton,

the CHS gradually becomes unstable as shown in Figure 5-7. The first row shows an

initially stable CHS. The ion density accumulation inside the CHS diminishes over time.

Eventually the ion density peak gets dispersed and a doubled-humped structure forms in
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the ion density as shown in row three. The electron hole trapped inside the ion-acoustic

soliton begins to have serious excursions, distorting the wave form. The overall ion den-

sity perturbation is still moving at a velocity slightly higher than 𝑐𝑠 but the electron hole

is bouncing inside it from one side to the other with a growing oscillating velocity (row

three and row four). Eventually, the electron hole is released from the ion trap by this

instability, becoming a free BGK electron hole traveling steadily at a higher velocity than

before. The jump in velocity approximately corresponds to the velocity gap between the

two states. The wave amplitude shrinks during the damping and subsequent instability.
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Figure 5-7: Long-term evolution of a CHS in a plasma where 𝑇𝑒/𝑇𝑖 = 5 shows instability
while the ion density compressional pulse is damped away by ion Landau damping. The
electrostatic potential is shown in solid line and the ion density is shown in dashed line.
The last row shows the final free electron hole released from the CHS by instability. Hole
tracking simulation is used to track the long-term behavior of this solitary wave. The
𝑥-coordinate is with respect to the lab frame.

In terms of the (𝑈, 𝜓) parameter plane we have introduced, the CHS starts at 𝑈 = 2𝑐𝑠,

𝑒𝜓 = 0.34𝑇𝑒, ion Landau damping causes the wave amplitude to shrink while its velocity

approximately remains the same. This corresponds to moving horizontally to the left in

the (𝑈, 𝜓) plane until we encounter the instability boundary at 𝑒𝜓 = 0.29𝑇𝑒. Eventually

the free BGK electron hole stabilizes at 𝑈 = 5.6𝑐𝑠 and 𝑒𝜓 = 0.12𝑇𝑒 after the jump in its

velocity. Time evolution of the wave velocity in the ion frame is plotted in Figure 5-8.
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The oscillations and the final transition can be clearly viewed from the velocity change.

CHS to BGK 
transition 

Instability 
growth 

Figure 5-8: Velocity of the solitary wave during and after the instability showing the
transition, the velocity is measured by hole tracking algorithm described in Chapter 3. A
low-pass filter of cutoff frequency 0.03𝜔𝑝𝑒 is applied to the velocity time series to eliminate
high-frequency noise.

The ion Landau-damping-induced instability and transition become more pronounced

hotter the ions are. Ion reflection from the solitary wave front also becomes important,

accelerating the CHS during instability. All these effects contribute to a faster transition

from a CHS to a BGK electron hole in a plasma with warm ions.

III.3 Transition from BGK to CHS by hole growth

Previously, we have demonstrated the transition from a CHS state to a free electron hole

by ion Landau damping. Now we show that by growing the amplitude of an electron hole

fast enough using a rising background plasma density, an electron hole may go through

the unstable region and excite enough ion perturbations to stably couple itself to form

a CHS. When an electron hole is placed in rising background density, its effective depth
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grows because the passing population density is rising while the trapped distribution

remains unchanged. This causes the electron hole to grow, grabbing more phase space

volume from the passing orbits. This hole growth mechanism has been treated in detail

in the work by Hutchinson et al. [107] It explains the growth of electron holes in the

plasma wake of an object. We have proved in Chapter 2 that a growing electron hole will

accelerate in the ion frame through the growth jetting effect, making it difficult to couple

a growing hole to the ions if there is only one ion stream. The way to get around this is

to use two counter-propagating ion streams and initialize an electron hole that is between

them in the velocity range. So in the hole frame, the two ion streams are coming from

opposite directions and the growth jetting effects from the two streams will cancel each

other. In this way, we can grow an electron hole that remains relatively stationary in the

ion frame. This is the method we adopt to carry out this numerical experiment.

We start the simulation using a domain that is 96𝜆De wide. The ions are composed

of two counter-propagating cold beams with 𝑇𝑒/𝑇𝑖 = 20 traveling at ±4𝑐𝑠 in the sim-

ulation frame. An electron hole of amplitude 0.1𝑇𝑒/𝑒 is generated in the center of the

domain. It is generated at the center of electron distribution such that its velocity is

zero in the simulation frame. The velocity of the ion beams and the electron hole size

are chosen so that the system is not subject to ion-acoustic or hole velocity oscillatory

types of instabilities. We grow the background plasma density in our simulation after the

hole forms by injecting a growing number of particles into the simulation domain. The

background plasma density grows exponentially as ∼ exp(𝛾𝑏𝑡), with 𝛾𝑏 = 1 × 10−3𝜔𝑝𝑒.

Like in a plasma wake, the rising electron density fills in the simulation domain faster

than the ions, forming an ion-attracting potential well in the simulation domain. The

central electron hole climbs up this potential well like an electron. It grows in size upon

encountering higher density electron phase space fluid. We show the potential and ion

density evolution of this rising density simulation in Figure 5-9. The first two rows show

the initial BGK electron hole with little ion response, it moves to the right climbing

the density gradient and grows in amplitude. It then encounters the oscillatory velocity

instability after its amplitude reaches approximately 0.3𝑇𝑒/𝑒. The oscillatory velocity
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instability creates trailing ion-acoustic perturbations around the electron hole, which can

be seen in rows three and four. The background density growth is stopped at 𝜔𝑝𝑒𝑡 = 1200

when the background density reaches about 3.2 times its initial value. Because the ions

are counter-propagating, the final ion density first establishes at the center of simulation

domain so the potential inverts its concavity after the end of density growth, sending the

electron hole back to the center. We notice that the instability gradually diminishes after

the wave amplitude reaches above 2𝑇𝑒/𝑒. The final solitary wave grows to about 3𝑇𝑒/𝑒

in amplitude and propagates steadily at a velocity of −0.5𝑐𝑠. Ion density compressional

pulse dominates in this final solitary wave and it is effectively a CHS.
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Figure 5-9: Electrostatic potential and ion density during the growing density simulation.
Background density growth starts at 𝜔𝑝𝑒𝑡 = 30 and ends at 𝜔𝑝𝑒𝑡 = 1200.

In a similar way as before, this state transition can be visualized by plotting the

velocity evolution of this solitary wave, which is shown in Figure 5-10. The oscillation

amplitude grows as well as its frequency. The frequency chirp of unstable oscillations is

predicted by our stability analysis in Chapter 4 as the wave amplitude 𝜓 grows bigger.

At around 𝜔𝑝𝑒𝑡 ≃ 1600, the solitary wave reaches the lower stability boundary in (𝑈, 𝜓)

plane and begins to stabilize itself. The oscillation amplitude shrinks sharply as the wave

makes its transition to a stable CHS.
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Figure 5-10: Velocity of the solitary wave during the rising density simulation. The wave
converges to a stable CHS state. The same low-pass filtering is applied as in Figure 5-8.
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Figure 5-11: Top: ion phase space of the CHS at 𝜔𝑝𝑒𝑡 = 3330. Bottom: electron phase
space of the CHS at 𝜔𝑝𝑒𝑡 = 3330.

The final CHS obtained from the rising density simulation reaches an amplitude of

3𝑇𝑒/𝑒, a significant amount of the electron phase space is trapped inside this solitary wave.

A plot of its phase space structure is shown in Figure 5-11. Perturbations to the two ion

streams can be seen in the ion phase space. If the wave grows further, it will eventually

disrupt the counter-propagating ion streams as seen in the kinetic plasma wake simulation

performed by Haakonsen et al. [57] Previously in the kinetic plasma wake simulation, the

central big electron hole is observed to have very different dynamics than the smaller

ones that are accelerated to a high velocity by the wake electric field. The big electron

hole moves at an almost constant velocity, slowly drifting in the wake. The current study
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shows that by transitioning into a stable CHS during growth, this big electron phase space

vortex is trapped inside an ion density compressional pulse formed by its rising amplitude.

Ion scale dynamics dominate inside the CHS, hence it behaves differently than the other

smaller electron holes. In Haakonsen’s original wake simulation, the ions have the same

temperature as the electrons so ion Landau damping is not negligible as we have seen in

the previous subsection. However the fast growth from the rising density can completely

overwhelm the damping from finite ion temperature effects.

When the density growth rate is not enough to overcome the oscillatory velocity in-

stability, the electron hole is seen torn apart by the instability and leaves the domain fast

by strongly interacting with one of the ion streams.

IV Buneman instability and CHS formation

So far we have shown examples where artificial density perturbations are used as seeds

to generate electron holes or CHSs. In this section, we show the generation of electron

holes and CHSs during Buneman instability simulated with PIC simulation. Buneman

instability is driven by the relative velocity drift between electrons and ions in a plasma.

It is one of the kinetic instabilities that are often cited to be responsible for the generation

of electron holes in space plasma [33]. Let us denote the relative drift velocity of electrons

in the ion frame as 𝑣𝑑,𝑒, a linear stability analysis gives that Buneman instability is excited

for a equal temperature 𝑇𝑖 = 𝑇𝑒 plasma when [12]

𝑣𝑑,𝑒 > 1.3

√︂
𝑇𝑒
𝑚𝑒

. (5.5)

This threshold value is reduced below the electron thermal speed when the ions are cold.

Buneman instabilities are simulated with different electron-to-ion temperature ratios us-

ing 1D open boundary PIC simulation. It is found that Buneman instability results in

formation of CHS-like structures when the ions are cold and only free BGK electron holes

are observed when the ion temperature is equal to that of the electrons. A clear example

of such observation is shown in Figure 5-12. Ions have zero drift velocity in the simulation
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BGK electron holes BGK electron holes 

Figure 5-12: Top: Buneman instability simulation with cold ions shows formation of
CHS-like structures, traveling slightly above 1𝑐𝑠 in the ion frame. Bottom: Buneman
instability simulation with a hotter ion population only shows formation of BGK electron
holes, traveling between 4𝑐𝑠 and 5𝑐𝑠 in the ion frame, above the stability threshold velocity.

frame. In the cold ion stream run with 𝑇𝑒/𝑇𝑖 = 20, the electrons have a drift velocity

of 𝑣𝑑,𝑒 = 45𝑐𝑠, which is comparable to the electron thermal velocity. A chain of electron

holes can be seen forming behind a double-layer like structure in the electron phase space.

They are all attached to ion density perturbation peaks. This is shown by the top two

panels of Figure 5-12. They travel in the ion frame with a velocity slightly above the

ion sound speed and bigger CHSs travel faster than the smaller CHSs, resulting in their

separation.

The equal temperature 𝑇𝑖 = 𝑇𝑒 run was performed with a higher electron drift velocity
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𝑣𝑑,𝑒 = 70𝑐𝑠 in order to satisfy the more stringent instability criterion set by Equation (5.5).

In this case, only BGK type of electron holes are seen forming in the simulation with small

ion perturbations as shown by the bottom two panels of Figure 5-12. These electron holes

also have a higher velocity (above 4𝑐𝑠) in the ion frame as it would be expected from their

different nature.

The above results show that Buneman instability with cold ions tends to form electron

holes in CHS states while BGK type electron holes are formed for a warmer ion population.

V Implications for space observation

The results we show so far in this chapter have important implications for the observation

of ESWs by satellites. Our simulation predicts a velocity gap between two different states

of electron holes. It remains to be seen if satellite data can confirm this. The challenge

right now is that the ESWs observed are rather weak in amplitude 𝜓, most often between

0.01𝑇𝑒/𝑒 and 0.1𝑇𝑒/𝑒 [99]. The velocity gap shrinks significantly when the wave amplitude

approaches zero. Also satellites may observe an unstable non-stationary electron hole. We

have seen that in an unstable CHS, the electron hole oscillates in ion density perturbations

extending several Debye lengths for an extended period of time, both the spatial scale

and time scale of this oscillation may well exceed the distance between sensors and time

delay used to infer the wave velocity. The satellites can effectively “see” the instantaneous

velocity of an unstable electron hole. It is worth pointing out that the ion temperature

is significantly hotter (5− 10 times hotter) [91, 99] than the electron temperature in the

plasma regions where these slow ESWs are observed. The ion Landau damping effect

we have discussed indicates that both stable and unstable CHSs can only exist for a

short period of time. They may still be observed if born close enough to the satellites.

Furthermore, our results provide a way to study quantitatively the coupling strength

between an electron hole and the ions with available observational data. Electric field

sensors are most often the plasma diagnostic with the highest time resolution available

on a satellite [43]. Ion and electron density are measured with much less time precision
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Figure 5-13: The velocity-amplitude parameter plane. The velocity is normalized to cold
ion sound speed and the amplitude is normalized to electron temperature. The BGK mode
free electron holes are separated from the CHSs by the shaded region, which represents
the oscillatory velocity instability.

[92], which is not enough to resolve the density perturbations inside an ESW traveling at

several hundred kilometers per second in the satellite frame. Therefore it is difficult to

rely on the density data to tell the nature of an ESW. We suggest using the plot shown

in Figure 5-13 to classify the coupling between an ESW and the ions. One could simply

plot the ESW speed in the ion frame in unit of ion sound speed versus its amplitude in

unit of electron temperature in this parameter plane to determine its nature. Different

coupling strengths to ions suggest different generation mechanisms. In Figure 5-14, we

have plotted the observational data from Cluster spacecraft. More data are required to

determine if there is actually a velocity gap between faster and slower ESWs from space

observations. However, the ones that are called slow ESWs or slow electron holes indeed

cluster near the CHS/IAS branch. A fast moving electron hole with little coupling to

the ions is likely to be generated by electron bump-on-tail type of instability while slow
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electron holes with stronger ion coupling and CHSs are more likely to be generated by

Buneman instability. The ESWs that have stronger coupling to ions are more likely to

drive anomalous resistivity in space plasma.

Figure 5-14: The observational data from Cluster spacecraft are plotted in the velocity-
amplitude parameter plane. The ones with speed close to 𝑐𝑠 are referred to as the “Slow
Electrostatic Solitary Waves”. These data are published in references [92, 99].

VI Conclusions

In this chapter, we have demonstrated stable embedding of an electron phase-space hole

into an ion-acoustic soliton in a one dimensional Particle-In-Cell simulation, forming a

stable Coupled Hole Soliton, which is a coupled state of a fluid soliton and a phase-space

vortex. We have performed head-on collisions of CHSs in PIC simulation. The collision

test shows that CHSs can survive collisions with small relative velocity difference. Its

detailed behavior during collision is a hybrid of soliton collision and vortices merging. A

statistical study of the velocities of CHSs reveals a velocity gap between CHSs and BGK
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electron holes, which can be explained by the oscillatory velocity instability. Transition

between a CHS state and a BGK state is possible in both directions. CHSs can be gener-

ated by Buneman instability when the ions are a cold stream. Our findings are important

for the better understanding of the boundary between electron holes and solitons. Our

results are also useful for interpreting satellite data of space observations.
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Chapter 6

Conclusions and future work

I Conclusions

The current thesis presents comprehensive original research work on BGK mode electron

holes in collisionless plasma. It contributes to the field of plasma physics in both fun-

damental and more applied aspects. Fundamentally, the new physical understandings

conveyed by this thesis are:

∙ The velocity and dynamics of electron holes are governed by total plasma momen-

tum conservation, hence ions play an important role in determining the velocity

of electron holes. The “jetting” effect has important implications for momentum

transfer. Slow electron holes have strong momentum coupling to the ions. The

strength of this coupling is determined quantitatively in this thesis. This point was

discussed in Chapter 2.

∙ A new type of BGK mode instability is discovered as part of this thesis work. An

electron hole traveling slower than a few times the ion sound speed in the ion frame

experience unstable oscillations in its velocity. The instability involves interplay of

both electron and ion dynamics. A 1-D analytic treatment of the instability is given

in this thesis. The analytic treatment can fully explain the instability thresholds

and frequencies observed in simulations and the growth rates are explained in the
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weakly unstable cases. This instability mechanism can contribute to the anomalous

resistivity observed in space plasma. Chapter 4 discussed this point.

∙ The holistic object treatment of the electron hole yields fruitful outcomes. The

Goldstone/shift mode, which is a derivative of the steady state solution, is an im-

portant destabilizing eigenmode of an electron hole solution. This point can also be

found in Chapter 4.

∙ The methodology and mathematical techniques developed in this thesis work (Chap-

ter 4) such as the derivation of a dispersion relation/response function for a non-

linear solitary wave can potentially be applied to the study of other nonlinear wave

phenomena such as double layers and shock fronts in plasmas.

∙ An electron hole can form a stable coupled state with an ion-acoustic soliton to

travel near the ion sound speed in the ion frame. This coupled state is separated

from the classical BGK mode electron hole by the oscillatory velocity instability.

The coupled hole soliton pair exhibits more soliton-like properties, though stronger

kinetic electron effects make it behave differently than a fluid soliton. This thesis

work makes an important step forward in explaining the ambiguity and boundary

between an electron hole and a soliton. Chapter 5 discussed this point.

∙ Transition is possible between a coupled hole soliton state and a classical BGK mode

electron hole. This is a demonstration of transition between different nonlinear wave

phenomena in a plasma. Chapter 5 covered this point.

This thesis also provides important insight in some more practical aspects:

∙ A novel Particle-In-Cell code that can self-consistently track and simulate a fast

moving electron hole is implemented in this thesis work. It successfully applies the

concepts from control theory to numerical simulation of a plasma. The flexibility,

reliability and feasibility of this moving-domain feature-tracking simulation tech-

nique is demonstrated. Similar methods can be implemented to study the long-time
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dynamics of other propagating nonlinear phenomena such as the shock wave. This

point was discussed in Chapter 2.

∙ This thesis introduces a practical parameter plot to study the coupling of an elec-

trostatic solitary wave to ions, which can be readily applied to the analysis of space

probes data. This point can be found in Chapter 5.

∙ The thesis work predicts a new type of electron hole instability and a velocity gap

between two different states of electron holes that can be potentially observed and

verified. It gives directions to researchers working on the experimental side about

where they should be looking at to find these new phenomena. These points were

discussed in Chapter 4 and Chapter 5.

II Future directions

This thesis opens up directions for important future work. First, the present work only

deals with one-dimensional electrostatic kinetic plasma. Though this choice is justified in

the thesis, the natural next step is to go to higher-dimensional and finitely magnetized

plasma. We have mentioned the unsolved transverse instability of an electron hole in

higher dimensions. This thesis work sheds light on understanding the transverse instabil-

ity and paves a way to solving it. An example of the hole transverse instability is shown in

Figure 6-1. The PIC simulation is two-dimensional in space and three-dimensional in ve-

locity to simulate a magnetized plasma. The ions form a uniform neutralizing background.

The electron hole potential can be seen along the magnetic field direction (axis 1). In the

two-dimensional case, the electron phase space structure is rather a phase-space tube that

extends in the transverse direction. The magnetic field strength is such that Ω𝑒 = 0.2𝜔𝑝𝑒.

Kinking of an electron hole in the transverse direction happens when the magnetic field

strength is weak such that Ω𝑒 < 𝜔𝑏, where 𝜔𝑏 is the parallel bounce frequency for the

trapped electrons. No analytic treatment so far has obtained the eigenmode consistent

with what was observed in numerical simulations [53]. The destabilizing mode is an odd

eigenmode with respect to the center of the electron hole, which depends on the transverse
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direction 𝑦 as exp(𝑖𝑘𝑦). This eigenmode appears to be the Goldstone or shift mode that

was analyzed in this thesis. When the magnetic field strength is weak and an electron

with a transverse velocity 𝑣⊥ can have important excursion in the transverse direction, it

effectively sees an oscillating hole potential with a frequency 𝑣⊥𝑘. There is hole momen-

tum “jetting” effect in the parallel direction resulting from this oscillating hole potential.

An analytic treatment showing that the Goldstone mode can be driven unstable under

these conditions seems very hopeful. If this intuition turns out to be correct, then the

transverse instability is a result of the entire electron distribution, rather than a trapped

electron mode suggested by the past literature [53].

As an improvement on the work presented in this thesis, the electron momentum rate

of change can be extended to the entire frequency domain, with resonant electron effects

taken into account. A low frequency approximation for the electron response is derived

in this thesis work which neglects resonant electron effects. These approximations have

been justified in the thesis and the good agreement with simulations further strengthens

our confidence in these expressions. However, if the transverse instability needs to be

pursued in a similar way, then a full expression for the electron response is important.

A first attempt at this is shown in Section III of Chapter 4 using a linearized Vlasov-

Poisson approach. Another aspect that can be worked upon to make this thesis work

more mathematically rigorous is the treatment for electrons near the separatrix where the

short-transit-time approximation breaks down. A more mathematically rigorous way to

neglect them may be possible.

In this thesis, it is shown that there is a new branch of stable solitary waves deeply

beneath the oscillatory velocity instability boundary, which is the Coupled Hole Soliton

pair (CHS). Its stability, though demonstrated in PIC simulation, has not been proved

using an analytic theory. A possible future direction is to actually derive their stability

and the stability boundary. The Goldstone mode can no longer be justifiably used for

this calculation as the ion soliton contribution to the potential is important. The non-

centering of the electron hole and the ion-acoustic soliton leads to deformation of the hole

potential rather than a simple shift.

162



Figure 6-1: Transverse instability of a two-dimensional electron hole. The magnetic field
is along axis 1. The top panel (a) shows the simulation at 𝜔𝑝𝑒𝑡 = 204, the bottom panel
(b) shows the simulation at 𝜔𝑝𝑒𝑡 = 628. Courtesy of I. H. Hutchinson
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This thesis predicts phenomena that can potentially be observed in the laboratory

and in nature. Satellites provide rich data of electrostatic solitary waves encountered in

space. Mining these data for the evidence of the phenomena described in this thesis will

be interesting future work. Especially finding the velocity gap and classifying different

types of electrostatic solitary waves in a big data set will make meaningful use of modern

machine learning techniques. It is also possible that the phenomena described in this

thesis can be directly observed in the laboratory plasma experiments. Lefebvre et al.

[37] have demonstrated generation of electron holes using superthermal electron beam

injection at the upgraded Large Plasma Device. It is shown in this thesis that Buneman

instability is an effective way to generate electron holes that are strongly coupled to the

ions and Buneman instability with cold ions tend to generate CHSs. A possible way to

excite Buneman-type instability with a similar experimental setting is to inject subthermal

electron beam that preferentially interact with the ions. The follow-up experimental work

can use these guidelines to generate and explore slow electron holes in the ion frame. This

is a rarely explored regime in which the present thesis work predicts interesting physics.
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Appendix A

Initial electron distribution

generated by rejection method

We give a proof for Eq. (3.7) in this subsection. Consider the infinitesimal phase space

area 𝑑𝑥𝑑𝑣 centered around (𝑥, 𝑣). For a given electron density 𝑛0, the number of electrons

that are distributed to this phase space area after Step 1 and 2 is 𝑛0𝑓𝑒,0(𝑣) 𝑑𝑥𝑑𝑣. The

number of electrons rejected after Step 3 is

𝑁rejected,1(𝑥, 𝑣) = 𝑛0𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑥𝑑𝑣. (A.1)

And the number of retained electrons is

𝑁retained,1(𝑥, 𝑣) = 𝑛0𝑓𝑒,0(𝑣)[1− 𝑓𝑑(𝑥, 𝑣)] 𝑑𝑥𝑑𝑣. (A.2)

With our algorithm, only the velocity of a rejected electron will be updated. The total

number of rejected electrons at a position 𝑥 that are subject to redistribution of velocity

is 𝑛0𝑑𝑥
∫︀
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣. So the number of electrons that are redistributed to the phase

space area after another Step 2 is 𝑛0𝑑𝑥(
∫︀
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣)𝑓𝑒,0(𝑣) 𝑑𝑣. The number of
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rejected and retained electrons at the second iteration in the same phase space area are

𝑁rejected,2(𝑥, 𝑣) =

[︂∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

]︂
𝑛0𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑥𝑑𝑣, (A.3)

𝑁retained,2(𝑥, 𝑣) =

[︂∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

]︂
𝑛0𝑓𝑒,0(𝑣)[1− 𝑓𝑑(𝑥, 𝑣)] 𝑑𝑥𝑑𝑣. (A.4)

Compare these expressions at the second iteration to the ones from the first iteration. It

is easy to see that 𝑛0 is replaced by [
∫︀
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣]𝑛0 in the new expressions. As

𝑛0 is arbitrary, this pattern can be generalized to any number of iterations by induction.

The total number of retained electrons in that phase space area can be calculated as

𝑁retained,total(𝑥, 𝑣)

= 𝑛0𝑓𝑒,0(𝑣)[1− 𝑓𝑑(𝑥, 𝑣)] 𝑑𝑥𝑑𝑣

{︃
1 +

[︂∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

]︂
+

[︂∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

]︂2
+ ...

}︃
= 𝑛0𝑓𝑒,0(𝑣)[1− 𝑓𝑑(𝑥, 𝑣)] 𝑑𝑥𝑑𝑣

1

1−
∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

= 𝑛0
𝑓𝑒,0(𝑣)− 𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣)

1−
∫︁
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣

𝑑𝑥𝑑𝑣. (A.5)

Convergence of the geometric series is guaranteed as
∫︀
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣 < 1.

In reality, we need only a few iterations to finish initialization. The total rejection number

quickly converges to 0 as for the parameters (𝜎𝑑 ≤ 0.15𝑣𝑡ℎ,𝑒 , ℎ𝑑 ≤ 0.9) we are using, we

have
∫︀
𝑓𝑒,0(𝑣)𝑓𝑑(𝑥, 𝑣) 𝑑𝑣 ∼ 0.1.
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Appendix B

Rate of change of contained ion

momentum

We calculate the rate of change of inertial-frame ion momentum contained in the control

volume from 𝑥𝑎 to 𝑥𝑏 to the leading order in 𝑡𝑎𝑏𝑈̇/𝑈

𝑃̇𝑖𝑐 =
𝑑

𝑑𝑡
(

∫︁ 𝑥𝑏

𝑥𝑎

𝑚𝑖𝑛𝑣 𝑑𝑥)

=𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕𝑛

𝜕𝑡
(𝑣 + 𝑈ref) 𝑑𝑥+𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝑛
𝜕(𝑣 + 𝑈ref)

𝜕𝑡
𝑑𝑥

=𝑚𝑖𝑈ref

∫︁ 𝑥𝑏

𝑥𝑎

𝜕𝑛

𝜕𝑡
𝑑𝑥+𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕𝑛

𝜕𝑡
𝑣 𝑑𝑥+𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝑛
𝜕𝑣

𝜕𝑡
𝑑𝑥+𝑚𝑖𝑈̇ref

∫︁ 𝑥𝑏

𝑥𝑎

𝑛 𝑑𝑥. (B.1)

𝑈ref is the hole velocity in the reference frame. 𝑈ref is the characteristic of the reference

frame and does not depend on 𝑥. We have 𝑈̇ref = 𝑈̇ . Choose the inertial frame such that

𝑈ref = 0 (the instantaneous hole rest frame). Then at 𝑡 = 𝑡𝑓

𝑃̇𝑖𝑐 = 𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕(𝑛𝑣)

𝜕𝑡
𝑑𝑥+𝑚𝑖𝑈̇

∫︁ 𝑥𝑏

𝑥𝑎

𝑛 𝑑𝑥. (B.2)

We apply the continuity of an ion fluid element from 𝑥𝑎 to a position 𝑥 between 𝑥𝑎 and

𝑥𝑏

𝑛𝑎𝑠𝑥𝑣𝑎𝑠𝑥𝛿𝑡𝑎𝑠𝑥 = 𝑛𝑣𝛿𝑡𝑥𝑓 , (B.3)
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where the subscript 𝑠𝑥 refers to the time 𝑡𝑠𝑥 for an ion particle at 𝑥 when 𝑡 = 𝑡𝑓 to first

enter the control volume at 𝑥𝑎, so 𝑡𝑠𝑥 = 𝑡𝑓 −
∫︀ 𝑥
𝑥𝑎

𝑑𝑢
𝑣
. Using the constancy of the inflow

density, we express 𝑛𝑣 as

𝑛𝑣 =
𝑛∞𝑣𝑎𝑠𝑥𝛿𝑡𝑎𝑠𝑥

𝛿𝑡𝑥𝑓
, (B.4)

with

𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

≃ 1

1 +
𝜕𝑡𝑎𝑥
𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

. (B.5)

𝑡𝑎𝑥 =
∫︀ 𝑥
𝑥𝑎

𝑑𝑥1
𝑣

is the ion transit time between 𝑥𝑎 and 𝑥. The ion velocity is governed by

the conservation of its first integral of motion

𝑣2(𝑡(𝑥1, 𝑥))

2
+ 𝜑(𝑥1) =

𝑣2(𝑡𝑠𝑥)

2
−
∫︁ 𝑥1

𝑥𝑎

𝑈̇(𝑡(𝑥2, 𝑥)) 𝑑𝑥2. (B.6)

We can then give an expression for 𝜕𝑡𝑎𝑥
𝜕𝑡𝑠𝑥

|𝑥 to its leading order

𝜕𝑡𝑎𝑥
𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

=
𝜕

𝜕𝑡𝑠𝑥

(︂∫︁ 𝑥

𝑥𝑎

𝑑𝑥1
𝑣

)︂
=

∫︁ 𝑥

𝑥𝑎

𝜕

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥1

(︂
1

𝑣

)︂
𝑑𝑥1

=

∫︁ 𝑥

𝑥𝑎

− 1

𝑣3
𝜕(𝑣2/2)

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥1

𝑑𝑥1

=

∫︁ 𝑥

𝑥𝑎

1

𝑣3

[︂
𝑣(𝑡𝑠𝑥)𝑈̇(𝑡𝑠𝑥) +

∫︁ 𝑥1

𝑥𝑎

𝜕𝑈̇

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥2

𝑑𝑥2

]︂
𝑑𝑥1

≃
∫︁ 𝑥

𝑥𝑎

𝑣(𝑡𝑠𝑥)

𝑣3

[︂
𝑈̇(𝑡𝑠𝑥) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥)) 𝑑𝑥2

]︂
𝑑𝑥1. (B.7)

We used interchangeably 𝑑𝑡 and 𝑑𝑡𝑠𝑥 as 𝑡(𝑥2, 𝑥) = 𝑡𝑓−
∫︀ 𝑥
𝑥2

𝑑𝑢
𝑣
and 𝑡(𝑥) = 𝑡𝑠𝑥+

∫︀ 𝑥
𝑥𝑎

𝑑𝑥1
𝑣0(𝑥1)+𝑣1(𝑥1,𝑡𝑠𝑥 )

so that 𝑑𝑡 = 𝑑𝑡𝑠𝑥(1 + 𝒪(𝑡𝑎𝑏𝑈̇/𝑈)) for 𝑥 fixed. The first term of 𝑃̇𝑖𝑐 in Eq. (B.2) can be
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expressed as

𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕(𝑛𝑣)

𝜕𝑡

⃒⃒⃒⃒
𝑥

𝑑𝑥 ≃ 𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕(𝑛𝑣)

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

𝑑𝑥

= 𝑚𝑖

∫︁ 𝑥𝑏

𝑥𝑎

𝜕

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

(︂
𝑛∞𝑣(𝑡𝑠𝑥)

𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

)︂
𝑑𝑥

= −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈̇(𝑡𝑠𝑥)
𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

𝑑𝑥⏟  ⏞  
I

+𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣(𝑡𝑠𝑥)
𝜕

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

(︂
𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

)︂
𝑑𝑥⏟  ⏞  

II

.

(B.8)

Combining Eqn. (B.7) and Eqn. (B.5), we have an expression for 𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

≃ 1

1 +

∫︁ 𝑥

𝑥𝑎

𝑣(𝑡𝑠𝑥)

𝑣3

[︂
𝑈̇(𝑡𝑠𝑥) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥)) 𝑑𝑥2

]︂
𝑑𝑥1

= 1 +𝒪
(︂
𝑡𝑎𝑏𝑈̇

𝑈

)︂
. (B.9)

Therefore, to the lowest order, the term I in Eq. (B.8) is

−𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈̇(𝑡𝑠𝑥) 𝑑𝑥. (B.10)

To calculate the term II in Eq. (B.8), we need

𝜕

𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

(︂
𝛿𝑡𝑎𝑠𝑥
𝛿𝑡𝑥𝑓

)︂
= − 1(︂

1 +
𝜕𝑡𝑎𝑥
𝜕𝑡𝑠𝑥

⃒⃒⃒⃒
𝑥

)︂2

𝜕2𝑡𝑎𝑥
𝜕𝑡2𝑠𝑥

⃒⃒⃒⃒
𝑥

. (B.11)

We use the results from Eq. (B.7) to get

𝜕2𝑡𝑎𝑥
𝜕𝑡2𝑠𝑥

⃒⃒⃒⃒
𝑥

=

∫︁ 𝑥

𝑥𝑎

𝜕

𝜕𝑡𝑠𝑥

(︂
− 1

𝑣3
𝜕(𝑣2/2)

𝜕𝑡𝑠𝑥

)︂
𝑑𝑥1

≃
∫︁ 𝑥

𝑥𝑎

1

𝑣3
𝜕

𝜕𝑡𝑠𝑥

(︂
𝑣(𝑡𝑠𝑥)𝑈̇(𝑡𝑠𝑥) +

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥)) 𝑑𝑥2

)︂
𝑑𝑥1 (1st order)

≃
∫︁ 𝑥

𝑥𝑎

𝑣(𝑡𝑠𝑥)

𝑣3

(︂
𝑈̈(𝑡𝑠𝑥) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

...
𝑈 (𝑡(𝑥2, 𝑥)) 𝑑𝑥2

)︂
𝑑𝑥1. (B.12)
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Thus, the term II in Eq. (B.8) can be written as

−𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣2(𝑡𝑠𝑥)

∫︁ 𝑥

𝑥𝑎

1

𝑣3

(︂
𝑈̈(𝑡𝑠𝑥) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

...
𝑈 (𝑡(𝑥2, 𝑥)) 𝑑𝑥2

)︂
𝑑𝑥1 𝑑𝑥. (B.13)

Combining everything above, we have to the leading order

𝑃̇𝑖𝑐 = −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈̇(𝑡𝑠𝑥) 𝑑𝑥−𝑚𝑖𝑛∞𝑈̇(𝑡𝑓 )

∫︁ 𝑥𝑏

𝑥𝑎

𝑈

𝑣
𝑑𝑥

−𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣2(𝑡𝑠𝑥)

∫︁ 𝑥

𝑥𝑎

1

𝑣3

(︂
𝑈̈(𝑡𝑠𝑥) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

...
𝑈 (𝑡(𝑥2, 𝑥)) 𝑑𝑥2

)︂
𝑑𝑥1 𝑑𝑥. (B.14)

Now we apply integration by parts to the last term in Eq. (B.14) using 𝜕𝑡(𝑥2,𝑥)
𝜕𝑥2

|𝑥 = 1
𝑣(𝑡(𝑥2,𝑥))

𝑈̈(𝑡𝑠𝑥) +
1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

...
𝑈 (𝑡(𝑥2, 𝑥)) 𝑑𝑥2 = 𝑈̈(𝑡𝑓 −

∫︁ 𝑥

𝑥𝑎

𝑑𝑢

𝑣
) +

1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

...
𝑈 (𝑡𝑓 −

∫︁ 𝑥

𝑥2

𝑑𝑢

𝑣
)
1

𝑣
𝑣 𝑑𝑥2

= 𝑈̈(𝑡𝑠𝑥) +
1

𝑣(𝑡𝑠𝑥)

(︂[︂
𝑣𝑈̈

]︂𝑥1
𝑥𝑎

−
∫︁ 𝑥1

𝑥𝑎

𝑈̈
𝑣̇

𝑣
𝑑𝑥2

)︂
= 𝑈̈(𝑡(𝑥1, 𝑥))

𝑣

𝑣(𝑡𝑠𝑥)
− 1

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥))𝑣̇

𝑣
𝑑𝑥2

(B.15)

Plug this expression in Eq. (B.14) and remember that 𝑣(𝑡𝑠𝑥) ≃ −𝑈 , we have

𝑃̇𝑖𝑐 = −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑈̇(𝑡𝑠𝑥) 𝑑𝑥−𝑚𝑖𝑛∞𝑈̇(𝑡𝑓 )

∫︁ 𝑥𝑏

𝑥𝑎

𝑈

𝑣
𝑑𝑥−𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥

𝑥𝑎

𝑈̈(𝑡(𝑥1, 𝑥))

𝑣2
𝑑𝑥1 𝑑𝑥

+𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥

𝑥𝑎

1

𝑣3

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥))𝑣̇

𝑣
𝑑𝑥2 𝑑𝑥1 𝑑𝑥, (B.16)

where

∫︁ 𝑥

𝑥𝑎

𝑈̈(𝑡(𝑥1, 𝑥))

𝑣2
𝑑𝑥1 =

[︂
1

𝑣
𝑈̇(𝑡𝑓 −

∫︁ 𝑥

𝑥1

𝑑𝑢

𝑣
)

]︂𝑥
𝑥𝑎

+

∫︁ 𝑥

𝑥𝑎

𝑈̇(𝑡(𝑥1, 𝑥))𝑣̇

𝑣3
𝑑𝑥1

=
𝑈̇(𝑡𝑓 )

𝑣
− 𝑈̇(𝑡𝑠𝑥)

𝑣(𝑡𝑠𝑥)
+

∫︁ 𝑥

𝑥𝑎

𝑈̇(𝑡(𝑥1, 𝑥))𝑣̇

𝑣3
𝑑𝑥1 (B.17)
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and

∫︁ 𝑥1

𝑥𝑎

𝑈̈(𝑡(𝑥2, 𝑥))𝑣̇

𝑣
𝑑𝑥2 =

[︂
𝑈̇ 𝑣̇(𝑡(𝑥2, 𝑥))

]︂𝑥1
𝑥𝑎

−
∫︁ 𝑥1

𝑥𝑎

𝑈̇𝑣

𝑣
(𝑡(𝑥2, 𝑥)) 𝑑𝑥2

≃ 𝑈̇ 𝑣̇(𝑡(𝑥1, 𝑥))−
∫︁ 𝑥1

𝑥𝑎

𝑈̇𝑣

𝑣
(𝑡(𝑥2, 𝑥)) 𝑑𝑥2 (1st order). (B.18)

Simplify Eq. (B.16) by replacing the 𝑈̈ terms using Eqs. (B.17) (B.18). Most terms

cancel out to the relevant order and we are left with only one leading order term

𝑃̇𝑖𝑐 = −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

𝑣(𝑡𝑠𝑥)

∫︁ 𝑥

𝑥𝑎

1

𝑣3

∫︁ 𝑥1

𝑥𝑎

𝑈̇𝑣

𝑣
(𝑡(𝑥2, 𝑥)) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

≃ −𝑚𝑖𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝑈

𝑣30(𝑥1)

∫︁ 𝑥1

𝑥𝑎

𝑈̇(𝑡(𝑥2, 𝑥))𝜑
′′(𝑥2) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥, (B.19)

where we used the equation of motion for a single ion particle

𝑣̇ + 𝜑′ = −𝑈̇ . (B.20)

We combine 𝑃̇𝑖𝑜 and 𝑃̇𝑖𝑐 to get 𝑃̇𝑖

𝑃̇𝑖 = 𝑃̇𝑖𝑜 + 𝑃̇𝑖𝑐. (B.21)
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Appendix C

Leading order expansion of 𝑃̇𝑖/𝑃̇𝑒 in

𝜓/𝑈2

First order in 𝜓/𝑈 2

The full expression of 𝑃̇𝑖 is

𝑃̇𝑖 =𝑛∞𝑚𝑖𝑈̇

[︂ ∫︁ 𝑥𝑏

𝑥𝑎

(︂
−1− 2

𝑈

𝑣0(𝑥)
− 𝑈2

𝑣20(𝑥)

)︂
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥

−
∫︁ 𝑥𝑏

𝑥𝑎

𝑈2

𝑣30(𝑥)

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1)

𝑣0(𝑥1)
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥1

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥1 𝑑𝑥

−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝑈

𝑣30(𝑥1)

∫︁ 𝑥1

𝑥𝑎

exp

(︂
𝑖𝜔

∫︁ 𝑥

𝑥2

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝜑′′(𝑥2) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

]︂
.

(C.1)

We will begin by expanding the expression of 𝑃̇𝑖 to the first order in 𝜓/𝑈2. Recall that

the equilibrium ion velocity in the hole frame 𝑣0 is

𝑣0(𝑥) = − 𝑈

|𝑈 |
√︀
𝑈2 − 2𝜑(𝑥)

≃ −𝑈(1− 𝜓

𝑈2
𝜑(𝑥))

(C.2)

And the phase term inside the integral sign of Eqn. (C.1) is

exp(𝑖𝜔

∫︁ 𝑥𝑏

𝑥

𝑑𝑥3
𝑣0(𝑥3)

) ≃ exp(𝑖
𝜔(𝑥− 𝑥𝑏)

𝑈
)(1− 𝑖𝜔

𝑈

𝜓

𝑈2

∫︁ 𝑥𝑏

𝑥

𝜑(𝑥3) 𝑑𝑥3). (C.3)
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The term inside the first integral can be rewritten taking 𝑣0 ≃ −𝑈 as

−1− 2
𝑈

𝑣0(𝑥)
− 𝑈2

𝑣20(𝑥)
= −

(︂
𝑈

𝑣0(𝑥)
+ 1

)︂2

≃ −𝜓2

𝑈4
𝜑(𝑥)2, (C.4)

which is already a second order term. The only first order contributions come from the

last two integrals. To the first order in 𝜓/𝑈2, 𝑃̇𝑖 can be written as

𝑃̇𝑖 ≃𝑛∞𝑚𝑖𝑈̇
𝜓

𝑈2

[︂
−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

+

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥

]︂
.

(C.5)

We first apply integration by parts to the triple integral term in Eqn. (C.5)∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥 =

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥)

)︁
𝑑𝑥1 𝑑𝑥

−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥2 𝑑𝑥1 𝑑𝑥.

(C.6)

We interchange the order of integration to integrate the triple integral. The integration

domain of this triple integral is

𝒟 =
{︀
(𝑥, 𝑥1, 𝑥2) ∈ R3|𝑥𝑎 ≤ 𝑥2 ≤ 𝑥1 ≤ 𝑥 ≤ 𝑥𝑏

}︀
. (C.7)
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We define an indicator function 1𝒟 associated with this measurable subset of R3 and we

have∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥𝑏

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
1𝒟 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥𝑏

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
1𝒟 𝑑𝑥 𝑑𝑥2 𝑑𝑥1 (Interchange integration order)

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

[︂
𝜑′(𝑥2) exp

(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂(︂
𝑈

−𝑖𝜔

)︂]︂𝑥=𝑥𝑏
𝑥=𝑥1

𝑑𝑥2 𝑑𝑥1

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1 −

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1.

(C.8)

Interchanging the order of integration is the mathematical technique we use throughout

this derivation to deal with multiple integrals. Since the first term in Eqn. (C.8) cancels

the first term in Eqn. (C.6) and

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥 =

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1.

(C.9)

Using this result in Eqn. (C.5) and we get the exact cancellation of the two first-order

terms. Therefore, we need to push the expansion to the next order, which is 𝜓2/𝑈4.

Second order in 𝜓/𝑈 2

First, we identify all the terms that are of order 𝜓2/𝑈4 in the expansion of 𝑃̇𝑖. We examine

each term in Eqn. (C.1). We have for the first term

∫︁ 𝑥𝑏

𝑥𝑎

(︂
−1− 2

𝑈

𝑣0(𝑥)
− 𝑈2

𝑣20(𝑥)

)︂
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

−
(︂
1 +

𝑈

𝑣0(𝑥)

)︂2

exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥

≃ − 𝜓2

𝑈4

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 exp
(︁
𝑖
𝜔

𝑈
(𝑥− 𝑥𝑏)

)︁
𝑑𝑥.

(C.10)
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The second term will give contributions both from 𝑣0 and the phase term

−
∫︁ 𝑥𝑏

𝑥𝑎

𝑈2

𝑣30(𝑥)

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1)

𝑣0(𝑥1)
exp

(︂
𝑖𝜔

∫︁ 𝑥𝑏

𝑥1

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝑑𝑥1 𝑑𝑥

≃ − 𝜓

𝑈2

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑′(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥 (First order)

+
𝜓2

𝑈4

{︂
−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

(︁
3𝜑(𝑥)𝜑′(𝑥1) + 𝜑′(𝑥1)𝜑(𝑥1)

)︁
exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

+

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥𝑏

𝑥1

𝜑(𝑥3)𝜑
′(𝑥1) exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥3 𝑑𝑥1 𝑑𝑥

}︂
.

(C.11)

The third term can be expanded as

−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝑈

𝑣30(𝑥1)

∫︁ 𝑥1

𝑥𝑎

exp

(︂
𝑖𝜔

∫︁ 𝑥

𝑥2

𝑑𝑥3
𝑣0(𝑥3)

)︂
𝜑′′(𝑥2) 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

≃ 𝜓

𝑈2

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑′′(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥 (First order)

+
𝜓2

𝑈4

{︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

3𝜑(𝑥1)𝜑
′′(𝑥2) exp

(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥

+

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︁
−𝑖 𝜔
𝑈

)︁
𝑑𝑥3 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

}︂
.

(C.12)

We will deal with these integrals one by one, starting from the simpler double integrals

and moving our way to the quadruple integral. The idea is to use integration by parts and

interchanging the order of integration to simplify them as much as possible as we showed

previously. In the end, we should have simpler integral expressions involving only 𝜑 and

not its derivatives. Let’s start with the double integral that is multiplying the second
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order term in Eqn. (C.11).

−
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

(︁
3𝜑(𝑥)𝜑′(𝑥1) + 𝜑′(𝑥1)𝜑(𝑥1)

)︁
exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

= −
∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

3𝜑(𝑥) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝜑(𝑥1) 𝑑𝑥−

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑(𝜑(𝑥1)

2/2) 𝑑𝑥

= − 7

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 exp
(︁
𝑖
𝜔

𝑈
(𝑥− 𝑥𝑏)

)︁
𝑑𝑥+ 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥)𝜑(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

+

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥1)
2

2
exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

= − 7

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 exp
(︁
𝑖
𝜔

𝑈
(𝑥− 𝑥𝑏)

)︁
𝑑𝑥+ 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥)𝜑(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

+
1

2

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥𝑏

𝑥1

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥 𝑑𝑥1

= − 7

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 exp
(︁
𝑖
𝜔

𝑈
(𝑥− 𝑥𝑏)

)︁
𝑑𝑥+ 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥)𝜑(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥

+
1

2

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
(𝑥𝑏 − 𝑥1) 𝑑𝑥1.

(C.13)

The triple integral in Eqn. (C.11) is

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥𝑏

𝑥1

𝜑(𝑥3)𝜑
′(𝑥1) exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥3 𝑑𝑥1 𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

∫︁ 𝑥𝑏

𝑥1

𝜑(𝑥3)𝜑
′(𝑥1) exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥 𝑑𝑥1 𝑑𝑥3

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
(𝑥𝑏 − 𝑥1)

(︂
𝑖𝜔

𝑈

)︂
𝑑𝜑(𝑥1) 𝑑𝑥3

=

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥3)
2(𝑥𝑏 − 𝑥3) exp

(︁
𝑖
𝜔

𝑈
(𝑥3 − 𝑥𝑏)

)︁
𝑑𝑥3

+

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

𝜑(𝑥3)𝜑(𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥3

−
(︂
𝑖𝜔

𝑈

)︂2 ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

𝜑(𝑥3)𝜑(𝑥1)(𝑥𝑏 − 𝑥1) exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1 𝑑𝑥3.

(C.14)
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Now we simplify the triple integral in Eqn. (C.12) using twice integration by parts and

interchanging the order of integration∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

3𝜑(𝑥1)𝜑
′′(𝑥2) exp

(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=3

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥1)𝜑
′(𝑥1) exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥)

)︁
𝑑𝑥1 𝑑𝑥

− 3

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑
′(𝑥2) exp

(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=
3

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥− 9

2

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
𝑑𝑥1 𝑑𝑥

+ 3

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

∫︁ 𝑥𝑏

𝑥1

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂2

𝑑𝑥 𝑑𝑥2 𝑑𝑥1

=
3

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥− 9

2

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

[︂
𝜑(𝑥1)

2 exp
(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥)

)︁(︂−𝑈
𝑖𝜔

)︂]︂𝑥=𝑥𝑏
𝑥=𝑥1

𝑑𝑥1

− 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1

+ 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1

= − 3

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥+
9

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1

− 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1

+ 3

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1.

(C.15)

Now we deal with the only term left, which is the quadruple integral in the Eqn. (C.12).

We will try to relate it to the integrals we’ve already calculated. Observing the integrand,

we notice that it is easy to integrate with respect to the variable 𝑥1. We interchange the

order of integration as we did before∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︁
−𝑖 𝜔
𝑈

)︁
𝑑𝑥3 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥

𝑥2

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︁
−𝑖 𝜔
𝑈

)︁
𝑑𝑥1 𝑑𝑥3 𝑑𝑥2 𝑑𝑥

=

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
(𝑥2 − 𝑥) 𝑑𝑥3 𝑑𝑥2 𝑑𝑥.

(C.16)
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Notice that the above integral can be expressed with the derivative w.r.t. (𝑖𝜔/𝑈) of

another integral that we’ve calculated previously in the beginning of Eqn. (C.15)

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︂𝑖𝜔
𝑈

)︂
(𝑥2 − 𝑥) 𝑑𝑥3 𝑑𝑥2 𝑑𝑥

=

(︂
𝑖𝜔

𝑈

)︂
𝑑

𝑑 (𝑖𝜔/𝑈)

[︂ ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥3 𝑑𝑥2 𝑑𝑥

]︂
=

(︂
𝑖𝜔

𝑈

)︂
𝑑

𝑑 (𝑖𝜔/𝑈)

[︂ ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥3 𝑑𝑥

]︂
.

(C.17)

Therefore, the quadruple integral can be simplified using the final result of Eqn. (C.15)∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

∫︁ 𝑥

𝑥2

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁(︁
−𝑖 𝜔
𝑈

)︁
𝑑𝑥3 𝑑𝑥2 𝑑𝑥1 𝑑𝑥

=

(︂
𝑖𝜔

𝑈

)︂
𝑑

𝑑 (𝑖𝜔/𝑈)

[︂ ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥

𝑥𝑎

∫︁ 𝑥3

𝑥𝑎

𝜑′′(𝑥2)𝜑(𝑥3) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥)

)︁
𝑑𝑥2 𝑑𝑥3 𝑑𝑥

]︂
=

(︂
𝑖𝜔

𝑈

)︂
𝑑

𝑑 (𝑖𝜔/𝑈)

[︂
−
∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥+
3

2

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
𝑑𝑥1

−
(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1

+

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1

]︂
=

3

2

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥1)
2 exp

(︁
𝑖
𝜔

𝑈
(𝑥1 − 𝑥𝑏)

)︁
(𝑥1 − 𝑥𝑏) 𝑑𝑥1

−
(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
𝑑𝑥2 𝑑𝑥1

−
(︂
𝑖𝜔

𝑈

)︂2 ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥𝑏)

)︁
(𝑥2 − 𝑥𝑏) 𝑑𝑥2 𝑑𝑥1

+

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1

+

(︂
𝑖𝜔

𝑈

)︂2 ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
(𝑥2 − 𝑥1) 𝑑𝑥2 𝑑𝑥1.

(C.18)
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Now we add up all the second order contributions using Eqns. (C.10) (C.13) (C.14) (C.15)

(C.18). The majority of terms cancel out and we are left with

𝑃̇𝑖 ≃𝑛∞𝑚𝑖𝑈̇
𝜓2

𝑈4

[︂
− 3

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥+ 4

(︂
𝑖𝜔

𝑈

)︂∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
𝑑𝑥2 𝑑𝑥1

+

(︂
𝑖𝜔

𝑈

)︂2 ∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑥1

𝑥𝑎

𝜑(𝑥1)𝜑(𝑥2) exp
(︁
𝑖
𝜔

𝑈
(𝑥2 − 𝑥1)

)︁
(𝑥2 − 𝑥1) 𝑑𝑥2 𝑑𝑥1

]︂
.

(C.19)

The expansion of 𝑃̇𝑒 in 𝜓/𝑈
2 is trivial

𝑃̇𝑒 = −𝑚𝑒𝑈̇𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥)) + 1− |𝑈 |√︀

𝑈2 − 2𝜑(𝑥)
𝑑𝑥

≃ −𝑚𝑒𝑈̇𝑛∞

∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥))− 𝜓

𝑈2
𝜑(𝑥) 𝑑𝑥.

(C.20)

We introduce the constant 𝐼0 and a new function 𝐼

𝐼0 =

∫︁ 𝑥𝑏

𝑥𝑎

𝜑(𝑥)2 𝑑𝑥, (C.21)

𝐼(
𝜔

𝑈
) =

∫︁ 𝑥𝑏

𝑥𝑎

∫︁ 𝑦

𝑥𝑎

𝜑(𝑥)𝜑(𝑦) exp(𝑖
𝜔(𝑥− 𝑦)

𝑈
) 𝑑𝑥 𝑑𝑦. (C.22)

We thus get the final leading order expansion of 𝑃̇𝑖/𝑃̇𝑒 as it appears in Eqn. (4.21)

𝑃̇𝑖

𝑃̇𝑒
(𝜔, 𝑈, 𝜑) ≃ −𝑚𝑖

𝑚𝑒

𝜓2

𝑈4

4𝑖
𝜔

𝑈
𝐼(
𝜔

𝑈
) + 𝑖

𝜔2

𝑈2
𝐼 ′(

𝜔

𝑈
)− 3𝐼0∫︁ 𝑥𝑏

𝑥𝑎

ℎ(
√︀
𝜑(𝑥))− 𝜑(𝑥)

𝑈2
𝑑𝑥

. (C.23)
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