
Teaching Machines about Emotions

by

Bjarke Felbo

Bachelor of Science in Engineering (Mathematics and Technology),
Technical University of Denmark (2016)

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Signature redacted
A uthor

Progrm in Media Arts and Sciences

May 11th, 2018

Signature redacted
C ertified by

U Iyad Rahwan
Associate Professor

Program in Media Arts and Sciences
Thesis Supervisor

Signature redacted
Accepted by

Tod Machover

OF TECHNOLOGY Academic Head

Program in Media Arts and Sciences
JUN 2 72018

LIBRARIES
ARCHIVES

2

Teaching Machines about Emotions

by

Bjarke Felbo

Submitted to the Program in Media Arts and Sciences
on May 11th, 2018, in partial fulfillment of the

requirements for the degree of

Master of Science

Abstract

Artificial intelligence algorithms are becoming an increasingly important part of hu-
man life with many chat bots and digital personal assistants now interacting directly
with us through natural language. Such human-computer interaction can be made
more useful by enriching the underlying algorithms with a detailed sense of emotion.
In my thesis I propose new ways to detect, encode and modify emotional content in
text. First, I show how we can leverage the vast amount of texts on social media
with emojis to train a classifier that can accurately detect various kinds of emotional
content in text. Secondly, I introduce a state-of-the-art domain adaptation method
that is explicitly designed to tackle issues occurring in the messy real-world text data
that existing NLP methods struggle with. Lastly, I propose a new algorithm that
could be used to decompose text inputs into disentangled representations and then
manipulate these representations in a controlled manner to obtain a modified version
of the input.

Thesis Supervisor: Iyad Rahwan
Title: Associate Professor
Program in Media Arts and Sciences

3

4

Teaching Machines about Emotions

by

Bjarke Felbo

The following people served as readers for this thesis:

Signature redacted
Thesis Reader

(Hugo Larochelle
Research Scientist

Google Brain

C'/
Signature redacted

T hesis R eader
Alex 'Sandy' Pentland

Professor
MIT Media Lab

6

Preface

Throughout the last two years, I've been captivated by the idea of using natural

language processing (NLP) algorithms to study large-scale social phenomena related

to language. As I naively tried to study racism on social media, I quickly learned

the limitations of existing methods and how difficult it can be to do proper studies of

human behavior using NLP algorithms. Motivated by these shortcomings I ended up

- as many researchers before me - focusing on the tools rather than the topic itself.

Nevertheless, I found that I truly enjoyed designing these tools and that it was a great

motivation to build tools that could potentially empower social scientists to carry out

many important projects in the future. My research in this area is compressed into

the following three papers, which this thesis heavily borrows from:

" Bjarke Felbo, Alan Mislove, Anders Sogaard, Iyad Rahwan and Sune Lehmann.

Using millions of emoji occurrences to learn any-domain representations for de-

tecting emotion, sentiment and sarcasm. Empirical Methods in Natural Lan-

guage Processing (EMNLP) 2017 long paper (oral).

" Bjarke Felbo*, Michiel Bakker*, Abhimanyu Dubey, Sadhika Malladi, Alex

'Sandy' Pentland, Iyad Rahwan. Towards Real- World Domain Adaptation for

Text through Prediction Propagation. Under review.

* Bjarke Felbo, Remi Mir, Iyad Rahwan. Disentangling Content and Style

through Representation Distillation. Work in progress.

* shared first authorship

7

8

Acknowledgements

My two years at MIT have been an absolutely amazing experience! Being a Dane

from the cold north, this is not something I say lightly. I attribute this wonderful

experience entirely to the great people I've been lucky enough to have around me.

I'd like to thank my amazing advisor, Iyad Rahwan, for giving me the freedom

to explore while guiding me towards the grand questions that are too often left un-

explored. It's also been fantastic to work with Nick Obradovich, who's been ready

to challenge my crazy ideas with a smile and teach me how to do the best possible

science. Sune Lehmann has always been there to help me navigate academia, which

I'm very thankful for. I'd also like to thank Yves-Alexandre de Montjoye for teaching

me how to tackle research problems back when I had no clue at all. A big thanks

goes out to all the collaborators I've had at MIT and elsewhere - you've continued

to impress me with your commitment and insights.

I've been so happy to be in the Scalable Cooperation research group. Not only

have the group challenged me intellectually, but they've always been there for me.

Thanks for all the ping pong matches, late night talks, flying stuffed animals, and

other sillyness. It was perfect.

There's so many great people in the Media Lab that I won't start naming them

all. I'm truly thankful for all the friendships I've made. Even when everyone were

stressed out, you managed to find time for me and each other, which is so impressive.

I'd also like to thank Olav, Anne, Kjartan, Solveig, Mina, Ida, and all the others

who have been there to cheer me on from afar when I was feeling down or when I just

needed a new perspective on things.

Perhaps my most important thanks goes out to my roommates Andres, Alejandro

and Florian. I already have so many fond memories with you guys that I couldn't

imagine being without. You have truly earned your place as a part of my family.

9

10

Contents

1 Introduction

2 Background

2.1 Analyzing emotions expressed in language

2.2 Neural networks and deep learning

3 Learning Representations from a Billion Emojis

3.1 Related work using noisy labels

3.2 Pretraining using emoji prediction

3.3 Neural architecture for any-domain representations

3.4 Sequential unfreezing for transfer learning

3.5 Importance of context for emoji prediction

3.6 Benchmarking across sentiment, emotion, and sarcasm tasks

3.7 Analysis of DeepMoji modeling choices

3.8 Comparing with human-level agreement

4 Domain Adaptation through Prediction Propagation

4.1 Difficulty of domain adaptation within NLP

4.2 Linking predictions with text reconstruction

4.3 Neighborhood encoding architecture

4.4 Multi-phase training to learn desired representations

4.5 Desirable properties for domain adaptation methods

4.6 Benchmarking and the issue of unbalanced datasets

11

17

19

19

20

23

. 24

. 25

. 27

. 28

. 30

. 31

. 35

. 39

41

. 42

. 43

. 45

. 47

. 49

. 51

4.7 Analyzing the modeling choices . 54

5 Disentangling Content and Style using Representation Distillation 57

5.1 Usefulness of disentangled representations 58

5.2 Style transfer with discrete words . 58

5.3 Disentangled representations through distillation 59

5.4 Adversarial training of the RepDistill model 61

5.5 Evaluating the style transfer performance 63

6 Discussion 65

7 Conclusion 67

12

List of Figures

3-1 Illustration of the DeepMoji model with T being text length and C the

num ber of classes. 27

3-2 Illustration of the chain-thaw transfer learning approach, where each

layer is fine-tuned separately. Layers covered with a blue rectangle are

frozen. Step a) tunes any new layers, b) then tunes the 1st layer and c)

the next layer until all layers have been fine-tuned individually. Lastly,

in step d) all layers are fine-tuned together 29

3-3 Hierarchical clustering of the DeepMoji model's predictions across cat-

egories on the test set. The dendrogram shows how the model learns to

group emojis into overall categories and subcategories based on emo-

tional content. The y-axis is the distance on the correlation matrix of

the model's predictions measured using average linkage. 35

4-1 Simplified illustration of how our model reconstructs each word using

its two neighbors and a text-level prediction of the label. 44

4-2 Illustration of the architecture for our method with T = 3 and k = 1.

Each word is encoded based on that word's two neighboring words.

The predicted distribution over the labels, y, is computed for the en-

tire text, which is then concatenated to each encoded word as part

of the decoding. Similarly, a global representation g is computed and

concatenated. The decoder has thus access to word-level neighborhood

encodings, the text-level prediction, and the text-level global represen-

tation . 45

13

5-1 High-level illustration of the proposed architecture for learning disen-

tangled representations and performing style modification. Grey boxes

are the observed texts (before and after modification) while blue dia-

monds are representations computed by the model. 60

14

List of Tables

3.1 Example sentences scored by our model. For each text the top five

most likely emojis are shown with the model's probability estimates. . 24

3.2 The number of tweets in the pretraining dataset associated with each

em oji in m illions. 30

3.3 Accuracy of classifiers on the emoji prediction task. d refers to the

dimensionality of each LSTM layer. Parameters are in millions. . . . 31

3.4 Description of benchmark datasets. Datasets without pre-existing train-

ing/test splits are split by us (with splits publicly available). Data used

for hyperparameter tuning is taken from the training set. 32

3.5 Comparison across benchmark datasets. Reported values are averages

across five runs. Variations refer to transfer learning approaches in @3.4

with 'new' being a model trained without pretraining. 34

3.6 Benchmarks using a smaller emoji set (Pos/Neg emojis) or a classic

architecture (standard LSTM). Results for DeepMoji from Table 3.5

are added for convenience. Evaluation metrics are as in Table 3.5.

Reported values are the averages across five runs. 36

3.7 Word coverage on benchmark test sets using only the vocabulary gener-

ated by finding words in the training data, the pretraining vocabulary

or a combination of both vocabularies. 38

3.8 Comparison of agreement between classifiers and the aggregate opinion

of Amazon Mechanical Turkers on sentiment prediction of tweets. . . 39

15

4.1 Parameters being updated in each phase using which losses. Loss mul-

tipliers are binary . 48

4.2 Properties of various NLP domain adaptation methods. 49

4.3 Description of benchmark datasets. 51

4.4 Balanced tasks. AUC on the target dataset averaged across 3 runs.

H igher is better. 53

4.5 Unbalanced tasks. AUC on the target dataset averaged across 3 runs.

H igher is better. 53

4.6 Grid search over the neighborhood size k and dimensionality of the

global representation 1. The values are AUC for the task Amazon -

T w itter. 54

4.7 Accuracies for sentiment prediction and word reconstruction on the

target domain for the balanced task Amazon -+ Twitter. 54

16

Chapter 1

Introduction

Natural language processing (NLP) algorithms are becoming an increasingly impor-

tant part of human life. These algorithms empower us to - among other things -

search vast amounts of information, communicate across language barriers, and iden-

tify interesting patterns in the billions of texts available online. With the emergence

of consumer-facing artificial intelligence (Al) agents such as Apple's Siri that interact

with us directly, NLP algorithms become even more central to our lives.

These human-computer interactions facilitated by NLP can be made more useful

and engaging if the underlying algorithms have a detailed sense of emotion. Equally

important, better algorithms for analyzing and manipulating emotional content in

texts can allow us to better understand crucial social phenomena such as racism and

bullying.

In this thesis, I explore different ways to design algorithms for modeling the rich

spectrum of emotions that humans employ. A key focus for me when designing these

new algorithms has been to make the algorithms learn about human language without

explicitly labeled data. This is critical not only because obtaining annotated data is

hard, but also because small datasets of labeled data can easily contain undesirable

biases that make their way into the model. The algorithms I've designed can be used

not only for emotion-related tasks, but also a variety of other tasks. However, for

conciseness and focus, this thesis will only examine how the algorithms can applied

17

for emotion-related tasks.

The organization of this thesis is oriented around three of my research projects.

Chapter 2 first briefly introduces some useful background knowledge for understand-

ing the research projects. Chapter 3 describes the way we used a billion emojis

to learn state-of-the-art representations for detecting sentiment, emotions, and sar-

casm. Chapter 4 demonstrates how our new Prediction Propagation method achieves

state-of-the-art performance on challenging domain adaptation datasets. Chapter 5

proposes a new method that could potentially be used for disentangling content and

style. Chapter 6 discusses the usefulness of the methods proposed in this thesis.

Finally, Chapter 7 concludes on the projects and describes potential next steps.

18

Chapter 2

Background

2.1 Analyzing emotions expressed in language

The thesis describes methods that - like many others - attempt to model human

emotions in text. However, before delving into the more technical parts of how to do

this modeling, it's interesting to briefly consider what it is we mean by 'emotions'.

Despite the apparent prevalence of emotions, there's no clear consensus in the aca-

demic community on fundamental questions such as what constitutes an emotion,

the number of emotions, and the distinctions between them. The disagreements have

had researchers form three dominant theories of emotion: Basic emotions theory, ap-

praisal theory, and conceptual act theory 175]. The basic emotions theory argues that

evolution has caused us to have six to eight fundamental emotions that we to some

degree share with animals [92]. Appraisal theory argues that we feel emotions as we

subconsciously evaluate a list of mental check points of how an event will affect us

directly or indirectly [60]. Lastly, conceptual act theory argues that emotions are

defined purely from the society and culture that each individual is exposed to and

that emotions thus are learned constructs 15]. These one-line descriptions do not give

these theories justice so I highly encourage the reader to read the provided references.

Due to the ambiguity of what an emotion is, most machine learning papers rely on

datasets labeled by human annotators without explicit instructions on how to distin-

19

guish between emotions. This thesis follows the same approach despite its potential

issues.

Measuring emotions in text has long been of interest to the natural language

processing (NLP) community. Measuring sentiment of texts on online forums as

a way to understand consumers' opinions initially fueled corporate interest in this

method [66]. Over time the techniques to measure sentiment evolved from dictionary

approaches [10, 62] to machine learning methods like deep neural networks [1041.

Many community-led competitions (e.g. [72]) have also helped establish sentiment

analysis as a central task in NLP. Researchers have since modeled interesting related

tasks such as emotion detection [81, 12], sarcasm detection [96, 43], and bullying [23].

Lack of clear definitions on what constitutes an emotion, a sarcastic comment, or

bulling has made it difficult to obtain high-quality data, thereby limiting the ability

to properly model these phenomena in practice and conduct studies using such models.

These limitations are in part a motivation for why I in this thesis focus on designing

algorithms without the need for explicitly annotated datasets.

In addition to the research on understanding emotional content in language,

there's also been substantial research on other interesting ways of teaching machines

about emotions. For instance, machine learning has been used to detect affective

states [14, 83], to give AI agents a sense of emotions [1, 29], and to improve human-

computer interaction [67, 70]. For brevity and focus, I refrain from going into details

on these interesting research directions and focus exclusively on analyzing emotions

using natural language processing (NLP) methods.

2.2 Neural networks and deep learning

The methods and algorithms proposed in this thesis builds on the deep learning

framework, which has been massively successful for computer vision [50, 99] and

natural language processing [85, 58]. The core idea is to use neural networks to learn

distributed representations of the input data that are useful for a subsequent learning

task [35, 63]. The neural network is composed of many non-linear layers, giving it

20

a high degree of flexibility in shaping the representation as needed to perform the

downstream task.

The easiest way for a neural network to learn a useful representation for a spe-

cific task is arguably to have a large labeled dataset, but there are also many other

useful approaches. Autoencoders attempt to compress their input as a way to learn

representations that capture the high-level dynamics [95, 15, 49]. Rather than re-

constructing every part of the input, it can be better to teach the network through

specific high-level reconstructions tasks, in this way forcing it to learn high-level rep-

resentations [64, 102]. This thesis also explores how carefully designed reconstruction

losses can be used as a way to learn useful representations without having labeled

data.

A useful property of neural networks is that the representations computed at any

given layer can be easily reused for other modeling purposes. One way to do this is to

use a pretrained neural network as a feature extractor and then train a new machine

learning model on top [24]. Alternatively, the neural network can have multiple

output layers, each with their own loss for the specific label being predicted [18].

The flexibility of neural networks is key to their success and something that's being

exploited in this thesis.

These deep learning models have millions of parameters, which are trained us-

ing backpropagation and stochastic gradient descent (SGD) 173]. Algorithms with

adaptive learning [101, 48] are often used to reduce the optimization challenges, but

nevertheless, some methods like the generative adversarial network (GAN) [34] are

notoriously difficult to train due to the adversarial loss being used. This adversarial

loss is also needed for the RepDistill method proposed in Chapter 5.

21

22

Chapter 3

Learning Representations from a

Billion Emojis

A variety of NLP tasks are limited by scarcity of manually annotated data. Therefore,

co-occurring emotional expressions have been used for distant supervision in social

media sentiment analysis and related tasks to make the models learn useful text

representations before modeling these tasks directly. For instance, the state-of-the-

art approaches within sentiment analysis of social media data use positive/negative

emoticons for training their models [22, 87]. Similarly, hashtags such as #anger, #joy,

#happytweet, #ugh, #yuck and #fml have in previous research been mapped into

emotional categories for emotion analysis [59].

Distant supervision on noisy labels often enables a model to obtain better per-

formance on the target task. We show that extending the distant supervision to a

more diverse set of noisy labels enables the models to learn richer representations of

emotional content in text, thereby obtaining better performance on benchmarks for

detecting sentiment, emotions and sarcasm. We show that the learned representation

of a single pretrained model generalizes across 5 domains.

Emojis are not always a direct labeling of emotional content. For instance, a

positive emoji may serve to disambiguate an ambiguous sentence or to complement

an otherwise relatively negative text. Kunneman et al. [52] discuss a similar duality

23

Table 3.1: Example sentences scored by our model. For each text the top five most
likely emojis are shown with the model's probability estimates.

I love mom's cooking .4
49.1% 8.8% 3.1% 3.0% 2.9%

I love how you never reply back.. -% ~- . - *1
14.0% 8.3% 6.3% 5.4% 5.1%

I love cruising with my homies Q $i
34.0% 6.6% 5.7% 4.1% 3.8%

I love messing with yo mind!! V
17.2% 11.8% 8.0% 6.4% 53%

I love you and now you're just gone.. V T Af -%

39.1% 11.0% 7.3% 5.3% 4.5%

This is shit M 0 10%
7.0% 6.4% 6.0% 6.0% 5.8%

This is the shit (1i) Ivo d .0
10.9% 9.7% 6.5% 5.7% 4.8%

in the use of emotional hashtags such as #nice and #lame. Nevertheless, our work

shows that emojis can be used to classify the emotional content of texts accurately

in many cases. For instance, our DeepMoji model captures varied usages of the

word 'love' as well as slang such as 'this is the shit' being a positive statement (see

Table 3.1). We provide an online demo at deepmoji.mit.edu to allow others to explore

the predictions of our model.

3.1 Related work using noisy labels

Using emotional expressions as noisy labels in text to counter scarcity of labels is not

a new idea [71, 33]. Originally, binarized emoticons were used as noisy labels, but

later also hashtags and emojis have been used. To our knowledge, previous research

has always manually specified which emotional category each emotional expression

belong to. Prior work has used theories of emotion such as Ekman's six basic emotions

and Plutchik's eight basic emotions [59, 86].

Such manual categorization requires an understanding of the emotional content of

24

each expression, which is difficult and time-consuming for sophisticated combinations

of emotional content. Moreover, any manual selection and categorization is prone to

misinterpretations and may omit important details regarding usage. In contrast, our

approach requires no prior knowledge of the corpus and can capture diverse usage

of 64 types of emojis (see Table 3.1 for examples and Figure 3-3 for how the model

implicitly groups emojis).

Another way of automatically interpreting the emotional content of an emoji is

to learn emoji embeddings from the words describing the emoji-semantics in official

emoji tables [25]. This approach, in our context, suffers from two severe limitations:

a) It requires emojis at test time while there are many domains with limited or no

usage of emojis. b) The tables do not capture the dynamics of emoji usage, i.e., drift

in an emoji's intended meaning over time.

Knowledge can be transferred from the emoji dataset to the target task in many

different ways. In particular, multitask learning with simultaneous training on mul-

tiple datasets has shown promising results [18]. However, multitask learning requires

access to the emoji dataset whenever the classifier needs to be tuned for a new target

task. Requiring access to the dataset is problematic in terms of violating data access

regulations. There are also issues from a data storage perspective as the dataset used

for this research contains hundreds of millions of tweets (see Table 3.2). Instead we

use transfer learning [6] as described in 3.4, which does not require access to the

original dataset, but only the pretrained classifier.

3.2 Pretraining using emoji prediction

In many cases, emojis serve as a proxy for the emotional contents of a text. Therefore,

pretraining on the classification task of predicting which emoji were initially part of a

text can improve performance on the target task (see 3.7 for an analysis of why our

pretraining helps). Social media contains large amounts of short texts with emojis

that can be utilized as noisy labels for pretraining. Here, we use data from Twitter

from January 1st 2013 to June 1st 2017, but any dataset with emoji occurrences could

25

be used.

Only English tweets without URL's are used for the pretraining dataset. Our

hypothesis is that the content obtained from the URL is likely to be important for

understanding the emotional content of the text in the tweet. Therefore, we expect

emojis associated with these tweets to be noiser labels than for tweets without URLs,

and the tweets with URLs are thus removed.

Proper tokenization is important for generalization. All tweets are tokenized on a

word-by-word basis. Words with 2 or more repeated characters are shortened to the

same token (e.g. 'loool' and 'looooool' are tokenized such that they are treated the

same). Similarly, we use a special token for all URLs (only relevant for benchmark

datasets), user mentions (e.g. 'Cac12017' and 'Aemnlp2017' are thus treated the

same) and numbers. To be included in the training set the tweet must contain at

least 1 token that is not a punctuation symbol, emoji or special token1 .

Many tweets contain multiple repetitions of the same emoji or multiple different

emojis. In the training data, we address this in the following way. For each unique

emoji type, we save a separate tweet for the pretraining with that emoji type as the

label. We only save a single tweet for the pretraining per unique emoji type regardless

of the number of emojis associated with the tweet. This data preprocessing allows the

pretraining task to capture that multiple types of emotional content are associated

with the tweet while making our pretraining task a single-label classification instead

of a more complicated multi-label classification.

To ensure that the pretraining encourages the models to learn a rich understanding

of emotional content in text rather than only emotional content associated with the

most used emojis, we create a balanced pretraining dataset. The pretraining data

is split into a training, validation and test set, where the validation and test set

is randomly sampled in such a way that each emoji is equally represented. The

remaining data is upsampled to create a balanced training dataset.

'Details available at github.com/bfelbo/deepmoji

26

3.3 Neural architecture for any-domain

representations

With the millions of emoji occurrences available, we can train very expressive clas-

sifiers with limited risk of overfitting. We use a variant of the Long Short-Term

Memory (LSTM) model that has been successful at many NLP tasks 139, 85]. Our

DeepMoji model uses an embedding layer of 256 dimensions to project each word into

a vector space. A hyperbolic tangent activation function is used to force each em-

bedding dimension to be within [-1, 1]. To capture the context of each word we use

two bidirectional LSTM layers with 1024 hidden units in each (512 in each direction).

Finally, an attention layer that take all of these layers as input using skip-connections

is used (see Figure 3-1 for an illustration).

Softmax 1xc

Attention 1 x 2304

BiLSTM T x 1024

BiLSTM T x 1024

Embedding Tx256

Text

Figure 3-1: Illustration of the DeepMoji model with T being text length and C the
number of classes.

The attention mechanism lets the model decide the importance of each word for

the prediction task by weighing them when constructing the representation of the

text. For instance, a word such as 'amazing' is likely to be very informative of the

27

emotional meaning of a text and it should thus be treated accordingly. We use a

simple approach inspired by 14, 100] with a single parameter pr. input channel:

et = htWa

exp(et)
aj T exp(ei)S=I

T

v = 3 aihi
i= 1

Here ht is the representation of the word at time step t and Wa is the weight

matrix for the attention layer. The attention importance scores for each time step,

at, are obtained by multiplying the representations with the weight matrix and then

normalizing to construct a probability distribution over the words. Lastly, the repre-

sentation vector for the text, v, is found by a weighted summation over all the time

steps using the attention importance scores as weights. This representation vector

obtained from the attention layer is a high-level encoding of the entire text, which

is used as input to the final Softmax layer for classification. We find that adding

the attention mechanism and skip-connections improves the model's capabilities for

transfer learning (see 3.7 for more details).

The only regularization used for the pretraining task is a L2 regularization of 1E-6

on the embedding weights. For the finetuning additional regularization is applied

(see 3.6). Our model is implemented using Theano [89] and we make an easy-to-use

version available that uses Keras [17].

3.4 Sequential unfreezing for transfer learning

Our pretrained model can be fine-tuned to the target task in multiple ways with some

approaches 'freezing' layers by disabling parameters updates to prevent overfitting.

One common approach is to use the network as a feature extractor [24], where all

layers in the model are frozen when fine-tuning on the target task except the last

28

layer (hereafter referred to as the 'last' approach). Alternatively, another common

approach is to use the pretrained model as an initialization [26], where the full model

is unfrozen (hereafter referred to as 'full').

We propose a new simple transfer learning approach, 'chain-thaw', that sequen-

tially unfreezes and fine-tunes a single layer at a time. This approach increases

accuracy on the target task at the expense of extra computational power needed for

the fine-tuning. By training each layer separately the model is able to adjust the

individual patterns across the network with a reduced risk of overfitting. The sequen-

tial fine-tuning seems to have a regularizing effect similar to what has been examined

with layer-wise training in the context of unsupervised learning 126].

3rd layer 3rd layer

2nd layer 2nd layer

1 st layer 1st layer

t t
Text Text Text Text

a) b) c) d)

Figure 3-2: Illustration of the chain-thaw transfer learning approach, where each layer
is fine-tuned separately. Layers covered with a blue rectangle are frozen. Step a) tunes
any new layers, b) then tunes the 1st layer and c) the next layer until all layers have
been fine-tuned individually. Lastly, in step d) all layers are fine-tuned together.

More specifically, the chain-thaw approach first fine-tunes any new layers (often

only a Softmax layer) to the target task until convergence on a validation set. Then

the approach fine-tunes each layer individually starting from the first layer in the

network. Lastly, the entire model is trained with all layers. Each time the model

converges as measured on the validation set, the weights are reloaded to the best

setting, thereby preventing overfitting in a similar manner to early stopping [801.

This process is illustrated in Figure 3-2. Note how only performing step a) in the

figure is identical to the 'last' approach, where the existing network is used as a feature

29

extractor. Similarly, only doing step d) is identical to the 'full' approach, where the

pretrained weights are used as an initialization for a fully trainable network. Although

the chain-thaw procedure may seem extensive it is easily implemented with only a

few lines of code. Similarly, the additional time spent on fine-tuning is limited when

the target task uses GPUs on small datasets of manually annotated data as is often

the case.

A benefit of the chain-thaw approach is the ability to expand the vocabulary to

new domains with little risk of overfitting. For a given dataset up to 10000 new words

from the training set are added to the vocabulary. 3.7 contains analysis on the added

word coverage gained from this approach.

3.5 Importance of context for emoji prediction

We use a raw dataset of 56.6 billion tweets, which is then filtered to 1.2 billion

relevant tweets (see details in 3.2). In the pretraining dataset a copy of a single

tweet is stored once for each unique emoji, resulting in a dataset consisting of 1.6

billion tweets. Table 3.2 shows the distribution of tweets across different emoji types.

To evaluate performance on the pretraining task a validation set and a test set both

containing 640K tweets (10K of each emoji type) are used. The remaining tweets are

used for the training set, which is balanced using upsampling.

Table 3.2: The number of tweets in the pretraining dataset associated with each emoji
in millions.

233.7 82.2 79.5 78.1 60.8 54.7 54.6 51.7 50.5 44.0 39.5 39.1 34.8 34.4 32.1 28.1

24.8 23.4 21.6 21.0 20.5 20.3 19.9 19.6 18.9 17.5 17.0 16.9 16.1 15.3 15.2 15.0

14.9 14.3 14.2 14.2 12.9 12.4 12.0 12.0 11.7 11.7 11.3 11.2 11.1 11.0 11.0 10.8

10.2 9.6 9.5 9.3 9.2 8.9 8.7 8.6 8.1 6.3 6.0 5.7 5.6 5.5 5.4 5.1

30

Table 3.3: Accuracy of classifiers on the emoji prediction task. d refers to the dimen-
sionality of each LSTM layer. Parameters are in millions.

Params Top 1 Top 5

Random - 1.6% 7.8%
fasttext 12.8 12.8% 36.2%
DeepMoji (d = 512) 15.5 16.7% 43.3%
DeepMoji (d = 1024) 22.4 17.0% 43.8%

The performance of the DeepMoji model is evaluated on the pretraining task with

the results shown in Table 3.3. Both top 1 and top 5 accuracy is used for the evaluation

as the emoji labels are noisy with multiple emojis being potentially correct for any

given sentence. For comparison we also train a version of our DeepMoji model with

smaller LSTM layers and a bag-of-words classifier, fastText, that has recently shown

competitive results [44]. We use 256 dimensions for this fastText classifier, thereby

making it almost identical to only using the embedding layer from the DeepMoji

model. The difference in top 5 accuracy between the fastText classifier (36.2%) and

the largest DeepMoji model (43.8%) underlines the difficulty of the emoji prediction

task. As the two classifiers only differ in that the DeepMoji model has LSTM layers

and an attention layer between the embedding and Softmax layer, this difference in

accuracy demonstrates the importance of capturing the context of each word.

3.6 Benchmarking across sentiment, emotion, and

sarcasm tasks

We benchmark our method on 3 different NLP tasks using 8 datasets across 5 domains.

To make for a fair comparison, we compare DeepMoji to other methods that also

utilize external data sources in addition to the benchmark dataset. An averaged Fl-

measure across classes is used for evaluation in emotion analysis and sarcasm detection

as these consist of unbalanced datasets while sentiment datasets are evaluated using

accuracy.

31

An issue with many of the benchmark datasets is data scarcity, which is partic-

ularly problematic within emotion analysis. Recent papers proposing new methods

for emotion analysis such as 181] only evaluate performance on a single benchmark

dataset, SemEval 2007 Task 14, that contains 1250 observations. Recently, criticism

has been raised concerning the use of correlation with continuous ratings as a mea-

sure [12], making only the somewhat limited binary evaluation possible. We only

evaluate the emotions {Fear, Joy, Sadness} as the remaining emotions occur in less

than 5% of the observations.

Table 3.4: Description of benchmark datasets. Datasets without pre-existing train-
ing/test splits are split by us (with splits publicly available). Data used for hyperpa-
rameter tuning is taken from the training set.

Identifier Study Task Domain Classes Ntrain Ntest

SE0714 [82] Emotion Headlines 3 250 1000
Olympic [791 Emotion Tweets 4 250 709
PsychExp [97] Emotion Experiences 7 1000 6480

SS-Twitter [91] Sentiment Tweets 2 1000 1113
SS-Youtube [91] Sentiment Video Comments 2 1000 1142
SE1604 [611 Sentiment Tweets 3 7155 31986

SCv1 [96] Sarcasm Debate Forums 2 1000 995
SCv2-GEN [65] Sarcasm Debate Forums 2 1000 2260

To fully evaluate our method on emotion analysis against the current methods

we thus make use of two other datasets: A dataset of emotions in tweets related

to the Olympic Games created by Sintsova et al. that we convert to a single-label

classification task and a dataset of self-reported emotional experiences created by a

large group of psychologists [97]. As these two datasets do not have prior evaluations,

we evaluate against a state-of-the-art approach, which is based on a valence-arousal-

dominance framework [12]. The scores extracted using this approach are mapped to

the classes in the datasets using a logistic regression with parameter optimization

using cross-validation. We release our preprocessing code and hope that these 2 two

datasets will be used for future benchmarking within emotion analysis.

We evaluate sentiment analysis performance on three benchmark datasets. These

32

small datasets are chosen to emphasize the importance of the transfer learning ability

of the evaluated models. Two of the datasets are from SentiStrength [90], SS-Twitter

and SS-Youtube, and follow the relabeling described in [74] to make the labels binary.

The third dataset is from SemEval 2016 Task4A [61]. Due to tweets being deleted

from Twitter, the SemEval dataset suffers from data decay, making it difficult to

compare results across papers. At the time of writing, roughly 15% of the training

dataset for SemEval 2016 Task 4A was impossible to obtain. We choose not to use

review datasets for sentiment benchmarking as these datasets contain so many words

pr. observation that even bag-of-words classifiers and unsupervised approaches can

obtain a high accuracy [44, 69].

The current state of the art for sentiment analysis on social media (and winner

of SemEval 2016 Task 4A) uses an ensemble of convolutional neural networks that

are pretrained on a private dataset of tweets with emoticons, making it difficult to

replicate [22]. Instead we pretrain a model with the hyperparameters of the largest

model in their ensemble on the positive/negative emoticon dataset from Go et al. [33].

Using this pretraining as an initialization we finetune the model on the target tasks

using early stopping on a validation set to determine the amount of training. We also

implemented the Sentiment-Specific Word Embedding (SSWE) using the embeddings

available on the authors' website [87], but found that it performed worse than the

pretrained convolutional neural network. These results are therefore excluded.

For sarcasm detection we use the sarcasm dataset version 1 and 2 from the Inter-

net Argument Corpus [96]. Note that results presented on these benchmarks in e.g.

Oraby et al. [65] are not directly comparable as only a subset of the data is available

online. 3 A state-of-the-art baseline is found by modeling the embedding-based fea-

tures from Joshi et al. [43] alongside unigrams, bigrams and trigrams with an SVM.

GoogleNews word2vec embeddings [58] are used for computing the embedding-based

features. A hyperparameter search for regularization parameters is carried out using

2The authors report a higher accuracy in their paper, which is likely due to having a larger
training dataset as they were able to obtain it before data decay occurred.

3We contacted the authors, but were unable to obtain the full dataset for neither version 1 or
version 2.

33

Table 3.5: Comparison across benchmark datasets. Reported values are averages

across five runs. Variations refer to transfer learning approaches in 3.4 with 'new'

being a model trained without pretraining.

DeepMoji DeepMoji DeepMoji DeepMoji
Dataset Measure Existing (new) (full) (last) (chainthaw)

SE0714 F1 .34 [Buechel] .21 .31 .36 .37
Olympic F1 .50 [Buechel] .43 .50 .61 .61

PsychExp F1 .45 [Buechel] .32 .42 .56 .57

SS-Twitter Acc .82 [Deriul .62 .85 .87 .88

SS-Youtube Acc .86 [Deriul .75 .88 .92 .93

SE1604 Acc .51 [Deriu] 2 .51 .54 .58 .58

SCv1 F1 .63 [Joshil .67 .65 .68 .69

SCv2-GEN F1 .72 [Joshil .71 .71 .74 .75

cross-validation. Note that the sarcasm dataset version 2 contains both a quoted text

and a sarcastic response, but to keep the models identical across the datasets only

the response is used.

For training we use the Adam optimizer [48] with gradient clipping of the norm

to 1. Learning rate is set to 1E-3 for training of all new layers and 1E-4 for

finetuning any pretrained layers. To prevent overfitting on the small datasets, 10% of

the channels across all words in the embedding layer are dropped out during training.

Unlike e.g. [30] we do not drop out entire words in the input as some of our datasets

contain observations with so few words that it could change the meaning of the text.

In addition to the embedding dropout, L2 regularization for the embedding weights

is used and 50% dropout is applied to the penultimate layer.

Table 3.5 shows that the DeepMoji model outperforms the state of the art across

all benchmark datasets and that our new 'chain-thaw' approach consistently yields

the highest performance for the transfer learning, albeit often only slightly better or

equal to the 'last' approach. Results are averaged across 5 runs to reduce the variance.

We test the statistical significance of our results by comparing the performance of

DeepMoji (chain-thaw) vs. the state of the art. Bootstrap testing with 10000 samples

is used. Our results are statistically significantly better than the state of the art with

34

a@60e06 o*Mtqpee *9 *I9dbe9-+W&J MAVV

Figure 3-3: Hierarchical clustering of the DeepMoji model's predictions across cate-
gories on the test set. The dendrogram shows how the model learns to group emojis
into overall categories and subcategories based on emotional content. The y-axis
is the distance on the correlation matrix of the model's predictions measured using
average linkage.

p < 0.001 on every benchmark dataset.

Our model is able to out-perform the state-of-the-art on datasets that originate

from domains that differ substantially from the tweets on which it was pretrained.

A key difference between the pretraining dataset and the benchmark datasets is the

length of the observations. The average number of tokens pr. tweet in the pretraining

dataset is 11, whereas e.g. the board posts from the Internet Argument Corpus

version 1 [651 has an average of 66 tokens with some observations being much longer.

3.7 Analysis of DeepMoji modeling choices

One of the major differences between this work compared to previous papers using

distant supervision is the diversity of the noisy labels used (see 3.1). For instance,

both Deriu et al. [22] and Tang et al. [87] only used positive and negative emoticons

as noisy labels. Other instances of previous work have used slightly more nuanced

sets of noisy labels (see 3.1), but to our knowledge our set of noisy labels is the

most diverse yet. To analyze the effect of using a diverse emoji set we create a subset

of our pretraining data containing tweets with one of 8 emojis that are similar to

the positive/negative emoticons used by Tang et al. [87] and Hu et al. 140]. As the

dataset based on this reduced set of emojis contains 433M tweets, any difference in

performance on benchmark datasets is likely linked to the diversity of labels rather

than differences in dataset sizes.

35

We train our DeepMoji model to predict whether the tweets contain a positive or

negative emoji and evaluate this pretrained model across the benchmark datasets. We

refer to the model trained on the subset of emojis as DeepMoji-PosNeg (as opposed

to DeepMoji). To test the emotional representations learned by the two pretrained

models the 'last' transfer learning approach is used for the comparison, thereby only

allowing the models to map already learned features to classes in the target dataset.

Table 3.6 shows that DeepMoji-PosNeg yields lower performance compared to Deep-

Moji across all 8 benchmarks, thereby showing that the diversity of our emoji types

encourage the model to learn a richer representation of emotional content in text that

is more useful for transfer learning.

Table 3.6: Benchmarks using a smaller emoji set (Pos/Neg emojis) or a classic archi-

tecture (standard LSTM). Results for DeepMoji from Table 3.5 are added for con-

venience. Evaluation metrics are as in Table 3.5. Reported values are the averages

across five runs.

Dataset Pos/Neg Standard DeepMoji
emojis LSTM

SE0714 .32 .35 .36
Olympic .55 .57 .61
PsychExp .40 .49 .56

SS-Twitter .86 .86 .87
SS-Youtube .90 .91 .92
SE1604 .56 .57 .58

SCvl .66 .66 .68
SCv2-GEN .72 .73 .74

Many of the emojis carry similar emotional content, but have subtle differences

in usage that our model is able to capture. Through hierarchical clustering on the

correlation matrix of the DeepMoji model's predictions on the test set we can see that

the model captures many similarities that one would intuitively expect (see Figure 3-

3). For instance, the model groups emojis into overall categories associated with e.g.

negativity, positivity or love. Similarly, the model learns to differentiate within these

categories, mapping sad emojis in one subcategory of negativity, annoyed in another

36

subcategory and angry in a third one.

Our DeepMoji model architecture as described in 3.3 use an attention mechanism

and skip-connections to ease the transfer of the learned representation to new domains

and tasks. Here we compare the DeepMoji model architecture to that of a standard

2-layer LSTM, both compared using the 'last' transfer learning approach. We use the

same regularization and training parameters.

As seen in Table 3.6 the DeepMoji model performs better than a standard 2-layer

LSTM across all benchmark datasets. The two architectures performed equally on

the pretraining task, suggesting that while the DeepMoji model architecture is indeed

better for transfer learning, it may not necessarily be better for single supervised

classification task with ample available data.

A reasonable conjecture is that the improved transfer learning performance is due

to two factors: a) the attention mechanism with skip-connections provide easy access

to learned low-level features for any time step, making it easy to use this information

if needed for a new task b) the improved gradient-flow from the output layer to the

early layers in the network due to skip-connections [36] is important when adjusting

parameters in early layers as part of transfer learning to small datasets. Detailed

analysis of whether these factors actually explain why our architecture outperform a

standard 2-layer LSTM is left for future work.

Performance on the target task benefits strongly from pretraining as shown in

Table 3.5 by comparing DeepMoji (new) to DeepMoji (chain-thaw). In this section we

experimentally decompose the benefit of pretraining into 2 effects: word coverage and

phrase coverage. These two effects help regularize the model by preventing overfitting.

There are numerous ways to express a specific sentiment, emotion or sarcastic

comment. Consequently, the test set may contain specific language use not present in

the training set. The pretraining helps the target task models attend to low-support

evidence by having previously observed similar usage in the pretraining dataset. We

first examine this effect by measuring the improvement in word coverage on the test

set when using the pretraining with word coverage being defined as the % of words in

the test dataset seen in the training/pretraining dataset (see Table 3.7). An important

37

reason why the 'chain-thaw' approach outperforms other transfer learning approaches

is that the embedding layer can be tuned with limited risk of overfitting. Table 3.7

shows the increased word coverage from adding new words to the vocabulary as part

of that tuning (examine 'combined' vs. 'pretrained').

Note that word coverage can be a misleading metric in this context as for many

of these small datasets a word will often occur only once in the training set. In

contrast, all of the words in the pretraining vocabulary are present in thousands (if

not millions) of observations in the emoji pretraining dataset thus making it possible

for the model to learn a good representation of the emotional and semantic meaning.

The added benefit of pretraining for learning word representations therefore likely

extends beyond the differences seen in Table 3.7.

Table 3.7: Word coverage on benchmark test sets using only the vocabulary generated

by finding words in the training data, the pretraining vocabulary or a combination of

both vocabularies.

Dataset Own Pretrained Combined

SE0714 41.9% 93.6% 94.0%
Olympic 73.9% 90.3% 96.0%
PsychExp 85.4% 98.5% 98.8%

SS-Twitter 80.1% 97.1% 97.2%
SS-Youtube 79.6% 97.2% 97.3%
SE1604 86.1% 96.6% 97.0%

SCv1 88.7% 97.3% 98.0%
SCv2-GEN 86.5% 97.2% 98.0%

To examine the importance of capturing phrases and the context of each word, we

evaluate the accuracy on the SS-Youtube dataset using a fastText classifier pretrained

on the same emoji dataset as our DeepMoji model. This fastText classifier is almost

identical to only using the embedding layer from the DeepMoji model. We evaluate

the representations learned by fine-tuning the models as feature extractors (i.e. using

the 'last' transfer learning approach). The fastText model achieves an accuracy of 63%

as compared to 93% for our DeepMoji model, thereby emphasizing the importance of

phrase coverage. One concept that the LSTM layers likely learn is negation, which is

38

known to be important for sentiment analysis [98].

3.8 Comparing with human-level agreement

To understand how well our DeepMoji classifier performs compared to humans, we

created a new dataset of random tweets annotated for sentiment. Each tweet was an-

notated by a minimum of 10 English-speaking Amazon Mechanical Turkers (MTurk's)

living in USA. Tweets were rated on a scale from 1 to 9 with a 'Do not know' option,

and guidelines regarding how to rate the tweets were provided to the human raters.

The tweets were selected to contain only English text, no mentions and no URL's to

make it possible to rate them without any additional contextual information. Tweets

where more than half of the evaluators chose 'Do not know' were removed (98 tweets).

Table 3.8: Comparison of agreement between classifiers and the aggregate opinion of

Amazon Mechanical Turkers on sentiment prediction of tweets.

Agreement

Random 50.1%
fastText 71.0%
MTurk 76.1%
DeepMoji 82.4%

For each tweet, we select a MTurk rating random to be the 'human evaluation', and

average over the remaining nine MTurk ratings are averaged to form the ground truth.

The 'sentiment label' for a given tweet is thus defined as the overall consensus among

raters (excluding the randomly-selected 'human evaluation' rating). To ensure that

the label categories are clearly separated, we removed neutral tweets in the interval

[4.5, 5.5] (roughly 29% of the tweets). The remaining dataset consists of 7347 tweets.

Of these tweets, 5000 are used for training/validation and the remaining are used as

the test set. Our DeepMoji model is trained using the chain-thaw transfer learning

approach.

Table 3.8 shows that the agreement of the random MTurk rater is 76.1%, meaning

39

that the randomly selected rater will agree with the average of the nine other MTurk-

ratings of the tweet's polarity 76.1% of the time. Our DeepMoji model achieves 82.4%

agreement, which means it is better at capturing the average human sentiment-rating

than a single MTurk rater.

40

Chapter 4

Domain Adaptation through

Prediction Propagation

Modern natural language processing (NLP) models rely heavily on machine learning,

which has enabled impressive results, but has also made the learned models closely

tied with the training data [27]. For NLP, there is enormous amounts of unlabeled

data available, and it is thus useful to exploit this data to make the classifiers more

robust to data coming from other domains than that of the original training data.

The task of learning models that can exploit unlabeled data sources from other

domains to successfully classify observations in those domains has been formalized

in [20] under the name of domain adaptation. Many methods have been proposed

with some prominent approaches leveraging unsupervised learning to learn a shared

representation [7, 95, 15] and others using adversarial loss to learn domain-invariant

representations [2, 31, 105].

We find that many of the state-of-the-art methods rely on assumptions about the

datasets that are often not upheld for real-world applications. Motivated by these

limitations, we propose a new method, Prediction Propagation, that uses the label

prediction for each piece of text, together with the surrounding words, to separately

reconstruct each word in the text. When backpropagating through the label classifier,

the reconstruction loss forces the model to improve its label-related information for

41

domains without labeled data. A new neighborhood encoding architecture and multi-

phase training is used to ensure that the label prediction remains a good estimate

of the label even when updating the model parameters only using a reconstruction

loss. Our method has the desirable properties for real-world modeling and is able to

obtain state-of-the-art performance.

4.1 Difficulty of domain adaptation within NLP

Structured correspondence learning (SCL) [7], stacked denoising autoencoders (SDA) [95],

and marginalized SDA [15] have all been used for domain adaptation within NLP.

These methods first use an unsupervised method to learn a low-dimensional represen-

tation and then train a classifier using the source domain labels on this representation.

In this way, they rely on the unsupervised projection to a low-dimensional representa-

tion being able to capture the information relevant for the label classification, which

is a limitation that the current state-of-the-art methods do not have.

A simple approach to learn domain-invariant representations is to use a pretrained

deep neural network and align the feature spaces across domains. This approach is

used in DAN [55] and Deep CORAL [84]. While these method can be effective, they

require that a pretrained network is available. These methods have in the vision

domain relied on models that have been pretrained on large-scale annotated datasets

such as ImageNet [21], whereas it is not clear in the NLP domain which pretrained

models could be used. Similarly, there are other domain adaptation methods that

have been used within computer vision, but are not easily applicable to NLP.

The domain-adversarial neural network (DANN) [2, 31] uses an adversarially

trained domain classifier to align the feature spaces across domains in addition to

a traditional classifier on the source domain. A gradient reversal layer (GRL) ensures

that the encoder's parameters are updated such that the domain classification loss

increases. While training, the model simultaneously minimizes the label prediction

loss while maximizing the domain classifier's cross entropy loss. Many of the recent

state-of-the-art methods build on this DANN framework. For instance, [93] proposed

42

the Deep Domain Confusion (Deep DC) method that instead of maximizing the do-

main classifier's cross-entropy loss minimize the maximum mean discrepancy. Other

differences between methods are the model architecture with methods like ADDA and

DSN using separate encoders for each domain [94, 8]. The DSN method reconstructs

the input as part of the training process, thereby learning which parts of the feature

space to share across domains and which to keep private [8]. Similarly, the aspect-

augmented adversarial network (AAN) was recently proposed, which stabilizes the

adversarial training for NLP applications through the use of an additional word-level

autoencoder loss [105].

Our method's reconstruction of individual words in the context of neighboring

words has a resemblance to window-based tagging [19] and the continuous bag-of-

words (CBOW) method used to learn word vectors [581. However, to our knowledge,

there's no approach that uses the label prediction as part of the text reconstruction

in the same way that our method does.

4.2 Linking predictions with text reconstruction

Consider the example in Figure 4-1, where our model is reconstructing the word

sweetiepie using only the two neighboring words and the text-level label prediction.

Given the two neighboring words, a simple model will be able to predict that the

reconstructed word should be a noun, but without the text-level label prediction it

is unclear if the reconstructed word should be a positive noun (e.g. 'sweetiepie') or

a negative noun (e.g. 'moron'). Our method focuses precisely on how to use such

reconstruction difficulties to learn label-related information about the target domain.

For the unsupervised domain adaptation task involving a source domain Ds and

a target domain DT, we aim to learn a function f : X -s Y that obtains a low

generalization error on the target domain DT. We have Ns labeled training samples,

{ (Xi, Yi)7 ..., (xNr, YNs)}, from Ds and NT unlabeled samples, {(xi), ..., (xNT)}, from

D'P. The task focus is thus how to make use of the NT unlabeled training samples to

teach the model about DT in order to reduce the generalization error.

43

Word-level * Text-level

You were such a sweetiepie yesterday. I love you!

clf,

Figure 4-1: Simplified illustration of how our model reconstructs each word using its
two neighbors and a text-level prediction of the label.

It is easy to obtain general semantic information about words in DT using an

unsupervised method like CBOW [581, but it is non-trivial to learn label-related

information for each word. For instance, CBOW would likely have difficulty learning

that sweetiepie is a positive word in the example in Figure 4-1. The goal of our

Prediction Propagation method is thus to enrich our word embedding function emb(.)

with label-related information about words in DT and to enrich our classifier function

clf(-) to account for patterns specific to DT.

We represent each text of T words as x = {(xo), ... , (XT.1)} and assume that the

probability of each word xi is a function only of its k-adjacent neighbors for some

k > 0 (i.e. it has the k-Markovian property [32]) and a text-level prediction of the

probability distribution over the classes, yS:

P(xiIxo, ... , xi_1, xi+l, --- , ixT-1, Y) = P(xilxi-k, --- , xi-1, xi+l, --- , ixi+k, 5y) (4.1)

The central idea of this method is to use the predicted distribution y as part of a gen-

erative model, thereby learning label-related information for DT by backpropagating

through the classifier. To do this properly requires a special architecture and training

procedure that is presented in the remainder of this section.

44

4.3 Neighborhood encoding architecture

We define a new neighborhood encoding architecture (see Figure 4-2) that is com-

posed of five functions, embr, enco, dec4 , clfe, and glo with respectively r, #, '0, w,

and 6 as their parameters. An input x to the model is a sentence composed of T

words, xO, x1, ... , X_1, that are each processed by the embedding function, thereby

obtaining a representation ej = embr(xi) for the word at index i. The neighborhood

encoding function enco(ei) then encodes each embedded word ej using its neighbor-

hood, which is composed of the k nearest words on either size (but not the word

itself), thereby making use of the k-Markovian property previously discussed. The

neighborhood encoding of a word is thus ci = enco(ei-k, ... , ei_ 1 , ei+, --- , ei+k)-

Word-level * Text-level

embr enco decV,
Xo C0 X0

X 2 C2 -- X2

clf1

Figure 4-2: Illustration of the architecture for our method with T = 3 and k = 1. Each
word is encoded based on that word's two neighboring words. The predicted distri-
bution over the labels, y, is computed for the entire text, which is then concatenated
to each encoded word as part of the decoding. Similarly, a global representation g is
computed and concatenated. The decoder has thus access to word-level neighborhood
encodings, the text-level prediction, and the text-level global representation.

In parallel to the neighborhood encoding of each word, a classifier function pre-

dicts the probability distribution over the labels from the embedding representations,

i.e. y = clf,(e), where e contains all embedded words eo, el, ... , em_1. This text-level

prediction is used as part of the input to decoding. Similarly, we compute a global

45

text-level representation g = glo6 (e) of dimensionality 1. The global representation is

added to help Sr remain a good estimate of y by capturing the main global patterns

that are relevant for reconstruction, thus preventing the gradients from strongly push-

ing yr towards capturing this information. The benefit of the global representation is

confirmed experimentally in Section 4.7.

The decoder function is applied to each word to reconstruct that part of the

input, i.e. xE = decV(ci, y, g). As opposed to a classic autoencoder [95], the entire

input is not compressed to a single vector representation, but rather each word xi is

represented independently by its word-level neighborhood representation ci, the text-

level predicted distribution Sr, and the global representation g. Figure 4-2 illustrates

this network architecture for an input of size T = 3.

The key to our model's success is the connection from the text-level prediction

y to each word as it is being decoded. From an implementation perspective, the

prediction is simply repeated with an identical prediction value being concatenated

to each encoded word cO, C1 ... CT_1. The same goes for the global representation g.

We tie weights V) with the weights - for the embedding function, thereby reducing

overfitting and the numbers of parameters in the model [42, 68].

We will now describe the layers we use for the four functions of our neighborhood

encoding architecture: embr, enco, decp and clf,.

The embedding function emb, consists of a single embedding layer with an em-

bedding size of m + n + 1, where m = 64 and 1 = 8 are hyperparameters and n is

the number of classes. The embedding weights, T, is consequently a matrix of size

V x (m + n), where V is the vocabulary size.

The classifier function c1f, has an attention layer that averages the representations

across words by weighing each word based on their attention importance score as

done in [28] and a bidirectional long short-term memory [39, 76] module with 512

dimensions in each direction for detecting sequential patterns. These two layers are

combined using a fully-connected layers with 1024 units and a Softmax layer that

computes a probability distribution over the n classes. The global representation

function glo6 uses the same layers as the classifier function, but has a final layer of

46

dimensionality I = 8 with a tangents hyperbolic activation rather than the Softmax

layer.

The neighborhood encoding function enco uses a center-masked convolutional

layer with a filter size of 3 to encode each word using its two neighboring words. We

define a center-masked convolution as a standard convolution that is applied across a

feature map, where the central neuron is masked by multiplying it with zero to have

no influence on the filters (see enco in Figure 4-2). The center-masked convolutional

layer has 2048 filters and is followed by a time-distributed fully-connected layer that

projects each word independently down to 64 dimensions. Both layers use the ReLU

activation.

The decoder function multiplies the concatenated input from enco and clf, with a

matrix of size (m + n) x V. A bias is added for each word and the softmax activation

function is applied, thereby for each word producing a probability distribution over

all the words in the vocabulary.

4.4 Multi-phase training to learn desired

representations

In order to learn label-related information about words and patterns occurring in DT

by backpropagating the gradients from a reconstruction loss through the classifier, it

is crucial that S remains a good estimate of y throughout training. This is non-trivial

as the gradients from the reconstruction loss will attempt to move the prediction y

away from being a good estimate of y and instead towards something more useful

for reconstructing the words. One could imagine trying to make y remain a good

estimate by using a classification loss based on the labeled samples from Ds, but this

would introduce a dataset-dependent hyperparameter related to the trade-off between

the reconstruction loss and classification loss.

We ensure that y remains a good estimate by training the model in five consecutive

phases. Each phase involves minimizing one or more of the model's three losses

47

with respect to a subset of the parameters r, #, 0 and w. The three losses are

the classification loss on the source dataset, clf, and the two reconstructions losses,

'2 source and Ltarget, making the total training loss:

L = Acif Lcif +Asource Lsource +Atarget target (4.2)

While this training scheme may seem excessive, it is unlike most other domain

adaptation methods free of hyperparameters that need to be tuned for each new

dataset. Moreover, the main difference between phases is which parameters are train-

able and which losses are used, making the training easy to implement in any modern

deep learning library. The loss multipliers, Aclf, AOurce and Atarget are always binary,

meaning that the loss is simply on or off for any given phase. Table 4.1 details which

parameters of the model are trainable in which phase and which losses are used. The

first three phases teaches the model how to reconstruct the words xO, x1, . , XT-_1

and predict y for Ds, whereas the last two phases make use of the trained model to

learn label-related information for DT. In particular, the fourth phase updates the

word embeddings parameters T to learn the meanings of previously unknown words

and new meanings of existing words. Similarly, the fifth phase updates W to capture

patterns specific to DT. As phase 1 does not yet have a trained classifier to provide

y, the labels are provided instead. Table 4.7 in Section 4.7 show how the model is

improving in each phase.

Table 4.1: Parameters being updated in each phase using which losses. Loss multi-
pliers are binary.

Phase Parameters Aczf Asource Atarget

1 T,#7, /,6 0 1 0

2 W 1 0 0
3 T,#,4,6 0 1 0
4 T,#,4',6 0 1 1
5 w 0 1 1

The training is done using the Adam optimizer [48] using the default parameters

and with gradient clipping of the norm set at 1. In all phases the model is trained

48

until convergence as determined by lack of improvement on the validation set, which

contains observations from Ds and DT depending on the losses in that phase.

4.5 Desirable properties for domain adaptation

methods

Due to the many ways of designing domain adaptation methods, we aim at identifying

some desirable properties for these methods that can put our method in the context

of previous work. We identify three such desirable properties.

Table 4.2: Properties of various NLP domain adaptation methods.

Learn w/o Clasify Train on

Method pretrained Coasifw/o different label

params distributions

DAN [55] no yes yes

Deep CORAL [84] no yes yes

ADDA [94] yes no no

DSN [8] yes no suboptimal'

Deep DC [93] yes yes no

DANN [2] yes yes no

AAN [105] yes yes no

Prediction Propagation (ours) yes yes yes

First, it is desirable that the method can be trained from scratch on the dataset

without any pretrained parameters because there are many important real-world tasks

for which there are no pretrained classifiers available to adapt. While most of the

state-of-the-art domain adaptation methods are able to do this, the DAN [55] and

Deep CORAL [84] rely on aligning features of pretrained neural network models and

are thus restricted in the tasks they can be applied to.

Secondly, it is desirable that the method can classify an observation without knowl-

edge of the domain from which that observation originated. Some domain adaptation

'DSN's similarity loss is defined as the adversarial loss from either DANN or Deep DC, both

of which have difficulty training on domains with different label distributions. Table 3 in the DSN

paper shows that the model works without this loss, but achieves results below state of the art for

2 out of 4 benchmark datasets.

49

methods require such information for each observation due to e.g. the use of separate

encoders for different domains [8, 94]. While this issue could potentially solved by

having a domain classifier that is used as part of the preprocessing, it is not always

trivial to determine the domain of individual observations in NLP. Additionally, for

real-world applications some new observations may occur that cannot be clearly de-

fined as being part of any of the existing domains used for training. It is not clear

how these methods with separate layers for different domains would handle such ob-

servations.

Thirdly, it is desirable that a method is able to model domains with different

label distributions as many real-world domains vary in their label distributions. For

instance, Amazon reviews have a proportion of positive reviews ranging from 78% to

93% depending on the product category (see the supplementary material). All the

methods that are rooted in the gradient reversal technique from DANN (i.e. ADDA,

DSN, Deep DC, DANN, AAN) suffer from an inability to handle such differences in

label distributions across domains. For these methods, the domain classifier exploits

the label information encoded in the feature vector to predict the domain, causing

the reversed gradient to remove information pertinent to the classification task. This

issue is formalized in the supplementary information and experimentally confirmed

in Section 4.6.

Table 4.2 summarizes the properties of the state-of-the-art methods within NLP (see

Section 4.1 for other methods). Prediction Propagation stands out as the only method

with all three desirable properties. With this paper's focus on domain adaptation for

real-world applications, the DANN, Deep DC and AAN methods are the most rele-

vant baselines due to their ability to learn without pretrained parameters and classify

observations without domain information. Recent work has shown that DANN per-

forms comparable or better than Deep DC [94, 56], which is why we only use DANN

and AAN as baseline comparisons in Section 4.6.

50

4.6 Benchmarking and the issue of unbalanced

datasets

As described in Section 4.5 we compare our model to DANN and AAN. For our

implementation of DANN we use similar embedding and classification layers as for

our own model, while using the same gradient reversal factor schedule as in the original

DANN paper (see the supplementary material for implementation details). For AAN

we use the authors' GitHub code and default hyperparameters.

We create three new datasets due to lack of proper evaluation datasets for domain

adaptation in NLP. An overview of the datasets can be seen in Table 4.3. For all

datasets we use 5000 observations for the validation set and 15000 observations for

the test set. To tokenize the texts and create the vocabularies we use the code from

DeepMoji [28].

Table 4.3: Description of benchmark datasets.

Experiment Study Task Classes Ntrain Nal Nte, Bal Unbal

Twitter 4 Amazon [91, 371 Sentiment 2 200000 5000 15000 /
Amazon Categories [371 Sentiment 2 40000 5000 15000 v /
AG News -4 Yahoo [1031 Topic 2 40000 5000 15000 /

For sentiment classification we consider domain adaptation between Amazon re-

views and tweets on Twitter as well as between three Amazon product categories.

Previous work has also used Amazon product categories to evaluate domain adapta-

tion [31, 15], but the review datasets used in these previous papers only had 2000

labeled source samples, making the dataset small for modern standards. We thus

create our own binary classification Amazon review datasets based on previously re-

leased data [37]. Our datasets are substantially larger, making for a more realistic

test case. The reviews are on an ordinal scale from 1 to 5, which we binarize by

regarding reviews with scores below 3 as negative and above 3 as positive. Reviews

with a score of 3 are discarded to establish a clear separation between negative and

51

positive reviews. To make for a more challenging domain adaptation task, we use only

reviews with less than 30 tokens and remove all trivially easy observations. These

observations are defined as the ones that a bag-of-words logistic regression using only

a vocabulary of the top 1000 tokens predicts with 99% confidence or more. In addi-

tion to creating balanced datasets, we also randomly sample observations from the

Amazon categories to create a version of that dataset that is naturally unbalanced,

varying from 78% to 93% of the reviews being positive depending on the product

category (see the supplementary material for details).

In agreement with prior work [61, 87], we define positive sentiment for tweets as

those containing a positive emoji and, similarly, negative sentiment for those contain-

ing a negative emoji. To handle the noisy text on Twitter we use the tokenization

scheme and vocabulary from DeepMoji [28], where words with 2 or more repeated

characters are shortened to use the same token. Furtermore, all URLs, numbers, and

-mentions are replaced by special tokens.

For topic classifciation we consider domain adaptation between between Yahoo

Answers and AG News [103] where the two overlapping topics in both domains,

Science/Technology and Sports, are used as our two prediction classes. Both corpora

are balanced. A large proportion of the observations had the website domain as part

of the text, making it trivially easy to classify these observation (e.g. if the domain is

www.spacescience.com). We thus remove the website domains from the texts as part

of the preprocessing.

To evaluate the performance on the datasets we use the area under the curve

(AUC) of the receiver operating characteristic, which is suited for evaluating both

balanced and unbalanced datasets. Table 4.4 shows that Prediction Propagation is

the method of the three that achieves state-of-the-art performance across the most

datasets. All the results are averaged across 3 runs. Additionally, we compute the

standard error of the mean (SEM) of the AUC for each combination of method and

dataset.

To our knowledge, DANN and AAN have only been benchmarked on domain

adaptation tasks, where the distribution of labels is uniform for both the source and

52

Table 4.4: Balanced tasks. AUC on the target dataset averaged across 3 runs. Higher
is better.

Amazon
Twitter

AG
Yahoo

Books
Books
Movies
Movies
Clothing
Clothing

Twitter
Amazon

Yahoo
AG

Movies
Clothing
Books
Clothing
Books
Movies

DANN

.734 .006

.822 .008

.773 .026

.948 .007

.947 .001
.911 + .004
.929 .002
.918 .003
.842 .014
.896 + .005

AAN

.752 1 .032

.851 i .015

.913 .003
.965 .002

.898 .004

.876 .005

.903 .001

.888 .012

.864 .007

.846 .017

Our method

.766 .004

.874 .016

.894 .004
.978 .003

.938 .001
.918 + .001
.924 i .001
.899 .002

.900 .002

.921 .003

Table 4.5: Unbalanced tasks.
Higher is better.

AUC on the target dataset averaged across 3 runs.

DANN AAN Our method

Books -+ Movies .848 + .008 .680 .067 .918 .005
Books -* Clothing .836 .003 .732 .061 .901 .001
Movies -+ Books .816 .003 .614 .021 .912 .006
Movies - Clothing .819 + .004 .786 .023 .898 .005
Clothing - Books .724 .008 .693 .077 .848 .005
Clothing -+ Movies .743 .010 .738 .033 .870 .003

target domain. However, obtaining a balanced target dataset necessarily requires

access to the labels, which would not be present in a real-world application of domain

adaptation. We thus evaluate the methods, where the source domain is balanced

(as often done for training) and the target domain is naturally unbalanced, i.e. the

observations are sampled randomly from the original dataset. Table 4.5 shows that

DANN and AAN perform substantially worse on these tasks with a unbalanced target

domain, thereby confirming the issue discussed in Section 4.5 and formalized in the

supplementary material. Our method substantially outperforms DANN and AAN on

these unbalanced datasets.

53

4.7 Analyzing the modeling choices

In this section we analyze the modeling choices we've made. Firstly, we analyze our

underlying premise of the backpropagation through the classifier being crucial for the

performance of our model. We run the balanced Amazon -+ Twitter experiment,

where we stop the gradient from backpropagating from the decoder to the classifier.

The AUC on the target domain validation set drops from .766 to .731, which is

below the current state-of-the-art methods, thereby emphasizing the importance of

propagating the predictions from the decoder through the classifier.

Our method does not have any training hyperparameters, but it has two hyperpa-

rameters related to the architecture: neighborhood size k and global dimensionality

1. Table 4.6 shows a grid search over hyperparameter values with the results being

averages across 3 runs. We find that k = 3 and 1 = 8 provide the best results and we

use these values across all the experiments.

Table 4.6: Grid search over the neighborhood size k and dimensionality of the global
representation 1. The values are AUC for the task Amazon -+ Twitter.

1

k 0 4 8 16

1 .747 .756 .731 .732
3 .753 .741 .766 .732
5 .753 .756 .732 .760

Table 4.7: Accuracies for sentiment prediction and word reconstruction on the vali-
dation set for target domain for the balanced task Amazon -* Twitter.

Senti- Words
Phase ment

1 - 14.5 .1
2 61.8 .4 -
3 62.8 .5 14.5 .2
4 68.1 .1 29.1 .6
5 68.5 .2 29.2 .3

Lastly, to understand the impact of each of our training phases we evaluate the

54

sentiment and word reconstruction accuracies on the target domain for the balanced

task Amazon -+ Twitter. As seen in Table 4.7 each phase improves the performance.

Phase 4 substantially improves the word reconstruction accuracy, which is intuitive

as this is the first phase, where the target domain reconstruction loss, Ltarget is used.

Phase 1 and 4 take the longest with the remaining three phases accounting for less

than 25% of the overall training time.

55

56

Chapter 5

Disentangling Content and Style

using Representation Distillation

It is trivial for a computer to express specific emotional content if given full flexibility

over the content of the text. However, that is not desirable as the communication

often has a purpose, requiring the computer to communicate certain content. The

challenge thus lies in communicating the same content while changing the style of

the text to express specific emotions, which we refer to as 'style modification'. A

simple approach to modify the emotional style of a text is to replace sentiment-

bearing words with antonyms, but this does not capture the full richness of emotional

content in language, which is why recent research has attempted style modification of

text using machine learning [78, 47]. However, the existing methods have important

limitations wrt. content consistency and flexibility of style control. We propose a new

approach that learns disentangled representations of style and style using a specialized

dilated convolutional autoencoder architecture that uses a pretrained classifier and

adversarial training. In addition to allowing style modification, this method also

enables style-independent content representations that may be useful for downstream

tasks.

57

5.1 Usefulness of disentangled representations

Decomposing an input into disentangled representations of style and content has

attracted a lot of attention within the machine learning community [88, 51, 16, 57].

In the context of handwriting recognition, the style can be the font [88], whereas

for language the style can include factors such as sentiment and formality. It is

often desirable to be able to perform style modification, where the style is changed

while keeping the content constant. A particular kind of style modification, 'style

transfer', entails that the style of an input, x, is applied to another input, xt, thereby

changing the style of xt. One way to perform style transfer is through the use of

disentangled representations, where style and content each have a representation that

is independent of the other.

5.2 Style transfer with discrete words

A lot of previous work in NLP has attempted to achieve disentangled representations

by modeling the data in the VAE framework [49], thereby placing a strict prior on

the code space [9, 77, 41] that also allows them to sample sentences. One way to

enforce that the style and content representations are independent in a VAE model

is through the use of separate discriminators to classify these representations [41].

However, using this approach for style transfer does experience failure cases with the

content of the reconstructed output, it, being very different from the content of xt.

Two recent papers model the problem of style transfer more explicitly [78, 47].

In one of them the style transfer task is treated as a translation problem with two

encoders and decoders [78] with the encoders and decoders being cross-aligned using

Professor Forcing [54]. The other paper regularizes the style and the content to be

independent [47] through the use of adversarial training framework originally designed

for domain adaptation [31] and a continuous-space generator based on the Wasserstein

distance [3]. These two papers represent the current the state-of-the-art for style

transfer on text and will be the main comparisons when evaluating our approach.

58

A major difficulty for style transfer on text is the ability to modify the style while

preserving the content, partly due to the discrete nature of the data. The two methods

discussed above also suffer from this issue, thus making some transferred sentences

be very different from the original ones (see Table 6 in [47]).

5.3 Disentangled representations through

distillation

To determine which factors of variation from the input should be captured in the

style representation, previous work made use of labeled datasets to train a classifier

as part of the neural network [41, 47]. Training a classifier as part of the style transfer

model requires the network to simultaneously learn the style-specific factors and the

reconstruction of the input, making the optimization task more difficult. Moreover,

the relationship between style and content can be highly complex, thus requiring a

large labeled dataset to properly capture these dynamics.

We prevent these issues altogether by using a pretrained domain-invariant classi-

fier' to guide our model. Similar to how model distillation has been used for training

small students models from larger teacher models [38], we distill the knowledge of the

classifier to obtain disentangled representations. Accordingly, we name our method

Representation Distillation (RepDistil). Having the pretrained classifier as an inte-

gral part of the architecture, allows it to provide gradients for the decoder, thereby

guiding it to how it can achieve a desired style. In this way, the pretrained classifier

eases the optimization task and allows our model to be trained on unlabeled datasets.

To express content with a specific emotional style it is helpful decompose an in-

put x into two separate representations, c and s, containing respectively information

about the content and the style. While this can be accomplished in a completely

unsupervised manner for simple styles [16, 69], language is so rich in variations that

it seems infeasible for more complex styles. Moreover, completely unsupervised learn-

'If one such classifier does not exist for a specific labeled dataset, it is easy to create one by first
training a classifier before training our style transfer network.

59

A clf,
X+

decV, dec,

adv~,

gradient
reversal

clft encr

X

Figure 5-1: High-level illustration of the proposed architecture for learning disentan-
gled representations and performing style modification. Grey boxes are the observed
texts (before and after modification) while blue diamonds are representations com-
puted by the model.

Algorithm 1 Training
while not converged do

Compute . = adv,(encO(x)). Update Wp. Repeat k times.
Compute X = dec,(enco(x), clf,(x)), s = adv(GRL(enc4(x))). Update #, b.
Compute S^ = clfw(decp(enco(x), clf, (x))). Update 0.

ing makes the trained model hard to use for style modification as different training

sessions will likely yield different factors of variation as the detected style factors.

Consequently, we examine the approach, where additional information is available on

which factors of style should be separated into s. In particular, we make use of a pre-

trained classifier that maps the input to a style representation using a parameterized

function s = clf,(x) with parameters w.

Using the pretrained classifier allows us to get the style representation, s, but it is

not trivial to obtain a content representation, c, that is independent of the style. To

obtain these disentangled representation we use an extension of the classic autoen-

coder network architecture [95]. An autoencoder consists of two parts. An encoder

maps the input, x, into a content representation, c, using a parameterized function

60

c enco(x) with parameters 0. The content representation is then mapped back to

the original space by a decoder, i = deco(c) with parameters 4. The autoencoder

is perfectly reconstructing x when x = -. If dim(c) = dim(x), then a trivial solu-

tion for the autoencoder is to learn the identity function such that enco(x) = x and

decep(c) = x. Instead, dirn(c) is chosen to be a low number such that the autoencoder

attempts to learn a lower dimensional manifold that contains all of the information in

the input space and thereby compresses the input. The autoencoder thus models the

data as p(xlc), where c = enco(x) is a low-dimensional representation of the input.

5.4 Adversarial training of the RepDistill model

A naive approach for controlling the style of the reconstruction is to model p(xac, s)

instead, where the style representation, s, is concatenated to the content representa-

tion. However, as all of the information needed for the reconstruction is available in

x, the decoder often learns to ignore the style variable. If this happens, it becomes

impossible to achieve different reconstructions by modifying the style representation.

To enforce c to not contain information about s, we make use of adversarial

training [34] and the gradient reversal layer (GRL) [31]. This layer acts as the identity

function on the forward pass, but reverses the gradient during backpropagation by

multiplying it with -1. In this way, any loss coming through the GRL will optimize

parameters earlier in the model to make the loss worse. An adversarial classifier with

parameters o is trained to predict the style representation through a GRL layer, i.e.

s = adv,(GRL(c)). During this adversarial training, the o parameters will thus be

updated to better be able to predict s, while the parameters of the encoder, #, will

be updated to make c contain less information useful for predicting s. Consequently,

properly reconstructing x requires the use of the concatenated style representation,

thereby ensuring that modifying s changes ,.

The content and style might be related in complex ways, which can make it difficult

for the decoder to correctly reconstruct the style. In practice, the decoder may choose

to partially ignore reconstructing the style in favor of better modeling the content.

61

This issue can be mitigated by having an extra loss for the autoencoder's ability to

reconstruct the style, thus allowing us to tune the importance of the reconstructed

output having the correct style. We implement this loss using the pretrained classifier

such that the model attempts to make clf,(i) as close as possible to clf,(x). In this

way, the pretrained classifier provides gradients that guides the decoder to achieve a

specific style, even on unlabeled datasets. This approach is similar in vein to model

distillation, where one or more models are used to train a new smaller model with

comparable performance [11, 38]. Accordingly, we find that matching the logits with

a mean squared error loss as proposed in [11] for model distillation works well for our

approach2 .

An illustration of our neural network architecture can be seen in Figure 5-1. Train-

ing the network involves three separate backpropagation steps to ensure that the gra-

dients encourage the encoder to make c independent of s and to make the decoder

use s. Algorithm 1 describes the training in more detail. Once trained, the user sim-

ply provides an input and a desired style representation to obtain a modified version

of the input. Style transfer from an input xs to another input xt can therefore be

achieved simply by reconstructing xt with s = clf,(xe).

Our network architecture encodes the input into a variable-size content repre-

sentation that is resolution preserving [45], i.e. scaling the number of hidden states

one-to-one with the size of the input. Each word is encoded into its own hidden state

vector, which is made available to the decoder. In this way, the variable-size encoding

makes the learning task much easier as it allows the decoder direct access to the in-

dividual tokens in the input text, thereby allowing the network to model the change

in style for a single word directly rather than first having to memorize the entire text

into a single vector. Furthermore, this architecture simplifies the optimization task as

it makes the paths of the gradients from the output tokens to the corresponding input

tokens much shorter. This approach is in contrast to previous work that all encode

the content into a single fixed-size vector. The style representation is run through a

2The style representation is always kept in logits, incl. the target for the adversarial network and
the input to the decoder.

62

1-layer MLP and concatenated to every time step.

5.5 Evaluating the style transfer performance

At the time of writing this thesis, the RepDistil project is still work in progress, leav-

ing much to be wanted in this evaluation section. Furthermore, the comparison with

existing algorithms is complicated by the lack of a single clear metric for evaluating

style transfer. Individual papers use different metrics and many use human evalua-

tions without specifying complete experiment design and participant instructions.

The main difficulty of evaluating style transfer models for text is that there will

always be a trade-off between the degree to which the original content remains and

the degree to which the style has been transferred. I am currently involved in another

research project on identifying better ways of quantifying the performance of style

transfer models for text. This part of the RepDistil project has thus purposely not

been pursued, but is waiting on new standardized metrics and benchmark datasets

from the other project for better comparisons.

63

64

Chapter 6

Discussion

This thesis focused on the hard task of teaching machines about emotions, but do the

methods proposed here actually take us any closer?

DeepMoji is helping researchers and practitioners that would like to go beyond

measuring positive/negative sentiment and instead model various kinds of emotions.

The pretrained neural network has been deployed in multiple industry applications

(incl. chatbots), thereby helping the machines better understand the emotion content

of how we express ourselves. Equally important, DeepMoji is helping open up new

avenues of research for scientists interested in understanding phenomena related to

emotions. For instance, DeepMoji has been used to model racism [46] and to help us

get a better understanding of theory behind emotions [13].

Our Prediction Propagation method and the new benchmark datasets we provide

can hopefully help push the field of domain adaptation for NLP forward. This is

crucial as NLP methods are notoriously brittle [27]. While the description of the

method here focused on classifying emotional content, the method could potentially

also benefit a variety of other NLP tasks.

Learning to obtain disentangled representations of messy real-world data could

be an important step towards the causal models that some argue are necessary

for human-like AI [53]. Due to its discrete nature and long-tailed distribution of

words, language is arguably a hard domain for learning disentangled representations.

65

RepDistil could help solve this problem, although it still needs more work for us to

prove that the algorithm works better than the existing methods.

It is clear that none of the methods proposed here will take us all the way to the

big vision of an emotional Al. Nevertheless, I do believe that the methods proposed

in this thesis help move the field in the right direction.

66

Chapter 7

Conclusion

This thesis explored how one could design algorithms for modeling the rich spectrum

of emotions that humans employ. I have done that through three research projects

on this overall topic. In the first paper, we show how the billions of texts on social

media with emojis can be used for training deep learning models that obtain state-of-

the-art performance across various emotion-related NLP tasks. Our DeepMoji model

has been deployed in multiple industry applications and is being used in academia

to analyze phenomena related to emotions. The second paper shows how the current

state-of-the-art domain adaptation methods lack one or more desirable properties for

real-world NLP applications. Motivated by these limitations we have introduced the

Prediction Propagation method, which has these desirable properties and is able to

obtain state-of-the-art performance. Lastly, the third paper proposes the RepDistill

method for disentangling content and style of texts. Although additionally work is

required to verify this method's efficacy, the initial results are promising. All in

all, there's still a long way to go before we reach machines that actually understand

emotions, but the methods proposed in this thesis move us in the right direction while

having practical applicability for both industry and academia.

67

68

Bibliography

[1] Hyungil Ahn and Rosalind W Picard. Affective-cognitive learning and decision
making: A motivational reward framework for affective agents. In International
Conference on Affective Computing and Intelligent Interaction, pages 866-873.
Springer, 2005.

[2] Hana Ajakan, Pascal Germain, Hugo Larochelle, Frangois Laviolette, and Mario
Marchand. Domain-adversarial neural networks. In Second Workshop on Trans-
fer and Multi-Task Learning: Theory meets Practice (NIPS 2014), 2014.

[3] Martin Arjovsky, Soumith Chintala, and L6on Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In 3rd International Con-
ference on Learning Representations (ICLR), 2014.

[5] Lisa Feldman Barrett. The conceptual act theory: A pr6cis. Emotion Review,
6(4):292-297, 2014.

[6] Yoshua Bengio et al. Deep learning of representations for unsupervised and
transfer learning. In 29th International Conference on Machine learning
(ICML) - Workshop on Unsupervised and Transfer Learning, volume 27, pages
17-36, 2012.

[7] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with
structural correspondence learning. In Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2006.

[8] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan,
and Dumitru Erhan. Domain separation networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[9] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefow-
icz, and Samy Bengio. Generating sentences from a continuous space. arXiv
preprint arXiv:1511.06349, 2015.

[10] Margaret M Bradley and Peter J Lang. Affective norms for english words
(anew): Instruction manual and affective ratings. Technical report, Citeseer,
1999.

69

[11] Cristian BuciluQO, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-
pression. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 535-541. ACM, 2006.

[12] Sven Buechel and Udo Hahn. Emotion analysis as a regression problem - di-
mensional models and their implications on emotion representation and metri-
cal evaluation. In 22nd European Conference on Artificial Intelligence (ECAI),
2016.

[13] Andres Campero, Bjarke Felbo, Joshua B Tenenbaum, and Rebecca Saxe. A
first step in combining cognitive event features and natural language represen-
tations to predict emotions. arXiv preprint arXiv:1710.08048, 2017.

[14] Ginevra Castellano, Loic Kessous, and George Caridakis. Emotion recognition
through multiple modalities: face, body gesture, speech. In Affect and emotion
in human-computer interaction, pages 92-103. Springer, 2008.

115] Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized
denoising autoencoders for domain adaptation. In International Conference on
Machine Learning (ICML), 2012.

[16] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. In Advances in Neural Information Processing
Systems, pages 2172-2180, 2016.

[17] Frangois Chollet et al. Keras. https://github.com/f chollet/keras, 2015.

[18] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In 25th International
Conference on Machine learning (ICML), pages 160-167, 2008.

[19] Ronan Collobert, Jason Weston, Lon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from
scratch. Journal of Machine Learning Research (JMLR), 2011.

[20] Hal Daune III and Daniel Marcu. Domain adaptation for statistical classifiers.
Journal of Artificial Intelligence Research, 2006.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248-255. IEEE,
2009.

[22] Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Aurelien Lucchi, Valeria
De Luca, and Martin Jaggi. Swisscheese at semeval-2016 task 4: Sentiment
classification using an ensemble of convolutional neural networks with distant
supervision. Proceedings of SemEval, pages 1124-1128, 2016.

70

[23] Karthik Dinakar, Roi Reichart, and Henry Lieberman. Modeling the detection
of textual cyberbullying. The Social Mobile Web, 11(02):11-17, 2011.

[24] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature
for generic visual recognition. In 31th International Conference on Machine
Learning (ICML), volume 32, pages 647-655, 2014.

[25] Ben Eisner, Tim Rocktdschel, Isabelle Augenstein, Matko Bosnjak, and Sebas-
tian Riedel. emoji2vec: Learning emoji representations from their description.

In 4th International Workshop on Natural Language Processing for Social Media

(SocialNLP), 2016.

[26] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol,
Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help
deep learning? Journal of Machine Learning Research (JMLR), 11:625-660,
2010.

[27] Allyson Ettinger, Sudha Rao, Hal Daum6 III, and Emily M Bender. Towards
linguistically generalizable nlp systems: A workshop and shared task. In Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), 2017.

[28] Bjarke Felbo, Alan Mislove, Anders Sogaard, Iyad Rahwan, and Sune Lehmann.
Using millions of emoji occurrences to learn any-domain representations for
detecting sentiment, emotion and sarcasm. In Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2017.

[29] Sandra Clara Gadanho and John Hallam. Robot learning driven by emotions.
Adaptive Behavior, 9(1):42-64, 2001.

[30] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of
dropout in recurrent neural networks. In 30th Conference on Neural Information
Processing Systems (NIPS), pages 1019-1027, 2016.

[31] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, Frangois Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. Journal of Machine Learning
Research (JMLR), 2016.

[32] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain
Monte Carlo in practice. CRC press, 1995.

[33] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using
distant supervision. CS224N Project Report, Stanford, 1(12), 2009.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. In Advances in Neural Information Processing Systems (NIPS),
2014.

71

[35] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[36] Alex Graves. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850, 2013.

[37] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evo-
lution of fashion trends with one-class collaborative filtering. In International
Conference on World Wide Web (WWW), 2016.

[38] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[39] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 1997.

[401 Xia Hu, Jiliang Tang, Huiji Gao, and Huan Liu. Unsupervised sentiment anal-
ysis with emotional signals. In Proceedings of the 22nd international conference
on World Wide Web (WWW), pages 607-618. ACM, 2013.

141] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P
Xing. Toward controlled generation of text. In International Conference on
Machine Learning, pages 1587-1596, 2017.

[42] Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors
and word classifiers: A loss framework for language modeling. In International
Conference on Learning Representations (ICLR), 2017.

[431 Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya, and
Mark Carman. Are word embedding-based features useful for sarcasm detec-
tion? In Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2016.

[44] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

[45] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099, 2016.

[46] Richard Kim, Bjarke Felbo, Nick Obradovich, and Iyad Rahwan. Quantifying
structural factors affecting racial tensions during 2016 us presidential election.
In International Conference on Computational Social Science (IC252), 2017.

[47] Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. Adversari-
ally regularized autoencoders for generating discrete structures. arXiv preprint
arXiv:1706.04223, 2017.

72

[481 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In 3rd International Conference on Learning Representations (ICLR), 2015.

[49] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural information
processing systems, pages 1097-1105, 2012.

[51] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum.
Deep convolutional inverse graphics network. In Advances in Neural Informa-
tion Processing Systems, pages 2539-2547, 2015.

[52] FA Kunneman, CC Liebrecht, and APJ van den Bosch. The (un)predictability
of emotional hashtags in twitter. In 52th Annual Meeting of the Association for
Computational Linguistics (ACL). Association for Computational Linguistics,
2014.

[53] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Ger-
shman. Building machines that learn and think like people. Behavioral and
Brain Sciences, 40, 2017.

[541 Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng
Zhang, Aaron C Courville, and Yoshua Bengio. Professor forcing: A new al-
gorithm for training recurrent networks. In Advances In Neural Information
Processing Systems, pages 4601-4609, 2016.

[55] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning trans-
ferable features with deep adaptation networks. In International Conference on
Machine Learning (ICML), 2015.

[56] Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning
of transferable representations acrosss domains and tasks. In Advances in Neural
Information Processing Systems (NIPS), 2017.

[57] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo
Sprechmann, and Yann LeCun. Disentangling factors of variation in deep rep-
resentation using adversarial training. In Advances in Neural Information Pro-
cessing Systems, pages 5040-5048, 2016.

[58] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In 27th Conference on Neural Information Processing Systems (NIPS), pages
3111-3119, 2013.

[59] Saif Mohammad. #emotional tweets. In The First Joint Conference on Lexical
and Computational Semantics (*SEM), pages 246-255. Association for Compu-
tational Linguistics, 7-8 June 2012.

73

[60] Agnes Moors. Flavors of appraisal theories of emotion. Emotion Review, 6(4):
303-307, 2014.

[61] Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin
Stoyanov. Semeval-2016 task 4: Sentiment analysis in twitter. In 10th Interna-
tional Workshop on Semantic Evaluation (SemEval), pages 1-18, 2016.

[62] Finn Arup Nielsen. A new anew: Evaluation of a word list for sentiment analysis
in microblogs. In Proceedings of the ESWC2011 Workshop on 'Making Sense
of Microposts': Big things come in small packages, 2011.

[63] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,
2015.

[64] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representa-
tions by solving jigsaw puzzles. In European Conference on Computer Vision
(ECCV), pages 69-84. Springer, 2016.

[65] Shereen Oraby, Vrindavan Harrison, Lena Reed, Ernesto Hernandez, Ellen
Riloff, and Marilyn Walker. Creating and characterizing a diverse corpus of
sarcasm in dialogue. In 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL), page 31, 2016.

[66] Bo Pang, Lillian Lee, et al. Opinion mining and sentiment analysis. Foundations
and Trends@ in Information Retrieval, 2(1-2):1-135, 2008.

[67] Rosalind W Picard. Toward computers that recognize and respond to user
emotion. IBM systems journal, 39(3.4):705-719, 2000.

[68] Ofir Press and Lior Wolf. Using the output embedding to improve language
models. In Conference of the European Chapter of the Association for Compu-
tational Linguistics (EACL), 2017.

[69] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate re-
views and discovering sentiment. arXiv preprint arXiv:1704.01444, 2017.

[70] Pramila Rani, Changchun Liu, Nilanjan Sarkar, and Eric Vanman. An empirical
study of machine learning techniques for affect recognition in human-robot
interaction. Pattern Analysis and Applications, 9(1):58-69, 2006.

[71] Jonathon Read. Using emoticons to reduce dependency in machine learning
techniques for sentiment classification. In A CL student research workshop, pages
43-48. Association for Computational Linguistics, 2005.

[72] Sara Rosenthal, Noura Farra, and Preslav Nakov. Semeval-2017 task 4: Senti-
ment analysis in twitter. In Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pages 502-518, 2017.

74

[73] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive Modeling, 5, 1988.

[74] Hassan Saif, Miriam Fernandez, Yulan He, and Harith Alani. Evaluation
datasets for twitter sentiment analysis: a survey and a new dataset, the sts-
gold. In Workshop: Emotion and Sentiment in Social and Expressive Media:
approaches and perspectives from AI (ESSEM) at AI*IA Conference, 2013.

[751 Rebecca Saxe and Laura Schulz. 9.s913 graduate seminar on emotion, 2017.

[76] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 1997.

[77] Stanislau Semeniuta, Aliaksei Severyn, and Erhardt Barth. A hybrid
convolutional variational autoencoder for text generation. arXiv preprint
arXiv:1 702.02390, 2017.

[78] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style transfer
from non-parallel text by cross-alignment. arXiv preprint arXiv:1705.09655,
2017.

[79] Valentina Sintsova, Claudiu-Cristian Musat, and Pearl Pu. Fine-grained emo-
tion recognition in olympic tweets based on human computation. In 4th Work-
shop on Computational Approaches to Subjectivity, Sentiment and Social Media
Analysis (WASSA), 2013.

[80] Jonas Sj6berg and Lennart Ljung. Overtraining, regularization and searching
for a minimum, with application to neural networks. International Journal of
Control, 62(6):1391-1407, 1995.

181] Jacopo Staiano and Marco Guerini. Depechemood: A lexicon for emotion anal-
ysis from crowd-annotated news. In 52th Annual Meeting of the Association for
Computational Linguistics (ACL). Association for Computational Linguistics,
2014.

[82] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective text. In

4th International Workshop on Semantic Evaluations (SemEval), pages 70-74.
Association for Computational Linguistics, 2007.

[83] Yoshihiko Suhara, Yinzhan Xu, and Alex'Sandy' Pentland. Deepmood: Fore-
casting depressed mood based on self-reported histories via recurrent neural
networks. In Proceedings of the 26th International Conference on World Wide
Web, pages 715-724. International World Wide Web Conferences Steering Com-
mittee, 2017.

[84] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep
domain adaptation. In European Conference on Computer Vision (ECCV) 2016
Workshops, 2016.

75

[85] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In 28th Conference on Neural Information Processing
Systems (NIPS), pages 3104-3112, 2014.

[86] Jared Suttles and Nancy Ide. Distant supervision for emotion classification
with discrete binary values. In International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing), pages 121-136. Springer,
2013.

[87] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning
sentiment-specific word embedding for twitter sentiment classification. In 52th
Annual Meeting of the Association for Computational Linguistics (A CL), pages
1555-1565, 2014.

[88] Joshua B Tenenbaum and William T Freeman. Separating style and content.
In Advances in neural information processing systems, pages 662-668, 1997.

[89] Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv c-prints, abs/1605.02688, May 2016. URL
http://arxiv.org/abs/1605.02688.

[90] Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas.
Sentiment strength detection in short informal text. Journal of the American
Society for Information Science and Technology, 61(12):2544-2558, 2010.

[91] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment strength
detection for the social web. Journal of the American Society for Information
Science and Technology (JASIST), 63(1):163-173, 2012.

[921 Jessica L Tracy. An evolutionary approach to understanding distinct emotions.
Emotion Review, 6(4):308-312, 2014.

193] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep
transfer across domains and tasks. In International Conference in Computer
Vision (ICCV), 2015.

[94] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial dis-
criminative domain adaptation. In Computer Vision and Pattern Recognition
(CVPR), 2017.

[951 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages
1096-1103. ACM, 2008.

[96] Marilyn A Walker, Jean E Fox Tree, Pranav Anand, Rob Abbott, and Joseph
King. A corpus for research on deliberation and debate. In International Con-
ference on Language Resources and Evaluation (LREC), pages 812-817, 2012.

76

[97] Harald G Wallbott and Klaus R Scherer. How universal and specific is emotional
experience? evidence from 27 countries on five continents. International Social
Science Council, 25(4):763-795, 1986.

[98] Michael Wiegand, Alexandra Balahur, Benjamin Roth, Dietrich Klakow, and
Andr6s Montoyo. A survey on the role of negation in sentiment analysis. In
Workshop on Negation and Speculation in Natural Language Processing (NeSp-
NLP), pages 60-68. Association for Computational Linguistics, 2010.

[99] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In International Conference on
Machine Learning (ICML), pages 2048-2057, 2015.

[100] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J Smola, and
Eduard H Hovy. Hierarchical attention networks for document classification.
In HLT-NAACL, 2016.

[101] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[102] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders:
Unsupervised learning by cross-channel prediction.

[103] Xiang Zhang and Yann Lecun. Text understanding from scratch. arXiv: Learn-
ing, 2015.

[104] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Advances in neural information processing
systems, pages 649-657, 2015.

[105] Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Aspect-augmented ad-
versarial networks for domain adaptation. Transactions of the Association for
Computational Linguistics (TACL), 2017.

77

