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Abstract

In this thesis, I present my experimental work on twisted bilayer graphene, a van der
Waals heterostructure consisting of two graphene sheets stack on top of each other.
In particular, the twist angle is a new degree of freedom in this system, and has an
important effect in the determination of its transport properties.

The work presented will explore the twist-dependent physics in two regimes: the
large twist angle and small twist angle regimes. In the large-twist angle limit, the two
sheets have little interlayer interactions and are strongly decoupled, allowing us to
put independent quantum Hall edge modes in both layers. We study the edge state
interactions in this system, culminating in the formation of a quantum spin Hall state
in twisted bilayer graphene. In the small twist angle limit, interlayer interactions are
strong and the layers are strongly hybridized. Additionally, a new long-range moiré
phenomenon emerges, and we study the effects of the interplay between moiré physics
and interlayer interactions on its transport properties.

Thesis Supervisor: Pablo Jarillo-Herrero
Title: Professor of Physics
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Chapter 1

Introduction & Background

1.1 Thesis Introduction

In this thesis, I describe a series of experiments that explore the role of twist angle

in twisted bilayer graphene, a type of van der Waals heterostructure. Twisted bilayer

graphene consists of two sheets of graphene stacked on top of each other, with a

relative twist between them. Although the effect of the twist angle may seem to be

trivial, it turns out that the twist angle is crucial in determining the type of quantum

transport observed in this system. This thesis will be divided into 4 chapters.

(1) In Chapter 1, I will provide an introduction on the physics required to under-

stand the results of the experiments, including graphene’s electronic structure and

the quantum Hall effect. (2) In Chapter 2, I will detail the role of the twist angle in

controlling the degree of coupling between the two graphene layers, and outline the

expected quantum transport behavior in the large and small angle regimes. (3) In

Chapter 3, I will present my experimental work on large twist angle twisted bilayer

graphene, where we build a quantum spin Hall like state via independent control the

quantum Hall edge modes in each graphene layer. (4) In Chapter 4, I will present my

experimental work on small twist angle twisted bilayer graphene, where we observe a

rich interplay of the effects of interlayer coupling and the emergent moiré potential.

23



1.2 Properties of Monolayer Graphene

Graphene is the first exfoliated two-dimensional crystal discovered in nature [1], con-

sisting of a single layer of carbon atoms laid out in a regular honeycomb lattice.

Graphene’s regular honeycomb lattice allows simple derivation of its band structure

to first order using the tight-binding model, and the chemical equivalence of its two

sub-lattices leads to a Dirac-like dispersion (where the electron’s energy goes linearly

with its momentum) at low energies [2], drawing strong parallels with the relativistic

massless Dirac equation. In the presence of a magnetic field, graphene’s Dirac-like

band leads to cyclotronic motion that are qualitatively different from two-dimensional

gas systems such as silicon [3] and gallium-arsenide quantum wells [4], which were

the first system used for the discovery of the integer and fraction quantum Hall effect

respectively. In this section, I shall aim to describe the material and electronic prop-

erties of graphene, and develop a framework of the quantum Hall physics that results

from these properties.

1.2.1 Material Properties

Graphene is an atomic thick 2-dimensional van der Waals material that was first

isolated from graphite by Geim, Novoselov et. al [1] in 2004. Graphene has carbon

atoms arranged in a honeycomb lattice, which can be regarded as a triangular Bravais

lattice with a basis, with a lattice constant of 𝑎 = 1.42Å between adjacent carbon

atoms [2]. Graphene as a material has many attractive qualities: it is a thin, highly-

conducting material [5,6] which is highly flexible, but yet strong enough to withstand

large mechanical and sheer stresses [7, 8]. It is also optically transparent with rich

optoelectronic properties [9–11], which makes it a highly attractive material for use

in many infra-red based applications.

In this thesis, the quantum electronic properties of graphene at low temperatures

will be the main focus of my studies. One of the main advantages of two-dimensional

materials is the ease of control of the charge density via the capacitative field effect:

the number of charge carriers in the sample can be easily modulated by varying
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Figure 1-1: (a) Illustration of charge density modulation in two-dimensional materials
via the capacitative field effect. (b) Typical 2-probe resistance trace of monolayer
graphene as a function of gate voltage. The resistance reaches a maximum at the
charge neutrality point.

the voltage between a metallic gate and the studied material (panel (a) of Fig. 1-

1). In graphene, the lack of a band gap between the conduction and valence bands

increases the ease of this process. In the course of my research, both conductive

silicon substrates and evaporated metallic gates have been used to control the charge

density via the field effect.

One of the key numbers that we should consider is the number density of charge

carriers that we can induce in graphene via the capacitative field effect. The capaci-

tance per area 𝐶 is given by

𝐶 =
𝜖𝑟𝜖0
𝑡

(1.1)

where 𝑡 is the thickness of the dielectric, 𝜖𝑟 is the relative permittivity of the dielectric,

and 𝜖0 = 8.85×10−12 Fm−1 is the permittivity of free space. Thus, for a given voltage

𝑉 , the number of charge carriers 𝑛 we can induce is given by

𝑛 =
𝐶

𝑒𝑉
=
𝜖𝑟𝜖0
𝑡𝑒𝑉

(1.2)

where 𝑒 = 1.602 × 10−19 C is the elementary charge.

The two main dielectrics used in my work are silicon dioxide (which exists as
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a native oxide above the conductive silicon substrate) and hexagonal boron nitride

(hBN) which is also a van der Waals material [12]. For silicon oxide, the relative

permittivity ranges from 3.6 to 4.2, with a typical oxide thickness of 280 nm. The

breakdown electric field of silicon oxide is typically around 0.5 V/nm, allowing us

to apply voltage in the range of 100 V. For hexagonal boron nitride, the relative

permittivity is typically between 2.8 to 4 [13] depending on the crystal quality, and

the hBN flakes used in our studies are between 10 to 50 nm. The breakdown electric

field of hBN is also around 0.5 V/nm, allowing us to apply voltage in the range of

10 V. Putting these numbers together, the typical number density we can induce in

graphene is in the range of 1012 − 1013cm−2, with a corresponding Fermi energy on

the order of 100 meV [2].

A typical 2-probe resistance trace vs. gate voltage for graphene is shown in panel

(b) of Fig.1-1, where we observe a resistance maximum (i.e. conductance minimum)

at the charge neutrality point. In many devices, inherent doping of the graphene

flakes from work function mismatch [14] and the fabrication process would shift the

charge neutrality point away from zero voltage. The conductance minimum is also ob-

served to be not zero, which has been understood to arise from percolations through

a network of electron-hole puddles due to substrate inhomogeneity and sample disor-

ders [15]. The control of sample disorder would be a key hurdle to overcome in these

studies, as they could compete with the energy scales of the electronic properties that

are being studied.

1.2.2 Basic Electronic Structure

A lattice is called a Bravais lattice if it can be completely generated by a basis set of

vectors 𝐵 i.e. any lattice point’s position vector �⃗� can be written as

�⃗� =
∑︁
�⃗�𝑖∈𝐵

𝑛𝑖�⃗�𝑖 (1.3)

where 𝑛𝑖 is an integer.

In graphene, the lattice consists of carbon atoms laid out in a honeycomb lattice
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Figure 1-2: Illustration of graphene’s honeycomb lattice structure. Blue and yellow
carbon atoms correspond to the A and B sublattices respectively. Bravais basis vectors
�⃗�1 and �⃗�2 are shown, as well as nearest neighbor displacement vectors �⃗�𝑖, 𝑖 = 1, 2, 3.

with a lattice constant 𝑎 = 1.42Å. However, this is not a primitive Bravais lattice as

the carbon atoms A and B in Fig.1-2 have inequivalent nearest neighbors [2]. However,

one can transform it into a Bravais lattice by grouping the two atoms as a single unit,

producing a triangular Bravais lattice occupied by the yellow-colored atoms only, also

known as a Bravais lattice with a basis. Thus, one can describe graphene as consisting

of two sub-lattices, namely the A sublattice and the B sub-lattice (colored blue and

yellow respectively in Fig. 1-2). For graphene, we can define the basis set of vectors

as �⃗�1 = (3𝑎
2
,
√
3𝑎
2

) and �⃗�2 = (3𝑎
2
,
√
3𝑎
2

).

We can perform a simple tight-binding calculation to obtain an approximate form

of the dispersion relation of electrons in graphene. In general, the Bloch wavefunction

of an electron in a crystal lattice can be written as [2]

|𝜓𝑘(�⃗�)⟩ =
∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑(�⃗� − �⃗�𝑗)

⟩
(1.4)

where �⃗�𝑗 is the position vector of a lattice site, and 𝜑(�⃗�−�⃗�𝑗) represents the eigen-

state of the crystal Hamiltonian at the site �⃗�𝑗. The constructed Bloch wavefunction

is easily verified to be an eigenstate of the translation operator 𝑇 (�⃗�):
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𝑇 (�⃗�) |𝜓𝑘(�⃗�)⟩ =
∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗𝑇 (�⃗�)
⃒⃒⃒
𝜑(�⃗� − �⃗�𝑗)

⟩
=
∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑(�⃗� − �⃗�𝑗 + �⃗�)

⟩
= 𝑒𝑖�⃗�.�⃗�

∑︁
�⃗�+�⃗�

𝑒𝑖�⃗�.(�⃗�𝑗−�⃗�)
⃒⃒⃒
𝜑(�⃗� − �⃗�𝑗 + �⃗�)

⟩
= 𝑒𝑖�⃗�.�⃗� |𝜓𝑘(�⃗�)⟩

(1.5)

Because graphene is a Bravais lattice with a basis, we must be careful in defining

the Bloch wavefunction of the electron. Without loss of generality, we can place the

B sub-lattice on the sites of the triangular Bravais lattice, and define �⃗� = (−𝑎, 0) as

the displacement vector from atom B to A in a chosen sub-basis. Then the Bloch

wavefunction of graphene can be written as

|𝜓𝑘(�⃗�)⟩ = 𝑎�⃗� |𝜓𝑘(�⃗�)⟩ + 𝑏�⃗� |𝜓𝑘(�⃗�)⟩ (1.6)

where

⃒⃒
𝜓𝐵
𝑘 (�⃗�)

⟩︀
=
∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐵(�⃗� − �⃗�𝑗)

⟩
(1.7)

⃒⃒
𝜓𝐴
𝑘 (�⃗�)

⟩︀
=
∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐴(�⃗� + �⃗� − �⃗�𝑗)

⟩
(1.8)

represent the Bloch wavefunctions consisting of atoms at A and B sub-lattices only

respectively, and 𝑎�⃗�, 𝑏�⃗� are complex numbers in general.

We now consider the nearest hopping processes that can occur in graphene. For

an A sub-lattice atom, an electron can hop to three possible nearest A sub-lattice

sites with displacement vectors �⃗�1 = �⃗�1 + �⃗�, �⃗�2 = �⃗�2 + �⃗�, �⃗�3 = �⃗� relative to the B atom.

The hopping energy required in this process can be calculated from methods such as

linear combination of atom orbitals (LCAO), and is typically 2.8 eV in graphene [2].

Because graphene consists of only carbon atoms, by symmetry the on-site energy of
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an A atom is the same of a B atom. Thus, we can drop the on-site energy term and

write the tight-binding Hamiltonian 𝐻 as

𝐻 = 𝑡
∑︁
�⃗�𝑗

3∑︁
𝑖=1

⃒⃒⃒
𝜑𝐴(�⃗� − �⃗�𝑗 + �⃗�𝑖)

⟩⟨
𝜑𝐵(�⃗� − �⃗�𝑗)

⃒⃒⃒
+
⃒⃒⃒
𝜑𝐵(�⃗� − �⃗�𝑗 + �⃗� − �⃗�𝑖)

⟩⟨
𝜑𝐴(�⃗� − �⃗�𝑗 + �⃗�)

⃒⃒⃒ (1.9)

where 𝑡 is the hopping energy, and the terms consider the nearest hopping terms

from both A and B atoms. The action of the Hamiltonian on the graphene Bloch

wavefunction is

𝐻 |𝜓𝑘(�⃗�)⟩ = 𝐻

⎛⎝𝑎�⃗�∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐴(�⃗� + �⃗� − �⃗�𝑗)

⟩
+ 𝑏�⃗�

∑︁
�⃗�𝑗

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐵(�⃗� − �⃗�𝑗)

⟩⎞⎠
= 𝑎�⃗�𝑡

∑︁
�⃗�𝑗

3∑︁
𝑖=1

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐵(�⃗� − �⃗�𝑗 + �⃗� − �⃗�𝑖)

⟩
+ 𝑏�⃗�𝑡

∑︁
�⃗�𝑗

3∑︁
𝑖=1

𝑒𝑖�⃗�.�⃗�𝑗

⃒⃒⃒
𝜑𝐴(�⃗� − �⃗�𝑗 + �⃗�𝑖)

⟩

= 𝑎�⃗�𝑡𝑒
𝑖�⃗�.�⃗�

(︃
3∑︁

𝑖=1

𝑒−𝑖�⃗�.�⃗�𝑖

)︃ ∑︁
�⃗�𝑗+�⃗�𝑖−�⃗�

𝑒𝑖�⃗�.(�⃗�𝑗+�⃗�𝑖−�⃗�)
⃒⃒⃒
𝜑𝐵(�⃗� − (�⃗�𝑗 + �⃗�𝑖 − �⃗�)

⟩

+ 𝑏�⃗�𝑡𝑒
−𝑖�⃗�.�⃗�

(︃
3∑︁

𝑖=1

𝑒𝑖�⃗�.�⃗�𝑖

)︃ ∑︁
�⃗�𝑗−�⃗�𝑖

𝑒𝑖�⃗�.(�⃗�𝑗+�⃗�−�⃗�𝑖)
⃒⃒⃒
𝜑𝐴(�⃗� + �⃗� − (�⃗�𝑗 + �⃗� − �⃗�𝑖))

⟩
= 𝑎�⃗�𝑡𝛾

* ⃒⃒𝜓𝐵
𝑘 (�⃗�)

⟩︀
+ 𝑏�⃗�𝑡𝛾

⃒⃒
𝜓𝐴
𝑘 (�⃗�)

⟩︀
(1.10)

where

𝛾 = 𝑒−𝑖�⃗�.�⃗�

(︃
3∑︁

𝑖=1

𝑒𝑖�⃗�.�⃗�𝑖

)︃
= 1 + 𝑒

𝑖

(︂
3𝑎𝑘𝑥

2
+

√
3𝑎𝑘𝑦
2

)︂
+ 𝑒

𝑖

(︂
3𝑎𝑘𝑥

2
−

√
3𝑎𝑘𝑦
2

)︂
(1.11)

If we use {
⃒⃒
𝜓𝐴
𝑘 (�⃗�)

⟩︀
,
⃒⃒
𝜓𝐵
𝑘 (�⃗�)

⟩︀
} as our ordered basis, the Hamiltonian 𝐻 written out in

matrix form is

𝐻 = 𝑡

⎡⎣ 0 𝛾

𝛾* 0

⎤⎦ (1.12)

We obtain graphene’s band dispersion by solving for the eigenenergies 𝐸± of the
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Hamiltonian 𝐻:

𝐸± = ±𝑡|𝛾|

= ±𝑡
√︁

3 + 2 cos[(�⃗�1 − �⃗�2).⃗𝑘] + 2 cos[(�⃗�1 − �⃗�3).⃗𝑘]

= ±𝑡

⎯⎸⎸⎷3 + 2 cos
(︁√

3𝑘𝑦𝑎
)︁

+ 4 cos

(︃√
3𝑘𝑦𝑎

2

)︃
cos

(︂
3𝑘𝑥𝑎

2

)︂ (1.13)

A simple algebraic exercise gives two zero energy solutions to dispersion equation

(), and these points in momentum space are known as Dirac points:

�⃗� =

(︂
2𝜋

3𝑎
,

2𝜋

3
√

3𝑎

)︂
, �⃗�

′
=

(︂
2𝜋

3𝑎
,− 2𝜋

3
√

3𝑎

)︂
(1.14)

If we expand the dispersion relation around point �⃗�, to first order in 𝑝 = ~(�⃗�−�⃗�),

we obtain a linear energy dispersion around the Dirac points:

𝐸±(𝑝) = ±𝑣𝐹 |𝑝| (1.15)

where 𝑣𝐹 = 3𝑡𝑎
2~ ≈ 106 m/s is the Fermi velocity. An expansion around the other

Dirac point �⃗�
′
yields the same energy relation. For a typical number density of

𝑛 = 10−12cm−2, we obtain a Fermi wavelength 𝑘𝐹 =
√
𝜋𝑛 on the order of 108m−1,

with a corresponding Fermi energy on the order of 100 meV [2].

The existence of two equivalent energy spectra at the two Dirac points gives rise to

a degeneracy known as valley degeneracy. Coupled with the electron’s spin degeneracy

of two, the total degeneracy of the system 𝑔 is 4 [2]. A graphical plot of the dispersion

relation is shown in Fig. 1-3:
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Figure 1-3: Graphical plot of graphene’s band dispersion. The dispersion is linear

around the Dirac points.

1.2.3 Integer Quantum Hall Effect in Graphene

One of the most striking features of the quantum Hall effect is the observation of

quantized conductances in units of 𝑒2/ℎ = 3.87×10−5S (𝑒 is the elementary charge. ℎ

is Planck’s constant), a phenomenon which was first observed in silicon-based systems

in 1980 [3]. One of the most remarkable facts is that the integer quantum Hall effect is

observed in a wide range of samples regardless of the details of geometry and sample

disorder, with quantized values accurate to one part in a billion, making it a possible

metrology standard in the definition of the kilogram [16].

The integer quantum Hall effect in a two-dimensional system can be understood

via the formation of Landau levels in the presence of a sufficiently strong magnetic

field, where there are large energy gaps between two Landau levels where the density

of states is essentially zero [17, 18]. When the Fermi energy is in the middle of a

Landau level, the density of states is not zero and the bulk allows electrical conduction

through the system. However, a conundrum arises when the Fermi energy is in an

energy gap between two Landau levels: can the system still carry a current when the
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bulk becomes insulating?

Figure 1-4: (a) Charge carriers undergo cyclotronic motion in the presence of a mag-

netic field. Skipping orbits along the edge of a sample creates metallic chiral edge

states each with a ballistic conductance of 𝑒2/ℎ. (b) The "bathtub" model of the

quantum Hall effect. Energy bands disperse upwards (downwards) for electron-like

(hole-like) carriers near the edge of a sample. The Hall conductance is the number of

edge channel crossings at the sameple edge at a chemical potential 𝜇.

One possible answer to the above question is for the edges of the system to carry

the current. From a semi-classical picture, we can qualitatively understand how

this occurs: charge carriers in a magnetic field undergoes cyclotron motion in closed

orbits in the bulk, thus unable to take part in electrical conduction. However at the

edges, the confinement potential does not allow charge carriers to undergo complete

cyclotron motion; a charge carrier hitting the edge would be specularly reflected, and

creates a resultant edge channel which "hops" along the edges in a series of incomplete

cyclotron orbits (panel (a) of Fig.1-4). Additionally, there is a defined direction of

propagation, or chirality, associated with these edge channels: the direction in which
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the charge carrier propagates is dependent on its charge and magnetic field direction

as determined by the Lorentz force law, and more importantly the chirality will be

different on opposite sides of the sample. The chirality of the edge states result in

suppressed backscattering and dissipation-less transport, and each edge state results

in a ballistic conduction channel with 𝑒2/ℎ conductance, which is one of the hallmark

observations of the quantum Hall effect [19].

The quantum Hall effect can also be understood via the energy dispersion relations

in the presence of a confinement potential: the "bathtub" model. In panel (b) of

Fig.1-4, we see that the energy dispersion of charge carriers are flat in the bulk of the

sample, which is expected for the quantization of kinetic energy for Landau levels.

However, towards the sample of the edges, the energy bands are forced to disperse

up or down (for electron-like and hole-like carriers respectively) to ensure that the

charge carriers are bounded within the sample. As we adjust the Fermi energy of the

system, the number of band crossings at the edges gives the corresponding number

of ballistic edge channels [19].

In a classical two dimensional gas, the Landau level problem is given by [18]

(𝑝− 𝑞�⃗�)2

2𝑚
𝜓 = 𝐸𝜓 (1.16)

where ∇ × �⃗� = �⃗� is the applied magnetic field. The problem can be re-cast into a

simple harmonic oscillator system [18] with the well-known energy spectrum:

𝐸𝑛,classical =

(︂
𝑛+

1

2

)︂
~𝜔𝑐, 𝑛 ∈ Z+ (1.17)

where 𝜔𝑐 = 𝑞𝐵
𝑚

is the cyclotron frequency of a charge carrier of mass 𝑚 and charge

𝑞 in a magnetic field 𝐵. However, because of graphene’s linear energy dispersion

around the Dirac point, the lack of an effective mass alters the qualitative nature

of the Landau levels. One possible way to solve for the Landau levels in graphene

is to use the zero mass limiting case of the two-dimensional Dirac equation, whose

Hamiltonian is given by
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𝐻 =

⎡⎣ 𝑚𝑣2𝐹 𝑣𝐹 𝑝.�⃗�

𝑣𝐹 𝑝.�⃗� −𝑚𝑣2𝐹

⎤⎦ (1.18)

where 𝑝 is the momentum of the charge carrier, and �⃗� is a vector whose components

are the Pauli matrices 𝜎𝑥 =

⎡⎣0 1

1 0

⎤⎦ and 𝜎𝑦 =

⎡⎣0 −𝑖

𝑖 0

⎤⎦ respectively. In the presence

of a magnetic field, we replace the kinetic momentum 𝑝 by the canonical momentum

𝑝+ 𝑞�⃗�, to obtain

𝐻 =

⎡⎣ 𝑚𝑣2𝐹 𝑣𝐹 (𝑝− 𝑞�⃗�).�⃗�

𝑣𝐹 (𝑝− 𝑞�⃗�).�⃗� −𝑚𝑣2𝐹

⎤⎦ (1.19)

For a spinor

⎡⎣𝜒1

𝜒2

⎤⎦ that is an eigenstate of the Dirac Hamiltonian, and using the

well-known identities (⃗𝑎.�⃗�)(⃗𝑏.�⃗�) = �⃗�.⃗𝑏+ 𝑖
(︁
�⃗�× �⃗�

)︁
.�⃗� and (𝑝− 𝑞�⃗�) × (𝑝− 𝑞�⃗�) = 𝑖𝑞�⃗�,

we arrive at the following equations for the spinor components:

(︁
𝑝+ 𝑞�⃗�

)︁2
𝜒1 =

(︂
𝐸2

𝑣2𝐹
−𝑚2𝑣2𝐹 − 𝑞𝐵

)︂
𝜒1(︁

𝑝− 𝑞�⃗�
)︁2
𝜒2 =

(︂
𝐸2

𝑣2𝐹
−𝑚2𝑣2𝐹 + 𝑞𝐵

)︂
𝜒2

(1.20)

These equations are reminiscent of the classical two-dimensional gas Landau level

problem, where we can identify a new spectral parameter 𝜁 = 𝐸2

𝑣2𝐹
−𝑚2𝑣2𝐹∓𝑞𝐵 with the

energy solutions given in equation [1.14]. Taking into account the different possible

signs of the charges, we obtain the following energy spectrum for both electron-like

and hole-like carriers:

𝐸𝑛 = sgn(𝑁)
√︁
𝑚2𝑣4𝐹 + 2|𝑞𝐵|~𝑣2𝐹 (|𝑁 |), 𝑁 ∈ Z (1.21)

In the limit of zero effective mass, the Landau level energies in graphene are given

by:
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𝐸𝑁 = sgn(𝑁)𝑣𝐹
√︀

2𝑒𝐵~|𝑁 |, 𝑁 ∈ Z (1.22)

Each Landau level has a degeneracy 𝑛𝐿𝐿 given by

𝑛𝐿𝐿 = 4
𝐵

Φ0

(1.23)

where Φ0 = ℎ
𝑒
is the magnetic flux quantum, and the factor of 4 comes from the

valley and spin degeneracies in graphene. Coupled with the number density control

via the capacitative field effect, we can control the location of the Fermi energy in

relation to the Landau level energies at any magnetic field. As mentioned previously,

the quantized Hall conductances are observed when the bulk becomes insulating i.e.

the Fermi energy lies in between two Landau levels. In this case, the number of edge

states is given by the number of filled Landau levels, also known as the filling factor

𝜈 defined to be 𝜈 = 𝑛
𝑛𝐿𝐿

for a given number density 𝑛 in the system. In the case of

graphene, the measured quantum Hall filling factors would be [20]

𝜈 = 4(𝑁 +
1

2
), 𝑁 ∈ Z = ±2,±6,±10, ... (1.24)

The factor of half in the quantum Hall sequence of graphene arises from the

massless Dirac nature of the carriers [20], where the zero effective mass results in the

co-existence of both electron-like and hole-like carriers in the zeroth Landau level,

a feature which is absent in both classical gas and massive Dirac two-dimensional

gas systems. Additionally, while the band gaps between Landau levels in a classical

system is constant, the square root dependence on the Landau level index in graphene

means that the band gaps between Landau levels decreases, with the maximum band

gaps between the zeroth and first Landau levels. This has a significant implication on

the quality of the quantized Hall conductance measured in graphene; sample disorder

spreads the localized density of states in a Lorentzian fashion [21], and a sample

disorder which is too high will mix neighboring Landau levels which destroys the

conductance quantization. As an order of estimate, the largest Landau level gap in
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graphene at a magnetic field of 10 T is around 100 meV.

The value of 100 meV is the typical order of magnitude of the disorder energy

of a silicon substrate [15], which illustrates the need for fabrication techniques that

can further screen out the role of disorder if we are to study electronic properties at

smaller energy scales. The use of hBN, which is also a two-dimensional material, and

self-cleaning in the assembly of van der Waals heterostructures [12] are indispensable

techniques that were used to reduce disorder in our samples, and these methods will

be later discussed later in the thesis.
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Chapter 2

Twist Angle: A Degree of Freedom in

van der Waals Heterostructures

In this chapter, the role of the twist angle in van der Waals heterostructures will be

examined, with a focus on twisted bilayer graphene, a system where two sheets of

graphene are stacked on top of each other. I will first elucidate how the twist angle

controls the momentum coupling between the two graphene layers, and explore how

we can exploit this control to form different type of electronic systems in the large

and small twist angle limit.

In particular, for large twist angles, I will illustrate how we can exploit the decou-

pling between the two graphene layers at low energies to independently control the

edge modes in each layer to form a quantum spin Hall system. In the small twist angle

case, the role of a new emergent momentum scale controlled by the moiré potential

will be examined, and expectations of its effect on twisted bilayer graphene systems

will be inferred from previous studies on graphene/hBN van der Waals heterostruc-

tures. My experimental work in these two regimes will be covered later in Chapter 3

and Chapter 4 respectively.
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2.1 Twist Angles & Momentum Coupling

As a starting point to theoretically predict the electronic properties of twisted bilayer

graphene, we consider how the twist angle between the two graphene sheets controls

the interlayer coupling. There are two main approaches outlined in literature: the

low-energy continuum model [22] and the lattice approach [23, 24]. In this section,

I shall outline the approach used by Shallcross et al. [24], with the lattice model

geometrically arguing the emergence of a natural momentum coulping scale without

resorting to any approximations. The twist angle is a continuous variable; as such,

we do not expect twisted bilayer graphene to be a strictly periodic, or commensurate,

structure. However, we can derive the condition required on the twist angle such

that the system is commensurate, which would then allow us to use all the machinery

of Bloch’s theorem to create a first-order prediction of the electronic properties of

twisted bilayer graphene.

Let �⃗�1 and �⃗�2 be the Bravais lattice vectors of a single unrotated graphene layer.

Then the position vector of any lattice point on this graphene layer can be written as

𝑚1�⃗�1 +𝑚2�⃗�2 where 𝑚1 and 𝑚2 are integers. Now suppose we stack another graphene

layer on top with some relative twist angle 𝜃, and we observe some feature above a

specific lattice point on the unrotated layer (AB stacking, AA stacking, etc.). We now

seek the exact same feature somewhere else in the twisted bilayer graphene, whose

position vector we can write as 𝑛1�⃗�1 + 𝑛2�⃗�2 where 𝑛1 and 𝑛2 are integers. If the

structure is commensurate, the two vectors must be related via a rotation i.e.

𝑚1�⃗�1 +𝑚2�⃗�2 = 𝑅(𝑛1�⃗�1 + 𝑛2�⃗�2) (2.1)

where 𝑅 is a rotation matrix, and can be written in Cartesian coordinates as

𝑅 =

⎡⎣cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)

⎤⎦ (2.2)

However, it would be more illuminating to re-write the rotation matrix 𝑅 using

the graphene Bravais lattice vectors �⃗�1, �⃗�2 as our basis. In this basis,
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𝑅 =

⎡⎣cos(𝜃) − 1√
3

sin(𝜃)) − 2√
3

sin(𝜃)

2√
3

sin(𝜃) cos(𝜃) + 1√
3

sin 𝜃

⎤⎦ (2.3)

Since 𝑚1,𝑚2, 𝑛1, 𝑛2 are all integers, enforcing the commensurability condition re-

quires all the entries of 𝑅 in the Bravais lattice to be rational. This leads to a set of

twist angles for which the twisted bilayer graphene is a commensurable structure:

cos(𝜃) =
3𝑞2 − 𝑝2

3𝑞2 + 𝑝2
𝑝, 𝑞 ∈ Z (2.4)

For this class of commensurate angles, we can obtain the Bravais lattice vectors

for the twisted bilayer graphene in terms of the monolayer graphene Bravais lattice

vectors �⃗�1, �⃗�2 and 𝑝, 𝑞 (which determines the twist angle). There are two cases to

consider, which is determined by 𝛿 = 3
gcd(𝑝,3)

.

For 𝛿 = 1,

�⃗�1 =
1

𝛾
[(𝑝+ 3𝑞)⃗𝑎1 − 2𝑝�⃗�2]

�⃗�2 =
1

𝛾
[2𝑝�⃗�1 + (3𝑞 − 𝑝)⃗𝑎2]

(2.5)

For 𝛿 = 3,

�⃗�1 =
1

𝛾
[−(𝑝+ 𝑞)⃗𝑎1 + 2𝑞�⃗�2]

�⃗�2 =
1

𝛾
[2𝑞�⃗�1 + (𝑞 − 𝑝)⃗𝑎2]

(2.6)

where 𝛾 = gcd(3𝑞+ 𝑝, 3𝑞− 𝑝). The corresponding reciprocal vectors are therefore

given by:

For 𝛿 = 1,

�⃗�1 =
𝛾

3(3𝑞2 + 𝑝2)

[︁
(𝑝+ 3𝑞)⃗𝑏1 + 2𝑝𝑏2

]︁
�⃗�2 =

𝛾

3(3𝑞2 + 𝑝2)

[︁
−2𝑝𝑏1 + (3𝑞 − 𝑝)⃗𝑏2

]︁ (2.7)
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For 𝛿 = 3,

�⃗�1 =
𝛾

3(3𝑞2 + 𝑝2)

[︁
(𝑞 − 𝑝)⃗𝑏1 + 2𝑞𝑏2

]︁
�⃗�2 =

𝛾

3(3𝑞2 + 𝑝2)

[︁
−2𝑞𝑏1 − (𝑝+ 𝑞)⃗𝑏2

]︁ (2.8)

where �⃗�1, �⃗�2 are the reciprocal vectors of the unrotated graphene layer.

Interlayer interactions in twisted bilayer graphene can be described by matrix

elements connecting momentum eigenstates of the unrotated and rotated graphene

layers. Denoting these eigenstates in each layer as
(︁⃒⃒⃒
𝜑
(1)

𝑖1 ,⃗𝑘1

⟩
,
⃒⃒⃒
𝜑
(2)

𝑖2 ,⃗𝑘2

⟩)︁
respectively, we

can write a typical matrix element of the interlayer Hamiltonian as
⟨
𝜑
(1)

𝑖1 ,⃗𝑘1

⃒⃒⃒
𝑉 (1)

⃒⃒⃒
𝜑
(2)

𝑖2 ,⃗𝑘2

⟩
where 𝑉 (1) is the single layer graphene potential. Since the potential is periodic, we

can apply Bloch’s theorem to write both the layer potential and wavefunctions using

the reciprocal vectors �⃗�1, 𝑅�⃗�2 in each layer respectively (the R labels rotation in the

second layer):

𝑉 (1) =
∑︁
�⃗�

′
1

𝑉
(1)

�⃗�
′
1

𝑒𝑖�⃗�
′
1.�⃗�

𝜑
(1)

𝑖1 ,⃗𝑘1
=
∑︁
�⃗�

′
1

𝑐
(1)

𝑖1 ,⃗𝑘1+�⃗�
′′
1

𝑒
𝑖
(︁
�⃗�1+�⃗�

′′
1

)︁
.�⃗�

𝜑
(2)

𝑖2 ,⃗𝑘2
=
∑︁
𝑅�⃗�2

𝑐
(2)

𝑖2 ,⃗𝑘2+𝑅�⃗�2
𝑒𝑖(�⃗�2+𝑅�⃗�2).�⃗�

(2.9)

Thus, evaluating the matrix element involves two main parts: an electronic in-

tegral which depends on the details of the orbitals, and a geometric integral which

serves as a momentum selection rule dictating the allowed momentum shifts when an

electron hops between the layers. Specifically,

⟨
𝜑
(1)

𝑖1 ,⃗𝑘1

⃒⃒⃒
𝑉 (1)

⃒⃒⃒
𝜑
(2)

𝑖2 ,⃗𝑘2

⟩
=

∑︁
�⃗�

′
1,�⃗�

′′
1 ,𝑅�⃗�2

∫︁
𝑐
(1)*
𝑖1 ,⃗𝑘1+�⃗�

′′
1

𝑉
(1)

�⃗�
′
1

𝑐
(2)

𝑖2 ,⃗𝑘2+𝑅�⃗�2
×

∫︁
𝑑3𝑟𝑒𝑖[�⃗�

′

1 − (�⃗�1 + �⃗�
′′

1) + �⃗�2 +𝑅�⃗�2]

(2.10)
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The top line of equation (2.10) corresponds to the electronic integral, while the

bottom line corresponds to the momentum selection rule, since the integral evaluates

to a Dirac delta function. Recognizing that �⃗�
′
1 − �⃗�

′′
1 is just another reciprocal vector

�⃗�1 in the unrotated layer, we can express the momentum selection rule as:

�⃗�1 −𝑅�⃗�2 = �⃗�2 − �⃗�1 ≡ ∆�⃗� (2.11)

Note that equation (2.11) is essentially the same as the real space commensura-

bility problem discussed earlier in this section, with an additional term ∆�⃗�. The goal

of the problem is therefore the same: can we find momentum shifts ∆�⃗� such that

electrons can hop between layers obeying the momentum selection rule? While the

solutions are complicated to derive, the results are easily quoted and verifiable [24].

Expressing ∆�⃗� as a linear combination of the reciprocal vectors given in equation

(2.7) and (2.8) i.e. ∆�⃗� = 𝑙1�⃗�1 + 𝑙2�⃗�2, 𝑙1, 𝑙2 ∈ Z, we have

∆�⃗� = 𝑛1�⃗�
(𝑐)
1 + 𝑛2�⃗�

(𝑐)
2 ,∆�⃗� = 𝑛1⃗𝑏1 + 𝑛2⃗𝑏2, 𝑛1, 𝑛2 ∈ Z (2.12)

where for 𝛿 = 1,

�⃗�
(𝑐)
1 = −2𝑝

𝛾
(�⃗�1 + 2�⃗�2)

�⃗�
(𝑐)
2 =

2𝑝

𝛾
(2�⃗�1 + �⃗�2)

(2.13)

and for 𝛿 = 3,

�⃗�
(𝑐)
1 = −2𝑝

𝛾
�⃗�1

�⃗�
(𝑐)
2 = −2𝑝

𝛾
�⃗�2

(2.14)

Because of the exponential suppression of the amplitudes of the Fourier compo-

nents given by the electronic integral in equation (2.10) [24], matrix elements of the

interlayer Hamiltonian which obey the selection rule has a significant amplitude only

when the ∆�⃗� is small, i.e. the integers 𝑛1, 𝑛2 in the solutions of equation (2.12) need

41



to be small as well. Thus, this implies that the momentum scale at which significant

interactions occur are given by the vectors �⃗�1 and �⃗�2.

By equation (2.4), we can re-write the coupling vectors �⃗�1 and �⃗�2 in terms of the

twist angle. In particular, a simple algebraic exercise shows that in all cases, the

magnitude of the coupling vectors are given by

|⃗𝑔(𝑐)1,2| =
4√
3

sin
𝜃

2
(2.15)

The main implication of equation (2.15) is that only the twist angle determines

the interlayer interactions: all details of the lattice in twisted bilayer graphene has

"disappeared" in the final result.By controlling the twist angle, we can thus control

the strength of interactions between the two layers: when the twist angle is large,

the coupling momentum is correspondingly large, and the two layers are decoupled at

low energy scales. Conversely, when the twist angle is small, interactions are strong

at low energy scales.
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2.2 Large Twist Angle Physics

From the previous section, the role of the twist angle is to control the magnitude

of the coupling momentum between the two layers. Heuristically, one can envision

this as the momentum displacement between the Dirac points of the two layers. In

the low energy continuum approximation [22], the Dirac points are separated by a

momentum vector ∆�⃗� = 2�⃗� sin
(︀
𝜃
2

)︀
. In the case where the twist angle 𝜃 is large,

the bands of both layers only hybridize at high energies comparable to the M point

of graphene [2, 25]. Thus at low energies, we can treat the two graphene layers in

twisted bilayer graphene to be decoupled in the bulk.

Although the physics in the large twist angle case is relatively simple to under-

stand, we can exploit the decoupling in the bulk to engineer novel edge state systems

using the monolayer quantum Hall effect. One of the main objectives in my research

is to create a quantum spin Hall type system in twisted bilayer graphene by indepen-

dently controlling the edge modes in each layer.

2.2.1 Creating a Quantum Spin Hall State

The quantum spin Hall state is an important two-dimensional topological state of

matter: when interfaced with superconductors and magnetic materials, it is predicted

to form topological qubits which have applications in quantum computing [26–28].

These states have been reported in various material systems, such as cadmium tel-

luride/mercury telluride quantum wells [29], as well as two-dimensional materials like

tungsten telluride [30]. In simple terms, the quantum spin Hall state can be regarded

as two copies of the quantum hall effect, consisting of two counter-propagating edge

modes with opposite spin polarizations, with a quantized conductance of 2𝑒2

ℎ
. Since

the two edge modes propagate in opposite directions, these edge modes could possibly

hybridize and gap each other out, leading to complete backscattering that would de-

stroy the quantized conductance. However, in the aforementioned material systems, a

combination of time-reversal and crystal symmetry protect these edge modes [31–33].

For graphene, it was initially believed that it could host a quantum spin Hall state
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at charge neutrality [34] i.e. at 𝜈 = 0 in a strong magnetic field: if the Zeeman effect

is dominant, the exchange interactions would form a pair spin polarized edge modes

which cross at charge neutrality, resulting in a quantized conductance of 2𝑒2

ℎ
[35].

However, besides the role of spin, valleys are also an important factor in determining

the electronic properties of graphene. In particular, lattice anisotropies can result

in couplings between the valleys that can favor other electronic ground states, such

as a canted anti-ferromagnet, Kekulé distortions and charge density waves [35]. The

combination of spin and valleys create a rich 𝑆𝑈(4) space for which different electronic

ground states can exist, depending on the details of lattice effects, electron-electron,

and electron-phonon interactions [35].

Although early experimental studies measured a longitudinal resistance which is

not zero for the 𝜈 = 0 state [20,36], suggesting that with further reduction of sample

disorder, a quantum spin Hall state could be observed at charge neutrality. However,

subsequent devices made with improved fabrication techniques (such as suspended

graphene and graphene encapsulated with hBN) showed an insulating state at charge

neutrality, at fields as low as in the 1T range [37–39]. The observation of an insulating

phase at relatively low magnetic fields ruled out the quantum spin Hall state as the

electronic ground state in graphene at charge neutrality: the role of lattice coupling

between the valleys must be considered in determining the electronic ground state.

Additionally, it was also shown that the 𝜈 = 0 state is not spin polarized, which

further limits the possible ground states at charge neutrality [39].

One important experimental study on the ground state of the 𝜈 = 0 system was

performed by Young et. al [40]. The key idea was to differentiate the coupling of

the perpendicular and total magnetic fields to the valleys and spins in graphene:

the spins are sensitive to the Zeeman field which depends on the total magnetic

field, whereas lattice anisotropies are only sensitive to the perpendicular field due to

the two-dimensionality of the material [35]. The observation of an insulating state

suggested that symmetry breaking due to lattice anisotropies are more dominant

than the Zeeman effect. However, it would be possible to increase the role of the

Zeeman effect if the total magnetic field is increased while keeping the perpendicular
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field constant. This could be achieved by tilting the sample in the presence of a very

strong magnetic field in the range of 40T. The authors of the paper demonstrated that

by increasing the total magnetic field while keeping the perpendicular field constant,

they are able to tune the 𝜈 = 0 state continuously from an insulating state to a state

with a conductance close to 2𝑒2

ℎ
, the expected conductance of a quantum spin Hall

system.

The nature of the suspected quantum spin Hall state was further determined

through non-local measurements. While the edge modes within the material system

is protected against backscattering due to spin protection, these edge modes are able

to equilibrate within metallic contacts due to spin mixing, resulting in interrupted

edge states between any pair of metallic contacts with a resistance of ℎ
𝑒2

[40]. By

varying the geometry of the contacts and the combination of source-drain contacts,

they demonstrated that the edge modes that emerge in the 𝜈 = 0 in a high in-

plane magnetic field is consistent with a quantum spin Hall edge mode transport [40].

This method of non-local measurements would also be used and described further in

Chapter 3.

Figure 2-1: The 𝜈 = +1 and 𝜈 = −1 states in graphene have opposite chiralities

and spin polarizations. Stacking the two edge states on top of each other, which is

possible in large angle twsited bilayer graphene, can possibly host a quantum spin

Hall system.

While a quantum spin Hall state can be achieved in monolayer graphene, it re-

quires the use of an extremely high magnetic field, which limits its applications in
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forming topological qubits since superconductors is also an essential ingredient. We

want to find another platform for where we can achieve a quantum spin Hall state

at much lower magnetic fields, and large angle twisted bilayer graphene is a highly

possible candidate. As discussed in Chapter 1, the 𝜈 = 1 and 𝜈 = −1 quantum Hall

edge states are spin polarized with opposite chiralities. If we can independently put

each of these edge modes in the two separate layers, we would have essentially created

a quantum spin Hall state (Fig. 2-1). The decoupling between the two layers would

be key for the edge modes to be controlled independently, thus necessitating a large

twist angle between the two layers. The experimental work performed on this system

would be covered in Chapter 3.
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2.3 Small Twist Angle Physics

At small twist angles, the scale of the momentum coupling vector becomes comparable

to the typical Fermi energy in our measured systems. As such, interlayer interactions

becomes significant and the two layers are strongly coupled via interlayer hybridiza-

tions. A new long-range periodic potential, known as the moiré potential, also emerges

which also affects the transport properties of twisted bilayer graphene. This section

gives a brief background behind the formalism of the moiré effect, and a brief run

through of various experimental studies which have examined this phenomenon in

various two-dimensional materials.

One of the most important emergent phenomenon at small twist angles is the

moiré effect.

2.3.1 Moiré Potentials & Superlattices

Figure 2-2: A small twist between two periodic layers creates a long range pattern

known as the moiré effect, with a new moiré wavelength 𝜆 introduced into the system.

The moiré phenomenon is a geometric effect that arises from two periodic layers,

creating a pattern with a new length scale (known as the moiré wavelength) which is

not present in the individual layers [41]. At small twist angles, the emergent moiré

pattern is a long range effect, with a moiré wavelength that is much larger than the

underlying lattice constants as seen in Fig. 2-2.
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One of the more illuminating ways to envision the moiré effect is to analyze it

in the frequency domain [41]. Any periodic function has a Fourier representation; in

two dimensions, one can write a periodic function 𝑟(𝑥, 𝑦) as

𝑟(𝑥, 𝑦) =
∑︁
𝑛∈Z

𝑎𝑛 cos[2𝜋𝑛𝑓(𝑥 cos 𝜃 + 𝑦 sin 𝜃)] (2.16)

where 𝑓 is the fundamental frequency of the periodic system and 𝜃 is the phase shift

of the system. By assigning the 𝑥 and 𝑦 coefficients as a single frequency vector

𝑓 =

⎡⎣𝑓 cos 𝜃

𝑓 sin 𝜃

⎤⎦, we can interpret the stacking of two periodic layers as the vectorial

sum of the two constituent frequency vectors. Note for a periodic profile that is not

strictly sinusoidal, there is theoretically an infinite combination of resultant moiré

frequency vectors one can construct for different choices of 𝑛 for each layer. However,

in small angle twisted bilayer graphene, only moiré vectors that correspond to low

energies matters due to the small magnitude of the coupling momentum i.e. we

want a frequency vector which is small as well. One can construct such a frequency

vector from two layers by considering the difference between the constituent frequency

vectors i.e.

𝑓𝑚 = 𝑓1 − 𝑓2

𝑓𝑚,𝑥 = 𝑓1 cos 𝜃1 − 𝑓2 cos 𝜃

𝑓𝑚,𝑦 = 𝑓1 sin 𝜃1 − 𝑓2 sin 𝜃

(2.17)

where 𝑓𝑚 is the frequency of the moiré pattern due stacking of two periodic layers 1

and 2. The resultant moiré wavelength 𝜆𝑚 can then be determined using the following

basic relations:

𝑓𝑚 ≡ |𝑓𝑚| =
√︁
𝑓 2
𝑚,𝑥 + 𝑓 2

𝑚,𝑦

𝜆𝑚 =
𝑐

𝑓𝑚
for some constant 𝑐

(2.18)
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For the two layer scenario, a simple algebraic exercise shows that

𝑓𝑚 =
√︁
𝑓 2
1 + 𝑓 2

2 − 2𝑓1𝑓2 cos(𝜃1 − 𝜃2)

⇒ 𝜆𝑚 =
𝜆1𝜆2√︀

𝜆21 + 𝜆22 − 2𝜆1𝜆2 cos(𝜃1 − 𝜃2)

(2.19)

where 𝜆𝑖 is the wavelength in layer 𝑖, and we can identify the twist angle as 𝜃 = 𝜃1−𝜃2.

The earliest studies of the moiré effect in two dimensional materials occurred

in epitaxially grown graphite [42]. During the growth process, the top layer of

the graphite can be displaced rotationally relative to the underlying layers, creat-

ing a discernible moiré pattern that can be examined by scanning tunneling spec-

troscopy [42, 43]. Additionally, by measuring the tunneling current at different tip

energies, they are able to obtain the density of states as a function of energy [43,44].

This information allowed the authors to deduce two main effects of the small twist

angle: the twisted layers hybridize to lower the energy of the van Hove singular-

ities, and renormalize the Fermi velocities to a lower value compared to monolayer

graphene [44]. These observations were further confirmed by other experimental stud-

ies such as ARPES [45].

-1 0 1

n

n0

0.5

1

Φ

Φ0

Figure 2-3: Plot of a Wannier ladder for 𝑠 = −2,−1, 0, 1, 2 and 𝑡 = −10,−9, ..., 9, 10.

Black, blue and red lines correspond to |𝑠| = 0, 1, 2 respectively.
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With the advent of more advanced fabrication techniques which can greatly reduce

the sample disorder in van der Waals heterostructures, transport studies in high

quality samples revealed one of the most spectacular effects of the moiré effect: the

Hofstadter butterfly. The Hofstadter butterfly arises from the competition of two

length scales: the lattice wavelength (which could arise from a lattice constant or

a moiré wavelength) and the magnetic length 𝑙𝐵 =
√︁

~
𝑒𝐵
. When the two length

scales become comparable, one unit cell of the periodic structure can hold one unit

of magnetic flux quantum, resulting in a fractal splitting of the Landau levels in a

recursive fashion [46]. Re-plotting the Hofstadter butterfly using the number density

𝑛 and magnetic flux Φ gives an equivalent (and more convenient) representation of

the Hofstadter butterfly known as a Wannier ladder shown in Fig. 2-3, where each of

the straight lines have the equation

𝑛

𝑛0

= 𝑡
Φ

Φ0

+ 𝑠 (2.20)

where 𝑛0 is the number density of a fully filled unit cell, 𝑠 is a Block band filling index

similar to the function of the Landau level labeling index, and 𝑡 corresponds to the

Hall conductivity of the particular state [47–49].

In graphene, due to the small lattice constant of 1.42 nm, a magnetic field of on the

order of 10000 T is required for the Hofstadter butterfly to be observed, a field which is

practically impossible to achieve with current technologies. However, one can exploit

the moiré effect to create a unit cell with a much larger wavelength, and hence observe

the Hofstadter butterfly at much lower magnetic fields. The first van der Waals system

used to explore this effect was the graphene/hBN heterostructure [47–49]. hBN has a

similar honeycomb lattice as graphene, with a slight lattice mismatch of 1.8% with the

graphene lattice constant [50]. Based on equation (2.19), for a zero degree twist angle

between the two layers, a maximum moiré wavelength of 14 nm can be achieved,

requiring only 40T for to put one magnetic flux quantum in a unit cell, which is

achievable in various high magnetic field lab facilities.

In the case of twisted bilayer graphene, since both layers are identical, the moiré

50



wavelength expression takes on a much simpler form, where

𝜆𝑚,TBLG =
𝑎

2 sin 𝜃
2

(2.21)

This expression reveals an additional promise for studying moiré physics in twisted

bilayer graphene: since the wavelength increases continuously as the twist angle be-

comes smaller, in theory we could build a system with extremely large moiré wave-

lengths which have been inaccessible in other small twist van der Waals heterostruc-

tures. In particular, the larger range of moiré wavelengths available in twisted bilayer

graphene offers greater flexibility in studying the interplay of moiré physics and inter-

layer hybridization effects. Chapter 4 explores my experimental work in this regard,

where we have observed exotic transport properties that is radically different from

monolayer graphene.
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Chapter 3

Helical Edge State Conduction in

Large Angle Twisted Bilayer

Graphene

3.1 Introduction

This chapter of the thesis describes the experimental work and results on large angle

twisted bilayer graphene, where we engineer a bilayer quantum spin Hall like state

by independently controlling the edge states in each layer of graphene.

3.1.1 Experimental Objectives

As outlined in Chapter 2, the aim of the experiment is to realize a quantum spin Hall

state in large angle twisted bilayer graphene, where we can exploit the decoupling

between the two graphene layers to independently control the quantum Hall edge

modes by tuning the total charge density and electric field applied across the system.

The main questions that I aim to address are as follow:

1) What is the nature of the quantum Hall effect in large angle twisted bilayer

graphene? In particular, do edge modes in the system exhibit any form of interaction,

despite being decoupled in the bulk?
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2) Is it possible to create a quantum spin Hall state in large angle twisted bilayer

graphene?

3) Can large angle twisted bilayer graphene support fractional quantum Hall

states?

3.2 Experimental Background

3.2.1 Broken Symmetry States in Graphene

As mentioned in the previous section, each Landau level in graphene has an overall

four fold degeneracy due to both spin and valley degeneracies. While the integer

quantum Hall effect can be understood via the Landau level single-particle picture,

electron-electron interactions can create further symmetry breaking which gives rise

to new correlated electronic states.

The first source of electron-electron interactions arises from exchange interactions.

Exchange interactions arise from the exchange statistics of indistinguishable particles:

electrons with the same spin tend to be further apart compared to electrons of opposite

spins [17, 18]. In the presence of a magnetic field and Coulombic interactions, this

gives rise to two competing effects: the magnetic field can create a ferromagnetic

state by gapping out the Landau level into two spin polarized bands, thereby lowering

the Coulombic energy in the system via this exchange interaction. However, due to

the Pauli exclusion principle, electrons with the same spin must have different spatial

wavefunctions, thereby increasing the Fermi level i.e. the kinetic energy in the system.

For the ferromagnetic state to be favorable, a very flat band is required: the kinetic

energy cost does not overwhelm the decrease in the Coulombic interactions between

the electrons.

In the case of graphene, the pristine nature of the crystal results in very little

disorder-widening of the Landau levels, and the weak spin-orbit coupling in graphene [51,

52] screens very little of the electron-electron interactions, and this is especially true

in the zeroth Landau level where the number density is low. Thus, exchange inter-
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actions are strong in graphene, and various interaction induced gaps are observed at

half and quarter filling of the various Landau levels [39]. In particular, the 𝜈 = ±1

states have been observed to be spin polarized states with opposite spin polarizations

and chiralities, which is consistent with the exchange interaction model described pre-

viously [39]. The 𝑛𝑢 = ±1 states would become instrumental in creating a quantum

spin Hall system.

3.2.2 Fractional Quantum Hall Effect in Graphene

Another important many-body state that can arise from electron interactions is the

fractional quantum Hall effect. where Hall conductances are observed at fractional

values of 𝑒2/ℎ. This effect was first discovered in gallium-arsenide systems, but re-

quiring samples that are much more pristine measured at lower temperatures [4].

While the integer quantum Hall effect can be understood via a single particle picture,

the fractional quantum Hall effect invokes a richer hierarchy of electron interactions,

with some states having complex non-abelian statistics such as the even denominator

𝜈 = 1
2
, 5
2
states [53,54]. For the purpose of this thesis, I shall give a brief background

on the simpler fractional quantum Hall states with filling factors 𝑝
2𝑝+1

, 𝑝 ∈ Z, which

are also known as the hierarchy states.

The hierarchy states in a classical two-dimensional gas can be understood via the

composite fermion picture [55, 56], where an electron is paired with two magnetic

vortices to create the composite fermion. Within this formalism, the hierarchy states

can be thought of resulting from the integer quantum Hall states of these composite

fermions, where the fractions at filling factors 𝜈 = 1
3
, 2
5
, 3
7
, ... correspond to the Landau

level labeling index 1, 2, 3, ... respectively.

The first observed fractional quantum Hall effect came from studies on suspended

graphene [37,38], where the removal of the substrate’s disordered potential created a

clean enough system for the 𝜈 = 1
3
state to be observed. Subsequent studies on hBN

encapsulated graphene observed fractions at filling factors at all the thirds, except for

𝜈 = 5
3
, which the authors attributed to a diminished energy gap due to the mixing of

the spin and valley states by electron-electron interactions [57]. In this chapter, we
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will show that the fractional quantum Hall effect can be supported in twisted bilayer

graphene, with the difference in observations that differs from the aforementioned

monolayer graphene studies.

3.2.3 Previous Transport Studies on Large Angle Twisted Bi-

layer Graphene

Transport studies on twisted bilayer graphene have historically been limited due

to two main reasons: twisted bilayer graphene obtained via chemical vapor depo-

sition (CVD) have too much disorder, while naturally exfoliated graphene bilayers

are Bernal-stacked. Initial transport studies on twisted bilayer graphene relied ei-

ther on CVD grown sources [58], or monolayer graphene that has been fortuitously

folded over on itself [107]. For the transport studies on CVD grown twisted bilayer

graphene, the observed quantum Hall plateaus seemed more consistent with a small

twist angle case [58], whereas transport studies on the folded-over graphene observed

two sets of Shubnikov-de Haas oscillations with two distinct periods, suggesting de-

coupled transport behavior [107]. However, for both these studies, only a single gate

was used, which limits the understanding of the transport behavior in twisted bilayer

graphene due to the lack of electric field control.

However, with the advent of fabrication techniques that allowed controlled stack-

ing of van der Waals heterostructures, high quality dual-gated twisted bilayer graphene

samples can be obtained. The first transport study on dual-gated twisted bilayer

graphene was reported by Sanchez-Yamagishi et al [82]. In this study, the dual-

gating allowed complete control of the total charge density and electric field applied,

and the authors demonstrated Landau level crossings which is completely consistent

with two decoupled graphene layers i.e. spin, valley, and (more importantly) layer

are good quantum labels to describe the system. Another important observation from

this study was the possible interactions between the edge states, in particular when

one layer was doped to 𝜈 = +2 and the other layer to 𝜈 = −2. Quantum Hall states

exhibit dissipation-less transport due to its chirality which prevents backscattering; if
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these edge states do not interact, we expect a zero longitudinal resistance to be mea-

sured. However, the authors observed a highly insulating state, suggesting that these

edge states hybridize to create a transport gap at the edge i.e. a strong backscattering

path in the system.

3.3 Experimental Details

The experimental study typically follows a three-step process: 1) Fabricating the

twisted bilayer graphene van der Waals heterostructure, 2) Making electrical contacts

and metallic gates via lithographic methods, and 3) transport measurement in a low

temperature cryostat equipped with a magnetic field. High quality samples of dual-

gated twisted bilayer graphene encapsulated in hBN were fabricated via a dry transfer

pickup method, where the details are outlined in Appendix A.

3.4 Helical Edge States and Fractional Quantum Hall

Effect in a Graphene Electron-Hole Bilayer

The following section is a text reproduction from Sanchez-Yamagishi and Luo et.

al [60].

Helical 1d electronic systems are a promising route towards realiz-

ing circuits of topological quantum states that exhibit non-abelian statis-

tics [61–64]. Here, we demonstrate a versatile platform to realize 1d sys-

tems made by combining quantum Hall (QH) edge states of opposite chi-

ralities in a graphene electron-hole bilayer at moderate magnetic fields.

Using this approach, we engineer helical 1d edge conductors where the

counterpropagating modes are localized in separate electron and hole lay-

ers by a tunable electric field. These helical conductors exhibit strong

nonlocal transport signals and suppressed backscattering due to the op-

posite spin polarizations of the counterpropagating modes. Unlike other

approaches used for realizing helical states [65–67], the graphene electron-
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hole bilayer can be used to build new 1d systems incorporating fractional

edge states [37, 38]. Indeed, we are able to tune the bilayer devices into

a regime hosting fractional and integer edge states of opposite chiralities,

paving the way towards 1d helical conductors with fractional quantum

statistics [68–71].

A helical 1d conductor is an unusual electronic system where forward and back-

ward moving electrons have opposite spin polarizations. Theoretically, helical states

can be realized by combining QH edge states with opposite spin and opposite chirali-

ties [61,64]. Most experimental efforts though have focused on materials with strong

spin-orbit coupling at zero magnetic field [65–67]. However, a QH edge state approach

offers greater flexibility in system design with less dependence on material parameters.

Moreover, a QH platform could harness the unique statistics of fractional QH states.

Recent proposals have predicted that such a system, in the form of a fractional quan-

tum spin Hall state, for example, could host fractional generalizations of Majorana

bound states [68–71]. To simultaneously realize QH states with opposite chiralities,

it is necessary to have coexisting electron-like and hole-like bands. Electron-hole QH

states are observed in semi-metals, but suffer from low hole-mobilities [72,73]. In this

respect, graphene is attractive because it has high carrier mobilities and electron-

hole symmetry. In fact, the graphene electron and hole bands can be inverted by

the Zeeman effect to realize helical states [74, 75], but requires very large magnetic

fields [40, 76]. A similar outcome could be realized more easily in a bilayer system,

where electric fields can dope one layer into the electron band and the other into

the hole band. At moderate magnetic fields, this electron-hole bilayer will develop

QH edge states with opposite chiralities in each layer. Note that unlike edge states

in a lateral quantum Hall p-n junction [77], the electron-hole bilayer boundary will

host modes that are 1) counterpropagating, and 2) spaced apart by sub-nanometer

distances. Here, we demonstrate such a graphene electron-hole bilayer, which we use

to realize a helical 1-dimensional conductor made from QH edge states.

The studied devices consist of two monolayer graphene flakes that are stacked with

a relative twist misalignment (panels (a) and (b) of Fig. 3-1). The twist causes a low
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Figure 3-1: Quantum Hall effect in twisted bilayer graphene with broken symmetry
states. (a) Stacking two graphene layers with a relative twist decouples the Dirac
cones from each layer via a large momentum mismatch. In a magnetic field, each layer
will develop monolayer graphene-like Landau levels despite the tiny 0.34nm interlayer
spacing. (b) Device schematic of twisted bilayer graphene encapsulated in hBN with
dual-gates. Contact electrodes are depicted in red. (c) Cartoon of twisted bilayer QH
edge states when both layers are at filling factor -2. Each layer has a spin degenerate
edge state with a hole-like chirality. (d) 2-probe conductance of a twisted bilayer
graphene device at B = 1 T as a function of 𝜈𝑡𝑜𝑡. The sequence is exactly double
the monolayer graphene sequence of (2, 6, 10, 14...) 𝑒

2

ℎ
26,27. A contact resistance has

been subtracted to fit the 𝜈𝑡𝑜𝑡 = −4 plateau to 4 𝑒2

ℎ
. (e) 2-probe conductance of the

same device at 𝐵 = 4T showing broken-symmetry states. Contact resistances have
been subtracted from the negative and positive 𝜈𝑡𝑜𝑡 sides of the data. Note that this
trace is taken with a small interlayer displacement field in order to observe all integer
steps (see color map in panel (e) of Fig. 3-2. Cartoons depict proposed edge state
configurations in the (0,-1) and (+1,0) states.

energy decoupling of the layers, despite their tiny 0.34nm interlayer spacing [22, 44],

that allows each layer to develop independent edge states in a magnetic field [44,78–80]
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(panel (c) of Fig. 3-1). We fabricate a dual-gated structure where top and bottom

gates allow us to control the total charge density of the twisted bilayer and the

interlayer electric field (Figure 1b). We define the total applied electron density as

𝑛𝑡𝑜𝑡 = (𝐶𝑇𝑉𝑇 +𝐶𝐵𝑉𝐵)/𝑒, where 𝐶𝑇 and 𝐶𝐵 are the top and bottom gate capacitances

per unit area, 𝑉𝑇 and 𝑉𝐵 are the top and bottom gate voltages, and 𝑒 is the electron

charge. In a magnetic field, 𝐵, we consider the total filling factor 𝜈𝑡𝑜𝑡 = 𝑛𝑡𝑜𝑡(ℎ/𝑒)/𝐵,

which is the number of filled Landau levels (ℎ/𝑒) is the magnetic flux quantum,

where ℎ is Planck’s constant). Applying antisymmetric gate voltages will impose

an interlayer electric field that shifts charges between layers, causing them to have

different filling factors. We present this experimental knob as the applied displacement

field 𝐷 = (𝐶𝑇𝑉𝑇 − 𝐶𝐵𝑉𝐵)/2 divided by the vacuum permittivity 𝜖0.

To establish the degree of interlayer coupling in our devices, we begin by measur-

ing the QH effect. The QH effect is a sensitive probe of electron degeneracy and the

underlying symmetries of the Landau levels; as such, the graphene QH effect is differ-

ent for monolayers [20,36], AB-stacked bilayers [81], and twisted bilayers [78–80,82].

Panel (d) of Fig. 3-1 shows a 2-probe conductance measurement, 𝐺, as a function of

𝜈𝑡𝑜𝑡 in a twisted bilayer device at 𝐵 = 1 T. The filling factors of the top and bottom

layers are equal during the measurement (𝜈𝑡𝑜𝑝 = 𝜈𝑏𝑜𝑡𝑡𝑜𝑚 = 𝜈𝑡𝑜𝑡/2, 𝐷 = 0), resulting in

a QH plateau sequence double that of monolayer graphene due to the layer degen-

eracy. This sequence demonstrates that a large twist misalignment leads to a weak

interlayer coupling that does not split the layer degeneracy, and therefore the system

can be modeled as two monolayer graphene sheets conducting in parallel [82, 83].

In low-disorder samples, electron exchange interactions break the graphene spin-

valley degeneracy, leading to QH ferromagnetism 31-33. We observe such degeneracy

breaking at higher field as a sequence of plateaus at all integer multiples of 𝑒2/ℎ from

-4 to 4 (𝐵 = 4 T, Figure 1e). This can be explained by exchange-driven breaking

of spin-valley symmetry in each of the graphene layers, combined with the effects of

displacement field. For example, at 𝜈𝑡𝑜𝑡 = 0, both layers are charge neutral and we

observe an insulating state (𝐺 = 0), similar to the exchange-driven insulating state

observed in neutral monolayer graphene [39,40,85].
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Decreasing 𝜈𝑡𝑜𝑡 from 0 to -1, a small applied displacement field causes charge

to be removed from the top layer preferentially. The result is a transition to a

1𝑒2/ℎ plateau, which we explain as conduction through a hole-like edge state in

the top layer while the bottom layer remains insulating (panel (e) of Fig. 3-1, left

cartoon). Conversely, increasing 𝜈𝑡𝑜𝑡 to 1 preferentially adds charges to the bottom

layer, resulting in an electron-like edge state with conductance of 1𝑒2/ℎ (panel (e) of

Fig. 3-1, right cartoon). We label these states by the filling factors on each layer as

(𝜈𝑏𝑜𝑡𝑡𝑜𝑚, 𝜈𝑡𝑜𝑝) = (0,−1) and (1, 0). In monolayer graphene, the filling factor 𝜈 = ±1

states are thought to be spin polarized due to the combined effects of Zeeman and

QH ferromagnetism [39, 77]. At 𝜈 = 1, the spin magnetic moment is aligned with

the magnetic field; for the hole-like 𝜈 = −1 edge state the spin is flipped since it

originates from the bulk excited state. If the same effect occurs in twisted bilayer

graphene, it should be possible to create a pair of helical edge states with opposite

chiralities and opposite spin polarizations by realizing coexisting 𝜈 = 1 and 𝜈 = −1

states.
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Figure 3-2: Transport in graphene electron-hole bilayers. (a) Cartoons depicting
edge state configurations with 𝜈𝑡𝑜𝑝 = −𝜈𝑏𝑜𝑡𝑡𝑜𝑚. (b) Conductance for 𝜈𝑡𝑜𝑡 = 0 as a
function of displacement field at 𝐵 = 4T. The (-1,+1) state is conductive while
the (-2,+2) state is insulating. (c) Magnetic field dependence of 𝜈𝑡𝑜𝑡 = 0 line. (d)
2-probe conductance map, 𝐺′, as function of 𝜈𝑡𝑜𝑡 and 𝐷. Conductance is given by
𝜈𝑡𝑜𝑡

𝑒2

ℎ
for all configurations except for the (±1,∓1) states. Contact resistances have

been subtracted from the positive and negatives sides of the data to fit the 𝜈𝑡𝑜𝑡 = ±1
plateaus. (e) Schematic map of possible filling factor combinations.

We now explore the outcomes when the twisted bilayer is electron-hole doped
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such that the layers have edge states of opposite chiralities. Starting with each layer

in the insulating state at charge neutrality (0, 0), we imbalance the bilayer with a

displacement field such that the charge density from each layer is of equal magnitude

but of opposite sign (𝜈𝑡𝑜𝑝 = −𝜈𝑏𝑜𝑡𝑡𝑜𝑚, 𝜈𝑡𝑜𝑡 = 0, panel (a) of Fig. 3-2). As the displace-

ment field increases, the system first transitions to a conductive state of order 𝑒2/ℎ,

and then transitions sharply to another insulating state at higher displacement fields

(panels (b) and (c) of Fig. 3-2). Assuming that transitions correspond to layer filling

factor changes, we assign the conductive states to the (±1,∓1) charge configurations,

and the insulating states at higher D magnitudes to the (±2,∓2) states. We have

consistently observed this conductance sequence in all large-twist bilayer graphene

devices that display broken-symmetry states (9 devices in total), with (±1,∓1) state

conductances varying from 0.8 to 1.5 𝑒2/ℎ.

To verify the assignment of the (±1,∓1) states, we study a wider range of edge

state configurations away from 𝜈𝑡𝑜𝑡 = 0. Panel (d) in Fig. 3-2 shows the 2-probe

conductance as a function of 𝜈𝑡𝑜𝑡 and displacement field. The ((±1,∓1) states form

clearly defined plateaus in the map (white dotted circles). We model the sequence by

considering all possible combinations of filling factors in the graphene zeroth Landau

level with broken spin-valley degeneracy. The resulting map in panel (e) of Fig. 3-2

matches the entire sequence of plateau transitions observed in the 2-probe conduc-

tance (panel (d) of Fig. 3-2) and 4-probe longitudinal resistance measurements (see

appendix A Fig. A-1). Furthermore, capacitance measurements on a different sam-

ple reveal that the bulk is insulating for all plateaus in the map, as expected for

QH states (appendix A Fig. A-2). The consistency of the model with the observed

plateaus supports the assignment of the conductive 𝜈𝑡𝑜𝑡 = 0 states to the (±1,∓1)

filling factor configurations.

The measured conductances of nearly all the filling factor configurations are given

by: 𝐺 = 𝜈𝑡𝑜𝑡𝑒
2/ℎ. Noticeably, only the (±1,∓1) states depart from this pattern.

When 𝜈𝑏𝑜𝑡𝑡𝑜𝑚 and 𝜈𝑡𝑜𝑝 have the same sign, this formula follows directly from the par-

allel conductance contributions of QH edge states in each layer. But for electron-hole

bilayer combinations, such as the (+2,−2) or (+2,−1) states, this equation implies
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that conductance contributions from each layer can cancel. For this to occur, there

must be a backscattering process that couples opposite chirality edge states between

layers (panel (a) of Fig. 3-2, bottom) [82]. Moreover, temperature dependence of

the insulating 𝐺 = 0 ((±2,∓2) states suggests that this backscattering leads to a

complete transport gap (appendix A Fig. A-4). Interlayer backscattering requires

tunneling between the closely spaced layers, which may be enhanced at the edge even

if it is suppressed in the bulk. In contrast, the same backscattering process is nearly

absent in the (±1,∓1) states, resulting in a conductive plateau of order 𝑒2/ℎ for a

device with greater than 5 𝜇m long edges.

We now show that the (±1,∓1) states conduct through counter-propagating edge

modes by measuring the nonlocal voltage response in the same device. In the nonlocal

measurement, a voltage 𝑉𝑁𝐿 is measured between adjacent contacts far away from

the electrodes where a current 𝐼𝑀 is sourced and drained. We find that the nonlocal

resistance 𝑅𝑁𝐿 = 𝑉𝑁𝐿/𝐼𝑀 of the (±1,∓1) states is 10 to 1000 times larger than the

other conductive states (panel (c) of Fig. 3-3, white dotted regions and panel (d) of

Fig. 3-3). This nonlocal signal sharply differentiates the (±1,∓1) states from being

either normal chiral edge states or diffusive conductors: the voltage drop along a

chiral edge state is zero, while in a diffusive bulk conductor the nonlocal voltage far

away from the source drain electrodes is exponentially suppressed. In contrast to

a weak bulk response, the strong nonlocal resistance of the (±1,∓1) states signifies

that current flows predominately along the edge, with both forward and backward

propagating modes equilibrating at the electrodes to give a voltage drop.

Based on the transport data collected – the mapping of the QH plateau sequence

and the edge state nonlocal signal – we conclude that at filling factors (±1,∓1)

conduction occurs through a pair of QH edge states with opposite chiralities (middle

cartoon, panel (a) Fig. 3-2). Backscattering between the two counter-propagating

modes is strongly suppressed, resulting in a highly conductive 1d transport channel

with conductance ranging from 0.8 to 1.5 𝑒2/ℎ for devices of different edge lengths (0.2-

16 𝜇m) (details in appendix A Fig. A-6). This is contrasted with the spin-degenerate

(±2,∓2) states, where interlayer tunneling leads to insulating behavior in the same
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Figure 3-3: Nonlocal measurements of helical edge states. (a) Optical image of 4-
probe device with 5 𝜇m scale bar. Graphite leads are highlighted in red, and the gold
top-gate which covers the device is highlighted in yellow. (b) Schematic of different
measurement configurations for the 4-probe device. (c) Nonlocal resistance, 𝑅𝑁𝐿,
as a function of 𝜈𝑡𝑜𝑡 and displacement field, 𝐷. Dashed white circles highlight the
(±1,∓1) states which exhibit a strong nonlocal signal, indicating transport through
highly conductive counterpropagating edge modes. Axis ranges are identical to panel
(d) of Figure 3-2. In the (0,0) insulating state, 𝑅𝑁𝐿 fluctuates strongly due to low
current signals near the noise limit (bright white features). (d) 𝑅𝑁𝐿 (black line, left
axis) compared to 2-probe resistance, 𝑅2𝑝𝑟𝑜𝑏𝑒, (grey line, right axis) of constant 𝐷 line
cut through (+1,-1) state (dashed line in panel (c)). 𝑅𝑁𝐿 is near zero when 𝑅2𝑝𝑟𝑜𝑏𝑒

exhibits a conductance plateau, since the voltage drop along a chiral edge state is zero.
During plateau transitions, the bulk becomes conductive, resulting in a small peak
that is suppressed by the nonlocal geometry of the measurement. (e) Magnetic field
dependence of 𝑅𝑁𝐿 and 𝑅𝑥𝑥 in (+1,-1) state. In the ballistic limit, each edge segment
has resistance ℎ

𝑒2
, independent of device length, leading to a 4-probe resistance of ℎ

4𝑒2

that is observed at high fields.

devices (panel (a) Fig. 3-2). A simple explanation for the difference is that the counter-

propagating modes of the (±1,∓1) states have opposite spin polarizations, which are

the expected Zeeman plus exchange-driven ground states for monolayer graphene

at 𝜈 = ±1 [39, 77]. When the spin-wavefunctions on each layer are orthogonal,

interlayer tunneling processes are forbidden and the edge states are protected from

backscattering. The result is a pair of helical edge states in the (±1,∓1) electron-hole
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bilayer.

The expected conductance of the helical edge states is 2𝑒2/ℎ when backscattering

is completely suppressed (each edge contributes 1 𝑒2/ℎ in parallel). In our 2-probe

measurements, we identify a significant reduction in the conductance due to contact

resistances from the electrode-edge state interfaces (see appendix A). To avoid this

effect, we measure the 4-probe resistance of the (+1,−1) states as a function of mag-

netic field in both local (𝑅𝑥𝑥) and nonlocal configurations (𝑅𝑁𝐿) (panel (e) Fig. 3-3).

Above 1.5 T, 𝑅𝑁𝐿 increases slowly until it saturates at high fields, while 𝑅𝑥𝑥 de-

creases to approach a similar value, despite the two measurements probing edges of

very different lengths. Moreover, the measurements approach ℎ/(4𝑒2) – the expected

value for ballistic counter-propagating edge states that fully equilibrate at the con-

tacts. The convergence of 𝑅𝑥𝑥 and 𝑅𝑁𝐿 suggests that backscattering in the helical

(±1,∓1) states decreases steadily to zero with increasing magnetic field, resulting in

a length-independent edge segment resistance of ℎ/𝑒2.

We now turn to the low field regime of the (±1,∓1) states (panel (e) Fig. 3-3). At

zero magnetic field, the nonlocal resistance is insignificant (1-10 Ω); as the magnetic

field rises to 1.5 T, 𝑅𝑁𝐿 sharply increases by a factor of 100. This coincides with

the emergence of clearly distinguished plateaus at (±1,∓1) in both the 𝑅𝑁𝐿 and

𝑅2𝑝𝑟𝑜𝑏𝑒 maps (appendix A.7). We interpret the sharp increase in 𝑅𝑁𝐿 as the onset

of conduction in the helical edge states at 1.5 T, a comparatively low field that is

encouraging for future efforts to engineer topological superconductivity in this helical

conductor [61, 64].

One unique advantage of building a helical 1-dimensional conductor from QH edge

states is the possibility of extending the system to fractional edge states [37,38]. As a

promising step in this direction, we have observed the fractional QH effect in our high-

quality devices. Panel (a) of Fig. 3-4 shows an 𝑅𝑥𝑥 measurement taken at 𝐵 = 9 T,

where clear minima are observed at fractional values of 𝜈𝑡𝑜𝑡 = ±1/3,±2/3,±4/3, 𝑎𝑛𝑑±

5/3. Simultaneous with the 𝑅𝑥𝑥 minima, we observe plateaus in 1/𝑅𝑥𝑦 Hall measure-

ments (panels (b) and (c) of Fig. 3-4). From the location of the line cuts in panel

(b) of Fig. 3-4, we deduce that one layer is in the 𝜈 = 0 insulating state, while

65



-100

-50

0

50

100

D
/ε

0 
(m

V
/n

m
)

1 22- 1-

0 10 20
Rxx (kΩ)

0

a

10

20

0

R
xx  (kΩ

)

30

0
-5/3

0
-2/3

0
-1/3

0
-4/3-2

0 0
-1

0

 R
xy

-1
 (

e2 /h
)

2-

1-

3-
2- 1-

b
-2

+5/3
-2

+2/3
-2
0

-2
+1

-2
+1/3

-2
+4/3

0

 R
xy

-1
 (

e2 /h
)

2-

1-

3-

10

20

R
xx  (kΩ

)

0
2- 1-

c  

Total Filling Factor, νtot Total Filling Factor, νtot Total Filling Factor, νtot

Figure 3-4: Fractional QH effect in twisted bilayer graphene. (a) Rxx measurements
at B = 9 T as a function of 𝜈𝑡𝑜𝑡 and 𝐷 shows clear minima at fractional values
of 𝜈𝑡𝑜𝑡 = ±1/3,±2/3,±4/3,±5/3 indicating fractional quantum Hall states. Some
electron-hole regions are obscured by contact-resistance effects at high fields. (b &
c) Comparison of 𝑅𝑥𝑥 and 𝑅𝑥𝑦 line cuts showing the bilayer fractional quantum Hall
effect. 𝑅𝑥𝑥 minima at fractional values of 𝜈𝑡𝑜𝑡 line up with plateaus in the measurement
of 1/𝑅𝑥𝑦. Plotted lines are averages over a range of 𝐷 field values as indicated by the
colored rectangles in the colormap. For the line trace in (b), measurements correspond
to fractional states in the top layer and an insulating 𝜈 = 0 state in the bottom layer.
For (c), data corresponds to electron-hole combinations.

the other layer hosts a fractional edge state. Interestingly, we also observe fractional

states in the electron-hole bilayer regime (panel (c) Fig. 3-4), with clear fractional QH

states that we identify with the (+1/3,−2), (+2/3,−2), (+4/3,−2) and (+5/3,−2)

states. The Hall measurements follow 1/𝑅𝑥𝑦 = 𝜈𝑡𝑜𝑡𝑒
2/ℎ, suggesting again the role of

interlayer tunneling, in this case resulting in coupling and complete backscattering

between fractional and integer edge states on different layers. These observations of

fractional QH states pave the way towards realizing a fractional quantum spin Hall

state – a key ingredient in recent proposals to construct fractional generalizations of

Majorana Fermions [68–70].

3.4.1 Challenges in Measuring Electron-Hole Systems

All 2-probe measurements include the effects of contact resistance originating from

the metal electrodes, the metal-graphene interface, and the graphene leading up to
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the primary device region. This is often seen as a suppression of the conductance

of quantum Hall plateaus. We find that this effect can be corrected by subtracting

a single contact resistance value for negative negative filling factors, and a different

value for positive filling factors, where details of the procedure is outline in Appendix

A.

Figure 3-5: Gate-tunable contacts can switch from making good contact to either
negative 𝜈𝑡𝑜𝑡 states or positive 𝜈𝑡𝑜𝑡 states (Sample B). (A) Conductance maps for a
device with gate tunable contacts. P-doped contacts result in clear measurements
of the p-side of the data (negative filling factor) with strong suppression of the con-
ductance for the n-side (positive filling factor). The converse is true for n-doped
contacts. In both measurements the contact resistance in the well-measured plateaus
is less than 100 Ohms. (B) Conductance plateaus for p-doped (red) and n-doped
(blue) contacts. (C) Cross-section cartoon of device. The contact topgates (cTg) and
the global backgate control the doping of the twisted bilayer graphene between the
primary region of the device and the metal electrodes.

One cause of the asymmetry in the contact resistance between the negative and

positive filling factors comes from the formation of pn junctions in the graphene which

lead to extra resistance. These arise because of changes in doping in the graphene

between the dual gated region and the contacts. For example, chromium-gold alloy

electrodes tend to locally p-dope graphene near the contact, which will naturally
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cause a pn junction to arise when measuring n-doped graphene. The formation of

pn junctions can be controlled by using extra gates to control the sign of the charge

density outside of the primary device region under study. The effect of this can be

seen in Fig. 3-5, which shows the measurement of conductance plateaus in a twisted

bilayer graphene device for p-doped contacts and n-doped contacts. In the case of

p-doped contacts, there is no pn junction formed when measuring negative filling

factors and the plateaus have a very small contact resistance of order 100 Ω. By

contrast, measurements of the positive filling factors has a very strongly suppressed

conductance with the p-doped contacts. The map can be inverted by switching to n-

doped contacts. To accomplish this contact doping control we use a device structure

that has extra local topgates and a global Si backgate which dopes the twisted bilayer

graphene all the way up to the metal electrodes. This allows us to tune the doping

of the bilayer outside of the main region.

The formation of pn junctions at the contact interface presents a fundamental issue

when measuring an electron-hole bilayer edge state. Because the state is made up of

both p-doped and n-doped graphene, there will always be a pn junction formed when

the contacts are of only one doping type. In fact, we observe that this effect can nearly

shut off current injection into one of the layers, since the pn junction necessarily passes

through zero density, which is insulating at high magnetic fields [77]. A measurement

of this effect is presented in Fig. 3-6. Often, we observe that the conductance of

the helical edge states will be close to the conductance of the 𝜈𝑡𝑜𝑡 = −1 plateau,

as conductance is limited to only one of the layers. Using graphite contacts (as for

sample W discussed in section 3.4), somewhat mitigates this problem since graphite

has a similar work function to graphene and hence has less contact doping effects.

By having multiple gate-tunable contacts, it should be possible to have simultane-

ous independent contacts to both the top and bottom layers by having simultaneously

contacts which are p-doped and n-doped. Fig. 3-7 shows a test of this idea using a

4-probe device with independent topgates on each of its contacts to locally control

the doping. As expected, the conductance of the (-1,0) state is maximized for p-

doped contacts, and likewise the (0,+1) state conductance is maximized for n-doped
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Figure 3-6: Gate tunable contacts can selective inject current into only one layer
(Sample B). Top – Cartoons show current flow paths depending on the filling factor
of the layers and whether contacts are p-doped or n-doped. Current flow is blocked
at pn junctions because the zero density state is insulating. Bottom – Conductance
near the (±1,∓1) states for p-dope and n-dope contacts. In the (±1,∓1) states, the
contacts can only inject current effectively into one layer.

contacts. By contrast, the (-1,+1) state conductance is maximized when there are

two pairs of both n-doped and p-doped contacts. This is another confirmation of the

electron-hole bilayer nature of the helical (𝑝𝑚1,∓1) states.

3.4.2 Epilogue & Further Developments

The experiment outlined in the previous section definitively answers the questions

outlined in section 3.1.1. In particular, we observe that quantum Hall modes at

the edges interact strongly, where the Hall conductance of the system is given by

the sum of the filling factors in both layers. The exception to the rule is the case

where both layers have 𝜈 = +1 and 𝜈 = −1 states, where spin protection is the

most likely mechanism that prevents hybridization between the edge modes. The

suppressed interlayer tunneling in this regime allows the creation of a quantum spin
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Figure 3-7: Simultaneous p- and n-type contacts gives the best measurement config-
uration (Sample B). Top – Cartoon schematic and optical image of device with four
independent gate-tunable contacts labeled cTG1,2,3,4. Bottom – Conductance maps
in (-1,0) (-1,1) and (0,1) states as a function of the contact topgate values. 2-probe
conductance is measured between the source and drain electrodes (S and D in the
top cartoon). cTG1 and cTG3 are swept together (cTG13) and likewise for cTG2
and cTG4 (cTG24). For the (-1,0) state, the highest conductance is for p-type con-
tacts (negative cTG). Similarly, the (0,1) state has highest conductance for n-type
contacts (positive cTG). By contrast, the (-1,1) state measurement has the highest
conductance when there is simultaneous both p-type and n-type contacts (cTG13 and
cTG24 opposite sign). This is further evidence that the (-1,1) state is made up of
both p-type and n-type states.

Hall state, whose existence is supported by non-local measurements and capacitance

measurements which rule out alternative conductive electronic states in the bulk. We

also demonstrated, for the first time, that large angle twisted bilayer graphene can

support fractional quantum Hall edge states.

Some further questions follow from the completion of this work. Firstly, the

existence of fractional quantum Hall states in twisted bilayer graphene could prove

to be a potential platform for building a fractional quantum spin Hall state, which

has been predicted to host more complex non-abelian statistics [68–70]. Secondly,

our work observed interactions between integer and fractional quantum Hall edge

modes, whose Hall conductance is consistent with an interlayer tunneling mechanism.
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Since fractional quantum Hall edge modes are expected to have very weak tunnelling

behavior [89–91], the nature of these edge modes interactions remains a theoretical

curiosity and should be further investigated.
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Chapter 4

Strong Interactions in Small Angle

Twisted Bilayer Graphene

4.1 Introduction

This chapter of the thesis describes the experimental work and results on small an-

gle twisted bilayer graphene, where we observe the effects of the interplay between

interlayer hybridization between the graphene layers and the moiré potential on the

transport properties in this small angle regime.

4.1.1 Experimental Objectives

Although there have been many transport studies on the effects of the moiré potential

in van der Waals heterostructures, these experiments have mainly been confined to

graphene/hBN systems, where interlayer hybridization effects are minimal due to the

large band gap in hBN [92]. Additionally, the size of the moiré wavelengths have been

limited by the lattice mismatch between graphene and hBN, whereas this would not

be the case in small angle twisted bilayer graphene. The main questions that I aim

to address are as follow:

1) What is the combined effect of the moiré potential and strong interlayer hy-

bridizations on the magneto-transport properties on small angle twisted bilayer graphene?
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2) Are there certain twist angles that exhibit special transport behavior?

4.2 Experimental Details

The steps involved in the experimental study is similar to that outlined in Chapter

3. The key difference is the need to precisely control the twist angle between the

two graphene sheets, and this is achieved via the "tear-and-twist" method which is

outlined in Appendix B. The main idea behind this method is to partially tear a flake

of graphene, rotate it with the desired twist angle, and transfer it onto the remain-

ing portion. By using the same piece of graphene, we can ensure that both layers

of graphene in the twisted bilayer graphene have the same original crystallographic

orientation, allowing us to definitively control the twist angle. With this method, we

can control the twist angle to a precision of 0.1∘.

4.3 Initial Experimental Results

The first experimental results came as a fortuitous accident: while making many

samples of large angle twisted bilayer graphene, one of the measured samples hap-

pened to have a small twist angle. Fig. 4-1 shows the two probe-conductance trace

of this particular sample as a function of number density at zero magnetic field. The

most striking feature of the conductance trace is the marked difference in behavior

compared to monolayer graphene (shown in dashed lines), suggesting strong inter-

layer coupling effects. On closer inspection, we observe three main characteristics:

(1) prominent trace features are symmetric about the charge neutrality point, (2)

the existence of two insulating states at a density corresponding to full filling of the

superlattice cell, even though we have two graphene sheets at a high number density,

(3) prominent conductance dips near half-filling of the superlattice unit cell.
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Figure 4-1: Two-probe conductance trace of a small angle twisted bilayer graphene

sample at zero magnetic field. Dotted inset line shows the typical conductance curve

of monolayer graphene. Striking transport features are observed, including insulating

states at full filling of the superlattice cell, and conductance dips near half filling.

Figure 4-2: Two-probe magneto-conductance measurement of a small angle twisted

bilayer graphene sample. Insulating states are not observed to disperse with increas-

ing magnetic field. Multiple satellite fans are also observed to emanate from several

locations. Conductance dips near half filling of the superlattice is observed to disap-

pear at higher magnetic fields.

Fig. 4-2 shows a magneto-transport measurement of the small angle sample as a

function of number density 𝑛 and magnetic field 𝐵. We observe three main features

in this measurement: (1) the insulating states do not disperse with magnetic field,

suggesting that it is a constant density feature, (2) the appearance of multiple satellite
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Landau fans emanating from multiple number density positions, in addition to the

main central Landau fan at charge neutrality, (3) the conductance dips near half-filling

of the superlattice cell disappears at higher magnetic fields.

Figure 4-3: Derivative of the magneto-conductance measurement in Fig. 4-2, but

plotted in 1/𝐵 instead to accentuate the periodic crossings of the satellite fans. Dotted

inset lines shows the periodic crossings. Fitting the periodicity gives a twist angle of

1.1∘ in this sample.

An estimate of the twist angle was extracted from the periodic crossings of the

satellite fans. Fig. 4-3 shows the magnetotransport measurement plotted in 1
𝐵
, which

emphasizes the periodic crossings. Periodicity in 1
𝐵
suggest an inherent area in the

system (like in Shubnikov-de Haas oscillations), where the superlattice area would

be a natural area in this case. The periodicity in the fan crossings is expected to

correspond to fitting an integer number of magnetic flux quantum in each superlattice

unit cell with area 𝐴𝑆𝐿 i.e. Φ0

𝐵
= 𝑛𝐴𝑆𝐿, 𝑛 ∈ Z. Fitting the data according to this

relation yields a superlattice area of 1.4 × 10−12 cm2, which corresponds to a twist

angle of 1.1∘ and a superlattice cell density of 2.48 × 1012 cm−2, which is consistent

with our magnetotransport data.

Unfortunately, this sample was a two-probe device which meant that we could

not perform 4-probe measurements of longitudinal resistances and Hall conductances.

But the set of data obtained from this sample offered great insight to the unusual

transport properties in small angle twisted bilayer graphene, especially the insulating

76



states at the superlattice density, and possible electron-electron interactions at half-

filling. Our subsequent work on small angle twisted bilayer graphene sought to further

investigate these properties, which is covered in the following section.

4.4 Superlattice-Induced Insulating States and Valley-

Protected Orbits in Twisted Bilayer Graphene

The following section is a text reproduction from Cao, Luo et al. [93].

Twisted bilayer graphene (TwBLG) is one of the simplest van der Waals

heterostructures, yet it yields a complex electronic system with intricate

interplay between moiré physics and interlayer hybridization effects. We

report on electronic transport measurements of high mobility small angle

TwBLG devices showing clear evidence for insulating states at the su-

perlattice band edges, with thermal activation gaps several times larger

than theoretically predicted. Moreover, Shubnikov-de Haas oscillations

and tight binding calculations reveal that the band structure consists of

two intersecting Fermi contours whose crossing points are effectively unhy-

bridized. We attribute this to exponentially suppressed interlayer hopping

amplitudes for momentum transfers larger than the moiré wavevector.

The plethora of available two dimensional materials has led to great interest in

investigating novel quantum phenomena that can originate from assembling them

into van der Waals heterostructures [94]. One of the simplest such heterostructures

is twisted bilayer graphene (TwBLG), consisting of two sheets of monolayer graphene

stacked on top of each other with a relative twist angle. Despite the material simplic-

ity, an intricate interplay between moiré physics and interlayer hybridization effects

exists in TwBLG — one striking consequence is that the heterostructure can host

an insulating state even though it comprises two sheets of high quality conductors.

The intrinsic band gap is due to interlayer hybridization; this is in contrast to the

graphene/hexagonal boron nitride (h-BN) moiré heterostructure where the band gap
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at charge neutrality [47,95] arises from other mechanisms such as sublattice symmetry

breaking, strain effects, and many-body interactions [96–98]).

Due to the different orientation of the two graphene lattices in TwBLG, a periodic

modulating potential related to the resultant superlattice moiré pattern emerges.

Furthermore, the bands in both graphene layers can readily hybridize and exhibit

strong interlayer coupling [22, 25, 99–101]. The extent of the hybridization depends

critically on the relative twist angle 𝜃. For 𝜃 > 3°, the Dirac cones of the two layers

are separated far apart in momentum space, and hybridization occurs at high energies

and densities [45, 102] which are typically inaccessible in transport experiments. On

the other hand, for small 𝜃, hybridization occurs at low energies between nearby 𝐾

points of opposite layers, leading to a drastically reduced Fermi velocity which has

been confirmed by scanning tunneling microscopy experiments [43, 44,103,104].
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Figure 4-4: (a) Schematic of TwBLG and its superlattice unit cell. 𝜆SL = 𝑎
2 sin(𝜃/2)

(𝑎 is the lattice constant of graphene) is the moiré period and 𝐴SL =
√
3
2
𝜆2SL is the

unit cell area. (b) The orange and blue hexagons denote the original Brillouin zones
of graphene layer 1 and 2 respectively. In 𝑘-space, the band structure is folded into
the MBZ which is defined by the mismatch between the hexagonal Brillouin zones of
the two honeycomb lattices. (c) Illustration of the cross section of our device. (d)
Optical image of 𝜃≈1.8° device S1. The hall bar in the dashed rectangular region is
completely free of bubbles and ridges.
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In a moiré superlattice [Fig. 4-4(a)], the band structure must be reconsidered in

a mini Brillouin zone (MBZ) that corresponds to the superlattice unit cell, as shown

in Fig. 4-4(b). At low twist angles, theory suggests that the interlayer interaction

significantly distorts the band structure of TwBLG, such that the system can no

longer be described by two weakly coupled Dirac cones at low energies (which is valid

for large angle TwBLG) [80, 105]. In particular, various calculations predict that a

single-particle gap can be opened at the Γ𝑠 point of the MBZ in a specific range of

twist angles when the lowest energy superlattice bands are filled [Fig. 4-5(b)] [80,106].

This can be understood to arise from the strong interlayer coupling in small angle

TwBLG, which allows for substantial interlayer Bragg reflections off the superlattice

potential. On the other hand, a long-range periodic potential in itself is insufficient to

open a gap at the superlattice points in a graphene/h-BN heterostructure, as there is

no low-energy state in h-BN that can couple to the graphene bands [92]. Despite these

theoretical predictions for TwBLG, no experimental evidence to date directly points

to the existence of global energy gaps when the superlattice bands are completely

filled [107,108].

In this Letter, we report observations of insulating states at the superlattice band

edges in small angle TwBLG via transport measurements, where we measure thermal

activation gaps of 50 meV and 60 meV on the electron and hole sides respectively.

Additionally, in the quantum Hall regime, the eight-fold degeneracy of the Dirac

points transitions to a four-fold degeneracy near the superlattice band edge. Finally,

by comparing Shubnikov-de Haas oscillations with a tight-binding model, we deduce

that the band structure consists of two intersecting Fermi contours whose crossing

points are essentially not hybridized due to the exponentially suppressed hopping

amplitudes for momentum transfers much larger than the moiré wavevector [24, 101,

109].

We fabricated fully-encapsulated TwBLG devices with 𝜃 < 2° using a modified

dry-transfer method [86]. The samples are dual-gated for independent control of the

total charge density and interlayer potential difference [109]. A local metallic bottom

gate is used to screen the charge impurities present in the silicon oxide substrate, and
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one-dimensional edge contacts are used to contact the TwBLG [86]. A ‘tear-and-stack’

technique was also developed to enable sub-degree control of the twist angle [109,123].

We used an ab initio tight-binding model for the calculation of band structures and

related quantities [106,109].

Our samples show Hall mobilities exceeding ∼20 000 cm2 V−1 s−1 at 𝑇 = 4 K.

Fig. 4-5(a) shows the conductivity of two TwBLG samples: sample S1 with a low

twist angle (we focus on device S1 in this Letter, but data on other small angle

TwBLG devices with similar behaviors are also presented in the supplement [109])

and sample S0 with a large twist angle (> 3°). In both samples, the conductivity

minimum centered at zero density corresponds to the degenerate Dirac points in

both layers of graphene. However, for the small angle sample S1, we observe two

insulating states occurring at total carrier densities of 𝑛≈±7.5 × 1012 cm−2, which

are symmetric on both sides of the charge neutrality point.

We attribute these insulating states to the gaps occurring at the Γ𝑠 point of the

MBZ when the lowest-energy superlattice bands are fully filled. The ab initio tight-

binding calculation of the commensurate 𝜃 = 1.8° TwBLG is shown in Fig. 4-5(b).

The low-energy bands of TwBLG retain the valley polarizations of its constituent

graphene layers, i.e. valley continues to be a valid quantum label for these bands.

The bands colored in orange correspond to𝐾-valleys, while the blue bands correspond

to 𝐾 ′-valleys. Although the 𝐾 valley of one graphene layer and the 𝐾 ′ valley of the

other layer occupy the same 𝑘-points in the MBZ along the Γ𝑠—𝐾𝑠 line (purple

lines), their hybridization is suppressed because of the large momentum mismatch

in the original graphene Brillouin zone, as explained later in this Letter. Therefore,

valley still provides a 2-fold degeneracy even far away from the Dirac point, and the

total density required to fill up to the insulating gaps is equal to 4 times the MBZ

area: 2 from the valley quantum number and 2 from spin. From the deduced density

𝑛 = ±7.5 × 1012 cm−2 at the center of the insulating states, we derive the unit cell

area of the superlattice to be 𝐴SL = 4/𝑛 = 53.3 nm2, with a corresponding twist angle

of 𝜃 = 1.8°. This agrees well with our target value of 𝜃 = (2.0 ± 0.5)°.

To study thermally activated transport of the insulating states, we measured the
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Figure 4-5: (a) Comparison of the conductivity of a large angle TwBLG device S0 and
a small angle device S1. The vertical bars around 𝑛 = ±7.5 × 1012 cm−2 indicate the
insulating states in device S1. (b) Tight-binding band structure of TwBLG with 𝜃 =
1.8°. Dashed lines denote the monolayer graphene dispersion with Fermi velocity 𝑣𝐹 =
1 × 106 m s−1. The color of the bands denotes the valley polarization: 𝐾 (orange),
𝐾 ′ (navy blue), and valley-degenerate (purple). The arrows indicate the direct band
gaps at Γ𝑠. (c) Temperature dependent conductivity of device S1. (d) Arrhenius plot
of the conductivity of the insulating states [indicated by dashed lines in (c)]. Blue
and red denote the electron and hole side insulating states respectively. Thermal
activation gaps of ∼ 50 meV and ∼ 60 meV are estimated from the slope for the
electron-side and hole-side insulating states respectively.

temperature dependence of the conductivity of sample S1 [Fig. 4-5(c-d)]. The insu-

lating states’ conductivities drop by more than an order of magnitude from 300 K

to 50 K, and start to saturate below 𝑇 =50 K. An Arrhenius-like behavior is evi-

dent at higher temperatures. From the slope in the Arrhenius plot between 100 K

and 300 K, we estimate the thermal activation gaps to be ∼ 50 meV and ∼ 60 meV

for the electron-side and hole-side insulating states respectively. The deviation from

Arrhenius-like behavior at low temperatures may be attributed to a variable-range

hopping mechanism [109,111].
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Ab initio tight-binding calculation following Ref. [106] shows a gap size of 6mV

at the electron side and semi-metallic bands on the hole side, as shown in Fig. 2(b).

Other theories range from showing no gap [22, 25, 78, 101] to 𝑇 =10 meV gaps on

both electron and hole sides [80, 105]. In a departure from all these models, our

measured activation gaps are much larger than any of these predictions. Contributing

factors may include an underestimation of the interlayer interaction strength in these

calculations, but these are unlikely to account for most of the difference. Physical

effects of lattice strain, as recently proposed to explain the energy gap in monolayer

graphene/h-BN structures, may also play a significant role [96,97]. A third possibility

is an excitonic instability, as reported for Bernal bilayer graphene [112–114]. The

small single-particle gap and the 2D nature of the system make it possible for the

excitonic binding energy to be the larger energy scale.

Next, we apply a perpendicular magnetic field to the TwBLG sample. Fig. 4-6

shows the longitudinal resistivity, 𝜌𝑥𝑥, and the Hall conductivity, 𝜎𝑥𝑦, as a function of

the total density 𝑛 and the magnetic field 𝐵. In a magnetic field, the Hall conductivity

quantizes according to 𝜎𝑥𝑦 = 𝜈𝑒2/ℎ, with the filling factor 𝜈 = 𝑛𝜑0/𝐵, where 𝜑0 = ℎ/𝑒

is the flux quantum. The central Landau fan that originates from the Dirac cone near

zero density generates filling factors of 𝜈 = ±4,±12,±20, . . . . This sequence is double

that of the monolayer graphene quantum Hall sequence of 𝜈 = ±2,±6,±10, . . .,

indicating that at low energies a massless Dirac dispersion is retained despite the

strong interlayer hybridization [78,82].

However, the Landau fans originating from the insulating states differ markedly

from the massless Dirac nature of the central Landau fan. As shown in Fig. 4-6(c),

the Landau level sequence near the insulating states is 𝜈 = 0,±4,±8,±12,±16, . . .,

indicating a non-Dirac massive band [115]. The 4-fold degeneracy of this sequence is

attributed to the spin degeneracy and the Fermi contour degeneracy from the valley

quantum number near the Γ𝑠 point. The lack of a Berry phase on the other hand

indicates a parabolic band edge at the insulating states [80]. Additionally, we observe

a sign change of 𝜎𝑥𝑦 at 𝑛 ≈ +(−)3 × 1012 cm−2, indicating a transition of massless

Dirac electron-like (hole-like) carriers to massive hole-like (electron-like) carriers.
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Figure 4-6: (a) Longitudinal resistivity and (b) Hall conductivity in unit of 𝜎0 =
𝑒2/ℎ versus the total density and the magnetic field. Measurements are taken at
𝑇 = 40 mK. (c) Reconstructed Landau level structure from the plateau values. The
central Landau fan emanating from the Dirac point at zero density has an 8-fold
degenerate half-integer quantum Hall sequence, while the Landau fans originating
from the superlattice gaps have a 4-fold degenerate massive parabolic quantum Hall
sequence.

We further investigate this transition by examining the density of states 𝐷(𝐸) in

TwBLG through Shubnikov-de Haas (SdH) oscillations. By fitting the temperature-

dependence of the SdH oscillation amplitude to the Lifshitz-Kosevich formula, we

can obtain the cyclotron mass 𝑚* at the Fermi energy, which for a two-dimensional

system is proportional to the density of states per Fermi pocket at the Fermi energy,

i.e. 𝑚* = ℎ2

2𝜋
𝐷(𝐸)/𝑁 , where 𝑁 is the degeneracy. The blue data points in Fig. 4-7(a)

are the extracted cyclotron masses as a function of total density. For TwBLG, 𝑚* is

expected to peak at the van Hove singularities [115] and to approach zero at both the

Dirac point and the superlattice gaps. This is consistent with our observation that

the slope of 𝑚* vs. density changes sign, in correspondence to the sign of the charge

carrier extracted from Hall measurements. Additionally, we find that near the Dirac
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Figure 4-7: (a) Cyclotron masses and (b) oscillation frequencies extracted from SdH
measurements. The red curve is the numerically calculated cyclotron mass (normal-
ized by a factor of 0.5) and the black dashed curve is the effective mass if the interlayer
interaction is ignored. Lines colored pink, blue and green denote the expected slope
for the outer star orbit, triangular orbits and inner hexagon orbit shown in (d) and
(e). (c-e) Fermi contours at densities shown as arrows positioned below the density
axis in (b). Orange orbits are 𝐾-polarized, and blue orbits are 𝐾 ′-polarized. (f)
3-D Illustration of the low-energy band structure. The two sets of bands are valley-
polarized in the original 𝐾, 𝐾 ′ valleys of the constituent layers. For example, the
𝐾 sub-bands result from the hybridization of 𝐾(1) and 𝐾(2) Dirac cones. The same
applies for the 𝐾 ′ sub-bands.

points, 𝑚* is about 2.5 times larger than that of monolayer graphene, indicating a

similar reduction in the Fermi velocity as observed in other studies [43, 44, 103, 104].
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The experimental data agrees well with theoretically calculated 𝑚* [red curve in

Fig. 4-7(a)] up to a uniform scaling factor of 0.5 for all densities, which may be

attributed to underestimation of the band width in the ab initio calculations [116] or

to corrections to the 𝑚* term in the Lifshitz-Kosevich formula for 2D systems [117].

Further information about the band structure is obtained from analysis of SdH os-

cillation frequency at different gate voltages. Fig. 4-7(b) shows the Fourier transform

of the oscillations in 1/𝐵 at each gate voltage. The oscillation frequency provides the

area of the Fermi pocket. One expects a linear relationship between the oscillation

frequency and the total density: 𝐵𝐹 = (𝜑0/𝑁)|𝑛|. Near the Dirac point at low den-

sities, we observe a small oscillation frequency corresponding to the circular Fermi

contour as shown in Fig. 4-7(c). As we increase the density, the slope gives 𝑁 = 8,

as expected from the 2-fold layer, valley, and spin degeneracies. Near the insulating

states, we find a single oscillation frequency with 𝑁 = 4. Calculated band structures

present a Star-of-David Fermi contour, which suggests three possible electron orbits

as illustrated in Fig. 4-7(e): (1) the outer star orbit, (2) the triangular orbits, and (3)

the inner hexagon orbit. We overlaid the numerically extracted areas of these three

types of orbits on top of the experimental data in Fig. 4-7(b), and only the triangular

orbit fits with the experimental data. A similar scenario occurs for the Star-of-David

Fermi contours around the valley points of the MBZ as shown in Fig. 4-7(d). This

suggests that the crossing points of the two triangular orbits are protected [118].

The large momentum mismatch between the original graphene 𝐾 and 𝐾 ′ points

provides a natural explanation for the suppressed hybridization. The MBZ arising

from the moiré pattern folds the graphene band structures of both layers and cre-

ates degeneracies within it. The degree of hybridization at these degenerate crossings

depends on the interlayer hopping amplitude: crucially, this amplitude varies expo-

nentially with the momentum difference of the original states, with a characteristic

momentum scale of the moiré wavevector 𝑘SL [24, 25, 101, 109]. Since the 𝐾(1) and

𝐾(2) points (superscript labels the layer) are separated by a momentum less than 𝑘SL,

the Dirac cones at 𝐾(1,2) hybridize strongly, and similarly for the 𝐾 ′(1,2) pair as well.

These two pairs of hybridized Dirac cones form two time-reversed Fermi surfaces of
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opposite valley polarizations. Finally, while these two Fermi contours intersect within

the MBZ, coupling these states requires a momentum difference corresponding to the

inter-valley momentum of monolayer graphene [see Fig. 4-7(f)], which is much larger

than 𝑘SL. The exponentially small interlayer hopping amplitude at this momentum

leaves the crossings effectively unhybridized. As a result, we observe a single Fermi

surface area consistent with the pair of triangular valley polarized orbits.

In summary, we have experimentally studied the magnetotransport properties of

high-quality TwBLG samples in the low twist angle regime, where we have observed

insulating states induced by strong interlayer interactions. The larger than theo-

retically predicted gap sizes observed in the experiment indicate the possibility of

other effects beyond the superlattice modulation and interlayer hybridization, such

as strain and many-body interactions, therefore providing motivation for further the-

oretical and experimental studies in TwBLG.

4.4.1 Epilogue & Further Developments

The experiment outlined in the previous section showed the rich range of transport

behavior that arises from the interplay between interlayer hybridizations and the

moiré potential in small twist angle graphene. In particular, we observe insulating

states in multiple samples, with thermal activation gaps in the range of 50 meV. Ab-

initio calculations show that for a certain range of twist angles, a global band gap

is expected at full filling of the superlattice unit cell, which explains the existence of

insulating states at these densities. We also observe a difference in the Berry curvature

of the charge carriers around the charge neutrality point and the superlattice density,

where the former retains its half-integer Dirac quantum Hall sequence and the latter

transits to a massive, non-Dirac quantum Hall sequence.

However, a few questions remain unanswered from the completion of this work.

Firstly, the measured thermal activation gaps are several times larger than that pre-

dicted by ab-initio calculations, and the role of interactions in explaining this dis-

crepancy remains to be investigated. Secondly, the conductance dips at half-filling

of the superlattice unit cell was not fully understood at the completion of this work.
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However, further work performed by Yuan et. al. [119, 120] suggested that the twist

angle of 1.1𝑐𝑖𝑟𝑐 is extremely crucial, since this angle is of the "magic angles" where the

Fermi velocity is renormalized to zero [101], which would strongly enhance the effects

of electron-electron interactions. At this magic angle, both Mott insulator type be-

havior and intrinsic superconductivity are observed in this system, which could serve

as a possible explanation for the initially observed conductance dips.
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Appendix A

Supplementary Information for

Helical Edge State Conduction in

Twisted Bilayer Graphene

Experiment

A.1 Method Outline

All twisted bilayer graphene devices were made using a dry-transfer process [86, 87]

to create a van der Waals heterostructure consisting of hBN-graphene-graphene-hBN

layers. The devices all are dual-gated with a top and bottom gate electrode. For the

device leads which contact the dual-gated region, we used two different approaches:

graphite contacts and gate-tuned contacts. Graphite contacts provide the simplest

approach, where graphite is used as the electrode material to contact the twisted

bilayer graphene. The advantage of graphite is that it has a work function similar to

graphene, and hence does not cause strong local doping at the contact interface. As

a result, graphite can provide good contact to both electron-doped and hole-doped

graphene layers, even at high magnetic fields. Graphite contacts are used for the

device data presented in Figure 1, 2 and 3 of the main text. An alternative method is

89



to use local gate electrodes which separately gate the twisted bilayer graphene outside

the primary dual gated region. The advantage of this method is that contact resis-

tances can be controllably reduced to sub-100Îľ range, even at high magnetic fields,

but can only be used to contact well either electron-doped or hole-doped graphene.

A summary of the typical fabrication steps are as follows:

1. Hexagonal boron nitride and graphene flakes are exfoliated on Si/SiO2 chips

which have been pre-cleaned first in a Pirahna solution, followed by a hydrofluoric

acid bath. Graphene flakes are then identified by optical microscopy and checked for

cleanliness with an atomic force microscope (AFM).

2. Flakes are picked up and transferred using a transparent polymer stamp made

from either polypropylene carbonate (PPC) or polycarbonate (PC). The top hBN

crystal is picked up first using the stamp, and then subsequently the hBN is used to

pick up two graphene flakes (via strong interlayer van der Waals forces) and then the

bottom hBN. The graphene flakes are rotated so that natural edges are mis-aligned

to avoid producing a low twist angle sample. For graphite contacts, a layer of thin

graphite (<20nm thick) is also picked up that overlaps with the graphene layers to

provide electrical contact.

3. The complete stack consisting from top to bottom of hBN-graphene-graphene-

hBN is then transferred onto a bottom gate electrode made of either graphite or a

thin layer of Pd/Au 40:60 alloy ( 20nm). The device discussed in the main text is

made on a graphite bottom gate. The stack is then measured in an AFM to check

for regions free of bubbles and ripples in the stack. To increase flatness, the stack is

also either heat cleaned in forming gas (Ar:H2) or in vacuum at high temperatures of

550 degrees Celsius for 30mins to redistribute trapped residue between the flakes.

4. An isolated top gate electrode is made using ebeam lithography and evaporating

Cr:Au (1nm:30-50nm). The device geometry is then defined using reactive ion etching

in a gas mixture of CHF3:O2:Ar, where the metal topgate and additional PMMA is

used as an etch mask.

5. A bridge contact is made to the metal topgate by depositing cross-linked

PMMA and then Cr:Au. The cross-linked PMMA avoids shorting to the exposed
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graphene at the edges of the device.

6. Final edge contacts are made to the device by an additional reactive ion etch

step and then subsequently evaporating Cr:Au contacts using the same PMMA mask.

A rotation stage set at a 15 degree angle is used during the evaporation to make sure

the metal properly coats the sidewalls of the device to ensure good 1d edge contact.

A.2 Contact Resistance Subtraction

A 2-probe measurement of quantum Hall edge states will include an extra resistance

from the electrodes leading up to the measurement area of the device. We correct for

this contact resistance by extracting the resistance offset of a conductance plateau

from its expected quantized value, for example, by fitting the 𝜈 = −1 plateau to 𝑒2

ℎ
.

We then take this contact resistance and subtract it from the entire measurement.

The procedure is considered valid if a single contact resistance subtraction causes all

other conductance plateaus to match an integer multiple of 𝑒2

ℎ
(see for example the

data in panel (d) of Figure 3-1). We find that the contact resistance does change

for positive and negative values of 𝜈𝑡𝑜𝑡, due to the formation of pn junctions at the

electrode-graphene interface (more discussion below). As such, we perform separate

contact resistance corrections for the negative and positive sides of a 𝜈𝑡𝑜𝑡 sweep (this is

the case for the data in panel (e) of Figure 3-1 and panel (d) of Figure 3-2 in section

3.4). At 4T, the device discussed in Figures 3-1-3-3 in section 3.4 has a contact

resistance of 0.6 kΩ for negative 𝜈𝑡𝑜𝑡 and 2.0 kΩ for positive 𝜈𝑡𝑜𝑡tot. Since the contact

resistance effects for the helical (±1,∓1) are currently unknown, the measurement

for the electron-hole bilayer configurations in panels (b) & (c) of Figure 3-2 in section

3.4 are presented in the raw uncorrected form.

91



A.3 Additional measurements of filling factor tran-

sitions

Figure A-1: 4-probe resistance maps show filling factor transitions. Data is for sample
W presented in Fig. 3-1- 3-3 of section 3.4. Measurement is performed in two con-
figurations (B) and (C), with the transitions matching the expected state sequence
described in panel (e) of Fig 3-2 of section 3.4 (reproduced here) and matches the
plateau transitions observed in the 2-probe conductance data. Measurement is at B
= 4T.
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A.4 Capacitance Measurements

Figure A-2: Capacitance measurement on a twisted bilayer graphene device showing
bulk state transitions (Sample O). Measurement signal is proportional to the device
capacitance from the graphene bilayer to both gate electrodes. Low signal (black)
corresponds to gapped/insulating states. High signal (orange) corresponds to high
density of states/conductive states. Sequence of transitions matches 2-probe data
and model presented in panels (d) and (e) of Figure 3-2 in section 3.4. Measurement
is at 𝐵 = 18T.
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A.5 Temperature Dependence Measurements

Figure A-3: Comparison of transport measurements at base (0.3 K) and elevated
temperatures (4 K). Data is for sample W presented in Figures 3-1-3-3 of section 3.4.
Columns from left to right correspond to 0.3 K and 4.0 K temperatures, respectively.
Rows from top to bottom are the 2-probe conductance, nonlocal resistance, and local
4-probe resistance. Temperature causes a smooth broadening of all transport features.
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Figure A-4: Temperature dependence of the (+2,-2) insulating state at 4 T and 8
T shows an activated dependence, suggesting a full hybridization gap at the sample
edge between the counter-propagating edge states. Data is for Sample W presented
in Figures 3-1-3-3 of section 3.4. (A) 2-probe resistance as a function of inverse
temperature for (+2,-2) state at 4 T and 8 T. Lines show fit to activated temperature

dependence 𝑅 ∼ 𝑅0𝑒
Δ

2𝑘𝐵𝑇 . (B) Extracted activated gaps as a function of displacement
field.

The (±2,∓2) states are characterized by deep insulating behavior that increases

with magnetic field. Figure A-4 shows the temperature dependence of the resistance

in the (+2,-2) state at different electric and magnetic fields. The resistance shows

an activated temperature dependence: 𝑅 𝑅0𝑒
Δ

2𝑘𝐵𝑇 . The extracted activated gap in-

creases with increased magnetic field (panel (b) of Figure A-4). The observation of

thermally activated behavior suggests that a hybridization gap is developing between

the counter-propagating (±2,∓2) edge states originating from interlayer tunneling at

the edge.
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Figure A-5: Temperature and bias dependence of helical states. Data is for sample
W presented in Figures 3-1-3-3 of section 3.4. (A) Conductance as a function of total
filling factor at different temperatures (0.3 K to 10 K) and magnetic fields. (+1,-1)
state is centered at total filling factor zero. (B) Conductance of the (+1,-1) state as
a function of temperature. Data is taken from points intersecting the vertical dotted
line in the top datasets. The conductance through the helical edge states increases
with higher magnetic fields and lower temperatures. (C) DC voltage bias dependence
of differential conductance for different filling factor configurations. All measurements
show a flat bias dependence except the helical (+1,-1) state, which shows an overall
decrease in differential conductance with increasing voltage bias.

96



A.6 (+1,-1) Measurements in Different Devices

Figure A-6: Raw conductance of the 𝜈𝑡𝑜𝑡 = 0 line for different devices showing conduc-
tive (±1,∓1) states (no contact resistance correction). Conductance, 𝐺, is plotted as
a function of the displacement field divided by the magnetic field, since the displace-
ment value for the transitions scales roughly linearly with magnetic field. Conduc-
tance at 𝜈𝑡𝑜𝑡 = 0 (black lines) is compared to the conductance at 𝜈𝑡𝑜𝑡 = −1 (red lines)
and 𝜈𝑡𝑜𝑡 = +1 (yellow lines). The observed states are given by the filling factor con-
figurations in the top left corner. Cartoons depict outline of sample geometry, with
edge lengths given in units of microns. Data for section 3.4 came from sample W.
Note that the conductance of the 𝜈𝑡𝑜𝑡 = +1 states (yellow lines) is consistently smaller
than the 𝜈𝑡𝑜𝑡 = −1 states (red lines) due to asymmetry in the contact resistances for
negative and positive 𝜈𝑡𝑜𝑡.
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A.7 4-probe Resistance Measurements of Helical Edge

States

If backscattering is possible between the helical edge states and spatially homoge-

neous, then we expect that the edge resistance will scale linearly with the edge length.

In this case, it follows straightforwardly that the 4-probe resistance measurement will

depend on the edge lengths as 𝑅4𝑝𝑟𝑜𝑏𝑒 ∝ 𝐿𝑆𝐷𝐿𝑉 /
∑︀
𝐿𝑖, where 𝐿𝑆𝐷 and 𝐿𝑉 are the

edge lengths between the source-drain electrodes and voltage probes, respectively, and∑︀
𝐿𝑖 is the sum of the edge lengths between contacts. In this situation of diffusive

edge conductance, we would expect that the 𝑅𝑥𝑥 measurement discussed in section

3.4 would be 15.2 times greater than the 𝑅𝑁𝐿 measurement, which is very close to the

measured ratio at 𝐵 = 1.5T. But, as the magnetic field increases, the measurements

converge, indicating a length-independent edge resistance.

In the absence of backscattering, a pair of helical edge states will act a ballistic 1d

wire running along the edge of the sample. As is typical for 1d conductors, invasive

contacts can interrupt the edge state by causing equilibration between the forward and

backward moving modes. In this case, each edge segment between contacts will have

a length-independent resistance of ℎ/𝑒2. In a device with 4 contacts, a longitudinal

resistance measurement (such as the 𝑅𝑁𝐿 and 𝑅𝑥𝑥 configuration discussed in section

3.4) will give a value of ℎ/(4𝑒2) since 1/4 of the current flows through the quantum

resistor between the two voltage probes. This is the value that the 𝑅𝑥𝑥 and 𝑅𝑁𝐿

measurements converge to with increasing magnetic field (panel (e) of Figure 3-3).
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A.8 Low Magnetic Field Measurements

Figure A-7: Onset of helical edge states at low magnetic fields. Data is for sample W
presented in Figures 3-1-3-3 of section 3.4. Color plots show the low magnetic field
development of the nonlocal resistance (top) and the 2-probe conductance (bottom),
as a function of displacement field and total filling factor. At 𝐵 = 1.5T, distinct
nonlocal features can be seen (±1,∓1). At the same magnetic field, clearly defined
plateaus in conductance can be seen originating from the (±2,∓2), (0,∓2), (±1, 0)
states. The data indicates well developed broken symmetry states and helical edge
states at this low magnetic field.
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Figure A-8: Magnetoresistance at low magnetic fields consisting of 4-probe longitu-
dinal resistance measurements for device W discussed in Figures 3-1-3-3. 𝑅𝑥𝑥 peaks
show Landau level crossing structure characteristic of twisted bilayer graphene de-
vices [82]. The well-developed 𝑅𝑥𝑥 minima at such low magnetic fields highlight the
high quality of this device.
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Figure A-9: 4-probe resistance at zero magnetic field as a function of total density

and displacement field. At zero magnetic field, interlayer displacement field causes the

charge-neutrality point resistance to decrease. The resistance at the charge neutrality

point steadily decreases with displacement field [82]. This behavior is in contrast to

AB-bilayer graphene, where the effect of a displacement field is to open up a bandgap

at the Dirac point [121], leading to a diverging resistance [122]. The measurement is

performed at 0.3 K.

101



THIS PAGE INTENTIONALLY LEFT BLANK

102



Appendix B

Supplementary Information for

Superlattice-Induced Insulating

States and Valley-Protected Orbits in

Twisted Bilayer Graphene

B.1 Sample Fabrication

Our samples are prepared with a modified dry-transfer method, and a ‘tear & stack’

technique is used to control the twist angle in twisted bilayer graphene (TwBLG).

Monolayer graphene flakes and hexagonal boron nitride (h-BN) flakes are first exfo-

liated on Si chips with 285 nm of SiO2. The exfoliated chips are examined under a

Zeiss optical microscope and the positions of monolayer graphene flakes larger than

30µm in one dimension and h-BN flakes with thickness between 10∼40 nm and larger

than 50µm are recorded. Graphene flakes with relatively large length/width ratio are

preferred because it facilitates the tearing process.

Using a home-built micro-manipulation stage, we first pick up a piece of h-BN

with a PC [Poly (Bisphenol-A Carbonate)] / PDMS (Polydimethylsiloxane) stack on

a glass slide at 90 ∘C. We then bring the h-BN into contact with only one half of
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Figure B-1: Illustration of the "tear-and-stack" method.

a target graphene flake. The van der Waals force pins one half of the graphene to

the h-BN flake, while the substrate holds onto the other half. Lifting up the van

der Waals-bonded half forces the graphene to tear at the edge of the hBN. When the

graphene is successfully separated, we rotate the chip bearing the remaining graphene

by angle 𝜃. The remaining graphene is picked up whilst maintaining the orientation,

overlapping part of the first half that is already in contact with the h-BN. At this

point, the twist angle is set by the angle 𝜃. Finally we pick up an h-BN flake as

the bottom layer and release the entire stack onto a metal gate. An example of the

resulting stack is shown in Fig. B-2. A similar method is independently developed in

Ref. [123].
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Figure B-2: A TwBLG stack on a metallic back gate.

After the stack is made, we first characterize it with atomic force microscopy

(AFM) to find bubble-free regions and Raman spectroscopy to qualify the twist angle.

We then use electron-beam lithography (EBL) and reactive ion etching (RIE) to

fabricate the top gate, edge-contact the TwBLG, and define the geometry of the

sample. First, we use EBL on a 950A5 PMMA mask to define the top gate. 30∼40 nm

of Au or Pd/Au is evaporated and lifted off as the top gate. Then, we write a second

PMMA mask as an etch mask with EBL. An Ar/CHF3/O2 etching recipe is used to

define the Hall bar geometry of the device. Finally, we write a third PMMA mask

to define the geometry of the electrode leads. The device is first RIE-etched with

this mask to expose the edges of the TwBLG, and metal (Au or Pd/Au) is then

immediately evaporated and lifted off using the same mask. The contact resistance

of these edge contacts is usually a few hundred ohms (a few kilo-ohms in the worst

case).

We use the Elionix F-125 EBL system with 125 kV acceleration voltage in Mi-

crosystems Technology Laboratories (MTL) at MIT and STS ICP RIE (RIE-8) at

Center for Nanoscale Systems (CNS), Harvard University.
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B.2 Device Characterization

B.2.1 Atomic Force Microscopy (AFM)

We use AFM to characterize the flatness of the device. After dry-transferring and

removing the PC from the sample, we scan the top surface of the device with tapping

mode AFM to find regions that are free of bubbles and wrinkles. Fig. B-3(a) shows

the AFM image of device S1 before patterning into a Hall bar. It can be seen that

the Hall bar is atomically flat despite the bubbles in other regions of the device.

Figure B-3: (a) AFM image of device S1. The light blue dashed lines outline the

device region that was fabricated into a Hall bar, which is free of bubbles and wrin-

kles. The length/width of the Hall bar region is 2.5 µm/1.5 µm. (b) 2D peak of the

Raman spectrum of AB bilayer graphene, a TwBLG with small twist, and monolayer

graphene.
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B.2.2 Raman Spectrum

It is reported in Ref. [124] that the Raman spectrum of TwBLG is sensitive to its twist

angle, especially the 2D peak centered around 2680 cm−1. We use the shape of the

2D peak to qualitatively differentiate between large twist angle and small twist angle

TwBLG. Fig. B-3(b) shows the 2D Raman peak of AB bilayer graphene, a small twist

TwBLG, and monolayer graphene. Small twist TwBLG has a 2D peak that is much

broader than the monolayer peak and usually has an additional shoulder. On the

other hand, large twist TwBLG has a spectrum very similar to monolayer graphene

due to the decoupled Dirac cones for its low energy band structure. Currently we

do not have enough calibration and data resolution to precisely determine the twist

angle of a particular sample, and this method serves more of a qualitative purpose.

B.3 Theoretical Calculations

B.3.1 Band Structure

S.F. and E.K. performed ab initio tight-binding calculations of the 𝜃 = 1.79° commen-

surate TwBLG structure. In this calculation, a Wannier transformation is performed

based on the density functional theory calculation with the exchange-correlation func-

tional of Perdew, Burke, and Ernzerhof (PBE) type [125]. The tight-binding hopping

parameters are extracted between 𝑝𝑧 orbitals in the bilayer graphene and generalized

to generic graphene stacks with arbitrary translations and twist angles. The form

of the interlayer hoppings depends on both the interlayer pair distance and orienta-

tion with respect to their underlying monolayer crystals. The ab initio tight-binding

Hamiltonian in our calculations has intralayer hopping terms up to eight nearest

neighbors, and interlayer coupling terms with planar cutoff distance of 4.9 Å. See

Ref. [106] for more details.
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B.3.2 Valley Polarization

The valley polarization of the eigenstates, as shown in section 4.4 Fig. 4-5 and panels

(c)-(f) of Fig. 4-7, are evaluated by projecting the eigenstates onto the plane wave

basis in each layer.

In the superlattice with unit cell vectors �⃗�1 and �⃗�2, a Bloch state 𝜓⃗̃
𝑘
with momen-

tum ⃗̃𝑘 satisfies the Bloch equation 𝑇 (⃗𝑏𝑖)𝜓⃗̃
𝑘

= 𝑒−𝑖
⃗̃
𝑘·⃗𝑏𝑖𝜓⃗̃

𝑘
under translation operators 𝑇

for the superlattice. However, 𝜓⃗̃
𝑘
can be further decomposed under the group repre-

sentations for the translation operators of the smaller original unit cells. 𝜓⃗̃
𝑘

=
∑︀

�⃗� 𝜑
⃗̃
𝑘
�⃗�

where �⃗� is the superlattice reciprocal lattice vector and 𝑇 (�⃗�𝑖)𝜑
⃗̃
𝑘
�⃗�

= 𝑒−𝑖(
⃗̃
𝑘+�⃗�)·�⃗�𝑖𝜑

⃗̃
𝑘
�⃗�
,

where �⃗�𝑖 are unit cell vectors of either graphene layer. The 𝜑
⃗̃
𝑘
�⃗�
is the projected Bloch

component at momentum ⃗̃𝑘 + �⃗� in the monolayer Brillouin zone. To project out the

Bloch wavefunction characters, we compute the norm |𝜑
⃗̃
𝑘
�⃗�
| ∼ |

∑︀
�⃗�𝑖
𝑒−𝑖(

⃗̃
𝑘+�⃗�)·�⃗�𝑖𝜓⃗̃

𝑘
(�⃗�𝑖)|

for the relevant ⃗̃𝑘 and bands 𝜓⃗̃
𝑘
(�⃗�𝑖). �⃗�𝑖 are the positions for basis sites in either layer

of the superlattice. The results show dominant components for ⃗̃𝑘 + �⃗� in only one of

the valleys, either 𝐾 or 𝐾 ′ of the monolayer Brillouin zone. Because of the existence

of a tiny intervalley hopping probability, the valley polarization is not 100 %, but the

probability of being in one valley is always more than 1 order of magnitude larger

than being in the other valley for the 𝜃 = 1.79° superlattice.
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B.3.3 Angular Dependence
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Figure B-4: (a-c) Band structure calculations for 𝜃 = 1.29°, 1.12° and 0.71°. (d)
The global energy gap and the Fermi velocity obtained from the band structures of
different twist angles. (e) The intervalley overlap matrix element for different twist
angles.

It is shown in various literature and our calculation that the Fermi velocity in a

TwBLG does not drop monotonically with decreasing twist angle. It actually reaches

zero at a non-zero twist angle 𝜃0, which varies from 1.0∼1.5° in literature [101, 105].

Below this angle, the topology of the low-energy bands changes qualitatively and the

Fermi velocity increases again.

The size of the superlattice gap at Γ𝑠 is also non-monotonic with the twist angle.

Above 𝜃0, the gap size generally increase with decreasing twist angle. At extremely

low twist angles below 𝜃0 however, the gap vanishes again. Fig. B-4 shows the band
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structure calculated for 𝜃 = 1.29°, 1.12° and 0.71° with an ab initio tight-binding

model. The critical angle 𝜃0 is 1.1° from the calculation, and the gap vanishes at

about 0.84°.

We can also calculate the overlap matrix element of the interlayer coupling between

eigenstates from opposite valleys for different twist angles. The result is shown in

panel (e) of Fig. B-4. As expected, the matrix element drops quickly as the twist

angle decreases due to the decreased magnitude of the MBZ reciprocal lattice vector.

Therefore for twist angles< 5°the interlayer coupling do not mix the valleys effectively.
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B.3.4 Electric Field Effect

(a) E=0 meV
(b) E=5 meV

(c) E=22 meV
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Figure B-5: (a-d) Fermi contours of a 𝜃 = 1.8° TwBLG with interlayer potential
difference ∆𝑉 = 0.1 eV at four different energies labeled in (e) the 3D plot of the
band structure. Orange contours are 𝐾-polarized and blue contours are 𝐾 ′-polarized.
In (a), each Fermi pocket is actually doubly degenerate. In (b), at each corner of the
MBZ one of the Dirac cones has retracted to a single point.

By introducing a diagonal interlayer potential, we can simulate the effect of an

electric field on the TwBLG. Fig. B-5 shows the calculated band structure and Fermi

contours of a 𝜃 = 1.79° TwBLG with ∆𝑉 = 0.1 eV potential difference between

the two layers. The valley polarization arguments are still valid with the potential

difference. Because of ∆𝑉 , the Dirac cones at 𝐾(1) and 𝐾 ′(1) are separated from the

cones at 𝐾(2) and 𝐾 ′(2) in energy. However the separation is much less than ∆𝑉

for small angle TwBLG, an effect which is discussed in Ref. [126] and attributed to

interlayer band mixing at the Dirac points. At finite energies where the bands are still

approximately Dirac-like [panels (b) & (c) of Fig. B-5], we observe Fermi contours

with different sizes due to the energy separation. However at higher energies near the

superlattice band edge [panel (d) of Fig. B-5], the areas of the two Fermi contours

remain identical. Therefore an electric field does not lift the degeneracy near the band
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edge. The experimental observation of this effect is discussed later in this appendix.

B.4 Insulating States/Conductance Minima

Figure B-6: The conductance 𝐺 of device (a) S2 with 𝜃 = 1.1° and (b) S3 with 𝜃 = 2°.

Red arrows indicate the Dirac points. Blue arrows indicate the insulating states in

S2 and the conductance minimum in S3.

We have observed insulating states/conductance minima associated with filled super-

lattice bands in three different samples. Apart from the 𝜃 = 1.8° device S1 extensively

discussed in the main text, devices S2 with 𝜃 = 1.1° clearly shows a pair of insulating

states and S3 with 𝜃 ≈ 2° show a similar conductance minimum which is more insu-

lating that the Dirac point. Their conductance as a function of gate voltage is shown
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in Fig. B-6.

At zero magnetic field, while the resistance of device S1 reaches a maximum of

250 kΩ, the resistance of device S2 and S3 it reaches 10 MΩ and 5 kΩ respectively.

The relative low resistance of S3 can be attributed to its higher twist angle and

thus closing of the gap. The trend of increasing resistance for the superlattice gap

states with decreasing twist angles agrees with the trend of increasing gap size with

decreasing twist angle in this range (panel (e) of Fig. 4-7).

B.5 Temperature Dependence
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Figure B-7: Temperature dependence of the insulating states in device S1, from 10 K

to 300 K.

The saturation of the conductivity of the insulating states at low temperatures indi-

cates an alternative conduction mechanism to thermal activation, such as variable-

range hopping (VRH). Assuming the VRH to be of Mott-type [111], we would expect

the low temperature conductivity to be proportional to exp
[︀
−(𝑇0/𝑇 )1/3

]︀
. Therefore

we fit the conductivity in the entire temperature range with a double exponential of
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the form

𝜎 = 𝐴𝑒−
Δ

2𝑘𝑇 +𝐵𝑒−(𝑇0
𝑇 )

1/3

. (B.1)

This is shown in Fig. B-7. The parameters are fitted to be

Hole side: ∆− = (50 ± 3) meV, 𝑇0− = 18 K (B.2)

Electron side: ∆+ = (60 ± 4) meV, 𝑇0+ = 86 K. (B.3)

. The uncertainty correspond to 2 standard errors in the value of ∆ obtained from

the least-squares fitting procedure. The good fit with Eq.(B.1) shows the viability

of the Mott VRH mechanism. However we cannot rule out the possibilities of other

possible VRH mechanisms at low temperatures, such as Efros-Shklovskii VRH which

has 𝑇−1/2 instead in the exponent.
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B.6 Electric Field Dependence

We have studied the effect of applying a differential gate voltage to our TwBLG

sample with 𝜃 = 1.8°. By adding a perpendicular electric field 𝐸 to the TwBLG, we

can tune the interlayer potential difference which effectively sets the relative energy

difference between the original Dirac cones of the two layers.
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Figure B-8: (a) The resistivity of device S1 as a function of both top and bottom
gate voltages at zero magnetic field. The upper peak in resistivity corresponds to
the Dirac point, which occurs at 𝑛 = 0. The lower peak corresponds to the hole side
insulating state. Dashed lines correspond to zero electric field 𝐸 = 0 and zero density
𝑛 = 0. The double charge neutrality point (DCNP) where 𝑛 = 𝐸 = 0 is marked with
a white dot. (b) The resistivity along the 𝑛 = 0 line in (a).

Fig. B-8 shows the resistivity of device S1 versus the top gate voltage 𝑉tg and

back gate voltage 𝑉bg. The double charge neutrality point (DCNP) is where the

carrier densities on both graphene layers are independently equal to zero. By applying

a differential gate voltage from the DCNP, it remains at the total carrier density

𝑛 = 𝑛𝑡 + 𝑛𝑏 = 0 but with 𝑛𝑡 = −𝑛𝑏 ̸= 0. In this case we observed a moderate

decrease in resistivity at higher interlayer electric field 𝐸, in contrast to AB bilayer

graphene where the resistivity increases with increasing 𝐸 [127–129]. This effect

can be understood assuming the low energy band structure to be two Dirac cones
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which has a tunable energy difference by the interlayer electric field (see Fig. B-5).

When 𝐸 ̸= 0, the minimum DOS does not drop to zero at charge neutrality point as

opposed to two degenerate Dirac cones when 𝐸 = 0, therefore reducing the maximal

resistivity.
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Figure B-9: Electrical field dependence of the Landau levels. The black dashed line

indicates the line along which the main text Fig. 3 was measured. The conversion

from gate voltages to 𝑛 and 𝐸 is given by 𝑛 = 0.54𝑉tg + 0.49𝑉bg−2.6, 𝐸 = 0.070𝑉tg−

0.056𝑉bg − 0.047, where 𝑛 is in unit of 1012cm−2 and 𝑉bg,tg are in volts. 𝐸 is in an

arbitrary unit.

An electric field may induce Landau level crossings of the two graphene layers in

a magnetic field [82]. Fig. B-9 shows the resistivity maps at different magnetic fields.

The gate voltages are converted to total carrier density 𝑛 and interlayer electric field

𝐸. We see that compared with 𝐸 = 0 line, at large enough 𝐸 the quantum Hall
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sequence shifts from ±4,±12,±20, . . . to 0,±8,±16, . . .. This sequence is indicative

of different filling factors in the two layers when an electric field is present. For

example, 𝜈tot = 0 results from 𝜈bot = −2 and 𝜈top = 2; 𝜈tot = 8 results from 𝜈bot = 2

and 𝜈top = 6, etc.

In the magnetotransport study in the main text, we swept the gate voltages along

the dashed line shown in Fig. B-9(a) at each magnetic field. We do not scan along a

constant 𝐸 line due to limitations in the gate voltage; thus a small amount of electric

field is present at all points in the sweep. As a result in the Landau fan diagram (main

text Fig. 3) we see faint traces of ±8,±16 plateaus near the Dirac point. However

near the insulating states the features are not strongly dependent on 𝐸 in contrast to

states near the Dirac point (e.g. no Landau level crossings), which is consistent with

theoretical calculations (see Fig. B-5). Therefore, the massive non-Dirac quantum

Hall sequence discussed in this Letter remains valid.
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B.7 Extraction of Cyclotron Mass
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Figure B-10: (a-c) Examples of filtered SdH oscillations. From black to orange the
temperature increases from 0.3 K to 40 K. (d) Fit of the temperature dependence of
the normalized oscillation amplitudes of (a-c) to the Lifshitz-Kosevich formula.

We performed magnetotransport measurements from 0.3 K to 40 K. The SdH

oscillation at each gate voltage is extracted and filtered, where high frequency noise

and a polynomial background are removed. Temperature dependence of the most

prominent peak is fitted with the Lifshitz-Kosevich formula

∆𝜌𝑥𝑥 = 𝜌0
𝜒

sinh(𝜒)
, 𝜒 =

2𝜋2𝑘𝑇𝑚*

~𝑒𝐵
, (B.4)

and the cyclotron mass 𝑚* is extracted from the fitting. Examples of the SdH oscil-

lations and their temperature dependences are shown in Fig. B-10.
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B.8 Phase Shift of Landau Fan Diagram
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Figure B-11: (a) Longitudinal resistivity (background removed) and (b) Hall conduc-
tivity of device S1, zoomed in near the electron side insulating state. In (a), each 𝜌𝑥𝑥
minimum that corresponds to a fully filled Landau level (dashed lines) transitions to
a maximum at high field 𝐵 > 5 T. Light blue lines are part of the main Landau fan
and the red lines are part of the secondary Landau fan on the electron side.

In addition to the magnetotransport features that are discussed in the main text,

we report an additional phase shift of 𝜌𝑥𝑥 minima/maxima observed near the electron

side insulating state. This effect become obvious only after polynomial background is

removed from the raw data, and is shown in Fig. B-11. At lower fields 𝐵 < 5 T, the

minima of 𝜌𝑥𝑥 follow straight lines 𝐵 = (𝑛 − 𝑛0+)𝜑0/𝜈, where 𝑛0+ is the density at

which the electron side insulating state occurs and 𝜈 = −4,−8,−12, . . . are the filling

factors. Above approximately 5 T, however, we observe a transition from 𝜌𝑥𝑥 minima

to maxima and vice versa for each Landau level emanating from the insulating state.
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This transition does not appear to manifest itself in the Hall conductivity map 𝜎𝑥𝑦.

This phenomenon is observed in only one device S1 so far and currently lacks a

well-developed understanding. In a recent paper Ref. [130] a similar shift is observed

in TwBLG but at the main Landau fan of the Dirac point. A proposed explanation

is that the Landau levels from the main Landau fan can interfere with each level in

the secondary Landau fan and switch the polarity of its induced change in 𝜌𝑥𝑥 due to

many-body interactions. This effect may be significant only for small filling factors

of the main Landau fan, i.e. only at relatively high fields where Landau levels with

small filling factors intersect with the secondary fan.
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