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Abstract

This thesis explores aspects of gravity and quantum field theory (QFT). The first part is devoted to the in-
terplay between manifest T-duality symmetry and higher-derivative corrections to the low-energy effective
action of string theory. The second part focuses on exact results in supersymmetric gauge theories.

We first discuss T-duality symmetry of string theory from various perspectives. We next review the
manifest-duality-symmetric formulation of low-energy effective actions: double field theory (DFT) and its
higher-derivative generalization, HSZ (Hohm-Siegel-Zwiebach) theory. We then compute on-shell three-
point amplitudes in the HSZ theory. We show that these amplitudes factorize, as in bosonic and heterotic
string theories, but they differ from both. Further, we analyze degrees of freedom in the HSZ theory. The
spectrum of the theory contains massive spin-2 ghosts and massive scalars, in addition to massless fields.
The massive modes can be integrated out exactly at the quadratic level, leading to an infinite series of higher-
derivative corrections. Finally, we give a ghost-free massive extension of linearized DFT, which employs
novel mass terms for the dilaton and the graviton.

In the second part, we start by reviewing the exact results for partition functions of supersymmetric gauge
theories on spheres. Exact results, however, are not available for minimally supersymmetric theories on S4

and S6. Minahan conjectured the form of perturbative partition functions for theories on Sd with eight and
sixteen supersymmetries. We show that this form gives the correct one-loop divergences of the flat-space su-
per Yang-Mills (SYM) upon taking the radius of the sphere to infinity. We also prove the conjecture explicitly
for theories with eight supersymmetries. Further, we extend our results to theories with four supersymme-
tries for d < 4. We then propose an analytic continuation to d = 4 to obtain the partition function for a
certain K = 1-preserving mass deformation of K = 4 SYM. This analytic continuation gives the correct
/-function and agrees with the result for free vector and chiral multiplets.

Thesis Supervisor: Barton Zwiebach
Title: Professor of Physics and MacVicar Faculty Fellow
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Introduction

What is the geometry of space and time? This question can be traced back to ancient Greek philosophers.

Plato viewed time as inseparable from periodic motion. This was a reasonable reflection on what he saw

in nature: the repetition of seasons, alternation of day and night, and motion of visible planets. Aristotle

rejected the existence of empty space. He argued: just as every body is in its place, so, too, every place has

a body in it. While our understanding of the nature of space and time has been improved since then, it is far

from complete. On the macroscopic scale, Einstein's general theory of relativity, which describes gravity,

is the answer. It has withstood externsive experimental testing, from the precession of Mercury's orbit to

the detection of gravitational waves [1]. The structure of spacetime on microscopic scales, however, remains

elusive. Our understanding of physics at small scales is based on quantum field theory (QFT). Its predictions

have seen striking agreement with experiments, e.g., the prediction for the anomalous magnetic moment

of the electron agrees with experimentally measured value to more than ten significant figures. Despite its

remarkable success, QFT does not encompass gravity. The failure to reconcile general relativity and QFT

points to our incomplete understanding of both.

Strings see spacetime differently from point particles. Our usual understanding of spacetime geometry

is based on manifolds of fixed topology with particle motion described by geodesics. The realm of "stringy

geometry," however, allows the topology of the spacetime to change. It also allows distinct-looking space-

times to describe the same physics. String theory suggests that our notions of spacetime geometry have to

be modified. The simplest manifestation of this arises in low-energy effective actions of string theory, where

general relativity is modified by including other massless fields and an infinite number of higher-derivative

corrections.

Families of spacetimes which describe the same physics are often connected by target-space-duality (T-

duality) transformations. In the first part of the thesis we use T-duality to explore the geometry of spacetime in
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string theory. We investigate, in particular, the interplay between T-duality and higher-derivative corrections.

When a string propagates along a periodic direction of radius R, its momentum is quantized like that of

a particle. Due to its extended nature, a string can also wind around the periodic direction, a feature absent

in a particle theory. This leads to another quantum number: the winding number. The energy spectrum of

the string does not change if one swaps the momentum and winding quantum numbers while changing the

radius from R to . This is T-duality in its most primitive form. For motion on a toroidal background Td,

T-duality transformations form the group 0 (d, d : Z), which shuffles d + d quantum numbers associated

with momenta and windings. For the low-energy effective action of string theory, T-duality is realized,

surprisingly, as a global 0 (d, d : R) symmetry. Double field theory (DFT) makes the duality symmetry

manifest albeit only for two-derivative effective actions. There is only one known example that includes

higher-derivative interactions and has exact duality invariance, the so-called HSZ (Hohm-Siegel-Zwiebach)

theory [2]. A key aspect of duality-manifest formulations is that they employ field variables that transform

linearly under the duality group and encode the physical fields, e.g., graviton, in a non-trivial way. These

developments are reviewed in chapter 1.

We explore on-shell physical properties of the HSZ theory in chapters 2 and 3. Chapter 2 is based on

[3], where we compute three-point amplitudes in the theory. Our methods are instructive; they illuminate the

relation between the duality-covariant field variables and the physical ones. These amplitudes factorize as in

bosonic and heterotic string theories, but are different from both.

This motivates the analysis of the spectrum of the HSZ theory presented in [4], which is what chapter 3

is based on. The HSZ theory has exact duality symmetry and higher-derivative interactions - the hallmark

of string theories - but is not a string theory. We discover that in addition to the usual massless fields,

the spectrum includes two massive spin-2 ghosts and scalars. Such inconsistencies are expected in generic

higher-derivative theories. We also show that the massive modes can be integrated out exactly at the quadratic

level, leading to an infinite number of higher derivative corrections. One expects this to be required for exact

duality invariance. We then give a ghost-free massive extension of linearized DFT, which employs novel mass

terms for the dilaton and the metric. Our analysis illuminates the interplay among a'-corrections, massive

modes of higher spin, and T-duality.

The second part of the thesis focuses on exact results for supersymmetric gauge theories. Exact results

in QFT are as hard to find as they are desired. Much of our understanding of QFT is based on perturbative

and approximate methods. While these methods work well when the effective strength of the interactions is

weak, they are of no use when the theory is strongly interacting.

It is difficult to obtain exact results for generic strongly coupled QFTs, but in the presence of supersym-
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metry on compact spaces such as a spheres, progress can be made. A compact space allows a systematic way

to regulate IR divergences and supersymmetry allows the use of supersymmetric localization. Observables

in QFT are computed by doing an infinite dimensional path integral, (0) = f D<I Oe-S[<] . Here S [<1] is

the action functional, which can contain cubic or higher order interaction terms in fields <b. In general it is

impossible to compute this integral exactly. Supersymmetric localization reduces it to a finite dimensional

integral.

Tremendous progress has been made in obtaining exact results for supersymmetric gauge theories based

on the localization principle, as pioneered in [5]. These results, however, remain elusive in theories such

as those on S 4 with four supercharges and on S6 with eight supercharges. In the former case, the standard

localization procedure fails, and in the latter, no explicit Lagrangian for the theory is known. We examine

these missing cases in chapters 4 to 6.

In chapter 4, we review all known results for partition functions of supersymmetric gauge theories on

spheres Sd. These results admit an analytic continuation where one can treat d as an analytic parameter.

Based on this analytic continuation, Minahan conjectured the form of partition functions of theories with

eight and sixteen supersymmetries [6]. In chapter 5, based on [7], we perform non-trivial consistency checks

on the analytic continuation. We show that the dimensional regularization of the analytically continued

partition functions have the same logarithmic divergences as known partition functions with a hard cutoff.

We also provide a consistency check on this analytic continuation when explicit partition functions are not

known: in the limit when the radius of the sphere goes to infinity, the analytically continued partition function

correctly gives the one-loop divergences of the corresponding flat space SYM.

Consistency checks of the conjecture motivates [8]. Chapter 6 is based on this work, where we compute

the perturbative partition functions for gauge theories with eight supersymmetries on spheres of dimension

d < 5. This proves the conjecture in [6]. We apply similar techniques to compute partition functions

for theories with four supersymmetries for d < 3. This provides a unified approach to the localization of

supersymmetric gauge theories on spheres. We propose an analytic continuation to d = 4 that gives the

partition function for an / = 1 gauge theory. We show that it is consistent with the free multiplets and the

one-loop /-functions for general A = 1 gauge theories. We also show that the general structure of the real

part of the free energy obtained from the analytic continuation is consistent with the holographic predictions

for K = 1* theory.

Other works which are not included in this thesis

In DFT, unlike in general relativity, the exponential map of infinitesimal gauge transformations had no

known formulation in terms of the Jacobian matrix for coordinate transformations. Hohm and Zwiebach

11



conjectured an expression in reference [9]. In [10] we showed that their proposal coincides with the exponen-

tiation of the Lie derivative along a particular parameter and gave explicit expression for it. This established

the geometric form of finite gauge transformations in DFT.

In [11], we devised a canonical formulation of DFT. We showed that the dynamics is subject to primary

and secondary constraints, as expected in a theory with gauge invariance. We also showed that the Poisson

bracket algebra of secondary constraints closes on-shell. Further, we appled the formalism in a variety of

solutions of DFT to obtain conserved charges. This gave a duality-covariant description of conserved charges

associated with diffeomorphisms and the gauge invariance of Kalb-Ramond field.
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I
An overview of T-duality and double geometry

In this chapter we develop basic elements of the double geometry. We start by discussing the T-duality sym-

metry of string theory from various perspectives. This discussion naturally leads us to introduce ingredients

of DFT.

A remarkable result from the early days of string theory is that the conformal invariance on the world-

sheet implies equations of motions for the target space fields [12]. Consider the following world sheet action:

S 1 [d2. abg (X) +.Eabbrnn (X)) aXm abXn + ac',9R(2 ) 0(X)], (1.1)

where Yab is the world sheet metric, R(2 ) the scalar curvature of the world sheet and -a , a = 1, 2 the world

sheet coordinates. 9mn (X) is the target space metric, bmn (X) the target space Kalb-Ramond field (b-field

henceforth), 0 (X) the target space dilaton and Xm the target space coordinates. Treating the target space

fields as world sheet couplings, one can derive the corresponding one-loop beta functions #n , 3mn and #8D:

2$g + 8r9mn = Rmn - 2gmnR) - Tter 0,

87r - + g m n On = 2VmO75V - V2-- !H2 =0, (1.2)

of 2 12#mn = VXA -- 2VA#H4 n = 0.

Imposing the vanishing of the one-loop beta functions is the requirement that the world-sheet theory is con-

formally invariant. H = db is the three-form field strength for the b-field and Tmner is given by:

Tmtter = H2[H - IgnH - 2VmVnO + 29mnV2 0 - 29mnVp#VP#. (1.3)

15



Equations (1.2) can be derived from the following target space action:

S J dexVI/e2< R + 4V.qVm q$ - IH 2. (1.4)

This is the low-energy effective action for the bosonic string theory. This is also the universal bosonic part of

the NS-NS sector of low-energy effective actions for superstring theories. An observation due to Buscher [13,

14] lets us rewrite these equations in the following form:

2 (t)2 - 2t 2
o - - 1-H 2 =(0,

(1.5)
Nmn + 2Vmtn# = 0,

where Rmn is non-symmetric the Ricci tensor associated with the torsional connection V = V + 1g- 1H.

This rewriting implies that a torsionless target space with a b-field and a torsionful target space are completely

equivalent. Therefore it is clear that the metric and the b-field are in general not separate entities. This is

obvious from the closed string point of view where both fields arise at the same excitation-level. From the

target space perspective, this means that a more stringy way of dealing with these fields is to treat them in a

unified framework.

1.1 T-duality in string theory

The mixing of the b-field and the metric is due to one of the most important duality symmetries of the string

theory, the T-duality. In this section we explore various aspects of T-duality. We start by describing the

T-duality from the perspective of both the classical and the first quantized bosonic string theory. We also

discuss the T-duality from the point of view of the low-energy effective action for massless fields.

1.1.1 Classical T-duality a la Buscher rules

The duality symmetry can be made apparent by using a first-order form of the action. This is achieved by

including a Lagrange multiplier field Z0 and choosing &aX0 = V_ The world sheet action becomes:

D-1

Sws = J d2 . E yab [gooVaVb + 2 go0 Va&bX 0 + gO (X) aX'obXfl
a'0=1

+ cab (2bocVaObX" + bcfl (X) aXaobXO) (1.6)

+ eabkOaaVb + a'/fR t( 2) (X).

16



The equation of motion for the Lagrange multiplier field ensures that V can be written as 0af (o) for some

function f (a) of the world sheet coordinates. Upon plugging this solution back into the action, we recover

the standard world sheet action with f (o) identified with X 0 . However one can also treat V as a Lagrange

multiplier field. Solving the algebraic equation of motion for V and plugging the result back in the action

leads to a dual action:

Sduai= d20, v ab, (k + eabbg (kY) qa8 abXn + a'V7R r (2,) ) (1.7)

where the dual background fields are related to the fields in the original theory as follows;

1 , = , 9a - goagoo - boabofl

900 90a 900 (1.8)
-' 9=abOf - 1 )boboa

Sba ba+ , = 0- - log goo.
900 900 2

The index m is split into m = (0, a) where a takes values 1,.-. , D - 1. The relations between the dual

fields and the original fields are known as Buscher rules. Buscher rules tell us how the duality symmetry acts

on the world sheet action. For example consider consider reducing the theory on a circle of radius R with

vanishing b-field and 900 = R. Then according to the Buscher rules -00 = i, i.e., the theory on a circle of

radius Rand are dual.

This argument establishes the T-duality at the level of the classical world sheet action.

1.1.2 T-duality from first quantization

We now describe the T-duality from the perspective of first quantized bosonic string theory. This can be done

via either the path integral approach - by computing the one-loop partition function in a toroidal background

- or via canonical quantization by explicitly analyzing the spectrum of the theory. We take the latter route

here as it naturally leads to the notion of generalized metric, an important ingredient in double geometry.

Consider the world sheet action describing strings propagating in a target space Mtarget =T , where

TD is a D-dimensional torus. For simplicity we set a' = 1 and the world sheet metric to be the two-

dimensional Minkowski metric. The action in eq. (1.1) takes the form:

1 I 27r ac

47r= do, dT (r7abOa Xm Xgmn + fab&Xm&Xb) (1.9)

'One can perform the analysis for Mae= M x T in a completely analogous fashion. This choice is merely to keep the
notation simple

17



where X' X' + 27r are periodic coordinates. The closed string background fields g and b are D x D

matrices. It is straightforward to obtain the canonical momenta Pm and the Hamiltonian density _H from

action (1.9).

Pm = gn X + bmnX' ,

X' (1.10)
47rH = (X', 2rP) W(E) ( , (11

where a 'dot' denotes derivative with respect to r and a 'prime' denotes derivative with respect to a. We

have defined a D x D matrix E g + b. W(E) is 2D x 2D symmetric matrix constructed out of the metric

and the b-field. It is called the 'generalized metric.'

W1(E) g -bg-'b bg-1 (1.11)

_-1b g-1

To quantize this theory canonically we expand the string coordinate Xm in terms of the momenta, winding

modes and oscillators, which satisfy a set of commutation relations consistent with [X", Pn] = i6 mn. For

our purposes it is sufficient to focus only on the zero modes in that expansion and ignore the oscillators. We

have

X" = X + W + g n +---,(1.12)

where - denote the oscillator expansion. This expansion can be split into left moving and a right moving

pieces as usual. The zero-modes ao and do are given by

1
am" = 9 mn(Pn - Enywp) ,

0 mF ~(1.13)
1

a 0 = -g m9(Pn + EpnwP).

The zero-mode Virasoro operators are given by

1
LO = -am"gmnan + N - 1,2 (1.14)

Lo = dom + N -1 ,

where N and N are number operators counting the excitations. The invariance of the closed string under

reparametrization a - o + const., leads to the so-called level-matching constraint that requires Lo - Lo = 0,

18



which can be expressed as:

Lo - Lo = N - N + OmO, (1.15)

where 2

.
M xm

(1.16)M . a .
W &m

The level-matching condition can now be expressed as a constraint on the number operator

N - N -a -0 . (1.17)

For massless fields in bosonic string theory the level-matching constraint can be implemented as follows. A

general massless state can be written as

emn (P, )a _I n 1 , W),

P,w

(1.18)

with momentum space wavefunctions emn(p, w) and <)(p, w). Here the matter and ghost oscillators act on

a vacuum Ip, w) with momentum p and winding number w. Level matching condition then requires that the

Fourier transformed fields emn(x, z) and <b(x, z) satisfy the constraint

- emn(X, J) = a -5<(x,) =0. (1.19)

By integrating the Hamiltonian density H in (1.10) we get the following Hamiltonian.

H = jdoH = -IZtH(E)Z + N + N...
0 2

(1.20)

where the dots contain irrelevant terms and

m is the coordinate canonically conjugate to the winding numbers w".
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is a 2D column vector consisting of integer winding and momentum quantum numbers. The level matching

condition can now be expressed as

- 1
N - N = -Z'Z ,2

(1.21)

where 77 is the matrix defined as follows:

0 1

1 0
(1.22)

Consider now a reshuffling of the quantum numbers

Z = h'Z',

with some 2D x 2D invertible matrix h with integer entries. Under such a transformation the physics should

not change. In particular the constraint (1.21) should be unchanged. For this it is then necessary that

Z'7Z' =ZtZ =Z'thqhtZ' ,

which requires

hr=ht =

The h matrices belong to the O(D, D; Z) group. We write

a b
h = )EO(D, D),

c d

where a, b, c and d are D x D-matrices. The conditions on a, b, c, and d following from (1.24) are

ab + bat = cd' + dct = 0, adtI + bct = 1 .

(1.23)

(1.24)

(1.25)

(1.26)

Under the shuffling of quantum numbers, not only the level matching condition but the physical spectrum

is also not changed. This requires a change of the background field E. The shuffled quantum numbers are

20



associated to a background field E' [15].

E' = h(E) = (aE + b)(cE + d)- ( bE (1.27)
c d

The generalized metric corresponding to the background E' is

RH(E') = h7(E)h' . (1.28)

This proves that

Zt-H(E)Z Z't-H(E')Z', (1.29)

hence the Hamiltonian in eq. (1.20) is not changed. We have thus shown that there is a 0 (D, D; Z) duality

symmetry, which leaves the spectrum of the string theory invariant. 3

This establishes the duality at the level of first quantization. This is indeed a symmetry of the full quantum

string theory. One can show the partition function of the world sheet theory on all genus g Riemann surfaces

has an 0 (d, d; Z) symmetry if target space has the form MtArget = M x Td [16].

1.1.3 Duality in the low-energy effective action

What are the consequences of this duality symmetry for the low-energy effective actions of string theory?

This question was answered in the seminal work [17]. The low-energy effective action, upon compactifica-

tion over Td, has an enhanced global 0(d, d; R) symmetry.

Consider the effective action in eq. (1.4) compactified on a Td, i.e., Mtarget = M x Td. We denote

the D-dimensional fields with an overhat and the D-dimensional indices with latin letters i, j, - . The D-

dimensional indices split as i = (M, a), where m, n, --.- are indices along Td and a, #, are indices along

M. The D-dimensional metric splits as follows,

g a + A$I)mAl) A (30
ij = ' a (1.30)

A(' Gmn

where G,, is the metric along the compactified directions. The determinant of the metric and the dilaton

3
1t is 0 (d, d; Z) when d is the number of toroidal dimensions in the target space.
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are related by

1
-Det = -Det gVDet G, # I=-- log Det G. (1.31)

2

Different components of the B-field can be arranged as follows:

bmn = bmn, bam = A(' - bmnA l),

6aO = bao - A[)mA( + A()mbnnA)n. (1.32)

The dimensionally reduced action takes the form:

S dD-d ('1 +,C2 + C3 + L 4 ), (1.33)

where

L, = R + gaaaga O

1L2 = I ga,3 (OaGmaoG"'" - G"m"Gpq0bmpa,3bnq ),

L3 = - gCyg 36 (GmnF 'mF)f + GmnHamH-n ,

L4= 1 H,_~OY

12

The three-form field strength in the last term is given by

Hay= abp, - (A)mF(2)m + A(PmF ) + cyc. permutations. (1.35)

Each of the four terms above are invariant under global O(d, d; R) transformations. The first term is trivially

invariant because the metric gap and the dilaton field # are invariant. The second term can be written in the

following way, which makes its invariance manifest.

1
L2 -- &aWMiMN MN, (1.36)

8

where 'HMN is a 2d x 2d symmetric matrix, the generalized metric introduced earlier in eq. (1.11) 4. In-

dices M, N are contracted using the 0 (d, d) invariant metric rq. Under an 0 (d, d; R) transformation h, the

4This generalized metric only contains metric and B-field components along Td directions.
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generalized metric W changes as

R -M hWht. (1.37)

Since htrh = 7, we see that L2 is invariant under this transformation. Note that the action of 0 (d, d)

transformations on the physical metric and the b-field is rather complicated and non-linear, but the generalized

metric transforms linearly under these transformations.

The third term in the Lagrangian can be written as follows:

L3 = )Eag7LMN #,N (1.38)

where FTj is a 2d-component vector of field strength.

M = 3 (1.39)

This is an 0 (d, d) vector and transforms linearly under the action of h E 0 (d, d)

FM -+ hMNFN (1.40)

This, along with the transformation property of the generalized metric, guarantees the invariance of 3 under

0 (d, d; R) transformations.

The invariance of L4 can also be made manifest by writing Hafly in the following form

Hc,,y = o bo - 2A. MN-Y7 + (cyc. permutations). (1.41)

Since ba/ does not transform under 0 (d, d; R) and the second term is manifestly invariant under the trans-

formation, we conclude that HO,, and hence L4 are invariant under 0 (d, d; R) transformations.

Hence for the low-energy effective action of string theory the duality symmetry is enhanced from 0 (d, d; Z)

to 0 (d, d; R). It is useful to decompose the action of the duality group in terms of its various subgroups to

understand it better.
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0 (d, d; R) group

Recall that the group 0 (d, d; R) is defined as the group of matrices which leave the matrix 'r, defined in 1.22,

invariant 5. The dimension of the group is d (2d - 1).

We first examine the part of the 0 (d, d; R) given by the matrices of the form

A 0
h = 1 ') A E GL (d). (1.42)

This forms a d2-dimensional subgroup. From eq. (1.27) we can see that it acts on the fields g and b as follows:

g -+ g' = AgAt, b b' = AbAt. (1.43)

Note that this group arises under the following coordinate transformation along the Td.

i + X's = (A.x) . (1.44)

Hence this subgroup only generates gauge transformations.

Next we look at the matrices of the form

h = I B , B =_ -Bt. (1.45)
0 1

d~d- 1)d(d-1)
This generates an abelian d(d-1) -dimensional subgroup denoted by R 2 Under its action the metric re-

mains unchanged and only the b-field changes: b -+ b' = b + B. This is the same as the gauge transformation

of the b-field with respect to the gauge parameter BabX.

Finally we discuss the subgroup 0(d) xO(d) 6. This is given by the set of matrices
O(d)diag

1R+S R-S
h= , R IR=1=SS. (1.46)

2(R-S R+S

This acts on the background E in a non-trivial and non-linear manner ,which involve mixing the b-field and

the metric. To see this, we compute the action on the background with a b-field, b 12 = -b 21 = b and a torus

T2 . We take the two cycles of the torus to have the same length 1 unit. The metric on the torus is 6m. We
5
1t is understood that r has the same form as in eq. (1.22) but is a 2d x 2d matrix for the current discussion.

6 The diagonal subgroup of 0 (d) x 0 (d) is contained in GL (d) as in eq. (1.42) with A'A = 1.
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now do a duality transformation on this background. We take R to be the identity and S to be a rotations by

angle 0 R,S. Then under the action of the transformation h:

2
gmng9" 2 +b 2 (1 - cos (Os - OR)) + 2b sin (Os - OR) (1.47)

bmn b b sin (s - R) + 2 COS (OS - OR) nb b 2 + b 2 (1 - cos (Os - OR)) + 2b sin (Os - OR)

Notice however that if b = 0, the background remains invariant. This illustrates the complexity and non-

linearity of the action of the duality group, even in the simple case of compactification on a torus. Moreover

the transformed metric and the b-field are not related to the original ones by usual notions of diffeomorphism

or gauge symmetryl.
d(d-1)

To summarize, the "geometric" subgroup GL (d; R) x R 2 of the full duality group 0 (d, d; R) is

attributed to usual gauge deformations of fields. The subgroup 0 (d) x 0 (d) /0 (d)diag relates dual configu-

rations of the metric and the b-field. Physics in backgrounds related by a duality transformation is completely

equivalent. This is the essence of the duality.

Our analysis dealt with only the leading low-energy dynamics of the string theory. However the general

picture is true even when subleading corrections are considered. It was shown by A. Sen in [18] that the space

of classical solutions of the string field theory has the same duality symmetry as discussed above. Recall that

the classical string field theory involves an infinite number of higher derivative terms and they enter in such

a way that the T-duality is maintained.

1.2 Elements of DFT

The T-duality symmetry is present in the full low-energy effective action of string theory. By full effective

action we mean the effective action obtained after integrating out all the massive fields of the string theory at

tree level. This effective action involves only massless fields and have an infinite number of higher derivative

(a'-) corrections. However, even for the case of a'0, the duality only becomes apparent after a convoluted

procedure of dimensional reduction. This raises two natural questions:

1. Is there aformulation of low-energy effective actions of string theory that makes manifest this 0 (d, d; IR)

symmetry before compactification?

2. Can we impose the requirement of manifest T-duality to constrain a'-corrections to the low-energy

effective actions?

The answer to both these questions is yes, as we review below.
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1.2.1 Courant bracket

It is clear from the preceding discussion that any attempt to find a manifestly duality-invariant formulation

must start by treating the metric and the b-field in a uniform manner. We start by unifying the gauge symme-

tries associated with the two fields.

A theory with a metric and two-form field has gauge symmetries: diffeomorphism generated by v E TM

and the gauge transformations of the b-field generated by one forms E T*M. By formally adding the vector

and the one-form as v + c TM D T*M, we can write the gauge transformations as

Jv+ g = Lv , v+ b = Lvg + <, (1.48)

where L, is the Lie derivative with respect to the vector v. By computing two successive gauge transforma-

tions one finds that the algebra of the gauge transformations is

[v2+ 2,1+ = 
6g

6
[V1,V2j+L 2-v2_6. (1.49)

The last expression defines a bracket on TM E T*M given by

[vi + 1, v 2 + 2] = [vi, v21 + v1 2 - LV2 1. (1.50)

This is in fact a Lie bracket as it is anti-symmetric and the Jacobi identity is satisfied. However eq. (1.50) is

not the only choice consistent with the gauge algebra eq. (1.49). To see this note that

vjV -L2v1 = divi d + ivid1 - (1 ++ 2), (1.51)

where iv is the standard interior product of vector v and the one-form (. Recall that an exact one-form does

not generate a gauge transformation of the b-field. The gauge algebra is independent of the term divi 2 -

(1 +- 2) appearing in eq. (1.50). We can consistently modify the bracket by replacing the coefficient of this

term from 1 to (I - .

[vi + 61, v 2 + '2] = [v1 , v 2] + Lv 12 - Lv21 2d (i 1vi 2 - iV 2 1). (1.52)

We will choose a specific value of # by appealing to an important part of the duality symmetries: the

B-shifts. Consider a closed two-form B. Shifting the b-field by such a two-form B is a symmetry of the
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theory. How does B act on the gauge parameters? The two-form B defines a natural map7

B : TM -> T*M, v E TM -> i4B c T*M.

This map has a straightforward extension to v + c TM e T*M, where it leaves the vector as it is and

shifts the one-form by iB. We fix the parameter 3 in eq. (1.52) by requiring that the action of the B-shifts

on the gauge parameters is an automorphism of the bracket. This fixes 3 to 1. The resulting bracket is known

as the Courant bracket after T. Courant.

1.2.2 Gauge algebra, fields and action

For uniform treatment of diffeomorphism and the b-field gauge transformations, we introduce the following

notation

M M (1.54)

to denote the gauge transformation parameters + E TM D T*M. This suggest a doubling of coordinates

and corresponding derivatives.

X M () aM = 2
(am

Here M = 1, 2 ... 2D is an 0 (D, D) index, which is raised and lowered by the 0 (D, D)-invariant

metric q as defined in eq. (1.22). It is useful to repeat the definition of rq with indices here:

rMN 0 , n

ffnn 0

0 5,
77MN

jrnn 0
77MN =r}MPr7PN 77NP77MP= MN

(1.56)

Next we need to identify the right choice of field variables to make the duality manifest. The generalized

metric, which has already appeared in 1.49, is a natural candidate. With indices it takes the following form:

7RMN = I
bmP kn

-9g 'Pbpn
-,

gm - barpgbn /
wMN (9mn - bmpgpqbqn

-gmPbpn

7 Another way to obtain this map is to note that 3&+ (b + B) = gv+( +iB)b.
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(1.55)

brmP9kn

-, ' )
(1.57)



The generalized metric satisfies the constraint

'IMNRNP = MP. (1.58)

In matrix notation this constraint is .W - t = 77, i.e., W C 0 (D, D). We want to treat the generalized metric

as the fundamental field variable without referring to its parameterization in terms of the metric and the

b-field. Since W is a 2D x 2D matrix we need to impose further constraints for it to have same number of

degrees of freedom as gm, + bmn. Demanding W to be a symmetric element of 0 (D, D; R) reduces the

number of degrees of freedom from 2D x 2D to D2

The determinant of the metric is combined with the dilaton to form a duality covariant dilaton defined as

e-2 = e-2V-g. (1.59)

Infinitesimal gauge transformations for the fundamental fields WMN and 4D are given by

6WMN = =f7 - MN -OPWMN + (aM K _ aK M) KN + (aN K _ aKN) 7 KM,

1 (1.60)

= - 2

To describe closed string theory consistently, string fields are subject to the level matching condition.

(Lo - Lo) f (x, z) = 0, (1.61)

In the massless subsector, this implies the following constraint on double fields

aMaMf (x, ;) - 0. (1.62)

However, in general given two fields fi (x, z) and f2 (x, .) satisfying the constraint eq. (1.61), their product

does not satisfy this constraint. Hence one has to impose the so-called strong constraint. It is the statement

that all fields, gauge parameters and their product are annihilated by aMaM.

aMam (. -- ) =- 0. (1.63)

To write down an action we take into account another symmetry: the Z2 symmetry which acts on the

b-field as b -- -b. This symmetry acts on the coordinates, derivatives and the generalized metric as fol-
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lows [19]:

X* -+ ZX*, 0. - Z9., W 0 - ZR-"Z, WOe -+ Z7-..Z,
(1.64)

** ZrJ*, re -Z7

where e's indicate 0 (D, D) indices and Z is given by the matrix

--1 0
Z =-. (1.65)

0 1

The two-derivative action is then completely fixed by the gauge symmetry and the Z2 invariance.

D(!MNa, N PQ PQ _ MNaNiPQaQwMPSDFT J d xd 2 (8 ON -2 (1.66)

- 20M qNWMN + 4 MN&M1pN4)-

We now comment on important features of this action:

" Upon taking 9 = 0 to be the solution of the strong constraint, it reduces to the effective action in 1.4

(up to an over all factor), hence it is a manifestly 0 (D, D; R)-invariant formulation of the low-energy

effective action.

" Notice that the group 0 (D, D; R) is much bigger than actual global symmetry group arising upon

compactifying on Td! Strong constraint is required to break it to a smaller subgroup.

" If the D-dimensional target space has no isometries then a solution of the strong constraint breaks
D(D-1)

0 (D, D; R) to the geometric subgroup GL (D) x R 2 . To see this, note that under GL (D)

transformation

XM -> XIM= A ( (1.67)
0 (At) x

D(D-1)
Then 0 "n 0 implies that 0 '"n 0. A similar conclusion is drawn for transformations in R 2

* In the case of compactification on Td, we divide the double coordinates as follows:

XM = ;_y 94 " i) , (1.68)
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where yi are the coordinates along Td. Since fields are independent of yi, the solution & = 0 of strong

constraint is invariant under 0 (d, d; R) transformations that mix y' and j, hence the global symmetry

group of the compactified theory is

0 (d, d; R) x GL (n) x R , (1.69)

where n = D - d is the dimension of the compactified space.

1.3 Higher derivative corrections

Having written down an action for DFT we have answered the first question asked at the beginning of sec-

tion 1.2. Now we turn to the second question.

A detailed review of how to carry out this procedure in practice is out of the scope of this thesis. Here

we illustrate the principle using an elementary example. Suppose that we are only given the metric and the

dilaton part of the effective action in eq. (1.4). We want to duality complete this action. We will show that

this duality completion lets us determine the correct contribution of the B-field to the effective action. We

write

/ ddxVIe-20 (R + 4VnOV"O)

, I d n1 (1 .7 0 )
dD [2(m &n9mn - dam ) +4m 01 - gnp 2 agmmnOpg 1,

where in the second line we have used the explicit expression for R and integration by parts to write the action

in a suggestive form. The requirement of manifest T-duality then implies that the action S,. is the restriction

to b = 0 sector of a manifestly 0 (D, D)-invariant functional S. Next we notice that the different terms can

be written in terms of the generalized metric as follows.

O~nPOrngn = gmq nP~qgp = -MQ OMli 0 
PQ N P ,

am'a~n 9namn(q~p=2 Wa'N b=0,5=0'

a'gng Opgp" = gQOQ7gMNOPWgPN -b=0,6=0(

am'"Qflgjfmn = 9fMPlJ nq gnq =_N OQ-NQ b=0,5=0'

9rnn4np = MNM N4 b=,=
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Hence the appropriate duality completion of S, is

S, + duality completion= d'e 2
<> MNM NWPQ - !MNaNRPQaQNMP8 2(1.72)

-20M jaNgjMN + 4R MNM ONj) - ,

which is the DFT action after choosing & = 0 as a solution of the strong constraint. As discussed in sec-

tion 1.2, this action is completely equivalent to the one in eq. (1.4) and hence gives the correct contribution

of the B-field.

In principle, this procedure can be carried out at higher orders in a', e.g., see [20] for an analysis at

o (a'). A more ambitious goal is to use the manifest duality invariance and gauge invariance as guiding

principles and construct a higher-derivative theory from first principles. This was achieved in [2] by Hohm,

Siegel and Zwiebach, (the HSZ theory). The first part of this thesis is devoted to exploring this theory. We

will introduce relevant details along the way. Its key features are the following.

" The theory is formulated in terms the dilaton JD and a double metric MAMN, which is a rank-2 0 (D, D)

tensor. Unlike the generalized metric M V 0 (D, D).

* The gauge transformation of the dilaton remains the same, but the gauge transformation of MMN has

higher derivative contributions. Consequently the gauge algebra also has higher derivation contribu-

tions.

" The action is cubic in M.

" The action involves terms with up to six derivatives.

" The theory has higher derivatives, gauge invariance and an exact global duality invariance.

1.4 Summary

In this chapter we reviewed how the discrete duality symmetries of toroidally compactified string theories

imply continuous duality symmetries of the classical effective field theory for the massless string degrees of

freedom [21, 18]. DFT formulates the higher-dimensional two-derivative massless effective field theory in

a way that the duality symmetry can be anticipated before dimensional reduction [22, 23, 24, 25, 19]. When

higher-derivative corrections (or a'-corrections) are included it becomes much harder to provide a duality

covariant formulation. It is generally expected that as soon as higher-derivatives are included, an infitite

number of them are required for exact duality invariance.
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At present, there is only one known example of an effective gravitational theory with higher-derivatives

and exact duality invariance: the HSZ theory. It is formulated in terms of a double metric M, an uncon-

strained version of the generalized metric 'W.
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2
Three point functions in HSZ theory

The purpose of this chapter is to calculate on-shell three-point amplitudes for the metric and b field in the

HSZ theory. While this is a relatively simple matter in any gravitational theory described in terms of a metric

and a b field, it is a rather nontrivial computation in a theory formulated in terms of a double metric M. This

is so because metric and b-field fluctuations are encoded nontrivially in M fluctuations and because M

also contains other non-familiar degrees of freedom. These amplitudes will be obtained using the M field

Lagrangian. The procedure is instructive: it requires us to obtain the explicit a' expansion of the Lagrangian

and to discuss the extraneous fields contained in M.

In both bosonic string theory and heterotic theory, on-shell three-point amplitudes factorize into factors

that involve left-handed indices and right-handed indices (see eqn.(2.6)). We show that in HSZ these am-

plitudes also factorize (see eqn.(2.7)). The explicit form of the result has implications for the low-energy

effective field theory. In the bosonic string the terms in the low-energy effective action needed to reproduce

its three-point amplitudes include Riemann-squared (or Gauss-Bonnet) [26, 27] and HHR terms to first

order in a', and Riemann-cubed to second order in a' [28, 29]. To reproduce the (gravitational) heterotic

three-point amplitudes the theory has only order a' terms: Gauss-Bonnet, HHR and a b-odd term b F&F,

with F the Christoffel connection. At order a' HSZ theory contains only the b-odd term with twice the co-

efficient in heterotic string, and to second order in a' the bosonic string Riemann-cubed term with opposite

sign. To order (a')2 , the following is the gauge invariant action that reproduces the on-shell cubic amplitudes

of HSZ theory:

S = d'xV e- 20>( R + 4(ao)2- 1 fjAV - L a'2 Ry,"aRa3PuRpo1 . (2.1)

The O(a') terms above arise from the kinetic term for the three-form curvature [30]. We have H P =
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Httvp + 3 a'OL,(F), where Hjvp = 3 9[1,bvp] with the Chern Simons term Q given by:

QPVP(F) =F[UV/ ~~6 ~ 1~ ~ 1  (2.2)

2.1 Bosonic, heterotic, and HSZ three-point amplitudes

In this section we motivate and state our main claim: In HSZ theory, on-shell three-point amplitude for

gravity and b fields exhibits a factorization structure analogous to that of the bosonic and heterotic string.

For this purpose we consider these amplitudes. Let ki, k2 , and k3 denote the momenta of the particles. Since

we are dealing with massless states, the on-shell condition and momentum conservation imply that for all

values of a, b = 1, 2, 3 :

ka - kb = 0. (2.3)

We also have three polarization tensors ea mn with a = 1, 2, 3. Symmetric traceless polarizations represent

gravitons, and antisymmetric polarizations represent b fields. Dilaton states are encoded by polarizations

proportional to the Minkowski metric [31]. The polarizations satisfy transversality

kmeamn= 0, k neamn = 0 , a not summed. (2.4)

To construct the three-point amplitudes one defines the auxiliary three-index tensors T and W:

Tm "P(kj, k2 , k3 ) ,nn kP2 + r7/P km + r/"" k ,
(2.5)

W"m"p (ki, k2, k3) .1 a' k"m kgi n k

with kab = ka - kb. Note the invariance of T and W under simultaneous cyclic shifts of the spacetime

indices and the 1, 2, 3 labels. For bosonic and heterotic strings the on-shell amplitudes for three massless

closed string states with polarizations eamn are given by (see, for example, eqn.(6.6.19) in [32] and eqn.

(12.4.14) in [33]):

Sbs = r, (2 7r)DJDZp) elmm' e2nn'e-3pp' (T + W)" (T + W"
(2.6)

Shet = (2,r)D DZ elmm'e2nn'e3pp' (T +W m"" T
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Note the factorization of the amplitude into a factor that involves the first indices on the polarization tensors

and a factor that involves the second indices on the polarization tensors. 1 We claim that in HSZ theory the

on-shell amplitudes also factorize:

Sh8 Z = (2,r)DD(Zp) e1mm'e2nn'e3pp' (T + W)'"p (T - W)"''"P'. (2.7)

For the bosonic string (T + W)"P (T + W)"'''P' is symmetric under the simultaneous exchange of

primed and unprimed indices. As a result, the amplitude for any odd number of b fields vanishes. Expanding

out

Sb0s = ,x (2,r)D 6D ( p) e1mm'e2nn'3pp' (TmPm'n'P'+ [w"rIT"''P'P'+W"''p''T"'J +W"nPW"

(2.8)

making clear the separation into two-, four-, and six-derivative structures, all of which are separately invariant

under the simultaneous exchange of primed and unprimed indices. The four-derivative structure indicates

the presence of Riemann-squared or Gauss-Bonnet terms [26, 27]. The six-derivative structure implies the

presence of Riemann-cubed terms [29]. For the heterotic string we write the amplitude as

Shet = (2 7r )DD( P) emm' 2nn'e3pp' T"T '''P' + [W"PT"'' + W"n''P'T'm"p

+ [W"PT"'''' - Wm''l'P'TmfPi)

(2.9)

We have split the four-derivative terms into a first group, symmetric under the simultaneous exchange of

primed and unprimed indices, and a second group, antisymmetric under the simultaneous exchange of primed

and unprimed indices. The first group is one-half of the four-derivative terms in bosonic string theory, a well-

known result. The second group represents four-derivative terms that can only have an odd number of b fields.

In fact, only one b-fieldis allowed. The term with three b fields would have to be of the form HH8H, with

H = db and it can be shown to vanish by Bianchi identities. The term that one gets is of the form HF&I,

and arises from the kinetic term of the Chern-Simons corrected b-field field strength. This kind of term also

appears in HSZ theory, as discussed in [34].

'The on-shell conditions satisfied by the momenta imply that there are no candidates for three-point amplitudes with more than
six derivatives.
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Expanding the HSZ amplitude above one finds

Shsz , (2r) D 6 D (Z p)elmm'e2nn'P' (TmnPTm'n'p'+[W npT'n'' P-TmnPwm'n'P'] -WmnPWm'n'p)

(2.10)

implying that there is no Gauss-Bonnet term, that the term with four derivatives has a single b-field and is the

same as in heterotic string but with twice the magnitude. The six-derivative term is the same as in bosonic

string, but with opposite sign. This implies that the Riemann-cubed term in the HSZ action and in bosonic

strings have opposite signs. Most of the work in the rest of the chapter deals with the computation of the g

and b three-point amplitudes that confirms (2.10) holds.

It is useful to have simplified expressions for the amplitudes. For later use we record the following results,

with 'cyc.' indicating that two copies of the terms to the left must be added with cyclic permutations of the

1,2, and 3 labels:

eimme2nn'e3pp'TTmnPT ''n - tr(e Te 2 )(k1 2e3k12 ) + k12 (e3 eT el + eT e 2eT)k23 + cyc.

eimme2nne3PP1(WmnPTm'n'P' T mn W''aP') = !a' [kl2 (e3 eT e e1 )k 23 (k31e2 k3 1) + cyc.]

e mm' e2n' e3p'wmnpWm'n'p' = 1'2 (k 12e 3 k12)(k 23 eik23 )(k 31 e2 k31 )

(2.11)

The formulae (2.6) for massless on-shell three-point amplitudes also hold for amplitudes that involve the

dilaton. For the dilaton one must use a polarization tensor proportional to the Minkowski metric. Although

we will not use the HSZ action to compute dilaton amplitudes, the predictions from the factorized amplitude

(2.7) are exactly what we expect for the the dilaton. We explain this now.

Let 5 denote the physical dilaton field. For cubic dilaton interactions $3 there is no on-shell candidate

at two, four, or six derivatives. For / 2 e interactions there is no on-shell candidate at four or six derivatives,

but there is one at two derivatives: am<an emn _m 5 an< hmn. This term does arise from the first line

in (2.11) when we take elmm' ~ 7mm'7 , e2nn' ' -nn' , and e3 .' = hpp,. It is present in all three theories

as it is the universal coupling of a scalar to gravity.

For Oee there are no on-shell candidates with six derivatives, but there are candidates with two and with

four derivatives. Let's consider first the on-shell candidates with two derivatives. Again, an examination of

the first line in (2.11) shows that hh vanishes. This is expected: the physical dilaton does not couple to the

scalar curvature. There is also no hb coupling. On the other hand one can check that Obb does not vanish.

This is also expected, as an exponential of 5 multiplies the b-field kinetic term. Again, all this is valid for the
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three theories.

We now consider ee on-shell couplings with four derivatives. There is one on-shell candidate: 50mnepqapq emn

Due to the commutativity of derivatives this term requires both e's to be gravitons. This coupling arises both

in bosonic and heterotic string theory because an exponential of multiplies Riemann-squared terms. As

expected, it can be seen from the second line in (2.11), using the top sign. It does not arise in HSZ theory

because in this theory the four-derivative terms are odd under the Z2 transformation b -+ -b [30], and thus

must involve a b field. In conclusion, HSZ theory only has on-shell couplings of dilatons at two derivatives,

and shares them with heterotic and bosonic strings. The latter two have a single on-shell coupling of the

dilaton at four derivatives. These are indeed the predictions of the three factorized formulae.

2.2 Derivative expansion of HSZ theory

Our first goal is to give the action for M and 0 in explicit form and organized by the number of derivatives,

a number that can be zero, two, four, and six. While the parts with zero and two derivatives are known and

take relatively simple forms [2, 30], the parts with four and six derivatives are considerably longer. We give

their partially simplified forms and then their fully simplified forms when the dilaton field is set to zero. This

will suffice for our later computation of on-shell three-point amplitudes for gravity and b-field fluctuations.

We will define actions S as integrals over the double coordinates of the density eO times the Lagrangian L.

For the theory in question [2] we have

S = j e-2 L, L = -tr(T) - (TIT*T). (2.12)

The field T is a tensor operator and encodes the double metric. For arbitrary tensor operators T we have the

expansion

T = !T AINZMZN_ (tMZA,)', (2.13)

here TMN and TM are, respectively, the tensor part and the pseudo-vector part of the tensor operator. The

trace of the tensor operator T is a scalar operator tr T defined by (eqn.(5.17), [2])

tr T = r] MNTMN + 6(TMNOMaN4) - a. t + T . a4)- (2.14)

If a tensor operator T is divergenceless, the pseudo-vector part is determined as a dilaton dependent function
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G linear in the tensor component:

'M = GM(TPQ) = GM (T) + GM (T) (2.15)

where G, and G3 have one and three derivatives, respectively (eqn.(5.37), [2]):

GM (T) = ONTMN - 2TMNN

GM(T) T NPNapM _ .M (aNaPT NP - 2TNP(aNapb - N P - 4
dN TNP ap

(2.16)

We make the following remarks:

1. The free index on G3 is carried by a derivative.

2. G1 (T) and G3(T) both vanish if the two indices in TMN are carried by derivatives,

3. G3 (T) vanishes if one index on TMN is carried by a derivative.

The tensor operator T featuring in the action is parametrized by a double metric M MN, and the pseudo-

vector part A " is determined by the condition that T is divergenceless:

T =MMNZMZN -- 1( NZM)', fM G G (M). (2.17)

A short calculation gives

trT = 77MNMMN - 3&MNMMN 12MMNaM&Nj + 12&MMMNaNg _ 12MMNaM.&ND,

(2.18)

which contains terms linear, quadratic and cubic in fields, and no more than two derivatives. We now use the

star product * of two tensors, which gives a divergenceless tensor, to define

W T*T = IWMNZMZN _I(WMZM)', (2.19)

where the last equality defines the components of W. The definition of the star product ([2], sect.6.2) implies

that

WMN (T02 T)MN, WM GM(WPQ), (2.20)
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the second following because W is divergenceless. The formula for product 02 is given in (6.67) of [2].2 The

field WMN has an expansion on derivatives,

WMN =W MN + W2MN + W4MN + WMN

which, using the notation &MM...m, -- Om, - M,, takes the form

WOMN 2MMKMKN ,

W2MN - 2DMM aNMPQ + M~pOPQMMN + 4a(MMKLDLMN)K

- 2&QMQM PM NQ + G{K(M)aKMMN + 2(a(NGi(M ) - 9KG(N ))M)K,

W4MN = MP &LK NLMK - 2aK(MM PQ N)K

+ 2(a(MGK(M) - KG3(M(M))MN)K - 24P(MG K(M)&KMN)

+ &P(a(MG1Q(M) - aQG1(M ())N)M Q

W6MN =- $MPQ KL&NKLM + P (MG3Q(M) - G(M(M))N)MQ

-$P(MGK(M)&N)KM-

(2.22)

We note that

1. On W4MN at least one index is carried by a derivative.

2. On W6MN both indices are carried by derivatives.

We now turn to the pseudo-vector components WK which, by definition are given by

WK = GK(WMN) = G{(WO + W4 + W6) + GW 2 + W4 + W6 ). (2.23)

It then follows by the remarks that the only terms in WK are:

f = GK(WO),

W3= G{(W2 ) + G(Wo), (2.24)

W5K = G(W) + G (W2 ).

2In [2] symmetrizations or antisymmetrizations carry no weight, in this chapter they do.
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These are terms with one, three, and five derivatives. Note that on G1 (W4 ) the free index is on a derivative

because it is an index on W4 and the other index on W4 must be the non-derivative one to have a non vanishing

contribution. Thus the free index in W5 is on a derivative.

It is now possible to evaluate the full Lagrangian in (2.12). For the cubic term we need the inner product

formula that follows from eqn.(6.67) of [2]

(T1lT2 ) = {Tj1T 2PQ - OpTiLOLT2KP + OPQT LOKLT2Q

- MON 1 MT -MOP N 3 2K + P T1Kr ) (2.25)

+ 3 (OP K KT + PQ 2KOKT -

This formula must be used for Ti = 'T and T2 = W. A useful identity, easily derived by integration by parts,

reads

e-2D f KG( J 1)K (&T e fK TKP). (2.26)

Using this identity and the earlier results we find the following terms in the Lagrangian

= - MMN NP pM + _MM

L2= - (M 2 _ 1) MP NOMON + MMNMM ONMpQ

-1MMN AN KLLMKM MANOMON ,

L4 =- M MNW4 MN - I aAMKL8L W2KP + 1pG (W2)MKP

- _OPaQMKLOKOLW Q (2.27)

-aNGj(M)o MGj (Wo) - IPOQGK (M)OKW P - !OPOQG (WO)OKM Q,

L 6 = ! MMNW 6 MN - I &KLaLW4KP + 4&PG{K(W4)M K

- _OPOQMKL0KOLWPQ

- 4ONG(M)&MGi(W2 ) - OPOQGY(M)OKWrG - laPOQGl(W2)OKM -

The results for the zero and two-derivative part of the Lagrangian were given in [2, 30] and cannot be simpli-

fied further. One can quickly show that the last line of L4 and L 6 vanish if we have zero dilaton derivatives.

Also the last two terms in the first lines of L4 and L6 admit simplification. Still keeping all terms, we can
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simplify L4 and L6 to read

L4 -MMNW4MN + OMG 0M)W2MN - W2KNOMN

- aPQMKLaKLWPQ

- AG'(M )G (WO)OMNb + !(GY(M )WQ - 2GY (Wo)MCD)&KPQ ,
(2.28)

L6= - l M ANW6MN + &MG (M)W4MN - $MMKW 4 KN&MN4

- T4 P8QM OKOLW2E

- !G{'(M )G N (W2)OMN +- (Gf(M)WrP - 2G K(W2 )M EP)OKPQ .-

The fourth and sixth derivative part of the Lagrangian, written explicitly in terms of M and 4D are rather

long. Since we will focus in this chapter on gravity and b-field three-point amplitudes, we will ignore the

dilaton. With dilaton fields set to zero a computation gives:

L 4 1<-0 = MAIN ( 1&MLM4 PQMN L--- NPLQ OMLM Q

+ O1 MNM KQPM - -AMPM OaNKMQK

+{OPMMK&NKQMPQ -MPK[NMK

+ &MPMPN(jaNMKL&LMMK ~- +QM KMN OLMKLKMMN),

L6 |-0 = MMN( 4 jgMPQKL&NKLMQ + '9MPQL KLNK

- ')PQKL &KLMNO- 12MPKL KNQ

- OMKMKL AI N MQOQ NP
-4 aAINKLM (OPMPQOQMAI - 20pM QQM )

- LONLM L (2MKM PQMNK + 2AIPQ AKQKMN - OPQRMNRaA PQ).

(2.29)

2.3 Perturbative expansion of HSZ theory

In this section we discuss the perturbative expansion of the Lagrangian obtained in the previous section

around a constant background (M) that can be identified with a constant generalized metric, as discussed in
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[30]. We define projected O(D, D) indices as follows:

VM = pMNVN, V = PMN, (2.30)

where the projectors are defined as:

pM N = 11 _~ f M N' PM N = 1|--$PM(7 + PMRJ7)MN. (2.31)

Here T is the background, constant, generalized metric. We expand the double metric M as follows:

MMN =7 MN +mMN = MN +mMN - mMN +mMN + MJg, (2.32)

where we have decomposed the fluctuations mMN into projected indices. The physical part of the metric

and the b-field fluctuations are encoded in mMg = mgm. The projections mMN and myN can be treated as

auxiliary fields as far as the three-point amplitudes graviton and b-field are concerned. This is essentially due

to that tree level three-point amplitudes come from contact vertices and there are no propagators involved.

Note that this will not be true for higher point or loop amplitudes. To obtain the Lagrangian in terms of

physical fields, we need to expand it in fluctuations and then eliminate the auxiliary fields using their equations

of motion. To illustrate this procedure more clearly, and for ease of readability we will write

aMN mMN, aC m11, (2.33)

where the label a for the field reminds us that it is auxiliary. With this notation the M field expansion reads

MMN M 7MN + amN + mM& + mCN + aMN . (2.34)

We now argue that for the amplitudes that we are interested in, we can simply set the a fields to zero.

2.3.1 Treatment of auxiliary fields

Here we argue that for the purposes of three-point on-shell amplitudes and, with the dilaton set to zero, the

auxiliary field does not affect the Lagrangian and can safely be ignored. To prove the claim we must use

on-shell conditions (2.51): we will argue that any contribution from auxiliary fields vanishes upon use of

these conditions. It is straightforward to translate these on-shell conditions in terms of the double metric
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fluctuations. They can be written as:

aMm-N = OMIN - a m''aMm 'm -.. = 0. (2.35)

Setting all dilatons to zero, the only physical field is mMV, which we symbolically represent by m. The most

general form of the Lagrangian involving at least one auxiliary field is as follows:

L[a, m] = am + a2 + a3 + a2 m + am2 . (2.36)

Since the theory is cubic in M and the dilaton is set to zero, this is all there is. In here we are leaving

derivatives implicit; all the above terms can carry up-to six derivatives. We now show that there is no 'am'

term which does not vanish using the on-shell conditions. The general term of this kind would be

aJC ( ... mEp) , (2.37)

where the dots represent derivatives or metrics r/ that contract same type indices, barred or un-barred. These

are required to contract all indices and yield an O(D, D) invariant. Since integration by parts is allowed

we have assumed, without loss of generality that all derivatives are acting on the physical field. Since the

un-barred index P is the only un-barred index, it must be contracted with a derivative. Thus the term must

be of the form

ag (-- m ) .2 (2.38)

Regardless of what we do to deal with the other barred indices, we already see that this coupling vanishes

using the on-shell conditions, proving the claim.

The Lagrangian (2.36) then reduces to the following:

2 3 2 2
L[a, m] = a + a + a m + am (2.39)

The equation of motion for the auxiliary field is, schematically, a m2 + am + a2 , which implies that

a perturbative solution in powers of physical fields begins with terms quadratic on the physical fields. Thus

we write

a(m) = a2 (m) + a3 (m) + (2.40)

where dots indicate terms with quartic or higher powers of m. But now it is clear that substitution back
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into (2.39) can only lead to terms with quartic or higher powers of m. This concludes our argument that the

elimination of auxiliary fields is not required for the computation of on-shell three-point amplitudes for metric

and b fields. Note however that this argument is only valid for tree level on-shell three-point amplitudes. For

higher point amplitudes and/or loop amplitudes auxiliary fields need to be dealt with appropriately.

2.3.2 Perturbative expansion of the two-derivative Lagrangian

We use L() to denote the part of the Lagrangian with i fields and j derivatives. In what follows, we are only

interested in the Lagrangian up to cubic order in fields, so we will ignore all terms with more than three fields.

Also note that the Langrangian appears in the action multiplied with a factor of e-2 . Using the expansion

(2.34) we see that the zero derivative Lagrangian Lo has terms quadratic and cubic in field fluctuations:

e -LO = L(2,O) + + (3 -+ (2.41)

where the dots denote terms quartic in fields and

L(2,) 1 a MN - M a KIN ,
L~0 - MmP 1N MNPM -~ 1MN p (2.42

L (3,0) = - L aM m N P - aaMaNE - a m-MmPN -!a aJ aq p .2)

- D (aYLamN - a aKIN).

Here we can explicitly see that solving for a in terms of m and plugging back into the action gives 0 (m4 )

or higher order terms.

The perturbative expansion for the two-derivative Lagrangian L2 in (2.27) is more involved but the same

conclusion follows. It decomposes into a quadratic and a cubic part in fluctuations:

--24L2 = L(2,2) + - -3 - . (2.43)

and we find
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L(2,2) OMmBQmp + _'m EDpmMMQ - &MmEQaQm

+ 4mWNO of'(p -8(D 4 &M&

+ 'O&aQC& OapQ + aN,-aQ

+ ' P aL2 baLL - .0 'a AP 0 a p ,
(2.44)

L -(3,2) ImL-fV (&ym Q8m - Oym-e&QmPN - &Nm-&PmMQ)

2 (MMQ~gPC?- 6M Q&CmPMV 8NmE0pmMC2)

-<b(O m E0 mPC - apm24ompl +OYmE qPMMC)

+ (mz mNPOfA'8/ - m-MpN&&g)p

-D2,9 'qMD -8(38~gD+L ,
-- 84)mLIN&ON - + a

where L denotes the terms that contain at least one a field. Next, we eliminate the auxiliary fields to

obtain the two-derivative Lagrangian which is almost cubic in fields.

L -3,2) = L(2,0) + (3,) + L(2,2) + L(3,2) .a=O (2.45)

Next, we write the action in terms of DFT (or string field theory) variables emn. The way to translate

from mMN variables to emn variables is explained in Sec. 5.3 of [30]. Here is the rule that follows:

* Replace mij by emn, aMN by amn and agN by amn.

" Replace under-barred derivatives by D and barred derivatives by D defined as in [30],

Dm = Om - Emn 6n, Dm = am + Enm& 6, (2.46)

where Emn = Gmn + Bnn is given in terms of the constant background metric and the b-field. The

strong constraint takes the form DiDn = gmaDi , acting on arbitrary fields and all their products.

* Multiply by a coefficient, which is the product of a factor of 2 for each m, a, or a field, a factor of +

for each barred contraction and a factor of - 1 for each under-barred contraction.2
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As an example, consider the second term on the first line of L (2 2 , after integration by parts, it becomes:

2 m Op m0p - Q -+ m -2 2  2  pDep memq = De pDmemq. (2.47)

Using this technique for all the terms appearing in the Lagrangian (2.45) we obtain:

L(<3,- e (nD2e'Mn + (Dmemn) 2 + (b"memn) 2 ) - 2emnDmDn - 4<kf2<p.

+ Ie-n (DmepqnePG - D"epqDeen - DPe"'Dnepq)

+ <4 ((Dmemn)2 + (Dnemn) 2 + 1(Dpemn) 2 + I(Dpemn)2 + 2e"n(DmDPepn + DnDpemp)

+ 4<bemnDm bnb + 4<b2f2<D.

(2.48)

This is precisely the DFT Lagrangian in equation (3.25) of [24]. From the quadratic part of the above action,

we see that the kinetic term of 4) has wrong sign. This is, because the action (2.48) is in the string frame and

4D is not the physical dilaton. To obtain the action in terms of physical fields 8mn and 5 that decouple at the

quadratic level, we need a field re-definition. Physical fields emn and 4 are obtained in the Einstein frame as

a linear combination of emn and 4. We write schematically:

emn ~ 6mn + 7 mn, D~ + ". (2.49)

If we are looking for pure gravitational three-point amplitudes the first redefinition need not be performed in

the action, as it would give rise to terms that involve the dilaton. The second one is not needed either, since

on-shell gravitons have traceless polarizations.

After solving the strong constraint by setting 0 "n 0 and setting the dilaton to zero, the above La-

grangian becomes:

L e"n&2emn + 2 (0memn)2 + 'emn (&"epq fnePq - &'mepq aqepC - 6Pe"anepq)-

(2.50)

For an off-shell three-point vertex all terms in the cubic Lagrangian must be kept. But for the computation of

on-shell three-point amplitudes we may use the on-shell conditions to simplify the cubic Lagrangian. These

conditions can be stated as follows in terms of emn.

&"enmn = anemn = 0, ern *"te* ... = 0. (2.51)
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The first condition is transversality and the second condition follows from the momentum conservation and

masslessness. For the cubic terms in (2.50) the on-shell conditions do not lead to any further simplification

and we record:

L =, on-shell . m (epqnepq - m epq 9q Pn - Pe mqnepq) (2.52)

Three-point on-shell amplitudes can now be computed from this expression.

2.3.3 Higher-derivative Lagrangian and on-shell amplitudes

In this subsection we perform the perturbative expansion of the four and six derivative Lagrangian and com-

pute the on-shell three-point amplitudes. We use the on-shell conditions (2.35) and ignore the auxiliary field

in light of our earlier discussion. We note that

(2.53)

0M M N 0M +-/ aMN

Since we are allowed to set auxiliary fields to zero and to use the on-shell conditions (2.35), both 0MM MN

and M MN can be set to zero, and as a result, we are allowed to set

&MMN -> 0, (2.54)

in simplifying the higher-derivative cubic interactions! This is a great simplification.

Now we use (2.54) in the four derivative Lagrangian L 4 given in (2.29). Only the terms on the first line

survive and we get:

L41 iMMN0NLMPQaPQ ML _ 1MMNONPMLQ0MLMPQ. (2.55)

Now we plug in the expansion (2.34) and keep only the cubic terms which do not vanish on-shell. After a

short computation we obtain the four derivative cubic Lagrangian in terms of the physical fields

1= mk-0 (Nim- [pgmML -- 19 mpL + aML [pQm - NPm~Q -
on-shell

(2.56)
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Translating this to e fluctuations (three rn's and 5 contractions):

L (34) -= _2 e mn Onlep [Opqem' - 18mqep] - Omiep[ [pqern - 19pne'q] )
on-shell

Using integration by parts, gauge conditions and emn = hmn + bmn this simplifies to

= 1 e.,n(&" eklO e'q - amPeklOklepn) = 1 b Onp hV Opi hPm.L o(3, s h

A short computation confirms that this is precisely the on-shell value of the term

_ }Hmnprip a ,
29 mlfpq~

arising from the expansion of the kinetic term for the Chern-Simons improved field strength H. There is no

Riemann-squared term appearing, as has been argued before.

In the six-derivative Lagrangian L6 given in (2.29) only the first term survives after we impose the on-

shell condition. Integrating by parts the ON derivative we have

j A MNM A KL8KLP-
48 -9MNP LJ iJ19.V~ KL./VL. (2.60)L6 I e=0

on-shell

Using the M field expansion and keeping only cubic terms which are non-vanishing on-shell, we get:

(2.61)L(3,6) - 1 nMNO rnm m .- 6 MPQKL
on-shell

In term of e'mn this takes the form:

_ e 9nnpqJ klepq. (2.62)L o(3,6) 1
on-shell

The structure of the six-derivative term is such that only the symmetric part of emn contributes. In terms

of the metric fluctuations we get:

- L hmn OmnIqhk1 &klhpq.o(3,6) 1
on-shell

This term is produced by the perturbative on-shell evaluation of the following Riemann-cubed term:

-- 3 RrR~pqk R k Tn
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where the linearized Riemann tensor is: Rnnpq = 1 (Onphmq + Omqhnp - Opqhmn - Onqhmp) - -

Collecting results (2.52), (2.58) and (2.62) for the cubic interactions with two, four, and six derivatives,

we have:

L3emn [ mepq flnpq (,e pq (9qepn _ 9pmnnepq (.5
on-shell (2.65)

+ i, (u"ekO e - mpeOkiePn ) + 1 a/2 
grnpqkl klepq

where we have made explicit the a' factors in the various contributions. To compute the on-shell amplitude

we pass to momentum space. We need not concern ourselves with overall normalization; all that matters here

is the relative numerical factors between the two, four, and six-derivative terms. We thus have an on-shell

amplitude A proportional to

A = e1mmie2nne3pp' [- k"km"' r7rip r"'P'/ + k'k' rj + k'km"' mn,,T"'p' ,+ permutations

+ a' (k"'I k'knkn' 7 mP - k"kpk3nkn' nt P') + permutations

- a/2 k"'k2" kkf knk " + permutations ,

(2.66)

where we have used three different lines to list the terms with two, four, and six derivatives. By 'permutations'

here we mean adding, in each line, the five copies with index permutations required to achieve full Bose

symmetry. In order to show that the above has the conjectured factorized form we must rewrite the momentum

factors in terms of momentum differences k 12 , k23 , and k31 . This is possible because momentum factors must

contract with polarization tensors, and using momentum conservation and transversality ensure they can be

converted into momentum differences. For example,

e-2nnk' = le2nn'(ki + k') =e2n(k - k"' - k') = -1e 2 nn'kg. (2.67)

After rewriting all momenta as momentum differences the sum over permutations simplify and with modest

work one can show that the two, four, and six derivative terms can be written as sum of products of the T

and W tensors introduced in (2.5). Indeed, making use of (2.11) one finds,

A = e1mm' (k1)e2nn' (k 2 )e3 pp1(k3 ) [ T PTm'''' + (W"" T'"'f'p' - TmnpW'"'f'P') - w"mnp w'n'P'

= jenm'(k) e2,n'(k2 )e3pp'(k3 ) (T'"P + W'") (T'm'f'P' -W

(2.68)
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in agreement with (2.7) and thus proving the claimed factorization.

2.4 Conclusions and remarks

Our work has determined the form (2.1) of the gauge invariant HSZ action that reproduces the on-shell cubic

amplitudes of the theory. The 0(a') terms arise from the kinetic term for the three-form curvature H, which

contains the Chem-Simons correction. Our work in section 2.3.3 reconfirmed that the cubic on-shell four-

derivative couplings arise correctly - see (2.59). The kinetic term H 2 also contains 0(a'2) contributions,

but those would only affect six and higher-point amplitudes. The full HSZ action may contain other 0(a)

terms that do not contribute to three-point amplitudes. The action includes the Riemann-cubed term derived

in (2.64). Its coefficient is minus the coefficient of the same term in bosonic string theory. In bosonic string

theory there is also a non-zero 'Gauss-Bonnet' Riemann-cubed term, but its presence can only be seen from

four-point amplitudes [29]. Neither the Riemann-cubed nor its related Gauss-Bonnet term are present in

heterotic string theory. It would be interesting to see if the cubic-curvature Gauss-Bonnet interaction is

present in HSZ theory. The physical effects of Riemann-cubed interactions were considered in [35] and,

regardless of the sign of the term, they lead to causality violations that require the existence of new particles.

The action (2.1), while exactly gauge invariant, is unlikely to be exactly duality-invariant. It is not, after

all, the full action for HSZ theory. Reference [36] showed that the action (2.1), without the Riemann-cubed

term, is not duality-invariant to order a' squared. It may be possible to use the methods in [36] to find out

what other terms (that do not contribute to cubic amplitudes) are needed for duality invariance to order a'

squared. We continue to expect that, in terms of a metric and a b-field, an action with infinitely many terms

is required for exact duality invariance.

It is natural to ask to what degree global duality determines the classical effective action for the massless

fields of string theory. Additionally, given an effective field theory of the metric, the b-field and the dilaton,

it is also natural to ask if the theory has a duality symmetry. HSZ theory is useful as it is the simplest

gravitational theory with higher derivative corrections and exact global duality. By investigating HSZ theory

we will better understand the constraints of duality and its role in the effective field theory of strings.

50



3
Spectrum of HSZ theory

The goal of the present chapter is to analyze the dynamical content (the particle spectrum) of HSZ theory,

including higher derivatives but restricting to the quadratic approximation around flat space. Motivation for

this is two fold. On one hand we have asserted that the HSZ theory is the only known higher derivative

gravitational theory with manifest duality and gauge invariance. These features are expected to be present

in full classical string theory. On the other hand, we have established that the HSZ theory is different from

both bosonic and heterotic string theories. Finding the physical spectrum will help elucidate this difference.

A second motivation for this analysis is that generically higher derivative theories (which are not string

theories) lead to inconsistencies. An example of such an inconsistency at the level of physical spectrum is

the appearance of ghost degrees of freedom'. This is indeed what we find in this case.

Our analysis is simplified by introducing further fields that allow us to reduce the number of derivatives

to two. In order to elucidate the structure of these theories, we find it convenient to compare them with a

massive deformation of the original (massless) linearized DFT. This theory, which seems interesting in its

own right, is given by the Lagrangian

LmDF = !en7Zmn(e, (i) - <bR(e, <P) - _M2(em emn - 16(p2), (3.1)

where kmn and 7Z are the linearized Ricci tensor and scalar curvature of DFT, whose explicit forms are given

in (3.7). We will show that this model propagates precisely a massive spin-2 mode, a massive two-form field,

and a massive scalar, without any undesired or ghost-like modes. This result hinges on the structure of both

the mass terms and the kinetic terms, which are such that in the massless limit M2 -+ 0 the theory is invariant

'Tachyonic instabilities are not that severe generally as they can be cured by supersymmetry
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under the DFT gauge symmetry,

6emn = Di A + DjAz, i b = 4 (DAA + Dii) . (3.2)

Intriguingly, this model seems new as it is not field-redefinition equivalent to the Fierz-Pauli-theory of (lin-

earized) massive gravity augmented by a massive two-form and a massive scalar. Indeed, while the kinetic

terms in (3.1) can be diagonalized (returning to Einstein frame) in order to write the model as a sum of

linearized gravity, massless two-form and massless scalar, one cannot simultaneously diagonalize the above

mass terms. Nevertheless, the above model is ghost-free, and this may shed a new light on the old problem

of finding a consistent non-linear theory of massive gravity (see [37] for a recent review).

Remarkably, the six-derivative HSZ quadratic Lagrangian can be rewritten as a two-derivative Lagrangian

by introducing two auxiliary scalars p and p, which pair up with amn and a, to play a role largely anal-

ogous to that which the dilaton < plays for emn. In particular, thanks to these new fields, the kinetic terms

are 'improved' relative to the original two-derivative terms and the number of degrees of freedom does not

increase. The massive spin-2 modes are ghost-like, as can be seen from the overall sign of the kinetic terms.

The presence of ghost-like massive spin-2 modes is in qualitative agreement with the chiral string theory

[38] but, again, the detailed spectrum differs.

The improved structure of the kinetic terms is reflected by an enhanced gauge invariance in the massless

limit, as for the massive DFT theory above. This symmetry reads

6(amn = D( +D7(z , 6 p =-Di(,
(3.3)

ckjimn DiQ j + Dj i DiC,

and thus takes the form of two additional diffeomorphism-like symmetries with parameter (i and cj. Note that

the massless limit corresponds to the tensionless limit a' -+ oc and hence this model confirms the general

expectation that string theory exhibits an enlarged gauge symmetry in this limit [39].

We close this introduction with some general remarks. Given the presence of ghost-like modes in the

spectrum, it follows that this theory is problematic - at least around flat space and to the extent that the

quadratic theory provides a reliable approximation. It should be recalled, however, that the inclusion of more

than two derivatives generically leads to additional propagating degrees of freedom, which are typically

ghost-like and massive. For instance, the addition of curvature-squared terms to the Einstein-Hilbert action

generally leads to a massive spin-2 ghost and a massive scalar, thereby violating unitarity. Can the spin-2

ghosts in HSZ theory be interpreted similarly? We will show in sec. 6 that in the quadratic theory the massive
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fields can be integrated out exactly. Due to the presence of two massive spin-2 fields this leads to an infinite

number of higher-derivative corrections.

In the usual string field theories one can always choose a field basis for which the propagator is not

modified, making manifest that there is no conflict with unitarity. To first order in a', one employs the Gauss-

Bonnet combination [27], which is a total derivative at the quadratic level.2 In contrast, there is evidence

that any theory that is not a complete string theory (like generic higher-derivative gravity) is problematic at

some level, see e.g. [35]. Our findings here seem to confirm this.

3.1 Full quadratic theory and non-derivative terms

In this section we compute the full quadratic Lagrangian and the potential of HSZ theory [2]. From the

quadratic Lagrangian we will see that the theory has both 'ghost-like' and 'healthy' degrees of freedom. By

analyzing the potential, we show that the theory admits two vacua with constant backgrounds. Both of these

vacua have the same number of degrees of freedom; 'ghost-like' fields of one vacuum, however, correspond

to 'healthy' fields of the other vacuum and vice versa.

The zero- and two-derivative parts of the HSZ quadratic action have been computed previously in eqs. (2.42)

and (2.44). In terms of conventional fields, they are

L (2'0) = ! m"amn - Crn"kmn ,

L2,2) = I" emn + (Dpeml) 2 +.1 (Djemn) 2 
- 2e"'D5D3@ - 44 )i (3.4)

- amf Damn - (Diamn)2  -ran Damn - (mjan) 2

where E = DO 2 = D. From the two-derivative Lagrangian, we note that the kinetic terms for amn and

amn appear with the 'wrong' sign and hence describe ghost-like degrees of freedom.

The four- and six-derivative parts of the quadratic Lagrangian can be computed explicitly starting from

eq. (2.28). The computation can be simplified by noting that any term which involves derivatives act-

ing on more than two fields will not contribute to the quadratic Lagrangian. Further, terms of the form

(M 2) MN OM (... ) ON (... ) can also be ignored, because upon expanding around the background general-

ized metric, such a term would vanish at quadratic level due to the strong constraint. After excluding such

terms, one gets the following expressions for the four- and six-derivative terms that can contribute to the

2Other higher-derivative theories that do not propagate ghosts are Einstein-Hilbert plus the square of the pure Ricci scalar, which
is equivalent to a massive scalar coupled to gravity and currently a favored model for inflation (Starobinsky model) [40], and new

massive gravity in 2+1 dimensions, which augments a 'wrong-sign' Einstein-Hilbert term with a particular curvature-squared term
[41].
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quadratic Lagrangian:

L(-4) - MMN [MMPQ OPQ KMNK 2-Q2MM 1NQ KMPK - OMM NP KMQ

- +&MN P K QK - OM PM QK NQMPK -- MMP Q9N K QK

+ M (0MMP K 0 NQKO - 2 &M K PK NQO + 3 MN P K OQKO

+3 &NMM K 9PQKO +30K MK 9NPQ ) 1 ...

L(-,6) _ MN (0 PQMKL ONKLMPQ + 6 OM PMQK aNQK L PL _ 2 PQ KL OMNKLMPQ)

-- P (OM KL ONQKLO - OMKL ONPQ -2MKLMNP '9QKL 0) +

(3.5)

where'... 'denotes terms which do not contribute to the quadratic Lagrangian and 4M1 M2 - -Mk =M 1 &M2 ... aMk-

In computing this Lagrangian from eq. (2.28) no integrations by part have been performed. After expanding

around the background generalized metric and keeping only terms quadratic in fields, we get:

L(2,4) - + agNIY0MNna2 + 1 !PQ0- +a4 _(3.6)

L(2,6) - ( a1 + 0MN - R-)D( aM + O+ MN- _R)

Here R is the linearized scalar curvature, which can be written in terms of the double metric fluctuation

mAIg or emn as follows:

-R a- 20&jmLv - +404b = DmDnem  + 40D4,
(3.7)

lemen -DnDren - 1 DL)emp - 2Dmbnf,

where we included the definition of the linearized Ricci tensor for future use. These tensors are invariant

under (3.2). The above four- and six-derivative Lagrangians can be written in terms of the conventional fields

and spacetime indices following the rules stated in previous chapter..

L (2,4) _ _ In 2 + j (DmDn"n)2 + d bmana" - }Z DmDnama",

(3.8)

(2,6) =_ ( Dnd mn + DmDna"m " - 27Z) E (Pmbad m n + DmDnam " - 2R).
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Full non-derivative Lagrangian and vacua

The full non-derivative part L(0) of the HSZ Lagrangian is given by

L-) = e-24 (IMMM - 1MMNMNPM M) (39)

After expanding around the generalized metric, it can be written as:

L( 0) = 1 e-24 a aMN - a~mMmN P -a ayEaNP2 ( aaMN - - mN - a- (3.10)r
(3.10)

Translating to conventional variables we get:

L(O) e-24 (amnamn - a"nermpenP + maflamPan - arnn mn + Cmneep n - 1d"nn apj).

(3.11)

We now analyze the critical points of this potential. Specifically, we look at the critical points with

(emn) = 0, where (A) denote the value of A at the critical point. The dilaton independent part of the

potential has four critical points:

(amn) = 0, (5imn) 0,

(amn) = - 2 1mn, (rmn) -2?7rmn,
(3.12)

(amn) = 0, (dmn) -27mn,

(amn) = -2lm, (dmn) 0.

It is easy to see that the potential vanishes at the first two of these critical points and is non-vanishing

at the other two. Moreover, extremizing the potential with respect to the dilaton requires the potential to be

zero at the critical point. Hence, only the first two critical points correspond to true vacua. The first of these

critical points leads to the quadratic Lagrangian discussed in the previous subsection.

The second critical point corresponds to expanding the double metric around a background generalized

metric with the overall sign reversed, (M) = -W. The physical consequence of expanding around this

critical point is to swap the ghost-like and healthy degrees of freedom. This is analogous to the phenomenon

of 'ghost-condensation' [42], where kinetic terms for fields have different signs in different vacua.
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3.2 Spectrum of the quadratic theory

In this section we give a complete analysis of the degrees of freedom in HSZ theory as determined by the full

quadratic Lagrangian around flat space. We begin with the two-derivative quadratic theory and determine

its spectrum. Then we turn to the full six-derivative quadratic theory and reconsider the spectrum. The

calculations are significantly simplified by the observation that the six derivative theory can be rewritten as

a two-derivative theory with additional scalar fields. The analysis of the spectrum reveals that, in this case,

higher derivatives do not alter the number of degrees of freedom. The masses of some fields, however, are

changed.

3.2.1 Spectrum of the two-derivative quadratic theory

The two-derivative quadratic theory is defined by the Lagrangian in (3.4), where we combine all quadratic

terms with two or less derivatives:

L < =) emn emn + (Dme +")2  
2- e- 44 L14)

la man Dlamn - P (Dmamn)2 + 1 a mnamn (3.13)

- m ~dm[] 4 (Ln dmn)2 
1jt'mn mn.

The first line in this Lagrangian contains the familiar massless degrees of freedom. There is a massless

graviton, a massless two-form field and a massless scalar dilaton.

On the second and third lines we have two symmetric tensors amn and dmn with mass terms. This

quadratic two-derivative action does not match the Fierz-Pauli Lagrangian by a long shot. In that theory the

non-derivative terms are those of a massless spin two field, and we do not have those terms. Moreover, the

two-derivative terms have the wrong sign, as can be seen comparing with those for emn. The Fierz-Pauli

mass terms are not present either. In such an unfamiliar setting a straightforward method to ascertain the

degrees of freedom involves coupling to sources [43]. As shown in in appendix A.1 the field amn in the

two-derivative approximation propagates:

1. Ghost spin-two with m2 = 4/a'.

2. Ghost scalar with m2 = 4/a'.

3. Scalar tachyon with m2 = -4/a'.
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The field dmn in the two-derivative approximation propagates exactly the same degrees of freedom but with

opposite value of mass-squared.

3.2.2 Spectrum of the full six-derivative quadratic theory

We now extend the above analysis to the full quadratic action including the higher derivative terms. Consider

the four-derivative terms calculated before in (3.8). The signs in this expression are such that we can rewrite

it as a difference of squares:

(2,4) = ( mn _ 7) 2 _ T1 (Dmbnf m n - R) 2  (3.14)

Note now that the six-derivative terms in (3.8) are also of a similar form

L (2,6) =_ ( n"nd + DmDnamn - 2R) E (AnD" m + DmDnam"n - 2 . (3.15)

With the help of two auxiliary scalar fields o and o the Lagrangian can be written as

L(2,4) + L (2,6) _ 2- Dmam"Dn(P - (P R

+ 2 + I hTa"n + R (3.16)

Including the original two-derivative terms, we have the full quadratic action

L = -le m Demn + I (Dme"n) 2 + . (Dne"Tn) 2 - 2e"nDmbn<D - 4cD D

- amn E amn - (Dmarnn)2 - Da'DnO + jVOD + 1 a"mamn - 92

(3.17)
1-m Dam + Dm"~fl' 1n d~canmn+ 28 - +m +j (P-r-

Now the terms in the second and third lines are improved compared to the two-derivative Lagrangian (3.13).

They have the derivative terms needed for a proper kinetic term and also mass terms for the new 'dilatons'

9 and p.

The above action is not diagonal: it has a Wp] term and W - p is coupled to the original DFT fields via

R. It turns out, however, that the action can be completely diagonalized by an exact field redefinition of the
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dilaton. We let

<D -+ ' = <1 + ((3.18)

leaving all other fields unchanged. Note that this redefinition is local and exactly invertible; hence there is

no danger of inducing infinitely many terms. Using this field redefinition in the Lagrangian (dropping the

prime) and after some algebra one finds that theory is fully equivalent to

L =emn EIemn + (Den)2 + ( n) 2 - 2em"Dmn - 4<D E14

- 1a nn FL1 amn - i (Lka mf) 2 - Djam1'Djso + 1 ZYl~ + 1 arnamn - O2(3.19)

- 1 mn Elkm - 1 (dmn) 2 + f),dmn, ~ 0-+I 0- _ emn ~ +

which is now diagonal, so that we can readily study the physical content. The analysis in appendix A.2 shows

that the fields (amn, y) propagate:

1. Ghost spin-two with m2 = 4/a'.

2. Ghost scalar with m2 = 4/a'.

3. Scalar with m 2 = 4/a'.

These are the same degrees of freedom as in the two-derivative approximation, except that the scalar tachyon

turned into a healthy massive scalar. The fields (dmn, o) propagate exactly the same degrees of freedom as

the un-barred pair but with opposite value of mass-squared.

We conclude by noting that a further redefinition of a and the trace a of amn allows us to fully diagonalize

into massive spin-2 and a massive scalar in the Lagrangian (3.19). We let

(P = V' a' amn = a'mn - V T/mn .(3.20)

Inserting this into the second line of the action above and dropping primes at the end, one obtains

L = - a'm lam - j(Dia'mn)2 - jam'" DiDia + lala + -(a"na"amn - .a 2 )

(3.21)

- (D - 2)(!WDp - 2 W 2 )

The second line implies that W is a ghost with mass M2 - 4. The first line has the right kinetic terms as in the
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Fierz-Pauli theory, but the mass term has the wrong relative coefficient. 3 Thus, in addition to the (ghostly)

massive spin-2 it propagates a scalar mode, given by the trace a.

3.3 Massive linearized DFT

The linearized DFT action describes massless gravity, a massless two-form field, and a massless dilaton. We

find here a duality-invariant mass term that gives the same mass to all these three fields, without introducing

ghosts or spurious degrees of freedom. For linearized Einstein gravity a consistent massive deformation

requires a judicious choice of mass terms: the Fierz-Pauli mass term, that involves both the trace h"hmn

of the square of the metric fluctuation and the square of the trace h. The latter is required to guarantee that

h is non-propagating, for otherwise it would be a scalar ghost. In DFT, the trace of the field emn is not

available because there is no O(D, D) covariant notion of taking this trace, but one can give a novel mass

term involving the dilaton, which also avoids all scalar ghosts.

Consider the linearized two-derivative DFT action, given on the first line in (3.13):

LDFT e lemn + - (Dme'") 2 + _ (fnmn) 2 - 2enDm n 4) - 4< 4
(3.22)

=em"IZmn (e, 4 ) - 4 7Z(e, 4),

where we rewrote the kinetic terms geometrically, discarding total derivatives, in terms of the linearized

Ricci tensor R-mn and the scalar curvature 7Z defined in (3.7).4 We add to this linearized two-derivative DFT

action mass terms in the following way:

LmDFr emn 7Zmn (e, <P) - b 7Z(e, <C) - IM2(em n emn - 16(D 2 ) . (3.23)

Note that O(D, D) covariance does not restrict the relative coefficient between the mass terms of emn and the

dilaton Db, but we will show in the following that the specific choice made here leads to a ghost-free model.

One way to see this is to inspect the field equations for emn and <,

Rmn = }M 2 emn, 7 = 4M2 <. (3.24)

3Curiously, the mass term obtained here coincides with the 'mass term' obtained by expanding a cosmological constant term
proportional to Vg- around flat space, c.f. [44]

4Note that the total variation takes the form 6
LDFT = ge lmn - 264) R, discarding total derivatives as usual.
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The generalized Ricci tensor and scalar curvature satisfy the Bianchi identities

Dm Rmn =-nR1 , /mn =-DiR, (3.25)

so that taking the divergence and derivative of the field equations we obtain

0 = D m RZn + 1DnR = jM2 (Dmemn + 4Dn),
(3.26)

0 = D"Rmn + jDnR = (M 2 (Dnemn + 4Dm)-).

Taking another divergence, this implies

Dm Dnemn + 404 = 0 = 7Z = 0, (3.27)

where we used the explicit expression for the scalar curvature. Thus, thanks to the specific choice of mass

terms, the scalar curvature vanishes on-shell, which in turn removes propagating degrees of freedom that

would otherwise be present. Indeed, from this we conclude with (3.24) that <D = 0 and hence with (3.26)

that both barred and unbarred divergences of emn vanish on-shell:

Dm emn = Dnemn = <) = 0. (3.28)

This should be compared to on-shell constraints of the Fierz-Pauli theory for massive (linearized) gravity,

which are &'h,, = 0 and h",, = 0, and the on-shell constraint of the massive two-form field, which is

O~bm, = 0. We note that (3.28) gives as many constraints as needed in order to describe a massive graviton,

a massive two-form field, and a massive scalar. Indeed, with the on-shell constraints the field equation

becomes (E] - M2)emn = 0 and, in a frame where p, = (M, 0), we see that eo0 = ejo = 0, resulting in

(D - 1)2 degrees of freedom describing a graviton, a two-form field and a scalar, all of mass M. Interestingly,

in DFT variables the massive scalar is not encoded in the dilaton density <b, which vanishes on-shell, but

rather in the trace of emn, which can only be accessed after breaking manifest O(D, D) covariance. It should

also be noted that although the kinetic terms of massive DFT can be diagonalized (after abandoning manifest

O(D, D) invariance), this field redefinition does not diagonalize the mass terms. Therefore, this model is

not simply the Fierz-Pauli theory of massive gravity supplemented by a massive 2-form and a massive scalar.

It is instructive to make this point a little more explicit. Since the b-field plays no role in this discussion,

we will set it to zero and, having thus abandoned O(D, D) invariance, denote the spacetime indices by

V, .. ., take the derivatives D and D to be partial derivatives and 0 = &2. The Lagrangian (3.23) then
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gives:

L = 1hl"Vh, + 1 (Oh"")2 - 2h""'a,,<D - 44k [IA' - _M
2 (h'hA, - 16)2). (3.29)

We want to see if this is field redefinition equivalent to the Fierz-Pauli action supplemented by a massive

scalar':

LFP + Ls = + -- hh - 1 M2 (hnhpV - h2
(3.30)

+ 4,b LA) - 4M2 <2

The most general field redefinition can be parameterized as follows:

hjjv = Aih' tv + 77 (A 2 h' - 2A 3<b') ,
1

< = 2A4 h' + A5 b'.
2

For this field redefinition to be invertible A 1 has to be non-zero. We will now show that there is no choice

of coefficients A 1 , -- - , A 5 that define an invertible redefinition and simultaneously diagonalize the kinetic

and mass terms of massive DFT. Using (3.31) in the Lagrangian (3.29) we get:

L - 2A1 (-A 3 + A 5) h'0110A)' - 2 (IA 3 (A1 + (D - 2) A2 + 2A4 ) + A 2A5 - 2A 4A5) h'LI4'

+ M2 (A 1 A 3 + A 2 A 3 D - 4A 4A 5 ) h'<D' +-,

(3.32)

where '. ' indicates diagonal terms. Requiring the off-diagonal terms to vanish, we find two solutions

A 3 = 0 = A 5 ,
A1or A 2  = ,
D

A3 = A5 , A 4 = 0.

In the first solution the field redefinition (3.31) does not involve <' and hence is not invertible. With the

second solution,

h= A 1 (h' v - 17tZh') - 2 A 3 y,(V~', (3.34)

Only the traceless part of h',, appears and hence the redefinition is non-invertible. We conclude that there is

no field redefinition which diagonalizes both the kinetic and the mass term of massive DFT.

5Notice that we are using afinny normalization for the scalar field and hence its kinetic and mass terms have a coefficient of 4.
This normalization is consistent with the normalization of the dilaton field though.
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We now perform a field redefinition which diagonalizes the kinetic term of massive DFT:

hl- = h' V + '7AV , , = 0'+ h' , (3.35)

after which the Lagrangian (3.29), upon dropping primes, reads

L = hv"G,,v(h) - M2 (h"hhV - h2)
(3.36)

+ (D - 2)OO - 1(D - 4)M2
0

2 - (M2 Oh.

Here G, (h) is the linearized Einstein tensor,

GjaI(h) = RAv(h) - !R(h)gI, (3.37)

where the linearized Ricci tensor and scalar curvatures are

RA,(h) = -!( - 2&(,1 Phv), + &,8&,h), R(h) = -Lh + &IIvhyv. (3.38)

Under the integral one quickly checks that

- hA"GpV(h) = !hA"Ohy + (ah"" )2 + 1 h""aah - 1h 11h .(3.39)

The linearized Einstein tensor is self-adjoint: under an integral, aA"G,(b) = bl"GA (a), for arbitrary

symmetric tensors a and b.

As claimed, the kinetic terms in (3.36) are now diagonal, but the mass terms contain the non-removable

term Oh. Nevertheless, it is As a further check appendix A.3 gives a source analysis of the model. The

results confirm that massive DFT describes a massive graviton, massive dilaton, and massive 2-form field

and does not propagate any undesired (ghost-like) modes. We also show that the particular combination

emnemn - 16.D2 of mass terms is strictly necessary: for any other combination one finds an additional ghost

scalar.

62



Part II

63



THIS PAGE INTENTIONALLY LEFT BLANK

64



4
An overview of supersymmetric localization

Non-abelian gauge theories play an important role in our understanding of particle physics. At high energies

their dynamics are understood well. The effective strength of interactions can be weak at high energies,

a phenomenon known as asymptotic freedom. In this regime perturbation theory can be used to compute

quantities of physical interest. At low energies, however, the effective strength of interactions can increase.

It can become strong enough to prevent the separation of the quarks in a hadron, a phenomenon known as

confinement. In this regime, perturbative methods are of no use and one needs other techniques. For example,

effective field theory methods involving the low-energy degrees of freedom as in chiral perturbation theory

or numerical methods as in lattice gauge theory. In general, it is a formidable task to analytically understand

the dynamics of strongly coupled gauge theories. From the perspective of perturbation theory we require a

complete resummmation of all perturbative and non-perturbative effects.

The strong-coupling dynamics of generic gauge theories is an important open question in QFT, but

progress can be made by adding supersymmetry to the problem. Supersymmetry enables the use of su-

persymmetric localization. In this chapter we review the basic argument underlying supersymmetric local-

ization. We then give a survey of all known partition functions obtained by using localization on spheres.

Finally we discuss two important missing cases.

4.1 Localization of supersymmetric gauge theories

Consider the deformed expectation value of a supersymmetric observable 0

(0) (t) -- f ID exp (-S [4<] - tQV [D]) 0, (4.1)
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where 4J represents all fields in the theory. Q is a supersymmetry generator, which squares to a bosonic

symmetry of the theory, i.e., Q2 = QBos. S [<D] is the action for the theory which is invariant under su-

persymmetry, i.e., QS = 0. Finally, V [4b] is an auxiliary Fermionic functional which respects all bosonic

symmetries of the theory. If the integration measure is also invariant under supersymmetry, i.e., Q [D4D] = 0,

then Equation (4.1) is independent of the parameter t. In particular

(0) = lim Dbe-StQVO. (4.2)

If QV has a positive semi-definite bosonic part, the only non-vanishing contribution to the path integral

comes from the field configurations (Do satisfying QV [(Do] = 0, i.e., the localization locus. In practice one

makes the following choice for the functional V

V = J (Q@)t + h.c. (4.3)

Next, we expand fields around their value at the locus as <b = <bo + -- !A'. This implies

S + tQV = S [<o]+ QV [<b] Iquadratic + 0 (t)2 (4.4)

where the second term is restricted to only quadratic order in fluctuations '. The integral over fluctuations

can be performed exactly and we obtain'

(0) = J d4Doe~S[(]0 [<po] Zp1ioop (4Do), (4.5)

where Zioo1, (<bo) is the one-loop determinant obtained by integrating over the fluctuations T '

Z 0 0 p ((Do) = D-b'e- q u[<r'ti . (4.6)

On a compact space, fields <D' can be expanded in a discrete set of basis functions fa, i.e., D' = 'fn

The integration measure D' can now be defined unambiguously as

D' =J d4'n. (4.7)
n=1

'In general, there can be an infinite number of loci and one has to sum over the contribution from all loci. In this thesis, we will
not consider this possibility.
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Notice that the integral over <bo is a finite dimensional integral. Hence supersymmetric localization on com-

pact manifolds replaces an infinite dimensional integral of an arbitrary integrand by a finite dimensional

integral.

4.2 A survey of results

Following the seminal work of Pestun [5], tremendous progress has been made in obtaining exact results

for supersymmetric gauge theories on spheres and other curved backgrounds. Compact manifolds provide a

natural way of regulating IR divergences of the theory. We will mainly focus on exact partition functions for

theories on spheres. This quantity contains information about the conformal manifold and the rennormal-

ization group flow [?]. A recent review [45] contains much of the results for sphere partition functions for

supersymmetric theories. Table 4.1 summarizes the number of dimensions corresponding to the minimum

number of supersymmetries for which the partition functions are known.

Manifold Multiplet Number of supersymmetries

S 2  M = 2 4

S3  N= 2 4

s4 A/N= 2 8

s5 A =1 8

S 6 M= 2 16

S7  A =1 16

Table 4.1: Spheres and the minimum number of supercharges with known partition functions.

The partition function of a theory on a d-dimensional sphere Sd of radius r takes the following form:

Sd+ d-4Tr (2)

_ [do]a )7r 2 rd-r Ze (o) Zmato() (4.8)
] Cana H (a, ') eXP 9 p( 2 3) Zloop -0

Here Zviec and Zmat are one-loop determinants associated with vector- and matter-multiplet (hypermul-I-loop _loop

tiplet for eight supersymmetries and chiral multiplet for four supersymmetries) respectively. If the theory has

only a vector multiplet then Z ,at . is an element of the Cartan subalgebra, e.g., o ieCartan = ~ HiI-loop Ecata 1

with Hi begin Cartan generators. a is the value of a dimensionless adjoint scalar at the localization locus. a

are roots of the Lie algebra. Given a weight of any representation, we define( , a) - ioi.
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One-loop determinants in different dimensions were obtained in different papers using different tech-

niques. We present the results for one-loop determinants here in a unified form based on our current un-

derstanding. One-loop determinants for vector multiplets with four supersymmetries on S 2 and S3 (first

computed in [46] and [47]) have the form2:

k=oo r( k+d-1)

r (k + i(ca u)) r(k+1)r(d-1)
Z1_iop H pi(c, a) = 1 (k d - (4.9)

a a k=O (

One-loop determinants for chiral multiplets on S2 and S3 take the form:

r(k+d-1)
k=oo [k + - i- i(, r(k+1)r(d-1)

Zchi _ lr 2 (4.10)1-loop k= I+ d. 2 + i ( 
(

where are weights in the representation of the chiral multiplet and p = mr is a dimensionless mass

parameter, with m the mass of the chiral multiplet.

For S2 and S3, the one-loop determinant for the vector multiplets with eight supersymmetries can be

obtained. We do so by multiplying a vector multiplet determinant with four supersymmetries with a massless

chiral multiplet determinant in the adjoint representation of the gauge group. Similarly the hypermultiplet

determinant can be obtained by multiplying two chiral multiplet determinants with the complex conjugate

masses and in the same representation of the gauge group.

Partition functions for theories on S4 and S5 with eight supersymmetries were computed in [5, 48, 49].

One-loop determinants with eight supersymmetries on Sd, where 3 < d < 5, can be written in the following

form:

Zloop (a) f i(a, a) = r [(k + i(a, o)) (k
a a k=O

'( k+d-2)

Z yp00[ k d- ) +4)2 r[ k+1]-r d- 2]J(.2

k=0O

On S4 and S5, theories with sixteen supercharges are obtained by taking the vector multiplet with eight

supercharges and adding a massless hypermultiplet in the adjoint representation of the gauge group. Hence

2 The result of [46] also includes a contribution from a non-zero flux on S2 which is allowed at the localization locus. We consider
it as a non-perturbative contribution, much like non-zero gauge field configurations in higher dimensions. Here we present only the
perturbative part.
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the one-loop determinant can be obtained by multiplying the results for eight supersymmetries.

C r(k+d-3)
zvec ZhYP fi(aZ o) ~k +1i(+ -) r(k+1)r(d-3>
Zi-oopZfjee, [ r, -[k + d -3 + ia, o-)

a ~a k=O

This not only gives the correct expression for theories with sixteen supercharges in 3 < d < 5, but also

agrees with one-loop determinants on S6 and S7 for sixteen supercharges, which were explicitly computed

in [50].

This completes the list of known results for partition functions on Sd.

4.3 MJ= 1 on S4 and S6

There are two important cases missing from the list of results: I = 1 on S4 (four supersymmetries) and

Kr 1 on S6 (eight supersymmetries). We comment on these cases.

In the first case, one can construct explicit Lagrangians for theories realizing four supersymmetries on S4.

For example, a U(1) multiplet in flat space in four dimensions is free and conformal. It can be conformally

coupled to S4, preserving four supersymmetries. A general non-abelian theory can be constructed by the

dimensional reduction of five-dimensional Kr 1 SYM [51]. One can also start from the flat-space Kr 1

theory and then explicitly modify the action and supersymmetry transformations to put it on S4 [52]. The

difficulty arises in constructing a positive definite localization term. It is possible to construct a positive

semi-definite Q-exact term from a supersymmetry generator, but the known generators that give such terms

do not close to a symmetry of the Lagrangian.

For the case of K = 1 on S6, the situation is worse. In the four-dimensional minimal supersymmet-

ric case, one expects to put the theory on S4 because an appropriate superalgebra exists. It is OSp(1 14),

which has four supercharges and a bosonic SO(5) subalgebra corresponding to the isometry of S4. For six

dimensions we want a superalgebra with a bosonic SO(7) subalgebra and eight supercharges transform-

ing in a spinor representation of SO(7), but no such superalgebra exists. The F(4) supergroup has an

SO(7) x SU(1, 1) bosonic subalgebra and 16 supercharges, so it is appropriate for K = 2 supersymmetry 3

The remainder of this thesis aims at advancing our knowledge of exact results for these missing cases.

3In a recent work [52] we have been able to construct theories on S6 with eight supersymmetries by employing a non-constant
profile for the gauge coupling.
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4
I -loop tests of supersymmetric gauge theories

It was pointed out in [6] by Minahan that the perturbative partition functions for super Yang-Mills with 8

supersymmetries on S3 , S4 and S5 have a natural analytic continuation (see eqs. (4.11) and (4.12)), such

that one can continue up to six dimensions. Likewise theories with 16 supersymmetries on Sd with d =

3, 4, 5, 6, 7 also have a natural analytic continuation (see eq. (4.13)) which can then be continued up to d =

8, 9. Although, we do not have an explicit construction of Lagrangians for these theories, it is reasonable

to assume that in the decompactification limit, they reduce to usual gauge theories in flat space. The main

objective of this chapter is to demonstrate that the partition functions are consistent with this picture. These

partition functions include a dependence on one-loop determinants. We show that in the decompactification

limit these one-loop determinants produce the well known physics of the flat space theories.

5.1 One-loop divergences from partition functions

In this section we will use the analytically continued expressions for one-loop determinants to compute ef-

fective couplings for theories with eight and sixteen supersymmetries in diverse dimensions. The ultraviolet

divergences of the gauge coupling at one-loop can then be compared with the counter terms for supersym-

metric theories at one-loop. In four dimensions, upon taking the decompactification limit one can compute

the beta function of the theory. We show that results obtained from the analytically continued one-loop

determinants are in agreement with explicit one-loop computations in these theories.
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5.1.1 Eight supersymmetries in 4d

Recall that for a gauge theory in four dimensions with Nf Dirac fermions in representation Rf and N,

complex scalars in representation R. of a semi-simple gauge group, the one loop beta function is given by

(g) = 1 r3 C2 (Adj) _ Nf C2 (R) - 'N.C 2 (R.)), (5.1)

C2 (R) is the quadratic Casimir in the representation R of the gauge group. For K = 2 theory with Nh

hypermultiplets in the representation R of the gauge group the beta function becomes

3

)3 (g) = 92(Nh C2 (R) - C2 (Adj)) . (5.2)

The contribution from the vector multiplet was previously found in [5] by taking the hypermultiplet mass

to infinity in the M = 2* theory. We want to reproduce (5.2) by using the analytically continued one-loop

determinant for the vector and hyper multiplets given in equations (4.11) and (4.12).

To do so we need to determine 0 (o 2) terms appearing in the one-loop determinants. To proceed we

replace a by to- in the expressions for the one-loop determinants. The parameter t keeps track of the order

of a. Focusing only on the vector multiplet, one can easily find that

d log Ze

dt2  + j-
/3>0 (5.3)

Z(3,U)2 (TF(d-2,ot(#,a)) +E(d-2,d-2,t(#,a))),
0>0

where

0 (+)1 i (1
((Xyyz))== -= .y 2F1 (x, Y + iz; Y +iz + c.c.

n F (n + 1) r (x) (n + y)2 + Z2 2z (y + Z'z

For d = 4 - E, we expand the R.H.S in powers of t and E. Keeping only the leading terms, we find

d log Zvec0  2 (4-

lo le "P = -C2 (Adj) o-2 + ..(5.4)

dt2  E

From this we can easily obtain

log ZIc = -C2 (Adj) 2 +.. . (5.5)
E
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A completely analogous calculation for a hypermultiplet in representation R of the gauge group gives

log Zp - - 2o.2 C2 (R) + ... (5.6)

For a gauge multiplet and Nh hypermultiplets, the contribution to the 0 (o. 2 ) term from the one-loop de-

terminants can be combined with the 0 (C. 2 ) term in the fixed point action as given in equation (4.8) to

get

82 2 2 2

82 + -C 2 (Adj) - -NC2 (R) A-, (5.7)
2 (A) 25 E

where g (A) is the running coupling constant at the renormalization scale A ~ r-1 [5], go is the bare coupling.

From the above equation one can easily obtain the beta function,

(g) = 92(Nh C2 (R) - C2 (Adj)). (5.8)

This matches precisely with equation (5.2). For one hypermultiplet in the adjoint representation the beta

function vanishes. This is to be expected since it corresponds to K = 4 SYM.

5.1.2 Eight supersymmetries in 6d

Since the explicit expression for one loop determinants for eight supersymmetries in 4d are known in terms

of infinite products, the above results can be reproduced by regularizing those expressions by introducing a

finite cut off parameter Ar and then taking the decompactification limit r -+ oc. As explained earlier, it is

not known how to localize a six dimensional theory with eight supersymmetries. In this case the expression

(4.11) is a genuine ansatz. In this subsection we will perform a non trivial check on that ansatz by computing

the effective coupling. It is well known that the six dimensional theory with eight supersymmetries has

a quadratic divergence at one-loop [53, 54]. We will compute the effective coupling using the one loop

determinant (4.11) and show that it has a quadratic divergence in the decompactification limit.

Since dimensional regularization is only sensitive to logarithmic divergences we will use a hard cutoff

to isolate the quadratic divergence. At leading order in the divergence this is expected to be consistent

with supersymmetry. However, there could be issues with sub-leading divergences, if for example imposing

the cutoff leaves off the super-partners of modes at or near the cutoff. However, assuming that the proposed

dimensional regularization respects the supersymmetry we can show that the logarithmic divergences coming
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from the hard cutoff are consistent with the result coming from dimensional regularization, even if the log

divergence is sub-leading.

We use d = 6 in (4.11) and truncate the infinite product at nmax = Ar to find quadratic dependence

on the energy cutoff A. It is straightforward to find that the divergent contribution to the a.2 term from the

vector one-loop determinant is

log Z'e0 , (A 2r2  5Ar + 1 og (Ar) C2 (Adj) +,2 . (5.9)

By combining this with the fixed point action, we find the effective coupling given by

167r3 r2  167r3r2 A 2 r2 +5Ar 11
2 = 2 -- - oo(Ar)C2(Adj). (5.10)

9 9063

In the r -+ oc limit only the leading terms in r survive and one obtains

1 1 A2

2 = -- C 2 (Adj). (5.11)
9 g 967r

We see that the effective coupling diverges quadratically with the scale A.

It is also known that the six dimensional theory can be made finite at one loop by adding a suitable hyper-

multiplet. This would be the case if the hypermultiplet and the vector multiplet contribute to the quadratic

divergence with opposite sign. This is also consistent with the one-loop determinant (4.12). For a hypermul-

tiplet in representation R, the contribution to ( (0. 2 ) term is given by

A2 r2 +--5Ar 1 (A)
log Zhyp = 2 r 2 + log (Ar) C2 (R) a2 + (5.12)i-O0P 6 3

So that the effective coupling with Nh hypermultiplets in the representation R is given by:

1 1 A 2

S2 96r3 (C2 (Adj) - NhC2 (R)). (5.13)

In particular, for a single hypermultiplet in the adjoint representation the quadratic divergence vanishes as

expected [53].
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5.1.3 Sixteen supersymmetries in 4d and 6d

In four and six dimensions, explicit expressions for the one-loop determinants for sixteen supersymmetries

are known. We will compute the effective coupling at one-loop using both of these expressions and show

that it is consistent.

For four dimensions, we compute effective coupling from (4.13) using d = 4. We will truncate the

infinite product at nmax = Ar. By doing so one finds that the contribution to 0 (02) term vanishes.

log (Ze Zhy P ) =o+ ... (5.14)

Hence the coupling is not affected by one-loop effects and is independent of the cutoff scale A. Now we

can easily check that this result is consistent with analytically continued expression, i.e., expanding (4.13) in

powers of E for d = 4 - E. Replacing a by to one can easily obtain

log (Z 1_ p _ =0( (d -4) -o log Zp) 0 (d - 4). (5.15)

Which is consistent with the result obtained from the explicit expression.

Similarly, in six dimensions the contribution to the 0 (U 2 ) term from (4.13) takes the form

log {Zec Zp = 3 (log (Ar) - + C2 (Adj) 02 + - . (5.16)

Combining this with the fixed point action, we obtain the effective coupling which is given by:

1 1 3 1( log (Ar) - - + y C2 (Adj), (5.17)
g2 (A) g 167r 3r 2  2

We see that the coupling has a logarithmic dependence on the scale A. It is easy to see that Logarithmic

dependence is produced by using dimensional regularization for d = 6 - E in the analytically continued

expression. Doing so we find that:

log .Zc ZyZ P) = C2 (Adj) 02 + (5.18)

Combining this with the contribution from the fixed point action and noting that in 6 - -dimensions 2 has
g

75



mass dimension -E we get:

3 (53.193=A-f -( + log (A),(.9
g 2 (A) A 2 167r3r2) = 2 167r 3r2 l

where a A-independent infinite piece is absorbed in -. This gives the same logarithmic dependence on the
90

energy scale A. Note that in the decompactification limit this logarithmic divergence vanishes, consistent

with that the six dimensional theory with 16 supersymmetries is finite at one-loop.

5.1.4 Sixteen supersymmetries in 8d and 9d

For d = 8, 9, it is not known how to localize. Here we show that the analytically continued expression

for the one-loop determinant is consistent with known results. It is known that for d = 8, 9, none of the

terms present in the tree level Lagrangian need a counter term at one-loop [54, 55]. Hence, the effective

coupling determined from the analytically continued expressions for one-loop determinants should not have

any divergences. This can be easily demonstrated by using the methods of this section. A short calculation

shows that the contribution to 0 (0.2) term from the one-loop determinant (4.13) for d = 8 is

log (Zv 10 Zhp (A5)4 + 3Ar + 5 log (Ar) C2 (Adj) o2. (5.20)
( -op110) 6 4 2/

This leads to the effective ccoupling

1 _ 1 5 (Ar)2 3Ar +5log(Ar) C2 (Adj)- (5.21)

g2 (A) - - 64 4 r 4  2 /

Here we see that in the decompactification limit the dependence on the energy scale vanishes. A similar

computation for d = 9 yields

log (Zv* 100 Z ) = Ar (+ 7Ar + 15 C2 (Adj) o0,2 (5.22)

which leads to following expression for effective coupling:

21 1 - A (A)2+ 7Ar 151 2 (Adj). (5.23)
(A) g2 407r5r4 3 2 6 2(d).523

This is independent of the UV scale A in the decompactification limit. The same calculation can be repeated

for d = 10 and it can be shown that the one-loop determinants do not contribute any divergences to the gauge
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coupling in the decompactification limit.
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Analytic continuation of dimensions in supersymmetric

localization

In this chapter we verify the conjecture in [6] for perturbative partition function on Sd with eight supersym-

metries. Our methods are generalizations of the procedures used in[47] and [49]. When localizing with eight

supersymmetries on Sd, we will choose a spinor whose vector bilinear leaves an S4-d sphere fixed. So for

example, on S5 it acts freely, on S4 there is a fixed SO, namely the north and south poles, while on S3 there

is a fixed S1. In the last case this is a different choice than the one used in [47], where the vector bilinear

acts freely on S3. Of course, the two procedures must give the same result.

We consider theories with four supersymmetries. Actions for gauge theories on S4 preserving four su-

persymmetries have been constructed [56], but a direct localization procedure has not yet been found. Hence,

our starting point is on S3. Here we follow the prescription in [47] to generate a vector field that acts freely.

We show how to generalize the construction to d < 3 and write down an explicit expression for the determi-

nant factors. In the generalization the fixed point set for the vector field is S2-d, hence S2 will have fixed

points at the poles.

We then make a proposal for analytically continuing gauge theories with four supersymmetries up to d =

4. The pitfalls of dimensionally regularizing supersymmetric gauge theories have been known for a long time

[57, 58]. However, except perhaps for anomalies, it appears to work in one- and two-loop calculations [59].

Analytical continuation of the dimension has also been successfully applied to conformal field theories [60,

61, 62, 63, 64]. With this proposal for minimal supersymmetry on S4 we test it against various cases. We

first show that the continuation is consistent with the partition functions for a U(1) vector multiplet or a free

massless chiral multiplet. Both of these situations are conformal and so can be mapped from flat space onto

S4. Since they are free, their partition functions on the sphere are calculable. We next consider a general

gauge theory with K = 1 supersymmetry. We show that in the limit of large radius we can extract the correct
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one-loop -function.

Lastly, we investigate a mass deformation of K = 4 super Yang-Mills. Here we concentrate on K= 1*

theories with three chiral multiplets in the adjoint representation and masses mi, with i = 1, 2, 3. The

superpotential also has a term cubic in the chiral fields that stays fixed as the mass parameters are varied.

A straightforward dimensional reduction of K = 1* gives a three dimensional gauge theory with complex

masses for chiral multiplets. In our analytic continuation we start with a vector multiplet and three chiral

multiplets. However, the three dimensional mass deformed gauge theory that we can analytically continue

requires real masses. Such terms appear explicitly as central charges in the superalgebra. The presence of

the cubic term in the superpotential forces the sum of the three real masses to be zero in order to maintain

supersymmetry.

Despite these subtleties, one can compare the general structure of the analytically continued partition

function with the K = 1* partition function. We make a straightforward identification of the real masses of

the analytically continued theory with the masses, up to a sign, that appear in the K = 1* superpotential.

K = 1 superconformal theories on S4 are scheme dependent [65]. However, in [66] it was argued that the

the fourth derivatives of the free energy with respect to the mass parameters are scheme independent. This is

in line with our observations here. We compute the corrections to the free energy to sixth order in the chiral

masses at strong coupling. At least for the real part of the free energy we find no inconsistencies with the

holographic results in [66]. In fact, having the sum of the real masses be zero turns out to play a crucial role.

6.1 Supersymmetric gauge theories on Sd by dimensional reduction

In this section we review and extend the procedure in [50] to construct supersymmetric gauge theories on

Sd. This is a generalization of Pestun's study in four dimensions [45], and includes further details to reduce

the number of supersymmetries to eight and four respectively.

As in [45] our starting point is the 10 dimensional K = 1 SYMIagrangiani

1
L = - I-Tr (-FMNFMN - xpoQ) (6.1)

910

The space-time indices M, N run from 0 to 9 and IFa is a Majorana-Weyl spinor in the adjoint representation.

Properties of 17M and iM ab are given in appendix B. The 16 independent supersymmetry transformationsabgie

'As in [45] we consider the real form of the gauge group so that the group generators are anti-Hermitian and independent
generators satisfy Tr(TaT') - -- ab

80



that leave eq. (6.1) invariant are

&Am = C PMAP,
(6.2)

j = {AINFMN

where c is a constant bosonic real spinor, but is otherwise arbitrary.

We next dimensionally reduce this theory to d dimensions by choosing Euclidean spatial indices pu

1, ... d with gauge fields A, and scalars #r with I = 0, d + 1, . . .9. The field strengths with scalar indices

become F,, = D,#/ and Frj = [0j, #j]. As in [45] we are choosing one scalar component to come from

dimensionally reducing the time direction, leading to a wrong-sign kinetic term for this field.

We take the d-dimensional Euclidean space to be the round sphere Sd with radius r with the metric

ds2  1 dxdx" . (6.3)
(1 + /32x 2) 2

The supersymmetry parameters are modified to be conformal Killing spinors on the sphere, satisfying

V -C = fo,, V,, = -02Fg I. (6.4)

where# = y. We impose the further condition

V,c =3 #,A e , (6.5)

leaving 16 independent supersymmetry transformations. To be consistent with eq. (6.4) A must satisfy

f"A = -Ar', AA = 1, AT = -A. The simplest choice has A - 70 1 8 7 9 . The solution to eq. (6.4)

and eq. (6.5) is

E (1 + x - f A e, (6.6)
(I + 02X2)1/2

where es is constant. On the sphere the supersymmetry transformations for the bosons are unchanged, but

those for the fermions are modified to

6f'' =jrFAINFMNE + 2L 01v, , (6.7)
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where the constants a, are given by

4(d - 3)
a= d I 1=8, 9,0,

d
4

a d = I d+ 1,...7.
d

(6.8)

The index I in eq. (6.7) is summed over. This particular choice preserves all 16 supersymmetries. One needs

to add following extra terms to get a supersymmetric Lagrangian:

_ -T1 (d -4)
Lee = 2 Tr29YM 2r

1 (dA 1
L4 = 2 2 .2Tr4 ,

gym
1 2

L000 = 2 (d - 4)EABcTr ([OA,B I C)Wym 3r

(6.9)

Here A, is defined as

AI = al, for I = 8, 9, 0, A 2
d

for I = d+ 1,..-7.

The scalars split into two groups, OA, A - 0, 8, 9 and 0', i d + 1,- 7 and the R-symmetry is manifestly

broken from SO(1, 9 - d) to SO(1, 7- d). The full supersymmetric Lagrangian is the dimensionally reduced

version of eq. (6.1) supplemented with L.Cp, Loo and L44 4 .

6.1.1 Eight supersymmetries

In this chapter we are interested in theories with less supersymmetry. To construct theories with eight super-

symmetries when d < 5 we put a further condition on E.

17C = +E, r = r6789. (6.11)

This reduces the number of independent supersymmetry transformations to eight. We divide the spinor T as

P = + x, F, = +, FX = -x.

4 and X fields will be the fermionic components of the vector multiplet and the hypermultiplet respectively.

The scalars 01, I = 6, 7, 8, 9 are in the hypermultiplet, while the remaining scalars belong to the vector

multiplet. Given a hypermultiplet mass m, the constants in eq. (6.8) paired with the hypermultiplet scalars
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are modified to

2(d - 2) 4io-jm r
d d

0'6 = 0'7 C'~8 0'~9 =1

To preserve supersymmetry we must modify the cubic scalar terms in the Lagrangian to

4
E$$4 = 2 ((f(d - 4) +im) Tr( 0 6, 7]) - ((d - 4) -fim) Tr(#0[[8 9]))

gym

We also need to change the quadratic term for the hypermultiplet fermion to

1
Lx =- 2 (-imTrXAX).

gym

The quadratic term for the hypermultiplet scalars is modified by changing the value of the constant Ai

A 2 . d(d - 2)2 = \mr(mr + UIj) + for I = 6,7,8,9.

The quadratic term for the vector multiplet fermion is the same as in the case of 16 supersymmetries with 'I

replaced by 4. The full supersymmetric Lagrangian is then the dimensional reduction of eq. (6.1) supple-

mented with LOO + LV- + xx + L44.

6.1.2 Four supersymmetries

If d < 3 then we can further reduce the number of supersymmetries by imposing the extra condition

VE = +E, F1' = F 4589 . (6.17)

Now we decompose the spinor IQ into four parts

1+ ) Xf,
f=1

(6.18)

where ' belongs to the vector multiplet and the xf belong to three different types of chiral multiplets. If we

write f in binary form as f = 232 (f ) + 01 (t), where /3, (f) are the binary digits for f, then we can write the
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chirality conditions as

-Xf) = (-1)l1(()XM), JT(f) = (_1)fl2(e)X(e), VV) = 17 = +V). (6.19)

We also split the scalar fields into 4 groups. The fields 0 and #', i = d+1,... 3 belong to the vector multiplet.

Each chiral multiplet contains two scalar fields 4j,, where the index Ij takes two values I = 2/+ 2, 2f + 3.

Given the chiral multiplet masses me, the constants in eq. (6.8) are further split into

2(d -2) 4 iu-, me r it = (~i),2(f,1(f = 0. (6.20)

It is instructive to look at the individual supersymmetry transformations of the fermions in the vector and

chiral multiplets. For the fermion 0 in the vector multiplet the transformations in eq. (6.7) reduces to

3

Jo' =}FM'N'FM'N' +IY J,F _ I aVp , (6.21)
f=1

where M', N' = 0,..., 3 and a = 0, d + 1 ... 3. Likewise, for the chiral multiplet fermions we have

6Se =D jF"'e+ ['a, &,]FaItE + .Emn [ 1 j,]im n ae)+ r, oVp C. (6.22)

Notice that eq. (6.21) and eq. (6.22) have terms that contain fields outside of their respective multiplets. In the

usual construction for four supersymmetries, the transformations of the fermions would contain the auxiliary

fields D and F. The terms outside the multiplets arise from evaluating the auxiliary fields on-shell 2 . In our

construction we will still use auxiliary fields, but in this case they equal zero on-shell.

With the modification in eq. (6.20) the Lagrangian is almost supersymmetric under four supersymmetries

if the mass terms have the form

3

xx = - 2 (-imTrXeAxe),
gym e=i (6.23)

$4 = (d2r) TrI,#e 0,

where

A() Ai = 2 (mer (mer + iJ()) + d(d 2)) (6.24)

2We thank Guido Festuccia for a helpful discussion on this point.
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and we include the cubic terms

-ggE 2 ((ime + co() (d - 4)) Tr(00[#2f+2, #2f+3])) . (6.25)
y= 1

However, under a supersymmetry transformation the Lagrangian changes by

2gL 0(d - 4) + i Z -(eyme) Tr (cArImInXeknIm, oJ]j) je'mn. (6.26)

The only way to get rid of this term is to set

3

0(d - 4) + i o-(e)m() = 0. (6.27)
e=i

One might have expected that the leftover term in 6,L could have been cancelled by modifying the Lagrangian

with a cubic term of the form ~ #im0n 011. However, one can quickly check that this will not work because

of the reality conditions imposed on the original spinors T.

Another way to understand the origin of (6.27) is to consider the reduction of K = 4 in four dimensions

down to three dimensions. To avoid unnecessary complications we assume the space is flat. In three dimen-

sions, K = 2 SYMcan have two types of mass terms, real and complex [67, 68]. Complex masses descend

directly from an K 1 superpotential in four dimensions. However, a real mass arises from a Wilson line of

a background U(1) gauge field [68J3. Writing the 4-dimensional Lagrangian in terms of K 1 superfields,

one has the term

d2Od2exp(qiU)Tr(QteVQe-V), (6.28)

where V is the vector superfield for the SU(N) gauge theory and U is the superfield for the background

U(1). The qj's are the charges of the chiral multiplets under this U(1). If we then compactify down to three

dimensions, turn on the background Wilson line and integrate around the compactified dimension, (6.28)

becomes

RJ d2Od2#Tr(QeVQVe-V) + d20'(qiA4D)Tr(QeVQje-V) (6.29)

where R is the size of the compactified circle, which can be absorbed into the gauge coupling. The three-

dimensional Grassmann variables are of the form 0, and 0 , while d2 0' = (dO+d#) 2 . For the Wilson line we

assume that U, - V,<D along the compactified direction. The second term in (6.29) is the contribution for a

3 In Euclidean space the real masses do not have to be real, but we will continue to use this term.
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real mass, mR = qiA<D/R. In the large r limit, (6.23) and (6.25) arise from such a term, with m = )omy).

However, the four-dimensional K = 4 Lagrangian has a term in the superpotential proportional to

Tr(QiQQk )Emnk which descends directly to the three-dimensional superpotential. In order to couple the

background U(1) field to the theory, this term in the superpotential needs to be gauge invariant. This requires

setting qi + q2 + q3 = 0, which immediately means that the sum of the real masses is zero. Putting the theory

on the sphere modifies this condition to (6.27).

We can also understand (6.27) using the three-dimensional K = 2 superalgebra [67, 68],

{Q, Q0}U=i + i M Ea, (6.30)

where the real mass appears explicitly in the algebra as a central charge. The contribution of the superpotential

to the action is

Sd3 x d 20 W + c.c.. (6.31)

If the superpotential has the term Tr(QiQjQk)mnk then acting with {Qa, Qg} on (6.31) gives a term pro-

portional to mfn + m + mR. Hence, supersymmetry requires the sum to be zero.

6.1.3 Off-shell supersymmetry

We need an off-shell formulation of supersymmetry in order to localize. One must also ensure that the

supersymmetry transformations close in the algebra. To this end we select a particular Killing spinor E and

introduce seven auxiliary fields Km and bosonic pure spinors vm with m = 1 ... 7. These pure spinors

satisfy the orthonormality conditions (B.8). The off-shell Lagrangian has the additional term

1
Laux 2 TrKm Km . (6.32)

gym

When reducing the number of supersymmetries we split the pure spinors accordingly. With 16 super-

symmetries the full set of transformations are [50]

&eAM =EM TI,
q =jFMN MN N C -'I E + Km m , (6.33)

2

6,Krn z/r- + 03(d - 4)iim NP.
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Acting twice with the supersymmetry transformation on the gauge fields one finds

VF A -V"Fi, + [D,,, vo'#], (6.34)

which is the Lie derivative of A, along the -v" direction, plus a gauge transformation. Likewise, the action

on the scalar fields is
1

j$0I -vvDvoI - [vjoj, 0j] - -a 1 d Ef1jAE O , (6.35)
2

where again we have a Lie derivative plus a gauge transformation. The last term in eq. (6.35) is an R-

symmetry transformation. The transformation on the fermions is

1
62=p - NNDNQ -- -I~ v|3

4 A[B (6.36)
- 3(cIF"Ac)Fm T - -(d - 3 )(EFABA)FABT,
2 2

where the terms in the last line are R-symmetry transformations. Finally, the transformation on the auxiliary

fields is

j2 K"= -vMDmKm - (vi'mPV un])Kn + (d - 4)3(v1[mAVn])K , (6.37)

where the last two terms are generators of an internal SO(7) symmetry.

With fewer supersymmetries the fields divide up into vector, hyper or chiral multiplets along with the

accompanying modifications to the a,. For the case of eight supersymmetries, we split the pure spinors such

that Fvm = +v for m = 1, 2, 3, while Fvm =vm for m = 4, 5, 6, 7. The associated auxiliary fields K'

belong to the vector and hypermultiplet respectively. Their transformations are

6EK'" = - n v ' + 0 (d - 4) v'A, for m = 1,2,3,
(6.38)

'= - v'liX - 2ip4v'AX, for m = 4, 5,... , 7.

Here p mr is a dimensionless parameter.

With reduced supersymmetry, the transformations in eq. (6.34) are unchanged while those in eq. (6.35)

are modified by the change in the aj. For fermions in the vector multiplet eq. (6.36) holds with IQ replaced

by 4. For fermions in the hypermultiplet eq. (6.36) becomes

6>X = - VNDNX -- (V[pvv])FIpv
1 -(6 .39)

-1 (f 'IAE)rJ'iX - 2i3(Ef A Ae)f AAx.
2
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For the auxiliary fields, equation (6.37) splits into two:

62Km= - vMDMK"m - (v[TFPVvl1)K' + (d - 4)0(v[mAvn])Kn

2K"- vMDMKm - ([flWV vl])Kn - 2ip(vfmAvn])Kn,

(6.40)

where the first equation is for m = 1, 2, 3 and the second is for m = 4, 5, 6, 7. Invariance under off-shell

supersymmetry for the Lagrangian supplemented with Laux can be shown by a computation that is almost

identical to the one in [50] for 16 supersymmetries.

Reducing the number of supersymmetries to four, we split the pure spinors further as follows.

I'Zvm = +v/m for m = 1, 4, 5, F'Vm = -Vm for m = 2, 3, 6,7.

The transformations of the auxiliary fields are

&EK" = -v"OV) + # (d - 4)v"r AV,

K" = -V"'$Xi - 2ip1#v"nAX1,

6,Km = -V"Ox2 - 2ip2Ov'AX2,

&5K'M = -v t 'PX3 - 2i/-3v mAX3,

for m = 1,

for m = 2,3,

for m = 4,5,

for m = 6,7.

With 1 -- mr being dimensionless parameters. As before, equation eq. (6.34) is unchanged and eq. (6.35)

is modified by the change in aj. For two supersymmetry variations of the auxiliary field we have a straight-

forward generalization of eq. (6.40), where we split the auxiliary fields into four different types. Two super-

symmetry variations of the chiral multiplet fermions take the following form

62 N 152xf = -vNDNX- S[,Mu|)(,V
4 ~43 k .- )

- I 0(fT"Ae)FijJe - 2ipjO(Ef A A)f AAxe.
2

Invariance of the Lagrangian under off-shell supersymmetry follows as in the case of eight and 16 supersym-

metries.

6.2 The localization Lagrangian

In this section we present the localization argument and compute the quadratic fluctuations about the fixed

point locus. We also add a gauge fixing term in the-Lagrangian and give the precise form of the partition
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function in terms of the determinants of the quadratic fluctuations around the fixed point locus. We only

consider contributions in the zero instanton sector where the fixed point locus has a vanishing gauge field.

6.2.1 Fixed point locus

We modify the partition function path integral as follows:

Z [t] _ D( e-s-tv (6.44)

where Db denotes the integration measure for all the fields, Q is a fermionic symmetry of both the integration

measure and the action and QV is positive semi-definite. The partition function is then independent of the

parameter t. This allows us to evaluate the partition function at t -+ oc, where it only receives contributions

from quadratic fluctuations of the fields about the locus of the zeros of QV.

For our purposes we choose Q to be the supersymmetry transformation generated by E, and V to be

V=Jddx qTr' (9J6S) , (6.45)

where Tr' is a positive definite inner product on the Lie algebra, which can be different than the product used

in the original action. We will drop the Tr' sign henceforth for notational simplicity. &IQ is given by

S MNFMN E + I ' 0V c - KTnO . (6.46)
2 2

So, QV will be

QV Jddx J q,3J dx Vg-!6 (6) Jdx E +JddxVL. (6.47)

The first and second terms in the above equation contain the bosonic and fermionic part of the localization

Lagrangian respectively. We now find the locus where the path integral localizes when t --+ oc. The bosonic

part is [50]

Lb IFMNFMN -!FMN FM'N' (EMNM'N'O,

2 4\

+ 3daI FMNOI EA(fIAMNo - fOFIFMN)) (6.48)4
o2 d2 (Z201.

- K"'Knv0 - BdaokOK' (vAc) + - Z(aI 2kIv 0 .
4
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We choose the spinor c such that v - 1 and v8 
-9 = 0. Then the fixed point condition in the zero

instanton sector can be written as

VjjOIVP#1 - (Km + 23(d - 3)0o (v/mAE)) 2 + ) 
d2 + 4 (i 2 qi$ 0, (6.49)

'+o

All terms on the lefthand side of the above equation are positive definite if fields Km and #o are imaginary.

So the fixed point locus is given by

Km = -20(d - 3)00 (vmAE), q0 = const = = , iu 0 (J ? 0). (6.50)

The dimensionless variable o- is an element of the Lie algebra and parameterizes the fixed point locus. The

action evaluated at the fixed point becomes

d1d-4

Sfp = (d - 1)(d - 3) Tr (#C# ) = 87r 2 r Tr o,2  (6.51)
S yi = y r 20 0 2 ] p ( d 3 )

where Vd is the volume of the d-dimensional sphere.

6.2.2 Quadratic fluctuations

The next step is to move away from the localization locus by perturbing the fields about their fixed point

values. We write

1
4/= Vc1 + 4,7 (6.52)

for all fields ' in QV, with V1 being their value at the fixed point. In the t -+ oc limit, the only terms that

survive in the localization Lagrangian are quadratic in the perturbations 1. Details of the computation of

quadratic fluctuations about the fixed point locus are given in Appendix C. Here we briefly summarize our

results.

The bosonic fluctuations for the vector multiplet takes the following form

,cb =IN 9 Af -- [ A,,,#O'] [ AM,$O']AM o f A0 0 
f A(6.53)

- K'm Km - 4,3(d - 3)#oK"(wmAE) - #ko (-V2 + 402(d - 3)2) .
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The indices with a tilde take the values as defined below

MI = {,i, (6.54)

where D = 5(3) for theories with eight(four) supersymmetries. A, is the usual vector field, while fields Ai

denote scalars in the vector multiplet other than #0. The operator 0 , f is defined as

oN =NV 2 + - 20(d - 3 )VNu 89eV'. (6.55)

a', ,is a diagonal matrix given by

(d-1)6i 0
Ng -= 4#2 A '. .

0 6j,

(6.56)

The fermionic fluctuations for the vector multiplet can be written as

vm =( @) + ('bLx [O'I, v]) - (d - 3)#v' (,FOf FA)

(d - 3)0 e(4 AE) (O1F 0FKIgO) + mV (bA7).
(6.57)

Here mg =41 for eight supersymmetries and mp = (d - 2) for four supersymmetries.

For theories with eight supersymmetries we have one hypermultiplet. The bosonic part contains four

scalars. Their contribution to the quadratic fluctuations can be written as

9

_m V 2 + 32 (d - 2 + 2io-ip)2) /, _
(6.58)

+ 4,3 (2ip - 1) # 6 v'WV,07 + 4,3 (2i4t + 1) 08 v VyO$.

For the hypermultiplet fermions we have

Lf.m = (xVx) + (xF0[O:, x 1 E3 AE) (xr 0 Fag x) + 2i/vNV (xrof>AX).

For the case of four supersymmetries we have three chiral multiplets. The chiral multiplet part contains
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six scalars. Their contribution to the quadratic fluctuations is given by

3

Li = 3 [011 (-V2 + 32 (d - 2 + 2ia-) pL) 2 ) Olt _ [Od, 0, 4If
f=1 (6.60)

+ 43 (2ipe - O-()) 02f+20V' #2f+3-

Finally the contribution from the chiral multiplet fermions is

3

Lfm E (x4 xf) + (xfrJOk ,x,1) - -j(Ef*"Ac) (xeF0rgx,)
= 1 2(6.61)

+ o(e)# ( 2i1pvl (XirOf gAxe) + xiAXf).

6.2.3 Gauge fixing

With the expressions for quadratic fluctuations in hand, we give the precise form of the partition function in

terms of quadratic fluctuations. To compute the partition function we need to add a gauge fixing term. In the

computation of the quadratic fluctuations, we employed the Lorenz gauge, so we need to use the following

gauge fixing term

Sg.= -J d x /gTr (bVA't - eV 2 c). (6.62)

Here b is the Lagrange multiplier which enforces the Lorenz gauge condition in the path integral. c, 6 are the

usual Fadeev-Popov ghosts. A', denotes the off-shell gauge field which can be decomposed as

A'I = A, + V,#, (6.63)

where A, is divergenceless and # encodes the pure divergence part.

To compute the partition function one now has to integrate over the following set of fields:

b, C, i-7, #, Km, #0, AP, 0100, 1P. (6.64)

The first six give the following contributions:

" The b ghosts give a factor of 5 (VA'"') = 6 (V 24)

" The c and 6 ghosts give a factor of det (V 2 )_

" The gauge parameter # has two contributions. There is a Jacobian factor Vdet V2 coming from the

change of integration measure DV,1o -+ D#, while the integration over # gives a factor of (det V2) -1
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coming from the delta function 6 (V 2
0).

* The contribution of the auxiliary fields Km is trivial. It gets rid of the mass term for the scalar field

0 in the quadratic fluctuations.

o The scalar 0 gives a factor of (V/det V 2)- 1 .

These factors cancel and the partition function reduces to

Z = doe-Stp(U) J DAD# DXe-Sq.d(Oo=20o). (6.65)

Since the integrand is invariant under the adjoint action of the gauge group, we can replace the inte-

gral over the entire Lie algebra with an integral over a Cartan subalgebra. This introduces a Vandermonde

determinant and we can write the partition function, with some convenient normalization as follows:

Z = [do]Cartan e -SIP(0) i11(a, 0') jDAP-,D 40-Dqje-Sq"ad(Oo=20o-). (6.66)

Now, what is left to be computed is the integral over the fields Ap, <D,,o and T. Before doing that, we

comment on the decomposition of the fields and quadratic fluctuations in terms of the root vectors of the Lie

algebra. Schematically, bosonic quadratic fluctuations are given by

Lb = Tr (<,. O .4 _ [.,- J [0d] [, ) . (6.67)

We expand the field 4 in the Cartan-Weyl basis. The component of <D along the Cartan generators only

contributes an uninteresting 0" independent overall constant to the partition function, and so we do not need

to focus on that part. Next, we can write (D as:

} = P"Ea, (6.68)

where E, are the root vectors of the Lie algebra. They are normalized so that Tr' (EfEi) = 6,+,. Using

[0, E] = (a, u)E0 , the quadratic fluctuations can be written as

Lb -4jr0. (Ob + 42 32K,) 2) . *pa. (6.69)
0e
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Similarly the fermionic quadratic fluctuations can be decomposed as

ii = Tr' (1FF000I + QF0 [0c, I]) = T-ar0 (Of + 2f(a, o-)) T'. (6.70)

After integrating over the quadratic fluctuations in Lb,f one gets:

D4D~e- f dv/g(b+') = det (O+ 2/(a,a))* (6.71)
,, / det (ob +4 2(a )2)4

Hence to compute the one-loop determinants one needs to diagonalize the action of the "quadratic" operators

O"'' appearing in the quadratic fluctuations. We turn to this computation in the next section.

6.3 Determinants for eight supersymmetries

In this section we compute the determinants for theories with eight supersymmetries. We compute the de-

terminants for bosons and fermions separately and then combine them to see that after a large cancellation

we get

Zic z i(c, a) = J7[(k + i(c, o)) (k + d - 2i(a,x))]N,
a Q k=O

Z _ = H[( k+ d -2+ip+i(a, 0) k+ d- 2

a k=O

(6.72)

The factor Nk,d in the exponent is given by

k + d-k'+1 - r(k + d - 2)
Nkd= 2 = - (6.73)

k P(k + 1)(d - 2).

This matches exactly with the conjectured form in [6]. We now provide the derivation of eq. (6.72).

6.3.1 Vector multiplet

We first compute the determinant for the vector multiplet. We start by introducing a complete set of basis

elements that span spinor and vector harmonics on Sd. Then we diagonalize the action of the quadratic

operator on these basis elements.
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Complete set of basis elements

To compute the determinants we need to diagonalize the action of the quadratic operator. This can be done

by using a suitable set of basis elements. To this end, we define spinors

77 (1 if 67 ) E = (I :F if 89) E, (r6 8 ir 69 ) f,

which satisfy

09 irja,

F8 9ij = g ,

fovIf JiC =r n7,7

We can now build a basis for the vector multiplet fermions by using the spinors 77 , i and the scalar spherical

harmonics Yk. Scalar spherical harmonics are labelled by the eigenvalues of the Laplacian and the Cartan

generator along the vector v":

S 4/ 2 k(k + d - 1), vPV y = 2iomYk .

The definitions of our spinor harmonics and their eigenvalues under operators F8 9 and fOvmIFl are given

in the following table.

Spinor harmonics r 8 9 -eigenvalue fovmFM T -eigenvalue

X -= ykr ki +1

Xy I jk -1

S porm Yr for m kk i +1

X2 = ]OfM Y k, form # T-k i -1

Table 6.1: Spinor harmonics basis and corresponding eigenvalues.

Here Vg is defined as

V - VJV - V. (6.78)

X and X2 vanish identically for m = k (see section D. 1 for a proof). The set of spinors with a '+'

subscript is related to the set with a '-' subscript via complex conjugation. We take the standard approach [5]

that the Euclidean action is an analytical functional in the space of complexified fields and integrate over a
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certain half-dimensional subspace in the path integral. With this in mind, we will focus on the basis for

spinors with ] 89 eigenvalue +i.

We show that set of spinors in Table 6.1 provide a complete set of basis elements for the vector multiplet

fermions on Sd. To do so, we compute the action of the Dirac operator, Fov, on these spinors using

foVi7+ = +idrl+,

This gives

For'V, = 2i m + )Xi+X .

Next we note that X2 can be written as

X2= O tyOV + - 2im.

The action of Fo3 can now be worked out by using eq. (6.79), eq. (6.80) and that

gives

FoIV, 1  = -432 (k - m) (k +m+ d - 1) X - 2i3 m+ d 2 A .

Similarly, for Z ,2 one finds

iOFVZ' = 2i m - d +4 ,

FoFtV 5C = -43 2 (k + m) (k - rn + d - 1) Z:i - 2i0 m - d - 2 -.

Now we diagonalize the action of P oV on the spinor basis to get the eigenvalues

2i0 k + T-2i3 k - 1 +

= V 2 , which

(6.82)

(6.83)

(6.84)

for m#- +k. (6.85)

By shifting k in the second set of eigenvalues, we can arrange the spinor harmonics into two sets of eigenstates

of the Dirac operator, with eigenvalues 2i3 (k + 4) whose degeneracy degf (k, d), is given by

degf (k, d) = Dk (d, 0) + Dk+1 (d, 0) - Nk+ld, (6.86)

where Dk (d, r) is the total degeneracy of symmetric traceless, divergence-less rank-r tensors defined on

Sd[6 9 ]. Nm,d is the number of scalar harmonics Y,4k for the case of eight supersymmetries. The explicit
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expressions for these degeneracies are given in chapter D. Using these expressions we get

degf(k,d) = 4 F(k+d) (6.87)
F (d) F (k + 1)

For d = 4, 5 this is equal to the degeneracy of spinor harmonics on Sd [70] and for d = 2, 3 this is twice the

degeneracy of spinor harmonics, as expected. Hence, we conclude that the set of spinors defined in Table 6.1

provides a complete basis for the vector multiplet fermions in the case of eight supersymmetries.

Next we use the spinor basis to construct a basis for the fields Ag. We define

(Ab 1 XeI) + cIV Yy = ( XI) -+ c kVKIY$ vgY$ + c1V= YV,

~~2~ (cP-X2 _ - FX2) + y~ cV~Y c~A~ yk+2~
(6.88)

A3Crj~"F0 6 9 ,EV~y 2(F ei V )
As A pF079,qtyk (,C-2 -2

Here c1, c2 are constants which are determined by the condition that A and A2 should be divergenceless:

1 im 2 (d - 1)im
C = -= (6.89)

2/k(k +d - 1)' k(k +d - 1)

There is another bilinear involving spinors X , which is equal to a linear combination of a pure divergence

term and A'

C p g X + E _ X2 = 2V gY - 4im gvY* . (6.90)

Since Xf vanishes identically for m = k, we see that A' and A2 are not linearly independent for m = k:

A = -2k#A1, for m = k. (6.91)

Similarly, A3 and A 4 are proportional to each other for m = k.

We now show that the bosonic fields defined in eq. (6.88) provide a complete basis for bosons in the

vector multiplet 4 . We do so by diagonalizing the action of V 2 on A,. It acts on the vector field og to give

V 2vA = -402 (d - 1) v., V2v, = -43 2 dvi. (6.92)

4Excluding the scalar field Oo.
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Using this along with

I2 4 2 (k(k + d - 1) - (d - 1)) V Vhvo = 2o3rcF"AE, (6.93)

gives us the action of V 2 on the A'-
M

V2 A' -4 [k(k +d -1)+d -1] A +44A ,9P P (6.94)
V2A = -4,2 [k(k + d - 1) +d] A' +40A2.

To find the action of V2 on A2_ we need to know how the operators VA and V2 act on more complicated
M

bilinears. Using the Killing spinor equation and that = AE, one gets

V2 F,"A = -8A3 2EF," AE, V 2c "FAE = -402Eri"AE,

VA (erI"Ac) VAVYk - 803 k(k + d - 1)vYk + 4326 (imVYk + cF,"AcVyY).(

Using these results we find that

V 2 A = 1603 k(k + d - 1)A' - 4#2 (k(k + d - 1) - (d - 1)) AI
P P (6.96)

V 2 A2 = 1603 k(k + d - 1)A1 - 4#2 (k(k + d - 1) - (d - 2)) A2.

The action of V2 on A3,4 can computed in a similar way. The following results are necessary for this calcu-

lation:

V 2e, vr019,E -4 32 (d - 2)Erc] "019 6 VAErF"F k9 cVAVuYd = 0, for I = 6, 7.

(6.97)

This gives

V2 A3 4 -43 2 (k(k+d 1)- 1)A3,4

V2 = -4,32 k(k + d - I)A '.
(6.98)

The eigenvalues of V2 acting on the vector and the scalar parts of A, are given below. The first term in
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each row corresponds to A, and the second to Aj:

-402 (k(k - 3) + d(k - 1) + 1),

-4/2 (k (k + d + 1) + d - 1),

-432 (k (k + d - 1) - 1),

-432 (k - 1) (k + d - 2),

-4#2 (k + 1) (k + d)

-402 k (k + d - 1) .

(6.99)

These eigenvalues correspond to the following linear combinations of the basis

A'- + 2 (k + d - 1) A , A' - 20kA , A T iA 4. (6.100)

For m = k, we use that A 2 = -23kA'- to see that the first eigenvalue in eq. (6.99) does not contribute.
Al M

Similarly, Al - iAh vanish identically for m = k so corresponding eigenvalues do not contribute. By

shifting k, we can rearrange the basis into vector and scalar harmonics with eigenvalues

- 402 (k (k + d - 1) - 1), 402k (k + d - 1), (6.101)

respectively. The total number of harmonics is given by

degb (k, d) = Dk+1 (d, 0) + Dk-I1 (d, 0) + 2 Dk (d, 0) - 2 Nk+1,d - 2 Nk,d. (6.102)

Using the explicit expressions for the degeneracies provided in chapter D we get

degb (k, d) = (5 - d) Dk (d, 0) + Dk (d, 1) . (6.103)

So we deduce that the basis defined in eq. (6.88) provides a complete set of harmonics for the vector multiplet

in the case of eight supersymmetries.

One-loop determinant of bosons

We now compute the one-loop determinant for vector multiplet bosons. We need to diagonalize the action

of the operator 0 ,N defined in equation eq. (6.55)

O]I N - -6v2 + ef - 20(d - 3)l'svN89,EV'. (6.104)
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The matrix aNg is defined in eq. (6.56). The action of V2 on the basis is given in equations (6.94), (6.96)

and (6.98). The next non-trivial part of the operator 0  N involves cFjAN89CVA. For A' we have

E AN89 AN89E Eyk + FAN89 VY (6.105)

The term multiplying Ym and its derivative can be simplified using triality.

EJj AN89 6ENA - - 1)vP, EFiAN89 EL jZAEA = -dvi, EAN89 E rE E-- AAE.

(6.106)

Using these relations, we get

eFAN89 EVAA' = -20(d - 1)A1 + A/(1
1 P (6.107)

EF AN89Nd AA =- -23dAl + A 2

The action on A2 can be computed in a similar manner:

,Er 11AN9 9VAA 2  =4l2 k(k + d - 1)A1,(.18
9 111(6.108)

Eri AN89 EVA 42 ~ 2 )' 0

However, the computation for A 4 is slightly different. We have

M M

cFAN8 9 V I- _ AN89EV [Nu1 OI9CVUY (6.109)

where I = 6, 7 corresponds to A 3, A 4 respectively. First we note that

VA (Er AN89E) _ 20dEF'C10e = 0, (6.110)

So we can write the right-hand side of equation (6.109) as a total derivative. Next we use the following

relation due to triality,

E(pAN89( EF ,0I9 _ _p SAISE - V VEPA018, (6.111)
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which allows us to write

EJ AN89 -3 VA vAI8 + md A01I8yk
c~x , EIJCI EVk + 1 M

This can be now computed using the Killing spinor equation and the triality identity, resulting in

d 2 -( 27
=-2#3

-2m

_ _iM

d - 2) (A)

d- 1) (A4

The action of the complete operator on the set of basis vectors can be written in the following compact form:

(OAi) = 402 [k(k + d - 1) + (d - 1)23 A' - 2/ (d - 1) A ,

(0A 2 ) = -803k(d - 1)(k + d - 1)A1 +4/ 2 k(k + d - 1)A2

(OA 3 ) 1 = 402 [k(k + d - 1 + (d - 2)2] A}3 + 4i02 m(d 3)A4

(0 4 ) = 402 [k(k + d - 1) + (d - 2)2] 4 - i32 m(d - 3)A} .

The corresponding eigenvalues are

4/32k 2, 432 (k + d - 1)2 4 32 [k(k + d 1) + (d - 2) 2 m(d - 3)] .

Including the contribution from different roots and taking into account the degeneracy of the basis, we get

the one-loop determinant for the bosonic part of the vector multiplet:

00 Dk(do) - c
Z_100 b = 2 [4/2 (k2 -2) 2 -Nk,d [42 ( - d

ce k=1 k=O

Dk(d,0)

1)2 + (aU)2)] 2

k=oc m=k -1

k=1 m=-k

(k (k+d- 1) + (d - 2)2 + (d - 3) m + (a, -)2)] Nm,d

One-loop determinant of fermions

Next, we calculate the contribution to the one-loop determinant from the vector multiplet fermions. We

will use the basis with the '+' subscript introduced in Table 6.1. We need to diagonalize the action of the

101

(6.112)

FAN89V

NliA189 EV

A4

A

(6.113)

(o. 114)

(6.115)

(6.116)



following operator:

of =foV!,- (d-3)#vMf A - (d - 3)0 (e'AA') Fg + (d - 1) 08 9 . (6.117)VM2 M 4 +2

The action of fot has been computed in eqs. (6.80), (6.82) and (6.83). The second operator can be

written as

vMIrA = F 89 (fovMr ) . (6.118)

The spinor basis elements have definite eigenvalues under the action of F 89 and fovMrF as given in Ta-

ble 6.1. Hence the action of the second and the last operator on the righthand side of eq. (6.117) is trivial to

evaluate.

The action of the third term appearing in Ovm can be obtained using triality.

'Erl ,AEr 1 1 -j = -4-j 1FAAArgj=+ijeFMN Xc 1 - -4iX', CfMNAE rj 4(6.119)
eFAAAerg X2 = E]FICfAErg j =2EC~fMACr,,fM& .- CF ICYF 0.

We get the action of the full operator on the spinor basis to be

of mX = 2iO (m + (d -- 1)) X' + X2,

O m + = -43 2 (k - m)(k + m + d - 1)4X - 2im (6.120)

O Xm1 = 2i (m - (d - 2)) X + XZ,

O mX 4 = -4 2(k + m)(k - m + d - 1)4 - 2i0 (7- - (d - 2)) 2.

For m - k, all of the above spinors contribute to the determinant. The contribution from X2 and ZX'2 is

4 2 k(k+d- 1), 432 [k(k + d - 1) - m(d - 3) + (d - 2) 2 ] , (6.121)

respectively. However, as discussed earlier, X2 (X2) vanishes identically for m = k(-k). So for m

k(-k), the first(second) term in eq. (6.121) is replaced by the eigenvalue corresponding to X+(X)

,.m + = +2i3 (k + (d - 1)) X+,

ov.mX = -2i/ (k + (d - 2)) XS.
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Including the contribution from different roots, the one-loop determinant for the fermions is given by

00 00

Zv*cf 10  = [2i0 (k + d - 1 - i(a, a))]Dk(dO) J-2i# (k + i(a, ,))]Dk(dO)-Nd

a k=O k=1

k-1

rl [-20# (k + d - 2 + t(a, o-))]Nk,d H 42 (k (k + d - 1) + m (d - 3) + (d - 2)2 + a ,2 N., d

k=O m=-k

(6.123)

Combining this with the bosonic determinant, we see that most terms cancel and in the end we are left

with:

Zveioo H~ ,o- [(k + i, -)(k + d - 2 + i , o))]Nk,dI-loop~ lu (6.124)
ae a k=O

With Nkd given in eq. (D.7) this matches exactly with the conjecture in [6].

6.3.2 Hypermultiplet

In this section we compute one-loop determinants for a hypermultiplet with eight supersymmetries. We

proceed in the same manner as for the vector multiplet by introducing a complete set of states and then

computing the eigenvalues and degeneracies of the quadratic operator.

One-loop determinant for bosons

The bosonic part of the quadratic fluctuations about the fixed point locus for the hypermultiplet is given

in eq. (6.58).

9

L () Z = [i (-V2 + 82(d - 2 + 2io-ip,)2)
i=6 (6.125)

+ 4/ (21p - 1) #6v 'V,40 7 + 4/3 (2ip + 1) 08v"V,, 9 .

We see that 06,7 and #8,9 mix under the action of the kinetic operator. We use yto diagonalize the action

of the operator appearing in eq. (6.125). The eigenvalues for #6,7 are

432 k (k + d - 1) + d 2 + i A 1 m (2iP - 1)). (6.126)
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The eigenvalues for #8,9 are the same as above with 1L -4 -p. Including the contribution from different

roots, the bosonic part of the one-loop determinant is given by

k~oo k I /"- 2 \2 -i Nm,d

Z hy k=0j 4 s2 k (k + d - 1) + d 2 + i/) + (a, o-)2 + m (2ip - 1),
a k=O m=-k

42 (k (k + d - 1) + (d 2 i )+ (a,)2 - m (2ip + 1) N,d

(6.127)

where we have used that in the product positive and negative values of m come in pairs, so the product is

invariant under m -+ -m.

One-loop determinant for fermions

The relevant part of quadratic fluctuations is given in eq. (6.59). We need to compute the determinant of the

operator

ofm = I 0 V-- ( & "-A E) r'g + 2ip&v 'f ,A. (6.128)

To diagonalize the action of this operator, we construct a complete basis for the hypermultiplet fermions. We

define the spinors

A+ = (F 6 + i1 7 ) E, A+ = (F 8 + iX 9) E (6.129)

which satisfy

F89A+ = -ii+,

F89I+ = -|iZ+,

FoFmvMA+ = -A+,

formvg I+ =-.

(6.130)

(6.131)

Now we define the spinor harmonics, using the spinors A1 2 and the scalar spherical harmonics Yk:

+ M+
(6.132)

f pL (tyk) 4
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The spinors + (X ) vanish identically for m = k(-k). An analysis similar to the one in section 6.3.1 shows

that the basis defined above, provides a complete set of spinor harmonics on Sd for hypermultiplet fermions.

The action of the operator on these basis elements can be computed in an analogous fashion to the vector

multiplet fermions, resulting into

Ofm = 2i m+ ( +d 2 1 x 2

of. = -4 32 (k - m)(k +m+d - 1)X + 2i0 M+ d 2 + X

\ + +1 (6 .133)

of .m1 = -20 d- 2 ~1 22

h ~M'1 = -4 2(k + m)(k -mTn+ d - 1)Z + i - d 2

For m k, the contribution to the determinant from these basis elements is given by

2 32 ~~d-2 
\ 

t)2)

X I 4 k(k+d-)+m(2i-/1)+ 
(6.134)

V,2 4 2 (k(k+d-1)+m(241+1)+ d 1 2 ).)

For m k (-k), only X (Z) contributes to the first(second) term in eq. (6.134).

of. 1 =-1i0 k + d+p- 'Y+,hMX ( -(6.135)

Om = -20# k + -i -1 -

After including the contribution from roots, the fermionic part of the one-loop determinant is given by

Zi-op = kc k-i 402 k(k+d--1)+m(2i-1)+ d 22

Q k=O m=-k

[4o2 (k(k + d -1)- m(2ip + 1) + d -2 - 2+ 2) N,

4o2 k+ d22 +p -i - k+ d22 +( 6

(6.136)
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Combining this with the bosonic determinant and after many cancellations, we are left with:

k-oo - -Nk d

Ziop = 1 [ k +[ d 2 + i + i(a, )) k + )- . (6.137)
a k=O

This matches with the conjectured form in [6].

6.4 Determinants for four supersymmetries

In this section we will compute one-loop determinants for theories with four supersymmetries. Most of the

computation is similar to the case of eight supersymmetries. However there is an additional subtlety in the

construction of complete sets of basis elements. Before discussing computation in detail, we summarize our

results here. The one-loop determinants take the following form

Zv. kf0f (k + (( i(c-, a)) lkd

_,00P li~a'o H 1I (k + d - 1 i a ) ]

ae a k=O (6.138)
3 f k-co 'k d -ajp in~- k,d

~=1 a k k+ 4-2 + Ate)L +ia,)

The factor nkid in the exponent is given by

Fkd (k +d - 1)(619
F(k + 1)F(d - 1)(

We now give a derivation of eq. (6.138).

6.4.1 The complete set of basis elements

One can verify that only the first two of the spinors defined in Table 6.1 have +1 eigenvalue for I' and

hence belong to the vector multiplet of theories with four supersymmetries. However, they do not provide a

complete set of basis elements for spinor harmonics. To see this, recall that eigenvalues of the Dirac operator

acting on x 2 are given in equation eq. (6.85). By shifting the value of k, one can arrange them into spinor

harmonics with eigenvalues 2i (k + 4). However the degeneracy of positive and negative eigenvalues is

not the same.

deg+ = Dk (d, 0), deg_ = Dk+1 (d, 0) - nk+1,d. (6.140)
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Here nm,d denotes the number of scalar harmonics Yk for the case of four supersymmetries. This differs

from Nm,k, as the vector field v,, now vanishes only on an S 2-d. An explicit expression for nk,d is provided

in chapter D. Using that, we get

deg = 2 F(k-+-d) (6.141)
F (d) F (k + 1)'

which is equal to the degeneracy of spinor harmonics on Sd for d = 2, 3. Clearly deg+ is different. Moreover

one can show that:

deg_ (k, d) - deg+ (k, d) = nk,d. (6.142)

So X1 and X2 do not provide a complete basis for the spinor harmonics. This can be fixed by including

another spinor Xi', which has the correct eigenvalue and degeneracy,

' = 05 79 m Y~, F X1 ' - +2i3 k + 4'. (6.143)

So a complete basis for spinor harmonics is provided by X1, X2 and X 1'.

For the vector multiplet bosons we use the following basis

A' =Vglyk + C1 V - ykICY M M (6.144)
A2 = c7LAVyk + c2 V -y

These are the first two basis elements that we used for theories with eight supersymmetries as defined

in eq. (6.88)). As discussed in section 6.3.1, these basis elements can be arranged into vector and scalar

harmonics on Sd with the total number given by

degb (k, d) = Dk+1 (d, 0) + Dk-1 (d, 0) - 2 nk+1,d. (6.145)

Using explicit values one can show that

degb (k, d) - Dk (d, 1) - (3 - d) Dk (d, 0) = -2nk-1,d 0. (6.146)

Hence the above basis is not complete. We can complete it by including

A = EFCIX'. (6.147)
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The elements A' defined above are divergenceless. Their eigenvalues under action of Laplacian are

V 2 A" _4 2 (k (k+d+1)+d -1) A:, V 2 A' -4 2 (k+1)(k +d) A:.

By shifting k -- k - 1, we can put eigenvalues in the canonical form with the total number of harmonics

given by 2nkl,d, precisely what is needed to complete the basis.

6.4.2 Vector multiplet

One-loop determinant for bosons

To compute the one loop determinant we need the action of the operator 095 on the basis elements A and

A . The computation for A was performed in detail in section 6.3.1. Their contribution to the one-loop

determinant is given by

17 [42 (k 2 + (a ) 2 ) Dk(d.O)-2nk,d 1 [2 ((k + d - 1)2 + (aa)2 k(d,)

a k=1 k=Q

The action of (9 - N on A' can be calculated using the same techniques as were employed in section 6.3.1.

(6.149)

Including the contributions from all basis elements, we get the bosonic part of the one-loop determinant:

Z_ c b [2 (k2 + (a, )2) 2' -nk, d j [4f2 ((k + d - 1)2 + (a,)2 2kdO+

a k=1 k=O

(6.150)

One-loop determinant for fermions

The quadratic fluctuations for the vector multiplet fermions for the case of four supersymmetries are given

in eq. (6.57). We need to diagonalize the operator

1 1
0 = 'F"~V - (d - 3)/3vMFgA - g#d- 3 )cFMAd+erg + (d - 2)#~F89 (6.151)
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acting on X42 and X i. The details of this computation are similar to the case of eight supersymmetries.

One gets

OfmX1= 2io (m + (d - 1)) XI +X2,

.M X+ = -43 2 (k - m)(k + m + d - 1)X4Y - 2i/m ,

OfmX = +2iV (k + d - 1) X'.

From this we get the one-loop determinant

k=oo [--

Z=e op -I 171J [-20i3(k + ia, u,))]'k (dO) -k~d 11 [2zi,3 (k +1 d - 1 - 'i~a 0r))]Dk(dO0)

k=1

k=oc

k=0

k=U

(6.152)

(6.153)

[-20/ (k + d -- 1

Combining this result with the bosonic determinant, we get the the full one-loop determinant for the vector

multiplet:
k=oo -(

ZIioopf i(a, ) = 11 (k + i(a,a,)) lkd
a k=O (k-i-d-1-i(acx))

(6.154)

One can check that for d = 3, this gives the correct one-loop determinant which matches with the results in

[47].

6.4.3 Chiral multiplet

We now compute the one-loop determinants for the chiral multiplet. For the case of four supersymmetries,

the mass-deformed Lagrangian contains three chiral multiplets.

One-loop determinant for bosons

We consider the chiral multiplet containing the scalar fields #4, 05. The relevant bosonic part of the quadratic

fluctuations is given by

2 + 2itpl) 2 ) 0,] 4/3 (1 - 21i) # 4 vP'V7#5-
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Using the scalar spherical harmonics, the action of the kinetic operator can be diagonalized to obtain the

one-loop determinant

00 k 2 - nm,d

Z o (AI) b _m [4o2 k (k + d - 1) + (d l) + (a, o-) 2 + m (1 - 2ii))
k=Om=-k)I

(6.156)

The determinant for scalar fields 06,7 (08,9) is the same as the above expression, but with pi A 2(-÷3).

One-loop determinant for fermions

To compute the one loop determinant, we introduce a basis for the spinor harmonics as before. We introduce

three sets of basis elements for three types of chiral multiplets:

+f Y +f M(6.157)

xi 05 7 9Ym A _, for m = - (- 1 )1(e)
2 (e) k,

where A is defined as

A = Fo (F2e+2 r 2f+3 ) e. (6.158)

The index f = 1, 2, 3 corresponds to the three chiral multiplets. Now, we need to diagonalize the action of

the following operator

3

r=1 (6.159)

o(.=Pa" Ae) P + o-(3 (2iyjv'f A + r89

We give the result for the f = 1 explicitly:

(9f.m, 1 - M + d 2 ( 2 + +

of., X2= -432 (k-rm) (k+m+d- 1)X+1  + 2 i M+ d -2 + i/1i X , (6.160)

Of.mi Xi= +2i0 k + d ) <1.
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From this, one gets the one-loop determinant for fermions:

k=oom=k-1 [i2f((d 2
k~o = 1 140 2 (d - 2 + ip-i 2 + m (21pi - 1) + (a, U)2 + k (k + d - I1) n~

a k=O m=-k .

k=oo d-2nk nk~
S -2i# (k + 2 + i4L + 2 (a, -) 21,i (k + - ipi - i(a, a)) .

k=O

(6.161)

Combining this with the bosonic determinant, we get the full one-loop determinant for the chiral multiplet:

Z10 0pk=oo [ --- niiiau k,dk + d p ~,a
Z O H ( = + i 2l .ic) (6.162)

ce k=O . 2 +1p ~,a

nk,d is given in eq. (D.8) The one-loop determinant for X2(3) can be obtained by simply replacing pi with

A2 (-A3). Hence, the full one-loop determinant for the chiral multiplet part is given by

zit00, (= 23) Zchi, (p1) Zhi1,(p2) Zhi (-p,). (6.163)

6.5 Analytic continuation to d = 4 with four supersymmetries

Now that we have obtained expressions for partition functions with eight supersymmetries in d < 5 di-

mensions and four supersymmetries in d < 3 dimensions, it is tempting to continue the results to higher

dimensions. In [7] this was done for eight supersymmetries where it was shown that the results were con-

sistent with the one-loop running of coupling constants in flat space. In this section we consider continuing

theories with four supersymmetries up to d = 4 using the expressions in section 6.4.

6.5.1 Consistency checks of analytic continuation

In this subsection we perform consistency checks on the analytic continuation with four supersymmetries.

We will show that in the gym -a 0 limit, the analytic continuation gives the correct partition function for

a free vector and free chiral multiplets on S4 . We also show that the analytic continuation gives the correct

one-loop divergence for theories with four supersymmetries in the decompactification limit.
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Partition function of U(1) theory on S4

A U(1) gauge theory with four supersymmetries and massless adjoint matter in four dimensions is free and

conformal. Hence it can be conformally coupled to S4 and the partition function can be explicitly computed.

This matches with the result of our analytical continuation as we demonstrate now.

Consider the chiral multiplet in the adjoint representation of the U(1) gauge group. Our expressions for

the one-loop determinants can then be simplified to take the form

/0 (k+1)(k+2)

Z1lop :- H( k , oop = I(k + )3 (k+) . (6.164)

k= - k=O

The full partition function in this case is equal to the product of the one-loop determinants up to an overall

constant.

The chiral multiplet of K = 1 supersymmetry in four dimensions contains a two component Weyl

fermion and two real scalars. The conformally coupled action for a free chiral multiplet on the sphere takes

the following form:

schil) J d4 xV ( [41 (-7 2 + 802)01 +q 2 (-7 2 + 8/2) k2] - 3'V). (6.165)

The partition function for the matter part is then given by

Zchi det . (6.166)U(1) det (-V2 + 8# 2)

The eigenvalues and the degeneracies of these operators are given in appendix D. Using these we get

00 (k+l)(k 2)(k 3)

det = [402 (k + 2)2] 3

k=O (6.167)k0

0 1( (k+1)(k+2)(k+3) k(k+1)(k+2)

= rl [2,3 (k + 2)] 3 [20 (k + )] 3 ,
k=O

where the last equality follows by splitting the product into two parts and shifting k -+ k - 1 in one of the

parts. Similarly, we have

00 (2k+3)(k+2)(k 1)

det (-V2 + 8/2) =7J [4/32 (k + 1) (k + 2)] 6 (6.168)
k=O

112



Combing the the two factors of determinants, one gets

(k+1)(k+2)

Zch) = Zcic =7 (kj2) (6.169)
k=O

which matches the analytic continuation.

Next we compute the partition function for the vector multiplet. The IV= 1 vector multiplet in four

dimensions contains a gauge field and a two-component Weyl fermion. The relevant action on S4 , with the

gauge fixing term included is given by

Sv() f d4X (A'v [6,,u (-V2 + 12/2) + Vv] A' -
(6.170)

+ bV, A"' - 6V ",c).

We split the vector field as follows

A' =A,,+ V , such that VAA" = 0. (6.171)

By using that D (V,) = D'# det (-V2), we can write the partition function as follows

Zv) J DAD'D'DbDcD Vdet (-V 2 ) exp (_SU(1),v.m). (6.172)

Integration over b gives a factor of 6 (-V2
0). This, upon integrating over 4 gives a factor of [det (-V 2) -i which

cancels against the contribution coming from integrating over ghosts. Hence the partition function becomes

zvec Vdet' (-V 2) det (V) (6.173)
U (l) det (-V2 + 12,32)'

where the operator in the denominator acts on divergence less vector fields. Using the formulae for eigen-

values and degeneracies of the operators, the above expression reduces to the following infinite product:

Z =c = (k+ 1 )3(k+1) .(6.174)
k=0

This is the same as the analytically continued Zi"c up to an overall finite constant.
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Beta function from analytic continuation

For an K = 1 supersymmetric theory with a vector multiplet and N, chiral multiplets in the representation

R, of the gauge group the above expression for beta function reduces to:

3

, (g) = - (3C2 (Adj) - NcC 2 (R.)). (6.175)

We will reproduce this result by dimensional regularization of the analytically continued expression. To do,

so we need to determine the 0 (o2) terms appearing in the one-loop determinants. We proceed by replacing

a -* to, in the expressions for the one-loop determinants. Focusing only on the vector multiplet, one can

easily find that

d log Z'e

dto 2 Z ,) 2 (T (d - 1, 0, t (a, o)) + T (d - 1, d - 1, t (a,))), (6.176)
a>O a>O

where

F n )1 i 
(X,y, Z) -- = - 2F (X, Y+ iZ; Y+ iZ+1; 1) -c~ .

r(n+1)F(x) (n+y) 2 +z2 2z (y+zz
(6.177)

For d = 4 - e, we expand the R.H.S in powers of t and E. Keeping only the leading terms, we find

d 1og Ze 3d log -C 2 (Adj) Ou+- . (6.178)
dt2

From this we can easily obtain

log Z_C = C2 (Adj) l2 +oop- . (6.179)

A completely analogous calculation for a chiral multiplet in the representation Rc of the gauge group gives

12
log Zo- 02 (Rc) +-. -. (6.180)

We combine the 0 (0-2) contribution from one-loop determinants with the 0 (U 2 ) term in the fixed point

action as given in equation (6.51), to get

872 8r2 3 A) (6.181)
2 = g2 C2 (Adj) +-NcC2 (Rc) A-' 611

9 (A) g( 0
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where A is the renormalization scale and go is the bare coupling. Differentiating the above equation with

respect to the log A, one obtains the beta function

3

43(g) = -9 2 ( 3C2 (Adj) - NcC2 (Rc)), (6.182)
167r2

which is exactly what we wanted to show.

6.5.2 Free energy of mass-deformed Af 4 SYM

In this subsection we compare results from analytic continuation to a recent holographic analysis for P1 1*

super Yang-Mills [66]. There are some caveats which we explain below, but to the extent that we can make

a comparison our results are consistent with the holographic results.

The 1 = 4 super Yang-Mills multiplet decomposes into an 1 = 1 vector multiplet and three massless

adjoint chiral multiplets. The superpotential also has a cubic term which is the product of all three chiral

fields. We can give masses mi, = I . .. 3, to the three chiral multiplets and still preserve I = 1 supersym-

metry. If we choose m(l) = 0 and M(2) = M(3) then we preserve M = 2 supersymmetry, with the massless

chiral multiplet joining with the M = 1 vector multiplet to form an 1 = 2 vector multiplet, while the two

massive chiral multiplets combine into a hypermultiplet. The cubic term in the superpotential remains un-

changed. The supersymmetry is broken to M = 1 if the third chiral multiplet is given a mass or the first two

multiplets have unequal masses. The theory is called P1 = 1* if the cubic term in the superpotential is left

unchanged.

It was shown explicitly in [56] how to put an V = 1 theory on S 4 , and the V = 1* theory is no

exception. However, there are some subtleties. First for a Lorentzian M = 1 theory, every chiral superfield

4D has a complex conjugate superfield 4). In Euclidean space, these fields should be considered independent.

Likewise, for a flat Lorentzian V = 1 theory, a mass term would appear in the superpotential, Wm

-m'I 2 . The conjugate fields would have a complex conjugate mass fi. In Euclidean space these masses are

independent. In the holographic analysis in [66] m(i) is set equal to ~n(A.

There is no known localization procedure for 1 = 1* on S4 . Instead we propose analytically continuing

the mass deformed theory in d < 3 up to d = 4. There is an important warning in doing this. If we consider

M1 = 1* on flat space and compactify down to three dimensions, the resulting three-dimensional chiral

multiplets have complex masses. As explained in section 6.1, the mass deformed theory we use in the analytic

continuation has real masses. Hence, it is not obvious that the analytic continuation of the perturbative mass-

deformed partition function actually equals the perturbative partition function for M = 1* on S4, where the
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continuation of each real mass is set equal to the mass, or its negative, of the corresponding K = 1* chiral

multiplet5 . Perhaps there is a more involved relation between the two sets of the mass parameters for which

the analytically continued partition function equals that of the M = 1*. We leave this question for future

work. Here we simply explore the consequences of analytically continuing to d = 4 and find that the general

form of the real part of the free energy at large N is consistent with the holographic results.

(3)In three dimensions the mass parameters that appear in the partition function are written as y =

i Aj + r mR where mR is the real three dimensional mass and Aj is a charge under a corresponding flavor3
(3)symmetry. When continuing up to four dimensions we assume that this becomes y j o(j)pi where

u(j) is defined in (6.20) and pi the four-dimensional complex mass multiplied by r. If we then set d = 4

in eq. (6.154) and eq. (6.162) for three massive adjoint chiral multiplets, we find the perturbative partition

function

(k+1)(k+2)/ 8 7 2 Tr o(k-i(cx)) f3 (k -i(a, a) -io(j)p + 2) 2

= doue y i(a,()Z.ass,
a

where Zmas is the mass correction to the K = 4 partition function,

(k+1)(k+2)

F (k -i(a, o-) -io(j)pj + 2)(k+i(a, 0)+1) I 2Zmass H - (6.84
a k==1 L(k+i a, o)+iu( j )gj+1)(k-i(a, a) + 2)(

This last expression collapses to Zmass = 1 if all pj = 0. In deriving the second line in eq. (6.183) we used

the identity
(k+1)(k+2)fj [(k+i(a,ca))(k+i(a,uo)+2)3 1 2

and that every root in the product comes with its negative. The o are N x N matrices and the root vectors

are all possible combinations oa - oa, i , j where ci are the N eigenvalues of a.

5Note that these concerns do not apply to M = 2* theories, which correspond to K = 4 in three dimensions. In decomposing
the three dimensional M = 4 vector multiplet into an K = 2 vector and chiral multiplet, one can choose to have the scalar field

#o be part of the vector multiplet, which leads to real mass terms. However, we could have also chosen #4 to be part of the vector
multiplet and Oo to pair up with 05 in the chiral multiplet. If at the same time one changes the pairings of the other four scalar fields,
then the mass terms and the cubic term proportional to the mass in (6.14) would come from the superpotential.
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This term is divergent if any pj # 0 and needs to be regularized. To this end we define

_(k+1)(k+2)

0(k -i(-')-ip + 2)(k+i(o - ')+ 1) 2

(k+i(o - a-')+ip+1)(k -i(o- - o') + 2)

For k > 1 we expand log[Zk (u-o', p)] in 1/k, where we find

log(Zk(u-U',P))= -i k+ I + k ) a 2k3k O ( . ) (6.187)

Hence, if we expand log Zmass in powers of pj, the terms up to cubic order in the masses will be divergent.

The term linear in p can be dropped as it eventually will cancel because of the mass condition (6.27), which

in terms of the py is

p1+P2-P3 = 0. (6.188)

The remaining divergent terms are independent of o- - o-' and can be removed by adding constant local

counterterms to the Lagrangian.

In the large N-limit the free energy can be found by saddle point. We are particularly interested in the

behavior at strong coupling, where the 't Hooft coupling A = g2 N >> 1. In this case, the saddle point

will have the separation between two generic eigenvalues foj - o- I to be much greater than 1. One can then

check that for o- - o '> 1,

3 oc 
+Il g( ,_01 t2 2 2E E g(Z (9--0', 1(j)Pj)reg ~ ++P2+p3

j=1 k=O (6.189)

- og(0-o-')2(P3+p,3- pI).

Using (6.188) we can reexpress the cubic term as

3 3_ 3
Al +P2 -- 3 -3 Pip-2p-3 .(6.190)

Then, when eq. (6.189) is combined with the IV= 4 part of the partition function, the saddle point equation

reduces to
167r2  , 1+ (p+p2+p2) + I1p2 3
Ao ~ 2 do-p(a-) u 1 (6.191)

where p(o-') is the eigenvalue density. Notice that eq. (6.191) is similar to the . 2* saddle point equation

[71, 72] which has the same form as the saddle point equation for a Gaussian matrix model. One then solves
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for p(a) in the standard way, where one finds the Wigner semi-circle distribution,

p(a) =2 2 ,(6.192)

with

A 2  2A(1 + j(p!+ jp) + i ip'3) (6.193)
87r2

Because of the imaginary part in eq. (6.193) the eigenvalue distribution runs at an angle off of the real axis.

One then substitutes p(a-) back into the free energy, where the dominant part is given by

F N dad' log(a - a') 2

2
2  + (P +pL+L) +i PIP2P3 (6.194)

x log (A (I + 1(P2 + /t2+A2) + ippp

Expanding about small y and dropping terms up to cubic order which are not universal [65, 66], eq. (6.194)

becomes

F 1- N 2  (2++p )2+ (p+p + 2

(6 (6.195)
_- 1( 2 +2) 3 i21+ 2,/_L7

96 4

In [66] it was argued that the terms in the free energy could only come with factors of m(ilM(2)M(3),

~n(1) ~n (2) ~n(3), or E(m(j)i~n-(l)n where n is a positive integer in order to be consistent with supersym-

metry. If m(i) r h~i(') then this translates into terms of the form p1P2P3 or [1" + ,2n + . Equation

(6.195) is consistent with this observation. One should also note that the regularization should preserve the

supersymmetry. If equation (6.188) had not been in effect, we would have had to add counterterms linear in

py, which violates this supersymmetry prescription.

Assuming that a regularization can be performed, one expects the free energy for a general choice of ptj

to have the form [66]

F =/1 -+ A1 4 p +/+p)+A 2 +pA +1,2 2 + i B12 p+ P2+ )P2 9F = -N2 (A, 1 2 3 A2 1 2 3 ZBl(1 2 P W 3 (6.196)

- C - (3 C)2 + O(,L7)
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Comparing with eq. (6.195) and using eq. (6.188)), we find that

1 1 1 1(61)
A 1 + 2A 2 = - B 1 = -, C1+C2= , -12C 2 + C3 = - I. (6.197)

8 4 24 8

The first and third relations were derived in [66] using the K = 2* results, where one has p1 0. The

second relation differs from [66] since their free energy is real. The fourth relation is a new prediction.

One feature that is different here compared to the holographic dual is that the free energy in (6.196) has an

imaginary piece, while the holographic result has a real free energy [66]. Since the theory is Euclidean and

nonconformal it is not reflection positive [56], so it is not obvious on general grounds why the supergravity

dual gives a real free energy. This issue deserves further investigation.

One further issue is that a gaugino condensate appears in the holographic analysis if all three chiral

multiplet masses are nonzero [66]. It is not clear how one sees the condensate in the analytic continuation.
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Degrees of freedom

The purpose of this appendix is to determine the physical degrees of freedom propagated by the HSZ theory

and the massive deformation of DFT. We will abandon manifest O (D, D) invariance by taking the derivatives

D and ) to be partial derivatives, using indices as p, , ... , and L = a2. We start by determining the

spectrum of the two-derivative part of the HSZ theory. Then we compare it with the spectrum of the full

HSZ theory and show that no extra degrees of freedom appear upon adding higher derivative terms. Finally,

we consider the spectrum for the massive deformation of DFT given in section 4 and show that it does not

propagate any ghost-like degree of freedom.

A.1 Degrees of freedom of two-derivative HSZ theory

Consider the two-derivative quadratic Lagrangian given in equation (3.4). The part of the Lagrangian in-

volving emn and < is trivial to analyze and it describes massless graviton, dilaton and two-form field. We

thus focus on the part of the Lagrangian involving the a-field. After putting in explicit factors of a', we have:

L = - -1 al" 0 a., - .1(a,,amv")2 + -L al"a,. (A. 1)8 4 ~ l(aW 
2  av

We rescale the field as a -+ 2a to get the canonical normalization for the kinetic term and also define

m2 = 4. After coupling to a source J, the Lagrangian becomes:

L = -aAv (E] -M 2 ) a, + aAVO,o9Papu + aI"Jv . (A.2)
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The equations of motion in momentum space take the following form

(p2 +m 2)a,u - p,(p -a), - pv(p -a), = -J,. L (A.3)

Using the equations of motion in the Lagrangian it takes the following form in the momentum space:

L = J" (-p) a,, (P) (A.4)

We introduce the notation (pap) = ppa'L"pv and (p -a), = p'a,. Contracting the above equation with

pp" and solving for (pap), we get:

(pJp)
(pap) = 2 - r2

Contracting equation (A.3) with p" and using the expression for (pap), we can solve for (pa),:

(p -a), = 2 ( 2 P" 2 (pp) - (p J)
M2 p - w

Using these expressions for (pap) and (pa), in (A.3) we can solve for a,,, and obtain:

1 /
ap,= - r J"V +

1 2(pJp)
(pp (p - J)v + p,(p - J), + 2 (p2 -M 2 )(p2 +rM2 )

Decomposing the last term into partial fractions, we get

= - 1 1 pp (pJp)
ap, p2+ m2 w" (p 2 - M2 ) M4

where

JyV 4 ,+ (pI,(p -J) + p'(p -J)pU)+ Pz .

Back in (A.4) the Lagrangian becomes

L-J"1(-p) -1+(pJp) (-P) (pJp) (P)2 +m 2 M

(A.7)

(A.8)

(A.9)

(A.10)

The nature of the degrees of freedom is determined by the residues at the poles. At the pole p2 + m 2 = 0, it

is easy to see that j" is transverse, i.e., pJ"' = 0. Using this, we can write the Lagrangian as follows:

(A.l1)
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(A.5)

(A.6)

L (P) 1 1~
L 2 jjI p J~(p) + T(pJp) (-p) ~(Pjp) (P) -

p 2 +m 2 2r p 2-M



The first term implies that we are propagating a ghostly (overall minus sign) massive spin two mode (the

traceless part of j,,) and a ghostly, massive scalar (the trace of J,,,), both with mass squared equal to M 2
.

2The second term shows a proper tachyonic scalar with mass squared given by -m

The analysis of the sector involving ay, can be done similarly. Note that the kinetic terms for d,, and

a,,, have the same sign but their mass terms have opposite signs. Hence, the &, sector describes a ghostly

tachyonic spin-2, a ghostly tachyonic scalar and a healthy massive scalar.

A.2 Degrees of freedom of full quadratic HSZ theory

Here we consider the full quadratic theory as given in the Lagrangian (3.19). We see that the three sectors,

(eAV 1), (a,,, p) and (d , b) are completely decoupled. The sector (e,,, 1) is well known and describes

a massless graviton, dilaton, and b-field. We focus on the (aAV, (P) sector of the Lagrangian given by:

L = -}- a" a,,, - j(0,at")2- &at"8,a o + -L al"a A + I POP - P2 (A.12)

where we have put explicit factors of a'. We rescale the field av -+ 2a- , to get a canonical kinetic term

and define m 2 --. After coupling to sources JV and K the Lagrangian takes the following form

L -j at"(L -M
2
) a,, + ap"aPap + al""& 1,&w + b'(E] - Im

2 )W + a"J11, + WK . (A.13)

The equations of motion in momentum space are given by:

(p2 + m 2) aM, - p,(p -a),, - p(p -a), - pLpvp = - Jw,
(A.14)

(p2 + m 2)p + (pap) = K.

Using the equations of motion in the Lagrangian it takes the following form in the momentum space:

L = 1 Jv (-p) ajIV (p) + . K (-p) p (p) . (A.15)

Contracting the first equation in (A. 14) with p1' we get

m 2 (p -a), - P, ((Pap) + P2W) = (P _ j ) . (A. 16)
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Contracting this with p" and solving for (pap) we obtain:

(pap) = pm 2  p- 4 2, (A.17)
p 2- M2 p 2-- M

where we notice tachyonic poles (that will disappear later). Using this in the equation of motion for p (second

one in (A.14)), we can solve for o and obtain:

2 (pJp) 2 p2 - M2

- m 2 p 2 +m 2  m2 r2 + Am2

We now reconsider the first contraction (A. 16) to find

(p -a), = 1!2(p, ((pap) + p 2 W) - (p _ J) . (A.19)

Using this and the expression for cp in the equation of motion for a,, we can solve for a, in terms of sources

and get:

a = - 21 + +2K , (A.20)
p2 +m2 m2 (p2 + 2) m 2 2

where J,, is the transverse part of J,,, as defined in equation (A.9). Back in (A. 15) the Lagrangian becomes

1 p2 - M 2

L = -J 2 J ,,(p)- K(-p) m2 (P2 M2)K(p)
j~' -Fm(A.21)

1 1
+ (pJp)(-P) -K (p) +K(-p) -(Pjp) (P).

m 2 (p2 +,m2) m2 (p2 + m2)

We now have to look at the pole p2 + m 2 = 0. Using that J,, is transverse at the pole, the Lagrangian

can be written in the following form at the pole:

L = - 1 J - p m~ v (p)+ ( 2K + (P ))(-p) (2K + (jp) (A.22)
J"( P2 + M2 m2, (P 2 + m2 (K M2)(P

The first term tells us that we are propagating a ghostly (overall minus sign) massive spin-2 mode (the traceless

part of J,,) and a ghostly, massive scalar (the trace of J,,). The second term shows a proper massive scalar.

The analysis of the ( c, ) sector can be done similarly. Since the mass terms of the two sectors have

opposite signs and the kinetic terms have the same sign, the (a,, o) sector propagates a ghostly tachyonic

spin-2, a ghostly tachyonic scalar and a proper tachyonic scalar. If we compare this spectrum with that of the

two-derivative theory we see that thefull spectrum remains unchanged.
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A.3 Degrees of freedom of massive DFT

We start with the Lagrangian for the massive DFT as given in equation (3.23). We scale the fields as e,-

v'2ew, and <D - - to get canonical normalization for the kinetic terms. By using e, = hp, + byu,

the Lagrangian for the massive DFT can be written as:

LmDFr = Lh,k + Lb, (A.23)

where

Lh,O = hm"Ehy, + (aphv)2 + hVM"fp/# - # - IM2(htvhpv - #2)
(A.24)

Lb = ibVEbyV + (,pb" - M2bA"bti

The Lagrangian Lb is well known to describe a massive two-form field and will not be discussed further. In

order to make it clear that the mass terms in Lh,O are special, we modify one of the coefficients by introducing

a parameter -y. We will indeed find that the value -y = 1 is selected by the condition that we have no ghosts

in the spectrum. We thus take, henceforth,

Lh,4 = ihvLhV + (alhi")2 + h"vapavc - #OLII - jM2(h""h, - Y02) (A.25)

After coupling to sources J, and K for h,,, and 0, we have:

Lh,4 = h""EhyV+ ( +ahtu& - j# D2$ - -M2+(hlv _Y02) + J" htu + KO. (A.26)

In momentum space, the equations of motion take the following form:

J, - (P 2 + M 2 ) hyv + 2p,pphP,) - PuPvO = 0,
(A.27)

K + (p2 + 7M 2 ) # -ppvh" = 0.

Using these the Lagrangian takes the following form in the momentum space:

Lh,O = jJM (-p) hP, (p) + !K (-p) # (p) . (A.28)
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Contracting the top equation of motion with p1p" we get:

(pJp) + (p2 - M2 ) (php) - p4 = 0. (A.29)

The above equation and the equation of motion for # can now be used to eliminate # and (php) in favor of

sources:

(pJp) p2 - M2 K
M 2 A M2A

(php)=- K - p2+w PMQ 2 A M2 A(p)

where A is given by

A = p2 (_y - 1) - yM 2 .

Contracting the equation of motion for h,,, with p" we get:

(pj), + p, (php - p 2 0) = M 2 (ph)A,.

Using eqns. (A.30) yields

(ph) = 2 (pJ),4 - M 2 A (p2K +- y (pJp)) .

Finally, using eqns. (A.33) and (A.30) in the equation of motion for hm, we obtain

h 1 - PAP' (M2 K + (-1) (pJp))y2 J1" +M 2 M4A

(A.31)

(A.32)

(A.33)

(A.34)

where J,, is defined by

ju = Jtv + MpP( (ph),) + M (pJp) . (A.35)

It is easy to see that on the mass-shell p2 = -M 2, the tensor J,, is transverse,

P11 y = 0 (p2 = _M2). (A.36)
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This will be useful below. Inserting these expressions back into Lh,#, we get:

1 1 I (PJp)2 (_y - 1) + 2M2 (pJp) K + M 2 K2 (p2 - M2 )Ls4=gJy (-P) J " (P) 2P2 + M2 M4(- 1) (p2 +W2

(A.37)

For the case of interest, -y = 1, the second term above is completely regular and we need only focus on the

first term. Using the transversality condition (A.36) we can rewrite Lh,O as

1 -
L,= v (-P) 2 J+/M2" (P) + ... (A.38)

near p2 = -M 2 and where the dots indicate terms that are regular. At the mass-shell we can choose p

(M, 6) and thus the transversality condition implies that Jol, = t o = 0. The only non vanishing components

of J,, are those where both indices represent spatial directions. We are thus propagating (D - 1)D/2

positive-norm degrees of freedom, associated with a symmetric (D - 1) x (D - 1) matrix. The trace-less

part corresponds to the massive spin-2 and the trace corresponds to the massive scalar.

For the case -y y 1 the above degrees of freedom are still present but we now have more, due to the pole

in the second term of (A.37). This time the mass-shell is p2 = M and we go to a Lorentz frame where

PO= . Near the pole we now find

Lh,Isecondpo~e = 1 (K - -yJoo)(-p) (K - -Joo)(p) + (A.39)
(y - 1)2 p2 +

making it manifest that for -y ? 1 we propagate an additional ghostly massive scalar. We conclude that the

model constructed in section (4.1) describes massive graviton, dilaton and b-field and does not propagate any

extra undesired degrees of freedom.
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Conventions and useful properties of Gamma matrices

We use 10-dimensional Majorana-Weyl spinors e and Ta, etc. The 10-dimensional F-matrices are chosen

to be real and symmetric:

rMa3
_ rM13a

Products of F-matrices are given by:

rMN = f[M N]

r MNP -- r[MfNpP]

fMN = f[MfN]

fMNP _ f [MfNfP]

we also have that rMNP3 _ _- MNP3a, hence:

,EMNPE = 0

for any bosonic spinor E. We also introduce:

c = /3AE,

where = and A = 089. A useful relation is the triality condition,

FMY# 6 + F Mr.), + F'1MY#7 = 0.

Using eq. (B.5) one can show

EcME EFMX = 0,
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(B.2)
etc.

(B.3)

(B.4)

(B.5)

(B.6)

Ma)3_ [M)3a (B.1)



where x is any spinor. It immediately follows that vMvM = 0, where vM is the vector field

vM _ 6pME. (B.7)

We define another set of bosonic spinors, vm for m = 1, 2,--- , 7. They satisfy the following properties.

VMn="E 0,

lvmFMVn = 6 mnVM, (B.8)

1
V + ECE ~V Ma1M-

They are invariant under an internal SO(7) symmetry, which can be enlarged to SO(8) by including E.

To reduce to eight supersymmetries we impose the condition C = +F 6789 E. Furthermore, for d < 5, T

can be split up into even and odd eigenstates of r 6789. The even eigenstates, 4' = ' (1 + r6 789 ) T, make up

the fermions in the vector multiplet, while the odd eigenstates, X = 1 (1 - F 6789 ) T, make up the fermions

in the hypermultiplet. The scalars 01, I = 6,. . . 9 constitute the bosonic fields of the hyper multiplet. The

gauge fields A" and the rest of the scalars 0j, I = 0, d + 1, .... 5 make up the bosonic fields in the vector

multiplet. Finally, the auxiliary fields split up, with K', m = 1, 2, 3, being in the vector multiplet, and K.,

m = 4, 5, 6, 7, being in the hypermultiplet. The same is true for the pure-spinors v". Reduction to four

supersymmetries can be done similarly by imposing E = +r4589E
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C
Quadratic fluctuations about the fixed point locus

In this appendix we give details of the computation of quadratic fluctuations about the fixed point locus. We

focus on bosonic and fermionic parts separately.

C.1 Bosonic part

The bosonic part of fluctuations about the fixed point locus is equal to [6]:

= FMNFMN - FMN FM'N' EMNM'N'O, I FMNI (-EfA (fIf MNr _(PIfMN

- KmKmvo - 3dao0oKm (vmAE) + 4 Z(a) 2 4 IvO.
I

(C. 1)

Expanding the first term in eq. (C. 1) we get

1 MN = 1FpvFM" + F,1oFPO - [O, oil [#$, 01 + VPjVP#3

=VAVPAv - V AvVvA + VIAOVPO 0 + 2VI#o [AP, ]

- [Ap, #'][AP, #c'] - [ [2,l # ]i + V 7VPJ,

where J = d + 1,.. . , 9. The second term in eq. (C.1) can be expanded to get:

1 FMNFM'N' (EjMNM'N'06) = / VpA VIAU' (Erfy'v'OE) - 2VpAVp'dj (6E171'JO)
4V

-VU#JVJA,#J' (Er1AJj'''e).

(C.2)

(C.3)
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The third term in eq. (C.1) is

daj FMNOI e (fIfMN _OrIrMN) JVA) 0 (EAfJrOf )

+ day VA (EAf J'FotWFJE).

(C.4)

Collecting our results, we find that the bosonic part is:

Lb V VAVA' - VAvVvA" - Vo V"#0 - 2VO[A", Oc'] - [A,, Oc'][A", Oc']

- [ il # O}[4, 0/} + V,#o744O

- VAV,,Ay, (,r"v'v'o) - 2VAvVmO4 (ErC"'JOE) - VA#jV1j' (Er ujtj"E) (C.5)

+ 2a (V,1Av - VVAP) 01 (eAf JF ArvE) + iday V,#jgj (EAf J'vfo eJE)

- VOKKm - /dao#OK m (vmAE) + 2 d2 oV (I 20, I
4

Next, we rewrite this expression as a quadratic form:

Lb = AM (- "V 2 + VvV, - (E( "v'uOE) V,,V., - 20(d - 3) (EAr,"O) v, Av - [An, [ #0]

+ -V26J' - 20(d - 1) (EAvi"J'oc) V, - /day (EAf J'rof rJ) V,1 + o (aJ)26j) 0,

- [#95C, o][#', #'0] + 0 (V2 - d2  #O - 40(d - 2)AuV,# (EArvpjoe)

+ 3da j qjVAU (-Af JrJoFve) - K m K, - OdaO5OKm (vm AE),

(C.6)

where we have used the Lorenz gauge condition and the relation fT PU"I' = (d - 2)Fv'. Now, note that the

third term in the first row vanishes, and that for the second term, we can exchange the order of the covariant

derivatives to get a term which is zero due to the Lorenz gauge condition and another one which contains a

Ricci tensor, which on spheres is proportional to a Kronecker delta. Furthermore, we can combine the two
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terms which are proportional to V,,Oj into one, and finally get:

Lb =A (" V2 + 432 (d - 1)6" - 20(d - 3) (cAF'voe) V, 1 ) A, - [A., #'J][Al, #c]

+ # -v 2gJ' + 3 (-2(d - 1) + day) (eA J'rFjr OE) V + 4 (a0)25()

- [#O, #Oil[OC, #k] + 00 (V2 - /32d2 a2 Oo + 3 (-4(d - 2) + daj) A.Voj (EAvir3oe)J )

- K" Km - 3daoqoK"(im AE).

This general result includes both the vector multiplet and the hypermultiplet bosons. We now specialize to

the vector multiplet.

Vector multiplet

The vector multiplet contains the vector field A, and the scalar fields #0, 0j, where the index i takes values

i d + 1, - D and D = 5 for eight supersymmetries and D = 3 for four supersymmetries. We use

4(d -3) 4a0 - d 3 a ,=, for i=d+1,...,D. (C.8)
d ~ d

We also combine P and i indices into I= {p, i} to write the bosonic part of the vector multiplet Lagrangian

from equation (C.7) in the following compact form:

L bm =A" 0I Av - [A,, q$][ AM ,#Oc]
V.M .0 0(C.9)

- K m Krn - 43(d - 3)OoK"'(umAF) + q0 (V 2 - 4/ 2 (d - 3)2) .

The operator 09ff is defined as follows:

S = -N V 2 +i- a < - 20(d - 3)CFK7N8 9 V . (C.10)

and aN is the diagonal matrix given by:

(d -1) 6" 0
aA=4,32 .(C. 11)
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Hyper/chiral multiplet

The scalars 01, I - D +.. . , 9 are part of the hypermultiplet. For eight supersymmetries we get a single

hypermultiplet and for four supersymmetries we get three hypermultiplets by reduction of 10-d theory. We

first focus on four supersymmetries:

q$ ( + / (-2(d - 1) + day) (2AFJ'vjF[OE) Vt + 432d2 d2 2

- [#9O, oil [OCO, 0 j .

(C.12)

For four supersymmetries, the values of a1 are given in (6.20). The Lagrangian

in three decoupled parts which take the form:

3

C.M = ZO'f (_V26Le - 2/3(1 - 2iuay)y,) (eAFjrTe1'OE) v,~ 0 i(d

1 OO,0,1[CI 1

of equation (C.12) splits up

2 + 2io-(e)pe)261J1) 0

(C.13)

This can be simplified by noting that

EAF76p0 E = Vy, EAr9 8 "pO _ -Vy, EAF 5 4pOE _ vp. (C.14)

This gives the following form of the chiral multiplet Lagrangian.

. [O&t (_V 2 + 32 (d - 2 + 2i-( ptl) 2) OI, _ 1 4][106eOj
(C.15)

+ 4/3 (2ipe - O()) 02e+2v"V, 1 O2f+3.

For the case of eight supersymmetries the Lagrangian for hypermultiplet bosons can be obtained from

the above expressions by ignoring 04, #5 and setting p2 = p3:

9

L .m = j3q (_V 2 + ,32 (d - 2 + 2io-, p)2) 0, _ [s', 0,] [Od, 0,]]

+ 4/ (2ip - 1) 06v"V,4 7 + 4/ (2ip + 1) #8v"V,5 9 .

(C.16)
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C.2 Fermionic part

The fermionic part of the fluctuations around the fixed point locus is given by:

Lf = qJ (jp' = QF062q, - lF0 2FM'OEFMoe + aOF 06EOoVy6 + 26Kmvr.

We focus on the first term, involving two variations of the fermion.

oij = (EpNDM) FINE - EAPPNqj PNE

+ (EOT) E - l vMf M$0P + AKm'm.
2

aj- E IdAE
_2 (E~I')P'A

(C.18)

This expression can be brought into the desired form by using triality and other identities. Using triality the

first term in eq. (C.18)

- (EIAP) E- (epNe) DN! + (pN N04- (C. 19)

Using triality, the second term in eq. (C. 18) becomes

1
fd (eAT) c + (EAFMNE) PMN'p

2

1
- -3 (IA 1 jE) P'JxI

2
1

+ 1 #(eArPvE) Pl" - 2 (er"Q) fpAE + d3 (ErNQ) fNAE.
2

The second term in the above expression can be simplified using the following Fierz identity [5, 73]:

1
2 (EFMNE) rMNp - 4 (T) + +2 (rNq) N

Combining all these pieces we get

DNq1 - 4[2Up (EAPIJc)'P+/3K2

+ 3(d - 4) ((,EAT) E + (EPNP) fNAE) + AKmv.-

ald)
(PPrjP) f'IAE

Let's focus on the second term in (C. 17) and simplify all three terms appearing there. The first one is

- 2 (oFPFM'OE) 6,FIO = 2 (TF0 E) (60 I) - 20d (TFIP) (EAT) + 2 (WIP c (eFm Do4). (C.23)
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The second term is:

- ao rF0 F 0 660OVE = aod# ('I7Oe) (EAT). (C.24)

The third term is:

-2 (PF 0 vm) 6K'm = -2 (TF0 E) (EVT) + 2 (4'F0 E) (EFoDOT) + vM ( Of M$T (.5

-2 ('F 0 vm) AKTm .

Collecting all the terms, we get:

vM (rojMOT) + do (ao - 2) (Qroc) (,AT) 2 (QpMe) (EFMDOIQ) - 2 ('F 0vm) AK. (C.26)

The first term in the above expression can be rewritten using the identity fJMN _ gMN + FMN, and the

third one can be manipulated using the triality identity. The result is

9
(o'V) + VA ('T'v"q')I v(XPFOFIvvV) + V O

I=d+1 (C.27)

+2 (IF0 DoI) + d3 (ao -2) (1F 0E) (EAT') - 2 (IP 0 vm) AK

Using integration by parts, the second and third terms can be modified to give

(qp) - 0 (Er"AE) (xFF00vT) - (f JvAe ) (%P' 00F0'i') + vU (f v,,) (
(C.28)

+2 (TF0 DOJ) + d,3 (ao - 2) (W 0 E) (EAT) - 2 (PF~vu) AK".

Now, combining this with the result for TI'06 2I', we get the complete expression for the fermionic part

f _ (Tm f) + (xODO) + (3d - 16) (IF 0c) (EAT) - 1 jlMN AeOj M NX)

+ 3 2 - a55) (TFOIfIAe) (,ET" I) + 3(d - 4) (4FpOfNAE) (EFNXP) (C.29)

- (4F0vm) AKm .

The terms on the second line can be modified by using the following identity:

fNAE (EFNq) - 2FAA (1A V NApNW (C.30)
2
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So the quadratic part becomes

ii= (TVi') + (kPF0Do') + f (3d - 16) (JFOE) (EA f) - #E (4MNAE) (4'F0FMNX4)

+ #C1 ( F fAe) (e]F4) + d 4 VN (XO FNX) - (4oV) AKm

where the coefficient C1 which appear in the first term in second line is given by:

CA 2 d - 6 aAd
2

2-aidCi = 2 ai.d

(C.31)

(C.32)

We now specialize to vector and hypermultiplets separately.

Vector multiplet

The vector multiplet fermions have same eigenvalues under the projection operators F, F' as the Killing

spinor. We denote the vector multiplet fermion by V. For a fermion in the vector multiplet, the first term on

the second line of eq. (C.31) does not contribute. It is easy to verify that for this term, either C1 vanishes

or (eFV) = 0. Further, for the last term in eq. (C.3 1)), we take pure spinors V', m = 1, 2, -- -D - 2 to

have the same eigenvalues under projection operators as the Killing spinor and the vector multiplet fermion,

while the rest of the pure spinors have the same eigenvalues as the hypermultiplet fermions. We use

AK"' = (d - 4) v"Ao, for m = 1, 2,-.. D - 2,

- (7 17 0vm) AKM
m=D-2

- (d - 4) m (#b7um) (v'Ab),

7

-3 (d - 4) E (?4Fo0 v.) (v"'AV)
,rn=(

(d-4/ FE EO 3(d 1 4 N (PO \ A

where in the second equality we have used that for rest of the pure spinors ('F0v") = 0. The last equality

follows by using completeness relation of pure spinors and Killing spinor. Next we use that:

vN (For0FNV) - vN (vrOfNAV) - 2vN (ForfjAb) . (C.35)
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Using all this information in equation (C.3 1), we get the quadratic Lagrangian for vector multiplet fermions

to be:

Lf m = (OV') + ('iF0 DOb) + 4,3 (d - 5) (4F4rY) (eAb) - 1 (EfMN ( 0 FMN
2 AE)( broMNO) (C.36)

-/3 (d - 4) v5(rfg$

We use a few relations to simplify the Lagrangian further. First we can use the Fierz identity quoted in eq. (C.2 1)

and triality to bring the third term above in the desired form:

403(d - 5) ( bFrE) (cAp) = - I(d - 5) ( brOFMNO) (eAIFMNE) - I O(d - 5)vN . (C.37)

Secondly, we rewrite the last term of this equation as

VN ( rOArNV) (bAV) - vM ( broI.,AV). (C.38)

Further, we note that for the vector multiplet fermions, we have:

- I (d - 4)0 (Ef AAE) ( bFY'AB ) = (d - 4) ( Ab)
2 (C.39)

(Ef MNAE) ( zx0FMNb) (Ef " AE) ('70rCr@b) - (9 - D) (OA@) .

Combining these results in the general Lagrangian eq. (C.36) we get finally get the following expression for

Lagrangian of vector multiplet fermions:

..m - (d - 3)3vM (@ A) + vO (4F0 D04) (C.40)

4

Here m = 2l for eight supersymmetries and mg = (d - 2) for four supersymmetries.

Hyper/chiral multiplet

We treat eight and four supersymmetries separately. For eight supersymmetries, we have a single fermion

in the hypermultiplet. We denote it as x = -FX. For the hypermultiplet fermion (eAX) = 0. We have

C6 = C7 -C 8 = -C 9 = - (d - 4 + 2ip). Also using thatErMX = 0 for M = 0, MI, we see that the
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first term on second line of eq. (C.31) can be written as

- QC6 (XrXNe) (EFNX) C6 N (Xvo0 Nx).

Using this, we get the following expression for the hypermultiplet fermion's Lagrangian

(X3X) + (XF0DoX) - 1 0 (4MNAc) (XF 0FMNX)
2

- ipvN (XFoFNX) - (X] 0ovL) AKM.

It is easy to verify that the contribution of third term in eq. (C.42) is

(EfMNAe) (XF0FMNX) ( AE (XF0 F -, ,X).

The last term in eq. (C.42) gets contributions from

AK" = -2ip"'AX, for m = 4, 5, 6,7. (C.44)

Using the completeness property for pure spinors and that cAX = 0, we get:

- (XFov') AK"' = ipvN (X0fNAX). (C.45)

This and the second to last term in eq. (C.42) can be combined using the identity eq. (C.38). After all the

simplifications, we obtain the following form for the Lagrangian of the hypermultiplet fermion with eight

supersymmetries:

hm (XNX) + (XF0DoX) I E E XE 0 kX) + 23vN (xoiAX).

The chiral multiplet fermionic part with four can be obtained by similar computation:

3

.m= (Xvx,) + (XF[0, X() (2~rcr',X,)

+ O',)! (2ipjvk (xirf tAX,) + XiAXe)-
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V
Degeneracy of harmonics on Sd

The spectrum of the Laplacian and the degeneracy of symmetric traceless tensors on Sd is given in [69]. We

summarize the results for scalar and divergence-less vectors here for completeness. Scalar harmonics are

labelled by the eigenvalues of the Laplacian on the sphere, with the eigenvalues and the degeneracy given

by:

V 2yk = -40 2 k (k+d -1) Yk, D d)=(2k + d - 1) r (k + d - 1)
M~y M _2(+ -) , E ~F (d, 0) = r (d) F (k + 1) (D.1)

Divergence-less vector harmonics are also labelled by eigenvalues of the Laplacian on the sphere which are

different than scalars. Their degeneracy is given by:

V 2Ak = -42 (k (k + d - 1) - 1) Ak, V - Ak = 0,

( k (k + d - 1) (2k + d - 1) r (k + d - 2) (D.2)

r F(d - 1)IF (k +2)

Spinor harmonics on Sd are labelled by the eigenvalues of the Dirac operator. We summarize results of [70]

here:
d 2LJF(k+d)

t 
k + /, Dk (d, +) = Dk (d, -) = (D.3) 2 F(d)Fr(k +1) (.3

An important degeneracy factor that appears in the computation of the one-loop determinant is the num-

ber of spherical harmonics Y.k* Since the spin is labelled by the Cartan generator along the direction of the

vector field vM, the degeneracy is different for the case of eight and four supersymmetries. We derive this

degeneracy for the case of eight supersymmetries now.

Consider an Sd parameterized as follows:

IzI 2 + = 1, (D.4)
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where zi c C, xj E Rand the indices ij range in i = 1 , d-k'+1 and j 1,... k'. We consider the

vector field v , which acts on the sphere coordinates as

zi -+ ziek, j-+ x. (D.5)

The fixed point locus of this vector field is given by the equation zi = 0, i = 1,. . .k, which, when substituted

in equation (D.4), leaves a (k' - 1)-sphere fixed. For example, in the case of eight supersymmetries we have

" S5 : 1z 12 +|z21 2 + z3 12 = I has a fixed S-1,

* S4 : Izi12 + 1z212 + x2 = 1 has a fixed So (two points on the poles),

* S1: zi2 2 + x+ = 1 has a fixed S1 ,

" s2: X2 + X2 +X2 = 1 has a fixed S 2.

So in the case of eight supersymmetries the action of the vector field leaves an S4-d fixed. In this parametriza-

tion, the scalar spherical harmonics Yk can be written as polynomials in the variables zi, i and xj. To con-

struct a spherical harmonic of level k and "charge" m, we assign charge +1 to zi, -1 to j and 0 to xj. Thus,

the top spherical harmonics can be written as:

Yk ~(D.6)

with the degeneracy given by:

k + d-k'+1 -_ I (k + d - 2)
Nkd= 2 = . (D.7)

k F(k + 1)F(d -2)

In the case of four supersymmetries, vM leaves an S2-d fixed, so the degeneracy of the top level har-

monics is:
F(k + d - 1)

nk d = .(D.8)
' F(k + 1)F(d - 1)

D.1 Vanishing of top spinor modes

Certain elements of the basis for spinor harmonics vanish identically for m = k. Here we will demonstrate

explicitly that for m = k

= V+ Y+k + - +kl+ + 2i/3kYk0+ = 0. (D.9)
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We will take the top and the bottom modes of the scalar spherical harmonics to be given by:

Y|k = zk and Ykk = k

where

z = 20 x

I + X2 32

We will also use the relation between the gamma matrices with the flat and curved indices, given by:

F (1 + X 32 o2)f.

Now, the first term in equation (D.9) becomes:

Y [23k(i + ir 2)zk- - 23 2kx. zk +

whose first term can be expanded to:

(F1 + 2F2 )77+ = Fo 6 + zf 7) [(I + if 2) + 0(F1 + iF2 )x A .1

Note however that:

(1 6 -1- iP 7 )( 1 + iP 2)E = [6F1 - P7 1 2 + i(f 61 2 + f 7 1 ) 1 es

= (1 61 - F72F 126 7 + i( 62 + F 71F 1267 )] Es

= 0,

where we have used that P1267CS = +,E. This result implies that:

(P 6 + iF 7)(F 1 + iF2)FMA6s = 0, for M # 1, 2.

(F1 + iF2)7+
1

= + ) 0 [(X1 + - 2 )AE, + i(x1 + ix2 )Os] 1 2X 2
ro (N+ z z z Vf/I + -212

-2i0(xI + ix2 )(r6 + 2fr) 6S
/1 + 132 X2
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(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

Thus:

(D. 16)

(D.17)



Let's proceed to second term of equation (D. 13):

fS
x - 1'7+ =x -F Fo(F 6 + i' 7 )(1 + x -FA) 1+ O2X2

= Fo(F 6 + iF 7 )A(ox - A - 2 2) 2 X2 (D.18)

=+ i(6 + i 7 )(x fA - 2x2) 15
13 VI-1 + -/2X2

Combining our results for the two terms of (D. 13), we get:

k [-2i3(1 + x202 )(F 6 + ir7 ) - 2ifl(F 6 + if7 )(#x -fA - 02X2) = -2i3k(F 6 + iFr7)E
-1+0

2 X 2

(D.19)

which finally implies that

pm VgY r + = 0. (D.20)
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