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ABGTRACT

The basic mathematical relations in the thermoelec-~
tric generator are described for the assumptions that the
flow of heat is essentially one-dimensional, the elements
of the device are homogeneous, and the parameters of the
system are independent of the temperature. On the basis
of these equatlons and an energy balance for the system, a
relation between the junction temperatures and the current
output of the device is derived., This latter result re-
duces the problem of computing the initial current tran-
sient to that of finding a solution for the temperature
of the junctions as a function of time. The specific
case considered corresponds to applying a step of heat to
the hot Jjunction of the device which is in thermal equi-
librium with its surroundings and finding the output cur-
rent as a function of time for a constant cold junction
--——arature. A

The equations considered are non-linear in terms of
the current and the current-temperature product. This
makes it necessary to appeal to a perturbative-type so-
lution where the initial or unperturbed solution is simply
the solution for zerc current. This method tekes advan-
tage of the fact that the efficiency of such a device 1is
quite low so that any perturbations to a general solution
will converge rapidly. The solutions for zero current and
for the first perturbation are derived on the assumption
that the Thomson heat term is negligible and a test for
. the convergence of the perturbation is given. The results
; of the theory are compared with a practical model of the
generator and are found to be in good overall agreement
with the theory within the limits of the assumptions which
were made., The constant parameter assumption introduces
some error for the practical case and this is pointed out.

The results of this theory are simplified from prac-
tical considerations and these simplified results are ap-
plied to the problem of predicting the settling of the




system under the conditions previously mentioned. The re-
sults are compared with experimental values and are found
to be in excellent agreement. This close agreement is at-
tributed to the fact that the constant-parameter assump-
tion holds very closely for this special case. Additional
information concerning the experiment is inecluded in the

appendices.
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INTRODUCTION

The efficliency and the steady state behavior of the
thermoelectric device have been treated in the litera-
ture,l'3 More recently, considerable work has been done
treating the transient behavior for incremental variations
about a quilescent operating point.“ This procedure avoid-
ed the inherent nonlinearities of the problem by creating
a linearized mathematical model, and the method can be ex-
tended to many problems for the small signal case, How-
ever, there are certain problems which this method will
not handle, the main one of which is concerned with the
large-signal dynamic behavior. A particularly important
example is the problem of the start-up transient of a
thermoelectric device under load., It is this problem to
which this work is directed.

Until recent developments, the efficiency of the
thermoelectric generator has been low and the questions
of transient behavior have been secondary. As the ef-
ficiency continues to be improved, however, these prob-
lems become quite pertinent and important,

The problem of predicting the exact variation of the
output current is treated first and then the important
problem of device settling time is considered. Since the
system is non-linear in terms of current, an iterative
process is necessary for a solution. To employ such a

process, we make use of the fact that the efficlency of
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the device is low, This may seem to be paradoxical at
first glance; however, the efficiency of present day de-

vices has room for improvement before the method to be

used will not converge,




I. STATEMENT OF THE PROBLEM

In 1822, Seebeck discovered the effect (which bears
his name) that relates the open circuit voltage developed
across a junction of two dissimilar materials to the
temperature differential between the two materials.

This Seebecﬁ coefficient, &, can be defined in terms of
the temperature and the open circuit terminal voltage:
a:-—%% o (1.1)
If a current is passed through this junction, heat is
generated or absorbed at the junction, depending upon
the direétion of the current flow. This effect was first
observed by Peltier in 1834 and is expressed as:
Q= nl (1.2)
where m is the Peltier co-
efficient. Later Thomson showed, by a thermodynamic
analysis, the relationship between the Peltier and the
Seebeck effects:”
w=aT . (1.3)
T 1is the absolute temperature of
the junction itself. (The Peltier effect is a phenom-
enon which tekes place only at the junction between the
two dissimilar materials.)
In addition to providing a tie between these two

effects, Thomson predicted a third phenomeron which bears

#  See, for instance, Ref. 1, p. 8 ff,, or Ref. 2,
pp. -6,
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his name. This effect is defined as the generation or
absorption of heat in the presence of an électric cur-
rent and a temperature gradient:
Q= I % (1.4)
where t is the Thomson coeffi-

cient and is related to the Seebeck and Peltier coeffi-
cients.,” It is assumed that the conductor is homo-
geneous and that both the tgmperature gradient and the
current flow are in the x direction only. For both the
Peltier and the Thomson effects, the energy exchange be-
tween the system and the surroundings is reversed with
a reversal of the direction of electric current flow., In
contrast, the Joule heat is simply an energy dissipation,

The effects described above provide the basls for
the development of the thermoelectric device., The Pel-
tier effect is used to advantage for the thermoelectric
cooler, whereas the thermoelectric generator makes use
of the Seebeck effect. In this paper, we shall be con-
cerned with the latter. For devices using good present-
day materials, the Thompson effect and the Joule heat
are of second order for the generator.

A basic device for the thermoelectric generation of

nower is shown in Figure 1-1. The device consists of one

*  See Ref. 2, pp. 6-11, (This reference also gives a
brief microscopic interpretation of these thermo-
dynamic relations,)
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o-type and one n-type semiconductor” to which the elec-
trical and thermal connections are made b& metallic con-
tacts. These contacts are assumed, as a first approxi-

metion, to furnish ideal conductors to the "sinks",

In other words, they are assumed to have negligible

specific heat and zero thermal and 4
electrical resistivity. For the wo L LLL LS L T,
practical case, these assumgtions a

can be made quite valid for steady *=0 Zpr A7 T

state operation; however, the

s
g

first assumption cannot be made v
for the transient case since the
FIGURE I~1
thermal mass of the connecting THE THERMOELECTRIC
GENERATOR

strap is non-zero and introduces

an effect on the transient behavior of the system. We

shall retain the latter two assumptions, namely, that

the thermal and electrical resistivities are negligible,
Considerable work can be avoided by choosing con-

venient notation and normaelizing factors at the outset.

Much of the notation and the grouping of appropriate

normalizing factors is due to the work of P. E. Gray

to whom the author is indebted for his help. For fur-

ther information on the notation used, the reader is re-

) L
ferred to his worl{.+

* (labelled as elements a and b for simplicity of
notation)
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We shall define the parametefs of the system as:
fa s Po electrical resistivity of éhe elements
K, , XK, thermal conductivity of the elements
C., S, Specific heat of the elements
A. ,A, element cross-sectional areas
Y. ,t, Thompson coefficients of the elements
&« the equivalent differential thermoelec-
tric coef?icient
Co specific heat of the hot junction con-
necting strap
A, cross-sectional area of the hot junction
connecting strap
[ axial length of the connecting strap
In this analysis, we shall assume that the flow of heat
is essentially one-dimensional, the elements are assumed
©0 be homogenecus, and the above parameters are assumed
to be independent of the temperature. This last re-
striction is the most severe and, as we shall see later,
introduces errors into the work. However, as is often
the case, we are forced to méke the assumptions to keep
the problem simple enough to find a solution.
Referring to Figure 1-1, we can now make use of
the parameters defined above to set up an energy balance
for the system. The equations are the conventional ones
and need no further comment. For the two arms, an in-

cremental balance oi heat flow and stored energy
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yields:
AT _ 2T, o T* - AT.
KeAdfl -nI 3l + £ 1= AL (1.5)
a‘T a
CATE RIEE T - aA 3R (1.6)

For the entire system, we have the following energy

balance:
- - aw
P, I'R, + 5% (1.7)
where:
{ . t
= Ac‘I‘CgT; dx + Ab Cb Tb dr- (106)
_ : 3T
P¢ - CX°T°I° + Kq A ™ ’.‘o"‘ KbAb ay_ x=o (17.9)
Ph. s q‘-r!I +t Ke Aa -glxgg'f KbAb %{2":,."' c@Aog-o 'a“_E vep o (l.lo)

This completes the description of the system excluding
the external constraints, The constraints in which we
are interested correspond to a device at equilibrium
Qith the surroundings at t=07, At a given instant of
time ( t=0 tor convehience) a step input of heat is
applied to the hot junction (x=¢ ) and the cold junc-
tion ( »=0 ) 1s kept at the initial equilibrium temper-
ature, T,. Under these conditions it is desired to form-
utate the current output as a function of time under
various load conditions., These conditions can there-
fore pe summarized in tne following manner:

Tty = T0,t) =T, (1.11)

T, (2,t)=Th (Lt)="T(t) (1.12)
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T (x,0)= T, (x,0) = T, - (1.13)
P.(t)=1)W (1.14)

where the notation 1®)w 1is used to indicate a step of
magnitude W watts and occurring at the instant t=o0.
These equations form the mathematical description
of the thermoelectric generator and hold for any con-
stant parameter system where the system is homogeneous
and one-dimensional. In the next chapter we shall fur-
ther restrict the system before attempting to find a

solution.,
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we have:
aTo. e 2
Kc Ao. ax -t KAAQ - Ce A f d“ + %"‘ I 9» 0 (2.1)
Ko Ay a_nl'KA 2T, - Cy AbfaT" dr + £21"¢4 =0 . (2.2)
A% x=L x=0 A .

Differentiating Egq. 1.8 with respect to t gives:

m = CQA f aT‘ dx + chbf‘:Ih dx, . (2~3)

Substituting the above relations and Eqs. 1.9 and
1.10 into Eg. 1.7 yields:

RI-B1e-R1-TI =I'R. . (2.4)
This is an important relation for the thermoelectric
generator and holds for any constant parameter, homo-
geneous system where the heat flow is assumed to be one-
dimensional and the Thomson heat is neglected. Making
use of the definition:

2 (8 v B )2 (2.5)
where R, is the effectlve internal resistance of the
device and also making the assumption that the connect-
ing straps for the hot and cold junctions are construct-
ed from the same material so that:

&= &, =g , (2.6)
Eg. 2.6 can be simplified to:
I = o(h-T) (2.7)

R, + Rc‘.
It will prove to be convenient to normalize the loading

of the generator to the internal resistance by a dimen-



IT. TRANSIENTS IN THE UNLOADED GENERATOR

The basic equations which describe the behavior of
the device have been set up in Chapter I. 3ince the e-
quations are non-linesr in the current and the current-
temperature products, the thought occurs to us to set the
current equal to zero and solve for the temperature dis-
tribution under these conditions, If the efficiency of
the system is low, the interaction could then be treated
as & perturbation to the initial solution and, by such a
perturbative procedure, the final value for current could
be obtained, This method looks promising but first of all
a relation between the current and the temperature across
the device is found.

Before proceeding, however, we shall consider any
s?mplifications to the equations of Chapter I. The sim-
plification which we would like to make in Egs. 1.5 and
1.6 1is that the terms~involving the first derivative of
thie temperature with respect to the space coordinate
vanish, This simplifies the differential equations tre-
mendously and, as mentioned in Chapter I, this corresponds
closely to the practical case of the thermoelectric gen-
erator for many materials, Explicitly, then, we shall
assume that the Thomson heat terms are negligible and
therefore r,=t,=0 1s implied in all subsequent work.

By integrating BEgqs. 1.5 and 1.6 with respect to x%,
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sionless parameter such that:

é RL - 4
m Re (2.8)
Then Eq. 2.7 becomes:
- “[T!(t)'-ro]
I Req (m+1) . (2.9)

This is the desired result that relates the output
current of the device to the temperature difference
across the arms. Eg. 2.9 has been derived making use

of several assumptions; howefér, they are not unduly re-
strictive,

An examination of the boundary conditions listed in
Chapter I and Eq. 2.9 reveals that it will be more con-
venient to refer all temperatures to the base tempera-
ture, To, so that

Tar-1 . (2.10)
S;pce the differential equations are all linear in
terms of temperature, this change of variable does not
affect the equations previously set forth* and the boun-

dary conditions, Egs. 1l.11, 12, 13 ncw become:

T.(o,t) = T,¢0,t) =0 (2,11)
Ta(ht) = T, (g, 0) = Tt (2.12)
Ta(x,0) =T, (#,0)=0 (2.13)
and Eg., 2.9 simplifies to:
I-= o Tet) (2.1%)
Req (men)

* In general, it might add a constant. It does not in
this case, however, because the temperature enters
the equations only as a derivative.
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At this point we shall try to simplify the work by
assuming that the parameters of the two arms are very
similar so that they can be averaged. In particular,
the parameters which we wish to average are the Seebeck
coefficient, « , the electrical resistivity,f>, and the
thermal conductivity,; k . Although there are other ways
in which these parameters can be averaged, we choose to
average them by taking one half of the sum (the arithmetic
mean) of each parameter value. In the case of e, the ab-
solute values are used. For specific examples, the read-
er is referred to Appendix B. This approximation holds
quite well for the case where the two arms are construct-
ed of the same material but with different dopings (for
example, p- and n-type bismuth telluride). This sim-
plifies the analysis tremendously since now Egs. 1.5 and
1.6 become identical and only one solution need be ob-
tained. The solution for the case of two dissimilar
arms does not require any new theory but the work is
much more lengthy., As will be seen, the work for the
case which we are considering becomes lengthy enoughl!

We can now proceed with the plan of attack mentioned
at the beginning of this chapter. Since the equations
considered are non-linear in terms of the current, a
perturbative-type of solution is chosen, This method
takes advantage of the fact that the efficiency of such

a device is rather low so that any perturbations to a
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general solution will converge rapiély. As.a first ap-
proximation, then, we can solve for the temperature dis-
tribution for the case of I=0 and, from Eq. 2.1%, find
the current (fictitious) which would result from this
temperature distribution if there were no other effects.
By using this va.ue for the current, and keeping it fixed
at this value, a perturbed temperature distribution can
be obtained to correct for the initial assumption.

To simplify the work as much as possible, we shall
enploy the conventional methods of the Laplace trans-
formation to handle the time dependence and the conven-
tional methods of differential equations to handle the
space dependence. A working knowledge of both is as-
sumed and many of the steps which involve these conven-
tional techniques will be omitted in the interest of
clarity and brevity.

By setting the current equal to zero, the equation
for the temperature distribution becomes:

w OT T (2.15)
ax -]

wvhich results in a solution in the s domain of the form:

T, s5) = Ae’t + Be'“ (2.16)

where "
—le
¥ *[7: 5] (2.17)

The boundary conditions for this system are given

by Lgs., 1.10 and 1.1% which, for arms with average param-
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eters and I=0, becomes:

= - -a—i. Y ry lj: 2.18
R =1tW= 2kA o x=: C.Aal 1l ( )

where W 1s the magnitude of the heat input to the system
in watts. If the connecting strap is constructed of
copper or some nther metal with high thermal conductivity,
we can assume that tue temperature gradient across the
strap is negligible compared to that across the arms

so that, transforming to the é domain:

a’;f w -Cvo!os.i; (2.19)

wnere we have used the initisl condition:

Txoy=0 (2,13)

or
%ji.Lf ks - Shsle sy, (2.20)
. gzizﬁ«m - Lissi-, (2,21)
where: ¢ 2 f%%?{i (2.22)
2 e (2.23)

The normalized parameter, ¢ , 1s the total specific heat
of the hot junction connecting sirap normalized to the
total specific heat of the elements and t, (the "charac-
teristic time") is introduced here since it will be ap-
varent later that the time response of the entire systen
can be normalized on the time scale to the tinme t.

The matrix equation for the coefficients of Eg. 2.16
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then becomes:

| I . ° (2.24)
- w e s
se* x| e TxAs ~ L N,

Solving Eq. 2.24 for the coefficients, substituting in
Eq. 2.16, and solving for the temperature gives the
temperature distribution at any point in terms of the

temperature at the hot end:

v _ t & soondltx

T-("'s’:zKAs' ¥ BA coak 52 Ty . (2.25)

Note that this expression is still in terms of the s
domain, (We shall use the subscript 1 hereafter to de-
note the unperturbed solution.)

We can now solve for the unperturbed current by
evaluating this expression at x=¢ and substituting in-
to the transform of Eq. 2.1k, First, however, it will

be convenlent to normalize the transform variable in the

¥4 = %sf = ft,s 2 [u (2.26)

R 2 i%%t = the parallel thermal resistance of

following way:
and to define:

the couple (2.27)

and «F
z 2 PR = the thermoelectric figure of

nerit, (2.28)

Using these simplifications,

_ W oadah a (2.29)
1: (Lau)=t Re “,Iz[ ¢ ar - T ault ™ ‘ »_'Ig,] .
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This 1s the final result for the temperature. variation
of the hot junction in terms of the transform variable, m .
The solution in the time domain can be deternmined by the

conventional methods of contour integration to yield:

(-

. i - &% t/¢,
T,(t/‘t.)"= Re W l'zz 5:' (-c'ls: + T *l)‘ € (2.30)

K=

where the §.'s are determined from the transcendental

equation:

,
tam,é,"’ _5-5-: . (2031)
It is now a simple step to get the unperturbed cur-

rent by means of Eg. 2.1k:

r 00

.-zz ‘ o (2.32)

Lttty =1 HOGEEEED)

'ss

ke
where

= Ty (2.33)
Thig 1s the first of our desired results, namely, the
current based upon the unperturbed (no-load) tempera-
ture distribution of the device. The form of the solu-
tion depends implicitly upon the normalized parameter &
through the roots of Egq. 2.31 and the residues of
BEq. 2.32. A plot for the roots of Eq. 2.31 is given
in Pigure 2-1 for several values of & and the values of
the residues of Eq. 2.32 normalized to a base of .500
are given in Pigure 2-2 as a function of ¢ . In order

to indicate the relative magnitude of the first residue

without actually plotting it, the percentage error in-
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troduced by breaking off the series of residues at any
finite number of poles is shown. The percentage of error
is defined at t=0, based on the steady stete value of
the unperturbed current.
By means of these two charts, the unperturbed cur-
rent can be written by inspection. For instance, for
&€ =,500, & =1.08, 6,=3,6%, &=6,58 from Figure 2-1
and from Figure 2-2,
K.= (.031)(.500) =,0155
K,=(.0038)(.500) = .0019 .
From Figure 2-2, the error introduced by dropping the re-
sidues after K, is ,16% or .0016 so that
K, =.500 - ,0155 - ,0019 - .0008 = .4818.
Therefore the unperturbed current for ¢ = ,5 can be

written as:

I ~(rosTire, ~(64) tr, -(6.58) t/t,
1= 1- 2 |.4818¢ . +.0155¢€ +.0019 €
Iss

Note that the residu~3 decrease so rapidly that the un-
perturbed current éan be closely approximated by dropping
all terms after the first residue, particularly for larger
times, The maximum error introduced by such an approxi-
mation occurs for t=0. From the plot of the residues,

it can be seen that this approximation becomes better as

¢ increases so that the solution for the unperturbed cur-
rent becomes comparatively simple for larger values of €.

It is fortunate that this corresponds closely to the
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practical case for it allows us to make use of' the per-
turbation scheme with a minimum of effort.

The unperturbed current relation, Eg. 2.32, is a
fictitious quantity as far as measurements in the lab-
oratory are concerned since it describes the current
which would flow on the assumption that there is no in-
teraction between the temperature distribution and the
flow of current. However, a very nice experimental check
can be made of the results of this chapter by monitoring
the temperature of the hot junction and checking the re-
sults with Eq. 2.30.* Pigure 2-3 shows the calculated
curve and the experimental points determined from the
experimental model which had a measured & of 0.30%., The
predicted temperature dependence for & =0 (i.e., neg-
lecting the effect of the heater) is also indicated.

One concludes from these results that the value of the
normalized parameter, €&, has a dominating influence upon
the time response of the device for values as small as

0.100. The results of Figure 2-3 are quite encouraging.

F Por details of the experiment, see Appendix B.
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I1I. THE EFFECT OF A LOAD ON THE TRANSIENT BUEHAVIOR

In Chapter II, we found a solution for the tempera-
ture distribution as a function of time under no-lcad
conditions, and from this an "unperturbed" current was
found. This neglected the non-linear effects and either

~a perturbation scheme or an iterative process must be
used to approach a final solution. The former method

was chosen because it offered the advantage of calculating
the successive corrections to the solution which was ob-
tained in Chapter II, rather than to recalculate the en-
tire solution. Either method must be examined to see if
it converges rapidly enough to be used. After the matter
of convergence is taken care of, we can proceed to set up
a perturbation process and then seek a solution for the
problem under consideration. It proves to be an advan-
tage to remaln in the s domain until the final answer 1is
formulated and then invert back to the time domain. Fi-
nally, we compare the results of Chapter II and Chapter
III with the experimental results.

Going back to the equations which were set up in
Chapter I and solved for the special case of I =0 and
=0 in Chapter II, we have (for I=o0o, T =20 )

kA 2L Al £ =0 (3.1)

Ax* A
since we already have a solution for the current, we

can substitute into this expression and solve for the
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perturbed temperature distribution due to this ‘current.
Before proceeding, however, let us define the following

Laplace transformations:

p.sr & L [1Fw) (3.2)
B, (5) -;‘-I[I. )T ()] = %ﬁ- (m+n) B,(s) | (3.3)

The transformation of Eg. 3.1 then gives (with the cor-

rect boundary condition for t==of:

T
A%

(x,s) - %s'i'(\c,s) =REK' sy (3.4%)

for which the solution in the s domain is:

Tx, 5) = Ae' 4 Be_w + F& B. (s (3.5)
subject to the transformed boundary conditions, Egs.
2.11 and 1.10:
. T(os)y=0 (3.6)

- : T =
R(s) = ~\'si = aI[I,(t) T + 2KA 5= (9 A A LTy, . (3.7

Here‘ﬁl is the total temperature after the perturbation
is taken into account, We shall denote the perturbation
itself by primes (so that T,, =T, + T, ). Eq. 3.7 can

also be written as:

3T ) = pohg - abedesTy, - 7@ S0 . (3.8)

¥4
The matrix equation for the coefficients can be

set up as in Chapter II resulting in:
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l - e
. A pes P

= (3.9)
- . S - CoAgl, =
e ge'e ZkAs T TRA AS) - SRR s T

which can be arranged to give:

1 - I A ~ : 0 ] A—rﬂ_cs P-('")
) Tl w . i (3.10)
e® ™| 8 T v N %e‘rﬁz(s)J 2x 8

A comparsion of these results with Eg. 2.24% im-
mediately suggests a perturbation scheme since only the
subtractive matrix on the right-hand side of Eq. 3.10
has changed with the perturbation, 1In fact, 1t is
possible to define the coefficients as a set of additive
terms, each corresponding to a perturbatlon matrix on
the right. The total solution is then composed c¢f the
superposition of these solutions. Such a system might
work very well if higher perturbations were desired, al-
though it may become very lengthy if it 1s necessary to
ge to the time domain and then back to the transform
doniain between each successive perturbation. In theory,
it is possible to appeal to the convolution integral but
in practice the equations become too difficult to handle
by these methods,

Before we can proceed with our proposed perturbation,
we note that the first right-hand term of Eq. 3.10 con-
tains a term in the junction temperature and therefore

the matrices are not explicit in terms of the temperature
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as they stand., This prevents us from setting ué a per-
turbation system until we solve explicitly for the tem-

perature., To do this, we can solve for the coefficlents
A and B, substitute back into Eq. 3.5, evaluate the re-
sult at x =4, and then find an expression for the tem-

perature, T,. This latter step yields:

- _sainh 88 | wenmh 82,
[‘ v te ‘sﬂ.mﬁif]ht _[znAs!ceokﬁl] *

- P - Reg, (m l)wvl
[T\“ci"s Rcscooh B8 ZKA‘; oy 1] ]P-“"(3'11)

Comparing this result with Eq. 2.25 shows that we have
already solved this relation for p,csPOin Chapter 11
so that the solution for the additive perturbation now
becomes:

T s el &0
oo v S W

P_ _ £ _ Reg Omen) oimbo¥t
[A‘cs A*c S ook TQ 2K A cooh T4 ]P'(s) (3.12)

where the prime indicates the additive perturbation.
Making use of the definitions and groupings used in .

Chapter II, we have:

(M./ZZ-I)-(MH)‘/ZAM/;] «

T @) = Ry Ret, {

Up to this point, we have said little concerning P«

except to define the notation. Before we proceed fur-
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ther, it is necessary to specify pes> more fully. The
term defined as pPe) is, in the transform domain, the con-
volution of the unperturbed current with itself or, in
terns of the time domain, the transform of the square

of the unperturbed current., In thils analysis, we shall
prefer to treat p¢s) in the latter sense as it is clearer
to see what is happening physically and therefore allows
us to make simplifying assumptioné in terms of the physi-
cal model.

It was noted in Chapter II that the residues of the
solution for the unperturbed current decrease rapidly for
the larger values of & It was shown from Figure 2-2
that the retention of one residue for ¢ =.300 gives an
accuracy loss of 1% at t=0 (which is the point of maxi-
mum error) so that, for ¢=.300 (i.e., for the practical
case), the unperturbed current can be approximated very
closely for t >0 by the first residue. Then, from Eq.
2.32, it follows that

I' 2 - ) 2 -8  tye,
'f;s:t”") ! § (28 +T + 1)
or,
I‘:L . _ 4 -8Xt/e, 4 <28 %,
I;:ft/tn) = | 5'1 (Ez 8.1 + & + ‘) e + 6,4 (5"6,"# <+ .)le . (3011'*.)
This transforms to:
=L - 4 ! 4 !
Per= 2 879(8,) m+ 87 tE 3(6) mrz8’ (3.15)
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where the following definition has been made for con-
venlience:
geey 2 T8 4 41
(3.16)

Combining the results of Egs. 3.13 and 3.15 yields
the total perturbation result in the transform domain:

1 _j%:-_ =1t _ 4 . 4

ERRey I, | & 879(8)[ars’] = 874(6)[wr28]

" _ - . o, . "
lombal g Camb st G

For convenience, the inversion of this result will
be handled in three separate groupings, each one corre-
sponding to a term of the above product and then the
numerical results will be combined in like terms. Butl
first 1t is convenient to utilize the final value theo-
rem to obtain the steady state (and maximum) perturbation.

Application of the final value theorem to Eq. 3.17 yields:

[ o fuw] - | T
I’ IR:R” I'zss] i "ZMQ [E'Repef Iy ]* (m+'2) (3.18)

t>oo pre Y 'ss
or,
5] = - (ms IR Rey I = Rewz Smfel 1, (3.19)
:‘f:‘:: iz z E TV€G Ty £ (m+ 1) figs . ¢

From this result, an obvious test for the convergence of

the perturbation process is that

{me V2)
ngz (“‘+') <1 (3-20)

and the degree of the inequality gives us sonme idea of

the relative degree of convergence. For the experimen-
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tal model described in Appendices A and B, this test of
convergence yielded |.075| for a matched load (wm=1 ).
The perturbation process is fully Jjustified for this
case., Note that the ~riteria of convergence is directly
related to the efficiency of the device through the
tfigure of merit" parameter z.

The inversion of Eq. 3.17 is lengthy but follows
the conventional methods of inveréion by contour inte-
gration in the complex domain., The perturbation intro-
duces a pole of second order which makes the task of
calculating the residues guite tedious. The second or-
der pole enters since we have assumed (from Eg. 2.14)
that the current and the hot junction temperature are
related by constants of the system and therefore have
the same mathematical dependence. It follows from this
that a second order pole is introduced when the current-
temperature product is taken. In other words, it is the
Peltier effect which introduces the second order pole
in the perturbation. It is the residue of the second
order pole which proves quite useful in the calculation
of device settling time.

Retaining the method of grouping which was begun in

Eq. 3.17, the final result is:

00
I, & Re [ ( & v 8, - -6t
22 o, % Re S(m e V2) ¢ 2 maei+c) 8, A 8 — | w Bt
I (me) 5: 3(5“) §,. Aive 8« ¢

1“
3 K=
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- 2 h(8) + §(8) 6 an 6 8™, (me1+8)8 an §-1 t -8, %,
879(8) 267 9°(5,) 6, A 6, 3G 8, aiw 5, t. ©

00

. e
*zz(anfa)s.‘ms.‘-‘ AT
Q(s;)&“msk

Ke2

o4 [o1 (cos BB 1) v (me) RS R VRS RS
8 9* (s Z 8% (coo 28, -T2 6 4irw 2 8,) c

b(sk) Su Ao Sg

| - +1Z(h\ 0!4-5)5544'1\1— Su -~ 1t e—&f*h.]} (3'21)
K=t

where the following groups of polynomials have been

made for convenience in the numerical computation:
a(8) 2 T 8%+ (E- €82 +1)8 - (1+TI B (3.22)
b(SY2 TH 4 (1+ T-22%8)8%-282(1+8) (3.23)

F(8)2 28 (M) 8*-E[58 + (Mm+3)E -2 (m+ )] &*

“[3& + (m+e)E+ (me+3)] (3.2%)
g(8Y2 TE  + T 4 (3.16)
h(8)2 58*6*+38+3 (3.2%5)

This result appears to be guite formidable and in-
deed it is! Fortunately, however, the results can be
simplified somewhat when & =,300; in fact, this is the
condition upon which we were justified to make the ap-
proximations leading to this result so that this is cer-
tainly not restrictive. The numerical solutions for

several cases have been listed in Appendix C so that
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the reader may gain some appreciation of the relétive

magnitudes of the residues.

R R T e

The first simplification which is evident from a

comparison of the numerical work listed in Appendix C
is that the terms corresponding to the '"correlation®
between the residues at the poles of the unperturbed
current are quite negligible. By ?correlation", we
mean the effect that a pole in the unperturbed solution
has upon any of the residues of the poles in the per-
turbed solution excepting the pole considered. As an
example, let us pick &= 0.30% and m=1 for which the
temperature perturbation becomes (from Appendix C):

3th 8" t/t

1 - z . -6:t,t'
+.0405 € +.000147 €

i e, = -85,
ReRe, 7. = 500 +.4929¢

Y53

»

-85t - 87t/ -8 tfe, ~
+.000326 € % v3m8 t/t, e " 41005 e . (3.26)

In deriving this, we have assumed that in the un-
perturbed solution the residues at all poles except the
first one were negligible. This is also true in the
perturbation so that we can conclude that if the residue
at a pole is dropped in the unperturbed solution, the

residue at the corresponding pole in the perturbation

can be neglected and the 'correlation'! or effect on the
residues at other poles in the perturbation can also be
neglected. Moreover, the error introduced by these ap-

proximations in the perturbation is less than the error
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introduced by the corresponding approximations made in
the unperturbed sclutlon, although this error is a func-
tion of both the normalized parameter & and the normalized
load parameter m, In general, these assumptions become

more valld as € increases., [q. 3,26 then simplifies to:

’

|
R [ 3 Req, I‘

¥

-5}2/‘. gt - 24
=-1.500+ 4929¢ " samisthe ™ © 4005 e tH e _(3.27)

w M

s

&

The above relations can be expressed in terms of the
current by means of Eq. 2.1%., The results of Eg. 3.21
are plotted in Figure 3-1 for several values of @&.

Having found the complete solution to our problemn,
we are now in a position to compare the results with the
experimental evidence., The details of the experimental
model are covered in Appendix A; to retain continuity we
shall only refer to certain aspects here. A bismuth
telluride p-n juaction was. used with a copper heater and
connecting strap. The cold Junction was kept at ice-
water temperature and a power input of 4%.1% watts was
applied to give a temperature differential of 140°C.
across the Jjunction under no-lozd conditions. The load
voltage was recorded as a function of time for wvariocus
loadings of the generator and several runs were made for
each loading., Tne heater was designed to give as small
a value of the normalized parameter, €, as was practical-
ly nossible; the experimentally determined value of €

was determined to be 0,304, The parameters of the system
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which were used in the calculated results were obtained
by using the averaged values corresponding to the steady
state temperature. This is covered in more detail in
Appendix B.

The results of the calculations are compared with
the results of the experiment in Figure 3-2 for three dif-
ferent loadings of the generator. ‘The results seem to
agree fairly well; however, the results are not in as
close agreement as the comparison of the open circuit
hot junction temperature in Chapter II. Note that the
discrepancies occur in thé short-time region and are con-
sistent from one load condition to another, Since the
perturbation results are the only change in the theory
from Chapter II to Chapter III, this would seem to point
to the perturbation as the source of error. But the per-
turbation results are effective mainly for longer time
intervals than the region in which the discrepancies
occur. The temperature distribution which was found 1n
Chapter II is in good agreement with experimental results;
therefore we should not overlook the parameters which
link the current to the temperature.

From the results previously obtained, it was found
that thie current outpu’ of the device is directly propor-
tional to the effective value of the thermoelectric
figure-of-merit parameter, z. This parameter was deter-

mined for the experimental model and the temperature de-
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pendence is included in Appendix B., It was found that
2 varies considerably with temperature, steadlly decreas-
ing as the temperature increases. The overall effect 1is
that the output current is higher than that which is pre-
dicted for the lower temperatures and as the temperature
of the device approaches the steady state value, the
predicted values and the experimental values converge.
In other words, the discrepancies which are observed can
be explained on the basis of the inaccuracies in the con-
stant parameter assumption (which were not present in th

experimental check of Chapter II).




IV. THE SETTLING TIME OF THE SYSTEM

It is often desirable to be able to predict in ad-
vance how long it will take for a device to come within
a preset tolerance of its.steady state value. This can
be defined as a settling time, t;, in which the system
attains, say, 95% of its steady state current output
under load copditions. Barlier in this work, it was
shown that both the unperturbed solution and the pertur-
bation can be closely approximated for times t/ ¢, >1 for
the practical case. Furthermore, for these longer times,
the parameters of the system are not changing very rapid-
1y and can be assumed to be near a '"quasi-static!" average
value. Therefore we have disposed of both of the trou-
bles which have bothered us in Chapter III.

Making use of the simplifications which were con-
sidered in Chapter II, we can drop all the terms from
the unperturbed solution except the constant term and

the one involving the first residue so that:

I . -82 t/t.

T = i-zK e (from Eq. 2.32)

The simplified perturbation from Chapter III is:

. -8t th, - 83, -2 62,
"%"""" % Re I'ss [-('Yn'i—’/z,) + K, € *"Kut/t',e + K € }(L}»_l)

where the residues are numbered to correspond to the

respective terms of Eq. 3.21.
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First of all, we recognize (from the convergence
criterion of Chapter III) that the perturbation is small
compared to the unperturbed current. Also, for long
times, the term of the form xe~ dominates the perturba-
tion as long as its residue is sufficiently large in com-
parison to the residues of the other terms., Actually,
the residue K, in Eg. %.1 exceeds the residue k, for
¢> 1.5 but since the exponential decay rate is double,
our approximation still holds. 1In accordance with these
approximations we can write for the long time approxima-
tion: |

- 5-.' t/t, [~ ¢ R(

%— = | -2K,e T el I [(h'n 2 - K, th, €
'ss

i S

or, since L = 25%%777 , (2.33)

-

I . _ ~s,‘t/t._ ZR: W : _ ~82th,
I, 1- 2K, ¢ ———-ﬁ-—-(m”),_[(mi» 2) - K, te e ] (%.3)

H

where, from Chapter III,

- " T ]
K, = YO (from Zg. 3.21)
K, = 8L (mei+T )G, 0in B, ~1 (from Eq. 3.21)

8 ¢*(8.) 8§, aiw 8,
g(8)= T g'+ e + 1, (3.16)
and 6 1is determined by the first rocot of:
tow § = TF . (2.31)
A settling time, ts, can now be calculated on the

basis of the time required for the system to come to
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95% of the steady state operation point, Table L-1
shows the results of the calculations (slide rule accura-
cy) for various values of the normalized parameters and
a comparison with the settling time caleulated without
considering the perturbation terms is indicated.

From Table 4-1, it will be noted that the agreement
with the observed values is good.,  Furthermore, note
that this method predicts the settling time as a function
of the loading and of the power input. For instance, if

the power input were increased to 10 watts (assuming

WITHOUT THE WITH THE PCRTUABATION| OBSERVED

. ™ PERTURDATION RESULTS

t’/tc t‘/t- Te (min) ts (miny

0.304% .75 1.98 |1.86% | 4,23 4.25
" 1.00 1.98 [1.82% | 4.1k .15
" 1.50 1.98 [1.886 | 4.28 4.30
1.00 1.00 4,03 |3.78
3.00 1.00 |10.0 |9.%0

TABLE 4-1
DEVICE SETTLING TIMES FOR CONSTANT POWER INPUT

that the materials could withstand such an implied temper-
ature differential), the device settling time is reduced
to 8.43 minutes for €¢=3 and m=1,

Let us see why the settling time of the generator

should be less with a load than it is for the open cir-
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cuit condition. From the perturbation results of Chap-
ter I1I, we saw that the interaction of the current and
the temperature distribution does not begin to take place
immediately after the initial instant except for very
small values of &, Therefore the temperature has a
chance tc bulld up almost as fast as in the unloaded case.
However, the interaction causes the steady state operating
temperature to be less (through the Peltier effect) than
that of the open circuit case so that the device comes
to within 5% of the steady state operating point in a
shorter time. Stated differently, the initial rate at
which the current transient builds up is approximately e-
qual for the two cases but, under load, the steady state
operating point is lower so that the settling time must
be less for the loaded generator (assuming no overshoot).

It is also interesting to note that the optimum
loading ratio on the basis of the settiling time is near
the point m =1, An exact expression for the optimum
value of m is not easy to obtain, however. The solution
can be found from a trial-and-error type of solution for
each vaiue of €, It is not clear from physical reason-
ing why the optimum value should be at a loading ratio of
unity.

this completes the work which has been done on the
initial large signal transients in the thermoelectric

generator, The mathematical solution has been set up
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and solved, and a perturbation scheme was adopted to
obtain a solution in the presence of non~-linearities,
The results were shown to be only as good as the assump-
tions which were made to derive the solution. Several
simplifying assumptions were made and the settling time

of the device was considered with satisfactory results.

[y
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REMARKS

in general, the results of this work have been en-
couraging. The problem has been set up in detail and a
solution has been obtained after several simplifying
assumptions were made. Since the results can be only
as valld as the assumptions, we shall proceed to con-
sider these assumptions and to discuss some possible
ways to avoid making them.

In setting up the mathematical deseription of the
device, it was assumed that the flow of heat was one-
dimensional and the elements were assumed to be homogen-
eous in composition. These assumptions were valid for
the model which was used in the laboratory; in general,
it is possible that they may not be valid. The first
assumption presents no great difficulty in setting up
the problem since the gradient could have been used just
as well in the differential equations. The complexities
in handling such equations and attempting to obtain a
solution would be so great, however, as to make the prob-
lem quite impractical. In fact, it would probably be
easier to find a solution for the one-dimensional case
and then attempt to explain the effects of the other
dimensional dependences. If the elements are homogen-
eous in a piece-wise manner, the problem could have been

broken up into separate parts. Again, this makes the
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calculations difficult. If the homogenity is not so
clearly defined, the problem cannot be solved in an ex-
act manner,

The parameters of the system were assumed to be in-
dependent of the temperature and it was shown that this
assumption introduced some error in the final results.
If this assumption were not made, however, the differen-
tial equationé would not have constant coefficients and
the methods used in this gnalysis would no longer be val-
id. In addition, the variation of the parameters with
the temperature cannot be represented by a simple func-
tion throughout the entire temperature range of opera-
tion if this range is of any extent. The problem would
possibly be sectioned into separate parts, each part
valid over a given range. 1t may be possible to pro-
gram a computer for the problem on this basis.

We made the additional assumption in Chapter II
that the Thomson heat term was negligible compared to
the Peltier heat term. For certain materials and over
certain temperature ranges, this assumption may have to
be revised., The difficulty in retaining this term in
the differential equations is that the equations no long-
er have a straight-forward analytical solution. It may
be possible to formulate a method whereby the final so-

lution can be perturbed to account for the Thomson heat.
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With these assumptions, the results of this work
are quite éatisfactcry for the system which was consid-
ered. Both the current transient and the settling time
of the system can be predicted closely if the above as-~
sumptions are valid. The work concerning the settling
time of the device brings up some surprising results.

It was found that the settling tim? was less for the
generator undér load than under open circuit conditions.
From the results, it appears that the settling time is

at a minimum when the generator impedance and the load
impedance are equal. These results have only been checked
with one system, however, and there 1s certainly oppor-

tunity to expand this work.




APPENDIX A: DETAILS OF THE EXPERIMENTAL MODEL

This section is added to provide some of the detalls
of the experimental model which was used for a comparison
with the theory of Chapters II, III, and IV. The block
diagram of the experiment is shown in Figure A-1 and is
self-explanatory. The coolant used was water and the
liguid bath was kept at ice-water temperature by means
of stirring crushed ice in the bath. The temperature of
the heat sink had a tendency to rise slightly as the
power was applied to the heater. It was found that this
drift of the base temperature was not too large, however,
and was approximately linear with time during the first
few minutes of each run, Corrections were applied to
the results on this basis.

The generator is shown by an actual-size drawing in
Figure A-2 and the details of the heater assembly are
shown in Figure A-3. Considerable time was spent in
designing the heater so that a small, compact unit could
be used which would (1) have negligible radiation losses,
(2) provide equi-temperature surfaces with a negligible
time lag, (3) have negligible electrical and thermal Tre-
sistance, and (&) handle five watts of electrical power
continuously. The normalized specific heat, &, of the
heater assembly was calculated on a mass basis instead

of by Eq. 2.22. The mass of the solder on the heater
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was included with the mass of the copper heater and this
total mass was used to compute the normalized specific
heat of the assembly. The error introduced by this ap-
proximation is small if the ratio of copper to solder is
large. |
The calculations for @ are as follows:
mass of B, Te, arms =, 26,28 gn.
specific heat of Bi, Te,= 0.0372 cal./gm.’K

mass of heater assembly = 2.930 gm.
(including solder)

specific heat of copper = 0.101% cal./gm. K

e = Lo _ €0:101243(2.930) = 0.304
Co:, e, (0.0372)(2€.28) *

This is the value used in the calculations in this paper.

The meximun
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1y 175°C. The tests described in this paper were run
at a power level which gave a no-load hot junction tem-
perature of 1%0°C. This made an allowance for a con-
siderable drift in the base temperature and still per-
mitted a margin of safety.

For each value of load resistance, several runs
were taken to minimize the errors introduced by the re-
cording s&stem. A dynamic linearity test was then run
on the recording sysiem using an accurate millivoltmeter
(Keithley Model 150 Micro-volt-ammeter) and the linearity
was found to be rather poor at the higher recording level.
A correction ratio was formulated and it was found that
the component of error was proportional to the third
pover of the magnitude of the reading.

Another source of difficulty experienced in this
system was that the heater resistance had a tendency to
vary at random due to the inadequate insulation between
turns., This effect was quite troublesome but was mini-
nized by matching the transformer to the heater. The
thin oxide-type insulation was chosen to provide a path
of high thermal conductance from the heater winding to
the faces of the heater. It was found that the time lag
between the time of the application of a current pulse
to the heater winding and the beginning of a temperature
rise at the heater face was about 0.12 seconds which is

guite negligible in this case,




APPENDIX B: ETERMINATION OF THE AVERAGE PARAMETERS

In this experiment, the same material with differ-
ent dopings was used for the two arms of the generator,
The theory developed in this paper makes approximations
which are the most valid for this case since we have as-
sumed that the parameters have the same temperature de-
peﬁdence and hence can be treéted as averaged parameters
with a ninimum of error.

There are two main approaches to the problem of
averaged parameters. One method is to measure the param-
eters of each material separately and then average the
results. The other method is to determine the average
values from measurements taken on the entire system.

The first method was used to determine the averaged re-
sistivity, P} which was then checked by use of the second
method. The second method was used to determine «' and

«' and several checks were made by using the first method.*

To determine the effective values of the thermal
conductivity, v, and the 3Seebeck coefficient,c:, the
pewer input to the heater was varied keeping the cold
junction temperature constant at 0°C. and the hot junc-
tion temperature (under no-load conditions) was recorded

after reaching a steady state value. Assuning that all

* 'The measurements of e« and k of the individual mater-
ials are taken from readings teken for the author by
Henry Lyden and from the work of Dr. P. E. Gray.
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the power delivered to the system is conducted to the cold

Junction (i.e., no radiation losses, etc.), we can write:

P = K’ A -T-AT” (Bo l)
and
Vo.c.% o' ATy (B.2)

where k' and «' are the effective values. The results
of this test are shown in Figure B-1l together with the
check points taken from the measurements on the individ-
ual samples (o= Y2 [leid+tad] k=% [xerxy]).

The resistivity of the p- and n-type material used
is shown in Figure B-2 and the volt-ampere characteris-
tic of the generator 1s shown in Figure B-3, The latter
results are for steady state operation and a constant
power input of 4.15 watts which corresponds to a no-
load hot junction temperature of 140°C. From the slope
of the line of Figure B-3, the effective resistance, Rey,

is found to be 9.33 milliohms which corresponds to f2=

1,95 millohm-cm. From Figure B-2, the effective value

ofli is calculated to be (ror 140°C.):

- Paot P 181 + 2.11 } )
P = = Z = .90 "™ £ - <mm

so that
there is substantial agreement between the methods used.
By combining the results of these methods, an ef-
fective "rigure-of-merit" parameter, z’', can be defined as:

()"

2 = -f—r'-'k—r'
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and is plotted in Figure B-4. It is this variation
with temperature which acecounts for the discrepancies
in the results cited in Chapter 11I.

Using the results of this section and the notation
used in the main body of this paper, we can now calculate
the values for the experimental model corresponding to
the steady state temperature. -

o= 225 pvors/°K
K = 36.0 MILLIWATTS /cM. °K
P = [.§5 MiLLioHM - cMm.
' = 0.72 x 16 °/°K
Re= L 2xA = 33.3 *K/WATT
Rey= P L/A = 4.33 murionms
) t, = <Q0%/K’' = 136 5ec = 2.27 MIN.
The above values are the ones which zare used in this

paper.




APPENDIX C: A PARTIAL LIST OF RESIDUES
FOR THE COMPLETE SOLUTION
The numerical values of the residues for the re-
sults of Chapter II and Chapter III are included in this
section for some arbiﬁrary values of @ together with the
values for & and m corresponding to the experimental
model. These values are included to provide some ldea

of relative magnitudes to the reader.

After the numericsl computation, it is more conveni-
ent to group the results of Egs. 2.32 and 3.21 into the

following form:

-8 A, -85t -§,t - 8it
Loi-z[ne™™ine P e e, e ]
'ss
i CXQ _G?f/tl -sttk' -s;t/t' - -S:tk‘
S SRy [omet) - Hye T M el e e
ERT AT -287th,
- He A4, € - H, € ]

The numerical results in Table C-1 are listed using the

above notation.




TABLE C-1

THE NUMERICAL RESULTS FOR THE RESIDUES OF EQ. C-1

™ H, Ha Hs Hy
0.00" 053 L0450 L0162 .00827
0.304 L4690 .0253 . 00401 .00104
1.00 L4931 . 00620 .000556 | .000119
3.00 .1+990 .000963

c m “Hs He H, He
0.00 1.00 | 1.0656 LO0%176 | .001546 | .001038
0.30% .75 L4327 ~.03676 | -.0016%2 | -.000295

L 1.00 L5929 ~. 0405 .000147 | 000326

L 1.50 .6131 -, 080 ~.00236 | -.000388
1.00 1.00 .1523 000386 | .000006 | .000005
3.00 1.00 .0381

g m Hs Hio
0.00 1.00
0.30% .75 | 3.0666 L8153

" 1.00 | 3.7176 1.0050

H 1.50 | 5.0197 1. 384k
1.00 1.00 | 2.1112 1.3%77
3.00 1.00 | 0.8865% 1,4613
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