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Abstract

A thermodynamically consistent constitutive model for fluid-saturated sediments, spanning
dense to dilute regimes is developed from the integral form of the basic balance laws for
two-phase mixtures. This model is formulated to capture the (i) viscous inertial rheology
of wet grains under steady shear, (ii) the critical state behavior of granular materials under
shear, (iii) the viscous thickening of fluid due to the presence of suspended grains, and (iv) the
Darcy-like drag interaction for both dense and dilute mixtures. The full constitutive model is
combined with the basic equations of motion for each mixture phase and implemented in the
material point method (MPM) to accurately model the coupled dynamics of the combined
system. Qualitative results show the breadth of problems, which this model can address.
Quantitative results demonstrate the accuracy of this model as compared with analytical
models and experimental observations.
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Chapter 1

Introduction

Mixtures of fluids and sediments play an important role in many industrial and geotechni-
cal engineering problems, from transporting large volumes of industrial wastes to building
earthen levees and damns. To solve these problems, engineers have traditionally relied on
the myriad of empirical models developed in the last century.

These empirical models are derived by coupling relevant experimental observations to
an understanding of the underlying physics governing the behavior of these mixtures. The
model reported in Einstein [1906] describes the viscous thickening of fluids due to dilute
suspensions of grains. The Darcy-like drag law given in Carman 119371 describes the pressure
drop in a fluid as it flows through a bed of densely packed grains. The work by Turian and
Yuan [1977] characterizes the flow of slurries in pipelines. Other models (such as in Pailha
and Pouliquen [2009]) describe more complex problems (such as the initiation of submerged
granular avalanches); however, each of these models can only provide a description of a
specific regime of mixture and flows.

To address an engineering problem which involves complex interactions of fluids and sed-
iments spanning many flow regimes requires a more general modeling approach. A natural
first step is to model the underlying physics directly by solving the coupled fluid grain inter-
actions at the micro-scale (as in the coupled lattice Boltzman and discrete element method,
LBM-DEM, proposed in Cook et al. [2004]). Many problems of interest, however, involve far
too much material for a direct approach to be computationally viable. We therefore turn to
a continuum modeling approach, where the small scale structures and physics are homoge-
nized into bulk properties and behaviors. Recent work simulating fluid-sediment mixtures
as continua (see Soga et al. [2015]) has shown promise, but the reported results are highly
sensitive to the choice of sediment constitutive model (see Ceccato and Simonini [2016] and
Fern and Soga [20161); no existing dry granular plasticity models will correctly predict the
behavior of saturated soils.

In this work, we begin with the integral form of the basic balance laws for two-phase
mixture and carefully formulate a new set of constitutive rules governing the fluid and sed-
inent phases of the continuum mixture. Using these rules, we construct a model which
recovers the correct limiting empirical behaviors (i.e. dry and viscous granular inertial rhe-
ologies, viscous thickening due to suspended grains, Stokes and Carman-Kozeny drags, and

15



Reynolds dilation) and smoothly transitions between flow regimes covering the range from
dense slurry-like flow to dilute suspensions. We discretize the weak form of the governing
equations of motion using MPM and validate this implementation against several dynamic
experiments involving submerged glass beads. We also consider the application of our model
to the problems of slope collapses and intrusion.
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Chapter 2

Theory and Formulation

Here we lay out the theoretical framework for the two-phase mixture model. In the formula-
tion of this theory, we use the standard notation of continuum mechanics from Gurtin et al.
[20101. In particular, the trace of the tensor A is given by tr A and the transpose by AT.
Every tensor admits the unique decomposition into a deviatoric part AO and spherical part
by A = AO + -1 tr(A)1 with 1 the identity tensor.

2.1 Mixture Theory

To develop the model we start by considering a mixture of grains and fluid. We assume
that the grains are rough (i.e. true contact can occur between grains), incompressible with
density ps, and essentially spherical with diameter d. We also assume that the grains are fully
immersed in a barotropic viscofluid with local density pf and viscosity rj. A representative
volume of material, , can therefore be decomposed into a solid volume, Q5, and a fluid
volume, Qf, such that Q = Q, U Qf.

Figure 2-1 shows how this volume is decomposed and the important step of homogenizing
the solid volume and fluid volume into two, overlapping continua. In the analysis that follows,

b will refer to some field 4 defined on the solid phase, and of will refer to some field 4
defined on the fluid phase. If no subscript is given, then that field is defined on the mixture
as a whole.

After defining the effective or homogenized fields, we derive the equations of motion
through conservation of mass and momentum. This analysis is essentially identical to that
of Bandara and Soga [2015], but explicating it fully here allows us to better present our novel
constitutive model and numerical framework.

2.1.1 Homogenization of Phases

The effective densities -p, and pf, and phase velocities v, and vf of the mixture are defined
such that conservation of mass and momentum in the continuum correspond to conservation
of mass and momentum in the real mixture. For this, we consider a representative volume of

17
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aflf

ft

Figure 2-1: Pictorial description of the representative volume Q and boundary iQ, the
decomposition of the domain into fluid and solid volumes, and the homogenization of the
two phases.

material, , that contains a large number of individual grains. For the continuum approxi-
mation to be valid, large is defined such that grain-scale phenomena are smoothed out and
bulk behavior is captured.

j758 dv = psdv

(2.1)

We now introduce the concept of the local packing fraction and the local porosity. The
packing fraction, #, is defined as the ratio of volume of solid grains to volume of mixture.
The porosity, n, is defined as the ratio of the volume of the fluid to the volume of mixture.

fq dv

= fdv

f_, dv

fu dv

18
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As a consequence of this definition, evaluation of Equation (2.1) over a small represen-
tative volume (where small is defined such that changes in the local fields are negligible)
leads to three important results. First, the packing fraction and porosity can be calculated
from one another (their sum must be one). Second, the effective solid density is equal to the
density of the grains scaled by the packing fraction. And third, the effective fluid density is
equal to the local fluid density scaled by the porosity.

1- n

Ops (2.2)
pf = npf

We must also define the effective body force acting on each phase in the continuum, bo,
and b0o. As with effective density, we require that the integral of the effective body force over
the whole volume be equal to the integral of the actual body force over the phase volume.
In the presence of a constant gravity, g, and in the absence of other body forces, we state:

j bosdv = bodv = s gdv

f bodv = body = p gdv

Using the definitions in Equation (2.1), it can be shown that the effective body forces must
have the following form,

;5(2.3)
bof =pf g

Lastly, we define the effective Cauchy stress, or, of the mixture according to the integral
form of Cauchy's Theorem. This relation is given in Equation (2.4). Since we define the
domain boundary dQ such that 8Q = aQ, U 9Qf, we can also define the effective Cauchy
stress on each phase, o.). In these expressions, t is the surface traction vector which is a
function of the surface normal vector n.

I o-nda = t(n)da

J a-,nda = t(n)da (2.4)

j orfnda = t(n)da

It follows from 9Q = 0Q8 U 9Qf, that,

t(n)da = t(n)da + t(n)da

19



and therefore,

j crnda= j Q nda+ a nda

Since this must hold for any choice of volume Q and boundary &Q, we require,

o as + 0 f (2.5)

By defining the effective Cauchy stresses as in Equation (2.4), we show that the total
effective Cauchy stress of the mixture can be decomposed into a stress contribution belonging
to the solid phase and another belonging to the fluid phase. This will become important
later when we define the constitutive models for the two phases.

2.1.2 Overlapping Continuum Bodies

In the previous section, we defined a continuum representation for a mixture of grains and
fluid. We now turn our consideration to the continuum mixture model. As shown in Figure
2-2(a), we first define two overlapping continuum bodies. Bs defines the solid phase reference
body and Bf defines the fluid phase reference body. At some time t, Bs defines the solid
phase deformed body and Bf defines the fluid phase deformed body. These definitions allow
us to use the usual continuum definitions of motion, as in Gurtin et al. [2010.

To determine the behavior of a volume of mixture Q, as shown in figure 2-2(b), we let
that volume define a part in each continuum body. The full mixture is defined by the sum of
these parts. If the volume of mixture is composed of fluid only, the porosity n is unity. We
also enforce that, in the absence of a solid phase, the local solid phase stress is zero, 0, = 0.
In this limit, we expect the behavior of the mixture to be identical to that of a barotropic
viscous fluid. If the volume of mixture is solid only, the porosity n is not zero (it would
only be zero in the limit of vanishing pore space). In this limit, the behavior of the mixture
should be identical to that of a dry granular material. To ensure this, we enforce that the
local fluid phase stress is zero, of = 0, and that the true fluid density is zero, pf = 0.

2.1.3 Mass Conservation

We now define the equations governing the evolution of the true fluid density (i.e. the density
of the fluid that is between the grains), pf, and the effective densities of both phases, p, and
Pf. Recalling that the solid grains are assumed incompressible, p, is constant. Since we will
often have fields which belong to one phase or another (e.g. p, belongs to the solid phase),
it is convenient to define the material derivatives on each phase as follows,

=s aV + v,-grad 0
Dt t (2.6)

S - - +v-gradV
Dt at

We consider a volume of continuum mixture Q. Mass conservation in the solid phase is

20



a) reference configuration deformed configuration

BfB

n*0 0<n<1 n=1

Figure 2-2: (a) Pictorial definition of the reference bodies, BS and Bf, and deformed bodies,
Bt' and B{. (b) Parts in the deformed body are always fully saturated with porosity n > 0.
In the limit of a fluid-only volume, the porosity n = 1. In the limit of a solid-only volume,
we do not let the porosity n go to zero, instead we let the fluid viscosity and bulk modulus
go to zero.

enforced by setting the material derivative of solid mass in this volume to zero.

DSjPjdv = 0
Dt in

Using Reynolds' transport relation we can move the material derivative inside of the integral.

J DPt + 7, div(v,)dv = 0

This must be true of any choice of volume Q, therefore the strong form statement must also
be true. We therefore arrive at Equation (2.7) which governs the evolution of the effective
solid density.

S+ P,, div v, = 0 (2.7)
Dt

We then expand the first term of this evolution law according to Equation (2.6).

O + v, - grad 7, + ;, div v. = 0
9t

21



Expanding with the identity, i, = ops = (1 - n)p,

0(1 - n)ps
+ v. -grad((1 - n)p,) + (1 - n)p, div v. = 0at

and applying the chain rule,

(I - n) a - Pn + (1 - n)vs grad ps - ps - grad n + (1 - n)p, div vs = 0
at Pt

Enforcing uniform incompressible grains (ps constant) and dividing out ps, we find,

an
- v - gradn + (1 - n) divv, = 0at

and therefore,
an

= (1 - n) divvs - vs -gradn (2.8)

The significance of Equation (2.8) is that we can express the rate of change of the local

porosity with knowledge of the current porosity and the solid phase velocity alone. Intuitively

this makes sense, the porosity is a measure of the space between grains. We only need a

description of the motion of the grains to describe how the porosity is changing.

Turning now to the fluid part defined by the volume Q, we enforce mass conservation in

the fluid phase by setting the material derivative of fluid mass to zero.

Df j- dv = 0
Dt L Pf

As before, we use Reynolds' transport relation to move the material derivative inside the

integral.

f Di + pf div vfdv = 0

This must hold for any choice of volume Q, therefore we find Equation (2.9), which governs

the evolution of the effective fluid phase density.

Dtf+ pf divvf = 0 (2.9)

We expand the first term according to Equation (2.6),

a + v -gradf + 5f div vr = 0
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and replace ;5f above with it's definition in Equation (2.2),

at + vf -grad(npj) + npf div v = 0

Using the chain rule, we find,

n + pf On + nvf -grad(pf) + pfvf - grad(n) + npf div vf = 0
Wt at

We then group terms multiplied by n and pf

n ( + vf -vgrad Pf + Pf( + vf grad(n) + n div vf 0

Recognizing the material derivative in the first term and replacing !- with its definition in
Equation (2.8), the above expression can be rewritten,

n Dt + pf ((1 - n) divvS - v - grad(n) + vf - grad(n) +n divvf) = 0

With some further simplification, we find Equation (2.10), which governs the evolution of
the true fluid density.

n Df pf div ((1 - n)vS + nvf')
pf Dt

(2.10)

2.1.4 Momentum Balance

Conservation of linear momentum can be expressed for a volume Q in the deformed config-
uration on the mixture as a whole or on each phase independently. For the entire mixture,
this conservation law, in integral form is given as,

D do v= 4 bos + bof dv + t(n)da

Using Equation (2.3) and (2.4), the above expression can be rewritten as,

PS Dv + Pf D dv=
Dt Dt 4

( ps + pf)gdv + Ia ndaag-

and applying the divergence theorem,

D'v,4 P Dt
Dfvf dv =

+5fDt
(jip + p5f)g + div odv (2.12)

Equation (2.12) must hold for any choice of volume Q, therefore Equation (2.13) must

23
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be true everywhere,
D'vy Dfvf

Ps + Pf =(Ps + Pf)g + div a (2.13)Dt Dt
This is the general strong form of momentum balance in the mixture. Intuitively, it matches
our expectation that the rate of change of momentum in the mixture will depend on the
total body force and total stress divergence. It will also serve as a check for the phase-wise
momentum balance equations we derive next.

Recalling the expressions in Equation (2.4), the integral form of mass conservation in
each phase can be written as,

fs Dvs dv = bos - fb - fddv + crnda
jj L fa (2.14)

Pf Dv dv = ffbol + + fdd + a nda

We've introduced two new body forces, fb and fd. fb has the form of the buoyant force
described in Drumheller 12000]. As we will see in Equation (2.20) this term is necessary to
recover the correct physical behavior of immiscible mixtures. fd is the drag or Darcy's law
force. We simplify this expression using the divergence theorem,

f 5 Dv "dv = bo,, - fb - fd + div a,,dv
2 Dt -

2 fv(2.15)

f Dt d = fbof + fb + fd + div dfdV

As before, Equation (2.15) must be true for any choice of volume Q, therefore the strong
form of momentum balance holds everywhere.

-Dvs = bos - fb - fd + div o
Dt (2.16)

- Dt = bof + f d + fd + div of

Because the buoyant and drag forces act between phases, we see that taking the sum of the
expressions in Equation (2.16) yields Equation (2.13), showing consistency of our method.
We leave the specific form of the buoyant and drag force and the phase stresses for later
sections.

2.1.5 Specific Form of Phase Stresses

Equation (2.16) fully describes the motion of mixture; however, it is not very useful until we
develop expressions for the inter-phase forces and stresses. Since our definitions in Section
2.1.1 rely on selecting a large domain, we expect that the stresses defined in Equation (2.4)
will contain contributions from both phases of the real mixture.
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As we will see in Section 2.1.7, in order to recover the form of momentum balance given
in Jackson 2000], we let the solid phase stress a. take the classic form,

O. = & - (1 - n)pf l (2.17)

& is the portion of the solid phase stress resulting from true granular contacts and from
microscopic viscous interactions between grains due to immersion in a fluid medium (e.g.
lubrication forces). We will see later that this is also the Terzaghi effective stress that governs
plastic flow in the solid phase. & is not necessarily deviatoric. pf is the true fluid phase pore
pressure. Since the fluid is barotropic, this is determined by the true fluid density pf.

The expression for the fluid phase stress of is taken to be,

0 f = rf - npf 1  (2.18)

The fluid phase stress is decomposed into a deviatoric part, rf, and a spherical part, npfl.
We expect the viscous shear stress in the fluid phase, -r, to be proportional to the shear
rate of the fluid and a function of the porosity of the mixture.

2.1.6 Specific Form of the Buoyant Body Force

To gain an intuition for the form of the buoyant term, we substitute the expression for
the solid phase stress in Equation (2.17) into the expression for the solid phase momentum
balance in Equation (2.16),

-DSvS -
Ps Dt = psg fb - fd + div(& - (1 - n)pf 1)

We then separate the divergence of the total solid phase stress into the divergence of the
Terzaghi effective stress and gradient of scaled pressure,

__ Dsvs -
Ps- = #pS - fb - fd + div(&) - grad ((1 - n)pf)Dt

Then, applying the chain rule to the gradient term, we find

Ds t p g - fb - fd + div(&) + p grad(n) - (1 - n) grad(pf) (2.19)Dt

Equation (2.19) has the unusual property that, as given, the acceleration of the solid
phase appears to depend directly on the magnitude of the fluid pressure pf. To emphasize
the oddity of this result, consider a bed of grains settled at the bottom of a fluid chamber.
If the acceleration does have this property, then it would be possible to unsettle the grains
simply by adding a uniform pressure to the entire chamber. Since we do not observe this in
practice, we let the buoyant force take the form given in Drumheller 120001,

fb = pf grad(n) (2.20)
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2.1.7 Equations of Motion

With the expressions for the stresses and the buoyant body force given in Equations (2.17),
(2.18), and (2.20), we recover the equations of motion from Jackson [20001. Substituting
Equation (2.20) into Equation (2.19), we find the final expression of the solid phase momen-
tum balance,

D~v
s t = p5 8g - fd + div(&) - (1 - n) grad(pf) (2.21)Dt

For the fluid phase, we substitute Equation (2.18) into Equation (2.16),

Dfvf g
Pf Dt =pfg+fb+fd+div~rfnpfl)

and,
Dfvf

Pf Dt =Pfg +fb - fd + div rf - grad(npf)

Using the chain rule,

-Dfvf-

Pf Dt p fg + fb + fd + div(Tf) - n grad(pf) - pf grad(n)

and substituting in the expression for the buoyant body force,

-Df vf -
Pf Dt = pfg + fd + div(r)- n grad(pf) (2.22)

Together, Equations (2.21) and (2.22) are the complete equations of motion of the mix-
ture. If we let,

(f) = fd - (1 - n) grad(pf)

then we recover Equations (2.27') and (2.28') from Jackson [2000],

#PDsV = div(&) - (f) + psg
Dt (2.23)

RPf Dt = div(rf - pf 1) + (f) + npf g

In addition to the equations of motion, we also need to define the equations of state to fully
characterize the mixture. In the following sections, we will formulate the laws governing the
inter-phase drag force fd, the Terzaghi effective granular stress &, the fluid phase effective
shear stress rf, and the fluid pressure pf.
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2.2 Methods for Formulating Drag Law

The flow of viscous fluid around and between grains of sediment will result in an inter-phase
drag that we represent with the drag force fd. This drag force can be understood as a body
force acting on one phase by the other and has units [N/m3 ]. In this work we assume that
this force depends only on the relative velocities of the two phases (v, - vf), the porosity of
the mixture n, the grain diameter d, and the fluid viscosity 7o. We neglect dependence on
material orientation or rotation (e.g. a fabric tensor).

fd - fd(vS - vf, n, d, qo) (2.24)

There are three general methods which may be used to determine the form of Equation
(2.24): analytical, empirical, and simulation.

2.2.1 Analytical Method: Stokes's Law

In a dilute mixture (0 -4 0), the individual solid grains are dispersed in the fluid and seldom
interact. In this limit, it is reasonable to assume that the fluid flow around a single grain
will not be affected by the flow around neighboring grains. Therefore, (as shown in Figure
2-3) we calculate the force on a single grain in an large fluid domain and homogenize this
force through Equation (2.3). Large here is taken to mean that the inflow and outflow of
the domain are approximately uniform.

U

-> F -

Figure 2-3: In a dilute mixture (#4 0), the viscous drag of the fluid phase on the solid
phase can be calculated from the flow field around individual grains through Stokes' law.
We consider a spherical grain with diameter d in a large fluid domain Q. The free stream
fluid velocity is given as u, and the resulting drag force is F.

We begin by considering the Stokes-Einstein drag equation for a single sphere with di-
ameter d in a Stokes' flow with free-stream velocity u and viscosity qo,

F = 37irodu (2.25)

Equation (2.25) is valid if the flow velocity is small. Small is taken to mean in the limit of
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Re -+ 0, where

Re - pfud (2.26)
TIo

To derive an expression for the inter-phase drag body force, we return to the intuition
driving Equation (2.3). That is, we want to find fd such that,

-fddv F

For a small domain, we let fd be uniform and,

-fd -f dv = F

Replacing F with the Stokes-Einstein equation, we find,

-fd - dv = 3irr 0du (2.27)

There are two identities which we will use to transform this integral equation. First, we
let that the volume of the solid phase be the volume of a sphere with diameter d,

dv = ( 2.28)

Second we have the definition of an average pore velocity, Ue, which is related to the free
stream velocity by,

U (2.29)Ue =-
n

Equation (2.29) was first shown by Dupuit [1863] for dense packings of grains, but it equally
applicable in the dilute limit. Recognizing that Ue is expressible as the difference between
the fluid phase velocity and the solid phase velocity, we let

u = nUe = n(Vf - vS) (2.30)

Replacing Equations (2.28) and (2.30) in Equation (2.27),

A = 3nryod - (vdv - vf) - 8
fd.]v3i~d( 5 v, ird3

which is equivalent to,
18nTo f , d

fd= d2  fo dv

and using the definitions in Equation (2.2), we arrive at an expression for the inter-phase
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drag function derived from Stokes's Law.

fd= -18n(1 - n)?o (v, _ Vf) (2.31)
fa d2 .(, v)(.1

Although this method of formulating the drag term is analytically sound, its limitations
are immediately apparent. Stokes's Law for drag on a sphere is valid only in the limit
of Re -+ 0. Although other analytical expressions have been found for non-zero Reynolds
number, a thorough analysis in Clift et al. [20051 suggests that analytical expressions for drag
on a single sphere "have little value" for Re > 1. Further, as the packing fraction increases
(0 > 0), we can no longer assume that the flow around one grain is independent of the
proximity of other grains, and an analytical solution for such a flow is clearly intractable.

2.2.2 Empirical Method: Darcy's Law

We now consider the other end of the packing spectrum. For dense packings of grains
(0 -+ 0.65), there is no analytical solution for the drag on the entire granular structure. In
this limit, the grains of sediment pack tightly together forming what is essentially a porous
solid. Therefore, (as shown in Figure 2-4) we can determine an expression for fd empirically
with Darcy's law. The steady flow of fluid through the pores of the solid phase will result in
a measurable pressure drop across the solid phase. This pressure drop can be related to the
inter-phase drag through Equation (2.22).

U

Pin L Pout

Figure 2-4: In a dense mixture (0 -+ 0.65), the viscous drag of the fluid phase on the solid
phase can be determined empirically by relating the pressure drop, (pout -Pin) measure over
some distance, L, to the measured steady inlet flow velocity, u.

The general method of determining an equation empirically, begins with the plotting
of experimental results against dimensionless groups (in this analysis attributed to Blake
[19221). We therefore begin with the empirical relation given in Equation (10) of Carman
[1937],

U d 3  (Pin Pout) (2.32)
krqo 36(1 - n)2 L
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where u is the measured steady fluid velocity at the inlet (and outlet), k is the permeability
of the granular packing, pi, and pout are the measured fluid pressures at the inlet and outlet
of the packing, and L is the length of the granular packing (see Figure 2-4). The average
pore fluid velocity ue is related to the inlet flow velocity u through Equation (2.29),

U
tie -

n

Recognizing that ue is expressible as the difference between the fluid phase velocity and the
solid phase velocity, we let,

te ~ Vf - Vs

and assuming that the pressure drop per unit length is approximately uniform, we let,

(Pout - Pin) - grad(pf)
L

then Equation (2.32) can be rewritten as,

d2 2

Vf - = d n )2 . grad(pf)
kgo 36(1 - n)

or,

grad(pf) = 36k(l - n) 2d2 0 (vS - Vf) (2.33)
n2d2

By plugging Equation (2.33) into Equation (2.22), we find

D___ 36k(1 - ri) 2r

Pf DL pfg + fd + div(rf) - nd2  (V Vf)

In the steady-state flow considered, and assuming gravitational effects and wall drags are

negligible, this becomes

0= fd- 36k(1 - n)2 71 (VS - Vf)
nd2

or,

fd = 36k(1 - n ) 211 (Vs - Vf) (2.34)
nd2

Carman gives an average measure for the permeability k of dense packings of spheres

(0.60 < q < 0.647) equal to about 5. Plugging this value into Equation (2.34), we recover the

common expression for fluid drag in soils and sediments, the Carman-Kozeny drag equation

(as used in Bandara and Soga 2015]),

fd 180(1 - n)2170 (vS - Vf) (2.35)
nd2

Equation (2.35) has the useful property that it accurately describes the drag rheology
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of dense mixtures (0 > 0.6). By observing how measured quantities depend on the non-
dimensional groups describing the flow, a simple formula has been found. However, in the
large range of regimes of interest (0 < # < 0.65), this expression is still insufficient. Direct
comparison of Equations (2.31) and (2.35) shows that the Carman-Kozeny equation does
not recover the analytical model from the Stokes-Einstein equation. In fact, at low packing
fractions (0 -4 0), the Carman-Kozeny equation under-predicts the drag associated with a
single grain. Although the methodology of presented here is sound, a larger range of packing
fractions and flow velocities must be considered in order to form a complete expression for
the inter-phase drag.

2.2.3 Simulation Method: van der Hoef's Equation

Determining an expression for the inter-phase drag for the full range of potential packing
fractions (0 < # < 0.65) has historically been an intractable challenge. Analytical methods
cannot be used for high Reynolds number flows (Re > 1) and flows with non-negligible
packing fractions (# > 0). Experimentally, any loose packing (# < 0.58) without sustained
granular contacts will quickly compact, making the collection of accurate measurements
near impossible. In the last 30 years, advances in computational fluid dynamics have made
it possible to directly simulate the flows around large clusters of particles immersed in fluid.
In particular, we are interested in simulation results that have used the lattice-Boltzman
method, a discrete formulation of Navier-Stokes equations which is capable of modeling fluid
flows involving complex boundary geometries. van der Hoef et al. [2005] and Beetstra et al.

120071 use the lattice-Boltzman method to simulate the flow around mono- and bi-disperse
packings of spheres in the range of 0.10 < # < 0.6 and up to Re ~ 1000. As shown in
Figure 2-5, the flow simulation allows the calculation of an average force vector, F. Once
normalized, an empirical-like relation can be developed.

U

Figure 2-5: For an arbitrarily dense mixture (0 < # < 0.65), the fluid flow around the solid
grains can be simulated using the lattice-Boltzmann method. The resulting average force
vector, F, can be normalized and empirically related to the free-stream flow velocity, u.

The average force F is defined in terms of the total force (i.e. sum of skin and pressure
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drags) of each grain, Fi, in the simulated domain, Q,

F = ZFi/N
iEQ

where N is the total number of grains in the domain. To recover the viscous drag component,
van der Hoef et al. [2005] gives the following definition,

Fd = (1 - #)F

Fd is then normalized by the Stokes-Einstein drag from Equation (2.25),

F = =(I- )F (2.36)
37rlodu 37riodu

where F is the normalized drag force measure and u is the inlet flow velocity of the simulation.
Once F is determined for a wide range of simulations, an empirical relation can be developed
by plotting the results against non-dimensional groups and finding a good fit line.

F = F(0, Re)

van der Hoef et al. [20051 give the following form of F at low Reynolds numbers (Re -4 0),

F(4, 0) - 1002 + (1 - #)2(1 -1.5 4#) (2.37)
(1 -) 2 )0

Beetstra et al. [2007] expand on the previous work by considering mono-disperse flows up to
Re = 1000 and bi-disperse flows up to Re = 120. The corrected form of F, is then,

0.413 Re (1 - ) -' + 30(1 - 4) + 8.4 Re- 0 .3 4 3

F(4, Re) = F(01 0) + 24(1 - 0)2 ( 1 + 1030 Re-(1+40)/2 (2.38)

Now, as in Section 2.2.1, we want to find fd such that,

S-fddv = Fd

For a sufficiently large domain Q with sufficiently uniform fd,

-fd f dv = Fd

Substituting in Equation (2.36), we find an expression that looks remarkably similar to the
expression in Equation (2.27),

-fdj dv = 37rndu F(#, Re)
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Recalling the definitions in Equations (2.28), (2.29), and (2.30), we arrive at the final ex-
pression for the inter-phase drag fd

180(1 - 0),qo
fd = d2 - F(#, Re) - (v, - vf) (2.39)

where F(#, Re) is given as in Equation (2.37) or (2.38). Since this expression derives from
direct simulation of flows through a wide range of granular packings, we expect it to more
accurately represent the inter-phase drag of the mixture than either Equation (2.31) or (2.35).

2.2.4 Comparison of Methods

As shown in Figure 2-6, Equations (2.37) and (2.38) have properties which will be useful
in the simulation of our continuum. First, both expressions return finite values for packing
fractions in the range 0 < q < 1 and Reynolds numbers in the range Re > 0. Although
physically we do not expect packing fractions above ~_ 0.65, it is possible that the contin-
uum representation could exceed this limit. In the dilute (# -+ 0), low Reynolds (Re -> 0)
limit, Equation (2.38) reduces to Equation (2.38) with the final result,

F(0, 0) = 1

Plugging this into Equation (2.39), we recover the Stokes-Einstein inter-phase drag from
Section 2.2.1,

180(1 - 0)710 18n(I - n)77o
fd= d2 . (VS - Vf) 1nd2 . (vs Vf)

In the dense (# -+ 1), low Reynolds (Re -+ 0) limit, Equation (2.38) reduces to Equation
(2.38) with the final result,

100F(1, 0) ~102
' (1 --q) 2

Plugging this into Equation (2.39), we recover the Carman-Kozeny inter-phase drag from
Section 2.2.2,

18002710 180(1 - n) 2
. -

(1 - O)d2 .id 2

2.3 Material Constitutive Models

In this section, we lay out the thermodynamic rules governing the behavior of the mixture.
When considering a single phase of material, it is often useful to assume that internal energy
(E), entropy (rI), and absolute temperature (9) are basic properties of a material. That is,
they do not need to be defined in terms of other more basic properties. For this analysis, we
assume that analogous continuum fields exist describing the energy, entropy, and temperature
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Figure 2-6: Comparison of the normalized drag force expressions, F(O, Re). In the dilute
limit (0 -÷ 0), the Carman-Kozeny equation clearly under-predicts the analytical drag force
given by the Stokes-Einstein drag equation. In the dense limit (0 - 0.65), the Stokes-
Einstein drag equation under-predicts the experimentally derived Carman-Kozeny equation.
The expressions from van der Hoef et al. [20051 and Beetstra et al. 12007] capture both limits
correctly.

of the two continuum phases; however, as stated by Wilmanski [2008] and Klika [2014], the
physical basis of these fields is poorly defined. We therefore rely on the intuition developed in
Gurtin et al. [2010] to develop the governing thermodynamic laws of the continuum mixture.
Then, through careful consideration of microscopic flow behavior, experimental observations,
and the results of particle simulations, we develop the constitutive laws governing the phase
stresses in Equations (2.17) and (2.18). In Section 3, we verify that these relations recover
the empirical limiting behaviors of fluid-sediment mixtures. For this formulation, we return
to the continuum representation of the mixture shown in Figure 2-2. In particular, we are
interested in the behavior of a part of the mixture defined by a volume Q.

2.3.1 First Law of Thermodynamics

The first law of thermodynamics states that the rate of change of the total energy stored
within a volume must be equal to the rate of heat flow into the volume plus the external
power exerted on the volume. The total energy stored within a volume is the sum of internal
energy and kinetic energy. We consider the part of the solid body defined by the volume Q,
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and we express the conservation of energy of this part as follows,

Ds (s(Q) +
Dt

KS(Q)) - QS(Q) + W() - Qi(Q) - WVi() (2.40)

where,

e Ss(Q) is the internal energy of the solid part.

* Is(Q) is the kinetic energy of the solid part.

" Qs(Q) is the external heat flow into the solid part.

* IN, (Q) is the external power exerted on the solid part.

" Qj(Q) is the inter-phase heat flow from the solid part to fluid part (defined by the
volume Q).

" Wi(Q) is the inter-phase work power exerted on the fluid part by the solid part.

We also consider the part of the fluid body defined by the volume Q and express energy
conservation of this part similarly,

+ Kf(Q)) = Qf() + W4f( ) + Qi(Q) +Wi) (2.41)

where,

" Ef(Q) is the internal energy of the fluid part.

" Ikf(Q) is the kinetic energy of the fluid part.

" Qf(Q) is the external heat flow into the fluid part.

" Wf(Q) is the external power exerted on the fluid part.

Summing the expressions for phase-wise energy conservation in Equations (2.40) and
(2.41), we arrive at the expression for the combined conservation of energy in
volume, ,

the mixed

Dt (
CS (Q) ) D + f (Q)) = Qs(Q) + Qf (Q) + Ws (Q) + Wf (Q) (2.42)

We let the internal energies, Es(Q) and Ef(Q), be defined by integrating the specific internal
energies, Es and Ef over the volume Q,

(Es() = PsEsdv

ef() j pfEfdV
(2.43)
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We let the kinetic energies, Ks(Q) and Kj(Q), be similarly defined by integrating the specific
kinetic energies over the volume Q,

IsCS Q) = P -(VS .VS) dv
= 2 (2.44)

Cf(Q)= Ip (v vf)dv

The external heat flows, Qs(Q) and Qf(Q), are characterized by the phase-wise external heat
fluxes, q, and qf, at the boundary DQ and phase-wise internal heat generation, q, and qf,
within the volume Q as follows,

Q() = -f (q n)da + qsdv
(2.45)

Qf(Q) =-j (q n)da + qfdv

We also define an inter-phase heat flow, Qj(Q), in terms of the inter-phase heat transfer, qj
(volume averaged heat transfer from the solid phase to the fluid phase),

Qi() = I qidv (2.46)

For the external powers, WlVs(Q) and /VfW(Q), we return to the definition of the phase stresses
in Equation (2.4) and the expression for external body forces in Equation (2.3) to define,

WS() = f (o-,n- v)da + f (psg -v)dv
.ID~ JQ(2.47)

/Vf () J (on- vf)da + j (pf g- vs)dv

To simplify the analysis of the combined conservation of energy in Equation (2.42), we
will apply the definitions given above to each term individually, then recombine all the
terms at the end. This will allow us to cleanly derive an integral expression for the combined
conservation of energy within a mixed volume Q. We begin this analysis with the first term,
the time rate of change of the total energy stored in the solid part defined by the volume
Q. Using the relations for internal and kinetic energies from Equations (2.43) and (2.44), we
can rewrite this term as,

Dt Dt j +
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Applying Reynolds' transport relation, we find,

j [ S ((Es + (vs - V)) + PS (ES + (vs vs)) div(vs)1 dv

which is equivalent to,

J Dsp[( d(v> ES + + P) DS + 1 S i

f [ Dt +PsdV~Vs) ( 2 Dt 5 + V(v5)) vD) dv

Using the expression for solid phase mass conservation from Equation (2.7), we get the final
integral form for the rate of change of total energy in the solid part,

D ( (Q)+ () j (S DQ) + S D -S dv (2.48)

A similar analysis can be performed for the expression of material rate of change for the
total energy in the fluid part defined by the volume Q (the second term in Equation (2.42));
the result is given here,

Dt ( " Dt Dt vfd2.

Keeping these relations in mind, we continue through the terms in the combined ex-
pression for conservation of energy. The first and second terms on the right hand side of
Equation (2.42) we recognize as the external power acting on the mixed volume Q. Applying
the definitions from Equation (2.47) to these terms, we find that,

/VV(Q) + )Wf () = j (on -v. + ofn - vf)da + j (isg - vs + pfg -vf)dv

Applying the divergence theorem to the above expression, we find the final integral form for
the combined external power acting on the volume Q.

W)(Q) A+ )V 1() = f [(div(a,) + js g) - vs + (div(of) + pf g) - vf] dv
(2.50)

+ j [a : grad(v) + o : grad(vf)] dv

Lastly, we consider the third and fourth terms on the right hand side of Equation (2.42).

These are the expressions for the external heat flow into the mixed volume Q. Applying the

definitions from Equation (2.45) to these terms, we find that,

Qs() + Qf() = - j (qs -n+qf -n)da+ j (qs + f)dv
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Applying the divergence theorem to the above expression, we arrive at the final integral form
for the combined heat flow into the volume Q.

Qs(Q)+Q(Q) = (- div(q + qf) + q + qf)dv (2.51)

Substituting in the phase-wise energy conservation expressions from Equations (2.40), (2.41),
(2.50), and (2.51) into the combined energy conservation expression in Equation (2.42), we
find the integral form of the combined conservation of energy in the mixture,

f ( D + Pf Df + -f D 'v v + Vf D v f) dv = ((div(a ,) + ps g) -v ,,) d v

+ ((div(of ) + pf g) -vf) dv

+ as : grad(vs)dv

+ j : grad(vf)dv

+ (qs + qf - div(qs + qf)) dv

(2.52)
Since this expression must hold for any choice of volume Q, the strong form must also be
true. From here, we continue our analysis without the need for pesky integral expressions.

_ DsE DfEf Dsvs - Dfvf
Dt Dt +j5 D Vs+Pf Dt -vf=(div(7)+pg)-v6

+ (div(of ) + pf g) -vf

+ a. : grad(v,) + af : grad(vf)
+ qs + qf - div(qs + qf)

By momentum balance in Equation (2.16) and the definition of the buoyant term in Equation
(2.20), this is equivalent to

-Ds DfEf
Ps Dt PfDt =pf grad(n) - (vs - vf)

+ fd (vs - Vf)

+ a, grad(vs) + 0f : grad(vf)

+ q8 + qf - div(q. + qf)

Substituting in the expressions for the specific form of the phase stresses in Equations (2.17),
(2.18), and (2.9), this further reduces to the final strong form expression for conservation of
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energy in the mixture,

_s Dtf _ D P5 n Dfp
SDt Dt p Dt

+ fd (v. - Vf) (2.53)
+ & grad(v,) + -rf : grad(vr)

+ qs + qf - div(qs + qf)

2.3.2 Second Law of Thermodynamics

The second law of thermodynamics states that the rate of change of the total entropy within
a volume Q must always be greater than or equal to the combined entropy flow into the
volume. Drumheller [2000] gives the following necessary condition for entropy imbalance of
a mixed volume Q,

Dt( Dt J() - f() ;> 0 (2.54)

We add two additional conditions by considering the entropy flow into the part of the solid
body defined by the volume Q,

DS(Q)- isJ() + Jis() ;> 0 (2.55)
Dt

and the entropy flow into the fluid of the solid body defined by the volume Q,

DfSf-(Q) i() - Jf() ;> 0 (2.56)
Dt

where,

" S8 (Q) is the entropy of the solid part.

" Js(Q) is the external entropy flow into the solid part.

" Sf(Q) is the entropy of the fluid part.

" Jf(Q) is the external entropy flow into the fluid part.

* Ji,(Q) is the inter-phase solid entropy flow due to heat flowing from the solid part
into fluid part (defined by the volume Q).

* Jif(Q) is the inter-phase fluid entropy flow due to the heat flow into the fluid part
from solid part.

Together, Equations (2.54), (2.55), and (2.56) give the necessary and sufficient conditions
for satisfying the second law of thermodynamics within a mixed volume Q. We now define
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the integral forms of the terms in these expressions. We let the total entropies, S,(Q) and
Sf(Q), within a volume Q be defined in terms of the phase-wise specific entropies, YS and qf,

SSs(A)fjtisydv 
(2.57)

Sf() = pf/f dv

The first term in Equation (2.54) can be rewritten with the definition for the solid phase
entropy in Equation (2.57) as follows,

DSSs (Q)
Dt

DS
- Dt jQ PSIsd

Using Reynolds' transport relation,

DSS (Q)
Dt

Ds

SDt (psTys) + gsqs div(vs) IdA

which, by solid phase mass conservation in Equation (2.7), is equivalent to

DsS,() f
Dt Ja Dt

By similarity, the second term in Equation (2.54) is equivalently,

Df Sf() 
Dt

(2.59){ DLnfaD o

We let the external entropy flows, Js(Q) and Jf(Q), into the volume Q be given as follows,

-. n da +

(qf- n da +

4dv

d

which, by the divergence theorem, are equivalent to,

f () = -

J / div

j[div

qs q()--dv(-) - f]dv
where ds > 0 and i5 > 0 are the phase-wise absolute temperatures.

Unlike the inter-phase heat flow, Qj, which represents the heat flow out of the solid phase
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(2.58)

J8 (Q) = -

is( )=-

(2.60)



and into the fluid phase, the inter-phase entropy flows, i(Q) and jif(Q), are not equal,

s(Q)=ji dv

Jf(J A 79f
(2.61)

Substituting in the expressions from Equations (2.58), (2.59), and (2.60) into Equation
(2.54), we arrive at the integral form of the Drumheller entropy imbalance for the mixed
volume ,

Df +dv+ f-Dt +[-div q+ qf - ]d > 0-8

Since this must hold for any choice of volume Q, the strong form must also be true. This is
the first condition of entropy imbalance in the mixture,

s Dt
Df 7

+ Pf -Dt + div + q8 - f> 0 (2.62)

For the second and third conditions, we substitute in the expressions for the phase-wise
entropy integrals and entropy flow integrals from Equations (2.58), (2.59), (2.60),
into the phase-wise entropy imbalance conditions in Equations (2.55) and (2.56)

Ps Dt77s
Dt

and (2.61)
to find,

+ div (- > 0
(,s ) VS -

9fDt +div
(f)

Sdv>0

,df _I
Since these expressions must hold for any choice of volume Q, the strong form conditions
must also be true,

Ps Dt + div (
(19)

> 0

D/rL + div
Dt ly I)a

These can be re-expressed equivalently as,

5 5 Dt

PfOf Dtf

(2.63)
qf + qj > 0

'Of -

-s g(rad(Os) + div(q) - qs + qj > 0

grad('Of)
- qf f + div(qf) - qf - qj ;> 0

which when summed gives us the final strong form condition for entropy imbalance for the
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mixture,

D~r,8  Df'/f (qs- gradQOs) qf grad(of) '
+Svs D+ D \ g s qf + div(qs + qf)-(qs+qf) > 0 (2.64)

Dt Dt V )

2.3.3 Rules for Inter-Phase Heat Transfer

Though it is not used later in this work, Equations (2.62) and (2.63) have an important
consequence on the form of the inter-phase heat transfer, qj. In particular, we observe that
the sum of the expressions in Equation (2.63) yields,

I Dt +fDt sqf> ___s _f \ 5 j -Dpj8- _ + div + +kis'f >0

which, when compared with Equation (2.62),

AS D 1 + Dif + div Dr + - q_ qf> 0
Dt Dt +dSiv(' '59S 9f-

implies the result,

qj(79 f > 0

or, equivalently,
sgn(qi) = sgn(Ps - 79f)

This matches the intuition that the heat transfer from the solid phase into the fluid phase
must have the same sign as the difference in temperature between the solid and fluid phases.
That is, heat will flow from the solid phase to the fluid phase only when the solid phase
temperature is greater than the fluid phase temperature.

2.3.4 Helmholtz Free Energy

We now introduce the definition for the phase-wise Helmholtz free energies, 0, and Of,

S =ES - J79S1S (2.65)
Of =Cf - 77f Of

or, equivalently,
ES= VK) + int)

67 =/Of + Tlf 19f
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Therefore, the material derivatives of the phase-wise internal energies in Equation (2.53) can
be re-expressed as follows,

Dt
DsosS
Dt

Dsr.+ Dsds
Dt Dt

Dfgf Df Vf D_7)f D_
Dt Dt Dt+ f Dt

which, when substituted into Equation (2.53), results in the following expression for conser-
vation of energy in the mixture,

Combining this expression with the expression of entropy imbalance
following free energy inequality is found,

- DsbS,
Dt

- Psrs Dt

in Equation (2.64), the

- Df Of
Dt

DfPt
-Pf hlf Dt

n Dfp)
+pf p Dt ) (2.66)

+ fd (vs - Vf)

+ 6 grad(v,) + -r f grad(vf)

s grad(i9s) qf - grad(f)

2.3.5 Isothermal Assumption

In this work we assume that the solid and fluid phases have uniform and constant tempera-
tures, Vs and Of.

DsO5

Dt
D'f 
Dt
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_s D~yrj Dfr/fPS1 O D+ DDL D
- Dsbs _ DfOf

Dt Dt

_A Dsios _ Df 1)
Pss Dt pff Dt

( n Dfp\
pf Dt )

+ fd (v. - Vf)

+ &: grad(v) + rf : grad(vf)

+ qs + qf - div(q. + qf)



and,
grad(V9) = grad(Vf) = 0

These simplifications reduce the statement of free energy imbalance in Equation (2.66) to
the following form,

_D8"$S _ D!'i$b0 < - p s - f Of
- Ps Dt Dt

+ Pf( Dt (2.67)
(pf Dt

+ &: grad(v) + r : grad(vf)

+ fd (vs - Vf)

2.3.6 Strain-Rate Definitions

We let the spatial fluid phase velocity gradient be expressed as,

Lf = grad(vf)

which has a unique decomposition into a fluid spin tensor, Wf, and a fluid strain-rate tensor,
Df, such that

Lf = Df +Wf

and,
1

Df sym(Lf) = -(Lf + L T)2
1

Wf = skw(Lf) = -(Lf - L T)2

We previously stated that the fluid shear stress tensor, -r, is assumed to be symmetric
and deviatoric. Therefore, the contraction of this tensor with the fluid phase velocity gradient
can be re-expressed,

TY : grad(vr) = rf : Dof (2.68)

where Dof is the deviatoric part of the fluid strain-rate tensor.

The solid phase velocity gradient is similarly defined,

LP =_ grad(vS)

which is expressible in terms of the solid spin tensor, W, and the solid strain-rate tensor,
DS, such that,

LS = Ds + W,

and,
1

DS = sym(Ls) = -(Ls + LT)2
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1
skw(L) (Ls - L T)2

The solid phase effective granular stress, 3-, is symmetric but not deviatoric. Therefore
the contraction of this tensor with the solid phase velocity gradient can be re-expressed,

& : grad(v,) = & : D (2.69)

Substituting in the expressions from Equations (2.68) and (2.69) into the free energy
imbalance statement in Equation (2.67), we find,

Dsos - Dff (r Dfpf
-Ps DL DL Pf ( Dt) + (& : Dr) + (r : Dof) + fd - (v - vf) > 0 (2.70)

2.3.7 Fluid Phase Free Energy Function

The conservative constitutive behavior of the fluid phase is governed by the fluid phase
specific free energy, Vf. We assume that the functional form of the free energy only depends
on the true fluid density pf,

Of= ?f(pf)

The material derivative of this function,

Df f(pf) _ (9if (pf ) Df pf

Dt 8 pf Dt

can be substituted into the expression for free energy imbalance in Equation (2.70), to find,

_ Dss n Dp! 2a6Efp)-Ps DS + : ) pf Dt f pf + (+rf : Dof) - fd - (v, - vf) > 0 (2.71)sDt pfDt(

2.3.8 Solid Phase Free Energy Function

The solid phase behavior will be governed by an elastic-plastic constitutive relation derived
from that given in Anand and Su [2005]. We begin with the definition of the solid phase
deformation gradient,

ax.(X, t)
(9X

where X, (X, t) is the motion function mapping from a position, X, in the reference config-
uration to a position in the deformed (current) configuration at time t. It follows that the
material derivative of the deformation gradient can be expressed in terms of the solid phase
velocity gradient,

DSF

Dt
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We continue this formulation using the Kroner-Lee decomposition of the deformation gradi-
ent,

F = F'FP

With this, the velocity gradient can be separated into an elastic and plastic flow,

Ls = Le + Fe LPFe e

DsF Lee
Dt

(2.72)

DSFP LPFP
Dt

As with the solid and fluid phase velocity gradients, we define

De = sym(Le),

DP = sym(LP),

We = skw(Le)

WP = skw(LP)

such that Le = D e + We and LP = DP + WP. It is also necessary in this analysis to define
the right polar decomposition of the elastic deformation,

Fe = ReUe

with R' an orthogonal tensor and Ue a symmetric positive definite elastic stretch tensor.
The right Cauchy-Green tensor is then,

C e = ue2 = FeT F (2.74)

Since Ue is symmetric and positive definite, it admits the spectral decomposition,

3

Ue Z Aar. 0 rc
z=1

(2.73)

where {A,} are the principal stretches, {rc} are the principal
This allows us to define a logarithmic strain tensor,

directions, and each A, > 0.

3

E = ln(Ue) = Z ln(A,)r, 9 r.
C=1

(2.75)

Further we define,
J = det(F) = JeJP > 0

je = det(Fe) > 0, JP = det(FP) > 0
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DS J
Dt= tr(Ls) Dt j= tr(Le),Dt '

DS Jp
Ds = tr(LP)Dt

Here we introduce the solid phase volumetric free energy, o, which we let take the form,

(2.76)

such that this free energy function takes a form similar to that given in Anand and Su [2005],

(Ps = s(Ce) = 8s(Ee) (2.77)

Taking the material derivative of the volumetric free energy, and using the conservation of
mass expression from Equation (2.7), the following identity is found

S O =
s Dt 1p s tr(DP)

Dt

Further, the functional form of the free energy function given by O (Ce) allows us
express the material derivative above,

(2.78)

to re-

_ 8 (Ce) D8 Ce
aCe Dt

which is equivalent to,
Ds = 2 Fe s(Ce) F eT

Dt aCe
and therefore the material derivative of the solid phase specific free energy from Equations
(2.65) and (2.78) is given by,

- DV)S
PsDL ( 2 Je-1Fe a((Ce) FeT ) e + (J

ace
1P1) : DP (2.79)

Substituting Equation (2.79) into the free energy imbalance expression in Equation (2.71),
we find

- 2Je-IFe FeT)

n Df pf
pf Dt

: De + (& : (FeDPFe-1) - (Je-1(31) : DP)

20Ef (pf)
fg - pJ-1+ (r : Dof) +fd.-(vS - v) ;>0

2.3.9 Rules for Constitutive Relations

The expression in Equation (2.80) results in very useful rules governing admissible constitu-
tive relations for the mixture. Since it is possible to conceive of mixture motions with inde-
pendently varying (and possibly vanishing) values for D', DP, Dspf /Dt, Dof, and (v, - vf),
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Ds o
Dt

Ds s(Ce)
Dt

: De

(6.

(2.80)
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the following relations must each individually be satisfied,

& - 2 Je-Fe )FeT = 0 (2.81)
aCe

2 - p = 0 (2.82)Pf Pf

(FeDPFe-1) - (Je-Ilso1) : DP > 0 (2.83)

rf : Dof > 0 (2.84)

fd- (vS - Vf) 0 (2.85)

2.3.10 Rules for Drag Law

The inter-phase viscous drag, fd, must obey the dissipative inequality given in Equation

(2.85).
fd (vS - Vf) > 0

In Section 2.2, we find a functional form for fd which is given in Equation (2.39) as,

180(1 - 0)710
fd d2 q F(, Re) - (vs - vf)

Therefore,

f180(1 - 010 . F(O, Re) - |vfs f 112 > 0

which places the following constraint on the drag function F(#, Re),

F(#, Re) > 0

This rule is clearly satisfied by the expressions in Equations (2.37) and (2.38).

2.3.11 Fluid Phase Pore Pressure

The fluid phase pore pressure is governed by the constitutive relation given in Equation

(2.82),

2a~f (pf) -0
Pf - P

or, equivalently,

2 a5f (Pf)
Pf Pf
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We let the fluid phase free energy function, /(ps), be given by,

(ln(pof) - ln(pf) - 1 (2.86)Vef (p)= 2 (.6
Pf

such that,
00f ( pt) Kl( pf)3- Int pof

Dpf Pf

Therefore the fluid phase pore pressure is given by the expression,

pf =ln (, (2.87)

where pof is the true fluid density for which pf = 0.

2.3.12 Fluid Phase Shear Stress

We assume that the functional form of -rf is given by,

Tf = Tf(Dof, #)

with f isotropic and linear in Dof. From Truesdell and Noll [19651, the representation
theorem for isotropic linear tensor functions yields,

Tf (Dof, #) = 2p(#)Dof + A(#) tr(Dof)1

Since Dof is deviatoric, tr(Dof) = 0. By the inequality in Equation (2.84), we require that,

2pt(O)JDof 12 > 0

or,

We let the effective fluid phase viscosity, p(#), be given by the linear relation from Einstein
[1906] such that,

Tf = 2rjo (1 + 5#) Dof (2.88)

with rjo defined previously as the true fluid viscosity (i.e. the viscosity of the fluid without
suspended grains).
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2.3.13 Solid Phase Effective Granular Stress

The solid phase effective granular stress & is constrained by the thermodynamic rules set in
Equations (2.81) and (2.83). We begin with the equality in Equation (2.81),

3. - 2 Je-1Fe a(s(C")FeT = 0
DCe

which is equivalently,

& = 2Je-Fe as(Ce) F I (2.89)
aCe

We define an elastic stress measure, Te, such that,

Te JeFeT &Fe-T (2.90)

By Equations (2.89), (2.90), and (2.74),

&0 (Ce)
Te =2Ce (2.91)

DCe

and as shown in Anand and Su [2005], this is equivalent to,

&8 (Ee)Te = (2.92)aEe

Here we let the solid phase free energy function have the form,

35 (Ee) = GIlE el 2 + 1K tr(Ee) 2  (2.93)

where ||E"|1 2 = Ee : Ee. Therefore, the elastic stress T' is given by,

2GEe + K tr(Ee) = W[Ee] (2.94)

and the effective granular stress, 3-, is given by,

& = Je-lFe-T TeFeT (2.95)

2.3.14 Solid Phase Plastic Strain-Rate

The rules governing the solid phase plastic flow rate, DP, are given by the inequality in

Equation (2.83),
& : (Fe DPFe-1) - (J-l193) : DP > 0

Substituting in the expression from Equation (2.95), we find,

Je-IF eT TeFeT : (FeDPFe-1) - (Je-l1pO) : DP > 0
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which is equivalently,
(Te -- e pi) DP > 0 (2.96)

We assume that the granular skeleton in the mixture is elastically stiff, that is Ue ~ 1,
e ~ 1, and E' < 1. In this limit, |T| > o, and the thermodynamic inequality in

Equation (2.96) reduces to the following expression for the stiff plastic dissipation of the
granular skeleton,

D - Te : DP > 0 (2.97)

It is convenient to introduce another measure of the plastic strain-rate, IPP, which we
define as follows,

rP = FeDPFe- (2.98)

This choice of flow rule has two useful consequences. First, Equation (2.72) gives the following
expression for the solid phase strain-rate,

DS = De+ FeDPFe-1

which, by Equation (2.98), is equivalently,

Ds = De + FP (2.99)

Second, Equation (2.98) lets the dissipation rule in Equation (2.97) be re-expressed as,

D = F eT F Te F eT:p> 0

which, in the limit that Je ~ 1, is

D = P > 0 (2.100)

Therefore, we satisfy the dissipation inequality in Equation (2.97) by defining the plastic
strain-rate DP implicitly via FP subject to Equation (2.100).

2.3.15 Solid Phase Stress Evolution

The solid phase effective granular stress & can be determined through time by evolving the
elastic deformation gradient F , calculating E', and applying the definitions from Equations
(2.94) and (2.95). However, it is more convenient to use the Jaumann objective rate of & to
evolve the solid phase granular effective stress directly. This rate is defined as,

w fc sh

Dt+

which in the stiff elastic limit can be shown to be well approximated by,
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Combining these expressions, we define the material derivative of the effective granular stress
in terms of the solid phase elastic strain-rate D',

Ds& = 2GDe + K tr(De)1 + W& -- &Ws (2.101)
Dt

With D' defined in Equation (2.99) as,

D' = D, - FP

Simply stated, we evolve the effective granular stress according to how the solid phase is
straining (Ds) minus how much of that strain is plastic (FP).

2.3.16 Solid Phase Plastic Flow Rules

We let L'P have the following form,

r P = 0 + I p + d + 2)1 (2.102)
Vf2 11&o ll3

where,
1

o = & - tr(&)1
3

and the 'over-dot' operator (.) is equivalent to D . Y, 1, and 2 are scalar measures of
the solid phase equivalent plastic flow rates. P is the accumulated equivalent plastic shear
deformation. i is the rate of plastic expansion (Figure 2-7b), 2 is the negative rate of plastic
compaction (Figure 2-7c), and /3'P is the rate of plastic dilation (Figure 2-7a).

The dilation angle, 0, governs the rate of shear-dilation as in the simple critical state
model from defined in Roux and Radjai [19981 and Roux and Radjai [20011 (and first proposed
in Rudnicki and Rice [1975j). The functional form of f3 is the same as that given in Pailha and
Pouliquen [2009] with a slight adjustment differentiating between dense and dilute behaviors,

K 3(# - q#m) + K 4 ( - qeq) if q ;> #m (2.103)
K4(0#-$Oeq) if 0 < br

where On is the critical packing fraction for sustained granular contact, and #eq is the rate-
dependent critical packing fraction given by,

#eq = 1m (2.104)
1 + aIm

with a a material parameter. For 0 > 0m, we assume that the grains are always touching.
Therefore, the dilation angle in this regime must have a rate-independent component, which
we let be governed by the K3 term. For < 0m, the granular contacts are assumed to
be collisional, and therefore only governed by the rate-dependent K4 term. K3 and K4 are
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Figure 2-7: (a) In shear, the granular phase will obey critical state behavior and 'open-up'.
This phenomena is called Reynolds' dilation and is captured by the rate of plastic dilation,
#jP. (b) In expansion, the granular phase will 'open' freely. This phenomena is stress-free
and is captured by the negative rate of plastic expansion, 1. (c) In compaction, granular
collisions will result in a macroscopic pressure. This phenomena is governed by the rate of
plastic compaction, b.

unit-less material parameters.
We define the fi yield surface and flow rule for the equivalent plastic shear strain-rate,

ip, as follows,
fi =- - s(ptp,3)P

fi < 0

= 0

if j" > 0

with,

and,

(2.105)
if fi< 0 or fi < 0

then, fi=0 and fi=0

1
p = tr(&)3

(2.106)

(2.107)s(pp, /) = max(pp + /, 0)

The internal friction coefficient, gp, is given as a function of the inertial number, I, and
the viscous inertial number, I,. The specific form of this function follows from the definition
of p(Im) given in Amarsid et al. [2017] with slight adjustments to account for the viscous
inertial rheology found in Boyer et al. [20111. These inertial numbers are defined as follows,

I =- ipd r ,
P

IV-
p

(2.108)
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I ,/12 + 2I, (2.109)

We let p, =f A(Io, Im) with ft(I,, I.) formulated to capture both the p(I) dry granular

rheology from Jop et al. f2006] and the p(Iv) low stokes mixture rheology from Boyer et al.

[2011], as will be shown in Section 3. The functional form of p, is given as follows,

Ap(IV, Im) = i+ /12 P + (2.110)
1 + (b/Im) 2 aImJ

The f2 yield surface and flow rule govern the rate of plastic expansion, i, as follows,

f2 = -P

f2 < 0

i = 0 if f2 < 0 or f2<0 (2.111)
if &i > 0 then, f2 =0 and f2 = 0

with P given in Equation (2.106). This flow rule reflects our assumption that the granular
phase is able to come apart freely, that is we constrain P > 0, which is common for non-
cohesive granular materials.

The f3 yield surface and flow rule govern the negative rate of plastic compaction, 2, as
follows,

f3= g ()p - (a7)2 [(YP - K5 2 )2 d2 ps + 2TIo(* -

f3 < 0
(2.112)

2 = 0 if f3 < 0 or f3 < 0

if 2 < 0 then, f3= 0 and ja = 0

with,

(0 0)2 if < Om (2.113)0 if 0 ;> #M
The form of g(o) is chosen such that when the material does not support sustained contacts,
# < 0m, there is a rate-dependent upper bound on the admissible effective pressure P.
However, in the compacted regime, ;> 0m, any pressure is admissible, as the granular
skeleton is physically capable of forming lasting force chains. The upper bound on the value
of P is determined by inverting the expression for #eq defined in Equation (2.104). The unit-
less K5 coefficient defines the relative importance of the negative rate of compaction 2 in
determining this upper bound, compared to the plastic shear rate ';"'.

2.3.17 Proof of Dissipation

With the definition of ['P in Equation (2.102), we return to the dissipation inequality defined
in Equation (2.100),
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which is equivalently,

D &: &0
Dv2 =1 &0 "

7 (= o & )
v2 IIofl 3

tr(&)(i + 3 + 2) > 0

By the definition of J and P in Equation (2.106), we therefore have,

7'9 - P( + > 0

and,

D = P(t-- )- -2P > 0 (2.114)

From the definition of the f, yield surface and flow rule in Equation (2.105), we have the
following equality,

fi'P = 0
which, by Equation (2.107), is equivalent to

'P (T - max(pp + 3, 0)P) = 0

or,
P(;F -#7) = P max(pp, -B)

Since pp > 0, P > 0, and 3> 0, this reduces to,

<P(t - 0)) > 0

From the definition of the f 2 yield surface and flow rule in Equation (2.111), we have the
following equality,

f2i = 0

or,
- ip = 0 (2.116)

From the definition of the f3 flow rule in Equation (2.112), we have 2 0 and therefore,

-2P ;> 0 (2.117)

By Equations (2.115), (2.116), (2.117), we have shown that each of the components of the
dissipation inequality in Equation (2.114) are non-negative. Therefore, for the choice of
plastic strain-rate I'P in Section 2.3.14, we have proven that D > 0.
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(2.115)
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Chapter 3

Verification of Model

In this section we verify that the model laid out in Section 2 has the correct limiting behavior.
In particular we are interested in showing that under the appropriate conditions, the following
rheologies are captured.

" & Terzaghi's effective granular behavior.

* p(I), #(I) steady-state dry granular inertial rheology.

" p(Iv), #(Iv) steady-state viscous inertial rheology.

" q. (0) slurry/ suspension effective viscosity.

" F(b, Re) Darcy's law drag behavior.

We have previously shown, in Section 2.2, that the Stokes' and Carman-Kozeny limits
of the drag law, F(#, Re), are captured by Equations (2.37) and (2.38). For this reason, we
will not repeat this analysis here. Instead, we will focus on the steady-state behavior of a
uniform mixture under other applied flows.

3.1 Compaction

First, we consider the behavior of the mixture under an applied, distributed load f (as
shown in Figure 3-1), such that f has units N/m2 . We let the velocities of the two phases
be exactly zero,

vs = Vf = 0

Under the applied load, we expect the entire volume of mixture to compress into a smaller
volume such that the effective densities of both phases will increase,

Ps > POs
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Figure 3-1: Pictorial representation of a volume of mixture being compacted by a distributed
load f. For the purposes of verifying the model described in Section 2, it is convenient to
consider a flow where v. and vf are both zero.

where POs is the initial effective density of the stress-free mixture (before the load is applied).
Clearly then, by Equation (2.2),

>#0, and n<no (3.1)

with #o the initial packing fraction associated with the stress-free mixture and n the initial
porosity. We also have,

Pf > Pof

or,

npf > nopof

with pof the true fluid density in the stress-free mixture. By Equation (3.1),

S> 1 (3.2)
Pof

Since the fluid phase velocity is zero, we can use Equations (2.18) and (2.87) to determine
the fluid phase stress, of,

cf = -nK ln 1
\ Pf )

(3.3)

Under the applied compaction, the granular effective stress will take on some value & which
(by Equation (2.17)) is given by,

os =&O - l - (1-- nrin (P 1
\p(
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Combined, Equations (3.3) and (3.4) give,

a-= &0 - (P + r ln (PO ))1 (3.5)

with the total pressure response of the mixture being given by,

p = jtr(o-)= + Iln
P 3\Pof J

or,

=p - K ln (Pf) (3.6)
\Pof

with (by Equation (3.2)),

r, In >f 0
\ Pof

Equation (3.6) for the effective granular pressure is the same as that reported by Terzaghi
[1943], and we see that by Equations (2.105), (2.111), and (2.112), it is this same pressure
(the Terzaghi effective pressure P) that governs the plastic behavior of the solid phase.

3.2 Simple Shear Flow

We now consider the behavior of the mixture under an applied shear flow (as in Figure 3-2)
such that,

VS = Vf

and,

0 [ 0
grad(v) = grad(vf) L 10 0 0

-0 0 0-[00
where y is the steady shear-rate.

3.2.1 Fluid Phase Behavior Under Simple Shear Flow

First, under an applied steady shear flow, we have

div(v,) = tr(L) = 0

div(vf) = tr(L) = 0

and,

0 0
Df = (L + L T) = 0 0

0 0 0_
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t(n)

n

Figure 3-2: Pictorial representation of a simple shear flow within a volume of mixture. For
the purposes of verifying the model described in Section 2, it is convenient to consider a
flow where v., and vf are co-moving with a uniform velocity gradient and uniform mixture
properties. t(n) in the image represents the surface traction associated with the normal
vector to the surface n.

Since mixture is assumed to be uniform and n is constant, the rate of change of density in
Equation (2.10) reduces to,

Dt =f (I1 n) div (v,) + n div (vf) 0

By Equation (2.87) the expression above has the intuitive consequence that, under uniform
shear, the fluid phase pore pressure remains constant,

Dfp = 0, Pf = Peg (3.7)

with Peq some equilibrium pressure. The fluid phase shear stress, -rf, is given by Equation
(2.88) as follows,

0 0

/2

-rf = 2,qo (I + () 0 0 (3.8)
0 0 0

3.2.2 Solid Phase Behavior Under Simple Shear Flow

By Equation (2.99), under an applied steady shear flow, we have,

D,= D*e+ ]i
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with,
0 0

DS = !(L + L T) = 0 0
0 0 0-

and,

0 0~
2W = !(L - L T) =- 0 0

0 0 0-

In the solid phase there are two regimes of interest, the compacted regime with > ; m

and the non-compacted regime with 0 < 0,. In the compacted regime, the sustained
granular contacts result in non-steady behavior (the positivity of the dilatancy angle 3 from
Equation (2.103) results in continuous growth of the pressure P). For this reason, we will be
more interested in the behavior of the non-compacted regime, where granular stresses result
from intermittent granular contacts and interactions via the fluid medium. Assuming the
solid phase begins in a stress-free state, the evolution law for the solid phase effective stress
given in Equation (2.101) suggests the following form for & in the fully developed shear flow,

& =t -C 0 + 0 P 0 (3.9)
L 0 0 [O 0 P

where c and t have units of stress and E < t. If we let, P be given by,

p:: ( [(i)2d2ps+20o9] Pc (3.10)

with,
0 < PC <1

By Equations (2.111) and (2.112), we have,

f2< 0 -- > = 0, and f3 < 0 2 =0

Further, Equation (3.10) gives,

~ ~0 + 2[Qo ))P P I7

or, from the definition of the inertial numbers in Equation (2.108) and the mixed inertial
number in Equation (2.109),

ao
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and,

(3.11)
1- IM

Since this expression is identical to the value of Ieq given in Equation (2.104), Equation
(2.103) gives,

/3= 0

which therefore yields, by Equation (2.102),

tr(FP) = 0

and, in combination with Equation (3.9),

Pp &0
v12 ||&ofl 2 t+e 2

[ 6t
0

t 0
-E 0
0 0-

Intuitively, in steady shearing flow, the equivalent plastic shear rate P will be non-zero
and very nearly equivalent to total steady shear rate '. Therefore, by Equation (2.105),
fi = 0. And, if we let *P be given as follows,

/ Yt
"t2 +C ~2

then,
. 2 t 0

Tp = 2(2+6-t -C 0
2(2 e) -0 0 0

We can now solve for the evolution of the granular effective stress according to Equation
(2.101),

D s
Dt 2G(Do - Fe ) + K tr(D)1 - tr(L'P)1 + W& - &W

Dt 
which becomes,

~2
Dt (t 2 + e2) L

-t C 01
e t 01
0 0 0]

t 0
+4 -6 -t 0

-0 0 0-

Clearly then, if we let Ge -- c2 = t 2 and let the material be elastically stiff, such that G >> t,
we find,

D- =s 0
Dt

with,
~~0, and ~~
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Therefore, the solid phase effective stress is well approximated by,

'0 t 0 [ P
~ t 0 0 + 0

0 0 0 0

and, by fi = 0 in Equation (2.105),

3.2.3 Combined Behavior Under Simple Shear Flow

Given the steady-state phase stresses defined in Equations (3.7), (3.8), and (3.12), the total
mixture stress as defined in Equation (2.5) is given by,

o- = 210 (1 + 5) [0 02
0 0

2 0
00 0]

0 PPP 0
+ pPP 0 0

[0 0 0]
+ (Peg + P)1

According to the Equation (2.4), we let the surface traction vector be given by,

t(n) = on

in particular, we are interested in the measured behavior perpendicular to the flow gradient,
that is,

0
n = 1

-0

and the traction vector for this normal,

tJ (I + 5q ) + J
t (n) =, in=Peg +Pf

0 0
(3.14)

where tt is the shear component of the traction vector and t, is the normal component of
the traction vector.
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3.2.4 Dry Granular Rheology

In steady simple shear flow, dry granular materials have been shown to obey the P(I) and
#(I) rheology. As given in Jop et al. [2006] and Da Cruz et al. [20051,

A(I) = P + ,2 -Aand 0(I) = #m - CI
I + (10/1),

with c some material constant and p(I) is the ratio between the measured shear traction
component tt and the measured normal traction component ti, for the entire mixture. This
behavior is captured by our model in the limit that mO -+ 0 and Peq - 0. By our definition
of the inertial numbers in Equations (2.108) and (2.109),

7 -+ 0 --> I, 0 > Im -+ I

Equation (3.11) gives the relation for the steady packing fraction under an applied shear
flow as,

Om

1+ aIm

Expanding around Im I ~ 0, we find

#= 5m - amI + 0(12)

which is a reasonable approximation of the 0(1) rheology if a = (c/m). We also note that
with tt and ti, given as in Equation (3.14), and in the limit of 70 - 0, the ratio of tt/t is
given as,

?7O - 0, Peq -+ # 0 =111,-
tn

where yp is defined in Equation (2.110), which for Im - I and I -+0 becomes,

P2 - P1
P = Al + I + (b/I)

This clearly matches the p(I) rheology for b= 10.

3.2.5 Viscous Granular Rheology

Boyer et al. [20111 experimentally investigates the steady-state rheology of mixtures under-
going steady quasi-2D shear flow at low Stokes numbers with Peq = 0. The Stokes number
of interest in this context is defined in Amarsid et al. [2017] as,

St =- _ 2 (3.15)
17O IV

Conceptually, the Stokes number of the flow relates the relative importance of the two basic
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inertial numbers, I and I. In the limit that the Stokes number goes to zero, we find that
the mixed inertial number Im depends only on the viscous inertial number,

St 4 0 - , Im -2I+

Through dimensional analysis and fitting lines to experimental data, Boyer et al. [2011]
define the p(Iv) and /(Iv) rheologies as follows,

WO I ) = 2-P1 + +In + .. f-I
1 + (I/I) V 2

and,

q5(I.) = m
1 + V T^

Again, in the steady flow predicted by our model, Equation (3.11) gives,

1+ aIm

which, with Im ~ V2I, becomes,
Orn

1+ a -2I

This is clearly identical to the relation given by #(Iv) when a 1 For the P(Iv) rheology,
it is important to note that Boyer et al. [2011] measures t = (tt/tn). In the viscous limit,
this includes both granular and fluid stresses.

tn P

or equivalently,
= I(1 + q#) + p

Substituting in the steady state packing fraction from Equation (3.11) and the expression
for the friction coefficient from Equation (2.110) we find,

[t = Pi + Iv + 5#m Iv" (3.16)
1 + (b/V2I) 2a2

Exact recovery of the p(Iv) rheology is not possible with our model; however, as shown in
Figure 3-3, we can fit our model for p(Iv, Im) to the the data directly. Strong agreement is
found between our model fit, the model fit in Boyer et al. [20111, and the data collected in
that work. The fit parameters for the plot in Figure 3-3 are given in Table 3.1
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Table 3.1: Fit Parameters for Figure 3-3

Parameter Wp(I) P(IV, Im)
Pi 0.32 0.2764
P2 0.7 0.8797
I0 0.005 -

#M 0.585 0.585
a - 0.7071
b - 0.1931

3.2.6 Suspension Effective Viscosity

Significant work -has been done on understanding the behavior of co-moving suspensions
of granular material in fluids. We are particularly

suspensions due to the solid phase volume fraction
interested in the viscous thickening of
as reviewed and summarized in Stickel

and Powell 12005] with ?], the relative viscosity, given as,

tt #

7107 #

which has two important limits. In the dense limit (# - 4m), the viscosity of the suspension
approaches infinity, that is,

lim rr = oo

In the dilute limit (q - 0), the viscosity of the mixture should obey,

lim = 1

with [] = for hard spheres (Stickel and Powell [2005]).

As in Section 3.2.5, we are concerned with the behavior of our mixture model in the low
stokes limit such that,

Therefore,
tt Tlo (I + ()+ [1,P

'm7 2I7
2__ __ _ _

770' . Y 7l '

or,

5 0 Ap
2 It

Recalling the relationship found for the steady state packing fraction in Equation (3.11)
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Figure 3-3: Plot of the ratio between the shear traction and normal traction (p) against the
inertial number Iv. Data collected by Boyer et al. [2011] is shown as the shaded blue circles.
The pu(Iv) rheology from that work is shown in the dashed line. The combined mixture model

presented in this work is shown in the solid line.

and the functional form of p, given in Equation (2.110), we find,

IV = - o -

S 2 m - #

and,

r/r(#) =1+ 5 OM ) 2 Qp )(/I1 + A 2 - (3.17)
2 m -0 ) # M - # 1 + abo/(Om - 0)

It can be shown that this relation achieves both limiting behaviors required of effective
viscosity models. For comparison, we look at three empirical relations for the effective

viscosity of fluid-sediment mixtures reported in Stickel and Powell [2005]. The first is the
classic result from Einstein 11906] which gives the correct dilute suspension behavior,

lgrr 1+ # + (#2 ) (3.18)

Another relationship given by Eilers (Eilers [1949] and Ferrini et al. [1979]) predicts the
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correct behavior in both the dense and dilute phases,

I= + 4 (3.19)
1 -- #/Om

A third relationship, given by Krieger and Dougherty [1959], predicts similar behavior,

-5

( -2=m (3.20)

In Figure 3-4, we show how each of these empirical models (in addition to the model proposed

here, 'tr(#)) compares to the experimental measurements reported in Chang and Powell [19941
(from Chong et al. [1971], Poslinski et al. [19881, Storms et al. [19901, Shapiro and Probstein
[1992], Chang and Powell 11993], and Chang and Powell [19941). By noting the similarity of
the materials used by Chang and Powell [1994] (PS and PMMA), to that used in Boyer et al.

[2011], we simply reuse the coefficients determined in Section 3.2.5 and as given in Table 3.1

for plotting Equation (3.17) in Figure 3-4. The collapse of the data onto the curves is good

for low values of 0/0m; however the predictions seem to deviate at higher values. This may

be due to the significant difference in #m reported in Chang and Powell 11994] (#m 0.7) to

the value used in this work (Om = 0.585).
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* Chang and Powell (1994)
. .Einstein (1906) 0
- - -Eilers (1941)
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Figure 3-4: Plot of the effective viscosity rq, versus the relative packing fraction 4/#m. The

model given by Einstein [1906] (Equation (3.18)) is shown in the small dotted line. The

model given by Eilers [1949] (Equation (3.19)) is shown in the dashed/dotted line. The

model given by Krieger and Dougherty [19591 (Equation (3.20)) is shown by the dashed line.

The model given in this work by Equation (3.17) is shown by the solid line. The circles

represent the experimental results reported in Chang and Powell [1994] (from Chong et al.

[1971], Poslinski et al. [19881, Storms et al. [1990], Shapiro and Probstein 11992], Chang and
Powell [1993], and Chang and Powell [1994])
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Chapter 4

Numerical Implementation

In this section we describe the numerical implementation of the theory described in Section
2. In particular, we are interested in time-accurate simulations of fluid-sediment mixtures
undergoing arbitrarily large deformations. To do this, we use a material point method
framework capable of simultaneously solving all of the governing equations shown in Table
4.1 (including solving the equations for plastic flow given in Table 4.2). The material point
method framework we present is a derivative of that shown in Dunatunga and Kamrin
[2015] and borrows heavily from methods described in Abe et al. [2013] and Bandara and
Soga [20151.

Figure 4-1 shows the basic method we implement. First, the mixture problem is defined
and the material configurations are given (Figure 4-1(1)). The two phases are then separated
into the continuum bodies described in Figure 2-2 (Figure 4-1(2)). These continuum bodies
are discretized into two sets of Largrangian material point tracers. These tracers carry the
full description of the continuum bodies (stress, strain, density, velocity) and serve to advect
material properties through space (Figure 4-1(3)). These two sets of tracers are then placed
into a simulation domain which is discretized into a background grid. The background grid
is where the equation of motion are solved in the weak form (Figure 4-1(4)).

4.1 Material Point Method Discretization

The material point method, as first derived by Sulsky et al. [1994], is a numerical scheme for
solving dynamic problems in solid mechanics where materials undergo large deformations.
The basic algorithm defined in Sulsky et al. [1994] and generalized by Bardenhagen and
Kober [20041 involves discretizing material fields (such as density and stress) on a set of
material point tracers and solving the equations of motion on a background grid.

In Abe et al. [20131 and Bandara and Soga [2015], the material point method is extended
to solve the equations of mixtures defined in Jackson [20001 (here in Equations (2.21) and
(2.22)). Our material point method algorithm is not significantly different (as far as we can
tell) from that given in prior works; however, we will briefly review our method here prior
to covering the results of our implementation.
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Table 4.1: Summary of Governing Equations

Rule Expression Number

Solid Phase Ds1 s + Ps divvs= 0 (2.7)
Mass Conservation Dt

Fluid Phase Dfif 0(2.9)
Mass Conservation Dt + ji div V= 0

Fluid Phase n Df pf div ((1 - n)v, + nvf) (2.10)
True Density Pf Dt

Momentu Baance Ps Dt Sg fd + div(&) - (1 - n) grad(pf) (2.21)

Fluid Phase Dfvf g
Momentum Balance f Dt pg+ fd + div(rf) - ngrad(pf) (2.22)

Darcy's Drag Law f =18(1d F '(,Re) (v, - vf) (2.39)

F(, Re) = F(#, 0) + f (0, Re) (2.38)

F~q$0) - 1005
F((, 0) - 2 + (1 - )2(1 + 1.5 f) (2.37)

(1 - )

Fluid Phase pf = r ln (2.87)
Pore Pressure po f

Fluid Phase 21 + k"D (2.88)
Shear Stress 2=r ( 1

(

Efecv Stress D 2GD + K tr(De)1 + W& -&Ws (2.101)

De = D -- FP (2.99)

p =, + 3 (7P + + 2)1 (2.102)
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Table 4.2: Summary of Plastic Flow Equations

Rule Expression Number

Solid Phase &- &P 0o
Plastic Flow Rate V'2ofl + + Pi + 2)1 (2.102)

Dilation Angle K 3 (0 - Om) + K 4 (# - qeq) if q > Om (2.103)
K4 (0 - #eq) if # < M

Critical State OM
Packing Fraction I4e 1 + aIm (2.104)

Internal Friction = /2 - Pi +.
Coefficient = + (b/Im (2.110)

fi Yield Condition fi = - - max ((pp + O)P, 0) (2.105)
fi 0, > 0, f7/ = 0 (2.105

f2 Yield Condition . . (2.111)
f2 0, 1 > 0, f26 = 0

. 3 - g(q$) [(NP - K 5 d2 ) 2 d2 p8 +I 2rjo(GP - K5 d2 )] (21)f3 Yield Condition .(2.112)

f3 0, 2 0, f32 = 0

g() ( ) if ( < m 2.113) 00 if # > OM
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(2) Define Continuum Bodies (3) Discretize Continuum Bodies

Define Mixture

w3tONS KC K

*
/U

(4) Solve with M PM

NU

El!

Figure 4-1: The basic method of solving mixture problems using the material point method.
(1) Define the mixture and initial configuration including densities, porosities, stresses. (2)
Define the solid and fluid phase continuum bodies. (3) Break the continuum bodies into
piecewise-defined blocks of material represented by discrete material points. (4) Solve the
equations of motion for the mixture on a background grid according to the material point
method algorithm described in Section 4.2

4.1.1 Definition of Material Point Tracers

As shown in Figure 4-1(3), the two continuum bodies defined in Figure 2-2 by B and B'
are discretized into material blocks represented by discrete material points. We therefore let
the continuum representation of the bodies be given by,

N . I

SUs,(x) =
P=1

Nf 

I
LUfp(X) = 0

P=1

X c B,
else

else

(4.1)

where x is the position vector in the domain , Usp(x) and Ufp(x) are the pth material point
characteristic functions (as in Bardenhagen and Kober [2004]) that are co-moving with the
material, and Ns and Nf are the number of solid and fluid material point tracers. Intuitively,
the total sum of the characteristic functions defines a spatial field which is equal to 1 within
the body and 0 outside.

Clearly then, we can construct the solid continuum fields using the U, functions as
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follows,
N.

PS (X)= PsPUsP(x)

P=1 (4.2)
N,

&(x) = &UsP(x)
p=1

where ip represents a constant (scalar, vector, or tensor) associated with the field /)(x) and
the pth material point. The fluid continuum fields are constructed as follows,

Nf

Pf(X) = pfpUfP(X)
p= 1

Nf

pf(X) = ) pfpUfP(X)

Nf1 (4.3)

r(x) = L rUfP(X)
p=1

Nf

pf(X) = ) pfPUfP(x)
p=1

We also introduce a measure of material point weight, vsp and vfp,

VS= j U8 (x)dv

(4.4)

Vjp = Ufp(x)dv

In addition to the fields above, we let each material point have a centroid (center of
mass) which maps to a location xs, for the pth solid material point and xfp for the pth
fluid material point (see Figure 4-2). This centroid moves through the domain and has an
associated momentum mv, or mvpvfp respectively with,

d
m VP VsPpsp, -(mS) = 0

dt (4.5)

mfp Vfppfp' d (mfp) = 0

For our formulation, we also require that the material characteristic functions obey the
following rule,

Usp(xsq) = 6pq Vp, q C [1, Ns]
Ufp(xfq) = 6pq Vp, q E [1, Nf]
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with 6pq the Kronecker delta function,

(a)

(b)

31-
313

31--
y31

31
'31

Eu
U U

U
U

X*~
IX

Figure 4-2: (a) The fluid phase is discretized into Nf material
{xfp} and masses {mfp}. (b) The solid phase is discretized
centroid locations {x,,} and masses {m8,}.

points with centroid locations
into N, material points with

4.1.2 Definition of Background Grid Basis

In addition to the material point representation of the continuum bodies, we also use a grid or
nodal basis for the purpose of solving the weak form equations of motion and approximating
material fields (for post-processing and simplifying intermediate calculations). Since both
bodies live within the same computational domain, Q, we let one discrete grid serve this
purpose for the entire mixture. The grid is defined by continuous piece-wise basis functions,

[n]

L i (x) = I Vx E Q (4.8)

where N (x) is the ith nodal basis function and [n] is the total number of nodes (or degrees of
freedom if discontinuous shape functions are used). With this definition we can then define
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p = q
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XfP

mf p jf#fUfp (x) dv

=S f sUsp(x)dv
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the following nodal fields,

DSVS [n]

Dt (x) = a,(x) = asi2/;(x)

[n]

v5 (x) = vsi/i;(x)
i=1

Df vf [n]

Dt (x) = af (x) = af2 iNi(x)
(4.9)

[n]

Vf(X) = ZVf iN(x)

i=1

[n]

w(x) = ZwzM(x)
i=1

[n]

n(x) = nii(x)
i=1

where Oj represents a constant (scalar, vector, or tensor) associated with the field O(x) and
the ith nodal basis. w(x) is an arbitrary test function which is used in forming the discrete
system of equations from the weak form of the governing equations.

In addition to the fields above, we also introduce a measure of the nodal basis weight, Vi,

Vi = j i(x)dv (4.10)

It is numerically convenient to let the background grid be composed of regular Cartesian
elements. We therefore let the construction of the basis functions {.M(x)} be the tensor
product of ID functions .AD(x) (see Figure 4-3) with x a measure of the distance from the
grid node to the spatial position x along one of the primary Cartesian directions, {i, y, 4},

ID i(x) = D(X)

2D Mi(x) = AlD (x) l1D(Y) (4.11)
3D Mi(x) = '1D(x) M1D(Y) -1VD(Z)

The choice of K1D(x) can have significant impact on the accuracy of the material point
method especially for reduction of 'grid-crossing' error (see Bardenhagen and Kober [2004])
and quadrature error (see Steffen et al. 120081).
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Figure 4-3: The nodal basis functions {N(x)} are defined on a Cartesian grid by the product
of ID functions M1D(X) in each of the primary directions { , , 4}. In this work, we use the
basic linear shape functions from Sulsky et al. [1994] (shown by the solid curve), the GIMP
shape functions from Bardenhagen and Kober [2004] (shown by dashed curve), or the cubic
splines defined in Steffen et al. [2008] (shown by the dotted curve).

4.1.3 Definition of Lagrangian Motion

As stated in Section 4.1.1, we define the material point characteristic functions U8p(x) and
Ufp(x) to be co-moving with the material. We therefore require that the material point
centroids move according to the following rule,

d
d(

dt

Vp E [1, Ns]

Vp E [1, Nf]
(4.12)

and, as in Brackbill and Ruppel [1986] and Brackbill et
material point velocity coefficients according to,

d
(v ,) - af(xf,)

d
dt (vfp) = a(xf,)

Therefore, arbitrary functions fs(x) and ff (x)
{ffP} as follows,

al. [1988], we separately evolve the

Vp E [1, Ns]
(4.13)

Vp E [1, Nf]

defined by the sets of coefficients {f } and

N

f8 (x) = f 8 US (x)
p=1

Nf

ff (x) = ffpUfPx
p= 1
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have the following useful properties. First, by Equation (4.6), the function coefficients are
collocated with the material point centroids,

fsp = fS(xS)

ffp = fs (xfp)

Vp E [1, Ns]

Vp C [1, Nf]

and, as a consequence of the definition of the material point centroid motion from Equation
(4.12), the coefficients of fs(x) and ff(x) evolve according to,

Dsfs(x)
Dt XSP

Df fff(x)

Dt
Xf P

Vp E [1, Ns]

Vp G [1, Nf]

4.1.4 Weak Form of Momentum Balance Equations

We consider an expression for the weak form of the solid and fluid phase momentum balance
given in Equations (2.21) and (2.22),

I C

I

Dt

D vfPfDt

w) dv =

Sw) dv =

I (pg -w - fd - w + div(-) -w - (1 - n) grad(pf) - w)dv

I (Pfg - w + fd - w + div(-rf) -w - n grad(pf) -w)dA

or equivalently,

((Psg - fd) - w + (1 - n)pf grad(w) - - : grad(w))dv +
fa Q

(t.(n) -w)da

f t D f[fPf v -w dv= ((f g -w + fd) -w + npf grad(w) - ry : grad(w))dv + (tfr(n) -w)da

(4.14)

where we let Q be the entire domain of interest, &Q be the boundary of that domain, and
w a test function. Using the point and nodal representations of the continuum fields from
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Sections 4.1.1 and 4.1.2, we create a system of 2[n] equations given as follows,

N,

Af (x)Ai(x)Usp(x)dV = EPspg
p=1 4uMi(x)U,(x)dv

N ,

- E -j grad (/i(x)) Usp(x)dv
p=1

NT

+ (1 - ni)pfpj

p=81

- fdA(x)d +j

Vi E [1, [n]]

grad (Mi(x)) Us,(x)dv

(t.(n)Qi(x))da
QG

J A& (x)Ni(x)Ufp(x)dv =

N1

L 1fP

A; (x)Ufp(x)dv

Nf

p=1

Nf

+ L nhp
P=1 2

grad (/i(x)) Ufp(x)dv

(4.16)

grad (.M(x)) Ufp(x)dv

+ fdi (x)dv +

Vi E [1, [n]]

For numerical efficiency, we assume the following simplifications.
point quadrature scheme to simplify the following integral expressions,

(tf (n)Ai (x))da

First, we use a one

Si I j- J\(x)Usp(x) dv

Sf p - j i 4 (x)Up(x) dv

VSsi jgrad (Ai(x)) Up (x) dv

VSfi z - grad (Vi(x)) Ufp(x)dv
V5, JQ

A (xf,)

grad (Ai(x)) I

grad (i(x)) IXf
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N. [n]

E E3pspas,
p=1 j=1 4

and,

(4.15)

N, [n]

p=1 j=1

and,

(4.17)

(4.18)



Second, the left hand side of the expressions in Equations (4.15) and (4.16) can be expressed
as a matrix vector product acting on a vector of the acceleration coefficients arj or afi. As
in Sulsky et al. [1994], we diagonalize the matrix and find the following reductions,

[n]

) as
=1 i
afj

j=1

Kj (x)Mi(x)Usp(x) dv

A (x) i(x)Ufp(x)dv

(4.19)

vf s1 jpasf

~VfSfiPaf i

These simplifications reduce the weak form system of 2[n] equations into the following form,

msiasi = msig - fdi -

mfiaf= m=fig + fdi -

N

Z (vS&P3VSSP) + (1
p=1

81:

Nf

- n ) > (vfPpfPVS 2 P) + ssi
p=1

Nf

(vfp-rf VSfip) + ni L (vfppfpV Sip) + sf i
p=1

Vi E [1, [n]]

Vi c [1, [n] ]

(4.20)
where mni and mf are nodal mass coefficients given by,

N,

mnsi -E spSsip
p=1

Nf

mni = LmfpSfip
p=1

and where ni are the [n] coefficients which define the nodal approximation of the porosity
field given by,

(4.21)

(4.22)nj Msi
Vi ps

and fdi, ssi, and sfi approximates the remaining integrals in Equations (4.15) and (4.16). ssi
and sfi are given by the boundary conditions defined on 9Q. fdi is given as follows,

18ni (1 - ni)r7o (
fd = d2 F((1 - ni), Ref) (vsi - vfj)

with F defined in Equation (2.38) and,

Rej = njj|v5 - Vfillpfo d

Nf

5 VpfSfp
P=81

81

(4.23)

(4.24)



4.1.5 Discrete Mass Balance

By defining the material point characteristic functions according to the rules in Section 4.1.1,
we can define a set of N, solid phase and Nf fluid phase equations governing the evolution
of the coefficients psp and pf respectively,

Dt X

Df pf
Dt xf

= -P, div v,

-pfpdivvf Xfp

Vp C [1, Ns]

Vp E [1, Nf]

div(vf) Xf

div (v) X

[n]

= tr vsj ®

[n]
=tr (Vfi 0

and 0 is the tensor product operator such that

u O v = u * (VT) =
UIV2 U1 V 3

U 2V2 U 2V 3

U3 V2 U3 V3_

Then, by Equation (4.5) we also have,

d
-- (v f) = v f div v f x ,p

d
( vf)= gdiv vf Xf

Vp E [1, Ns]

Vp E [1, Nf]

4.1.6 Discrete True Fluid Density Evolution

As in Equation (4.25), we define Nf equations which govern the evolution of the set of
coefficients {pfp} as follows,

d Dp = - (pf div ((I - n)v, + nyf)dX Dt n

which can be approximated by the system,

d [n]

(PrP) ~-- tr -ni)vs
1tn

+ nivrf] 0 Vsf i)

Vp E [1, Nf]

Vp c [1, Nf]

82

d
dt

d (/fP)
(dt )

where,

(4.25)

VSf2P)

(4.26)

uIvI

U2 V 
U3 VI

(4.27)

(4.28)

(4.29)



where nr is given by,
[n]

n= niSfip (4.30)

4.1.7 Discrete Fluid Pore Pressure

The set of coefficients {pfp} are determined by collocation of Equation (2.87) with the
material point centroids according to,

pfp = rln f)
\Pof /

Vp C [1, Nf]

4.1.8 Discrete Fluid Shear Stress

The set of coefficients {-rf,} are determined by collocation of Equation (2.88) with the
material point centroids according to,

If = 21o (1 + (1 - n)) Dof P Vp C [1, Nf]

with np given by Equation (4.30) and Dfp the symmetric part of the velocity gradient at the
material point centroid,

Dfp = sym v i 0 Vsf2p) (4.33)

4.1.9 Discrete Effective Granular Stress Evolution

The discretized solid phase effective granular stress field evolves according to the N, equations
derived by collocating Equation (2.101) at the material point centroids,

= 2GD"' + K tr(Dep)1 + Wsp&p - &pWSP Vp c [1, Ns]

with,
De = De - 1 tr (Dep)1

and,
De, = Dsp - TFPp

The symmetric and skew symmetric parts of the solid phase velocity gradient at the material

centroids are given by,

D= sym(Lsp), WSP = skw(Ls,)
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(4.31)

(4.32)

Ds

Dt
(4.34)

d (&P
(dt)



where,
[n]

Lsp vsi 0 VSi (4.35)

The set of plastic flow rates {FP} must be determined at each material point independently

according to the rules developed in Section 2.3.16 and summarized in Table 4.2.

4.2 Time Marching Procedure

For time integration, we consider an explicit method for determining the state of the system

at discrete time-steps. The following procedure (shown in Figure 4-4) is used to step from

time tk to time tk+1 where,
tk+I - t k + At = kAt (4.36)

We let the superscript k above a scalar value O/ represent the value of V/ (t) at the discrete
time tk.

1. The discrete material point states of the two phases are known at time tk.

solid phase: {pk, & , meP, x4 , vS,}

fluid phase: {f), p ,, -ryfI ,Pf' mfp Xf ,Vf }

2. The material point centroids, {xS} and {xf} are used to generate the mapping coef-
ficients {Sk,}, {Sk}, {VSk,}, and {VS,} according to Equations (4.17) and (4.18).

Sk.k,sip = Ni (xs ),

fi = Ai(xf ),

VSk = grad (1i(x)) XS

VSj, = grad (M(x)) X

3. The nodal mass coefficients, {m k} and {mi}, are determined according to Equation
(4.21).

N.

m kZmspSk,

p= 1

Nf

= fp f ip
P=1

4. An intermediate nodal representation of the phase velocity fields, given by the coef-
ficients {vs} and {vfr}, is determined by approximating the material point velocity
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field, given by the coefficients {vS } and {v4j}.

N.,
k VS* = kmsVS ks

P= 1

Nf (4.37)

p=1

5. The nodal porosity coefficients, {n}, are determined according to Equation (4.22).

k mk

6. The nodal approximation of the inter-phase drag, given by {ffd}, is determined ac-
cording to Equation (4.23).

18n (1 - nk)77
fdl d2

Nf

F((1 - nt), Ret) (v,, - vf ) ZV," -iS
p=1

7. The acceleration of the solid phase at time tk+1, given by {asi+1}, is determined by
solving the explicit form of Equation (4.20).

N,

Sia mig - fdi - N (vvs-,ip)
p=1

Nf

+ (1 - ) Vip) + s+
p=1

8. The acceleration of the fluid phase at time tk+1, given by {ajf+'}, is determined by
solving the explicit form of Equation (4.20).

Nf Nf

mk af+1 = mkig + fdk - k (v _r4,Vs V) n ( VSk) + Sf

p= 1
p=

1

9. The phase velocity fields at time tk+1, given by {vf+ 1 } and {Vf+l}, is determined
explicitly according to,

VSk+1 = vk + At a. +1

Vf + = Vf* + At af k+I
(4.38)

10. The material point centroid positions and velocities are updated explicitly according
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to Equations (4.12) and (4.13),

xsk+1 = xs +

Xf k+1 = Xf +

[n]

zAt ZVk+SkAt vsf+1ip + (6,k)
i=1

[n]

At H vfk+1S (f )

i 

[n]
(4.39)

k+1 vsk + AL as1kVSP 'Vp+ t 2 is sip

[n]

Vf k+1 = Vf +At Zaf +S

i=1

where 3 k+1 and b k+1 are the 6 position correction described in Section 4.4.5.

11. The material point densities at time tk+1, +} and {pi+1}, are updated according
to an explicit integration of Equation (4.25).

k+1 = k expP p8 r1 p (
-k+1 = -k x
Pf p -Pf p exp

- (At) tr

[n]

- (At) tr

vsfk+1 ( VS)

vrfk+1 (g Vp

12. The fluid phase material point true densities, {pk+ 1}, are determined
gration of Equation (4.29). (Note that for numerical stability, we do

{nk+1} {Pk+1} and {pk+ 1}

by explicit inte-
not require that

be consistent.)

[n]

n k+1
i=1 ' i

P At
tr (1 - n )Vsk+ 1 + n k V k+1 o vok

i=1 )
13. The fluid phase material point pore pressure state is determined directly from the true

fluid density by Equation (4.31).

k+1

Pfp , In(! po f
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14. The fluid phase material point shear stresses, {r +1 }, are determined directly from
the fluid phase velocity gradient according to Equation (4.32).

k+1 = 2r/o(1 + (1 - n k+1))Dof k+1

[n]

D k+1 = sym
i=

Vf +1 g VS)

15. The solid phase material point effective stresses, {&k+1}, are determined by integrating
Equation (4.34) with a semi-implicit method described in Section 4.3.

&k = &k+ At [2G(D - P ++K tr(D k+1 -P k+l)1 I+ k+1& - kWs+]1 p apE .1[A~~~p Lop pirLS pL)~Vs O p p r
(4.40)

16. With discrete material point states of the two phases determined for time tk+l,

solid phase: {p +1 -+1 k-i- xs+ k+1

fluid phase: pk+1 k+1 k+1 k+1 k+1 k+11{fp , Pjp , TY p ,Pfp ,mfp, xfp , Vfp

the procedure is repeated for the k + 1 time-step.

4.3 Semi-Implicit Effective Stress Algorithm

The material point effective stress is updated at each time-step with the semi-implicit time
integration scheme described in this section. Given the material point stress states at time
tk,

and the total material point flow rates at time tk+1, {DsP+} and {W'p 1} with,

Wkl = skw(L sk+ 1 ) (4.41)

and,
[n]

L 1 VSk+ 1  Vk

we solve for the plastic flow rates {FPk l} given by,

(4.42)

p )k+l &k+1

_ +pk p \,/ +o

(1 ( )+1
+ (i)k+1 + ()k 1
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D sk+' = sym(L s1),



-t--k - - -

tk+1

i...............

1. Point state tk known.

2. Point to node map.

3. Nodal mass determined.

4. Intermediate velocity determined.

5. Nodal porosity determined.

6. Interphase drag determined.

7. Solid phase momentum balance.

8. Fluid phase momentum balance.

9. Nodal velocity determined.

10. Point centroids updated.

11. Point densities updated

12. Point true density updated.

13. Pore pressure determined

14. Fluid shear stress determined.

15. Solid effective stress determined.

16. Point state tk+l known.

Figure 4-4: The explicit time integration procedure described in Section 4.2 is shown. At the
beginning of the step, the material points carry the full state of the mixture. The mixture
state is then mapped from the points to the background grid nodes, where the equations of
motion are solved according to the weak form of momentum balance. At the end of the step,
the solved equations of motion are used to update the mixture state on the material points.

such that (with {(j*P) +l, ( ,)k+1 ( 2)k+1} determined for each material point)
point stress state at time tk+1 is given by Equation (4.40),

the material

+= & +At[2G(D 0 4 1 _ Fr+1) +Ktr(D +1 _ p+ 1 )1+W +13 - W4 + 1

4.3.1 Definition of Trial Stress

The update from Equation (4.40) can be separated into a trial step,

&p' = &k+ At [2GDOs+1 + K tr(D +k1)l + Wsk+1& - &kWk+11
p ' 0 + xP PrK.S }i + I ~-O ~p

and a plastic step,
&+1 = & - Atr 1 + Ktr(pk+1)1]

p p L2GOP+ trP)]

(4.44)

(4.45)

where &tr is a trial stress found between times tk and tk+1. Since the trial stress given in
Equation (4.44) is an explicit function of the strain-rates in Equations (4.41) and (4.42), we
use it as the starting point of our implicit algorithm for solving Equation (4.45).
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4.3.2 Simplification to Scalar Relation

The relation in Equation (4.45) is separable into a deviatoric part,

&0 +I1 = &o t - 2G AtFp+1 (4.46)

(4.47)
and a spherical part,

tr (&)+l = tr(&)tr - 3KA tr(F p+ 1 )

At first glance, these implicit expressions appear to be tensor relations; however, by
introducing the following scalar stress measures, we reduce the implicit tensor relations to a
set of implicit scalar relations (which are much simpler to solve numerically).

II k+11-k+1 _ P
TP -
-1+1 = tr(&k+l)pp -3

Returning to Equation (4.46), we substitute in the expression
flow rate from Equation (4.43) to find,

- k+t
a-op~k~ f2_COP~0wa ar - GAtio+al w

which suggest that &0 k+I and &Ot' are co-directional with,

(4.48)

for the discretized plastic

-k+1
ok+ _p -trP jtr aPp

and,
Tk+= - -Gtr (p)+1
rp tGo t i Pr

Similarly, Equation (4.47) can be reduced to the simple relation,

P+ = PP + KAt(#()")+ + (Pi) +1 + (2)+)

(4.49)

(4.50)

(4.51)

By solving the system of equations in (4.50) and (4.51) subject to the following discrete
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yield conditions,

(fi) - max ((up + 0)-'+, 0)p p\ pP

(fi)k+1 < 0, (ip)k+1 > 0, (f-)+l(*P k = 0

(f) k+ = -k+1

p PP (4.52)(f2)l < o, ( i) 0, (f)k+l() = 0 (
pp - k - 2io(p)~

(f3)k+1 +1 _g(o) [(('p+1 )k+1)2 2 r/(('p)k+- )k+1)
(f3)k+l < 0, (42)k+1 < 0, (f3)-+ 0

we arrive at the final effective granular stresses at time tk+1,

k+1

&k+_r &tr - 1k+11 (4.53)

4.3.3 Complete Algorithm for Stress Update

The following section describes our method of solving for {p+1} and {Ji+1} (and therefore

{&+1}) given { } {jp}, {ip}. This algorithm is designed to simply (but perhaps
inefficiently) solve the non-linear system of equations given in Equations (4.50) and (4.51)
subject to the inequality constraints given by the yield conditions (Equation (4.52)).

As shown in Figure 4-5, the basic algorithm involves taking the scalar trial stresses ({Up4}
and {It7}) and solving a sequence of projections to yield conditions. Once an admissible
stress update is found, the algorithm exits and proceeds to the next time-step.

The essential flow of the full algorithm (see Algorithms 2, 3, 4, and 5) is briefly summa-
rized in Algorithm 1.

Algorithm 1 Outline of Stress Update Procedure

1: procedure STRESS UPDATE
2: Determine trial state.

3: Check if trial stress is admissible (if so, exit).
4: Solve assuming final stress is on f2 yield surface

5: Check if solved state is admissible (if so, exit).
6: Solve assuming final stress is on fi yield surface only.

7: Check if solved state is admissible (if so, exit).
8: Solve assuming final stress is on f, and f3 yield surfaces.

9: This state must be admissible, so exit.

10: end procedure
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1. Trial step. r&} -> {f}

it-~

2. Update algorithm.

?

?,

3. Final step. {&} -+ {&f+1

Stress state at tk ............ X Stress state at tk+1 ....... X Yield surfaces .................

Trial stress ....................... 0 Admissible states ..........

Figure 4-5: The basic solid phase effective stress update proceeds as follows. (1.) A trial
step is taken from the stress state at time tk assuming that all flow is elastic. (2.) The
method described in Algorithm 4 and Algorithm 5 is used to determine how to project the
trial stress to an admissible stress state. (3.) The final stress state is updated from the trial
stress state.

Algorithm 2 Function for #
1:

2:

3:
4:

5:
6:

7:
8:
9:

10:
11:

12:

function BETA(, 0bm, jP, P)

IV = rj0ip
I = d/p5 /jP
Im =V2+ 2Iv
Oeq = qm/(1 + aIm)
if q > Om then

0 = K 3 (0 - Om) + K4 ( -#eq)
else

3 = K4 (0 - #eq)
end if
return #

end function

Algorithm 3 Function for p,

1: function Mu(#, P, )
2: IV = r7oYP/p
3: I = d pfPs
4: Im = V2+2I

5: tp = A1 + /L l+ J
1 + blIM aIm

6: return p,
7: end function
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Algorithm 4 Stress Update Procedure (Part 1)

1: procedure STRESS UPDATE({+ 1 },
2:
3:
4:

5:
6:
7:

8:
9:

10:
11:

12:

13:
14:

15:

16:
17:

18:
19:

20:

21:

22:
23:

24:
25:
26:

27:

28:

29:

30:

31:

32:

33:

34:

35:
36:

37:

for all p E [1, N.] do
- pk+/p

p
/3 BETA(, 0m, 0, jp )

if (' > 0 and -Fr < (1,+' ) /)j3[)

p -
-k+1 -tr

(9P)k+1 =0

EXIT
end if
/ = BETA(5, (m, 'Ft r/(GAt), 0)
if p + p /(K/G) < 0 then

T -0
pp+1 = 0

(1P)k+1 = Tt /(GAt)

EXIT
end if
/3 BETA(, Om, 0, pj3)
TO= O = 0

ro =p r
= (ptr + tr/OK

b =ro

J = 0
while jrkjj/j|bj| > Tmin do

i = (ttr -i)/(GAt)
lp = MU(#, i, pi)
S=BETA(5, jm>, Pj)

r = - t( 3)]

ar , ar,

CJ [Pi]aj+ _rj _arj

jj+ 1

end while

{j&tr}, {;'r} Tmin)

> calculate local packing fraction
> assume zero plastic flow

> check if trial stress is admissiblethen

> continue to next p

> assume f2 equality (zero pressure)

> check if f2 stress is admissible

> continue to next p

> assume zero plastic flow

> initialize fi residual

> assume fi equality (shear only)

> calculate f, residual

u> determine fi residual Jacobian

> update guess with Newton method

if (0 > #m or (pj - g(#)[*4?2d2p8 + 27ro1i ) <0) then
admissible

tk+1 --
Pp Pj

pk+1 -P
(*-P)k+1 _ (,ftr - k+ )/

EXIT
end if

38: ...

t> check if fi stress is

> continue to next p

92



Algorithm 5 Stress Update Procedure (Part 2)
39: ...

40: # = BETA(O, 0m, if/(GAt), 0)
41: o = o = 0

42: ro= ( fPr rr3K]

43: b= ro
44: j 0
45: while jrk / jb > 'ri, do > assume fi,
46: = (-:r - T)(GAt)
47: fp MU(#, j3P ,PI)
48: /3 BETA(0, qm, , Sj)
49: 2 =1(j - P1)/(KAt) - /3j

F0: - max(0, tip + 13)Pj
5P: - 9 ($ )[(ip - K 5 2 ) 2 d2ps + 2rjo5
[Dr3 1  Dr. 1 1

51: j C t piL Drj2 Or. 2

52: [;:I ] [;i 1 AJ--rj>
1 i+1 P

53: j= jI +
54: end while
55: DONE
56: end for
57: return {p1 k+1} {pk+1}

58: end procedure

> assume zero pressure

> initialize fl, f3 residual

f3 equality (shear and compaction)

- K5 2 )]]
> calculate fi, f3 residual

determine fi, f3 residual Jacobian

update guess with Newton method

> continue to next p

4.4 Specific Notes About Implementation

In this section we briefly discuss the implementation of the boundary conditions, contact
forces, partial saturation, and what we call the 6 position correction.

4.4.1 Kinematic Boundary Conditions

The kinematic boundary condition used in this work is inherited from that used by Dunatunga
and Kamrin [2015]. In this method, the components of the boundary force vectors, s, and

k
sfi on the boundary nodes are determined such that a given velocity, Vsfinal and Vf fina, is
achieved at the end of the explicit time-step. In other words, si and sfi take on whatever
value is necessary such that ask+ 1 and af j+ 1 (as given by Equation (4.20)) obey the following
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relation,
ssk such that vSfinal = vi + At a.,kli i i(4.54)
Sfk such that vffnal = vfr + At af (.4

4.4.2 Mixed Boundary Conditions

In some simulations, we implement a frictional boundary condition on the solid phase. For
these simulations, only the component of vsfinal normal to the boundary is prescribed (and
therefore, the normal component of sg is also determined). We then let the tangential force
component obey the following rule,

N , - (v s* flb ) b i

s- (s5 - nbi)nbi = -/Ai (sp VSsip) v5 - (v, - nP )nlks (4.55)
ss iP=1 |V|p) 1VS* - (vs* n i)n ill

with the normal component given by,

(sS k- nb) such that (VS fal- nb) = (v5 i + At a, + 1 ) - nbi (4.56)

where nbi is the boundary normal at the ith node.

4.4.3 Contact Algorithm

In some of the qualitative results presented in this work, we implement the contact algorithm
from Huang et al. 12011]. This algorithm explicitly calculates an explicit inter-body force
(when a third material body is introduced) which enforces a frictional, non-penetrating
contact between the third body and each of the two phases presented in this work.

4.4.4 Partial Immersion

As mentioned in Section 2.1.2, in the parts of the solid body where there is no fluid, we
say that the viscosity, jo, is zero. Numerically, we accomplish this by constructing a nodal
viscosity field at each time-step given by the coefficients {71'} where,

k {1o if Mk >0
T1i 0 if M = 0

fi-

We then let the value of mo in Algorithms 2 and 3 be a function input. This input is equal
to ?)op where,

[n]

'tlop Z Oisip
i= 1

for each solid phase material point.
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4.4.5 Dynamic Quadrature Error Reduction

Particle methods for simulating fluid flows have an inherent problem with (among other
things) point clumping (see recent work by Koh et al. [2012] and Maljaars [2016]). There
are many physically admissible flows, such as those with stagnation points, which will result
in material point tracers clumping together. By choosing the material point centroids as
the quadrature points for our integral approximations, this clumping leads to quadrature
error. In some fluid simulations, we see extremely spurious flows develop, which we attribute
to this clumping error. To address this issue, we have developed a novel approach which
intelligently 'nudges' material point centroids as the material flows. This nudge is the 6 8k

and bf from Equation (4.39).

The method we introduce relies on the nodal weight measure from Equation (4.10),

Vi  j M (x)dv

Importantly, we can calculate the value of this integral exactly through our choice of K1D (X)
Since our material point characteristic functions are partitions of unity within the body (by
Equation (4.1)),

SUS(x) = 0 else
p=1

Nf I1 x E L3
SUf(x) = 0 else

p=1

we have,
N

V =j A (x)Up(x)dv if (N(x) =0 for x B')

(4.57)
Nf

i = J Ni(x)Ufp(x)dv if (Ai(x) = 0 for x V Bl)
P=1

Therefore, we can exactly determine how much quadrature error has accumulated by ap-
proximating the above integrals according to Equation (4.17),

N,

Vi V' Es vspi xrp)

N 1  (4.58)

V, ZLvfp= (xfp)

p=81
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and measuring the relative overshoot error, esi and efi, as follows,

esi= max 0, Vsj- )
Vi (4.59)

ef = max (0, V )

We have attempted several methods of reducing this error (which will be explored in
future work); however the method used in this work is a strain-rate-dependent position
correction given as follows,

[n]

6 , = -aAt(Ax) 2 L4o" 1 Ze+v1ss
(4.60)

[n]

bf = -aAt(Ax)WL of( 1fl +1

with Ax the grid spacing of the Cartesian grid and ce an arbitrary scale factor.
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Chapter 5

Results

To validate our model, we use the numerical method descried in Section 4 to simulate un-
derwater column collapses and quasi-2D shear flows for comparison with experimental data
reported by Rondon et al. [2011] and Allen and Kudrolli [2017]. We also explore two ap-
plications of our method for potential use in impact /penetration problems (as explored in
Ceccato et al. [20161) or for loaded slope failures (see summary of numerical work in this
area by Soga et al. [2015]).

5.1 Numerical Validation of Model and Method

In this section, we show that our model parameters can be fit to a particular class of fluid-
sediment mixtures (in this case glass beads immersed in oil/water mixtures, see Pailha
and Pouliquen [2009]) and that these fit parameters can be used to accurately simulate an
underwater column collapse (from Rondon et al. [20111) and quasi-2D erosion flows (from
Allen and Kudrolli [2017]).

5.1.1 Model Fit to Glass Beads

Pailha and Pouliquen [2009] characterize the behavior of glass beads flowing down a chute
while immersed in a viscous fluid (setup shown in Figure 5-1). The glass beads have density

Ps = 2500S- and diameter d = 160pm. Two mixtures of water/oil are reported and have
viscosities qO = 9.8 x 10- Pa - s and 77 = 96 x 10- Pa - s.

In order to fit our model to the characterization of this mixture, we have focused on a
subset of the reported data shown in Figure 5-2. Figure 5-2b) shows the measured packing
fraction of numerous flows/times plotted against the inertial number b (defined in Pailha
and Pouliquen [2009]). We assume that the chute flow profile is parabolic (as is proven in
Cassar et al. [20051) such that I I,. We further assume that all of the reported flows are
in the low Stokes limit (St -+0) such that Im 2 Ib. Fitting (2.104) to the lower extrema
of the data, we find the following material parameters,

Om = 0.584, a = 1.23
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fluid

glass beads

0

Figure 5-1: The rough experimental setup used by Pailha and Pouliquen [2009]. A bed of
glass beads is immersed in a tank of viscous fluid. The incline of the base of the tank, 0, is
changed to induce submerged slope avalanches.

Figure 5-2a) shows the measured internal friction angle tan(9) plotted against the exper-
imental inertial number Ib. Assuming that all measurements were taken when the flows had
reached steady state, tan(O) . p with y given in (3.16). Fitting this equation to the data,
we find the following material parameters,

p, = 0.35, pL2 = 1.387, b = 0.3085

Figure 5-2c) shows a set of flow onset measurements. At the transition from the "No
flow" state to the "Flow" state, tan(O) r p, + /. We assume that near the onset of flow
Im = 0. Therefore, the slope of the transition line between flowing and non-flowing behavior
will be given by the sum K3 + K4. Fitting a slope to the data, we find, K3 + K4= 4.715.
Since the difference between K3 and K4 is difficult to determine experimentally and the rate
of compaction in these flows is small (the K5 term), we let,

K3 = 0, K4= 4.715, K5 = 0

With the parameters above determined for glass beads, we can now simulate other ex-
periments which use similar mixtures. The remaining parameters (Ps, pof, o, and d) are
determined by the specific materials used in the relevant experiments.

5.1.2 Granular Column Collapse of Glass Beads

Rondon et al. [20111 explore the behavior of collapsing granular columns submerged in a
fluid with viscosity 7jo = 12 or 23 cP and density pof e 1000!. A bed of glass beads with
diameter d = 225pm and density ps = 2500kg was held at some initial packing fraction
behind a retaining wall (see Figure 5-3). Once the wall was removed, the dynamics of the
column were measured and reported.

In this work, we are interested in the behavior of two of the columns reported in that
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Figure 5-2: The three plots in this Figure show our model fit to the data presented in Figure
5 of Pailha and Pouliquen [2009]. a) Plot of internal friction coefficient against inertial
number. b) Critical state packing fraction fit to extreme measurements of 0 at various flow
rates. c) 0 slope coefficient K3 and K4 fit to the critical angle between flowing and static

slopes.

99



70 cm

\ l 15 cm

to ho

tif

2 cm pressure sensor

Figure 5-3: The experimental setup used by Rondon et al. [2011]. A column of small glass
spheres with initial packing fraction 0 is held in place by a retaining wall and immersed in
a long tank filled with a viscous fluid. At time to, the wall is removed and the column is
allowed to collapse. A pressure sensor at the base of the column (2 cm from the edge of the
tank) collects pore pressure data during the collapse. The run-out profiles of the column are
captured with a camera.

work (see Table 5.1). The two columns are made of the same mass of glass beads formed into
a loose and dense column (with initial packing fraction given by #0). It was observed that
the initially loose column collapsed much faster with much longer run-out than the initially
dense column.

To simulate these two column collapses, we consider a reduced computational domain by
assuming that the flow is approximately plane-strain (quasi-2D) and that the fluid tank can
be shortened to 30 cm in length without significantly affecting the dynamics of the column
collapse. We then run our model with the initial conditions given in Table 5.1, computational
parameters given in Table 5.2, and remaining material parameters given in Section 5.1.1.
The fluid-wall interaction is governed by a simple frictionless boundary condition while the
grain-wall interaction is governed by the frictional boundary rule described in Section 4.4.2.

In both the experiments and simulations, the only differences between the dense and loose
columns are the initial packing fraction, the initial column height, and the initial hydrostatic
stress state. The resulting differences in the simulated flow dynamics are due to the different
solutions picked out by the governing equations given these initial conditions. A series of
snapshots taken from these two simulations (as run on the 300 x 100 grid) are shown in Figure
5-4.

In addition to visualizing the solid phase dilation and compaction as in Figure 5-4, we
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Table 5.1: Experimental Setup for Rondon et al. [2011]

Parameter Dense Column Loose Column
Tank Length 70 cm 70 cm
Tank Height 15 cm 15 cm
Tank Width 15 cm 15 cm

00 0.60 0.55
lo 6.0 cm 6.0 cm
ho 4.2 cm 4.8 cm

Ps 2500 k 2500 k
d 255 prm 255 pam

Pof 1000 k 1000 k

Jo 12or 23cP 12or 23cP

can also examine the differences in shearing rate and fluid pore pressure as shown in Figure
5-5. As the initially dense column collapses, the solid phase experiences shear dilation and
'opens', increasing the porosity of the mixture. This results in pore tension in the fluid phase
as fluid is drawn into the increased pore space (see Figure 5-5a). This increased pore tension
increases the effective granular pressure given by P in (2.106) and therefore strengthens of the
solid phase. One the other hand, as the initially loose collapses the solid phase experiences
plastic compaction, reducing the porosity of the mixture. This has the opposite effect, causing
a positive pore pressure (see Figure 5-5b) which reduces the strength of the solid phase. It is
this coupling of solid phase flow to fluid phase pressure to solid phase strength that results
in these two completely different collapse behaviors.

By accurately modeling these complex interactions, we are able to capture the vastly
different collapse profiles (see Figure 5-6), predict the measured excess pore pressure (see
Figure 5-7a), and match the time-accurate front motion (see Figure 5-7b) reported in Rondon
et al. [2011].

The collapse profiles shown in Figure 5-6 are the n = 0.45 contours of the nodal porosity
field n(x) and show reasonable similarity to the experimental profiles provided courtesy of
Pascale Aussilous.

To compare the simulated excess pore pressure to the excess pore pressure reported
by Rondon et al. [2011], we first 'cast' the pressure field pf(x) defined by the coefficients
{pf,} to the nodes of the background grid. Due to the collocation of the stress update
with the material point centroids and the motion of the material point centroids through
the computational domain, spurious pressure fields are known to develop (see Andersen
and Andersen [2010]). The pore pressure in Figure 5-7b) shows the weighted average nodal
representation of pressure (as defined in Dunatunga and Kamrin [2015]) near (but not at) the
lower domain boundary and 2 cm from the left wall. This value is compared to a hydrostatic
reference value to find the excess pore pressure. In the dense 300 x 100 simulation, the fluid
phase material points exhibited excessive clumping (see Section 4.4.5), so a second nodal
sample was taken at the same height, 2 cm from the right wall and used as the reference
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Figure 5-4: Comparison between simulated collapses for the loose initial packing (right) and
the dense initial packing (left) using the 300x 100 element grid described in Table 5.2. Solid
phase material points are colored by packing fraction according to the scale at the left. Fluid
phase material points are colored light gray.
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Figure 5-5: Snapshot of simulated solid phase equivalent plastic shear rate (left) and fluid
phase excess pore pressure (right) at t = 4s for a) the initially dense column and b) the
initially loose column. The plastic shearing rate is visualized at the material point centroids
of the solid phase. The excess pore pressure as compared to a hydrostatic baseline Peq (after
'projecting' to the grid and back to the points) is visualized at the fluid phase centroids.
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Table 5.2: Simulation Parameters for

Parameter 300x100 Simulations 120x40 Simulations

Tank Length 30 cm 30 cm

Tank Height 10 cm 10 cm
Fluid Height 8 cm 8 cm
Elements 300 x 100 120 x 40
Points per Cell 4 4
At 5- 10-5 s 2. 10-5 s
AX 1.0 mm 2.5 mm
to Os Os
tf 20s 60s
G 3.8 .104 Pa 3.8 . 10 5 Pa
K 8.3 .10 4 Pa 8.3 .10 5 Pa

77 1.2. 10-2 Pa-s 1.2- 10-2 Pa-s
rK 1.0. 10 5 Pa 1.0-106 Pa

value. Close agreement is seen between the simulated pore pressure and the experimental

measurements.

Front positions shown in Figure 5-7b) are determined by taking the maximum x-position

of the collapse profiles shown in Figure 5-6.

All together, the results shown in Figures 5-6 and 5-7 indicate that our model is capable

of accurately predicting the dynamics of granular column collapses and able to capture the

sensitivity of the problem to small changes in initial conditions.

5.1.3 Quasi-2D Flow of Glass Beads

In addition to sudden collapses of granular columns, we are also interested in using our model

to simulate steady erosion processes. To gage the accuracy of our method for such problems,

we simulate the experiments performed by Allen and Kudrolli 12017].

As shown in Figure 5-8, the experimental setup approximates a 2D erosion flow by driving

a conical motor at a prescribed rotation rate, f, above an immersed granular bed of glass

beads. The refractive index of the beads and fluid are matched so that a camera can image a

single plane of mixture illuminated by a laser. The results measured in that work are taken

from series of images captured of that plane and reported as a function of vertical depth

below the driving surface, z.

The mixture of fluid and grains used in Allen and Kudrolli [2017] is similar to that used

in Pailha and Pouliquen [2009], suggesting that we can use the same material parameters

determined in Section 5.1.1. The remaining material parameters are given by the specific

materials used in the experiment: pof = 1002-, 71 = 0.021 Pa-s, p, = 25003, and d = 1.05

mm.

We simulate four of the reported flows in that work, f /f, = {0.37, 1.04,1.26, 1.33}, where
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Figure 5-6: Contours of the collapsing columns from the dense simulation (top, left) taken
at 3s intervals and the loose simulation (bottom, left) taken at 0.66s intervals. The cor-
responding contours for the dense experiment (top, right) and loose experiment (bottom,
right) from Rondon et al. [2011] are also shown. The simulated profiles are generated by
plotting the contour of the nodal porosity field (given by the coefficients {ni}) at n = 0.45.
The experimental contours are provided courtesy of Pascale Aussillous
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Figure 5-7: a) Comparison of the simulated excess pore pressure for the loose initial packing
(top, blue) and the dense initial packing (bottom, red). The base pore pressure for all
simulations is approximately 800 Pa. b) Comparison between simulated front positions for
the loose initial packing (top, blue) and the dense initial packing (bottom, red).
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fluid
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Figure 5-8: a) Experimental setup of Allen and Kudrolli [2017]. An approximately 9 mm bed
of grains is immersed in a cylindrical tank filled with fluid. A conical driver is submerged to
the granular surface and driven by a motor at a specified rotation rate f. b) The resulting
flow is imaged at a plane near the edge of the tank. Measurements are taken of phase
velocities and packing fractions as a function of distance z from the driving surface.
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f is the assigned driving frequency and fc is the reported critical driving frequency around
which grains become suspended in the fluid flow. We set up an x-periodic domain measuring
15.5 mm by 15.5 mm and drive the upper surface at a velocity determined by the ratios the
driving frequency f. We let the lower wall be governed by a no-slip boundary condition.
The resulting fluid flow is allowed to reach steady-state and the flow properties are averaged
over a 12 s time window. A summary of the simulation setup is given in Table 5.3.

Table 5.3: Simulation Parameters for Erosion Flows

Parameter f /fc = 0.37 f /fc = 1.04 f /fc = 1.26 f /f, = 1.33
Bed Height 10.5 mm 11.0 mm 11.0 mm 11.4 mm
Driving Velocity 0.2325 m 0.6536M 0.7919M 0.8359M
Elements 20 x 20 20 x 20 20 x 20 20 x 20
Points per Cell 9 9 9 9
At 2.-10-5 S 2.-10-5 S 2-10-5 S 2- 10-5 S
Ax 775 pm 775 ftm 775 tim 775 pm
to Os Os Os Os
tf 30s 30s 30s 30s
G 3.8. 104 Pa 3.8- 104 Pa 3.8- 104 Pa 3.8. 104 Pa
K 8.3- 104 Pa 8.3- 104 Pa 8.3. 104 Pa 8.3. 104 Pa
r10 2.1 . 10-2 Pa-s 2.1 - 10-2 Pa-s 2.1 - 10-2 Pa-s 2.1 . 10-2 Pa-s
_ 1.0.-105 Pa 1.0.105 Pa 1.0 105 Pa 1.0. 105 Pa

A series of simulation snapshots is shown in Figure 5-9. As was observed in Allen and
Kudrolli [2017], below the critical driving frequency f, there is essentially no flow of grains;
however, once the driving frequency f is increased above fc, solid phase material is 'picked up'
by the shearing of the fluid phase and enters into suspension. The steady-state flow predicted
by our simulations shows strong similarity to the experimentally measured packing fraction

(see Figure 5-10) and phase velocities (see Figure 5-11).
The simulated packing fractions and velocities are plotted by averaging the material point

coefficients {xsp}, {xf,}, {vs,}, {vfp}, and {qp} over a 12s window. The resulting phase
velocity and packing fraction averages are then sorted by the average material point centroid
position and filtered using the MATLAB smooth() function. It is important to note that
as the solid phase dilates, the solid phase material points will separate. After the material
points separate by more than 1 element (around # ~ 0.2), the material point value Op will
no longer be representative of the true mixture packing fraction.

5.2 Qualitative Results

In this section we consider two potential applications of our model and method. The first
shows the behavior of a fluid-grain mixture as an intruding body is pressed into its surface.
The second shows the effect of water level on the failure of a loaded slope.
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Figure 5-9: Comparison between the simulated erosion flows described in Table 5.3. Solid
phase material points are colored by packing fraction according to the scale at the right.
Fluid phase material points are colored light gray. In all cases, the shearing of the fluid
phase induces motion in the solid phase. As the driving frequency f increases above the
critical f, (as reported in Allen and Kudrolli [2017]) solid phase material is 'picked up' and
becomes suspended in the fluid.
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Figure 5-10: Plots comparing the time-averaged steady state packing fractions as a function
of normalized depth reported in Allen and Kudrolli [2017] to those found by running the
simulations described in Table 5.3. Very close matching is observed when the solid phase
material is dense; however the simulated data has a heavy tail in the dilute regime. This
is likely due to the large empty spaces between the solid phase material points when they
become suspended in the fluid flow.
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Figure 5-11: Plots comparing the time-averaged steady state phase velocities u (normalized
by the velocity of the driving surface ut) as a function of normalized depth reported in
Allen and Kudrolli [2017] to those found by running the simulations described in Table 5.3.
The simulated values show strong similarity to the experimental values; however, there are
oscillations visible in the simulated profiles. These oscillations are due to well known errors
in the material point velocity fields.
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Figure 5-12: Series of snapshots taken from simulation described in Section 5.2.1. Solid
phase material points are colored according to packing fraction. Fluid material points are
represented by small black dots. Intruder material points are colored light gray. As the
intruder enters the mixture, the shearing of the solid phase results in noticeable dilation.

5.2.1 2D Circular Intruder

The use of the material point method for intrusion into a saturated soil is explored at length
in Ceccato et al. [2016]. In that work, the mixture model developed in Bandara and Soga
[2015] is adjusted to use the Modified Cam Clay model to model the solid phase behavior.

Here we show that our model may be extended to explore similar problems by simulating
the intrusion of a disk into a submerged bed of acrylic beads. As an exploratory problem,
we use the material parameters given in Table 3.1 and let d = 1.0 cm, p, = 25001, and
pf = 1000-. A 1mx 1m domain is simulated on a 1OOx 100 element grid with 4 material
points per cell. The domain is initially half-filled by a mixture of fluid and grains with packing
fraction 0 = 0.60. The resulting behavior shown in Figure 5-12. As the intruder enters the
mixture, we observe shear dilation of the granular material and independent motion of the
two phases of material as fluid fills in the opening pore space.

5.2.2 2D Slope Collapse

Another application of interest for our model is the complex interactions between structures
and saturated soils. To demonstrate the application of this model to the problem of a loaded
slope, we consider two simple cases. In the first case, a dry slope with length 14m and height
5m is loaded with a cement block at the top (see Figure 5-13). The slope is composed of
2mm diameter grains with density p, = 2500-s. In the second case, an identical slope with
identical loading and material composition is partially submerged in water (approximating
a shoreline).

The simulations are performed in a 40mx 10m domain discretized into 160 x40 elements.
The material points for the three bodies are seeded with 9 material points per grid cell.
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Partially Submerged Slope

26322~40 I

Figure 5-13: Series of snapshots taken from simulations described in Section 5.2.2. Solid
phase material points are colored according to the equivalent plastic shearing rate, jP. Fluid
material points are represented by light gray dots. Block material points are colored light
gray.

The initial packing of the granular slope is q0o = 0.585. The resulting collapses are shown
in Figure 5-13. We let the material properties be identical to those given in Section 5.1.1.
As shown in Figure 5-14, the resulting motion of the block (approximating a structure) on
top of the slope has a strong dependence on the water level in the slope. Over the course
of 5 simulated seconds, the block on the partially submerged slope moves 20% more in the
x-direction, 36% more in the y-direction, and rotates 34% less.
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Chapter 6

Conclusion

We have developed a full set of constitutive relations for fluid-sediment mixtures which is
capable of accurately and robustly modeling both dense and dilute flows of material. Our
model is derived from the integral form of the basic balance laws for two-phase mixtures
and formulated to capture the dry and viscous inertial rheologies of granular materials, the
critical state behavior of grains under shear, the viscous thickening of fluid due to suspended
sediments, and the Darcy-like inter-phase drag. This model is implemented in a numeri-
cal framework capable of coupling the equations of motion governing the two independent
continuum bodies defining the mixture.

We characterize mixtures of glass beads immersed in a viscous fluid by fitting our model
to the experimental data reported in Pailha and Pouliquen [2009]. We then take these
material parameters and show that our model and numerical implementation is able to
accurately predict the behavior of both collapsing granular columns (see Rondon et al. [2011])
and shearing of fluid above granular beds (see Allen and Kudrolli [2017]) without re-fitting
material properties. In addition, we also look at the application of this model and method
to the problems of intrusion and slope stability.

The model we have presented in this work may be extensible to more general fluid-
sediment mixtures such as those involving air (especially for examining the kick-up of dust
for vertical take-off and landing vehicles). Other extensions of this model may look at adding
cohesion (redefining the fi and f2 yield conditions), introducing a fabric tensor to the rules
governing dilation, or adding non-local effects.

In addition to the novel mixture constitutive rules, we have briefly examined a method to
reduce the growth of numerical error in dynamic fluid flows. We believe that more focused
work in this area is warranted and our approach here hints at a potential path toward
improving known short-comings of the material point method.
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