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Abstract

We explore three incarnations of highly-entangled quantum matter: as descriptions of exotic,
gapped phases in three spatial dimensions, as resources for fault-tolerant quantum computation,
and as the by-product of the unitary evolution of a quantum state, on its approach to equi-
librium. In Part 1, we study quantum information processing in platforms hosting Majorana
zero modes. We demonstrate that certain highly-entangled states may be engineered in arrays
of mesoscopic topological superconducting islands, and used for fault-tolerant quantum compu-
tation. We then discuss measurement-based protocols for braiding Majorana zero modes and
detecting their non-Abelian statistics in on-going experiments on proximitized, semiconductor
nanowires, before proposing new families of error-correcting codes for fermionic qubits, along
with concrete realizations. In Part 11, we study gapped, three-dimensional phases of matter with
sub-extensive topological degeneracy, and immobile point-like excitations - termed "fractons"
- which cannot be moved without nucleating other excitations. We find two broad classes of
fracton phases in which (i) composites of fractons form topological excitations with reduced mo-
bility, or (ii) all topological excitations are strictly immobile. We demonstrate a duality between
these phases and interacting systems with global symmetries along sub-systems, and use this
to find new fracton phases, one of which may also be obtained by coupling an isotropic array
of two-dimensional states with Z2 topological order. We introduce a solvable model in which
the fracton excitations are shown to carry a protected internal degeneracy, which provides a
generalization of non-Abelian anyons in three spatial dimensions. In Part III, we investigate the
dynamics of operator spreading and entanglement growth in quantum circuits composed of ran-
dom, local unitary operators. We relate quantities averaged over realizations of the circuit, such
as the purity of a sub-system and the out-of-time-ordered commutator of spatially-separated
operators, to a fictitious, classical Markov process, which yields exact results for the evolution
of these quantities in various spatial dimensions. Operator spreading is ballistic, with a front
that broadens as a dimension-dependent power-law in time. In this setting, we also map the
dynamics of entanglement growth in one dimension to the stochastic growth of an interface and
to the Kardar-Parisi-Zhang equation, which leads to a description of entanglement dynamics
in terms of an evolving "minimal cut" through the quantum circuit, and provides heuristics for
entanglement growth in higher-dimensions.

The material presented here is based on Ref. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Ref. [11, 12] are
not discussed in this thesis, but were completed during my time at MIT.

Thesis Supervisor: Liang Fu
Title: Associate Professor of Physics
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a possible trajectory for braiding the first qubit around the second is indicated
by the dotted line. Since the two qubits live on distinct sublattices, the braiding
procedure induces the transform. ation XA -+ XA 0 Xi and Z -+ ZA 0 Z0 00,
where 0 is the product of the colored plaquettes shown. This performs a CNOT
transformation on the braided qubit. . . . . . . . . . . . . . . . . . . . . . . . . . 61

2-9 Braiding processes that implement the transformation (a) Z,, -+
up to an overall sign, as determined by the product of the remaining plaquette
operators enclosed by the path , and (b) Y 7 - Z0a 0 ZA, Ze + 0

Z -+ Z, 0 Z. The two braids are used to realize CNOT gates between two (a)
A-type and (b) B-type logical qubits, respectively. By convention, we take the
lowest qubit enclosed by the braiding trajectory to be the control for the logical
CNOT........... ......................................... 63
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2-1.0 Hadamard gate. A logical Hadamard is performed by transferring a qubit
between distinct sul ilattices, so that the logical X and Z operators are exchanged.
We do this by taking the qubit in (a) aid multiplying by logical k by the plaquette

operators {o0k} and the logical Z by (, and ceasing measurement of the femion

parity of plaquette p, yielding the operators shown in (b). Next, we measure the

product (irh112)(ir: 3r/4) . and and Oq and multiply with Z' and X', respectively.

The final result is shown in (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

2-11 S- and T-gate Ancilla Preparation. We create the kps) and pr) ancilla

states, needed to realize logical S- and T-gates by preparing the "short qubit"

[151 shown above. We cease stabilizer measureinents on two adjacent p)laquettes

p and q. In the next surface code cycle, we perform a rotation of the two-level

system defined by iyr. Finally, we enlargen the logical qubit by extending one

end of the qubit, to guarantee stability acgainst noise. . . . . . . . . . . . . . . . . 66

3-1 Majorana Interferometer - Two electron interferometry setups to measure

the topological qubit formed by Majorana zero modes 71j and 712. In both inter-

ferometers, one path goes through the topological qubit while the other path goes

through (a) a normal metal with sufficiently long phase coherence length (blue)

and (b) a second Majorana island initialized in a definite parity state i 1j/'2 = i1. 71

3-2 Majorana SQUID - When the two Majorana zero modes -'1 and -72 are con-
nected by a bridge outside the island to form a closed loop, with the bridge being

(a) a normal metal with sufficiently long phase coherence length or (b) a refer-

ence Majorana island in a definite parity state i4 1 b2 = L, the topologIcal qubit

defined by i'yi72 = 1 may be read out by measuring the persistent current I in
the ground state, which is a h/e-periodic function of the applied flux <P. . . . . . 73

3-3 Teleportation Phase-Shift - Braiding (a) or exchanging (b) Majorana zero

modes induces a transformation on the wavefunctions as indicated. The shaded

lines sho-wn above are physical regions where the superconducting phase rapidly

advances by 27r. The sign clange in the transmission amplitude of electron tele-

portation, due to the "branch cuts" sweeping through the Majorana zero modes

[1161, provides a signature of their non-Abelian statistics. . . . . . . . . . . . . . . 76

3-4 Measurement-Based Braiding - In (a), we depict the initial state |bl), with

Majorana zero modes X, and X2 initialized in the state iX1 X2 = +1. Perform-

ing the indicated sequence of measurements is equivalent to braiding Majorana

fermions -y2 and 7y, up to a normalization factor. If a measurement yields an un-
desirable outcome, the previous measurement step nay be repeated. as indicated

in the decision tree in (b), to recover the state before the undesirable measurement

was perform ed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
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3- Experimental Realization- Protocol. for teleportation-based braiding with-
out br.idin.. is ilustrated ini a nanowire-based Majora.a platform. A n.anowire
hosts six Majorana zero modes at the interface between topological and trivial

superconducting regions. /,I..., are used as topological qubits and XI, X2 as

an ancilla qubit. The green strip can be either a normal metal with a long phase

coherence length or a Majorana island in a definite parity state (a Majorana bus).

We begin by initializing the the ancilla qubit in (a), before performing measure-

rmients of the appropriate Majorana bilinears in the top nanowire. The coupling

between the topological supercorductor wire to the normal metal or Majorana

bus through the metallic strips may be turned on and off, as indicated schernat-

ically by the "switches". Fluxes may be applied through appropriate loops for
topological qubit readout via conductance or persistent current measurement. 80

4-1 Code Mappings: A sumnary of the mappings between classical (weakly self-
dual) error-correcting codes. and various fermion codes. When the num.ber of
bits in the classical code is even, the generator matrix of the code may be taken

to be the stabilizer matrix S of the fermion code. When the nunber of bits
is odd, one can concatenate two such codes, or add a single Majorana so as to
describe a physical Hilbert space. The latter case is useful in platforms with

complex fermions where quasiparticle poisoning is suppressed, and the indicated

code distance assumes that parity-violating processes are forbidden. . . . . . . . . 93

4-2 Implementation of the [[4, 0, 4]]f Code: Gate voltages are applied on two

proxunitized nanowires so that 6 well-separated Majorana fermions appear. Metal

bridges (shown in blue) couple the nanowires, with voltages applied to tune the

couplings "on" or "off" as indicated by the switches in the figures. Each wire
has a large charging energy. In (a), the two-terminal conductance using the leads

(shown in yellow) may be used to mreasure 01 and 02, while in (b) a mneasurement

of the persistent current flowing in a loop enclosing flux <I1 measures 03. A similar

protocol involving a flux I2 may be used to measure 04. ... ............. 96

5-1 Majorana Checkerboard Model: The Majorana checkerboard model is de-
fined on a cubic lattice, as in (a), with a single Majorana fermion per lattice site
(colored red). The operator O is the product of the 8 Majorana fermions at the
vertices of a cube. The Hamiltonian is a sum of these local operators over every
other cube (colored blue) in a checkerboard pattern. As any pair of operators ei-
ther share exactly one edge or none, all operators mutually commute. We choose
to label the cubic operators A, B, C, and D as shown in (b). Acting with a single

Majorana operator - creates these four excitations. . . . . . . . . . . . . . . . . 105
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5-2 Dimension-1 Particle: Excitations (colored) may be created by acting with
Wilson line operators. In (a) a straight Wilson line creates pairs of dimension-i
particles at the endpoints, The dimension-1. particle may hop freely in the di-
rection of the Wilson line, by acting with Majorana bilinear terms. Remlarkably,
the dimension-1 particle cannot hop in any other direction without creating ad-
ditional excitations. Introducing a "'corner" in the Wilson line, as in (b), creates
an additional topological excitation localized at the corner. . . . . . . . . . . . . 108

5-3 Dimension-2 Anyon: Acting with two adjacent Wilson line operators W1 and
W1 2 creates pairs of excitations at the endpoints of the same type (AA, BB, CC or
D.D). These two-fracton excitat ions are free to move in a two-dimensional plane
orthogonal to the shortest line segment connecting the pair of Wilson lines. Fur-
thermuore, in (b) we rnay detect a fracton (colored blue) by braiding a dimension-2
any(on around a closed loop enclosing the fracton. As the braiding operator, a pair
of closed Wilson line operators W]1 2 , is equal to the product of the enclosed cube
operators as shown above. Therefore, the braiding produces an overall minus sign
if an odd number of fractons are enclosed. . . . . . . . . . . . . . . . . . . . . . . 109

5-4 Membrane Operator & Fracton Excitations: Acting with a product of
Majorana operators on a surface E creates localized excitations at the corners of
the boundary OE as shown above. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5-- The Majorana plaquette model. as studied in [1]. Consider a honeycoib lattice
with a single Majorana fermion on each lattice site. We define an operator Ov as
the product of the six Majorana feriions on the vertices of a hexagonal plalquette
p, as shown in (a). The colored plaquettes in (b) correspond to the three distinct
bosonic excitations (A, B, or C) that may each be created in pairs by acting with
W ilson line operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6-1 The fundamental excitations of the X-cube model are shown in (a) and (b). Acting
on. the ground- state of the X-cube model with a product of o' operators along
the colored red links that lie within a fiat, rectangular region A generates four
fracton cube excitations (e 0O) at the corners of the region. A straight Wilson line
of o' operators acting on the blue links in (b) isolates a pair of quasiparticles
(rni or rn4; ) at the ends, that are only free to miov e along the line. Attempting
to move these quasiparticles in any other direction by introducing a corner in the
Wilson line, creates a topological excitation at the corner as shown in (b). . . . . 131

6-2 A "domain wall" in the ground-state of the plaquette Ising model (Hpa) is de-
picted, by coloring the plaquette interactions that have been flipped by the action
of a spin-flip transformation along a planar region E. The F-S duality implies that
the ground-state for the X-code fracton phase is given by an equal snperposition
of a dual representation of these domain-walls. . . . . . . . . . . . . . . . . . . . 137
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6-3 The nexus charge is a fracton only if there is no operator W that can create an
isolated pair of excitations when acting on the ground-state of Hfracton, as in (a).
Equivalently, a dual representation of the operator., given as a product of the
interaction terms in the quantiin dual as shown in (b), cannot create an isolated

pair of spin-flips when acting on the paramagnetic state I para) = I-+ - - - -+). An
example is given in (c) and (d); a straight Wilson line acting on the ground-state

of Hx-cube in (c) admits a dual representation as a product of four-spin plaquette

interactions along a line, as shown in (d). No product of interaction terms in the

plaquette Ising model can produce an isolated pair of spin-flips. As a result, the

nex-us charge in H-I'X-C r) must be a fracton. . . . . . . . . . . . . . . . . . . . . . 140

6-4 Schematic phase diagram of (a) the spin-nexuis Hamiftonian (6.6). The 'figgs'

phase for the nexus field is smoothly connected to the phase reached by condensing

the nexus charge. The checkerboard model coupled to Ising matter fields admits

an additional self-duality under the exchange of the nexus charge and flux; as a
result, the phase diagral is as shown in (b). . . . . . . . . . . . . . . . . . . . . . 142

6-5 Dual representation of the plaquette Ising model in the presence of a transverse

field. We place nexus spins at the center of each four-spin plaquette interaction,
so that oq' = ][j.a 7j. The product of four adja nt four-spin interactions that

wrap around the cube is equal to the identity (e.g. the product of plaquette

interactions p, q, r and u). In the dual representation, this leads to the indicated

constraints at each cube. Only two of the three constraints are independent. . . . 147

6-6 The classical spin model defined on the cubic lattice with fractal subsystem sym-

metry that corresponds to Haah's code. The spin model may be conveniently

written as a sum of two types of four-spin interactions at each cube, as indicated

above. .......... .......................................... 149

6-7 The (a) CBLT model represented on an fec lattice. The model consists of a single,

six-spin interaction term per lattice site. This model may be constructed from

the interacting spin model shown in (b) on the fee lattice, with two four-spin

interactions per lattice site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7-1. Intersecting Layers of 2D Toric Codes: A stack of two-dimensional, square-

lattice toric codes in the zy (green), yz (red) and xz (blue) directions, which

intersect at sites. The reisulting three-dimensional cubic lattice has two spins per

link (a-, p) as shown. A single layer of the square-lattice toric code is shown as

well, with the "star" and "plaquette" operators defined as shown. . . . . . . . . . . 160

7-2 Compostite Charge Condensation & "Gluing" Loops: Condensing the

composite charge excitation "glues" electric charge loops in adjacent, orthogonal

layers. The resulting wavefunction is that of the 3D Z2 topological phase, as

described in Sec. I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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7-3 Composite Flux Loop Condensation: The operator a'7y,, when acting on
the decoupled layers of the toric codes, creates four flux excitations in orthogonal

planes, as shown. Condensing this composite flux leads to the "X-cube" fracton

topological phase, with fracton operator O, as given in the main text, and shown

in F ig. 7-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7-4 Loop-Gas Representation: Acting on the X-cube ground-state with (a) a

straight, line-like operator Wz creates a pair of Z2 flux excitations at the ends.

This operator "cuts" open a closed loop configuration in the fracton ground-state;

alternatively, this operator adds two open strings at its endpoints, when acting

on an empty region. For the indicated loop configuration, acting with (b) a

membrane operator ME yields two separated, open strings of composite flux. An

isolated string endpoint cannot be moved on its own, or else it would be possible

to generate a configuration of broken loops that violate the global constraints

explained in Sec. IB. These isolated excitations are the immobile fractons. . . 165

7-5 The ZN X-cube Model: Shown are the commuting operators that appear in
the solvable Hamiltonian for the ZN X-cube model H -- K (Oc +- O.)
J1 Z~. g (A$f + A4>' ). The Z2 case discussed in Sec. 1B, is obtained by replacing
Z, Zt -r and X ,X --+7 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167

7-6 2D ZN Charge and Flux Operators: Show are the star A. and plaquette B1
operators that measure the ZN charge and flux, respectively, in the 2D ZN toric

code.......... ............................................ 169

8-1 The Model: We consider layers of of complex fermions on the sites of a square

lattice (f), coupled to fermions that lie on the links (c) which play the role of a

static Z2 gauge field. Within each layer, the hopping and pairing interaction of

the ferrnions are mediated by the ferimions on the links, which interact at each

plaquette as shown. The gauge symmetry of the Hamiltonian (8.1) is implemented
by the operator GyI = F(. f FW which couples adjacent layers, with

as defined in the main text. The ground-state realizes an exotic phase with

immobile, point-like excitations that carry a protected internal degeneracy. . . . . 172

8-2 Coupled 2D G gauge theories: Intersecting layers of 2D gauge theories for

finite the group G, stacked in the xy, yz and xz planes as shown in (a). "Con-

densing" the excitation in (b) - a composite of four [g] fluxes - can produce a
fracton topological phase, where the fracton excitation inherits certain properties

from the non-Abelian [g] flux as shown in (c) and described in the main text. . . 177

9-1 Random unitary circuit in (a) (1+ 1)D and (b) (2+1)D. Each "block" repre-
sents an independently Haar-random unitary, acting on the Hilbert space of two
adj acent 'spins' of local Hilbert space dimension q. In (b), we show the geometry

of the (2 + 1)D Haar-random circuit that we study in later sections . . . . . . . . 182
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9-2 "Operator Spreading" and the Schematic Behavior of the OTOC: Ve
find that the average OTOC C(x, t) (where the average is over the local unitaries
in the quantum circuit) has a front which broadens as t", with the indicated
exponents in various spatial dimensions d. . . . . . . . . . . . . . . . . . . . . . . 184

9-3 Cartoon for the form proposed here for the OTOC in two spatial di-
mensions, when lattice anisotropy can be neglected. Thie functional form is
given by the Tracy Widorn distribution F_. . . . . . . . . . . . . . . . . . . . . . 185

9-4 Top: 2+1-D Haar-Random Quantum Circuit: We consider unitary dy-
namnics in which two-site H-1aar-random unitaries are applied on the bonds of a
two-dimensional square lattice. in the colu.nnar dimer configurations shown in
(1-4). Bottom: allowed updates in the corresponding stochastic process. . . . . . 193

9-5 Growth of a Classical Droplet and the OTOC: We relate the behavior of the
OTOC (averaged over the unitaries in the circuit) to a classical stochastic process
for the growth of a droplet in two spatial dimensions. A given configuration of
the classical droplet is specified by a binary occupation number n(x, t) as shown
the left. Remarkably, the average droplet profile (n(x, t)) preeisely reproduces

the averagced 0T C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9-6 Growth of a 2D Cluster (q = 2): We determine the behavior of the averaged
OTOC by simulating the stochastic growth of a two-dimensional cluster over
M = 2 x 103 realizations, with local updates applied at each timestep, as described
in the text. The average occ upation number for the cluster (n(x, t)) is shown for
the indicated times in the evolution as it approaches its asymptotic shape. . ..196

9-7 Fluctuation Exponent f: We fit the profile of the evolving droplet for q = 2
along the 0 = r/4 directions (top) to extract the mean operator size and
magnitude of the fluctuations about the mean. The fluctuations exhibit power-
law growth with exponent ,8 = 0.3305 0.0269, consistent with the KPZ value
3 = 1/3. When fitting the profile along 0 = 0 (bottom), we observe no appre-
ciable growth of the fluctuations; we argue in Appendix E.5 that this occurs for
sufficiently large q when the front's local normal vector is precisely aligned with
a lattice axis (as a result of the specific circuit geometry). . . . . . . . . . . . . . 197

9-8 The OTOC in (2+1)D: Plot of the front of the averaged OTOC C(r, t) in two
spatial dimensions and in the absence of lattice anisotropy, as determined from
the exact expression in terms of the Tracy-Widom distribution in the rain text. 199

9-9 "Faceting" of the Cluster: Shown are the cluster shapes at fixed time t = 103.
for the indicated values of q. When q is sufficiently large (third panel), the cluster
develops "facets" along the 0 = 0, ir directions, where the normal growth speed is
the maxinun possible given the circuit geometry. The region shown is the naive
light cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
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9-10 Anisotropy in the Cluster Profile: Numerically deterrmined anisotropy in the
average shape of the 2D cluster R(O, t)/t, at the indicated times. The anisotropy
in the cluster shape grows in time, and appears to asymptote to a nion-trivial
steady-state shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9-11 The calculation of the OTOC in the spacetime picture eIEads to a partition func-
tion for two nonintersecting directed random walks (domain walls in an effective
Ising model). These walks have a bulk energy cost (Eq. 9.67), and a boundary po-
tential (Eq. 9.68) that biases themn to a positive and negative velocity respectively.
Directions of null coordinates u, i used in the text are indicated. . . . . . . . . . 203

9-1.2 In (a), we show the elemnentary tensor for computation of F. The boundary
conditions in the top-left figure are for ,, = f, = 1. Shown in (b), are the
weights due to the interaction between adjacent Ising variables arising from the
same unitary (top) and from unitaries at adjacent time steps (bottom). After
integrating out the 'bra' Ising variable s', we obtain the weights shown in Fig. 9-
13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9-13 Weights for the 3-body interaction which arises after integrating out half of the
Ising variables (the bra variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

9-14 A section of one of the domain walls in the bulk (double line). The two configu-
rations shown have equal weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9-15 The average entanglement purity T maps to the partition function for a directed
random walk. At the top boundary the walk terminates at the position of the
entanglement cut between subsystems A and B. At the bottom boundary the
endpoint is free. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9-16 Random Circuit built from "Staircase" Unitaries: We use "left" and "right"
staircases - built from random two-site unitary operators as shown, and extend-
ing over f bonds -- as the building blocks for a random quantum circuit in which
the ratio of the entanglement and butterfly velocities vEIvB may be made arbi-
trarily sm all. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

10-1 The KPZ 'triumvirate' is made up of three very different problems in classical
statistical mechanics which all map to the KPZ universality class. As we will
discuss, each of them can be usefully related to entanglement in 111. . . . . . . 221

10-2 Spin chain with open boundary conditions. S(x) denotes the entanglement en-
tropy (von Neumann or Renyi depending on context) between the part of the
chain to the left of bond x, indicated by the box, and the part to the right. . . . 223

10-3 Dynamical update in the solvable model: application of a random unitary U to
a randomly chosen pair of adjacent spins. . . . . . . . . . . . . . . . . . . . . . . 225

10-4 Surface growth model for entanglement S(x, t) across a cut at x, in the large q
limit. Applying a Unitary to bond x can increase the height of the surface locally
(Eq. 10.19), corresponding to dropping a 'block' of height AS = 1 or AS = 2. . . 227
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10-) Enitanglenent growth in the large q model: Effect of applying a random unitary
to the central bond, for four choices of the initial local entropy configuration of
three adjacent bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

.10-6 Any cut through the unitary circuit which separates the legs to the left and right
of x (on the top boundary) gives an upper bound on S(x, t). The best such
bound is given by the minimal cut (note that the cut shown in the figure is not
the minimal one). Finding the minimal cut in a random network is akin to findin.g
the lowest energy state of a polymer in a random potential landscape. . . . . . . 229

10-7 Spreading of stabilizer operators defining the quantum state (Sec. 10.3). Each
blue particle marks the right erdpoint of some stabilizer (the right most spin on
which it acts). Blue particles hop predominantly to the right. Whenever a particle
enters the right-hand region (A) the entanglement SA increass by one bit. The
particle de]sity is described by the noisy Burgers equation, which maps to KPZ.
A 'hohl' (enpty circle) marks the left-hand endpoint of some stabilizer. . . . . . . 233

10-8 Left: the initial product state represented in terms of the fictitious particles.
Right: a state with maximal 5(x). . . . . . . . . . . . . . . . . . . . . . . . . . . 237

10-9 Fluctuations at late times, after saturation of (S(x)), in the Clifford case. When
x < L/2 it requires a rare fluctuation (fighting against the net drift) to remove

a particle from region A. leading to an exponentially small Sax(x) - (S(x)). . . 240

10-10 Infinite chain with regions A. B. C marked. B is of length I while A, C are
semi-infinite. The mutual information between A and C is nonzero so long as
1 < 2vEt: correlations exist over distances up to 2 vEt, not vEt .. . . . . . . . . . . 242

10-11 Bottom: Infinite chain with finite regions A and C each of length d, separated
by distance 1. Top: The mutual information between A and C in the case d > 1.
In the opposite regime the mutual information vanishes . . . . . . . . . . . . . . 242

10-12 Sequence of minimal cut configurations (red lines) determining the entropy of
region B in Fig. 10-11. (a) gives way to (b) when 2vi/ t = 1 and (b) gives way to
(c) when. 2V.Et + = 2d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

10-13 Bottorn: Semi-infinite chain with regions A, B (lengthr 1A, 11E respectively) and
C adjacent to the boundary. Top: The rnutual info rmation between B and C for
this geometry, for the two regimes indicated. . . . . . . . . . . . . . . . . . . . . . 243

1.0-1.4 Schematic structure of a layer in the quantum circuits used for simulations. . . . 245

10-15 The von Neunann entropy S(x, t) for a system of length L = 459, as a function
of x, for several successive times (t = 340,690, 1.024, 1365, 1707, 2048 and 4096),
in the Clifford evolution. The figure shows how the state evolves from a product
state to a near-iaximnally entangled one. Prior to saturation the entanglement
displays KPZ-like stochastic growth. S(x, t) is in units of log 2. . . . . . . . . . . 246
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10-1.6 The von Neumann entropy S(x, t) in units of log 2, far from the boundaries,

ini a system of length L = 1025 at various times (from bottom to top t

170, 340, 512 and 682) evolved with the Clifford evolution scheme. ( schemat-
ically shows the typical correlation length Eq. 110.8 which grows in time like t/z

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7

10-17 Top: Growth of the mean entanglement with time for the Clifford evolution with

only CNOT gates (in units of log 2). The solid red curve is a fit using Eq. [10.491.

The exponent # is found to be / = 0.33 0.01, in agreement with the KPZ

prediction 3 = 1/3. Dashed line shows asymptotic linear behaviour. Bottom:

Growth in the fluctuations in the entanglement with time. The dashed line shows

the expected asymptotic behaviour, w(t) t' with [5 = 1/3. The fit includes a
subleading correction: Eq. [110.491, with 3 = 0.32 0.02. Error bars denote the

I utuncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10-18 The logarithnic derivative of the width, dw/d log t, vs. time for the Clifford

evo(luition. The universal behavior with exponent 00/3 is observed at shorter time

scales compared with Fig. 10-17. . . . . . . . . . . . . . . . . . . . . . . . . .. . . 249

10-19 Correlation function G(r) = ([S(r) - S(0)] 2 1./ 2 at time t = 1.2,1024 and 2048

for the Clifford evolution, showing excellent agreement with the KPZ prediction.

G(r) ~ rX with X = 1/2 in the regime r. < (t). . . . . . . . . . . . . . . . . . . . 250

10-20 The entropy across the centre of the chain (in units of log 2) divided by vjt vs.

L/2vst for various fixed values of t. This plot converges nicely to the scaling forrm

in (10.51). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10-21 The average size W of a growing Pauli string as a function of time for two pro-
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Chapter 1

Introduction

Quantum mechanics is replete with strange phenomena that defy classical Newtonian intuition.

At the heart of quantum "weirdness" is entanglement, a correlation in the density matrix of a

quantum system which is experimentally manifest when local measurements affect subsequent

measurement outcomes in a spatially distant region. Einstein, Podolsky, and Rosen (EPR)

originally objected to this feature of quantum theory as a bizarre "action-at-a-distance" that

violated a natural principle of locality - that spatially well-separated phenomena are relatively

independent - and appeared to make possible instantaneous communication [20]. EPR's criti-

cisms revealed a conceptual lapse in early understandings of the relationship between quantum

physics and information, which took decades to resolve. Since that time, however, quantum

entanglement has remained an intellectual point of contact between theoretical physics and

information science, and at the forefront of deep questions in both disciplines.

In recent years, the exploration of the landscape of entangled quantum matter has attracted

significant research interest. For the condensed matter physicist - concerned with cateloguing

emergent phenomena in quantum many-body systems - the patterns of entanglement in the

sub-atomic world reveal certain striking macroscopic properties of quantum matter, while the

growth of entanglement sheds light on the dynamics of a closed quantum many-body system on

its approach to a steady-state, equilibrium configuration. For the quantum information scientist

- interested in the scale-up of controllable quantum phenomena - entanglement provides a

resource for encoding and processing information in ways that are intractable on a classical

computer, and quantifies the difficulty in classically simulating a quantum system.

The goal of this thesis is to explore the boundaries of our understanding of complex quan-

tum states, the "entanglement frontier" [21], in order to uncover new equilibrium phases of

matter, dynamical phenomena, and protocols for fault-tolerant quantum computation. We re-

main somewhat agnostic to the background of the reader, since the questions that we tackle sit

at the intersection of condensed matter physics and quantum information science. As a result,

this thesis will attempt to be self-contained in its presentation of both subjects.

Before embarking on our journey, we must define a complex quantum state and elaborate

on the specific motivations for our study. First, we identify our domain of exploration: what
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are the complex quantum states of interest? Our answer is defined by practical considerations,

and a dose of optimism. Even a complex quantum state should be reasonably easy to prepare if

it is to be used for quantum information processing, by starting from a classical, direct-product

state (e.g. a ferromagnet) which has a low degree of entanglement. If this state is, instead, the

ground-state of a quantum many-body system, then the degree of entanglement of a sub-system

should be quantifiably small, even if the state is far from being a product state'.

These considerations motivate a definition of the quantum states of interest that appeals to

the ease of quantum state preparation [211. In this thesis, a highly-entangled state will be one

that can be obtained from a direct-product state by the unitary time-evolution generated by a

local Hamiltonian, and for a time that scales polynomially in the system size. This definition

encompasses a wide range of states, from ones that have an extensive entanglement entropy, to

the ground-states of topologically-ordered phases of matter. A particularly simple example of

a state that is highly-entangled according to this definition, is a Schrbdinger cat state of spins,

i.e. |/) ~ 144 ... ) + Itt ... t), for which the von Neumann entanglement entropy for any

bi-partitioning of the system - even spatially non-local partitions - is non-zero.

Our definition is also quite restrictive. Indeed, the unitary evolution of a product state by a

local, time-dependent Hamiltonian for a time scaling polynomially in the system size is known

to only cover a fraction of the entire space of states of the system which is exponentially small in

the Hilbert space dimension [2212. Put simply, Hilbert space is a vast, uncharted wilderness, but

the pragmatist need only concern themselves with a comparatively small patch of real-estate.

Rich equilibrium and dynamical phenomena abound here, and if our exploration is fruitful, we

may yet count ourselves "king[s] of infinite space" [231.

The theoretical impetus to study highly-entangled states of this form has emerged in recent

decades, and we now present the specific reasons for our undertaking:

1.0.1 Quantum Computation and Error-Correction

Highly-entangled states of matter provide a powerful resource for fault-tolerant quantum com-

putation. Theoretically, a quantum computer would take advantage of quantum interference

to perform certain computations more efficiently than a classical computer. Shor's algorithm

for factorizing prime numbers 124] provides a celebrated example. A quantum computer would

also speed up classical algorithms for searching an unsorted database [25] and for solving cer-

tain constrained satisfaction problems that are NP-complete [26]. For the physicist, a quantum

computer would be useful for simulating the real-time dynamics and equilibrium properties of

model quantum systems.

'More precisely, in the ground-state of a gapped quantum system, the von Neumann entanglement entropy

should scale with the area of the boundary of the sub-system of interest - so-called "area-law" behavior.
2The proof of this statement follows from a simple parameter-counting argument, by comparing the surface

area of the Bloch sphere for an L-spin system with the states that can be reached by local, unitary circuits with

depth scaling polynomially in L.
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Performing a successful, long-term quantum computation (simulation) requires accounting

for errors in implementing gate operations, and in spurious noise from the environment. Since

it is impossible to "clone" an unknown quantum state, robust information storage requires pre-

serving a single instance of a qubit, making fault-tolerant quantum computation extremely

challenging. The preservation of quantum information requires designing quantum codes, which

map the relatively few states of a qubit of interest (the logical qubit), into the states of a much

larger Hilbert space, often referred to as the codespace. Errors are generated when a coupling

between the system and the environment leads to the unwanted unitary evolution of the logical

qubit outside of the codespace.

The redundant encoding of the logical qubit permits us to leverage the entanglement between

degrees of freedom in the larger Hilbert space, in order to recover the original state of the qubit

without disturbing the encoded information. This protocol for "detecting without disturbing"

leads to a precise criterion for the correctability of an error: a quantum error-correcting code

with a codespace spanned by the orthonormal states {fj)} can recover from a set of errors, as

specified by a collection of unitary operators {Ua} acting on the logical qubit, iff [27]

(Oi I UtUb I0) = Cab ij (1.1)

where the matrix Cab is independent of the states in the codespace. Colloquially, a correctable

error process is one that can be undone without revealing the state of the logical qubit.

Successful quantum codes require that the states in the codespace are highly entangled. For

example, consider a code in which some logical qubits are encoded in the states of m physical

qubits. If the code can recover from an arbitrary n-qubit error - an error process where up to

n of the physical qubits are affected by spurious unitary evolution - then any n-qubit reduced

density matrix must be independent of the state of the logical qubit; this requires, of course,
that the states in the codespace exhibit an intricate pattern of entanglement, since sufficiently

non-local observations are required in order to interfere with encoded information.

On the other hand, the monogamy of entanglement also provides a limitation on the per-

formance of quantum codes. From the criterion for correctability (1. 1), a code that can recover

from arbitrary n-qubit errors, can recover from 2n-qubit "erasure" errors, where 2n known phys-

ical qubits in the system are replaced by spins in a trivial product state [27]. If 2n > m/2, then

such a code would be able to clone an arbitrary state in the codespace, which we know to be

impossible. This means, for example, that the smallest encoding of a single logical qubit that

can also recover from single-qubit errors, is into the Hilbert space of five physical qubits [28].

Such an encoding indeed exists, and the states in the codespace of the five-qubit code [29] are

particularly remarkable, since they are maximally entangled for any spatial bi-partitioning.

It is important to determine how highly-entangled code states can be created, and how

quantum error-correcting codes can be implemented in experimental platforms. Quantum com-

putation in Fermi systems has also received recent interest, since the fermion parity can form the

basis for a protected qubit. Are there differences between error-correcting codes in Fermi and
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Bose systems? What are the natural ways to build a fault-tolerant quantum computer in this

setting? We will provide partial answers to these questions, with a focus on physical platforms

that host "Majorana zero modes", in Part 1.

1.0.2 Equilibrium Phenomena: Highly-Entangled Quantum Phases

Highly-entangled quantum states provide a useful playground for uncovering exotic equilibrium

phenomena in quantum many-body systems. Phases of matter are defined by the expectation

values of measurable quantities, and, as a consequence, by their response to external probes.

A conventional phase of matter is one in which a local order parameter develops an expec-

tation value, thereby breaking a manifest symmetry of the system. This "symmetry-breaking"

paradigm, as introduced by Lev Landau, has led to the categorization of an impressive panoply of

phases, from classical phenomena such as ferromagnetism to fundamentally quantum-mechanical

ones such as superfluidity.

The discovery of the fractional quantum Hall effect dramatically changed the landscape of

possible quantum phases. In 1982, Tsui, Stormer, and Gossard observed that a two-dimensional

electron gas subject to a strong magnetic field at temperatures of a few degrees Kelvin exhibited

a Hall conductance which was robustly quantized to 1 part in 10 5 in rational fractional multiples

of e2 /h [30]. Trial wavefunctions for this exotic state were soon proposed [31, 32], from which it

was argued that the elementary, gapped quasiparticles of this state carried fractional electrical

charge. As a striking consequence, the ground-states of the quantum Hall fluid at fractional

filling v = p/q were predicted to give rise to a q-fold degeneracy on the torus [33], and no local

observables could distinguish the degenerate ground-states. This phenomenology gave rise to a

paradigm shift: distinct fractional quantum Hall states, each a different phase of matter, were

not distinguished by symmetries of the electron gas, in apparent violation of Landau's criterion.

In decades since, a zoo of these "topological phases", gapped states of matter in two spatial

dimensions which are not characterized by broken symmetries, have been explored. We review

this theoretical progress before proceeding into the unknown. First, gauge theory provides a

framework for understanding a large class of topological phases, from quantum Hall states to

quantum spin liquids [34, 35, 33, 36, 37, 38, 39, 19, 401. The fractional statistics of the gapped

topological excitations [41, 421, or anyons, arises from the Aharanov-Bohm phase of a charge

moving around a flux. The origin of a non-local order parameter is similarly understood; the

effective potential between gapped charges determines whether these are (de-)confined excita-

tions, and this requires measuring the scaling of the expectation value of a gauge-invariant,

non-local operator - the Wilson loop - with its size.

More generally, the low-energy effective theory for any gapped, two-dimensional topological

phase is a topological quantum field theory (TQFT), and studies of the algebraic structure

behind TQFT's - modular tensor categories - have led to a near-complete understanding of

two-dimensional topological phases. Consistency conditions between the universal data in a
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(a) (b)

Figure 1-1: Excitations in Haah's Code: One type of gapped excitation in Haah's code lives
on the sites of a dual cubic lattice. The excitation can only be created in clusters of four, in the
geometric arrangement shown in (a). A single excitation cannot be moved without nucleating
other gapped excitations, as indicated in (b). As a result, separating the excitations shown in
(a) by a distance i requires overcoming an intermediate energy barrier that grows as loge.

topological phase, including quasiparticle content, braiding statistics, and fusion rules, lead to
algebraic equations that determine the possible phases, even ones that lie outside of conventional
gauge theory [43, 44]. Due to the presence of fractionalized excitations and the absence of local
observables that can distinguish degenerate ground-states, topological phases exhibit a pattern
of entanglement that cannot be generated from a product-state with a finite-depth quantum
circuit [45]. This is quantifiably manifest in a sub-leading correction to the area-law behavior of
the von Neumann entanglement entropy of an appropriate region, which is universal for a given
topological phase, and a function of the quantum dimension of the fractionalized excitations.

Exactly solvable models have provided a powerful tool for studying these highly-entangled
states of matter, and in the development of fault-tolerant architectures for quantum computa-
tion. Importantly, these exactly solvable models provide an invaluable foothold for beginning to
explore similarly exotic phases of matter in three spatial dimensions. Here, very little is under-
stood about gapped phases that lack a local order parameter, apart from the deconfined phases of
lattice gauge theories with a finite gauge group, which typically have gapped, point-like charges
and loop-like flux excitations; the former are restricted to have Fermi or Bose statistics. Even
here, however, what constitutes a "universal" set of data that characterizes a three-dimensional
topological phase is unknown.

Remarkable progress was made by Haah [46], who discovered a previously unknown phase of
matter in a solvable model for interacting, spin-1/2 degrees of freedom on the cubic lattice. The
model describes the zero correlation-length limit of a stable, gapped phase with the following
properties, which are robust to perturbations:

1. The ground-state exhibits a sub-extensive degeneracy on the torus, and all of the degener-
ate ground-states are locally indistinguishable. Specifically, the ground-state degeneracy
(D) on an L x L x L cubic lattice with periodic boundary conditions is given by the
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following expressions for the indicated values of L [47]:

2 L = 2n + I or L = 22n+1 -1

log2 D = 4L - 2 L = 24 (1.2)

4L - 10 L =_ 4n -- I

with the integer n > 1.

2. There are two types of gapped, point-like excitations that are created by acting with a

local operator on the ground-state. These excitations may only be created in clusters of

four, and in particular geometric arrangements. One type of excitation lives on the sites of

a dual cubic lattice, and can only be created in the arrangement shown in Fig. 1-1 a. As a

consequence, these point-like excitations are immobile; attempting to move any collection

of them with a local operator nucleates other gapped excitations, as shown in Fig. 1-lb. It

is only possible to separate the four excitations in Fig. I-Ila by a distance f, by overcoming

an intermediate energy barrier that scales as E ~ log f.

While Haah's code is only a stable phase at zero temperature, the degenerate ground-states

of the code can be used to robustly encode qubits at finite temperature. When Haah's code is

coupled to a bath at inverse temperature #, there is a known algorithm for correcting thermally-

induced errors such that the lifetime of an encoded qubit scales as t - exp(c3 2 A 2 ) [48] where

A is the energy cost for creating the point-like excitations shown in Fig. 1-1a, and c is an 0(1)

constant. This should be contrasted with more conventional topological phases with point-like

excitations in d spatial dimensions, in which the lifetime of an encoded qubit should only grow

exponentially t ~ exp(cBA), as is known to be the case for the two-dimensional toric code [49].

A number of questions remain about Haah's code, and the possible phases of matter in three-

dimensional quantum systems that lack a local order parameter. What can solvable models tell

us about this spectrum of phases, and is Haah's code an isolated phenomenon? What is the

relation between two-dimensional topological phases and these exotic states? We will explore

systematic ways to understand these states of matter, and other related questions in Part 1.

1.0.3 Dynamical Phenomena: Propagation of Quantum Information

While the von Neumann entanglement entropy encodes universal properties of quantum ground

states, the dynamics of the entanglement are far less understood. Since the entanglement entropy

is non-local and is not conserved, its dynamics are distinct from energy, charge, or other local

densities. Traditional many-body tools therefore do not provide much intuition about how

3For point-like excitations that can be created in pairs, the density of thermally excited excitations is
exp(-2,6A), so the distance between excitations will be 4sep ~O(exp(2/3A/d)) in d dimensions. Recovery of
the initial state becomes difficult at a time when the excitations have diffused over a length ediff - ~ tsep,

which leads to the quoted estimate of the lifetime.
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entanglement spreads with time, for example, after a quantum quench, when a "sudden" change

is made to the Hamiltonian.

If a many-body system is initialized in a state with low entanglement, unitary dynamics will

typically generate entanglement between increasingly distant regions. The effectively irreversible

growth of the von Neumann entanglement entropy is an essential part of the thermalization of

a quantum system, when local observables relax to the their thermal expectation values at a

temperature set by the energy density of the state. Entanglement growth has been addressed

in diverse contexts ranging from conformal field theory [50, 51, 52, 53], to integrable [54, 55, 56,

57, ?8, 59, 60], non-integrable [61, 62, 63, 64], and strongly disordered spin chains [65, 66, 67,
68, 69, 70, 71]. Entanglement growth is also of practical importance as the crucial obstacle to

classical simulations of quantum dynamics using matrix product states or the density matrix

renormalization group (DMRG) [72]. The entanglement entropy, and even its time dependence,

is beginning to be experimentally measurable in cold atom systems [73, 74, 751. For integrable

1D systems and rational CFTs, there is an appealing heuristic picture for entanglcmcnt growth

following a quench in terms of spreading quasiparticles [50, 52]. However this picture does not

apply to general interacting systems [52, 53, 76, 77].

Apart from entanglement growth, unitary evolution also gives rise to an effectively irre-

versible process, in which initially locally accessible quantum information becomes practically

irretrievable. The timescale over which this "scrambling" of quantum information occurs is para-

metrically smaller than the time for thermalization . Scrambling may be quantified by certain

out-of-time-ordered correlation functions, such as the out-of-time-ordered commutator

C( ) - - I[V(t), W(0)]2 (1.3)

with the expectation value taken at inverse temperature 3. This correlation function effectively

measures the spreading of the Hermitian operator V(t) -= e-iHt V(0)eiHt under Heisenberg

evolution. For a generic choice of spatially separated operators, (1.3) will grow in time, before

reaching an appreciable 0(1) value at the scrambling time (t,), when the operator V(t) has

become significantly spatially de-localized. Importantly, the size of a growing operator - as

measured by (1 .3) - can exhibit ballistic growth, even when all conserved quantities in the

system are transported diffusively.

There are several important reasons to study these out-of-time-ordered correlation functions.

First, the scrambling time quantifies the speed at which unitary dynamics proceeds. In a system

with Af degrees of freedom (e.g. spins), and with a typical strength of local interactions J, the

scrambling time for a generic choice of local operators that are separated by a distance O(M)

4 This point - if not already clear to the reader - will be elaborated upon in Part IIi.
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exhibits a wide range of behavior. Representative examples are given below:

(JA)- Random matrix theory [112]

ts ~ 3 logK Chaotic system at low temperatures (1.4)

J-IeK/ Many-body localized phase (1d) [78]

A Hamiltonian chosen from a random matrix ensemble scrambles the fastest [12], due to the

non-local nature of a typical interaction. Out-of-time-ordered correlations are also of interest,

since their decay is believed to give rise to bounds on scattering rates in quantum systems

and, by extension, on the diffusion constants for conserved quantities [791. Finally, the infinite-

temperature behavior of C,8(t), after averaging over the choice of operators appearing in (1.3) is

related to the level statistics of a Hamiltonian, and to the complexity of the unitary evolution

generated by an ensemble of Hamiltonians [80].

Since operator spreading and entanglement growth are important dynamical phenomena

that characterize quantum systems, it is important to study toy models in which their dynamics

can be calculated precisely. Does this lead to heuristics for the growth of these quantities that

can be applied to a generic many-body system? These questions will be addressed in Part Ill.

1.0.4 Plan of this Thesis

Motivated by this discussion, we embark on our exploration of the entanglement frontier. In this

thesis, we will study new phases of matter in exactly solvable models, realize entangled states in

physical platforms that can be used for fault-tolerant quantum computation, and find heuristics

for the dynamics of quantum information and entanglement in our studies of toy models for

chaotic quantum systems.

In Part I, we study quantum information processing in platforms with Majorana zero modes,

where the fermion parity is used to encode logical qubits. We first demonstrate a protocol for

engineering an entangled state of fermions in an array of mesoscopic, topological superconductor

islands that can be used for fault-tolerant, universal quantum computation [1, 2]. To comple-

ment this long-term goal, we propose a measurement-based scheme for performing braiding op-

erations on Majorana zero modes and for detecting their non-Abelian statistics without moving

or hybridizing them [3]. Finally, we consider the problem of quantum error-correction in Fermi

systems, which requires error-correcting codes that can recover from fermion parity-violating

(quasiparticle poisoning) and parity-conserving errors. We relate fermion codes to weakly self-

dual classical error-correcting codes, and use this mapping to find the shortest fermion code,

and to construct translationally-invariant codes and their physical realizations [4].

In Part 11, we turn our attention to "fracton" topological phases [7], gapped, three-dimensional

phases of matter such as Haah's code, that are characterized by immobile, point-like excita-

tions (fractons), and a sub-extensive topological degeneracy. Importantly, this phenomenology
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emerges in translationally-invariant lattice models, so the immobility of the fracton excitations

is not due to the presence of a potential landscape, but rather, to the intricate patterns of en-

tanglement in the ground-state. Our exploration reveals three classes of unconventional, gapped

quantum phases that emerge in solvable models in three spatial dimensions:

Type I fracton phases have immobile (fracton) excitations, but composites of these form

topological excitations that exhibit dimensionally-reduced mobility. For example, certain

composite excitations are restricted to move in two spatial dimensions, and exhibit frac-

tional statistics. In certain phases, the fractons can carry a protected internal degeneracy.

Type II fracton phases, such as Haah's code [46] have fracton excitations that appear at

the corners of fractal operators. All topological excitations are strictly localized and there

are no mobile topological quasiparticles.

The third type of unconventional phase is one in which there are gapped quasiparticle excitations

that have reduced mobility, but there are no stricly immobile, fracton excitations.

In Part 11, we first construct a family of exactly solvable models of interacting fermions

in d > 3 spatial dimensions that have a hierarchy of point-like excitations with dimensionally

reduced mobility, and sub-extensive topological degeneracy [6]. We proceed to demonstrate

that fracton topological phases are dual to interacting quantum systems with global symmetries

along lower-dimensional sub-systems. We use this duality between symmetry-breaking states

and fracton topological order to find new fracton phases in spin systems [7]. We show that one of

these - the "X-Cube" model - may be obtained by coupling an isotropic array of states with Z2

topological order, which leads, in turn, to a natural ZN generalization of this fracton phase [5].
We conclude by presenting a solvable model for a fracton topological phase in which immobile

topological excitations carry a protected internal degeneracy. This provides a previously un-

known generalization of non-Abelian anyons - which arise in two-dimensional topological phases

- to three spatial dimensions [8].

Commutative algebra provides an indispensable tool for deriving the results in Part II.

Solvable models rapidly become difficult to study, since we must show (i) that the ground-state

lacks a local order parameter and (ii) that certain gapped excitations are truly immobile; even if

(i) is true, it is dangerously easy to convince oneself of (ii) in situations when it is patently false.

A purely algebraic representation also aids in efficiently searching the space of solvable models for

exotic phenomena. As we discuss, properties of fracton topological phases in solvable models

- including degeneracy, mobility of excitations, absence of local observables that distinguish

ground-states - are encoded in an algebraic variety [47], defined by the common zeros of a

collection of polynomials over a finite field. In bosonic systems, this variety is invariant under

the action of certain quantum circuits [81]. We show that the existence of fracton excitations is

determined by studying points on this variety. The absence of a local order parameter gives rise

5 This provided a source of initial frustration for the author.
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to an exact chain complex of free modules over a polynomial ring, leading to a derivation of the

duality between fracton topological phases and interacting systems with sub-system symmetries.

We conclude, in Part 111, by studying operator spreading and entanglement growth in random

quantum circuits, in which a quantum state is evolved using local, unitary operators that are

chosen randomly from an appropriate distribution. This least-structured model for quantum

dynamics preserves the locality and unitarity of time-evolution, but has no conserved quantities.

We demonstrate that after averaging over the choice of local unitaries in the circuit, certain

quantities - such as the evolving purity of a subsystem, and the out-of-time-ordered commutator

(OTOC) - may be exactly determined by a classical Markov process. We show, for example,

that if q is the dimension of the Hilbert space at each lattice site (q = 2 for spins), then

C(r, t) = q2  1 (n(r, t))ciass (1.5)

On the left-hand side of (1.5) is the OTOC for two operators separated by distance r, with

the bar denoting an appropriate average over the choice of unitaries in the circuit, while the

right-hand side denotes an average of the occupation number in a classical stochastic process,

which describes biased diffusion in one dimension (d = 1), and cluster growth in d > 2. From

this relationship, we determine the exact form of the averaged OTOC in one and two spatial

dimensions, and that operators spread ballistically, with a front that broadens as a power-law

in time (~ tc) with

1/2 d = 1
a'= 1/3 d = 2 (1.6)

0.24 d = 3

We then show that in one spatial dimension, the entanglement entropy of a subsystem grows un-

der random unitary dynamics according to the celebrated Kardar-Parisi-Zhang equation (KPZ)

[82]; we explicitly derive this behavior in two distinct random circuit models. In one of these, the

KPZ equation emerges from a description of the collective hydrodynamics of operators spread-

ing throughout the system. Furthermore, the relation between the stochastic growth of a one-

dimensional interface, as described by the KPZ equation, and the dynamics of a directed polymer

in a random environment, leads to heuristics for entanglement growth in higher-dimensions. Im-

portantly, the leading order time dependence of the entanglement entropy is deterministic even

in the presence of noise, which motivates us to propose that these heuristics apply to generic

many-body quantum systems undergoing Hamiltonian evolution.
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Part I

Quantum Computation and Majorana

Zero Modes
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We begin this section with a very brief review of the emergence of Majorana zero modes

in quantum condensed matter. As originally proposed by Ettore Majorana, the Majorana

fermion is a spin-1/2 particle that is its own anti-particle [83]. The existence of a "fundamental"

particle with this property seemed mathematically possible to Majorana, through the structure

of the Dirac equation. However, it seems peculiar that such a particle could easily emerge in the

condensed matter setting, since fermionic excitations in materials naturally carry electric charge,
and this quantum number prevents these excitations from acting as their own anti-particles.

The motivation to search for these exotic excitations in materials arises both from fundamen-

tal physics - to validate Majorana's original proposal - and from quantum information science.

A physical fermion may be naturally decomposed into a pair of Majorana fermions, i.e. the

operators c, ct for physical electrons, which satisfy canonical anti-commutation relations, may

be re-written ast

71+ i72 t 7 7C = 2 = (1.7)2 2

with the Majorana operators y= yj satisfying {7i, -yj} = 2J. This algebraic trick reflects a

simple fact: since a Majorana fermion is its own anti-particle, it makes no sense to speak of a

Majorana fermion "occupation number", and a pair of Majorana fermions is needed to describe

a fermionic, two-level system. Given a collection of Majorana fermions, one must specify how

these excitations are paired together to form the physical Hilbert space of fermions.

The importance of Majorana fermions for quantum information processing is now apparent.

First, a hypothetical system that supports a pair of spatially separated Majorana fermions,
should have two degenerate ground-states - corresponding to the occupation number parity

of a single, complex fermion - that are indistinguishable by local observables [84]. Therefore,
qubits defined by well-separated Majorana fermions should be insensitive to de-phasing errors.

Second, exchanging a collection of well-separated Majorana fermions corresponds to a change of

basis in the underlying, physical Hilbert space of complex fermions; in other words, "braiding"

Majorana fermions affects a unitary transformation on an encoded state. This is of fundamental

importance since this implies that Majorana fermions exhibit "non-Abelian statistics" [85, 86, 16]

- in contrast to ordinary fermions or bosons - as their exchange leads to a quantized unitary

operation acting within a degenerate Hilbert space. This provides the basis for the topological

quantum computing architecture, in which logical qubits are encoded in the degenerate states

of non-Abelian anyons and qubit operations are performed by braiding [19].

Superconductors provide the most natural host for Majorana zero modes, since the elemen-

tary excitations consist of electron particle-hole superpositions. In a superconductor with even

parity pairing (e.g. s-wave), however, these excitations involve an electron and a hole with oppo-

site spins, and no particle-hole superposition can give rise to a Majorana fermion. In a spinless

superconductor (with odd-parity pairing), however, one could imagine the perfect electron-hole

6 We have suppressed indices of other quantum numbers carried by the physical fermion, e.g. spin.
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superposition, e.g. y - c + ct, and indeed, for topological p-wave superconductors, Majorana

fermions can emerge as a special type of zero-energy quasi-particle that is bound to vortices

or defects [87, 88]. Of course, even ordinary superconductors with odd-parity pairing are ex-

tremely rare, and as a result, experiments hunting for Majorana fermions have had to resort

to "engineering" topological superconductivity by proximitizing an s-wave superconductor with

a helical metal [14, 89, 90, 91, 92]. Many encouraging physical signatures of Majorana zero

modes have been observed in these platforms - in vortices in the proximitized surface state of

a topological insulator, the edges of proximitized semiconductor nanowires, etc. - such as the

presence of zero-energy tunneling conductance peaks [93, 94, 95, 96]. Majorana fermions in

topological superconductors are also predicted to produce exotic quantum phenomena such as

a fractional Josephson effect [84, 97, 98] and the phase-coherent transport of electrons through

Majorana bound-states, termed "electron teleportation" [99].

The absence of de-phasing errors in a qubit encoded in well-separated Majorana zero modes

is a double-edged sword, since this also makes manipulation and validation of the qubit difficult.

Demonstrating the non-Abelian statistics of Majorana fermions also requires braiding, fusing,
and measuring the fusion outcome, which is a challenging task, as each of these operations is yet

to be experimentally achieved. Furthermore, braiding Majorana fermions alone is insufficient

to perform the necessary gate operations for universal quantum computation. Finally, for a

long-term quantum computation at finite temperature, it is important to address errors caused

in the process of manipulating a fermionic qubit, or while storing this qubit for subsequent

readout.

The purpose of this section is to demonstrate that the charging energy in a mesoscopic topo-

logical superconductor can be used to prepare exotic entangled states that can be used for fault-

tolerant, universal quantum computation with Majorana zero modes. We propose experiments

to detect the non-Abelian braiding statistics of Majorana zero modes, and measurement-based

protocols for braiding them. We also introduce a large collection of new quantum error-correcting

codes that can be used for the robust information storage in a fermionic qubit. This section is

based on Ref. [1, 2, 3, 4].
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Chapter 2

The Majorana Fermion Surface Code

In this chapter, we propose a concrete platform for universal quantum computation using Majo-

rana zero modes, by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic

topological superconductors, which can be implemented in a wide range of solid state systems,

including topological insulators, nanowires or two-dimensional electron gases, proximitized by

s-wave superconductors. We present protocols for measurement-based gate operations and for

qubit readout. Our proposal is based on a solvable model of interacting Majorana zero modes

that we introduce, and our presentation of the model, and of the platform for quantum com-

putation is self-contained, and is inspired by existing architectures for quantum computation

[19, 100, 101]

The "surface code" architecture [100, 101] provides an approach to universal quantum com-

putation that uses measurements in an Abelian topological phase for gate operations and error

correction. In the surface code, measurements of non-trivial commuting operators (stabilizers)

are used to project onto a "code state" and logical qubits are effectively encoded in the anyon

charge of a region by ceasing certain stabilizer measurements [102, 103, 15, 1041. The logical

gates necessary for universal quantum computation are realized through sequences of measure-

ments used to move and braid the logical qubits. An advantage of the surface code architecture

is its remarkable ability for error detection and subsequent correction during qubit readout, as

the nucleation of anyons through the action of a random operator can be reliably tracked through

stabilizer measurements. For a sufficiently low error rate per physical qubit measurement, scal-

ing the size of the surface code produces an exponential suppression in propagated errors [105].

Remarkably, recent experiments with superconducting quantum circuits have demonstrated the

ability to perform high-fidelity physical gate operations and reliable error correction for a surface

code of small size [106, 107, 108].

We introduce a new scheme for surface code quantum computation that uses Majorana

fermions as the fundamental physical degrees of freedom and exploits their unique properties

for encoding and manipulating logical qubits. Our surface code is based on a novel Z2 topo-

logical order with fermion parity grading (defined below), which we demonstrate in a class of

exactly solvable Hamiltonians of interacting Majorana fermions. We demonstrate that charging
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energy-induced quantum phase slips in superconducting arrays with Majorana fermions gen-

erate the required multi-fermion plaquette interactions, providing a physical realization of our

model. We then describe a detailed physical implementation of the "Majorana fermion surface

code", including physical qubit and stabilizer measurements, the creation of logical qubits, error

correction, and logical gate operations required for universal quantum computation.

The Majorana fermion surface code poses significant benefits over a surface code with bosonic

physical qubits. First, stabilizer measurements in the Majorana surface code can be performed

in a single step, whereas this requires several physical gate operations in the conventional surface

code [104, 15]. As a result, we anticipate that the Majorana surface code has a significantly

higher error tolerance. Furthermore, our Majorana surface code operates with substantially less

overhead, as it requires fewer physical qubits per encoded logical qubit, and uses no physical

ancilla qubits. Second, we may tune the energy gap for anyon excitations in our physical

realization of the Majorana plaquette Hamiltonian, increasing error suppression in the Majorana

fermion surface code. Finally, the lattice symmetries in the Majorana plaquette model permute

the three fundamental anyon types, allowing a much simpler realization of the logical Hadamard

gate. As we will show, the above advantages arise from the unique approach taken by our

Majorana fermion surface code and the use of Majorana fermions as fundamental degrees of

freedom. In particular, the unique property that a Majorana fermion is half of an ordinary

fermion, with the consequence that two of them form a single physical qubit, is crucial to the

Majorana fermion surface code. On the other hand, the non-Abelian statistics of Majorana-

carrying vortices or defects is of no relevance to our code, as our code does not involve braiding

these objects.

This chapter is organized as follows. First, we introduce a solvable model of interacting

Majorana fermions on the honeycomb lattice realizing a novel Z2 topological order with a Z2

fermion parity grading and an exact S3 anyon symmetry. We propose a physical realization of

this model, using charging energy in an array of mesoscopic superconductors [99] to implement

the required non-local interactions between multiple Majorana fermions. Next, we demonstrate

that our model provides a natural setting for the Majorana fermion surface code, in which a

logical qubit is encoded in a set of physical qubits formed from Majorana fermions. We present

a physical implementation of the Majorana surface code and propose detailed protocols for

performing gate operations for universal quantum computation.

2.1 Majorana Plaquette Model

We begin by considering a honeycomb lattice with one Majorana fermion (-y) on each lattice

site; the Majorana fermions satisfy canonical anti-commutation relations {yn, ym} = 2 6nm The

Hamiltonian is defined as the sum of operators acting on each hexagonal plaquette:

H = -U ZOp Op - i 7 -yn. (2.1)

P nEvertex(p)
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Figure 2-1: We consider a honeycomb lattice with (a) a single Majorana fermion on each lattice
site, so that the Op operator is the product of the six Majorana fermions on the vertices of
a hexagonal plaquette. The colored plaquettes in (b) correspond to the three distinct bosonic
excitations that may be obtained by violating a plaquette constraint.

We note that (1) this model was mentioned in a work by Bravyi, Terhal and Leemhuis [109],
although its novel topological order and anyon excitations were not studied there; (2) a closely
related model in the same topological phase was introduced and studied by Xu and Fu [1101.

It suffices to consider u > 0 below, as the case of u < 0 can be mapped to u. > 0 by
changing the sign of the Majorana fermions on one sublattice. The operator 0, is the product
of the six Majorana fermions on the vertices of plaquette p as shown in Figure 5-5a. Since any
two plaquettes on the honeycomb lattice share an even number of vertices, all of the plaquette

operators commute, and the ground-state 'ho) is defined by the condition

Op ITo) = ITo) , (2.2)

for all plaquettes p. We note that quite generally, Hamiltonians of interacting Majorana fermions
with commuting terms may be realized on any lattice, so long as any pair of operators in the
Hamiltonian only has overlapping support over an even number of Majorana fermions.

We demonstrate that the above Majorana plaquette model (5.1) realizes a Z2 topological

order of Fermi systems by considering the ground-state degeneracy and elementary excitations.

First, we place the system on a torus by imposing periodic boundary conditions, and find a
four-fold degenerate ground-state by counting the number of degrees of freedom and constraints

on the full Hilbert space. For an N-site honeycomb lattice, the 2N/ 2-dimensional Hilbert space

of Majorana fermions is constrained by the fixed total fermion parity:

] = iN/2 JJ 7 (2.3)
n

For convenience, we choose a unit cell for the honeycomb lattice consisting of three plaquettes

labeled A, B and C, as shown in Figure 5-5b. We observe that on the torus, the product of
plaquette operators on each of the A, B and C-type plaquettes is equal to the total fermion
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parity:

]'= flop= flop= flop (2.4)
pEA pEB pEC

The operators {0p} on any one type of plaquette fix one-third of the plaquette eigenvalues

via the condition (2.2), and impose 2 N/6-1 constraints on the Hilbert space. The number of

unconstrained degrees of freedom is therefore given by:

D = 22-1/ (26~i) 4, (2.5)

which yields a four-fold ground state degeneracy for the Majorana plaquette model on the torus.

The ground state degeneracy is of a topological nature, as the four ground-states are dis-

tinguished only by non-local operators. To see this, we construct a Wilson loop operator We,
defined as a product of Majorana bilinears on a non-contractible loop on the torus:

We = 1 (i- n-Ym). (2.6)
n,mEe

such that W = 1, so that the Wilson loop has eigenvalues 1. Consider the operators W2 and

WY on the two non-trivial cycles of the torus t, and fy, as shown in Figure 2-2. Since 4. and fy
traverse an even number of vertices over any plaquette and do not contain any common lattice

sites, we have [W,, Wy] = [Wy, H] = [Wy, H] = 0. Furthermore, we may construct Wilson loop

operators W1 and W on loops L and 4, where L is shifted from fX by a basis vector parallel

to fy and likewise for 4y, such that {W;, Wy=} ={W, Wx} = 0. As before, W7 and W commute

with each other and with the Hamiltonian. Therefore, the four degenerate ground-states may

be distinguished by their eigenvalues under Wx and Wy, with W_ and W transforming the

ground-states between distinct sectors. In analogy with conventional Z2 gauge theory, we may

identify the Wilson loop operators Wx,y with electric charges traversing the torus in two different

directions, and Wj,- as magnetic fluxes on a dual lattice.

Gapped excitations above the ground state are obtained by flipping the eigenvalue of O,
from +1 to -1 on one or more plaquettes. Since the total fermion parity is fixed and equal to

the product of all plaquette operators of each type, plaquette eigenvalues can only be flipped

on pairs of plaquettes of the same type. This is achieved by string operators of the form (2,6),

now acting on open paths and anti-commuting with the plaquette operators at the two ends of

the path, thereby creating a pair of anyon excitations.

An important feature of our Majorana plaquette model, the conservation of total fermion

parity-a universal property of Fermi systems-makes it impossible to create or annihilate two

excitations living on different types of plaquettes, or change one type of plaquette excitation

into another. As a result, there are three distinct elementary plaquette excitations, labeled A,
B and C, by plaquette type. To determine their statistics, we braid these excitations by acting
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Figure 2-2: The action of the commuting Wilson loop operators W_ and W. is shown above
as the product of the Majorana fermions on the lattice sites intersected by the appropriate
colored lines. The operator w. anti-commutes with W2 and takes the ground-state between two
topological sectors.

with Majorana hopping operators i~nm on lattice bonds [?]. We find that all three types of
plaquette excitations have boson self-statistics and mutual semion statistics, i.e., braiding two
distinct plaquette excitations generates a quantized Berry phase of 7r. From the elementary
plaquette excitations we may build composite excitations AB, BC, AC and ABC by flipping
the eigenvalues of the Op's on two or three adjacent plaquettes. Among these, the composite
excitation ABC is simply a physical Majorana fermion, since the Majorana operator Yn acting
on a lattice site flips the eigenvalues of the OP's on the three surrounding A, B and C plaquettes.
In contrast, the composite excitations AB, BC, AC are anyons, with fermion self-statistics and
mutual semion statistics with the elementary excitations. We call these excitations composite
Majorana fermions, as they are created by a string of physical Majorana fermions. A summary
of the braiding statistics for all anyons in our Majorana plaquette model is given in the following
table:

1 A B C AB BC AC ABC
1 +1 +1 +1 +1 +1 +1 +1 +1
A +1 +1 -1 -1 -1 +1 -1 +1
B +1 -1 +1 -1 -1 -1 +1 +1
C +1 -1 -1 +1 +1 -1 -1 +1

AB +1 -1 -1 +1 -1 -1 -1 +1
BC +1 +1 -1 -1 -1 -1 -1 +1
AC +1 -1 +1 -1 -1 -1 -1 +1

ABC +1 +1 +1 +1 +1 +1 +1 -1

Strange as it may appear, the existence of eight types of quasiparticle excitations is a generic
property of Z2 topologically ordered phases in Fermi systems, due to the conservation of fermion
parity. Consider artificially dividing the above quasiparticles into two groups: (1, A, B, AB) and
(ABC, BC, AC, C) = ABC x (1, A, B, AB). The former is equivalent to the four quasi-particles
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in Z2 gauge theory coupled to a bosonic Ising matter field, as realized in Kitaev's toric code [19]

or Wen's plaquette model [1-11]. The latter group of quasiparticles is obtained by attaching a

physical Majorana fermion to the former. The conservation of total fermion parity guarantees

that the two groups of quasi-particles cannot transform into each other in a closed system, and

thus have separate identities. We refer to the presence of two groups of excitations with different

fermion parity as a Z2 fermion parity grading.

A remarkable property of the Majorana plaquette model is that crystal symmetries of the

honeycomb lattice permute the three fundamental anyon excitations, A, B and C, by interchang-

ing the three types of plaquettes. Examples of such lattice symmetries include 7r/3 rotations

about the center of a plaquette, and translation by any primitive lattice vector. These symme-

tries of the honeycomb lattice provide a microscopic realization of the S3 anyon symmetry that

permutes quasiparticle sectors, as recently studied in the abstract formalism of topological field

theory by considering the symmetries of the K-matrices of Abelian topological states [112, 44].

2.2 Physical Realization

In this section, we show that the Majorana plaquette model can be physically realized in an

array of mesoscopic topological superconductors that are Josephson coupled. A wide range

of material platforms for engineering a topological superconductor have been proposed and are

being experimentally studied [87, 88]. As it will be clear in the following, the scheme we propose

for realizing the Majorana plaquette model is independent of which platform is used. For the

sake of concreteness, we use a platform based on topological insulators in describing the general

scheme below, and discuss other platforms based on nanowires and two-dimensional electron

gas with spin-orbit coupling in section II.C.

We place a array of hexagon-shaped s-wave superconducting islands on a topological insula-

tor (TI) to induce a superconducting proximity effect on the TI surface states. The Hamiltonian

for this superconductor-TI hybrid system is given by

Ho  = dr(-iv)Pt(r) (&Osy - 9ysx - pt) (r)

+ E drj AeiPiy4(rj) Ot(rj) + h.c. , (2.7)

where 4' (Ot, 4)T is a two-component fermion field and sx,y are spin Pauli matrices. The first

term describes the pristine TI surface states, with a single spin-non-degenerate Fermi surface

and helical spin texture in momentum space. The second term describes the superconducting

proximity effect: rj belongs to the region underneath the j-th superconducting island, whose

phase is denoted by <pj.

As found by Fu and Kane [14], a vortex or anti-vortex trapped at a tri-junction, where

three islands meet, hosts a single Majorana fermion zero mode. Let us consider setting up
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TI

Figure 2-3: Array of hexagonal s-wave superconducting islands placed on a TI surface. Each
arrow points in the direction of the relative phase of the associated island, with W = 0, t27r/3.
This produces a honeycomb lattice of vortices (blue) and anti-vortices (red) at tri-junctions,
hosting Majorana fermions.

the phases of superconducting islands to realize an array of vortices and anti-vortices at tri-
junctions. For example, the phases can be set to Wp = 0, 27r/3 and -27r/3 on the A, B and
C-type islands respectively, as shown in Fig. 2-3. This yields a 2D array of Majorana fermions on
a honeycomb lattice. In practice, the desired phase configuration can be engineered by external
electrical circuits [113] and/or magnetic flux. Alternatively, applying a perpendicular magnetic
field generates a vortex lattice. These vortices may naturally sit at these tri-junctions where the
induced superconductivity is weak, leading to the desired lattice of Majorana fermions.

We take the size of the islands to be larger than the coherence length of the superconducting
TI surface states. Under this condition, Majorana fermions at different sites have negligible
wavefunction overlap, preventing any unwanted direct coupling between them. (We note that
even weak couplings from wavefunction overlap will not affect the Z2 topological order of the
Majorana plaquette model, due to its finite energy gap.) Nonetheless, as we show below, the
charging energy of superconductors induces a nonlocal interaction between the six Majorana
fermions on each island, providing the key ingredient of the Majorana plaquette model.

2.2.1 Phase-Slip Induced Multi-Fermion Interactions

The important but subtle interplay between Majorana fermions and charging energy was first
recognized by Fu and formulated for superconductors with a fixed number of electrons [99].
Later works have extended it to multiple superconductors connected by Josephson coupling and
single-electron tunneling [110, 114, 115, 116]. In all of these cases, the charging energy of a given
superconductor induces quantum phase slips W W s + 27r, from which the Majorana fermions
in the superconductor acquire a minus sign: -yi - . This property is due to the inherently
double-valued dependence of Majorana operators on the superconducting phase [99J.

In our setup for the Majorana plaquette model, the charging energy of the superconducting
islands exerts even more dramatic and interesting effects on the Majorana fermions at tri-
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Figure 2-4: Schematic of a 27r phase-slip on the central superconducting island in a hexago-
nal superconducting array on a TI surface, with the phase of the central island indicated in
each panel. When the phase difference between neighboring islands is 7r, the pair of Majorana
fermions on the shared edges couple [14] as indicated. The 27r phase-slip permutes the Majorana
fermions as shown, leading to the transformation in (2.12).

junctions, which have not been previously studied. In the presence of a charging energy, the
phase of each island becomes a quantum rotor. The kinetic energy of the rotor is provided by
the charging energy Ec, which depends on the capacitance between an island and the rest of
the array, and is described by the following Hamiltonian

He = 4Ec (Lj - ng) 2  (2.8)

where j = (-i) - 0/,9o is the Cooper pair number operator for the jth island and ng is the
offset charge, which can be tuned by an externally applied electric field. The potential energy of
the rotor is provided by the Josephson coupling Ej between adjacent superconducting islands,
given by

Hj = -Ej cos(@j - (j - asp), (2.9)

where aji = ooj - po, is externally set up such that the minimum of the Josephson energy
corresponds to Oj = WOj mod 27r, with po,j = 0, 27r/3 and -27r/3 for the A, B and C-type
islands, respectively.

Combining (2.7), (2.8) and (2.9), the full Hamiltonian for our setup, i.e. an array of super-
conducting islands on a TI surface, is given by

H = Ho + He + Hj. (2.10)

We work in the regime Ej > Ec. Under this condition, low-energy states of the quantum rotor
on a given island pj consist of small-amplitude fluctuations around each potential minimum

Woj + 27rm. Moreover, different minima are connected by quantum phase slips, in which the
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phase W tunnels through a high energy barrier to wind by 27rn, with n an integer. The small-

amplitude phase fluctuations around a potential minimum correspond to a quantum harmonic

oscillator, and thus generate a set of energy levels given by

E0 ~ (a + 1/2) V8EjEc. (2.11)

with a E N.

On the other hand, quantum phase slips on a superconducting island strongly couple to the

Majorana fermions that reside on the border with its neighbors, previously obtained by holding

the phase fixed at W0j. In other words, Majorana fermions enter the low-energy effective theory

of (2.10) via quantum phase slips induced by small the charging energy on each superconducting

island. This new physics makes our system different from a conventional Cooper pair box.

Remarkably, the action of a quantum phase slip involves Majorana fermions in a way that

depends periodically on the phase winding number n mod 6. Consider, for example, phase slips

at the central superconducting island in Fig. 3. For n = 1, a 27r phase slip (p = 0 -+ 27r cyclically

permutes the three Majorana fermions bound to vortices in the counterclockwise direction, and

the three Majorana fermions bound to anti-vortices in the clockwise direction, i.e.,

W = 0 -+27r : 7i -y73, 7 3 --+ 75, -y5 -+ -71i

-72 - -76,74 --+ 72, 76 - 74, (2.12)

as shown in Figure 2-, where i = 1, ... , 6 labels the six Majorana fermions at vertices of this

island in clockwise order. The physical movement of Majorana fermions induced by phase slips is

a unique and attractive advantage of our setup, compared to other setups in which the positions

of Majorana fermions are fixed [110, 114, 115, 1161. On the other hand, for n = 3, a 67r phase

slip takes each Majorana fermion over a full circle and back to its original position, from which

it acquires a minus sign [14], i.e.,

p = 0 - 67 r: -y -+ -- y. (2.13)

Only for n = 6 does each Majorana fermion come back to its original position unchanged.

We now add up the contributions of various phase slips to derive an effective Hamiltonian for

Majorana fermions as a function of the offset charge ng for each state of the harmonic oscillator:

6

H,(n) = el + E(tce,nf nn* + h.c.). (2.14)
n=1

Here co is the quantized energy of the harmonic oscillator given by (2. 1.1), which is the same for

all internal states of the Majorana fermions. The second term describes quantum phase slips:

t,,n denotes the amplitude of the a-th energy level of the harmonic oscillator tunneling between

two potential minima that differ by 27rn, while On is the unitary operator acting on the Majorana
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fermions due to a 27rn phase slip. The coupling t,, depends on the energy barrier in the phase

slip event and can be modulated by tuning Ec/Ej; for example, ta,i oc e -/8EJ/Ec [117]. The

offset charge ng provides an Aharonov-Bohm flux proportional to the winding number n.

The Hamiltonian (2.14) is analogous to the Bloch Hamiltonian that describes the band

structure of a particle hopping in a one-dimensional periodic potential, with the offset charge ng
playing the role of crystal momentum. Importantly, the phase particle carries internal degrees

of freedom. resulting from Majorana fermions 'Yi, ... , y6 that are unique to our system. A phase

slip that moves the phase particle to a different potential minimum also permutes the Majorana

fermions as shown in (2. 12,2.13), similar to a spinful particle hopping in the presence of a non-

Abelian gauge field. These permutations are represented by the unitary operators #n in the

effective Hamiltonian (2.14) acting on Majorana fermions. For example, the operator &I that

generates the transformation (2.12) is given by:

U1 = +7273 + N +45 7 1 + - + 4 (2.15)

It follows from the addition of phase slips that (n = (U1 )n. In particular, the unitary operator

U3 , which takes -yj to -7y as shown in (2.13), has a simple form:

6

U3  -f7i = io, (2.16)
i=1

where 0 is the plaquette operator defined in the Majorana plaquette model (2.2). On the other

hand, for n = 1, 2,4 or 5, U, is a sum of operators 7yjy, 7'iyj'yk7' and iO.

Substituting the expressions for the Un's into (2.14), we find that the effective Hamiltonian

induced by the small charging energy of a single island takes the following form

Ha(ng) = , + a(ng)O + V. (ng), (2.17)

with

5

. (ng) = ta,m sin(2 7rimng). (2.18)
m=1

V(ng) includes a constant ta,6 cos(127rng), as well as Majorana bilinear and quartic operators

generated by phase slips with winding number n = 0 mod 3. Unlike 0, these operators on

neighboring islands do not commute. However, by appropriately tuning ng the contribution

of quartic operators to the effective Hamiltonian may be made to vanish, so that the only

remaining terms in the Hamiltonian will be the six-Majorana interaction and Majorana bilinear

terms. The bilinear term receives no contribution from any +67rm phase slip, while A,(ng)
receives contributions from every 27rm phase-slip process. Therefore, for the remainder of this

chapter, we assume that V can be treated as a perturbation to the Majorana plaquette model
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that does not destroy the Z2 topological order of the gapped phase. We note that an alternative

setup without the presence of V has been presented in a recent work [?].

2.2.2 Discussion

In deriving the effective Hamiltonian (2.14), we have implicitly assumed that Majorana fermions

are the only low-lying excitations involved in phase slip events, separated by an energy gap from

other Andreev bound states in the junctions between islands. This assumption is valid because

of the finite size of the islands, which leads to a discrete Andreev bound-state spectrum with

a finite gap for all values of the phase. The presence of this gap justifies our derivation of the

effective Hamiltonian (2. 14) in a controlled manner.

Over the last few years, considerable experimental progress has been made in hybrid TI-

superconducting systems. Proximity-induced superconductivity and supercurrents have been

observed in a number of TI materials [118, 119, 120, 121, 122, 123, 124]. Low-temperature scan-

ning tunneling microscopy (STM) experiments have found proximity-induced superconducting

gap on TI surface states, and the tunneling spectrum of Abrikosov vortices shows a zero-bias

conductance peak, which is robust in a range of magnetic field and splits at higher field [96].

This peak has been attributed to the predicted Majorana fermion zero-modes in the vortex

cores of superconducting TI surface states. In view of these rapid, unabated advances, we re-

gard the hybrid TI-superconductor system as a very promising material platform for realizing

the Majorana plaquette model and studying the exciting physics of Majorana fermions enabled

by quantum phase slips.

Besides TIs, a two-dimensional electron gas (2DEG) with spin-orbit coupling (such as InAs)

can be driven into a helical state with an odd number of spin-polarized Fermi surfaces by

an external Zeeman field, which provides another promising platform for realizing topological

superconductivity via proximity effect [125, 126]. In this topological regime, vortices and tri-

junctions of a superconducting 2DEG host a single Majorana fermion, similar to the TI surface.

Thus our propsed setup for the Majorana plaquette model in Section IIA directly applies to this

system as well.

In addition to TIs and 2DEG, (quasi-)one-dimensional semiconductors and metals with

strong spin-orbit coupling have become a hotly pursued system for Majorana fermions [89,
90, 91.]. Signatures of Majorana fermions were reported in 2012, based on the observation

of zero-bias conductance peak in hybrid nanowire-superconductor systems [93, 94]. One can

envision a network of nanowires in proximity with Cooper-pair boxes to realize our Majorana

plaquette model. In this direction it is worth noting that a new physical system-a nanowire

with an epitaxially grown superconductor layer- has been recently introduced to study Andreev

bound-states in the presence of charging energy [127].

Many other physical systems for Majorana fermions have been theoretically proposed and

experimentally pursued, too numerous to list. Regardless of the particular system, non-local

interactions between multiple Majorana fermions emerge from the charging energy of supercon-
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ductors via quantum phase slips, and in the universal regime, such interactions are determined

by the transformation of Majorana fermions under phase slips, as we have shown in Section IIB.

Finally, we note several previous works related to our Majorana plaquette model and its

physical realization. In Ref. [110], Xu and Fu first introduced a model of interacting Majorana

fermions that realizes Z2 topological order. This model involves 4-body and 8-body plaquette

interactions on square and octagonal plaquettes in a two-dimensional lattice. Physical realiza-

tions of this model were proposed using an array of superconductor islands in proximity with

either 2D TI [1101, or semiconductor nanowires [128, 129]. The 4-body nonlocal interaction

between Majorana fermions comes directly from the charging energy, whereas the 8-body in-

teraction comes from a high-order ring-exchange process generated by single-electron tunneling

between islands. In comparison, our Majorana plaquette model on the honeycomb lattice has

the theoretical novelty of possessing an exact anyon permutation symmetry, and can be realized

in a much simpler manner using an array of superconductors on a 3D TI with global phase coher-

ence, with all the required interactions coming directly from the charging energy. We also note a

recent work on lattice models of Majorana fermions in Abrikosov vortices on a superconducting

TI surface [130], which use different interactions and do not exhibit topological order.

2.3 Majorana Surface Code Operations

In the rest of this chapter, we demonstrate that the Majorana plaquette model finds a natural

application as a "Majorana fermion surface code", on which universal quantum computation and

error correction may be performed. The main idea of the surface code is to (i) use anyons of

the Majorana plaquette model to encode logical qubits, (ii) manipulate anyons to perform gate

operations on logical qubits, and (iii) use commuting measurements of the Majorana plaquette

operators for error correction. We will describe the detailed implementation of the Majorana

surface code, including the creation of logical qubits, error correction, and protocols for logical

gate operations required for universal quantum computation.

The surface code architecture [15, 100, 101] is a measurement-based scheme for quantum com-

putation. It uses projective measurements of commuting operators-called "stabilizers"-acting

on a 2D array of physical qubits to produce a highly-entangled "code state" 4'). Logical qubits

are created by stopping the measurement of certain commuting operators to create "holes". The

different possible anyon charges at a hole are the degrees of freedom that define a logical qubit.

Logical gates are realized by manipulating and braiding holes via a sequence of measurements.

A key advantage of the surface code is its remarkable capability for error detection. The

random measurement of an operator in the surface code corresponds to nucleating pairs of

anyons, a process that can be reliably measured by tracking the eigenvalues of the commuting

stabilizers. Reliable error detection hinges on (i) having a large number of physical qubits for

a given encoded logical qubit, and (ii) a sufficiently low error rate for stabilizer measurements

[15]. For the previously studied surface code with bosonic physical qubits, it has been estimated
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[131, 132] that below a threshold as high as ~ 1% error-rate per physical qubit operation, scaling

the size of the surface code permits an exponential suppression of errors propagated. This error

tolerance makes the surface code architecture one of the most realistic approaches to practical,
large-scale quantum computation.

Recent practical realizations of the surface code have used superconducting qubits coupled

to a microwave transmission line resonator to perform qubit manipulations and measurements

1106, 107, 108]. Here, a physical qubit is defined by two energy levels arising from quantization

of number/phase fluctuations in a conventional Cooper pair box. The surface code is imple-

mented on a 2D array of physical qubits with the four-qubit interactions of Kitaev's toric code

Hamiltonian [19] as the set of commuting stabilizers. The four-qubit stabilizer is measured by

performing a sequence of single and two-qubit gates between the four physical qubits and ad-

ditional ancilla qubits [15]. Experiments have demonstrated the remarkable ability to operate

these physical gates with fidelity above the threshold required for surface code error correction

[106]. Recent experiments have also used error detection to preserve entangled code states on a

surface code with a 9x 1 [107] and a 2x2 [108] array of stabilizers. It remains to be shown that

logical qubits can be successfully encoded and manipulated via logical gates in these surface

code arrays.

2.3.1 Implementation

We implement the Majorana surface code on a 2D array of Majorana fermions by performing

projective measurements of the Majorana plaquette operators {Q0}, which form a complete set

of commuting stabilizers. For the remainder of this chapter, we will use 'plaquette operators'

and 'stabilizers' interchangeably to refer to {0p}. A practical physical system for implementing

the Majorana surface code is the superconductor-TI hybrid system introduced in the previous

section. We place a array of superconducting islands on the TI surface, which are strongly

Josephson coupled. By introducing external circuits or applying fluxes, we engineer the Joseph-

son coupling between islands to achieve the phase configuration in Figure 2-3, leading to a

honeycomb lattice of Majorana fermions at tri-junctions.

To perform a projective measurement of the Majorana plaquette operator on a given island,
i.e., a single stabilizer, we decrease the Josephson coupling of the island with the rest of the

array to activate quantum phase slips from the small but non-zero charging energy on this island.

As shown by the effective Hamiltonian in (C.14), these quantum phase slips (partially) lift the

degeneracy between states in the eight-dimensional Fock space of the six Majorana fermions. In

particular, for every energy level of the harmonic oscillator, there is an energy splitting A,(ng)
between states of Majorana fermions with F = +1 (even fermion parity) and with F = -1 (odd

fermion parity) from (2.1.8), where F is the stabilizer eigenvalue; this is shown schematically in

Figure 2-')b. Therefore, the charging energy of the island creates an energy difference between

different stabilizer eigenstates. Furthermore, the energy gap between the two lowest harmonic

oscillator levels on the island is a function of the stabilizer eigenvalue F = i1, and in the limit
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Figure 2-5: (a.) Schematic of the harmonic oscillator energy levels of the effective Hamiltonian
(C.14), centered at p = 27rn, with the 27r and 47r phase-slip amplitudes for the lowest energy
levels shown. In (b), we show a schematic plot of the two lowest harmonic oscillator levels as
a function of the gate-charge. The energy splittings Al and A 2 are between states with even
(17 = +1) and odd fermion parity (F = -1) within the first and second harmonic oscillator levels,
respectively. Each level within a fixed fermion parity sector is nearly four-fold degenerate.

of negligible interaction V takes the following form:

AEr(ng) = co + [A2(ng) - Ai(ng)] F +... (2.19)

where co = _ -2 ~ /I-.8EjE. The sensitivity of the energy gap to the stabilizer eigenvalue
now permits a stabilizer measurement by simply measuring the energy gap. By shining a probe
microwave beam on this island, we may measure the phase shift of the transmitted photons to
determine the gap between the two harmonic oscillator levels [133, 134].

We now perform these stabilizer measurements on all of the superconducting islands to
project onto an eigenstate of the Majorana plaquette Hamiltonian (5.1); this will be our reference
"code state". We continue to perform measurements on all hexagonal islands in each cycle of
the surface code in order to maintain the state. In subsequent cycles, we may encode logical
qubits into the code state and manipulate the qubits via measurement. While projection onto
the code state and error correction in the surface code rely exclusively on measuring the six-
Majorana plaquette interaction, manipulation of logical qubits also requires measuring nearest-
neighbor Majorana bilinears on the hexagonal lattice. This may be done by tuning the phase
of neighboring superconducting islands to bring the pair of Majorana fermions on the shared
edge sufficiently close together [14], so that the resulting wavefunction overlap further splits the
nearly four-fold degeneracy within a single fermion parity sector shown in Figure 2-5b. Again,
the Majorana bilinear may be measured by shining a probe beam to measure the energy gap to
the next harmonic oscillator level.

Using the commuting six-Majorana operators in our plaquette model to realize a surface
code provides unique advantages over the more conventional surface code with bosonic phys-
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Figure 2-6: Logical qubits in the Majorana surface code. In (a) we stop the measurement of two
plaquette operators in subsequent surface code cycles, increasing the ground-state degeneracy
by a factor of four. If we take Zi and Z 2 to be the logical Z operators for the two encoded qubits,
the corresponding Zi and k2 operators are given by Wilson lines connecting to the boundary.
The two qubits may be coherently manipulated by applying the operator ki 2 as shown. In
practice, it is simpler to define logical qubits by stopping the measurement of pairs of plaquettes
of a single type, with the logical X and Z defined as shown in (b). We may also consider a
logical qubit made of several 'holes', as in (c), to minimize errors during qubit manipulation.

ical qubits. First, while a four-spin stabilizer measurement in the usual surface code requires

performing 6-8 gates/measurements between a set of physical and ancilla qubits [15, 131], sta-

bilizer eigenvalues in the Majorana surface code are obtained via a single-step measurement by

shining a probe beam. We emphasize that even when measurement is not being performed, the

intrinsic charging energy of the islands generates a finite gap A1 (ng) to creating anyon excita-

tions, and naturally suppresses errors at temperatures kBT < A1 (ng). We anticipate that the

corresponding error tolerance for scalable quantum computation is substantially improved for

the Majorana surface code. Second, the Majorana surface code operates with lower overhead

than its bosonic counterpart, using three-qubit stabilizers, and requiring no ancilla qubits. Fi-

nally, the anyon transmutation required to perform a logical Hadamard gate in the conventional

surface code corresponds to a duality transformation that exchanges the star and plaquette toric

code operators. This operation is quite difficult to perform on a single logical qubit as it also

requires lattice surgery to patch the transformed logical qubit back into the remaining surface

code [15, 135]. As lattice symmetries permute anyon sectors in the Majorana plaquette model,
anyon transmutation in the Majorana surface code corresponds to a lattice translation of the

logical qubit, substantially simplifying the Hadamard gate implementation.

2.3.2 Logical qubits and error correction

Logical qubits may be encoded in the surface code by ceasing the measurement of the plaquette

operator on a hexagonal superconducting island in a surface code cycle, while continuing mea-

surements on all other plaquettes. In theory, we could stop measuring a single plaquette and

define a two-level system, with the Z and X operators of the logical qubit defined by the plaque-

tte operator and a Wilson line connecting the plaquette to the boundary, respectively. A pair of

such qubits on the A-type plaquettes is shown in Figure 2-6a, where the solid and dashed lines
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correspond to products of Majorana fermions that define the indicated logical operators. The

two qubits shown may also be coherently manipulated by acting with the Wilson line operator

connecting the two plaquettes, denoted X 12 .

In practice, however, it is difficult to manipulate qubits with an operator that connects

to a distant boundary, so it is simpler to encode a logical qubit by stopping the stabilizer

measurement on two well-separated plaquettes of the same type. We choose to only manipulate

two of the four resulting degrees of freedom by defining Z Op and X Wq, the Wilson line

operator connecting the two plaquettes. We use the opposite convention to define the logical Z
and X operators for a qubit on the adjacent B plaquettes; an example of such logical qubits is

shown in Figure 2-6b. We note that when such a qubit is created, it is automatically initialized

to an eigenstate of the plaquette operator, with eigenvalue given by the measurement performed

in the previous surface code cycle. As a result, logical qubits of type A (B) are initialized to an

eigenstate of the Z (X) logical operator.

To reduce errors during qubit manipulation, we may define a qubit by ceasing measurement

of multiple adjacent plaquettes as shown in Figure 2-6b. In this particular case, the logical

operator X is still a Wilson line connecting to another set of distant 'holes'. However, the logical

Z is defined as Z O 0 q 0 0 r. For the remainder of our discussion, we will consider logical

qubits with only a single plaquette operator used to define the logical Z; the generalization to

larger qubits is straightforward.

Errors may occur during qubit manipulation, including (1) single-qubit errors due to the

unintended measurement of a local operator involving an even number of Majorana fermions

and (2) measurement errors. Single-qubit error correction may be performed on logical qubits by

constantly measuring the remaining plaquette eigenvalues during surface code cycles. Since only

pairs of plaquettes may be flipped simultaneously by a random measurement, corresponding to

the nucleation of a pair of anyons of a single type, detecting the change of an odd number

of plaquette eigenvalues in a single surface code cycle will generally signal the presence of a

random measurement performed on a nearby logical qubit. More precisely, when a stabilizer

eigenvalue changes in a surface code cycle, it is efficient to store the location of that stabilizer,
and wait several code cycles, accumulating a spacetime diagram of stabilizer errors as additional

errors occur [131, 132, 1051. After sufficiently many code cycles, the spacetime diagram may be

used to determine the most likely configuration of Wilson lines that could have generated those

errors [104, 15] using a minimum-weight perfect matching algorithm [136, 137]. Errors may be

subsequently corrected by software when performing logical qubit manipulations and readouts

[15]. Random measurement errors involve incorrectly registering the eigenvalue of a plaquette

operator; these are naturally corrected by performing multiple surface code cycles to verify the

accuracy of a measurement.
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2.3.3 Logical gate implementations

The Majorana surface code may be used for universal quantum computation by implementing

CNOT, T, and Hadamard gates on logical qubits; this has been extensively studied in the context

of the surface code architecture with underlying bosonic degrees of freedom [135, 15]. Here, we

describe the implementations of these gates in our realization of quantum computation with

a Majorana surface code. Our gate implementations follow the spirit of the implementations

presented in [15J.

All gates in the Majorana surface code are implemented on logical qubits via a sequence of

measurements. Let & be the desired unitary we wish to perform on the quantum state of several

logical qubits, defined by the logical operators {Z} and {Zi}. It is convenient to keep track

of the transformation of the logical state by monitoring the transformation of logical operators

X, -+ 2 t, ZZ > UZ2 Ut. In practice, performing the appropriate sequence of measurements

will yield the transformation W, such that:

Ut = i47.Wt (2.20)

Z0 0t = tW 21t (2.21)

where the signs depend on the outcomes of specific measurements performed. These measure-

ment outcomes are stored in a software and used to correctly interpret the readout of a logical

qubit. In what follows, we will often demonstrate our gate implementations in an "operator

picture", where a set of operators in the surface code 61, ... , 6, and Pi, ... , P, with eigenvalues

+1 are measured in an appropriate sequence. This implements a logical gate via the desired

transformations:

Z 6, = Uit (2.22)
j=1

k (fZ 3(p = T (2.23)
j=1

In practice, the measured outcomes for the {6} and {pj} operators will be stored by software

and used to obtain the above transformations during logical qubit readout.

CNOT gate: A CNOT gate takes two qubits - a "control" and a "target" - and flips the

value of the target qubit based on the value of the control, and returns the control unchanged.

The action of a CNOT takes the following form in the basis of two-qubit states:

1 0 0 0(

0 1 0 0 (.4
0 0 0 1

0 0 1 0
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(a) (b)

Figure 2-7: We may move a logical qubit defined by X and Z operators along a given sublattice.
We first multiply the logical Z by Or and turn 6p and Oq into four-Majorana operators. After
measuring i-rq in the next code cycle, we extend the logical X -+ X 0 i077. Finally, we begin
measuring Z in the next surface code cycle and restore O, and Oq to six-Majorana operators.

A CNOT gate may be implemented by braiding logical qubits in the Majorana surface code. In
the simplest case, a CNOT between two logical qubits of different types is implemented through
a single braiding operation that produces an overall sign if the hexagonal ends of both qubits
contain an anyon, due to the 7r mutual statistics, demonstrated in Section I. In the following
section, we first describe the procedure to move a logical qubit along a given type of plaquette
before discussing the braiding procedure required to produce a CNOT gate.

Consider the A-type logical qubit shown in Figure 2-7. To move the qubit one unit to the
right, we perform the following sequence of measurements. We begin by multiplying the Z logical
operator by the eigenvalue of the adjacent r plaquette operator to perform the transformation:

4 ZE' =Z Or- (2.25)

As the r plaquette is being continuously measured, its eigenvalue 0 r = 1 is known from the
previous surface code cycle. In the next cycle, we stop measuring 6r and measure the Majorana
bilinear i7yr. We then multiply the X operator by the measurement outcome, affecting the
transformation

k -+÷X' iy?. (2.26)

In the final surface code cycle, we begin measuring the original Z stabilizer and continue to
include the measurement of the Z stabilizer in all subsequent surface code cycles. Furthermore,
we redefine the logical operator Z' as

Z/ (2.27)

The initial qubit configuration and final outcome are depicted schematically in Figure 2-7. This
sequence of measurements has shifted the A-type qubit by moving its hexagonal end one unit
to the right, and may generally be used to move an A- or B-type logical qubit within the A or
B plaquettes, respectively.

We may now braid pairs of logical qubits to perform a CNOT gate in the Majorana surface
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Figure 2-8: CNOT Gate. Braiding two logical qubits to perform a logical CNOT. In (a), a
possible trajectory for braiding the first qubit around the second is indicated by the dotted line.
Since the two qubits live on distinct sublattices, the braiding procedure induces the transforma-
tion kA -+ XA 0 XB and ZB -+ ZA 0 ZB 0o, where V is the product of the colored plaquettes
shown. This performs a CNOT transformation on the braided qubit.

code. The simplest CNOT that we may realize is between two distinct types of qubits, taking

the A qubit as the control, as shown in Figure 2-8. Since the qubits are distinct, braiding the

B-type qubit - with logical operators B and ZB - along a closed path f enclosing the second

qubit (i) multiplies the Wilson line of the B-type qubit by the anyon charge enclosed by f and

(ii) multiplies the Wilson line of the A qubit by the anyon charge of the B qubit. This results

in the transformation:

A A oXB ZB +A 0& 2B p (2.28)
pEe

where {p} are A and C-type plaquette operators enclosed by the braiding trajectory, as shown

in Figure 2-8. Since the eigenvalues of the enclosed plaquette operators are known from the

previous surface code cycle, we may implement the logical CNOT (ZA -+ ZA, ZB -+ ZA ZB)
by multiplying the transformed ZB by an appropriate sign. In summary, the simplest braiding

process between an A and a B logical qubit implements a CNOT on the B qubit, with the A

qubit as the control.

A CNOT between two logical qubits of the same type may also be performed by appropriately

braiding pairs of distinct types of logical qubits. In this case, we will take one qubit as the control

by convention and store the outcome of the CNOT gate in a third ancilla qubit. First, consider

performing a CNOT gate on two A-type qubits. To implement the CNOT, we prepare two

additional ancilla qubits; the first is an A qubit prepared in the state I<p) = [I+z) + I-z)]/Nf2,
while the second is a B qubit prepared in the state 1+,), with 1 ,) and I t) the eigenstates of

the logical Z and X operators, respectively. Both ancilla qubits are prepared by measuring a
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+1 eigenvalue for the Wilson line joining the pair of plaquettes of the appropriate qubit. For

the A (B) qubit, this projects onto an eigenstate of the logical X (Z) operator, and produces

the desired ancilla states.

We now represent a complete basis of the four-qubit states as IzB, zC, Zt, zout), referring to

the eigenvalues of the logical Z operators of the B ancilla, the control, the target and the ancilla

A qubits, respectively. We start out with an initial state I|init) of the form:

V[init) = v- 1+, z, zt, +) +1+, z, zt,)

Next, we braid the B ancilla qubit around all three remaining qubits as shown in Figure 2-9a.

Up to an overall sign determined by the eigenvalues of plaquette operators enclosed by the

braiding trajectory that are known from previous surface code cycles, this braiding implements

the transformation ZB -+ ZB 0 Z 0 Z 0 Zout on the logical Z of the ancilla qubit, where

Zc, Zt and Zout are the logical Z operators for the control, target, and ancilla A-type qubits,
respectively. The final state we obtain is then of the form:

I4final) = I[zczt, zc zt, +) + zcz zc, zt-)1 (2.30)

This braiding process is convenient, as a measurement of the state of the B qubit can determine

whether the the state of the A ancilla contains the correct outcome of the CNOT operation. If

we now measure the logical Z of the B qubit and obtain ZB = +1 then we project onto a state

with zczt = zout. In this case, the A ancilla qubit contains the correct outcome of the CNOT

between the other A qubits. If ZB = -1, however, then zzt = -z,ut and the A ancilla contains

the opposite of the correct CNOT outcome. In this case, we may act with Z0Out on the A ancilla

qubit in the surface code software [15] to obtain the desired final state.

A similar process may be used to perform logical CNOT's between two B qubits; now, we

prepare an A ancilla qubit and a B ancilla qubit in the states shown in Figure 2-9b. After

braiding the ancilla A qubit around the control, target, and ancilla B qubits, if we measure

XA = +1, then the B ancilla contains the desired outcome of the CNOT operation. Again, by

convention, we take the control qubit to be the first one enclosed by the braiding trajectory, as

shown in Figure 2-9b.

Hadamard gate: The Hadamard is a single-qubit gate taking the matrix form:

V2 = (2.31)

The action of a Hadamard is to exchange the logical X and Z operators so that HXHt

Z and HZHI = Z. As the logical X and Z are defined oppositely on different types of

qubits, a Hadamard operation in the bosonic surface code corresponds to an electric/magnetic

duality transformation that interchanges star and plaquette operators in the toric code. In the
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Figure 2-9: Braiding processes that implement the transformation (a) Za -+ Za 0 Zc 0 Ze 0 Zout
up to an overall sign, as determined by the product of the remaining plaquette operators enclosed
by the path , and (b) Z0 ,ut - Z0 u, 0 ZA, Ze -÷ Zt 0 ZA, Zc -* Zc 0 ZA. The two braids are
used to realize CNOT gates between two (a) A-type and (b) B-type logical qubits, respectively.
By convention, we take the lowest qubit enclosed by the braiding trajectory to be the control
for the logical CNOT.

ordinary surface code, such a transformation is quite difficult to implement, requiring a series
of Hadamards on physical qubits enclosing the logical qubit so as to interchange the X and Z
stabilizers, followed by physical swap gates in order to correctly patch the transformed logical
qubit back into the remaining surface code array [1351. As lattice symmetries permute the
anyons in the Majorana plaquette model, however, the logical Hadamard may be realized in the
Majorana surface code by simply moving a logical qubit between distinct plaquettes.

We implement the logical Hadamard by the procedure shown in Figure 2-i10. Consider an
A-type logical qubit. We multiply the logical X operator of the qubit, defined by the Wilson line
in Figure 2-i0a, by the product of the adjacent plaquette operators {Oyk} extending between
the hexagonal ends of the qubit. The eigenvalues of these plaquette operators are known from
previous surface code cycles. This operation implements the transformation:

0 - ' s _ll . (2.32)
k

At the same time, we multiply the logical Z by the adjacent plaquette operator O0 shown in
Figure 2-19 a, that borders the logical qubit above:

Z n Z s Z Op.(2.33)

In subsequent surface code cycles, we stop measuring the eigenvalue of O. We implement a
similar transformation on the other hexagonal end of the logical qubit, by stopping the measure-

inent of the plaquette operator above the other qubit 'hole'. The end result, after performing
these operations, is shown in Figure 2-l.b. The solid and dashed blue lines indicate the prod-
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Figure 2-10: Hadamard gate. A logical Hadamard is performed by transferring a qubit
between distinct sublattices, so that the logical X and Z operators are exchanged. We do this
by taking the qubit in (a) and multiplying by logical X by the plaquette operators {Ok} and
the logical Z by 0, and ceasing measurement of the fermion parity of plaquette p, yielding
the operators shown in (b). Next, we measure the product (iM172)(iW3 A4 ) ... and and Oq and
multiply with Z' and X', respectively. The final result is shown in (d).

ucts of the Majorana fermions on the appropriate sites that define the X' and Z' operators,
respectively.

In the next surface code cycle, we measure the product (i7 1772 ) (iq 3 n4 ) ... of the Majorana
fermions along the lower 'string' that defines the Z' operator; this measurement commutes with
X' since the two operators do not overlap, as shown in Figure 2-1.0c. Afterwards, we measure
Oq, as well as the plaquette operator 6h for the other 'hole' of the original logical qubit. Then,
we may perform the following transformations on the logical X' and Z' operators:

X -> Z' 0 Oq
2' -+ 2" Z' 0 fl(i2e1-192e).

(2.34)

(2.35)

This yields the logical qubit shown in Figure 2-10d. In subsequent surface code cycles, we
continue measuring the eigenvalues of Oq and Oh. Since the logical Z and X operators are
defined differently on the A and B-type plaquettes, our procedure for transforming our A qubit
into a B qubit implements a logical Hadamard gate. An identical protocol may be used to
perform a Hadamard on a logical B qubit.

S and T-gates: Finally, we implement the logical S- and T-gates, described by the following
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single-qubit operations:

$= 1 0 ) - 1 0 (2.36)
0 i 0 e i7/4

As demonstrated in [151, it is possible to realize these gates by performing a series of logical

Hadamard and CNOT gates between the logical qubit and an appropriate logical ancilla qubit.

Here, we first discuss the S- and T-gate implementations, given the appropriate ancilla qubit,
before outline a procedure for creating these logical ancillas in the surface code.

To implement an S-gate, we prepare a logical ancilla in the state

IWs) --- +) + i 1-2) (2.37)

Then, if I') is the state of the logical qubit of interest, the following sequence of logical Hadamard

and CNOT gates implements the transformation 11) -+ IT4) [15]:

1 P ) - , |I )

I(s) H H Ws)

To perform a T-gate, we first prepare a logical ancilla in the state

PT) -[ -z) -+ e'7r/4 -- z) -(2-38)

The T-gate is then implemented via a probabilistic circuit. We perform a CNOT between the

ancilla and the logical qubit of interest, and then measure the logical Z of the qubit. Depending

on the measurement outcome, we implement an S-gate as shown below: If the measurement

SOT) SOT)

4') Mz S [U T -fl)

[iXZ

outcome Mz = +1, then we obtain the correct output I Q'); otherwise, if Mz -1, then we

have performed the transformation IT) -- T I). In this case, we implement an S-gate on

the logical qubit and obtain the final state iXZT 1T). The action of the operator iXZ may be

undone in the surface code software to implement a pure T-gate on the logical qubit [151.
To realize the above implementations, we may prepare logical ancilla qubits in the states

JPT) and IWs) as follows. First, we create a "short qubit" [151 by ceasing the fermion parity
measurement on two adjacent plaquettes p, q belonging to the same sublattice, as shown in

Figure 2-1.1a. For this qubit, let X =-6, and Z i'r/. The qubit is initialized to a state I )
such that X IT ) = 4Q). In a basis of eigenstates of the logical Z, the qubit state takes the
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Figure 2-11: S- and T-gate Ancilla Preparation. We create the I s) and I T) ancilla states,
needed to realize logical S- and T-gates by preparing the "short qubit" [151 shown above. We
cease stabilizer measurements on two adjacent plaquettes p and q. In the next surface code
cycle, we perform a rotation of the two-level system defined by i-yq. Finally, we enlargen the
logical qubit by extending one end of the qubit, to guarantee stability against noise.

form I|P+) = (I+z) I-z))/v2. Now, we assume that the two-level system formed by the pair

of Majorana fermions -y and 7 can be manipulated by performing a rotation

R() = ) (2.39)
(0 eiO

that acts in the basis of I z) states. This may be implemented by using the phase of the adja-

cent superconducting islands to tune the coupling between the Majorana zero modes [138]. To

prepare the state I s), we perform the rotation R ( +r/2) I Q+) in the next surface code cycle,

while to prepare SOT), we perform the operation f ((27r t 7r)/4) 'J+). Afterwards, to guarantee

the stability of the qubit against noise generated by the environment, we increase the length of

the logical X operator by extending one end of the logical qubit, as discussed in detail previously

and shown schematically in Figure 2-7. In practice, a high-fidelity implementation of the S-

and T-gates requires that the "short qubits" are put through a distillation circuit, as discussed

in [15], which may be implemented using a sequence of logical CNOT gates with other ancilla

logical qubits.

We have presented a two-dimensional model of interacting Majorana fermions that realizes

a novel type of Z2 topological order with a microscopic S3 anyon symmetry. The required

multi-fermion interactions in the plaquette model are naturally generated by phase-slips in an

array of phase-locked s-wave superconducting islands on a TI surface. Based on this physical

realization, we propose the Majorana surface code and provide the necessary measurement

protocols and gate implementations for universal quantum computation. The Majorana surface

code provides substantially increased error tolerance, reduced overhead, and simpler logical

gate implementations over a surface code with bosonic physical qubits. We are optimistic

that the Majorana fermion surface code will be physically implemented, and may provide an

advantageous platform for fault-tolerant quantum computation.
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Chapter 3

Quantum Information Processing with

Majorana Zero Modes

The previous chapter introduced a concrete proposal for universal quantum computation us-

ing Majorana zero modes in an array of topological superconductor islands. To complement

this long-term goal, we propose realistic steps towards quantum information processing with

Majorana zero modes that may be addressed in on-going experiments. Following theoretical

proposals, over the last few years transport and scanning tunneling microscopy experiments

have reported the observation of zero-bias conductance peak as a signature of Majorana zero

modes in various material platforms including nanowires [93], atomic chains [95] and topological

insulators [96, 139], proximitized by s-wave superconductors. These results suggest the existence

of Majorana zero modes, and encourage research towards demonstrating their topological prop-

erties. Among these, non-Abelian statistics is widely regarded as the "holy grail" for topological

phases of matter and for topological quantum computation.

Theoretical proposals for detecting the non-Abelian statistics of Majoranas have mostly

relied on braiding, i.e. moving Majoranas around each other via a sequence of operations.

For example, by changing the phase of Josephson junctions, Majorana zero modes localized

in Josephson vortices can be braided in an array of superconducting islands on a topological

insulator [14]. By tuning the gate voltage, Majoranas in proximitized nanowires can be braided

in a T-junction [140, 141]. Detecting non-Abelian statistics further requires measuring the state

of Majoranas before and after braiding. Both the motion and measurement of Majoranas are yet

to be experimentally achieved. Furthermore, physically moving Majoranas in nanowire networks

suffers from dangerous thermal errors that are very difficult to correct [142]. These errors may

be avoidable in other proposals that selectively tune couplings between Majoranas to implement

braiding transformations [143, 116, 144].

We address practical goals for quantum computation with Majorana zero modes in this

chapter. We introduce a new scheme for (i) detecting the non-Abelian statistics of Majorana

zero modes and (ii) implementing braiding operations, without any physical braiding, which is
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entirely based on projective measurements, as opposed to unitary evolution. In our scheme, a

topological qubit encoded in any pair of well-separated Majoranas is read out from the trans-

mission phase shift in electron teleportation through the topological superconductor that hosts

these Majoranas [99]. Electron teleportation is a remarkable mesoscopic transport phenomenon

enabled by the fractional nature of Majorana zero modes and the charging energy of the super-

conductor. Here we use electron teleportation to directly measure and manipulate Majorana

qubits without moving, hybridizing or destroying Majorana zero modes. Importantly, thanks to

the spatial separation of Majorana zero modes, teleportation-based Majorana qubit readout is

inherently error-free.

In our scheme for "braiding without braiding", the unitary transformation that would be

generated by physically exchanging a pair of Majoranas is realized by performing a sequence

of projective measurements of Majorana bilinear operators. The theoretical basis for using

projective measurements to implement quantum gates was provided in Ref. [145, 271. Within

the framework of non-Abelian topological order, replacing anyon braiding by topological charge

measurements was proposed by Bonderson, Freedman and Nayak [146]. On the other hand, elec-

tron teleportation provides an ideal way of measuring Majorana qubits in mesoscopic topological

systems [99], where the charging energy required for teleportation comes from the long-range

Coulomb interaction. As a result, the physics of teleportation lies beyond theory of topological

order for systems with short-range interactions and in the thermodynamic limit. By combining

teleportation-based measurement and measurement-based braiding, our work unveils a novel and

practical approach to quantum information processing with well-separated, stationary Majorana

zero modes.

Our work is especially timely in view of a recent groundbreaking experiment on epitaxially

grown InAs/Al superconducting nanowires [147], which are theoretically predicted to host Ma-

jorana end modes under an external magnetic field [125, 90, 91]. Due to charging effects in the

Coulomb blockade regime, transport through the nanowire at zero magnetic field is dominated

by Cooper pair tunneling, leading to zero-bias conductance oscillations with the gate voltage

that are charge-2e periodic. However, above a critical field and in the presence of a super-

conducting gap, the conductance oscillations become charge-e periodic. The observed charge-e

transport in a superconducting state supports the theoretically predicted scenario of electron

teleportation via Majorana modes [99, 115, 148]. Another distinctive feature of teleportation is

that single-electron transport through the superconducting island is phase coherent [99]. This

important property forms the basis for topological qubit readout in this chapter. To detect the

phase coherence requires an electron interferometer, which is currently under experimental pur-

suit [149]. Given these exciting developments, we believe teleportation-based braiding without

braiding is a practical scheme for detecting the non-Abelian statistics of Majorana zero modes,

and offers a promising prospect for robust quantum information processing.

Our teleportation-based scheme for implementing projective measurements and performing

"braiding without braiding" on stationary and spatially-separated Majorana zero modes has
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significant advantages over other schemes based on physically moving Majoranas to implement

logical gates or to perform qubit readout. For braiding to be feasible, Majoranas must be moved

sufficiently slowly to obey an adiabaticity condition [141], which is especially stringent in dis-

ordered nanowires without a hard spectral gap [150, 151]. Qubit readout and gate operation in

our proposal are not limited by this constraint. Moreover, in the process of moving Majoranas,

dangerous thermal errors on the topological qubit may be accumulated, which are extremely dif-

ficult (if not impossible) to de-code and correct [152]. Finally, teleportation-based measurement

of Majorana qubits has advantages over proposed readout schemes based on charge sensing [1411
which can only be performed on pairs of Majorana zero modes that are spatially adjacent.

After completion of this work, other proposals for storing and manipulating Majorana qubits

in nanowire networks have been introduced [153, 154], which also uses electron teleportation

to measure the fermion parity of well-separated Majorana zero modes. These proposals further

propose measurement-based gate implementation of the Clifford group [154, 1531, which goes

beyond the scope of this work. We note, however, that the detrimental effects of error processes

such as quasiparticle poisoning have yet to be properly addressed.

This chapter is organized as follows. We begin by reviewing the phenomenon of phase-

coherent electron teleportation through Majorana zero modes. We then describe two telepor-

tation based setups - the Majorana interferometer and the Majorana SQUID - for measuring

a topological qubit encoded in a pair of well-separated Majorana zero modes, and for detecting

their non-Abelian statistics. Next, we present a general protocol for implementing braiding

transformations on Majorana zero modes exclusively through projective measurements. Finally,
we provide a concrete experimental realization of our proposal using proximitized nanowires.

Our general scheme of teleportation-based braiding without braiding is applicable to any Majo-

rana platform, provided that the topological superconductor hosting the Majoranas has a finite

charging energy.

3.1 Conceptual Basis

In this section we lay out the theoretical basis of teleportation-based measurement of a topolog-

ical qubit encoded in a pair of spatially separated Majorana zero modes. We first elaborate on

the transmission phase shift in electron teleportation via a pair of Majoranas and its dependence

on the state of the topological qubit, as pointed out in Ref. [991. Next, we propose two ways of

detecting this phase shift, or equivalently reading out the topological qubit, by measuring the

conductance in an electron interferometer or the persistent current in a closed loop. We then ex-

plicitly show the change of the teleportation phase shift in the process of physically exchanging

two Majorana zero modes. The difference in the phase shift-a physical observable measured

by interferometry-before and after the braiding directly proves the system has evolved into a

new state, thus demonstrating the non-Abelian statistics of Majorana zero modes.
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3.1.1 Teleportation-Based Measurement of a Topological Qubit

Let us consider a mesocopic topological superconductor island hosting a number of well-separated
Majorana zero modes that have negligible wavefunction hybridization. Each Majorana zero
mode of interest is tunnel coupled to a normal metal lead, and the tunnel couplings can be
turned on and off by gates. The superconducting island is capacitively coupled to a nearby

gate. We assume that the charging energy E, is smaller than the superconducting gap A, but
larger than the tunnel coupling to the leads, as defined by Eq.(3.6) below.

In the absence of a tunnel coupling to leads, the ground state energy of the island depends
on the total number of electrons N through the charging energy:

E(N) = Ec(N - ng) 2 , (3.1)

where the offset charge ng is continuously tunable by the gate voltage. Due to the presence of
Majorana zero modes, the superconducting island can accommodate an even and an odd number
of electrons on equal ground without paying the energy cost of the superconducting gap. Thus
N takes both even and odd integer values. Throughout this chapter, we assume that the island
is in the Coulomb blockade regime away from the charge degeneracy point, so that the total
charge of the island is fixed, denoted by N = No. Under this condition, the island has 2 M/2-1

degenerate ground states, where M (an even integer) is the number of Majorana zero modes
present. These degenerate ground states form a topologically protected Hilbert space, which we
use to encode quantum information. By detuning the island far away from charge degeneracy,
the topological qubits are protected against quasiparticle poisoning from outside the island at
low temperature.

A complete basis for this 2M---dimensional Hilbert space is given by the common eigenstates
of a set of nonoverlapping Majorana bilinear operators, e.g., (i71'7Y2, i7374, ... , iyM-yM). A

Majorana bilinear operator i-yy has two eigenstates I )ab, defined by

i-Ya-b1 )ab = i 1)ab. (3.2)

Thus, measuring the topological qubit in this basis amounts to measuring the eigenvalue of i-yaYb.

Any way of partitioning Majoranas into pairs defines a corresponding basis for the topological
qubit, and different bases are related by unitary transformations known as F-symbols, which
are determined by the fusion rules for the Majoranas. It is thus desirable to be able to measure
the eigenvalue of any Majorana bilinear operator, so that the topological qubit can be measured
in any basis.

We now describe a teleportation-based protocol to measure the eigenvalue of any Majorana
bilinear iYa7b by coupling the Majorana island to lead a and to lead b. The bare tunneling
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Figure 3-1: Majorana Interferometer - Two electron interferometry setups to measure the
topological qubit formed by Majorana zero modes -y1 and 72. In both interferometers, one path
goes through the topological qubit while the other path goes through (a) a normal metal with
sufficiently long phase coherence length (blue) and (b) a second Majorana island initialized in
a definite parity state i' 10 2 = 1.

Hamiltonian is given by

HT= ' tc (0)f(rj) + h.c. (3.3)
j=a,b

where cj(0) is the electron operator at the end of lead j, and f(rj) is the electron operator in
the island at the tunneling location rj, where the Majorana zero mode -y is located. Next, we
expand f(rj) in terms of quasiparticle operators in the superconducting island:

fI(rj) = j* (r)ei/ 2,i + - - - (3.4)

Here j (r) is the wavefunction associated with the Majorana mode operator yj, defined by

S= J dr [ j(r)e-i/2ft(r) + j(r)eiO/2f(r)] . (3.5)

Here, 0 is the phase operator of the superconductor, which is conjugate to the electron number
operator N and satisfies the commutation relation [0, N] = 2i. In the operator expansion (3.4)
we have neglected all quasiparticles above the superconducting gap which are irrelevant to the
low energy physics of our interest, as well as Majorana zero modes at other locations whose

amplitudes at rj are exponentially small. Thus, as shown by (3.4), in the low-energy Hilbert

space the electron creation operator ft(rj) is represented as a product of the Majorana mode

operator -yj and the charge-raising operator eiO/ 2 which increases the charge of the island by
le. Physically speaking, Eq. (3.4) describes the charge-statistics separation of an electron after
entering a topological superconductor: the charge of the electron is spread out over the entire
superconductor, while its Fermi statistics is retained by a localized Majorana fermion that is
charge neutral.
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Substituting (3 4) into the bare Hamiltonian (3.3) yields an effective tunneling Hamiltonian

HT = Ajc (0)-yje-O/2 + h.c., with Aj = tjgj(rj)
j=a,b

We define the tunnel coupling r as

= 2'rpAj, (3.6)
j=a,b

where p is the density of states in the leads. Assuming F < E+ where E+ = E(No 1) - E(No)

is the energy difference between the charge states N = No and N = No i 1, transmission

through the island is dominated by a second-order process, where a single electron tunnels into

the island from one lead and a single electron exits from the island to another lead. Therefore,

from second-order perturbation in HT, we obtain an effective coupling between a Majorana

island in the off-resonance Coulomb blockade regime and the leads

Hab -A*Atc(0)ca(0) [(No Vybe-i0/ 21No + 1)(No + IaeiO/2 INo)
a b~ E(No + 1) - E(No)

(NoI'Yaet0 /2INo - 1)(No - 1-ybe-iO/ 2INo)+
E(No - 1) - E(No)

- [Tabc,(O)ca(0) - Ta*bc(O)c(0 (3.7)

where Tab A*Ab 1 + -- ) is the effective single electron tunneling between lead a and b, me-

diated by a pair of Majorana zero modes Ya, -b. Due to this entanglement of Majorana degrees

of freedom with electron tunneling between two leads, Hab enables a direct projective measure-

ment of the Majorana bilinear i-yayb, even when 7ya and -Yb are far apart in the superconductor

island, as we show below.

Let us first consider the case that the Majorana island is initialized to be an eigenstate of

iYa'Yb, either 1+),ab or |-)ab It follows from (3.7) that the single electron tunneling amplitude

from lead a to b, which is mediated by ya and -y, is equal to -iTab for the Majorana qubit

state j+)ab, and +iTab for the state -)ab. Therefore, the two Majorana qubit states 1 )ab are

distinguishable by the 7r difference in the transmission phase shift in electron teleportation via

a pair of Majorana zero modes [99].

To measure the teleportation phase shift requires quantum interference. We now propose

two phase measurement schemes for Majorana qubit readout. The first scheme is based on a

conductance measurement in a two-path electron interferometer, with one path going through

the Majorana island and the other path serving as a reference. The reference path may be

a normal metal with a sufficiently long phase coherence length [991, or a second Majorana

island in a definite parity state 110, 155], as shown in Fig. 3-1. The total conductance G

then contains a term proportional to (i-yaYb) due to the interference between the two paths, i.e.,
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Figure 3-2: Majorana SQUID - When the two Majorana zero modes '71 and 72 are connected
by a bridge outside the island to form a closed loop, with the bridge being (a) a normal metal
with sufficiently long phase coherence length or (b) a reference Majorana island in a definite
parity state iVibi 2 = 1, the topological qubit defined by iy 1y2 = +1 may be read out by
measuring the persistent current I in the ground state, which is a h/e-periodic function of the
applied flux P.

G() = go+ig(P)Ya-7Yb, where g depends periodically on the external magnetic flux O enclosed by
the two interfering paths, with h/e-periodicity. Since the conductance takes different values for
the qubit state 1i)ab, the conductance measurement in such Majorana interferometer provides
a projective measurement of the topological qubit in the basis 1t),b.

The second scheme for qubit readout is based on measuring the persistent current in a closed
loop. This loop can be made by connecting Majorana zero modes on the island to the ends of a
normal metal bridge (see Fig. 3-2a), or to a reference Majorana island in a definite qubit state
(see Fig. 3-2b). Due to the phase coherence of electron motion around the loop, the energy of
the closed system depends periodically on the external magnetic flux P through the loop with
h/e periodicity,

E = E + iE-a7b cos [e((h - D) , (3.8)

where 4P and e depend on details of the setup such as tunnel couplings between the island and
the normal metal bridge. Eq. (3.8) implies the presence of a persistent circulating current in the
loop

=E ei'7 . ~e(#n - c)1
I= = (iYaY() -s . (3.9)

This circulating current flows in opposite directions for the two Majorana qubit states I )ab.
Thus the Majorana qubit is faithfully transferred to the state of the persistent current, which
can then be read out by inductive coupling the system to a SQUID loop.

We now estimate the magnitude of the persistent current in a Majorana SQUID by treating
the transmission through a Majorana island as single electron hopping across a weak link, as
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described by the effective Hamiltonian (3,7). Details of our calculation are presented in the

Appendix A.1. When the Majorana SQUID is formed by a single island connected to a normal

metal bridge, we find that the magnitude of the persistent current at zero temperature is given

by

er 1 (310Io ~ 6 (L- )+ (3.10)
h E+ E_

as explicitly calculated in the Appendix A.1. Here, r is the tunnel coupling between the island

and the normal metal defined in (3.6), and 6 is the single-particle level spacing in the metal,

which is inversely proportional to the length of the bridge. An order-of-magnitude estimate

based on experimental parameters in Ref. [147, 127, 148] yields Io - 10 nA.

When the Majorana SQUID consists of two islands connected by two normal metal bridges,

we determine the persistent current by modeling the bridges as mediating a direct electron

tunneling between the Majorana islands. In this case, we consider the Hamiltonian H = HT+Hc

for the full system, where

Hc- EM (Ni - n()) 2  (3.11)
iC 2

i=1,2

describes the charging energy for each of the Majorana islands (i = 1, 2). Here, E7', N, and

ni are the charging energies, total charge, and gate charges, respectively, for island i. For

simplicity, we let E(= E = E, for the remainder of our calculation. Furthermore, as shown

in Sec. IA, electron tunneling between the two Majorana islands is described at low energies by

an effective Hamiltonian in terms of the Majorana operators, as given by

Ht = it 1 41iy1 ei(01- 0 2)/ 2 + h.c.

+ it2e i 0 ei(02-0 1)/2 + h.c. (3.12)

with 01,2 the superconducting phases on each Majorana island and P, the applied flux through

the ring.

In the presence of a large charging energy E, > ti, 2 , the effective Hamiltonian for the system

is, to lowest order in perturbation theory, given by

Heff = 21tlt2  cos L1e(2 - 7] 0172-1Y2, (3.13)
E+ +E_ h

where the constant Dc provides an overall shift and is present when t1 ,2 are complex. The

magnitude of the persistent current is then given by

10 -e,( jtj (3.14)
h E++E_)
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In the Appendix A.1, we also model the persistent current in a Majorana SQUID with two

Majorana islands as single electron hopping in a ring with two weak links and determine the

magnitude of the persistent current.

3.1.2 Detecting Non-Abelian Statistics from the Teleportation Phase Shift

In this section we explicitly demonstrate the change of teleportation phase shift due to braiding

Majorana zero modes in a two-dimensional topological superconductor. Here, Majorana braiding

is realized by adiabatically exchanging two identical vortices, which host Majorana zero modes in

their cores [86]. Since the teleportation phase shift is a physical observable that can be measured

by interferometry, its change before and after braiding implies a change in the quantum state

of the system, thus providing direct proof for non-Abelian statistics.

Before proceeding, we first clarify what we mean by non-Abelian statistics of Majorana-

carrying vortices in a superconductor. We assume that the superconductor is well described by

a Bogoliubov-de Gennes (BdG) Hamiltonian with a pairing potential A(r) = JA(r)eio(r) that

is a complex function of position. We assume that apart from the overall phase 6, the pairing

potential configuration A(r) is non-dynamical and externally set up. On the other hand, we

take the overall superconducting phase 0 as a quantum mechanical variable, which is conjugate

to the total number of electrons N. Throughout this chapter, we take N to be fixed due to the

large charging energy, so that 0 is fluctuating.

In this setting, Majorana zero modes are not deconfined anyons but a type of "twist defect"

[112] associated with vortices, the point-like singularities in A(r). A vortex centered at R

corresponds to a 27r winding of the phase 0(r) around R. As we adiabatically exchange two

vortices, A(r) varies slowly. To define non-Abelian statistics, it is required that the full function

A(r) returns to its original configuration after the vortex exchange. The evolution of the system

into a new quantum state after this process is a defining feature of the non-Abelian statistics of

Majorana zero modes bound to vortex cores.

As a warm-up, consider two well-separated vortices centered at R1 and R2 , and denote the

corresponding Majorana zero modes localized in the vortex cores by 'Y1 and 72. We connect -Y1

and y2 by a normal metal bridge to form an interferometer as discussed in Sec. IA, and consider

how the teleportation phase shift evolves as a third vortex moves around the vortex at R2 in a

full circle (see Fig. 3-3a). For any given vortex configuration, the wavefunction associated with

any Majorana zero mode j(r), obtained by solving the BdG Hamiltonian, is defined up to an

overall choice of sign. Since the Majorana zero mode operator 7Yj is defined from j(r) via Eq.

(3.5), -y is not gauge-invariant as emphasized in Ref. [156]. Nonetheless, this choice of sign for

the wavefunctions 1,2(r) does not affect any physical observables, which necessarily correspond

to gauge-invariant operators such as (, (r)-y3 .

For convenience, we now choose the signs of these wavefunctions such that 1,2 (r) vary

continuously with the moving position of the third vortex. The eigenvalue of the Majorana

bilinear operator iyi7y 2 , taking two possible values 1, must stay constant during the braiding
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Figure 3-3: Teleportation Phase-Shift - Braiding (a) or exchanging (b) Majorana zero modes
induces a transformation on the wavefunctions as indicated. The shaded lines shown above are
physical regions where the superconducting phase rapidly advances by 27r. The sign change in
the transmission amplitude of electron teleportation, due to the "branch cuts" sweeping through
the Majorana zero modes [16], provides a signature of their non-Abelian statistics.

process, as expected from continuity. As a result, the teleportation amplitude, whose expression
(3.7) contains the product 1(R1) 2 (R2 )7172 , also varies continuously. As shown by Ivanov

[161, after the third vortex returns to its original position and the original vortex configuration

is restored, the wavefunction 1(r) comes back to itself while 2(r) and 3(r) change sign, as
shown in Fig. 3-3a. Consequently, the phase shift in electron teleportation via Majorana zero
modes -yi and 72 changes by 7r before and after the third vortex circles around Y2. This quantized
change of a physical observable signals a change in the quantum state of the system induced by
braiding.

The teleportation phase can also detect the change in the state of the system when two

vortices are exchanged, as shown in Fig. 3-3b. We require that the local configurations of the
pairing potential near the vortex centers R2 and R3 are identical, so that the wavefunctions

of the Majorana zero modes -y2 and -3 are related by translation, i.e. 2(r - R 2 ) = 3(r -
R3 ). After exchanging vortices 2 and 3 in the manner shown in Fig. 3-3b, the original vortex
configuration A(r) is restored and the Majorana wavefunctions transform as p2 (r) -+ - 2 (r),
and 3 (r) -+ 3(r). To demonstrate the braiding-induced change in the quantum state of the
system, we connect 72 and a reference Majorana zero mode 7y1 by a normal metal bridge to form

an interferometer, and monitor the evolution of the teleportation phase shift in the process of
exchanging -y2 and -y3, while keeping one end of the bridge attached to the moving Majorana Y2.

The initial teleportation amplitude from R1 to R2 is given by the product (1(R1) 2 (R2 )Y 7 2 .
After braiding, this interferometer measures the teleportation amplitude from R1 to R3 , given
by (1(R1) 3 (R3 )7-y 2 . This result should be compared with the teleportation amplitude from
R1 to R3 before braiding, given by 1 (R1 ) 3 (R3 )-yy3 and measurable by an interferometer
containing -y1 and -y3. This comparison shows that braiding -y2 and y3 has the effect of the
transformation -y3 -+ -y2. Repeating the same analysis for the teleportation amplitude from R1
to R2 shows that same braiding process also has the effect of the transformation -2 -+ -- 3.
Our analysis based on electron teleportation thus reproduces the "Ivanov rule" for Majorana
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braiding [16]

72 -+ -- 73, 73 --+ 72. (3.15)

It is worth noting that the above braiding transformation (3.15) per se is non-gauge-invariant,

as it is expressed in terms of Majorana operators that suffer from aZ2 sign ambiguity. Only

after the sign convention for the zero mode wavefunction 2,3 is specified, as we did previously

by choosing 2(r - R 2 ) = (r - R3 ), do the Majorana operators 7Y1,2 become well-defined, so

that the braiding transformation (3.15) becomes meaningful.

Our analysis, as presented, demonstrates that the braiding-induced change in the telepor-

tation phase shift is a physical observable described by a gauge invariant operator involving

a*b'Yab and (ab*YaYb. Thus the change is teleportation phase shift is a direct and measurable

consequence of the non-Abelian statistics of Majorana zero modes.

3.2 Measurement-Based Braiding

We now describe the theoretical protocol for performing a braiding transformation on a col-

lection of Majorana zero modes exclusively through a sequence of projective measurements,

without needing to move the zero modes; such a measurement-based approach was originally

described in Ref. [1-46] in the general context of quantum information processing with anyons.

We subsequently describe a teleportation-based measurement protocol for realizing this pro-

posal. Consider the schematic setup shown in Fig. 3-4a; Majorana zero modes 71, 72, Y3, and

'-4 are used to encode two logical qubits, while X, and X2 will serve, for our purposes, as a single

ancilla qubit. We prepare the ancilla qubit in the state iX1X2 = +1 so that the initial state of

the system is given by

10i) = 10) ® JiX1X2 = +1) (3.16)

with 1#), the logical two-qubit state of the four Majoranas {'y;} that we wish to manipulate.

Our measurement-based braiding protocol is based on the fact that projective measurements

of Majorana bilinear operators

-() = 1 ?7YnXrn (3.17)
^YnXm 2

may be used to implement a unitary braiding transformation up to an overall normalization

factor. Specifically, observe the mathematical identity

f( ) f(+) P(+t) J 1i) (3.18)X1X2 X1'Y3 'Y2X1 23/2 U 23 1i'

77



71 72 xi x2 73 74
40 0 @ ) 0 S

X X2=+1

10) ~I#) 0 iX1X2 = +1)

Measurements

I iY2X1 = +1
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. iX1X2 = +1

10f) U j23 iX1X2 = +1)

(a)

Measurement j i Measurement j - 1
Outcome = -1

(undesirable)

Outcome = +1
(desirable) Outcome = 1

Measurement j + 1 otoe=-
Outcome = +1 (undesirable)

(desirable) I

(b)

Figure 3-4: Measurement-Based Braiding - In (a), we depict the initial state Ii), with
Majorana zero modes X1 and X2 initialized in the state iX1X2 = +1. Performing the indicated
sequence of measurements is equivalent to braiding Majorana fermions 72 and 7Y3, up to a nor-
malization factor. If a measurement yields an undesirable outcome, the previous measurement
step may be repeated, as indicated in the decision tree in (b), to recover the state before the
undesirable measurement was performed.

where the operator

U23 + 72-3
0232= (3.19)

implements the unitary braiding transformation (3.15). The measurements that must be per-
formed to realize this braiding operation, starting from the state |0i), are summarized in Fig.
3-4a.

Successfully performing a measurement-based braiding transformation crucially relies on the
outcomes of the measurements that are performed. If a measurement yields an undesirable out-
come, however, it is still possible to obtain the desired final state by performing an appropriate
sequence of operations. As an example, assume that the first measurement yields the undesirable
result that i-y2X1 = -1 so that subsequently, the state of the system is given by lip) = PL, 1 0j).
We may recover the state of the system before the undesirable measurement, |I), by measuring
the bilinear iX1X2. If we find that iX1X2 = +1, then we recover the initial state

P(+) = 1W )
(3.20)

up to a change in normalization, and we may now re-do the measurement of the bilinear iy2X1-
More generally, in order to recover the state ji), we must alternate measurements of the bilinears
iX1X2 and i-y2X1 until we obtain the measurement outcome iX1X2 = +1. Observe that

P P(s")P(- P(13P- 1W) p- 10|)-X1X2 72X1 X1X2 72X1 X =X2 I 2n (3.21)

where si = 1.
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A similar protocol may be used to recover from any undesirable measurement outcome. As

summarized in the "decision tree" in Fig. 3-4b, when measurement step j is undesirable, we

alternate between measurement steps j - 1 and j; this cycle is repeated until measurement step

j yields the desired outcome. The number of steps required to recover from an undesirable

measurement only changes the normalization of the final state, as can be seen from Eq. (3.21).

We have assumed in our analysis that undesirable measurements only arise due to the inher-

ently probabilistic nature of the measurement-based braiding protocol. However, an undetected

error event (e.g. quasiparticle poisoning) that occurs during the measurement procedure can

also lead to an undesirable final state. For Majorana zero modes in proximitized nanowires,

quasiparticle poisoning from external normal leads may be suppressed by the charging energy

of the wire; however, this will not suppress poisoning of Majorana qubits due to the presence of

quasiparticles at finite temperature within the nanowire, an important issue which has not been

addressed. A scheme for quantum error correction with Majorana zero-modes will the subject

of a forthcoming work [4].

3.3 Experimental Realization

We now propose a teleportation-based scheme for realizing measurement-based braiding; our

proposal is summarized in Fig. 3-5. Consider a superconducting nanowire; gate voltages may

be applied along the length of the nanowire to introduce an interface between the topological

and trivial superconducting regions, which localizes a Majorana zero mode. In our setup, we

apply gate voltages so that six Majorana zero modes appear (7Y1, ")2, 7Y3, Y4, Xi and X2) at points

along the wire. The distance between the Majoranas is assumed to be sufficiently large, so that

hybridization between adjacent Majoranas may be neglected. We initialize X, and X2 in the

state iX1X2 = +1 by nucleating the two Majorana zero modes in a topologically trivial region

of the nanowire where the total fermion parity is fixed.

Parallel to the existing nanowire in our setup, we now place either (i) a normal metal strip

or (ii) a single, proximitized nanowire with gate voltages applied appropriately so that the gated

region is topological and hosts two Majorana zero modes (41 and '02) at its two ends. In both

setups, four metal bridges are used to connect the existing nanowire to the normal metal or

the second nanowire. In the following section, we will describe the implementation of setup

(ii). A similar protocol may be used to implement setup (i), involving the same sequence of

interferometric or flux-based measurements, as long as the metal strip has a sufficiently long

phase coherence length.

To implement our "braiding without braiding" protocol using setup (ii), we will tune gate

voltages to re-position 0 1 and V)2 along the length of the second nanowire; hence we will refer

to this nanowire as the "Majorana bus". We initialize the Majorana zero modes in the bus

in the state i01i 2 = +1. The Majorana bus and the remaining Majoranas in our setup are

coupled together by four metallic bridges, and each coupling can be tuned on or off, as indi-
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(iX1X2 = +1)
71 72 Xi X2 73 Y4

Normal metal or Majorana island

(a) Initialization

(b) Measurement I (i72Xi = +1)

71 72 x1 X2 ^13 4

(c) Measurement II (iX73 = +1)

71 72 X1 X2 73 74

(d) Measurement III (iX1X2 = +1)

Figure 3-5: Experimental Realization- Protocol for teleportation-based braiding without
braiding is illustrated in a nanowire-based Majorana platform. A nanowire hosts six Majorana
zero modes at the interface between topological and trivial superconducting regions. y1, ... ,74
are used as topological qubits and Xi, X2 as an ancilla qubit. The green strip can be either
a normal metal with a long phase coherence length or a Majorana island in a definite parity
state (a Majorana bus). We begin by initializing the the ancilla qubit in (a), before performing
measurements of the appropriate Majorana bilinears in the top nanowire. The coupling between
the topological superconductor wire to the normal metal or Majorana bus through the metallic
strips may be turned on and off, as indicated schematically by the "switches". Fluxes may be
applied through appropriate loops for topological qubit readout via conductance or persistent
current measurement.
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cated schematically by the "switches" in Fig. 3-). Each lead is chosen to be shorter than the

phase coherence length of the metal, to allow for Majorana qubit readout based on electron

teleportation and intereference.

We may perform projective measurements of Majorana bilinears in the top nanowire using

the interference of electron trajectories through our setup. This can be achieved by measuring

the persistent current in a closed loop, or by measuring the two-terminal conductance across

the Majorana bus. To implement either measurement procedure, we first align the Majorana

bus so that 01 and ' 2 are across from the pair Majorana zero modes that we wish to measure,
respectively. By turning on the switches on the metallic strips, we introduce electron tunneling

between aligned Majorana zero modes on the bus and on the top wire. In the presence of a

large charging energy on both the bus and the wire, the effective Hamiltonian describing the

full system is given by Eq.(3 13); it depends periodically on the flux through the loop D and on

the eigenvalue of the Majorana bilinear operator in the top wire. A flux- or conductance-based

readout of the Majorana bilinear may then be performed, as detailed in the following section.

3.3.1 Measurement Procedures

To perform a flux-based measurement one of the Majorana bilinears, we tune gate voltages in

the Majorana bus so that 01 and /'2 are across from the Majorana zero modes in the top row

that we wish to measure. For concreteness, consider a measurement of i-y2xi, as shown in Fig.

0-5b. After aligning the Majorana bus, we turn off the couplings in the last two metallic strips;

this is indicated schematically by the closed and open switches in Fig. 34Va. Furthermore, we

insert a flux 1, through the loop formed by b1, 02, Xi and y2, as shown.

In the presence of a charging energy that removes the degeneracy between even and odd

charge-states on both the Majorana bus and on the top nanowires, the Hamiltonian for the

system is H = Ht + H, - with

Ht = itii-y 2 ei(01-02)/ 2 + it 2 e ie/h 02 XI ei(0
2-

0
1)/2 + h.c.

describing the coupling between the Majorana bus to y2 and X, through the metallic strips,
while H, is the charging energy on the nanowire and Majorana bus, as given previously in Eq.

(3.11). A measurement of the persistent current may be used to determine the Majorana bilinear

ir2X1 as detailed in Sec. IIA.

To perform a conductance measurement, we may introduce a weak tunnel coupling between

the Majorana bus and two external leads. A similar protocol for measuring stabilizer operators

for the Majorana fermion surface code [155, 1., 2, 157] has also been proposed [155, 1571]. The

tunneling Hamiltonian takes the form

HT = tLC t 01e-i1/ 2 + tRC4 2e- ioi/2 + h.c. (3.22)

where tL,R are the tunnel couplings to the left and right leads. Here, e iO/2 is the charge-e
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raising (lowering) operator on the bus, while cL and cX are the electron creation operators in

the left and right lead, respectively.

When the charging energy is large, we may derive an effective Hamiltonian that takes the

form Heff = Ho + H1 to lowest order, where

and

HI tLtR
(E+

2jtit2 |Hro = 2 cos
E+ + E-_

E-

(3.23)

+ 21tit2lt*tR 3
I(E+) 3

+ (E )3
e(o - 4c) tCos [ h ](i-Y2X1)CRCL + h.c.

The tunneling conductance depends sensitively on the measured value of the bilinear iy2X1 and

is determined to be

2ire2

G = go + 2e 2 cos 4 P 01022X1.
h I

(3.25)

Here go is a constant contribution to the conductance that is independent of the measurement

outcome, while

g = 4ItL|2 ItR|2 |t1t2I [(E)3 (E_)3 E + E PLPR

with PL,R, the density of states in the left and right leads, respectively.
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Chapter 4

Small Fermionic Quantum Codes

Qubits for quantum information processing are mostly built from bosonic degrees of freedom,

so that the two basis states of a physical qubit have the same fermion parity. Recently, there

has been a growing effort towards storing quantum information in fermion states, so that a

qubit is encoded in the fermion occupation number (n = 0, 1) or equivalently, the fermion

parity (-1)n = 1. Fermion qubits may be constructed from localized sub-gap states in a

superconductor [158, 159, 160, 161]. A remarkable recent experiment [162] has demonstrated

the coherent manipulation of Andreev states in a superconducting weak link.

In addition to providing a new implementation of a quantum computer, using fermions as

the carriers of quantum information necessitates a new computational model, as Fermi statistics

forbids a mapping of local quantum gates acting on fermions to local gates acting on bosons [163].

For the same reason, quantum error correction - which is essential for fault-tolerant quantum

computation - is different in systems of fermions and of bosons. Quantum error correction in

Fermi systems has received attention only recently [109, 1, 142, 152].

An important factor limiting the performance of quantum information processing with

fermion qubits is quasiparticle poisoning, whereby a single electron tunnels between states that

store information and unknown states in the environment, thereby changing the fermion parity

of the encoded qubit, and resulting in an error. Various experiments indicate that the quasipar-

ticle density in a gapped superconductor far exceeds its value in thermal equilibrium [164, 165],
and the origin of the excess quasiparticles is not well understood. Fermion parity flips due to

quasiparticle poisoning have been directly observed in continuous, real-time measurements on

spin-degenerate Andreev bound states in superconducting atomic contacts [162]. DC transport

measurements on spin-polarized subgap states in proximitized semiconductor nanowires have

inferred possible parity lifetimes up to 10 ms [127, 166]. To extend the lifetime of fermion qubits

requires finding reliable ways of correcting both parity-conserving and parity-violating errors.

In addition to Andreev bound-states, spatially-separated zero-energy Majorana fermions

(Majorana zero modes) [84, 861 have received recent attention as carriers of quantum informa-

tion. These fractional degrees of freedom are predicted to exist in topological superconduc-

tors. Following theoretical proposals, recent experiments have observed evidence for Majorana
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fermions in proximitized nanowires [167, 147, 93], atomic chains [95] and topological insula-

tors [139]. A variety of different approaches to quantum information processing with Majorana

fermions have been proposed [84, 109, 1, 2, 1.55, 157, 168, 3, 169, 154]. The original work of

Kitaev [84] proposed storing one qubit in the fermion parity of a pair of spatially separated Ma-

jorana zero modes Y1,2, which together form a complex fermion ft = -Y1 + i7Y2 . However, unlike

ordinary complex fermions, the parity operator in Majorana qubits (i-Y17 2 ) is a non-local opera-

tor whose eigenvalue cannot be inferred from local measurements. It is thus expected that error

processes involving multiple Majorana fermions are suppressed exponentially in their spatial

separation. However, this separation does not offer protection against quasiparticle poisoning,
which is a local process that involves individual Majorana fermions independently [98, 170].

Therefore, quasiparticle poisoning presents a serious challenge for the long-term prospects of

quantum information processing with both complex and Majorana fermions.

Recent interest in error correction in Fermi systems has led to a new and more robust ap-

proach to Majorana-based quantum computation, in which qubits are encoded in a collection

of Majorana fermions [1, 109]; the added redundancy is advantageous for error correction. In

Majorana fermion "surface codes" [1, 155], measurements of commuting operators ("stabiliz-

ers") in a two-dimensional array of Majorana fermions are used for active error correction and

measurement-based quantum computation. A family of Majorana fermion codes has also been

constructed from a restricted set of Pauli stabilizer codes for bosonic qubits [109]. In previous

studies of fermion codes, however, fermion parity conservation has often been assumed and as

a result, the issue of correcting fermion-parity violating errors has not been addressed.

In this chapter, we introduce efficient fermion error-correcting codes that can correct for

quasiparticle poisoning errors as well as other error processes. These codes are inherently

"fermionic" in the sense that they cannot be mapped onto a bosonic code through local unitary

transformations. Error detection and correction, as in the stabilizer formalism [171], is imple-

mented through the projective measurement of a set of commuting multi-fermion operators, or

stabilizers, that do not disturb the encoded qubit. An essential feature of our codes that enables

error correction is that the encoded qubit can only be determined by measuring a multi-fermion

operator, in contrast to the standard encoding of a qubit in a fermion bilinear [84].

This chapter is organized as follows. In Sec. I, we derive a fundamental lower bound on the

number of physical fermion qubits N required to encode k logical qubits, such that the smallest

logical operator on an encoded qubit is a d-body operator. We refer to such fermion code as

[[N, k, d]]f code. In Sec. II, we introduce the [[6,1,3]]f code, which is the shortest fermion

quantum error-correcting code that encodes one logical qubit. This code corrects quasiparticle

poisoning errors as well as certain parity-conserving errors, and is thus applicable to systems

of Majorana fermions and of ordinary fermions. In Sec. III, we demonstrate that any fermion

code may be constructed from a restricted class of classical binary error-correcting codes. This

correspondence allows us to introduce large families of non-degenerate fermion codes, which we

discuss at length. We introduce a family of translationally-invariant codes, including codes with
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only four-body stabilizer operators. We present another family of codes in which logical qubit

states have the same global fermion parity, thus permitting a simpler implementation of logical

operations.

In Sec. IV, we reveal the significant advantages of error-correction in Majorana fermion sys-

tems, as compared to systems of bosons or ordinary fermions. Provided that Majorana fermions

are well separated, the dominant error source is quasiparticle poisoning. Interestingly, we find

that in a sufficiently large system, error correction is possible when the poisoning probability

is below a threshold (- 10%) or above an upper limit (- 90%). The remarkable feasibility

of error correction in a very noisy environment stems from the fact that poisoning the same

Majorana fermion twice recovers the qubit, so that error-correction in the Majorana platform is

quasi-classical. In Sec. V, we conclude by discussing the physical implementation of Majorana

fermion error-correcting codes with four-body operators.

4.1 Fermion Error-Correcting Codes

We would like to identify efficient error-correcting codes for N microscopic fermions that stabilize

qubits encoded in the fermion parity. Any complex fermion creation/ annihilation operator

can be expressed in terms of real (Majorana) fermion operators {yn}, which satisfy the anti-

commutation relation {y, ym} = 2 6 nm. In this chapter, we consider a wide class of fermion

error-correcting codes, where stabilizers O are products of an even number of Majorana fermion

operators, hereafter referred to as "Majorana stabilizers". These stabilizers mutually commute

([On, (0m] 0), square to the identity (92 = +1), and commute with the total fermion parity

r - iN12 72 N-

The unintentional action of the environment on the system, such as quasiparticle poisoning,

can lead to decoherence. These errors are represented by the action of t-body operators on

the code state. For example, a local fermion-parity flip corresponds to acting a single fermion

operator on the qubits, hence t = 1. In general, a "weight-t error" is correctable if it is has a

unique syndrome, i.e. if the error is uniquely identifiable through measurements of stabilizers,

i.e. the operator acting on the physical qubits in a correctable error process anti-commutes

with a unique set of stabilizer operators. The resulting stabilizer eigenvalue flips are the "syn-

drome". Such a code, where each correctable error has a unique syndrome, is referred to as

"non-degenerate", and we will restrict our attention to such codes for important reasons that

we elaborate at the end of this section. Any fermion code in the remainder of our discussion is

assumed to be non-degenerate, unless otherwise specified.

We refer to any fermion error-correcting code as an [[N, k, d]]f code if k qubits are encoded

in N complex fermions or 2N Majorana fermions, such that a d-body Majorana operator is

the smallest logical operator acting on the encoded states, i.e. d is the "code distance". If t is

the maximum weight of a correctable error in a non-degenerate [[N, k, d]]f code, then the code

distance d > 2t + 1. A weight-1 error corresponds to an elementary quasiparticle poisoning event,
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as represented by a Majorana operator , which anti-commutes with the parity {7y, I} = 0.

In this language, the Kitaev Majorana chain (with stabilizers O = i'Y2 n72 n+1) is an [[N, 1, 1]]f

code, while four Majorana fermions with a single stabilizer (0 -7172y3-y4) define a [[2, 1, 2]]f

fermion code. Importantly, neither code can recover from quasiparticle poisoning events.

We begin by formulating general conditions for fermion error-correcting codes with Majo-

rana stabilizers. First, an [[N, k, d]]f code must have exactly N - k independent stabilizers

to guarantee that the space of states satisfying Q, 1F) = IT) is 2k-fold degenerate, which is

used to encode k logical qubits. Second, error correction on the encoded qubits requires con-

structing a mapping between operators whose action on the system generates errors and the

2 N-k - 1 stabilizer configurations describing states that result from the occurrence of errors.

For example, consider codes that are capable of correcting all elementary fermion-parity flip

errors, as represented by single Majorana operators 71, . . - , ^12N. Clearly, it is possible to have a

unique syndrome for each of these 2N error processes only if 2 N-k - 1 > 2N. More generally,
a non-degenerate [[N, k, d]]f code exists, that can correct errors of weight less than t only if

2N-k >Z(\2 ) (4.1)
E~ M

Bounds similar to (4 .1) may also be derived for degenerate fermion codes, for which two

or more distinct, correctable errors have the same syndrome. Such codes are of interest, as

they would appear to be more efficient than non-degenerate codes. We observe, however, that

there are no fermion codes that are degenerate for weight-i errors. In such a code, at least two

weight-i operators (say -, and 7m) would have the same syndrome. These errors would only

be correctable if iynym = +1 in the codespace, making N and 7Y "ancilla" degrees of freedom

that can then be removed entirely from the code. This argument demonstrates that any fermion

code encoding one or more qubits must be non-degenerate for elementary quasiparticle poisoning

(weight-1) errors. Degenerate fermion codes that can correct for weight-2 errors, may also be

of interest to correct for both de-phasing and quasiparticle poisoning in a system of complex

fermions. Such codes only improve on the bound (.11) for non-degenerate fermion codes within

a limited range of N, and the existence of these degenerate codes is not clear. Therefore, we

choose to focus our attention on non-degenerate codes for the remainder of this chapter.

We conclude this section by observing that any Pauli stabilizer code may be trivially used

to construct a fermion code, by representing each Pauli spin by four Majorana fermions with

fixed fermion parity [44, 109]. From any [[N, k, d]] Pauli stabilizer code (encoding k qubits

in N microscopic spins, with code distance d), one may construct a [[2N, k, 2d]]f code which

can correct weight-i errors, by making the replacement X, - ixn -Yn, Y - iX yn, and

Z- +iXz) for each Pauli spin, and by adding the stabilizer D = ixnxynxn at each site

to the code [44]. Here, xn'"A and -y are Majorana fermion operators. This mapping yields a

class of fermion error-correcting codes that can correct for at most weight-i errors, and these

codes are often not very efficient. We shall soon present more efficient fermion codes, which
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cannot be mapped onto a bosonic code in this manner.

4.2 The Shortest Fermion Code

In the following section, we introduce and study certain families of fermion error-correcting

codes. We begin by introducing the shortest fermion code [[6,1, 3]]f, which encodes a single

logical qubit and corrects for elementary fermion-parity flip errors. We thoroughly describe two

operational modes for this error-correcting code in systems of either well-separated Majorana

fermions or ordinary complex fermions.

Our [[6, 1, 3]]f code is defined by the following stabilizers

01 = 71727374

04 = '79'71711712

02 = '73'74776 03 = '77'7Y879710

05 = i72747 678 7 1 07 1 2

This code encodes a single fermion logical qubit, which can be represented by two logical Ma-

jorana fermion operators F1,2. The fermion parity of this logical qubit, iT 11 2 , is given by the

total fermion parity of the system:

12

iFlF 2 = J 7n,
n=1

and the logical parity flip operators 1F1,2 are given by

F 1 = 17375, F2 = 274'76'77'7879'710711712- (4.4)

These logical parity flip operators commute with all stabilizers.

Each elementary quasiparticle poisoning process anti-commutes with a unique combination

of stabilizers, as indicated in the table below:

71 01 77 03

72 01,05 78 03,05

73 01,02 -79 03,04

74 01,02,05 -Y10 03, 04, 05

75 02 '711 04

76 02, 05 712 04, 05

so that the code is non-degenerate for all weight-i errors. This may be used to decode and

correct for poisoning events in the system that result bit-flip errors on the encoded qubit, by

performing constant projective measurements of the commuting stabilizers.

In a system consisiting of well-separated Majorana fermions, dominant error processes are lo-

cal quasiparticle poisoning events involving single Majorana fermions. In contrast, for a system
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of complex fermions denoted by cj, there can also be dephasing errors resulting from uninten-

tional coupling of local fermion density c cj to the environment. Our [[6, 1, 3]]f code also serves

as an error-correcting code for complex fermions, after pairing the twelve Majorana fermions

into six complex fermions as follows

cl (-1 + i-Y1 2 ) (4.5)
2

and

1
cn -(n + i-yn+5) for n = 2,..., 6 (4.6)

2

With the above identification, each of the local fermion parity operators P = 2ct cn - 1
anti-commutes with a unique combination of stablizers, as summarized in the following table:

P1  01, 04, 05 P2  01,03,05

P3  01,02,03,05 P4  01,03,04,05

P5 02,03,04,05 P6 02, 04, 05

Consider a de-phasing error, which takes the general form of a unitary operator U"(67) =

ein Z tnCiCn acting on the system. For sufficiently short measurement times 6'r, we expand

the unitary to linear order U,(Sr) =1 i r E c incni + O(6T 2) and only consider on-site de-

phasing. After the action of Un(6r) on the system, a measurement of the stabilizers will either

project onto the original state of the system, or onto the state Pn IT) up to an overall phase.

Since each P has a unique syndrome, the de-phasing error may be uniquely determined and

de-coded. Bit-flip errors generated by elementary quasi-particle poisoning processes may also

be decoded in this setup, as shown in the previous section.

4.3 General Framework

We now introduce a general framework that allows us to systematically construct a large range

of fermion codes, by revealing a remarkable connection between fermion codes with Majorana

stabilizers and certain classical error-correcting codes, which allows for a systematic and efficient

way to search for fermion codes. This provides one of the main results of this chapter, and is

presented in Sec. IIIA. Based on this framework, we obtain two representative families of fermion

error-correcting codes, which have larger code distance and can correct for higher-weight errors.

4.3.1 Constructing Fermion Codes from Classical Error Correcting Codes

We now present a systematic construction of fermion codes, by relating them to certain classical

error-correcting codes, and reducing the search for fermion codes to a well-defined mathematical

problem. The starting point for our construction is a representation of Majorana stabilizers as

88



binary vectors. Any product of Majorana fermion operators may be represented, up to an overall

phase factor, as

2N

j ~lQ V (^) n

n=1
(4.7)

where v(2) (v, (i , . , v)) is a binary vector, i.e. a vector over the finite field F2 = {0, 1},

which is equipped with both Z2 addition and Z2 multiplication. The product of operators C9iOj

is represented as vector addition v(') + v(j). An operator Oj commutes with the total fermion

parity if and only if the corresponding binary vector is self-orthogonal

VUc) . (V(i))T = 0, (4.8)

and any pair of such operators mutually commute [O, Oj] = 0 if and only if

V(i) . (Vi))T = 0. (4.9)

In this notation, we may compactly specify any fermion

bilizer matrix"

error-correcting code by a binary "sta-

S a

V(m)

satisfying

S. ST = 0.

(4.10)

(4.11)

While (1.1) is a necessary and sufficient condition for having independent, commuting stabi-

lizers, the resulting fermion code may be unable to correct for any errors. The distance of the

fermion code is precisely the weight of the lowest-weight, binary vector v that satisfies S-vT = 0,
as v then corresponds to the smallest operator that commutes with all of the stabilizers and

acts non-trivially on the codespace.

A binary matrix satisfying (4.11) specifies a so-called "weakly self-dual" binary classical

error-correcting code [172]. In a classical code, a bit-string, as specified by a binary vector

w = (wi, w2, .. .), may be encoded by multiplying by the generator matrix

G =4
V(1)

V (M

of the classical code, i.e. wT -+ wT - G. The space of valid encoded bit-strings is referred to
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N f(x) Code
7 1 + x + X2 + x 4  [[7,1, 3]]f

14 1 + X + x 4 + X 5 + X 6 + _7 _[7, 0,4] f
15 1 + X + X 2 + X 3 + x 5 + i + x8 + X11  [[15,7,3]]f

1I + X6 + x 9 + x 12  [[21,3, 3]]f
21 1 + x + x 3 + X6 _X 7 + X10 + X13 _X 15 [[21,9,3]]f

_+ X + xx 3  X5  X9 +1X' 0 _ 1 _ X12  [[21, 3,5]f
23 1+ x + x 2 + X3 + X4 + X7 - X 10 + X12 [[23,1,17]f

1 + x4 - x 8 + X16 [[14,2, 3]]f
1+ x + X 3 _ X 4  X 5 +x 7 _ x 8 _ 9 +X 11  X 16 _ X 19  [[14,5,3]]f

I + X2 + x8 - X10 - x 12 +X 14  [[14,0,4]]f

28 1+ 2 + X 4 +x 7 + x 8 +X 9 +X 11 +x 15  [[14114]]f
8 + X + 2 + X3 + X4 - X 5 + X 7 + x1 0 -X1 + x 12 + X 15 _ 16 [[1424]]f

I + X + X 2 _ 5 _ 8 _+ 9 _ X 10 _ X 12 _ X 14 +X17 [434]f
1+ x 3  X 5 X 6 _X 8 X 1 1 _X 1 2 X 1 3 +X 14 + X 1 5 + X 1 7 _ X 18  [[14,4,4]]f

1+ + 3 _ X 4  X 5  X 7 +X 8 X9 + X 11 X 16 _X 17 +X19 [[14, 5,3]]
1+ x + X 2 + 5 _ 9 + 1 0 - X 11 + 12 + Xi 4 +X15

1+ x 2 + X3 + X4 - x 5 _X 7 -x 8 _ X 11  X 1 6 X 19  [[15, 0, 6]]

1+ X 2 +X4 _ X 5 _ 6 _ X 7 _ X 9 _ X 11 _ X 12 +X17 [[15, 4, 4]]f
21 [[15,12, 6]]f

30 1+ x + X4  x 5  + X -0  X 1 + X 12 - Xl13 - IZX [[15,6,4]]f
n=16 [[15,1, 6]]f1 + X3 + X5 + x 6 - x 9 + x 13 - i - X1 6  

[[15,5, 3111 + X + X 2 + X6 _ X7 - X9 + X 1 1 - 12 - Xi1 + X 17 - X 19 + X20 [[151315]]
1 + X + X2 + X3 + x4 - x8 +  +9 x10 - -x +13 + X17 18 157 3]]f1 + X 2 +X4 _X 6 _+ X10 _ 14 _ 16 22 1 ,

Table 4.1: Translationally-Invariant Fermion Codes: A list of the weakly self-dual (binary)
classical codes of size N < 30 with distance d > 3, and the corresponding fermion codes that
they give rise to, using the mapping presented in the main text. When N is odd, we may obtain
a fermion code in a variety of ways, as discussed in Sec. 1ID. The fermion codes presented in
the table for odd N are obtained from two copies of the classical code, so that the resulting
system has an even number of Majorana fermions, and describes a physical Hilbert space.

as the codespace C = span(v(1), ... , v(m)), and any bit-string in the codespace is referred to as

a codeword. A parity-check matrix H, which projects onto the space orthogonal to C, may be

used to decode errors of sufficiently small weight on the encoded bit-string, since H - v = 0 if

and only if v is a valid codeword (i.e. v E C). We may also construct the dual code C', with

generator matrix H and parity-check matrix G. The condition G - GT = 0 implies that C C C',
which defines a "weakly self-dual" classical code.

The relation we have derived allows us to view the generator matrix G of any weakly self-

dual classical code as the stabilizer matrix S of a fermion code. Let the weakly self-dual code

have code parameters [2N, k, d], where the classical code distance d is precisely the minimum

weight of a codeword, while the classical code dimension k = dim(C). Our construction yields
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the following mapping to a fermion code

[2N, k, d] --- + [[N, N - k, d']]f (4.13)

where d' is the code distance of the dual code CL. If the weakly self-dual code C involves an

odd number of bits, then we can employ various schemes to construct a fermion code, which we

elaborate on in Sec. IIID.

4.3.2 Cyclic Fermion Codes

We now construct representative families of fermion codes with code distance d > 3 by taking

advantage of our mapping to weakly self-dual classical codes. The first family includes all

fermion codes with one-dimensional translational symmetry. These codes are obtained from a

subset of "cyclic" codes in classical coding theory [1.721. The second family describes an infinite

set of codes with increasing distance, where all of the encoded qubits have the same global

fermion parity. This property would theoretically permit a simpler practical implementation of

the logical operators in the code.

We may construct one-dimensional, translationally-invariant fermion codes through the fol-

lowing procedure, which we prove in Sec. 4.K. Consider the polynomial ring F2 [x], i.e. the set

of polynomials in x with coefficients in the field F2. We now

I. Factorize xN - 1 as XN _1 f(X)g(X)

II. Check that f(x) - xde(g) g(x-1) divides f(x), where deg(g) is the degree of g(x).

The first condition provides a well-known way to generate translationally-invariant (cyclic) clas-

sical error-correcting codes [172], while the additional second condition yields the subset of these

codes which are weakly self-dual, as we demonstrate in Sec. 4 .5. If a polynomial f(x) satis-

fies both conditions, then it may be used to define a translationally-invariant fermion code as

follows. From the polynomial f(x), which we write as

N-1

f(x) = E f m
m  (4.14)

m=O

we extract the vector f = (fo, ... , fN.-), which we may take to be the binary vector repre-

sentation of a Majorana stabilizer. In this way, any polynomial of the form (1.14) represents a

Majorana operator acting on a system of N Majorana fermions. Similar techniques have been

successfully applied to find Majorana stabilizer codes in two and three spatial dimensions [6].
If N is even, we take the polynomials

f W, X fW, X2f(X),I ..., XN-deg(f)f W) (4.15)
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to define the [N - deg(f)] stabilizers of a fermion code with N microscopic Majorana fermions.

These stabilizers are all independent of each other, by construction, while the condition (II)

guarantees that all of the stabilizers commute with each other and with the fermion parity. In

practice, f(x) is precisely the so-called "generator polynomial" [172] of a weakly self-dual, binary

cyclic classical code, which we have then used to define a fermion code. If N is odd, we may

take two disjoint copies of the classical code to define the resulting fermion code, which now has

2N Majorana fermions. In this case, the fermion code is defined by the stabilizers

f(x), Xf(x), x2 f(x), ... , N-deg(f)f(X) (4.16)

X Nf) XN+1fX) .. 2N-deg(f)f X

Translationally-invariant fermion codes with code distance d > 3 that are obtained from weakly

self-dual cyclic codes of size N < 30 via our construction, are indicated in Table I. Many of these

codes can correct for higher-weight errors, beyond the simplest quasiparticle poisoning events.

For example, the [[15, 1, 6]]f code has code-distance d = 6 and can correct for any weight-2

fermionic error. From the polynomial f(x) indicated in Table I, we observe that the fermion

code is defined by stabilizers 01, 02,. . . , 014 where

Oi = 7iY7+37i+5Yi+67i+97i+137i+14'i+16 (4.17)

This code may be used either for well-separated Majorana fermions or for complex fermions,
to correct elementary de-phasing or quasiparticle poisoning errors. As another example, the

[[23,1, 7]]f code, which is based on the well-known classical Golay code, has stabilizers 01, 02, .... ,O ,

023, 024,... , 033 where

Oi= 7YiYi +1Yi+27i+37i+47i+7Yi+107Yi+12 (4.18)

and can correct for any weight-3 fermionic error.

4.3.3 Fermion Codes with Fixed Global Fermion Parity in the Codespace

More complex families of fermion error-correcting codes with increasing code distance may also

be constructed by searching for other weakly self-dual classical codes. We now review the code

parameters for one such family of fermion codes, which has the important advantage that the

global fermion parity is fixed in the codespace, so that all of the encoded qubits have the same

global parity. In practice, this would make practical implementation of these codes more feasible,
since all logical operators on the encoded qubits simply measure the parity of some subset of

the Majorana fermions in the code. The explicit construction of the stabilizers for these codes

is provided in Sec. 4.6. This family of fermion codes has code parameters

[[2m-1, 2m-1 - B(rm), 2r+l]]f (4.19)
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Classical (Weakly Self-Dual) Fermion Code

[2N,k,d] - [[N,N - k,d-LI]]f

[2N - 1, k, d] C [[2N - 1, 2N - 1 - k, d-]]f
Concatenation )

[2N -1, k, d] + [[N, N - k d]]* Complex Fernions:[2 1 , ] + 'Y2N '[ , -~ If~ (no q.p.p errors)

Figure 4-1: Code Mappings: A summary of the mappings between classical (weakly self-dual)
error-correcting codes, and various fermion codes. When the number of bits in the classical code
is even, the generator matrix of the code may be taken to be the stabilizer matrix S of the fermion
code. When the number of bits is odd, one can concatenate two such codes, or add a single
Majorana so as to describe a physical Hilbert space. The latter case is useful in platforms with
complex fermions where quasiparticle poisoning is suppressed, and the indicated code distance
assumes that parity-violating processes are forbidden.

with m > 2r + 1 and

B((r, m) = m . (4.20)
j=0 \-

We refer to this family as the RMf (r, m) codes as these codes are obtained from a subset of
the well-known Reed-Muller classical error-correcting codes. Any member of this family can at
least correct for elementary quasiparticle poisoning errors.

A simple example of a code in this family is RMf(1, 4) = [[8, 3, 4]]]f, whose stabilizers may
be written as eight-Majorana operators, in the form

8 8 8

01 Hl 72m 02 =f] 72m-1 0 3 JJ1 7M (4.21)
m=1 m=1 m=1

4 2

04 H -YmYm+9 (95 = 17m7m+47m+87m+12 (4.22)
m=1 m=1

Observe that the global fermion parity F = 0102, so that all of the encoded states have parity
F = +1.

4.3.4 Fermion Codes and Code Concatenation

We now present, in formal terms, the more general schemes for constructing fermion codes from
weakly self-dual classical error correcting codes with an odd number of bits, i.e. with code
parameters [2N + 1, k, d] and generator matrix G. In this case, the simplest way to construct a
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fermion code in order to guarantee that the resulting code has an even number of Majorana zero

modes, and thus describes a physical Hilbert space, is to view G E G as the stabilizer matrix

for a fermion code. This "code concatenation" protocol yields the mapping

[2N - 1, k, d] -+ [[2N - 1, 2N - 1 - k, d']]f (4.23)

and is reminiscent of the well-known Calderbank-Shor-Steane (CSS) construction [173, 174], in

which two classical error correcting codes C1,2 satisfying C 1 C C 2 , may be used to construct a

Pauli stabilizer code. The mapping (4.123) is equivalent to the statement that a weakly self-

dual CSS code may be used to construct a fermion code by replacing Xj, Zi --+ yi [109]. This

construction may also be generalized by "concatenating" two different weakly self-dual classical

codes, each with an odd number of bits, to produce a new fermion code.

A second protocol - which is useful as a method for constructing codes in platforms with

complex fermions in which de-phasing is the primary source of error - involves taking G to be

the stabilizer matrix for a code in a platform of 2N Majorana fermions. Since the classical code

involves 2N -1 bits, none of the stabilizers in the fermion code act on the last Majorana fermion

(I2N). As a result, while not all elementary quasiparticle poisoning errors are detectable, higher-

weight errors can still be corrected, a feature which may be useful in platforms where de-phasing

is the primary error source and quasiparticle poisoning is suppressed. We emphasize that both

of the above protocols are only needed in the construction of a fermion code when the classical

code involves an odd number of bits.

4.3.5 Error Correction in Bosonic and Fermionic Codes

We conclude our discussion of fermion codes by highlighting the important differences between

error correction in Bose and Fermi systems, as well as the advantages of error correction in

fermionic platforms where quasiparticle poisoning is the dominant error-source. As we have

emphasized, there Fermi statistics generically forbids a local unitary mapping between fermionic

and bosonic systems. In contrast, a non-local unitary transformation on a Bose system will not

give rise to a fermion error-correcting code, since local errors in the fermion system will be

non-local in the Bose system and will be un-correctable. An example of this phenomenon is

given by the celebrated 5-qubit code, which encodes a single logical qubit in the state of five

spins, and can correct for single-qubit errors.

The stabilizers for the [[5,1, 3]] (five-qubit) code are given by

O+1 Z+29 + (i = 1, ... ,4) (4.24)

with "periodic boundary conditions", i.e. so that i+5 = j. All operators commute and

square to the identity. The Pauli operators for the encoded qubit are given by Z H_ uf,

X fH5 1 a. Since the code distance is d = 3, and the code can correct for single-qubit errors,

after performing a non-local unitary (Jordan-Wigner) transformation, local fermion operators
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that represent distinct quasi-particle poisoning events - which correspond to string operators of

the spins - may have identical syndromes. Performing a Jordan-Wigner transformation of the

5-qubit code, 0n = -i72n-172n, n = Y2n-1 - (-i-2m-y 2m), naturally yields a stabilizer

code for Majorana fermions, where the commuting operators now stabilize the fermion parity

of the entire system. We observe, for example, that after this transformation

72 = a, 77 = o192o3oi (4.25)

Therefore, within the ground-state subspace of the 5-qubit code, both of these single-Majorana

operators have identical syndromes since 77 1Jgs) = -Y7 01 I'Jgs) = iY2 Igs). More generally, the

action of the operators 7yn and 7Yn+5 are indistinguishable through measurements of the stabilizer

operators. Therefore, the fermion code obtained from a non-local unitary transformation on the

5-qubit code cannot correct for quasiparticle poisoning errors.

Our approach to fermion codes highlights an important advantage of error correction in

Majorana platforms, where quasiparticle poisoning is the dominant error source. Our inequality

for non-degenerate Majorana stabilizer codes (4 1) is the fermionic counterpart of the quantum

Hamming bound for Pauli stabilizer codes [175, 171]. The asymptotic limit of the Hamming

bound for large N [1731 highlights an important advantage of error-correction in the Majorana

platform. Let p be the probability per site that an elementary quasiparticle poisoning error

occurs within a time Ar. The probability p gives the typical fraction of Majorana fermions that

have experienced a quasiparticle poisoning event in this time interval; in other words, an error

of weight 2Np will have typically occurred in time Ar. Assuming that our code only needs to

correct for typical error configurations, the inequality (4. 1) simplifies, and its behavior for large

N is given by

e < 1 - 2H(p) (4.26)

where e = k/N is the code efficiency and H(p) is the binary entropy function H(p) -p log 2 (p) -

(1 - p) log 2 (1 - p). Error-correction appears to possible in a fermion code even when the poi-

soning probability p is large, as the code efficiency e > 0 when Ip - 11 > c with c ~ 0.39. This

reflects the fact that the number of typical configurations for quasiparticle poisoning in a fermion

system decrease as the error probability p -+ 1. In contrast, the entropy of error configurations

grows much faster in Pauli stabilizer codes, since there are three single-qubit errors per site,
giving rise to a probability threshold pc above which error correction is impossible.

4.4 Physical Implementation of Fermion Codes

Fermion codes with sufficiently few-body interactions may admit a convenient physical imple-

mentation in platforms with Majorana zero modes. As demonstrated in [99] a striking signature

of Majorana fermions in a mesoscopic superconducting island is the presence of phase-coherent
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(a) Measurement of 01 and 02 (b) Measurement of 03

Figure 4-2: Implementation of the [[4,0, 4]]f Code: Gate voltages are applied on two prox-
imitized nanowires so that 6 well-separated Majorana fermions appear. Metal bridges (shown in
blue) couple the nanowires, with voltages applied to tune the couplings "on" or "off" as indicated
by the switches in the figures. Each wire has a large charging energy. In (a), the two-terminal
conductance using the leads (shown in yellow) may be used to measure 01 and 02, while in
(b) a measurement of the persistent current flowing in a loop enclosing flux (Di measures 03. A
similar protocol involving a flux 42 may be used to measure 04.

single-electron transport (termed "teleportation"). Measurements of the transmission phase-
shift of electron "teleportation" through Majorana zero modes - by measuring the conductance
in an electron interferometer or the persistent current in a closed loop - may be used to perform
projective measurements of two-body and four-body Majorana operators [3].

In this section, we present a physical implementation of the simplest fermion code derived
from weakly self-dual Reed-Muller codes in Sec. IIC, RMf (1, 3) = [[4, 0,4]]f code, which is
defined by the stabilizers

01 = 71737577 02 =7274768 (4.27)

03 -3-47576 04 '75767778 (4.28)

While the codespace encodes no qubits, this code can correct for any elementary quasiparticle
poisoning errors; as a result, its physical implementation may be useful to study quasiparticle
poisoning times in a platform of Majorana zero modes. Our physical implementation may be
extended to implement other fermion codes with sufficiently few-body interactions, such as the
translationally-invariant [[7,1, 3]]f code, which only involves quartic interactions, and is the
fermionic counterpart to the well-known Steane code [176].

The physical implementation of the [[4,0, 4]]f code involves using two parallel semicoductor
nanowires with spin-orbit coupling, and proximitized by s-wave superconductors, as shown in
Fig. 4-2. In the presence of a large Zeeman field, it is well-known that the proximitized
nanowire goes into a topological superconducting regime, which localizes Majorana zero modes
at the interface with a trivial superconductor. In the setup shown in Fig. 4-2, gate voltages may
be applied along the length of the nanowires to create alternating interfaces between topological
and trivial p-wave superconducting segments that host Majorana zero modes, in order to realize
the configuration of twelve Majorana fermions shown. The Majoranas are well-separated so
that hybridization between adjacent zero modes may be neglected. Furthermore, normal metal
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bridges (shown in blue) are placed between the two nanowires and between the lower nanowire

to introduce a coupling between the appropriate Majorana zero modes, which may be tuned by
applying voltages along the bridges. Finally, we assume that the total charge on each nanowire

segment is fixed by taking the charging energy EC to be large on each nanowire..

Due to the large charging energy on each nanowire, the quartic Majorana operators 01

and 02 in the [[4,0, 4]]f code may be measured by applying fluxes through elementary loops

formed by the nanowires and the metal bridges in our setup and measuring the persistent

current, which depends sensitively on the stabilizer eigenvalue (e.g. I - C(e/h) sin[e41/h]0 1 ).

Projective measurements of the other two quartic operators may be performed by measuring

the two-terminal conductance through leads attached to the ends of the two nanowires - shown

in yellow in Fig. 4-2 - which is sensitive to the eigenvalue of the appropriate quartic operator.

As an example, for the measurement of the 03 in Fig. 4-2b, the two-terminal conductance

G =go g103 [3, 1_55]. Intricate details of the persistent-current and conductance-based

measurements of Majorana operators are provided in Ref. [3].

4.5 Weakly Self-Dual Cyclic Codes

The codespace C of a cyclic code on N bits is identified with an ideal I in the quotient ring

R = F2[x]/(xN - 1) [1-72] where F2[x] is the polynomial ring over the finite field F 2 , while

(xN _ 1) {h(x) (XN - 1) 1 h(x) E F2 [x]} (4.29)

is the ideal generated by xN - 1. An ideal I is a collection of elements {gi} in the ring R

satisfying the property that E> rigi E I where ri E R; that is, I is an additive subgroup of R

that is invariant under multiplication by any element of R.

To construct the generator matrix for any weakly self-dual cyclic code, we first observe that

R is a principal ideal ring, i.e. any ideal I C R is generated by a single polynomial f(x) E I,
which is the lowest-degree, monic polynomial contained in the ideal. We may prove this by

contradiction. Let h(x) E I, so that h(x) = q(x)f(x) + r(x) where the remainder satisfies

deg(r) < deg(f). Since h(x) E I, we must have r(x) E I, in which case deg(r) > deg(f) since

f(x) is the lowest-degree monic polynomial in I. Therefore, r(x) = 0 and f(x) divides any

h(x) c I. We conclude that I = (f(x)). Furthermore, the generator f(x) of any ideal in R must

divide xN - 1. We may again prove this by contradiction. Let q(x)f(x) + r(x) = xN - 1 for

some appropriate choice of q(x) and r(x). Here, the remainder r(x) = 0 iff deg(r) < deg(f). As

a result, r(x) = q(x)f(x) mod xN - 1, so that r(x) E I. Using the fact that f(x) has minimal

degree in I, we conclude that deg(r) > deg(f), so that r(x) = 0. Then f(x) divides xN 1.

Therefore, the generator of any ideal I C R may be constructed by factorizing xN -

f(x)g(x). Since f(x) is a monic polynomial of degree-d, g(x) must be also be monic, of degree
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(N - d). If we write

d N-d

f (x) = fmxm  g(x) = 9mX m  (4.30)
m=O m=0

then the condition xN - 1 = f(x)g(x) is equivalent to the matrix equation F - GT = 0 where

F =4

fo
0

0

9N-d

0
G=

0

f2

fifo
... fd

... fd-1

0 .. fo fi

9N-d-1

9N-d

0 0 .

fd 0 ...

... fd-1 fd J
* '' go 0 0

S ' 91 9o 0

0 ... 9N-d -.' -.. 91

We observe that, by construction both G and F have full row-rank. Therefore, if we take F to

be the generator matrix of the classical cyclic code C, then G must be the parity-check matrix.

Alternatively, G is the generator matrix of the dual code C', with generator polynomial

f(x) xNdg(x-1) (4.32)

The code C is weakly self-dual iff C C C'. This can only be the case if (f(x)) (I(x)) in which

case, f(x) must divide f(x).

To summarize, we may factorize xN - 1 = f(x)g(x) and then check that f(x), as defined in

(4.32), divides f(x). In this case, the matrix F may be taken to be the binary stabilizer matrix

for the fermion code. Since FTF - 0 by construction, all of the operators in the code commute

with each other and with the total fermion parity.

4.6 RMf(r, m) from Reed Muller Codes

As we have already seen, a convenient way to construct a binary matrix S satisfying S-ST = 0, is

to construct the rows of S from orthogonal basis vectors for a binary vector space. A particularly

convenient choice, which yields a class of fermion codes where the total fermion parity is fixed

in the codespace is given by classical Reed-Muller codes RM(r, m) [1721, which are constructed

from the vector space of polynomials of degree-r in m binary variables. The F2 dimension of
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this space is precisely

kRM =- (T (4.33)
j=0 \

The Reed-Muller codes are known to be weakly self-dual [172] when m > 2r + 1.

The microscopic expressions for the stabilizers in the corresponding fermion error-correcting

code are obtained by representing each monomial of degree less than (r + 1) as a binary vector.

We begin by representing the variable Xk as a binary vector v(k) E (F2)2m with an alternating

sequence of 2 m-k ones and zeros, i.e.

Xk ---- V (k) ,..) . , 1, 0, . .. , 0, 1, . .. , 1, ... )

2 m-k times 2 m-k times 2 m-k times

while 1 is represented as 1 -+ = (1,..., 1). Monomials are represented by taking vector

2- times
products, i.e.

XjXk -4 V(ik) _ j) * V(k) (4.34)

where

V(j*v() (zkVvik), V)V ,...,(k) V mk) (4.35)

In this way, we may represent all of the monomials that form the basis elements of the vector

space of polynomials of degree-r in m binary variables, as binary vectors. These vectors are then

used to construct the rows of the generator matrix of the Reed-Muller code [172], which may

then be taken to be the stabilizer matrix of a fermion code when m > 2r + 1. As an example,
the matrix of stabilizers for the [[4, 0, 4]]f code, as obtained from this construction, is precisely

the generator matrix for RM(1, 3) and is given by

I 1 1 1 1 1 1 1

S[[4,0,4]f I0 0 0 (4.36)
1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

Appropriately adding rows of this matrix yields a more convenient choice of stabilizers for

this code, involving only quartic Majorana operators. These stabilizers may be explicitly written

as

01 '71737577 02 -Y2 74-Y678 (4.37)

03-- 73747576 04 -Y57Y6-Y77Y8. (4.38)
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as presented in the main text. Similarly, the matrix of stabilizers for RMf(1, 4) = [[8,3, 4]]f is

given by

S[[8,3,4]] - (V(0), V(1) V(2) V(3), v(4))T (4.39)

Yet another example is given by RMf(2, 5) = [[16,0,8 ]]f with stabilizer matrix S[16,o,8]]f -

(V(O),I V(1), V(2), V(3), V(4), V(5), V(1,2), V(1,3), V(1,4), V(1,5) 7 V(2,3), V(2,4)1 V(2,5)1 V(3,4) 5 (3,5)1 (4,5) T.

More generally, the generator matrix for an RM(r, m) code with m > 2r + 1 corresponds to a

fermion code with parameters given in (4 .19). The code distance d is precisely the Hamming

distance for the dual code to RM(r, m) code which is the code RM(m - r - 1, m).
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Part II

Fracton Topological Order
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Haah's code provides a remarkable example of an exotic quantum phase in an exactly solvable

model. As reviewed in Chapter 1, the ground-state of this model exhibits a sub-extensive

degeneracy on the torus, and distinct ground-states cannot be distinguished by local observables.

Related to this sub-extensive "topological" degeneracy is the existence of gapped excitations

that are strictly localized in space, a feature which lies beyond the paradigm of topological

quantum field theory. In this section, we systematically construct solvable models of interacting

spins and fermions in three spatial dimensions, that describe stable, gapped phases of matter

with immobile, point-like topological excitations, reminiscent of Haah's code. We term the

gapped excitations, which are immobile due to the intricate patterns of entanglement in the

ground-state, "fractons". We introduce a generalization of conventional lattice gauge theory

that describes fracton topological phases and as a consequence, we obtain a duality between

fracton topological order and interacting systems with global symmetries along sub-systems

(e.g. planar symmetries). We also propose solvable models in which fractons carry a protected

internal degeneracy, and behave as a natural generalization of non-Abelian anyons in a three-

dimensional quantum system. We provide a self-contained description of the algebraic techniques

used to study these exactly solvable models. This section is based on Ref. 15, 6, 7, 81.
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Chapter 5

New Kinds of Topological Quantum

Order

In this chapter, we introduce a class of translationally-invariant, solvable Hamiltonians of inter-

acting Majorana fermions that exhibit a new kind of fermion topological quantum order. These

models have extensive topological degeneracy and a hierarchy of topological excitations that

are only free to move within sub-manifolds of the full lattice. In one particular Hamiltonian in

d = 3 spatial dimensions, the fundamental excitations are strictly localized, while composites of

these excitations are free to move along one- and two-dimensional surfaces. The fundamental

excitations are termed "fractons", as they behave as fractions of a mobile particle. Due to its

fermionic nature, the topological order in our model enables an electron to break up into these

immobile fractons; this appears to be the ultimate form of electron "fractionalization" in three

dimensions.

To systematically search for these models, compute their ground-state degeneracy on a

d-dimensional torus and study their excitations, we introduce a purely algebraic description

of commuting Majorana Hamiltonians. We demonstrate that on a d-dimensional lattice with a

two-site basis and a single interaction term per unit cell, such a Hamiltonian generically exhibits

extensive topological degeneracy. We emphasize that each of our models may be written in terms

of complex fermions by choosing appropriate pairings of Majorana fermions over the entire

lattice. Our models also admit a local mapping to a boson model with identical topological

degeneracy and a similar dimensional hierarchy of excitations, after projecting out half of the

Hilbert space. We note that one of our models has similar phenomenology to a spin model

studied in ref. [177, 178].

Our approach to studying ideal Majorana Hamiltonians provides a novel geometric frame-

work for topological order, beyond topological quantum field theory. Remarkably, a commuting

Majorana Hamiltonian on a torus specifies an algebraic variety - defined as the common zeros

of a collection of polynomials over a finite field - that encodes all physical properties of the

topologically-ordered state. While a TQFT assigns a ground-state sector to an isotopy class
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of smooth, closed curves on a manifold, our models associate ground-state sectors with curves

based on finer equivalence relations, resulting in extensive topological degeneracy in dimensions

d > 3. We emphasize that our models are distinct from the exotic phase realized by Haah's

code [46] and related models [1791, due to the presence of mobile topological excitations that

are composites of fractons. As a related matter, separating a set of isolated fractons "optimally"

only requires creating a finite number of mobile excitations during intermediate steps. Unlike

Haah's code, this energy barrier is independent of the distance of separation.

Universal features of our interacting Majorana models clearly demonstrate that they are in

distinct phases from non-interacting stacks of lower dimensional systems. We consider one of

our Hamiltonians - the Majorana checkerboard model - as a concrete example. First, in a non-

interacting stack of lower-dimensional systems, all point-like topological excitations necessarily

appear at the ends of string-like operators (Wilson lines). In contrast, the immobile fracton

excitation in the checkerboard model appears in isolation at the corners of membrane-like op-

erators, which cannot be made smaller. (An argument of Ref. [109] can be adapted here.) This

feature alone rigorously establishes this model as distinct from any stack of lower-dimensional

systems. Second, the topological ground-state degeneracy D for the Majorana checkerboard

model on an L x L x L torus satisfies log2 D = 3L - 3, for any L. The universal, sub-leading

correction to log2 D is a unique signature of this exotic phase that is impossible to obtain using

a stack of lower-dimensional systems that respect the same lattice symmetries of our model; if

it were a stack of lower-dimensional systems, log D must be simply doubled as the system size is

doubled. We emphasize that both of the above features are independent of energetics. Even the

low-energy effective theory of a stacked system with a similar excitation spectrum would still be

describing an identifiably distinct quantum phase of matter, as these universal properties would

be different. For similar reasons, the remaining Majorana models identified in this chapter may

not be obtained by a stacking procedure.

5.1 Overview

Due to the length of this chapter, we begin with a detailed summary of our findings. We

consider exactly solvable Hamiltonians of interacting Majorana fermions that realize exotic

forms of topological order. On a d-dimensional lattice with a basis, these Hamiltonians will be

the sum of a single type of local operator over all lattice sites

H = - Om (5.1)
m

so that all operators mutually commute and square to the identity, i.e.,

[Om, On] = 0, (On)2 = +1. (5.2)
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(a) (b)

Figure 5-1: Majorana Checkerboard Model: The Majorana checkerboard model is defined
on a cubic lattice, as in (a), with a single Majorana fermion per lattice site (colored red). The
operator O,, is the product of the 8 Majorana fermions at the vertices of a cube. The Hamiltonian
is a sum of these local operators over every other cube (colored blue) in a checkerboard pattern.
As any pair of operators either share exactly one edge or none, all operators mutually commute.
We choose to label the cubic operators A, B, C, and D as shown in (b). Acting with a single
Majorana operator -yj creates these four excitations.

The operator O is required to be a product of an even number of Majorana fermions, so that
the fermion parity of the entire system is conserved. A ground state 11F) of (5.1) will satisfy the
constraint that

Om11) = IT) (5.3)

for all m.

In Section 5.2, we introduce a purely algebraic approach to systematically search for and
study topological order in commuting Majorana Hamiltonians (5.1). A similar approach has
been used previously to study topological order in commuting Pauli Hamiltonians [47]. We rep-
resent the operator 0 appearing in (5.1) as a set of Laurent polynomials over the field F2 , which
consists of two elements {0, 1} with Z2 addition and multiplication. We derive a mathematical
condition for a set of such polynomials to represent a commuting Majorana Hamiltonian with
topological order. This polynomial representation enables us to analytically determine the topo-
logical ground state degeneracy on a d-dimensional torus and deduce properties of topological
excitations using algebraic methods.

Using this polynomial approach, we demonstrate the following remarkable results. First, a
topologically-ordered commuting Majorana Hamiltonian on a lattice with a two-site basis may
be entirely specified by a single polynomial over F2 . The ground state degeneracy for such a
Hamiltonian on a d-dimensional torus of size L, which we denote by Do, will generally take the
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asymptotic form:

log 2 Do = cLd 2 + O(Ld-3) (5.4)

for some constant c. We perform an exhaustive analysis and discover a class of commuting

Majorana fermion models on a three-dimensional lattice with a two-site basis, which exhibit

extensive topological degeneracy of the form (1.4) with d = 3.

Remarkably, despite being translationally invariant, our models admit fundamental point-

like excitations that are strictly localized in space, and cannot move without paying a finite

energy cost to create additional excitations. Composites of these fundamental excitations, how-

ever, are topological excitations that are free to move within sub-manifolds of the d-dimensional

lattice. We term these fundamental excitations that behave as fractions of mobile particles,
"fractons." Furthermore, we refer to bound states of fractons that can only move freely along

an n-dimensional manifold as "dimension-n" particles. In particular, a dimension-2 particle can

be an anyon with well-defined fractional statistics.

To motivate further study of ideal Majorana Hamiltonians, we now describe in detail the

phenomenology of fracton excitations and their composites in the simplest of our models, the

Majorana checkerboard model. As shown in Figure 5- 1(a), here the operator 0,, is the product

of the eight Majorana fermions at the vertices of a cube. The Hamiltonian is simply the sum

of these operators over a face-centered-cubic (fcc) array of cubes, forming a three-dimensional

checkerboard. Since adjacent cubes share a common edge with two vertices, operators O on

different cubes are mutually commuting, and their common eigenstate defines the ground state.

For convenience in later analysis, we choose to identify four species of cube operators - A, B,
C, and D - as shown in Figure 5- 1(b).

A fundamental excitation in the Majorana checkerboard model is obtained when the eigen-

value of a cube operator O is flipped. The product of O over all cubes of a single type (A, B,
C, or D) is equal to the fermion parity IF of the entire system and is fixed.

F=JHOP= J op,=fHO,= l OP, (5.5)
pEA pEB pEC pED

Therefore, a single cube-flip excitation cannot be created alone, and is a topological excitation.

Remarkably, the fundamental cube excitation in this model is completely immobile, as we observe

through the following physical argument. In the checkerboard model, acting on the ground-state

with a single Majorana fermion flips the eigenvalues of four adjacent cube operators, as shown

in Figure 5-1(b). This four-cube excitation may trivially move by acting with a Majorana

bilinear. If the fundamental cube excitation were mobile, then it would be possible to move it

in any arbitrary direction, as the cube operator itself preserves all lattice symmetries. In this

case, the cube excitation would have well-defined (fermion or boson) statistics, and a four-cube

bound-state could never be a fermion. Therefore, it must be the case that the fundamental cube

excitation is frozen. A rigorous proof of the immobility of the fundamental excitation is given
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Excitation Type Statistics Operator

ABCD Majorana Fermion

AA, BB, Dim.-2 Anyon Boson Pair of Adjacent
CC, DD Wilson Lines

AR, AC, Single Wilson
AD, BC, Dim.-1 Particle Line
BD, CD

A, B, C, D Fracton Membrane

Table 5.1: Hierarchy of excitations in the Majorana checkerboard model. The fundamental cube
excitation is a fracton, while two-fracton bound-states can behave as particles that are either
free to move along one- or two-dimensional surfaces. The operator that creates each type of
excitation is indicated.

in Section 2. using the polynomial representation of the ideal Majorana Hamiltonian.

We now analyze the fracton bound-states in the Majorana checkerboard model in detail,

along with the mutual statistics of the excitations. Using the labeling of the cube operators

shown in Figure 5-1(b), we find the hierarchy of quasiparticles shown in Table 5. 1 in the Ma-

jorana checkerboard model. The fundamental fracton excitation appears at the corners of

membrane-like operators and may only be created in groups of four. Two-fracton bound-states

can form dimension-i particles or dimension-2 anyons. Remarkably, a dimension-2 anyon has

7r mutual statistics with a fracton lying in its plane of motion. As a result, while the fracton

is immobile, its presence may be detected by a braiding experiment. Furthermore, the exact

location of a single fracton within a finite volume V may be determined by braiding dimension-2

anyons in the three mutually orthogonal planes around the boundary DV. In this way, the exact

quasiparticle content within V is effectively encoded "holographically", and may be determined

by - O(f) braiding experiments, where f is the linear size of a box bounding V. We now proceed

to explore the hierarchy of excitations in detail.

Dimension-1 Particle: The dimension-1 particle may be created by acting with a single

Wilson line operator, defined by the product of the Majorana operators along a straight path

i. Up to an overall pre-factor of +1, i, we write the Wilson line operator as

we oc l 7n. (5.6)
nEf

As shown in Figure .5-2(a), the straight Wilson line anti-commutes with two cube operators at
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(a) (b)

Figure 5-2: Dimension-1 Particle: Excitations (colored) may be created by acting with
Wilson line operators. In (a), a straight Wilson line creates pairs of dimension-i particles at
the endpoints. The dimension-1 particle may hop freely in the direction of the Wilson line, by
acting with Majorana bilinear terms. Remarkably, the dimension-1 particle cannot hop in any
other direction without creating additional excitations. Introducing a "corner" in the Wilson
line, as in (b), creates an additional topological excitation localized at the corner.

each of its endpoints; the two cube excitations at a given endpoint are of different types. As a
result, We creates pairs of excitations of the form AB, AC, AD, BC, BD, or CD. Remarkably,
these two-fracton bound-states are only free to move along a line, by simply extending the
Wilson line operator We by acting with a Majorana bilinear along the path . If we try to
move this two-fracton bound-state in a plane, we must introduce a corner in the Wilson line,
which localizes an additional topological excitation at the corner, as shown in Figure 5-2(b); the
excitation cannot be removed by the action of any local operator. As the pattern of excitations
produced by a Wilson line We is sensitive to the geometry of f, the two-fracton bound-states
AB, AC, AD, BC, BD, and CD are restricted to move along a line and behave as dimension-i
particles. We emphasize that they cannot move in a higher-dimensional space without creating
additional cube excitations.

Dimension-2 Anyon: Acting with a pair of adjacent Wilson lines (1) and (2) along
parallel paths i and f', respectively, also creates a pair of two-fracton bound-states localized at
the ends, as shown in Figure 5-3(a). At each end of the path, however, the operator ^ (1) (2)

now creates pairs of cube excitations of the same type (AA, BB, CC or DD). These two-
fracton bound-states, where each fracton is of the same type, are allowed to move freely in the
two-dimensional plane orthogonal to the shortest line segment connecting the two paths i and
' without creating additional excitations; this is shown in Figure 5-3(b). We note that detailed

geometric features of a single Wilson line, such as the presence of sharp corners, determine the
pattern of excitations created from the ground-state. However, when acting with an appropriate
pair of adjacent Wilson lines, the excitations created at the sharp corners may be annihilated.
Therefore, a pair of adjacent Wilson lines may be deformed in the plane with no energy cost.
We conclude that the AA, BB, CC and DD two-fracton bound-states are dimension-2 anyons.
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(a) (b) (c)

Figure 5-3: Dimension-2 Anyon: Acting with two adjacent Wilson line operators W 1 and 142
creates pairs of excitations at the endpoints of the same type (AA, BR, CC or DD). These
two-fracton excitations are free to move in a two-dimensional plane orthogonal to the shortest
line segment connecting the pair of Wilson lines. Furthermore, in (b) we may detect a fracton
(colored blue) by braiding a dimension-2 anyon around a closed loop enclosing the fracton. As
the braiding operator, a pair of closed Wilson line operators W 1 142, is equal to the product of
the enclosed cube operators as shown above. Therefore, the braiding produces an overall minus
sign if an odd number of fractons are enclosed.

Braiding a dimension-2 anyon around a closed loop in the plane is equivalent to acting with
the product of cube operators within the two-dimensional region enclosed by the loop; this is
shown for a particular choice of loop in Figure +-3(c). As a result, braiding a dimension-2 anyon
around a closed loop enclosing a single fracton in the plane produces an overall minus sign.
The ability to detect a fracton with a dirmension-2 anyon produces non-trivial mutual statistics
between the dimension-2 anyon and other particles in the excitation spectrum of the Majorana
checkerboard model. First, a dimension-2 anyon has ir mutual statistics with any dimension-i
particle in the same plane, as braiding the dimension-2 anyon in a closed loop will only detect
one of the two fractons that make up the dimension-i particle. Furthermore, the dimension-2
anyon has ir mutual statistics with dimension-2 anyons that are free to move in adjacent, parallel
planes.

Fractons and Membrane Operators: Acting with Majorana operators on a flat, two-
dimensional membrane E creates fracton excitations at the corners of the boundary of E, as
shown in Figure 5-4. We write the membrane operator up to an overall pre-factor of 1, i as

.M1oc fly2. (5.7)
nEE2

For a rectangular membrane in the x-y plane, the boundary BE is a closed, rectangular loop
with dimensions 4x and 4y. We note that if 4, and 4y are both even, then the fracton excitations
created at the corners of 6YE will all be of the same type. Alternatively, if Lx is odd and 4y is
even, then the pairs of fracton excitations separated in the y-direction will be of the same type,
while fractons separated in the A-direction will be distinct.
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Figure 5-4: Membrane Operator & Fracton Excitations: Acting with a product of Majo-
rana operators on a surface E creates localized excitations at the corners of the boundary 49E
as shown above.

Extensive Topological Degeneracy: Using the algebraic representation of the Majorana
checkerboard model, we compute its ground-state degeneracy Do to be

.0o2 Do = 3L - 3 (5.8)

on an L x L x L three-torus, with periodic boundary ctiodtins imposed in the x, y, and z
directions, with each cube having unit side length. Pairs of string-like Wilson loop operators
wrapping non-trivial cycles of the torus - corresponding to tunneling dimension-2 anyons - dis-
tinguish the ground-state sectors. As the number of distinct dimension-2 anyons grows linearly
with system size, the ground-state degeneracy is necessarily extensive.

We emphasize that the algebraic approach allows us to systematically search for topologically
ordered, ideal Majorana Hamiltonians, rigorously characterize the nature of excitations, and
calculate the ground-state degeneracy in a wide range of Majorana models using techniques in
algebraic geometry. As a result, the next two sections of this chapter introduce and focus on the
polynomial representation of ideal Majorana Hamiltonians and draw broad conclusions based
on this representation. In Section 5.3, we present the 6 distinct three-dimensional Majorana
models with nearest-neighbor interactions that are topologically-ordered. In particular, one of
our models, which may naturally be written in terms of complex fermions on an fcc lattice, has
a fundamental excitation that may only freely move along a line in the (1,1,1) direction.

We conclude, in Section 5.4, with a proof of the presence of fractons in the Majorana checker-
board model, and briefly outline the phenomenology of excitations in the remaining models.

5.2 Topological Order in Commuting Majorana Hamiltonians

In this section, we introduce a representation of the operators in the ideal Majorana Hamiltonian
(5.1) as a vector of Laurent polynomials over the finite field F2 . The algebraic representation
provides an important starting point for studying and classifying Majorana Hamiltonians. We
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demonstrate that the following conditions, that

1. All operators in the ideal Hamiltonian mutually commute, and

2. Degenerate ground-states of the Hamiltonian are locally indistinguishable

may be phrased entirely in the polynomial representation. The ground-state degeneracy of an

ideal Majorana Hamiltonian (5,1) on the torus can be computed as the dimension of a quotient

ring [47].

We demonstrate that an ideal Majorana Hamiltonian obeying (i) and (ii) on a lattice with a

two-site basis and a single interaction term per unit cell may be specified by a single polynomial

over F2 . We use this result to systematically search for and characterize commuting Majorana

Hamiltonians. In d = 3 dimensions, we find 6 distinct, non-trivial models with nearest-neighbor

interactions, extensive topological degeneracy, and a dimensional hierarchy of excitations.

5.2.1 Algebraic Representation

To study commuting Majorana Hamiltonians, we represent the operator 0 appearing in Eq. (5. 1)

as a polynomial over the field F2 . A similar mapping has been introduced in the context of Pauli

Hamiltonians [47]. Consider a d-dimensional lattice with translation operators {t1 ,... , td} and

an n-site unit cell. We restrict n to be an even integer so that there is a well-defined number

of complex fermions per lattice site. We label the Majorana fermions within the unit cell at

the origin as -y for j = 1, 2,. .. , n. All other Majorana fermions on the lattice are obtained by

acting with translation operators.

Any Hermitian operator acting on this lattice may be written as a sum of products of

Majorana operators. Formally, we may write a 0 as

n

o j 1]7 (tni ... tnd . -yj)ci(n1 ,...,nd) (5.9)
j=1 {n}

with ni E Z and cj(ni, ... , nd) E {0, 1}. For simplicity, we have omitted the prefactor 1, i

in the expression for 0, which plays no role in our analysis. We introduce a purely algebraic

representation of this operator by noting that any product of translation operators may be

written as a monomial, e.g. tni ... tnd -- xni ... x"d. In this way, the action of the translation

group is naturally represented by monomial multiplication.

Recall that distinct Majorana fermions anti-commute and that each Majorana operator

squares to the identity. Therefore at each site within a unit cell, the identity 1 and y under

multiplication form the group Z2, with the two operators represented by the group elements 0

and 1, respectively. In this representation, the operator equality 'y 2 = I maps to the Z2 group

addition 1 + 1 = 0. This simple algebra of Majorana fermions allows us to write any product

of Majorana operators as the sum of monomials - representing the location of each Majorana

operator via the action of the translation group - with Z2 coefficients. As an example, consider
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a lattice with a single site per unit cell, and the Majorana operator y at the origin. A Majorana

bilinear admits the following polynomial representation:

,y . (tMt'2 ... t -7)4- + XI X'12 .. -- X24. (5.10)

In this notation, operator multiplication corresponds to polynomial addition with Z2 coefficients.

For the general case of a unit cell with n sites, we represent a product of Majorana operators

as a vector of polynomials over F2 , with the j-th entry of the vector representing the action

of the translation group on -yj, the j-th Majorana fermions in the unit cell at the origin. For

example, the operator (5A)) may be written as

(cl(ni1,..., nd)

C2(n, ... , nd)
S(XI, ... d) = .. of---Xd (5.11)

{ni}

C2n(n,,..., nd)/

Adopting the terminology in Ref. [47], we refer to S as the "stabilizer map" for the remainder

of this chapter.

To illustrate the algebraic representation of operators in commuting Majorana Hamiltonians,

we present a concrete example. Consider the Majorana plaquette model in Ref. [1], which is

defined on a two-dimensional honeycomb lattice with one Majorana fermion per site and a

Hamiltonian of the form (5.1) where Op is the product of the six Majorana fermions at the

vertex of a hexagonal plaquette p. We show a single hexagonal plaquette on the lattice in

Figure _)-5(a), along with the Majorana fermions -ya and -yb within the two-site unit cell. The

corresponding stabilizer map S(x, y) for the six-Majorana operator is given by:

S(x, y) = . (5.12)
1 + x + x9

Here, we adopt the notation that 9 = y- 1, t x- 1 . As shown in Ref. [1., this Hamiltonian

exhibits a novel form of Z2 topological order with fermion parity-graded excitations and exact

anyon permutation symmetries.

Next, we consider the action of an arbitrary operator W on the ground state IT) of the

commuting Majorana Hamiltonian. When W anticommutes with an operator O in the Hamil-

tonian, it flips its eigenvalue and thus creates an excitation. We use a polynomial to record the

locations of all excitations in the state W IT); each location is labeled by the translation vector

connecting it to the origin. Specifically, for a Hamiltonian with stabilizer map S(Xi, - - - , Xd) and

an arbitrary operator W with a polynomial representation P(W) of the form (5. 11), we define

the "excitation map" E(x,... , Xd) so that E(x1,... , Xd) - P(W) E F2[xf , - , X1] describes

the excitations created by W. In the Supplemental Material [?], we demonstrate that E is
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Figure 5-5: The Majorana plaquette model, as studied in [1]. Consider a honeycomb lattice
with a single Majorana fermion on each lattice site. We define an operator O, as the product
of the six Majorana fermions on the vertices of a hexagonal plaquette p, as shown in (a). The
colored plaquettes in (b) correspond to the three distinct bosonic excitations (A, B, or C) that
may each be created in pairs by acting with Wilson line operators.

simply given from the stabilizer map as follows:

E(xi,..., Xd) = S(XI, , Xd) (5.13)

where S(Xi, ... , Xd) = [S(i, ... ,T)]T.

As an example, the excitation map for the Majorana plaquette model is given by E(x, y)
(1+.+g, 1++.y). Below, we show the action of the operator ya at the origin in the Majorana
plaquette model, which creates three adjacent excitations as specified by the red points. The
locations of the excitations are obtained by performing the matrix multiplication of E with the

polynomial representation ( of Y:

E(x, y) ( = 1 + t + 9. (5.14)

Therefore, the action of Ya may be represented by the polynomial 1 + t + 9, labeling the
locations of the flipped plaquettes; here, the plaquette operator corresponding to the origin (i.e.
the location "1") is to the right of NY, as can be seen from its polynomial representation (5.12).
A dictionary that summarizes the relationship between Majorana operators and polynomials is
given in Table 5.2.

5.2.2 Topological Order and Ground-State Degeneracy in the Algebraic Rep-
resentation

The polynomial representation of Majorana operators serves as a starting point for constructing
commuting Majorana Hamiltonians that exhibit topological orders. As we demonstrate in the
Supplemental Material [?], for a translationally invariant Majorana Hamiltonian with a sin-
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gle operator per lattice site, all operators mutually commute if and only if its stabilizer map

S(,- , Xz) satisfies the condition

S(Xi,... , ) - S(x1,.. . , X) = 0. (5.15)

More generally, if the Hamiltonian contains multiple operators per lattice site {O)}, then

we may define a set of stabilizer maps for each type of operator {Si}, so that the condition

Si(X1,... , x) - Si(xI,..., X) = 0 for all i, j, guarantees that all terms in the Hamiltonian

commute.

We next formulate a necessary and sufficient algebraic condition for topological order in

commuting Majorana Hamiltonians, which requires that any degenerate ground-states of a

topologically-ordered Hamiltonian cannot be distinguished by local operators. The local in-

distinguishability is equivalent to the condition that, for any local operator Mi

11GS Mi '1 GS = c(Mi) HGS (5.16)

where GS is the projector onto a ground-state sector and c(Mi) is a constant that only depends

on the operator. For our case, consider an operator MI that is the product of Majorana op-

erators, and P(Mi), the polynomial representation of Mi. If Mi anti-commutes with any term

in the Hamiltonian, then Mi creates excitations when acting on the ground-state, and we have

GS Mi GS = 0- If Mi commutes with the Hamiltonian, then P(Mi) C ker E, as Mi creates

no excitations. In this case, the condition IGS Mi JGS = c(M)HGS is guaranteed if Mi may be

written as a product of operators already appearing in the Hamiltonian. More generally, any

local operator M that commutes with the Hamiltonian then takes the form:

M = Mi (5.17)

where each term Mi is the product of operators already appearing in the Hamiltonian. This

condition is necessary for distinct ground-state sectors to be locally indistinguishable.

In our polynomial representation, we enforce the condition (5.1 6) by requiring that the

stabilizer and excitation maps satisfy the following condition on an infinite lattice

ker E a im S. (5.18)

Recall that the image of S is the set of all polynomial linear combinations of S(xi, ... , xd), taking

the form of

ni .. --d S(Xi,. ... , Xd), (5.19)
{ni}

and representing all operators that can be written as a product of the commuting operators
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Operator Polynomial

Majorana Fermion Vector over F2

[j = 1,... , n for each tn-dimensional unit vector

site in the unit cell] with jth entry equal to 1

Translation Monomial Multiplication

tni tn2 ... .n ni on2 .. - d - -12 d Y X 1 X 2 **Xdej

Multiplication Addition in F2 [XI, - , Xd]

Table 5.2: Summary of the polynomial representation of Majorana operators. An arbitrary op-

erator in d spatial dimensions, written as the product of Majorana fermions, may be represented

as a vector with entries in the Laurent polynomial ring F2 [x , - , .

appearing in the Hamiltonian. On the other hand, the kernel of the excitation map E is the

set of all operators that do not create any excitation when acting on the ground state. The

above algebraic condition (2. 18) for topological order is thus equivalent to the statement that

any operator that creates no excitations on a ground state on an infinite lattice is necessarily

a product of operators {On} already appearing the Hamiltonian. In other words, there are no

non-trivial, locally conserved quantities, and any degenerate ground-states of the Hamiltonian

are locally indistinguishable. In summary, imposing the commutativity (5,15) and local indis-

tinguishability (5,18) conditions on a stabilizer map produces an ideal Majorana Hamiltonian

with topological order.

We may compute the ground-state degeneracy of an ideal Majorana Hamiltonian in the

polynomial representation via constraint-counting. A lattice with 2M Majorana fermions defines

a 2M-dimensional Hilbert space. On the torus, however, fixing the eigenvalues of the commuting

operators in the ideal Majorana Hamiltonian only imposes M - k multiplicatively independent

constraints, since the product of certain operators appearing in the Hamiltonian will yield the

identity. The ground-state degeneracy is simply given by the space of states satisfying the

constraints, which is precisely 2 M/ 2 Mk = 2 k. As each ideal Majorana Hamiltonian in this

chapter consists of exactly one term for each pair of Majorana modes, we see that k is directly

equal to the number of constraints on the commuting operators appearing in the Hamiltonian.

For example, in the Majorana plaquette model, we may group the plaquette operators {0P}
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into three types (A, B, and C) as shown in Figure 5-J(b). On the torus, the product of the A,
B, and C-type operators is identical and equal to the total fermion parity [1]. This yields the

following two independent constraints:

16ppf f H= 7 6pJHf6P =, (5.20)
pEA pEB pEB pEC

and produces a 22 -fold degenerate ground-state on the torus. These constraints may be com-

pactly represented using polynomials labeling the locations of the A, B and C-type plaquettes.

For example, the collection of all A plaquettes is captured by the polynomial

PA =(1 xy + x2Y2 ) x3n Y 3m). (5.21)
n=O ) M=0

It is straightforward to expand PA to verify that the exponents of the non-zero terms describe

the positions of A plaquettes. Here, L specifies the periodic boundary conditions in the x and

y directions, so that xL -17Y-L = 1. Similarly, the collections of all plaquettes in B and

C are encoded in YPA and zYPA, respectively. The constraints (5.20) arise from the fact that

(PA + YPA)S = 0, using Eq. (5.12) and the boundary conditions.

In terms of the stabilizer map, any multiplicative constraint on the operators in the ideal

Majorana Hamiltonian on the torus is in one-to-one correspondence with a solution p of the

equation p - S = 0, so that the polynomial p is an element of the kernel of S. Therefore, the

number of independent relations is given by

k = dimF 2[ker(S) (5.22)

We rewrite the expression (5.22) in a more convenient form for calculations that will also

allow us to make general statements about the scaling behavior of the ground-state degeneracy

with system size for an ideal Majorana Hamiltonian of the form (5.1). As proven in Corollary

4.5 in Ref. [47], Eq. (5.22) is equivalent to the dimension of the following quotient ring:

k =log 2 D =dim 2 F2 [X,.---,Xdl (5.23)
2 I(S) + bL)

Here, I(S) the ideal generated by the stabilizer map; if ST = (sI, ... , S2n) then I(S) is the space

of polynomials in F2 [x"I,..., xi'] obtained as a linear combination of {si}:

I(S) -p = cisi ci E F2 [x,. .. i}]. (5.24)

We will denote the ideal generated by a set {si,. .. ,sn} by (sj,...,sn). Furthermore, we

define the ideal bL - (X4 - 1,..., XI - 1). As the quotient space identifies the zero element
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Algebraic Expression Physical Interpretation

S(Xi, .. ,Xd) - S(x1, .. ,Xd) = 0 Commutativity condition, that all operators {0}
appearing in the Hamiltonian mutually commute.

im(S) Set of operators that may be written as the product
of commuting operators {0} in the Hamiltonian.

ker(E) Set of operators that create no excitations when
acting on the ground-state 11).

k= dimF, [ker(S)] The number of independent relations among the
commuting operators in the Hamiltonian on a torus.

The ground state degeneracy D -= 2

p E F2[Xz,..., 41 Configuration of excitations, specified by the
locations of operators {0} with eigenvalue -1.

q E I(S) A configuration of excitations that may be created by
acting with an operator on the ground-state IF).

Table 5.3: Dictionary of various algebraic quantities and their physical interpretation in the

context of a commuting Majorana Hamiltonian.

in F2 [X4,.., X4] with the generators of I(S) + bL, we observe that the ideal bL is used to

enforce the periodic boundary conditions on a d-dimensional torus with side-length L.

We emphasize that the ideal I(S) is the space of excitations that can be created through the

action of any operator on the ground-state. Therefore, the expression (.28) may be physically

interpreted as counting certain superselection sectors of the ideal Majorana Hamiltonian. Any

p E F2 [x 1 ,. , X1] corresponds to a virtual eigenstate of the Hamiltonian with excitations

at the locations specified by the polynomial p. Certain states, however, cannot be created

by acting with an operator on a ground-state 11F) due to the k constraints on the commuting

operators. For example, in the Majorana plaquette model, it is impossible to obtain a state

with a single plaquette excitation by acting on the ground-state, since the products of A, B

and C plaquettes must satisfy (5.20). As I(S)/(I(S) n bL) is the set of excitations that can be

created by the action of operators on the ground-state for a finite system, the quotient space

(F2[X ,... , X:l]/bL) / (s)/(I(s) 0 bL)) = F2 [Xi, - , x]/ (bL + I(S)) is the set of virtual
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eigenstates of the Hamiltonian that cannot be deformed into each other through the action of

any local operator. For the Majorana plaquette model, this quotient space is

F2 [x, y]
( X F2 (5.25)

when L mod 3 = 0 so that there are an equal number of A, B, and C plaquettes. In this

case, the trivial vacuum (0) and a state with a single plaquette excitation (1) on A, B, or C

correspond to the four superselection sectors in the quotient ring.

The expression for the ground-state degeneracy (5.23) is convenient as the dimension of a

quotient ring may be computed using algebraic techniques. Most often, we will determine a

Gr6bner basis for the ideal I(S) + bL in order to determine membership in the quotient ring.

For a polynomial ring R, we may define a total monomial ordering (e.g. lexicographic order

with xi >- x 2 >- ... >- xd); we denote the leading monomial in a polynomial h E R as LM(h)

with respect to this ordering. Given an ideal I = (si, -- - , s,) of a polynomial ring, there exists

a canonical choice of generators for the ideal, known as the Gr6bner basis {gi, - - - , g}, with the

property that for any f G I, LM(f) E (LM(gi),..., LM(g,)), i.e. any element of the ideal has a

leading term contained in the ideal generated by the leading terms of the Gr6bner basis. As a

result, the dimension of the quotient ring dim[R/I] is merely given by the number of monomials

that are smaller (in the monomial ordering) than all of the leading terms in the Gr6bner basis.

This is because any polynomial p E R may be reduced by the Gr6bner basis until the leading

term of the reduced polynomial satisfies LM(Pred) < LM(gi) for all i = 1,... , n. Therefore,

each monomial m satisfying m < LM(gi) for all i corresponds to a unique representative of the

quotient ring R/I.

We note that calculations of the ground-state degeneracy for any commuting Majorana

Hamiltonians presented in this chapter are done by determining a Gr6bner basis for the ideal

I(S) + bL. In this way, the calculation of the degeneracy reduces to counting points in an

algebraic set.

5.2.3 Unitary and Stable Equivalence

The polynomial representation of the ideal Majorana Hamiltonian contains built-in redundan-

cies, since we may re-define the unit cell or translation operators on the d-dimensional lattice. For

the stabilizer map, the translation corresponds to multiplication of any entry of S(x1, . .. , Xd) by

a monomial. In this way, a stabilizer map S(x1, .. ., Xd) is only defined up to monomial multipli-

cation on each of its entries. Furthermore, for an ideal Majorana Hamiltonian with longer-range

interactions, we may always enlarge the unit cell. As our focus will be on Majorana models with

nearest-neighbor interactions, we neglect this redundancy in the stabilizer map.

Equivalence relations, given by local unitary transformations on ideal Majorana Hamil-

tonians, may also be considered in the polynomial language. For instance, two ideal Ma-

jorana Hamiltonians, defined by stabilizer maps S(xI, ... , xd) and S'(xI, ... , Xd) are unitar-
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ily equivalent if there exists a matrix U such that S'(Xi,... , Xd) = U - S(Xi, ... , X) where

U E O(n; F2 ), an orthogonal matrix over F2 satisfying UTU = 1. This guarantees that if

S(Xi, .. . , Xd) - S(Xi,. . . ,Xd) = 0, then S'(Xi,. . . , Xd) - S'(Xi, .. . , Xd) = 0 as well. Finally, we

take two stabilizer maps to be stably equivalent if we can obtain one from the other by at-

taching a trivial (dimerized) set of Majorana fermions. This is expressed as S(Xi, ... ,)T

S(XI, ... , Xd)T D (0, ' ' , 0,1,1).

5.3 Extensive Topological Degeneracy in d > 3

Using the commutativity (7. 15) and local indistinguishability (5, 18) conditions, and the built-in

redundancy in the polynomial description, we demonstrate in the Supplemental Material f?],
that an ideal Majorana Hamiltonian defined on a d-dimensional lattice with a two-site basis is

topologically-ordered if the stabilizer map may be written in the following form, after multiplying

each entry by appropriate monomials:

f(Xi,- ,Xd)

S = (5.26)

(f(Xi,- . ,Xd)

where f(xi,- , - d) G F2[Xt, - ,X 11 and f and fare co-prime, i.e., f and f have no common

polynomial factors. As a result, a topologically-ordered, ideal Majorana Hamiltonian with a

two-site basis may be specified by a single polynomial. For example, the stabilizer map for the

Majorana plaquette model takes the form ST = (f (x, y), X- f(x, y) ) with f(x, y) =1 I+ x + y.

The dimension of the quotient ring (5.23) scales as the dimension of the space of the zeros of

the ideal I(S) over the field extension F 2m when L = 2' - 1. As a result, for an ideal Majorana

Hamiltonian (5. 1) with a two-site unit cell, the space of solutions to

f(X1, . . ., Xd) = 0, f(Xi, .. . , Xz) = 0 (5.27)

generally defines an (d - 2)-dimensional variety, so that the ground-state degeneracy scales

on the d-dimensional torus with side-length L as log 2D = cLd- 2 + ... for some constant c.

We emphasize that this produces a class of ideal Majorana models with extensive topological

degeneracy in d = 3 dimensions. Remarkably, while our models have a two-dimensional Hilbert

space and a single interaction term per lattice site, this only constrains the full Hilbert space

up to extensive topological degeneracy.

We have exhaustively searched for distinct, ideal Majorana Hamiltonians with a two-site

basis and nearest-neighbor interactions in d = 2 and d = 3 spatial dimensions. This is straight-

forward as the orthogonal group 0(2; F2 ) = {12x2, a' } so that the space of local unitary trans-

formations between these ideal Majorana Hamiltonians is trivial. In d = 2 spatial dimensions,
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fi(x, y, z) f2(x, y, z) f3(x, y, z)

f + X + + Z1+z+xy 1+x+y
+yz + xz +yz + xz

6L - 6 (L= 3n) 4L/3 (L 6 2n)
2 0 (L $ 3n) 8L/5 (L= 5 2)

f4(x, yzZ)f 5(x, y, z) f6(x, y, z)

f 1+y+z 1+x+y+z 1+x+y
+xy + yz+xz +xy+yz+xz +z+yz

.... ....

4L - 4 (L 2n) 2L -2 (L= 22n+1 1) 4L/3 (L 6 2")log2 D 2L -1 (L= 2n+1) 2L- 4 (L= 22n 1) 8L/5 (L 5 2")

Table 5.4: We find 7 distinct, topologically-ordered ideal Majorana Hamiltonians with nearest-
neighbor interactions on a lattice with a two-site unit cell in d = 3 spatial dimensions. The
first model fo(x, y, z) = 1 + y + z (not shown) is a trivial stack of two-dimensional Majorana
plaquette models, considered in Ref. [1]. For the remaining 6 models, the action of the elementary
operator 0 appearing in the ideal Majorana Hamiltonian is shown above as the product of the
Majorana fermions on the indicated red dots. In the depiction of the Majorana checkerboard
model fi(x, y, z), we have also shown the choice of translation vectors {tX, ty, tz} on the lattice,
originating from one of the sites within the unit cell; to compute the ground-state degeneracy on
an L x L x L torus, we impose periodic boundary conditions by requiring that tL = tL = -L = 1.
The topological ground-state degeneracy (D) of each of these models is extensive. For models
f3 (x, y, z), f 5 (x, y, z), and f6 (x, y, z), the ground-state degeneracy on the three-torus is a highly
sensitive function of system size, and only the maximum value of the degeneracy is shown for
the indicated choices of L.
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the only such Hamiltonian is the Majorana plaquette model with

f(x,y) = 1 + x + y. (5.28)

In d = 3 dimensions, however, we find 7 distinct Majorana models with a two-site basis and

nearest-neighbor interactions. The first model has the polynomial representation fo(x, y, z) =

1 + y + z and is a trivial stack of two-dimensional Majorana plaquette models. The polynomial

representations of the remaining models, along with their ground-state degeneracies on a torus

of side-length L are shown in Table 5.4. For simplicity, we have imposed periodic boundary

conditions by requiring that tL = tL = tL = 1 for the translation vectors {tX, tb, tz} shown in

the representation of the Majorana checkerboard model fi(x, y, z) 1 + x + y + z in Table 5,4.

Each of the models shown exhibits extensive topological degeneracy and admits at least one

topological excitation that is free to move in a sub-manifold of the full lattice.

5.4 Fracton Excitations and Dimension-n Anyons

A remarkable feature of these Majorana models is the presence of fundamental excitations that

are either perfectly immobile or only free to move in a sub-manifold of the lattice; attempting

to move these excitations by acting with any local operator will necessarily create additional

excitations. A bound-state of these immobile excitations, however, forms a particle that can

freely move along a higher-dimensional sub-manifold.

The existence of a fracton fundamental excitation may be shown rigorously in the polynomial

representation of the Majorana models. An element p E I(S) of the ideal defined by the stabilizer

map corresponds to a set of excitations that may be created by acting on the ground-state. The

fundamental excitation is mobile if and only if it is possible to create an isolated pair of such

excitations. Therefore, an ideal Majorana model admits fracton excitations if the stabilizer ideal

contains no binomial terms, i.e.

1 2 d I(S)(

for any ni E Z.

We now apply the polynomial criterion for fracton excitations to the Majorana checkerboard

model and to the model f5 (x, y, z) = 1 + x + y + z + xy + yz + xz, both shown in Table 5.

5.4.1 Fractons in the Majorana Checkerboard Model

We consider the Majorana checkerboard model, specified by the single polynomial f(x, y, z) =

)T1+ x + y + z, so that the stabilizer map is given by S = (f (xI ,Z), f (X) Y)Z)) . We wish to

prove that the ideal generated by the stabilizer map I(S) contains no binomial terms, so that

the fundamental cube excitation is a fracton. This may be shown by considering the zero-locus
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of the ideal, i.e., the solutions to the zeros of the generators of the ideal:

I+ +-x y-+z = 0 (5.30)

xyz + xyyz+ z = 0. (5.31)

A polynomial p belong to I(S) only if p vanishes on the zero-locus of the ideal. Note that

solutions to (5..30) take the form (x, y, z) (1, a, a), (a, 1, a) or (a, a, 1), where a is an arbitrary

element in the extension of F2. However, we see that the binomial 1 + xnymzf vanishes on this

space of solutions only if n = m = f = 0, in which case the binomial is zero. Therefore, we

conclude that

1 + xnymze I(S). (5.32)

As a result, there is no way to create the fundamental cube excitation in the Majorana checker-

board model in pairs. Therefore, the cube excitation is an immobile fracton; a single cube

excitation cannot be moved without creating additional excitations.

5.4.2 Dimension-1 Fundamental Excitations in f 5 (x, y, z)

Now, we consider the isotropic model f5 (x, y, z) = 1 + x + y + z + xy + yz + xz, with sta-

bilizer map defined by S(x, y, z) = (f5(x, y, z), xyz- f5(x, y, z)). From the excitation map

E(x, y, z) = S(x, y, z), we find that the Majorana bilinear along the (1,1,1) direction creates a

pair of fundamental excitations:

E(x, y, z) - ) 1 + xyz. (5.33)

Therefore, the fundamental excitation in this model is clearly not a fracton. We now demonstrate

that the fundamental excitation may only hop freely along the (1,1,1) direction, without creating

additional excitations. Consider the variety V(I) defined by the stabilizer ideal I(S) = (1+ x +
y + z + xy + yz + xz, xyz + x + y + z + xy + yz + xz), i.e. the zero-locus of the generators of

the ideal over an extension of F2 . The following is a point on the variety:

(x, y, z) = t ) (5.34)
I + t' t

with t in an extension of F2. As a result, if 1 + x'ym E I(S), we must have from (5.34) that

tn = (1 + t)m for infinitely many t. This can only be true if n = m = 0. As a result, the

fundamental excitation cannot hop freely in the xy-plane. As the generators of the ideal are

symmetric under exchanging any pair of variables (e.g. x +-+ y), we conclude that 1 + ynzm,
1 + Xz E I(S) only if n = m = 0, so that the fundamental excitation cannot freely hop in the
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yz- or xz-planes. From these results, we are led to the conclusion that

1 + XnymZe V I(S) (5.35)

when n, m and f are distinct. Therefore, we have shown that the fundamental excitation in the

model defined by f 5 (x, y, z) is restricted to hop along the (1,1,1) direction of the cubic lattice

without creating additional excitations.

5.5 Polynomial Representations of Majorana Hamiltonians

In this section, we prove a statement presented in the main text, that in a commuting Majorana

Hamiltonian, of the general form

H = [- 1 + 2) + -.-.- + &N) (5.36)

two Majorana operators On) and 0() commute over all lattice sites (i.e. [0$), 0j] = 0 for any

n, m) if and only if their respective stabilizer maps Si and Sj satisfy Si -S = 0. Furthermore, we

show that the excitation map Ej = 5 may be constructed for each operator in the Hamiltonian,

so that, given the polynomial representation P of some operator, the quantity Ej - P yields a

polynomial encoding the pattern of excitations created by that operator when acting on the

ground-state.

Consider a d-dimensional lattice with translation group A 2 Zd, and a single Majorana

fermion per lattice site. At a given site, the identity operator 1 and the Majorana fermion y

form the group Z2 Z Z/2Z under multiplication since

X x = Y x I = Y (5.37)

I x 1 = -y x Y = 1. (5.38)

We refer to this as the 'Majorana group' M at a given lattice site. The group M naturally

forms a vector space over the finite field F2 since for some a E Z2 and m E M we may define

the Z2 action a - m = m' E M. Furthermore, any element of the translation group g E A has

a natural action on M by multiplication. For instance, let c, d E Z2, so that we may represent

the action of g on the operator (-y)C simply as g c E F2 . A more general operator, for instance

(g - -y)C (h --)d may be written as g - c + h - d c F2.
Now, we consider a d-dimensional lattice with an n-site basis so that each site again contains

a single Majorana fermion; n is restricted to be an even integer so that we may have a well-

defined number of complex fermions per lattice site. We represent each of the n Majorana

fermions at a given lattice site as -yj, with j = 1, ... , n. Recall that distinct Majorana fermions

anti-commute. Let g E A Zd be an element of the lattice translation group. From the natural

action of the translation group on the Majorana fermions, we may write any two Hermitian
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operators 01 and 02 up to overall factors of i as

01 -= R H (g - (g)"af

gEA j=1
02 -- [ ]j(g

gEA _j=1

with the coefficients c3 (g), dj (g) E Z2. On physical grounds, we require that each operator is the

product of an even number of Majorana fermions so that the total fermion parity is conserved.

This is equivalent to the condition that

:cj (g)
gEA j=1

n

= dj(g) = 0 E F2

gEA j=1

Two operators commuting with the total fermion parity commute if and only if they have

overlapping support on an even number of Majorana fermions. As a result, the operators 01

and h - 02 commute for some h E A if

n

cj (g) dj(h-'g) = 0.
gEA j=1

(5.41)

The condition ().41) may be simply imposed by representing the operators 01 and 02 as

SEA

c1(g)

c2(g)

cn(g)

\I di (g)

d2 (g)
S2 9 .

gEA

dn(g)

I (5.42)

respectively. We further define &j by combining the antipode map g -+ g-1 with transposition

of the Si vector. For example,

- ( c1(g) c2(g) ... cn(g) ) (5.43)= g
ac-A

Now, we demonstrate the following statement: S2 Si = 0 if and only if [01, f - 02] = 0 V f E A.

We demonstrate this by explicit calculation. First note that:

S - Si = h--g - c (g) d (h)= f
g,hEA j=1 fEA

Y' cj(g) dj(f-'g)[gEA j=1

(5.44)

We now observe that S2 - Si = 0 if and only if the quantity in brackets vanishes V E A.

However, this is precisely the condition (5.41) required so that [01, f - 02] = 0. This completes

the proof.

A natural consequence of this proposition is the following. Consider N types of operators

124

(5.39)

(5.40)

- (g)



at each lattice site, and a Hamiltonian of the form:

H = [- 1 + 2) + -.-.- + O(N) (5.45)

where the sum is over all lattice sites. We may now represent each operator 0 (') at a particular

lattice site by a stabilizer map Si. Then, all of the operators appearing in the Hamiltonian

mutually commute (i.e. [0), 0j] = 0 V i, j, m, n) if and only if

S2 - S3 = 0 (5.46)

for any pair i, j.

From the stabilizer map, we may determine how the action of an arbitrary operator 0 on the

ground-state creates a pattern of excitations. Let S be the stabilizer map for an ideal Majorana

Hamiltonian with a single operator per lattice site and an n-site unit cell. Furthermore, let P

be the polynomial representation of some operator 0. We represent S and P as

c2(g) d2(g)ci (g) (di (g)

C 2 (g) P d g() ( 5 .4 7 )
gEA gEA

cn(g) J dn(g) J
respectively. Recall that the condition (5. 4) determines whether the operator 0 commutes with

a given stabilizer appearing in the Hamiltonian. Whenever, 0 anti-commutes with a stabilizer

operator, it creates an excitation at the location of the stabilizer. The pattern of excitations

created by 0 is then specified by the expression

n n

E h-1 E E cj(g) dj(h-1g) = E h g -'cj(g) dj (h)
hEA gEA j=1 h,gEA j=1

-Z I g 1 cj(g)j(hdj(h) =S9.P (5.48)
j=1 gEA hEA

Therefore, we define the excitation map

E S (5.49)

so that E - P yields a polynomial representation of the pattern of excitations created by the

operator 0 when acting on the ground-state.
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5.6 Stabilizer Maps for Ideal Majorana Hamiltonians with a

Two-Site Basis

We now prove the following statement: a

with a two-site basis and a single operator

the form:

topologically-ordered, ideal Majorana Hamiltonian

per lattice site, is specified by a stabilizer map is of

(5.50)

with f(x1, . .. , Xd) E R = F2 [x 1 , .-. . , xd]. Note that S is uniquely defined only up to monomial

multiplication on each of its entries.

We demonstrate this as follows. For an ideal Majorana Hamiltonian with a two-site basis, let

the stabilizer map be of the form ST = (f, g) with f, g E R. Recall that the excitation map is

given by E = (f, g). We require on an open lattice that ker(E) e im(S), so that any degenerate

ground-states of the Hamiltonian are locally indistinguishable. Note that ker(E) and im(S) are

defined as

ker(E) a { ) R2 a] = g} im(S) cf) c E R

Let g and f take the form g = hg' and f = hf', for some h

so that gcd(g', f') = 1. In this case, we observe that

E ker(E)

(5.51)

E R, so that gcd(f, g) = h, and

(5.52)

If this element is generated by im(S), it must be the case that

C = c -h 9~~( f ) = c*h( f'
(5.53)

for some c C R. However, this equation is only satisfied if c - h - h = 1, which implies that

both c and h must be monomials. As S is only uniquely defined up to monomial multiplication

on its entries, we may restrict the remainder of our analysis to stabilizer maps S (I, g)T with

f and g co-prime so that ged(f, g) = 1.

Since f and g are co-prime, the condition af = #g for a vector (a, )T to be in ker(E)

is satisfied only if a = c - j and / = c - f for some c E R. Now consider that in order for

126

f (ri, . ... , d)

f (X1, . . . , Xd)



im(S) ~ ker(E) on an open surface, we must have that

d-= . C(5.54)

for some d E R. This is indeed satisfied if c = d, so that f = g. Now, we have that the most

general form of the stabilizer map (up to monomial multiplication on each entry) is S = (f, f)T

for some f E R such that gcd(f, f) = 1. The commutativity condition S S = 0 is trivially

satisfied. This completes the proof.
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Chapter 6

Fracton Phases from Duality: A

Unified Framework

A remarkable property of the phases of matter introduced in the previous chapter is the existence

of point-like fractional excitations ("fractons") [6], which can only be created at the corners of

membrane- or fractal-like operators, unlike anyons that are created at the ends of Wilson lines.

The creation of anyons at the two ends of a Wilson line immediately implies that anyons can

move by repeated application of a local, line-like operator. In contrast, the absence of any

operator that can create a pair of fractons implies that a single fracton cannot move without

creating additional excitations, i.e. fractons are fundamentally immobile. The possible fracton

topological orders in solvable models can be grouped into two categories: found:

Type I fracton phases, such as the Chamon-Bravyi-Leemhuis-Terhal (CBLT) model [178,
109] and the Majorana cubic model 161, have fracton excitations appearing at the corners

of membrane operators; composites of fractons form topological excitations that are only

mobile within lower-dimensional subsystems.

Type II fracton phases, such as Haah's code [46] and related models [179], have fracton

excitations that appear at the corners of fractal operators 1. All topological excitations

are strictly localized and there are no mobile topological quasiparticles.

Fracton topological order [46, 178, 109, 179, 6] provides an exciting development in the

search for new quantum phases of matter, for new schemes for quantum information processing

[181], and in the investigation of glassy dynamics in interacting quantum systems [182]. Frac-

tons enable new forms of electron fractionalization [61, and provide an alternative to Fermi or

Bose statistics in three dimensions. Fractons may be used to build a robust, finite-temperature

quantum memory, as theoretically demonstrated for Haah's code [46, 48]. The innately slow

dynamics of fractons provides an intriguing connection with quantum glasses, many-body local-

ization, and a new testing ground for the postulates of quantum statistical mechanics.

'Other models without any immobile excitations, but with fractal operators, have been studied [1801.
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Research on fracton topological phases is in its early stages and has been based on studies of

specific lattice models. It is thus highly desirable to find a more unified theoretical framework for

fracton topological order. In this work, we demonstrate that fracton topological phases can be

obtained as the quantum dual of d-dimensional systems that possess "subsystem symmetries",
namely a set of symmetries associated with subsystems of dimension 2 < d, < d. Specifically,

we establish an exact duality relating both type-I and type-II fracton topological orders to

symmetry-breaking order in quantum systems with subsystem symmetries along planes and

fractals, respectively. This duality between fracton topological order and subsystem symmetry-

breaking, hereafter referred to as the "F-S" duality, is naturally obtained from a generalized

lattice gauge theory which we introduce. Instead of placing a gauge field on links between

neighboring sites as in a standard lattice gauge theory, we introduce a new field to mediate

multi-body interactions between matter fields on a cluster of neighboring sites. This yields

an interacting quantum system with a generalized Gauss' law that characterizes the fracton

topological phase.

Before describing our construction in generality, we present a concrete example that yields

a new class of type-I fracton topological phases. Consider a model of Ising spins at the sites of

a three-dimensional cubic lattice, whose Hamiltonian (Hpiaq) is defined to be a sum of four-spin

interactions at each plaquette, as shown in Table 6.1. This classical "plaquette Ising model"

is invariant under a spin-flip -r - -r along any xy, yz or xz-plane of the cubic lattice. The

plaquette Ising model has a rich history of study, attracting interest as a model for the statistical

mechanics of smooth surfaces, and as a lattice regularization of string theory [183, 184, 185, 186,
187, 188].

We introduce a generalized lattice gauge theory to construct the quantum dual of the pla-

quette Ising model in a transverse field. This generalizes Wegner's duality [189] between the

d-dimensional transverse-field Ising model and Ising lattice gauge theory [34]. Wegner's duality

is motivated by the observation that a configuration of Ising spins may be specified by the lo-

cations of the domain walls between symmetry-breaking states of the Ising model. As a result,
a dual representation of the Ising matter is given by Ising "domain wall" fields on the links of

the lattice. Furthermore, since domain walls form closed, (d - 1)-dimensional surfaces, physical

states in the domain wall Hilbert space must satisfy a local "zero-flux" condition, that the lattice

curl of the domain wall spins vanishes around each plaquette. In this way, the d-dimensional

transverse-field Ising model is dual to Z2 lattice gauge theory.

Our duality between fracton topological order and subsystem symmetry-breaking is obtained

by a similar observation. A configuration of Ising spins may, equivalently, be specified by the

eigenvalue of each interaction term in the Hamiltonian 2. For example, to obtain the dual of the

plaquette Ising model, we are naturally led to introduce the Ising fields {u} at the center of each

plaquette. Physically, the o- field labels the presence or absence of a domain wall between the

2More precisely, a configuration of Ising spins may be specified exactly by the eigenvalues of interaction terms
in the Hamiltonian, only up to spin-flips performed along subsystems that leave all of the interaction terms
invariant.
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Figure 6-1: The fundamental excitations of the X-cube model are shown in (a) and (b). Acting
on the ground- state of the X-cube model with a product of oZ operators along the colored red
links that lie within a flat, rectangular region M generates four fracton cube excitations (ea0?)
at the corners of the region. A straight Wilson line of o' operators acting on the blue links in
(b) isolates a pair of quasiparticles (m) or m(1)) at the ends, that are only free to move along
the line. Attempting to move these quasiparticles in any other direction by introducing a corner
in the Wilson line, creates a topological excitation at the corner as shown in (b).

subsystem symmetry-breaking ground-states of the plaquette Ising Hamiltonian. While domain
walls in the ordinary Ising model form closed surfaces, the or fields in our model must satisfy
more exotic local constraints due to the geometry of the plaquette interactions to ensure a
one-to-one correspondence with the physical space of domain walls in Hpiaq.

As we demonstrate below, the quantum dual of the plaquette Ising Hamiltonian, in terms
of the o- fields, exhibits fracton topological order. The resulting fracton Hamiltonian has a
solvable limit, analogous to the deconfined phase of a conventional gauge theory, which is given
by a Hamiltonian for the Ising fields (a), now placed at the links of the dual cubic lattice. As
shown in Table 6.1, this fracton Hamiltonian consists of two types of terms: (1) a twelve-spin
a' interaction for the spins surrounding a dual cube and (2) four-spin a-interactions at each
vertex of the dual cubic lattice that are aligned along the xy, yz and xz-planes. The cubic
and cross-like geometries of the interactions motivate the name "X-cube" model. The ground-
state is topologically-ordered, as the ground-states are locally indistinguishable, and one of the
fundamental excitations - obtained by flipping the eigenvalue of the cubic interaction term -
is a fracton. This can be seen by observing that there is no local operator that can create a
single pair of cube excitations. For example, the operator a,, creates four cube excitations when
acting on the ground-state. Repeated application of o over a membrane separates the four
cube excitations to each corner as shown in Figure 6-1a. Therefore, a single cube excitation is
fundamentally immobile, and cannot move without creating additional cube excitations. Pairs
of cube excitations, however, can be moved by sequentially applying a local, membrane-like
operator.

The quasiparticle content of the X-cube model is summarized in Table 6.1, along with
other fracton phases such as Haah's code, the CBLT model, and a new spin model which we
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introduce and term the "checkerboard model". All of these phases are obtained by applying our

generalized lattice gauge theory prescription to spin models with subsystem symmetries. As we

will demonstrate, a simple property of the classical spin model, that no product of interaction

terms acts exclusively on a pair of isolated spins, guarantees that its quantum dual exhibits

fracton topological order.

More generally, consider a classical Hamiltonian for Ising spins (ri) at the sites of a three-

dimensional Bravais lattice. We assume, for simplicity of presentation, that there is a single

spin at each lattice site; the case where the unit cell is larger is explained in the Appendix. The

Hamiltonian consists of f types of interactions at each lattice site i, and may be written in the

form:

HO = -tZ (01) [T] + + O ) [T]) . (6.1)

with the constant t > 0. We demonstrate that a classical spin Hamiltonian (6.1) satisfying

certain simple properties may be used to build a topologically-ordered, quantum system with

fracton excitations. First, we require that the spin Hamiltonian (6,1) has a subsystem symmetry

under which the spin-flip transformation r - -r along non-local subsystems of the lattice - i.e.

subsystems that scale with the system size - leaves HO invariant. We further require that HO

has no local symmetries. In this sense, a subsystem symmetry is "intermediate" between local

and global symmetries [190, 191]. For the remainder of this work, we will refer to the plaquette

Ising model (Hpiaq) and the tetrahedral Ising Hamiltonian (Htetr) as concrete examples. As

shown in Table 6.1, the Hamiltonian Htetr is defined on the face- centered cubic (fcc) lattice

and consists of nearest-neighbor four-spin interactions that form elementary tetrahedra. The

tetrahedral Ising model has two interaction terms per site on the fcc lattice. Both the tetrahedral

and plaquette Ising models have a subsystem symmetry, as they are invariant under spin-flips

along orthogonal planes (xy, yz or xz).

An important consequence of the subsystem symmetry of the spin Hamiltonian HO is that the

resulting ground-state has sub-extensive classical degeneracy D, taking the form log D O(L)

on the length-L three-torus. Since the degeneracy is classical in nature, each ground-state may

be distinguished by a local order parameter. Transitioning between ground-states, however,

requires performing a spin-flip along a subsystem. While a local perturbation can lift the

classical degeneracy, no local operator can connect distinct ground-states.

6.1 Generalized Lattice Gauge Theory and the F-S Duality

We now build a quantum Hamiltonian with fracton topological order by promoting the subsys-

tem symmetry of the spin system (6,1) to a local symmetry. We begin by adding a transverse

field at each lattice site to allow the classical spins to exhibit quantum fluctuations. Next, we

introduce additional Ising spins (ai,a) at the center of each multi-spin interaction appearing in
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Table 6.1: Representative examples of fracton topological orders built from classical spin systems
with the indicated subsystem symmetries. In the plaquette Ising model, spins lie on the sites of a
cubic lattice, and the Hamiltonian is a sum of four-spin interactions at the face of each cube. In
the tetrahedral Ising model, spins on an fcc lattice participate in four-spin interactions coupling
neighboring spins that form a tetrahedron, as indicated. Finally, the fractal Ising model consists
of two types of four-spin interactions, and has a fractal symmetry; the Hamiltonian is invariant
under a spin-flip along a three-dimensional Sierpinski triangle, as elaborated in later sections.
The X-cube, checkerboard, and Haah's code fracton models, are solvable limits of fracton phases
that are obtained by "gauging" the subsystem symmetry of these spin models. The X-cube model
is represented by placing spins on links of the cubic lattice, and the Hamiltonian is a sum of
a twelve-spin ox-operator at each cube and the indicated planar, four-spin az-operators. The
checkerboard model is a sum of eight-spin or- and yZ- interactions over cubes arranged on an
fcc lattice. Only the fundamental excitation types are indicated, with the notation e$P (m$?)
to refer to a dimension-j excitation - i.e. an excitation that is only free to move within a
dimension-j subsystem without creating additional excitations.
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Ho; these spins appear at the sites of a lattice with an f-site basis. We introduce a minimal cou-

pling H, between the o spins and the Ising matter fields, by coupling each -to its corresponding

multi-spin interaction:

-t = (o OLZ}+ +7 &~ ~ z) . (6.2)

After this minimal coupling, the Hamiltonian describing o- and the Ising matter fields is

H = Hc - hZrf . (6.3)
i

We refer to o- as the nexus field, as each - is placed at the center of an elementary multi-spin

interaction of the classical spin Hamiltonian. We will soon observe that the nexus field provides

a natural generalization of a gauge field in a conventional lattice gauge theory. In contrast to our

construction, applying the standard gauging procedure to any of the spin models shown in Table

G.A by introducing a gauge field on the links of the cubic lattice would result in a Hamiltonian

with conventional Z2 topological order. Our procedure is also distinct from discretizations

of "higher-form" gauge theories, in which interactions between (n - 1)-form matter fields are

mediated by an n-form gauge field [192, 193].

The subsystem symmetry of the classical spin system (G.1) has now been promoted to a local

spin- flip symmetry of the Hamiltonian (G.3). While Tn - the generator of a single spin-flip -

anti-commutes with several multi-spin interactions in (6.1), this can be compensated by acting

with the nexus field ujxa on the lattice sites associated with these interactions. As a result, the

operator

Gi= T TAj (6.4)

where

Ai 07-T (6.5)
(j,a)EP(i)

generates a local symmetry of the Hamiltonian ([Gi, H] = 0). The set P(i) specifies the locations

of multi-spin interactions that anti-commute with Tr.

We proceed to add all other interaction terms involving the nexus field and the Ising spins

that are consistent with this local spin-flip symmetry. To lowest-order, we include a transverse

field for the matter and nexus fields:

H = -t o, O (a)[Tz] - hZTr - JEcT, (6.6)
i,a i i,a

Since the operator Gi generates a local symmetry of the Hamiltonian, we may impose the
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condition Gi 11) = IT) on the Hilbert space, which amounts to a generalized Gauss's law. In

analogy with conventional gauge theory, we will refer to Ai as the nexus charge operator. As

an example, the nexus charge operator in the X-code model is given by the product of o on

twelve spins sitting at the links surrounding a cube, as shown in Table 6.1.

Since the generalized Gauss's law condition commutes with the spin-nexus Hamiltonian

(6.6), it is possible to choose a "gauge" that completely eliminates the Ising matter fields, and

yields a Hamiltonian exclusively for the nexus spins. First, we impose the generalized Gauss's

law -rx IT) = Ai IT) to obtain a Hamiltonian acting within the constrained Hilbert space

H = -t( U 0(a) [z] - h Aj - JE x (6.7)
i,a i i,a

Since each rf operator commutes with the Hamiltonian, we may restrict our attention to states

in the constrained Hilbert space that satisfy ri = +1. This yields the gauge-fixed Hamiltonian

H =--t C ita -hYA - J~u -l 68) 1:, ~ (6.8
i,a i i,a

When t/h < 1, it is convenient to identify an effective Hamiltonian that takes the form

Heff = -K B) - hZ Ai - J a (6.9)
i,k i i,a

where we have introduced operators B(k) at each lattice site i. These operators are determined

in perturbation theory by computing the simplest product of a' terms near a given lattice site

that commute with the nexus charge [B(k) , A] = 0. As an example the B(k) operators obtained

by applying this construction to the plaquette Ising model are shown in Table 6.1.

Our proposal bears resemblance to the construction of a conventional lattice gauge theory.

First, the Hamiltonian for Z2 gauge theory is recovered from the general form of the Hamiltonian

for the Ising matter and nexus fields (6.6) if the matter fields couple through nearest-neighbor

two-body interactions, so that 0 (a " =rTjr where ia is nearest-neighbor to site i. This is in
2 2a

contrast to the multi-body interactions that are present in our models with subsystem symmetry.

In the gauge-fixed Hamiltonian (6.8), Ai then becomes the familiar Z2 charge operator, while

the operator B2, appearing in the effective Hamiltonian Heff, precisely measures the Z2 flux
through an elementary plaquette.

Within our construction, the B k) operators provide the natural generalization of the flux in

a lattice gauge theory. As the excitation obtained by flipping the eigenvalue of a B(k) operator

is often point-like, we will refer to the excitation as a "generalized monopole". While the flux is

always a line-like excitation in a three-dimensional Abelian lattice gauge theory, the behavior

of the "generalized monopole" can be quite varied. As an example, the generalized monopole is

a fracton in both the checkerboard spin model and in Haah's code, but is free to move along a

line without creating additional excitations in the X-cube model. We refer to such an excitation
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Hspin Hnexus Explanation

A classical configuration of Ising spins (r) may
0() or be specified by spins (o) placed at the centers of

each of the interaction terms & a) for the Ising
matter.

The dual representation of -r is given by the

Ai nexus charge Aj, defined as the product of -f
terms that correspond to the interactions flipped
by -r<.

A local product of interactions for the Ising
matter fields that yields the identity corresponds

11 " = 1 B 1 T) = ') to a constraint on the dual Hilbert space. The
(i,a)EQ(j) constraint restricts the Hilbert space of {uo} to

that of domain wall configurations in the ordered
phase of Ho.

A product of a' operators is dual to a product of

~W -O~) W o, interaction terms for the matter fields. As a
i (,a result, the nexus charge is a fracton only if there

(i,a)cE (i,a)eE is no product of interaction terms that can create

an isolated pair of spin-flips.

Table 6.2: Correspondence between operators in the Hilbert spaces of the Ising matter fields
and the nexus spins, obtained from the F-S duality.
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Figure 6-2: A "domain wall" in the ground-state of the plaquette Ising model (Hpiaq) is depicted,
by coloring the plaquette interactions that have been flipped by the action of a spin-flip transfor-
mation along a planar region E. The F-S duality implies that the ground-state for the X-code
fracton phase is given by an equal superposition of a dual representation of these domain-walls.

as a dimension-1 quasiparticle [61, as the excitation is only mobile along a line. As shown

in Figure 6-1b, a straight Wilson line can create an isolated pair of the generalized monopole

excitations in the X-cube model, which can only move along the line without creating additional

excitations. Within type-I fracton topological order, composites of the fracton charge excitations

that are mobile in two dimensions can have non-trivial mutual statistics with the generalized

monopole. This is true in both the checkerboard and X-cube models, where an anyon formed

from a composite of two fracton charges has ir-statistics with a generalized monopole in its plane

of motion.

We now consider the generalized lattice gauge theory (6.8) when J = 0, so that the nexus

field (defined in the .z-basis) has no dynamics. The resulting Hamiltonian

Hnexus = -t a h Z Ai (6.10)
i,a i

has a local symmetry, as the B k) operators commute with each term in (6.10). We refer to the

emergent local constraints on the Hilbert space

B |k) = X) (6.11)

as the generalized "flatness" condition, analogous to a flat connection in a continuum gauge

theory, as these constraints are obtained in the limit that there is zero "flux" of the nexus field.

Our construction of a generalized lattice gauge theory implies that the quantum dual of the

Ising matter in the presence of a transverse field:

Hspin = -t E a) [Tz] - h ri-. (6.12)
i,a

is precisely given by the nexus Hamiltonian (6.10), combined with the generalized flatness con-

dition (6.11).
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Without appealing to the generalized lattice gauge theory, the duality can be obtained

directly from the Hamiltonian Hpin. A dual representation is constructed by placing the nexus

spins at the centers of the interactions & . The nexus spins are now interpreted as domain

wall variables for the ordered phase (t/h > 1) of the spin model Hspin. The nexus spins must

satisfy local constraints due to the geometry of the multi-spin interactions & ) [r] in order to

correspond to the physical space of domain walls between ground-states of Ho. These local

constraints are precisely given by the generalized flatness condition (6.11). As an example, the

generalized monopole operators B k) for the plaquette Ising model are obtained by noting that

the product of four plaquette interactions that wrap a cube is equal to the identity. Our F-S

duality implies a map between local operators in the Hilbert spaces of the Ising matter and

nexus fields, as summarized in Table 6.2. As an example, a domain wall in the ground-state of

the plaquette Ising model is shown in Figure 6-2.

The duality constructed above is physically intuitive, but it is also useful to have a more

direct correspondence. Here we explain unitary transformations from the Hilbert spaces for

spin models to constrained Hilbert spaces for nexus fields. The unitary transformation does not

always preserve locality but does preserve the locality of operators that appear in Hamiltonians

under interest. The simplest example would be the one-dimensional transverse field Ising model.

6.2 Fracton Topological Order

We now invoke the F-S duality to demonstrate that the commuting Hamiltonian

Hfracton =- B)- Ai (6.13)
i,ki

exhibits fracton topological order. We argue that (i) the spectrum of Hfracton has sub-extensive

topological degeneracy and that (ii) the nexus charge is fundamentally immobile. We provide

rigorous proofs of these statements in the Appendix using techniques in commutative algebra

and elementary algebraic geometry, which provide effective mathematical tools to study the

subsystem symmetries of classical spin models, as well as the ground-state degeneracy and

excitation spectrum of fracton topological phases. An algebraic representation of a classical

Ising system defines an algebraic variety over the field of characteristic 2 (F2 ), defined by Z2

addition and multiplication [47]. Two conditions on this variety, as derived in the Appendix from

the Buchsbaum-Eisenbud criterion [194, 195] for the exactness of a complex of free modules,

guarantee that the quantum dual exhibits fracton topological order.

We begin by using the F-S duality to demonstrate that the sub-extensive degeneracy of the

classical, h = 0 ground-state of Hpin implies that the Hamiltonian Hfracton has sub-extensive

topological ground-state degeneracy on the torus. Recall that a product of 'rj operators along an

appropriate subsystem E generates a symmetry of the Hamiltonian Hspj. When t/h > 1, the

ground-state exhibits classical, sub-extensive degeneracy since there are O(L) independent sub-
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systems along which a spin-flip commutes with all of the interaction terms d'). The plaquette

Ising model, for example, commutes with the product of -r along a plane, and the ground-state

has sub-extensive, classical degeneracy since there are O(L) independent planes along which a

spin-flip may be performed.

From the operator dictionary for the F-S duality, the dual representation of this spin-flip

operator is given by a product of nexus charges Ai along the same subsystem E. Furthermore,
each interaction term O(a) is dual to a single-spin operator o,'. Since the F-S duality preserves

the commutation relations between operators, we conclude that due to the subsystem symmetry

of Hspin, the operators in the dual theory satisfy:

[<a, JIAi =0 (6.14)

for all i, a. This commutation relation can only be satisfied if the product of nexus charges

along E yields the identity, so that ] Ai = 1. This relation implies that not all of the nexus

charge operators are independent on the torus. Each of the O(L) independent subsystems

associated with the subsystem symmetry of Hspin reduces the number of independent nexus

charge operators by one. We denote the total number of such independent subsystems by kA.

In the ground-state of the fracton Hamiltonian, the 2N-dimensional Hilbert space of N

nexus spins is constrained by the M nexus charge and monopole operators that appear in

the Hamiltonian. However, only M - k of the operators are independent on the torus, where

k = kA + kB is the number of "dependency relations" on both the nexus charge and monopole

operators. The topological ground-state degeneracy on the torus is given by D = 2

When the number of interactions appearing in Hfracton is identical to the total number of nexus

spins (N = M), as is the case for all of the fracton models considered in this work, the topological

degeneracy is precisely D = 2 k. In this case, the sub-extensive degeneracy of the h = 0 ground-

state of the spin model Hspin provides a lower bound on the topological degeneracy of Hfracton.

For example, the checkerboard spin model has topological ground-state degeneracy log2 D =

6L - 6 on the length-L three-torus, as we compute in the Appendix, while the tetrahedral Ising

model only has classical degeneracy log 2 D, ~ 0(3L) since the model has subystem symmetries

along three orthogonal planes.

In addition to the sub-extensive, topological degeneracy of Hfracton, we also wish to show

that that there is no degeneracy in the spectrum of Hamiltonian due to the presence of local ob-

servables. In the absence of local observables, the local reduced density matrix will be identical

for any degenerate states in the spectrum of the Hamiltonian, and the topological degeneracy, as

computed by constraint-counting, will be stable to local perturbations [196]. As we demonstrate

in the Appendix, the ground-states of Hfracton are guaranteed to be locally indistinguishable,
provided that the classical spin system H has no lower-dimensional symmetries along subsys-

tems of dimension d, < 2 (e.g. line-like symmetries). We prove this by using an algebraic

representation of Hfracton and also argue this as a consequence of the F-S duality.
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Figure 6-3: The nexus charge is a fracton only if there is no operator W that can create an
isolated pair of excitations when acting on the ground-state of Hfracton, as in (a). Equivalently, a
dual representation of the operator, given as a product of the interaction terms in the quantum
dual as shown in (b), cannot create an isolated pair of spin-flips when acting on the paramagnetic
state |I'para) = |I - - -+). An example is given in (c) and (d); a straight Wilson line acting
on the ground-state of HX-Cube in (c) admits a dual representation as a product of four-spin
plaquette interactions along a line, as shown in (d). No product of interaction terms in the
plaquette Ising model can produce an isolated pair of spin-flips. As a result, the nexus charge
in HX-Cube must be a fracton.

Having demonstrated that Hfracton exhibits sub-extensive topological degeneracy and that
the degenerate ground-states are locally indistinguishable, we now demonstrate that the nexus
charge is indeed a fracton excitation, provided that the spin model (6.12) satisfies a simple
condition. Consider acting on the ground-state of Hfracton with the operator

W%,a2 Ua (6.15)
(i,a)E E

where E is some subset of the lattice. The operator W will create nexus charge excitations

by anti-commuting with a collection of Ai operators. Invoking the F-S duality, we observe

that the pattern of excitations created by W is precisely given by the location of spin-flips
created by the dual operator W - H(i0a)e 0 a) [-i] when acting on the paramagnetic state

I "para) = 1- ... -4). The spectrum of Hfracton contains fractons only if there is no operator of
the form W that can create a single pair of spin-flip excitations. If such an operator did exist,
then it would be possible to move a single nexus charge without any energy cost and the charge
would be mobile.

Our condition for the existence of fracton excitations is simple to demonstrate for the pla-
quette Ising and tetrahedral Ising Hamiltonians. Here, it is evident that any product of the
four-spin interactions shown in Table 6.1 creates at least four spin-flip excitations when act-
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ing on the paramagnetic state PF). Therefore, the nexus charge for each of the corresponding

Hfracton Hamiltonians is a fracton. In fact, if any Ising Hamiltonian HO has a subsystem sym-
metry along three orthogonal planes, and two or more independent interactions per lattice site,
then the quantum dual will always exhibit fracton topological order, as we demonstrate in the

Appendix. All Type-I fracton topological phases that have been discovered thus far fit into this

framework.

We now summarize the precise conditions on the classical spin system HO, as derived in the

Appendix using the algebraic representation of the classical spin system, that guarantee that

Hfracton exhibits fracton topological order:

1. Hspin contains more than one independent interaction term per lattice site

2. No product of the interaction terms (O a)) can generate an isolated pair of spin-flips

6.3 Phase Diagram

We discuss the phase diagram of the spin-nexus Hamiltonian (6.(). In the limit t < h, the

nexus field decouples from the Ising matter; jr is set to 1, and the effective Hamiltonian for the

nexus field is

H 4E = tZ B(') - J o7 . (6.16)
i,k i

The generalized Gauss' law becomes Ai = 1. Here, i is some power of t as B k) is obtained from

perturbation theory. When J < i, the nexus field forms a fracton phase that is described by

Hamiltonian Hfracton. The topologically-ordered fracton phase and the Ising paramagnet survive

up to a finite t/h and J/h, as both phases are gapped and stable to perturbations [196].

Confinement: From the topologically-ordered fracton phase, we may proceed in two direc-

tions. First, we consider increasing J/h while keeping t/h < 1, a constant. Above a critical

value (J/h) ;> (J/h),, the ground-state will be a condensate of nexus flux excitations and the

fracton topological order will be destroyed. The nature of the transition between the fracton

phase and the trivial (confined) phase is currently unknown.

'Higgs' Phase: We now consider the region of the phase diagram where t > h, keeping

J < h at a fixed constant. Here, the matter fields enter an ordered state with (O O a)[1rz)

This may be seen as the analog of a 'Higgs' phase, as the Ising order gives the nexus field a

mass m - 0(t) that destroys the fracton topological phase. The ground-state in this region

of the phase diagram is non-degenerate, even though the ordered phase of the pure spin model

(6,12) has sub-extensive degeneracy. We may demonstrate this by observing that in the gauge-

fixed Hamiltonian (6,S), increasing t/h destroys the fracton topological order by condensing the

nexus charge, and produces a non-degenerate ground-state. We also observe from Heff that the

confined and Higgs regions of the spin-nexus phase diagram are smoothly connected, as in the
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A ' Self-dual Line.'

J/h jj Ising Ordered
(Simplex 'Higgs' Phase)

'Higgs'/Confined Phase
(Trivial Paramagnet)

(t/h) ' .

Fracton PhA~e &
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t/h
Confined

(t/h)* 'J/) -
(J/K).

(a) (b)

Figure 6-4: Schematic phase diagram of (a) the spin-nexus Hamiltonian (6,6). The 'Higgs' phase
for the nexus field is smoothly connected to the phase reached by condensing the nexus charge.
The checkerboard model coupled to Ising matter fields admits an additional self-duality under
the exchange of the nexus charge and flux; as a result, the phase diagram is as shown in (b).

Ising lattice gauge theory. We summarize our schematic phase diagram in Fig. B-Ia.

In passing, we observe that the checkerboard fracton Hamiltonian in Table 6. 1 in the presence

of two transverse fields H = -K Ec B, - h Ec A, - Z (J 4'a + taoa) has a symmetry under

0'- '.. This implies that the phase diagram should be symmetric under K ++ h and J ++ t.

The confinement and 'Higgs' transition must be dual to each other, and the line of phase

transitions must meet at a self-dual point of the phase diagram. It is unknown whether any of

the indicated phase transitions in Fig. B-1. are continuous.

6.4 Outlook

Translationally-invariant, commuting Hamiltonians built from interacting qubits [47] and fermions

[6] admit a convenient algebraic representation as a collection of polynomials over a finite field.

The translation group of the lattice is ZD, whose group algebra happens to be the polynomial

algebra. The polynomials conveniently keep track of the support of various operators. Re-

markably, this algebraic characterization of the Hamiltonian terms enable us to decide whether

the given Hamiltonians is commuting, degenerate, topologically ordered, and the nature of the

excitations [6, 47]. Also, it gives a unique method to calculate the ground-state degeneracy

of our exotic models. In the context of our nexus theory, the polynomial representation has

a natural physical interpretation, as it precisely specifies the generalized Gauss' law G, that

defines the spin-nexus Hamiltonian (6.6). In this way, the polynomial representation encodes

the local symmetry that defines a fracton topological phase. We elaborate on these method in

the appendix, which we aim to be pedagogical.

With the identification of a generalized Gauss's law that characterizes a fracton topological

phase, our work provides an important step towards searching for material realizations of fracton

topological order. Such a local conservation law can, in principle, appear in physical systems

such as frustrated magnets, where our generalized gauge theory can emerge as an effective
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description at low energies, leading to fracton topological order.

6.5 Algebraic Construction of a Fracton Hamiltonian

Commutative algebra and elementary algebraic geometry provide an indispensable machinery

for demonstrating the results summarized in the main text. Starting from a purely algebraic rep-

resentation of commuting Pauli Hamiltonians, as originally introduced in Ref. [47], we demon-

strate that certain classical spin systems with subsystem symmetry may be used to construct a

commuting Hamiltonian with fracton topological order. Only the data contained in the classical

spin model is required as input to generate the topologically-ordered fracton Hamiltonian. This

map between a classical spin system and a topologically-ordered Hamiltonian may be used to

construct a wide variety of topological orders, ranging from conventional ZN gauge theory to

the type-I and type-II fracton topological orders presented in the main text. Our presentation of

this correspondence in this section, while mathematically inclined, is self-contained and includes

a rigorous and precise statement of the results summarized in the main text.

Given a translationally-invariant Pauli Hamiltonian (also called stabilizer or additive code

Hamiltonian) it is possible to write a purely algebraic representation of the Hamiltonian, known

as the stabilizer map [47]. For a Hamiltonian defined on a d-dimensional lattice with an e-site

basis, and containing m distinct operators per lattice site, the stabilizer map will be a 21 x m

matrix of Laurent polynomials over the finite field F2. The prescription to obtain the stabilizer

matrix is as follows. Given a Pauli operator (a tensor product of Pauli matrices), write it as

a product of two Pauli operators, where one entirely consists of a' and the other of a, using

aY = jjXUZ. Select a reference site so. Relative to so, an arbitrary site where a Pauli matrix

acts on will be given by an integer displacement vector, e.g., (a, b, c) in three dimensions, and

one writes it as xaybz. Thus, every nontrivial factor ax or a gives a monomial xaybzc. Collect

all monomials corresponding to az that act on a-th spins in the unit cell, and combine them

with +. This give a Laurent polynomial that goes into a-th component in a column vector. The

sum of monomials corresponding to -ax goes into (a + e)-th component. This way, one obtains

a column vector of Laurent polynomials associated with the Pauli operator. For each type of

term in the Hamiltonian, repeat the process to obtain a collection of column vectors, that is a

matrix. Note that the overall sign of the Pauli operator is dismissed. We denote by p(O) the

Laurent polynomial vector corresponding to the Pauli operator 0.

From the stabilizer map S, we may then define the excitation map E, defined so that E -p(o)
yields the pattern of excitations created by 0 when acting on the ground-state of the stabilizer

Hamiltonian. As shown in [47], the excitation map is given by E = StAe with St (s)T and

where

At = fX (6.17)
1f x 0
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Here, S indicates that each monomial in the stabilizer map has been inverted, e.g. for the

polynomial f(x,y, z) we have f(x, y, z) = f(T, ,7) with T = x-1, y = y-, f = z- 1 . The

following are necessary conditions for the stabilizer map to correspond to a topologically-ordered

stabilizer Hamiltonian. First, all terms in the Hamiltonian commute if and only if StieS =

E - S = 0 [47]. Second, we require that any degenerate ground-states on the torus are locally

indistinguishable, so that the degeneracy is topological in nature. This is guaranteed if, on an

infinite system, ker E = im S. This means that any local operator commuting with the stabilizer

Hamiltonian is always a product of operators already appearing in the Hamiltonian.

Consider the classical spin Hamiltonian HO, defined on a Bravais lattice with a single spin

per lattice site. The stabilizer map for this classical spin Hamiltonian takes the form

(fl f2 ..-. fn)sc f1 h n)(6.18)

As the Hamiltonian is classical and contains only TZ-type terms, the second row in the stabilizer

map is identically zero.

As an example, consider the plaquette Ising model. There are three plaquette terms de-

pending on their orientation. The plaquette in the xy-plane couples spins at (0, 0, 0), (1, 0, 0),
(0, 1, 0), and (1, 1, 0) by rZ operators. The position coordiantes are translated into the mono-

mials as 1, x, y, xy, respectively, and thus the the plaquette term is mapped to 1 + x + y + xy.

Likewise, the plaquette term in yz-plane is represented by 1 + y + z + yz, and that in zx-plane

is by 1 + x + z + xz. The stabilizer map is

Spiaq (1 x+Y xY 1+y+ yz 1+x+ (6.19)0 0 0

Below, we will often omit the zero rows, which will not cause any confusion when it is clear from

the context whether the operator is of oz or ou type.

We now summarize our main results using algebraic language. Given the stabilizer map of

the form S, for a classical spin Hamiltonian in d spatial dimensions, consider the ideal I(Sc) =

(fi,... , f,), defined as the set of all linear combinations of the polynomials fi, ... , f' in the

stabilizer map:

I(Sc) a cifi ci E F2[4, .. X.,x}. (6.20)

If the ideal I(Sc) constructed from the stabilizer map satisfies the following conditions, then the

quantum dual obtained by our prescription in the main text exhibits fracton topological order.

1. Co-dimension Condition: The stabilizer ideal must have a sufficiently large co-dimension
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(height)

codim I(Sc) > 2. (6.21)

Physically, this means that the classical spin Hamiltonian must have at least two indepen-

dent interactions per lattice site. This condition alone ensures that the quantum dual of

the classical model with transversal field is topologically ordered.

2. Fracton Condition: The stabilizer ideal I(S) =(fi, ... , f) does not contain binomial

terms,

1 + X" - " -- I(Sc) (6.22)

for all ni, . . . , nr > 0. Physically, this guarantees that, in the topologically-ordered Hamil-

tonian built from the algebraic data in the classical spin model, the elementary topological

excitations are immobile.

3. Planar symmetries imply the fracton condition: Planar symmetries on xy, yz, and

zx planes imply fi(1, 1, z) = 0, fA(x, 1, 1) = 0, and fi(1, y, 1) = 0 for all i, respectively.

The latter conditions combined imply the fracton condition.

If the first two conditions are satisfied, then we may build a commuting Hamiltonian with

fracton topological order from the data in the classical stabilizer map S. The topological

ground-state degeneracy of this Hamiltonian will take the general form log2 D ~ c1Ld- 2 on the

length-L torus.

6.5.1 Symmetries

An operator 0, given by a product of Tx terms, generates a subsystem symmetry if 0 commutes

with the classical Hamiltonian HO. In the polynomial representation, the non-local operator 0

is expressed by a formal infinite sum h(O) = EgxSlyS2zS3 where s ranges over all spins where 0

acts on by rx. The commutativity of 0 with the Hamiltonian is equivalent to the requirement

that 0 does not create any excitations when acting on the ground-state. This is the case if

and only if the image of h(0) under the excitation map E = StAl is zero: E h(0) = 0, or

equivalently, h(T, q, z)S = 0.

As an example, consider an operator Oxy that flips all spins on an xy-plane. The polynomial

representation reads

hy= > xny m = h. (6.23)
n,meZ

This formal infinite series has a property that xhxy = hxy= yhxy, which is just another

expression of the fact that Oxy is translation invariant within the xy-plane. Consequently, for
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any Laurent polynomial f(x, y, z) we have f(x, y, z)hxy = f(1, 1, z)hxy. We observe that this is

a symmetry of the plaquette Ising model, whose stabilizer map is found in (6.19), since

hxy- (1 +x-+y+xy) = hxy- (1+1+1+1) =0,

hxy - (1+y+z+yz) = hy - (1+1+z+z) = 0,

hxy - (1 + x + z + xz) = hy- (1+ 1+ + z z) = 0.

Due to the translation invariance of the model, the operator Oxy at any xy-plane is a symmetry.

In the polynomial representation, the operator Oxy at z = c-plane is expressed as zchxv and the

above equation is trivially satisfied. We leave it to readers to verify that similar operators on

yz- and zx-planes are symmetries of the plaquette Ising model.

6.5.2 F-S duality

Recall that the local symmetry operator Gi =ir xAi was defined by Ai = ]HaP(i) oaf where P(i)

is the set of all classical interaction terms O a) that anti-commutes with rx. In the polynomial

formulation, P(i) is exactly the image of p(rx) (the polynomials representing ri, which is a unit

vector) under the excitation map StA,. This means that the polynomial representation of the

operator Ai is the conjugate transpose of the first row of S.

The "flatness" constraint operator Bk is obtained by considering the nontrivial local prod-

uct of O a) that becomes the identity. Since the identity is a zero vector in the polynomial

representation, Each Bk operator corresponds to a nontrivial relation

bap(O")) - 0 (6.24)
a=1

where p(Q a)) - (Sc)a is the polynomial representing the Tz-type classical interaction term. The

collection of vectors b in the relation is the kernel of the matrix S. There are finitely many

generators G(k) of ker Sc, where G(k) E F2 [X*, y , Z ]e. (The fact that there are only finitely

many generators is a property of the ring F2 [x , y+, z ] being Noetherian.) These generators

are nothing but the polynomial representation of Bk.

For the plaquette Ising model, ker Splaq has two generators

G (1+ z, 1 + x, 0 )T (6.25)

G(2)= (0, 1 + X, 1 + y)T. (6.26)

Each generator encodes the product of the appropriate plaquette interactions at each cube that

yield the identity, as shown in Fig. 6-5.

Summarizing, given a classical Hamiltonian represented by a row matrix S, of Laurent

polynomials, we have obtained a quantum model whose Hamiltonian terms corresponds to the
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Figure 6-5: Dual representation of the plaquette Ising model in the presence of a transverse field.
We place nexus spins at the center of each four-spin plaquette interaction, so that Hie-- p TZ.
The product of four adjacent four-spin interactions that wrap around the cube is equal to the
identity (e.g. the product of plaquette interactions p, q, r and u). In the dual representation,
this leads to the indicated constraints at each cube. Only two of the three constraints are
independent.

columns of the following stabilizer map.

X 011,

Sf =S e G =( ~ )(6.27)

T~ GX

where G = (G(m ..- G(m) is a matrix enumerating generators of ker Sc in its columns. The
excitation map is then

Ef S j& =( .S (6.28)

04G 0

Physically, this Hamiltonian is defined on a Bravais lattice with an e-site basis. At each lattice
site, the Hamiltonian has a single "o-type"h (nexus charge) interaction and m oz-typei (nexus

flux) interactions.

A wide range of conventional and fracton topological orders are described by stabilizer maps
of the form Sg = St e G. Physically, this means that these topologically ordered states are
built by "gauging" the symmetry of a classical spin system, which can be easily read off from
the stabilizer map Sg for the topologically ordered state.

First, the stabilizer map built from the plaquette Ising model (see (6.19)) is given as

1+z+p~ y 0 0

1+p +~p 0 0
5 X+-Cubxz 0 0

0 1+z 0 (6.29)

0 1+x 1+x
0 0 1+-y

This stabilizer map corresponds to the topologically ordered "X-Cube" fracton Hamiltonian
presented in the main text. Second, all commuting Hamiltonians for ZN topological order
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in two- and three-dimensions are described by stabilizer maps of

Hamiltonian for three-dimensional Z2 topological order is given by

Sz2 =

/ 1

1

1

0

0

0

0

0

0
1 +y
1+x

0

0

0

0

1+z

0
1+x

0
0
0
0

1+z
1 +y /

Furthermore, the Haah's code, a topologically ordered state with

excitations is described by the stabilizer map

this form. The stabilizer

(6.30)

only immobile topological

1 + 7Y + 2 + 2

0
0

0
0

1+x+y +z

1+xy+yz+xz

We may immediately read off the classical spin systems whose symmetries have been "gauged"

to obtain these topologically ordered states, since the stabilizer map Sf contains the classical

excitation map E, = StA,. For example, from the stabilizer map for 3D Z2 topological order,
we identify the stabilizer map

Sising = (1 + X, 1 + y, 1 + z) (6.32)

which precisely describes the classical 3D Ising model on the simple cubic lattice. A more exotic

example is given by the classical spin system

Sfractal = (1 + xy + yz + xz, 1 + x + y + z)

f

(6.33)

9

which is used to build Haah's code. A schematic representation of this classical spin Hamiltonian

is shown in Fig. -6 as a sum of two types of four-spin interactions at each cube on the three-

dimensional cubic lattice. The precise subsystem symmetry in this classical spin model is highly

sensitive to the boundary conditions imposed on the system. For simplicity, we consider the

length-L three-torus with L = 2' for positive integers n. Using the fact that f 2n, g2f C bL

(xL + 1, L + 1,ZL + 1), we find a symmetry generator

h = f 2 fll 
2 -l (6.34)

This symmetry generator, which corresponds to a spin-flip transformation on a fractal configura-

tion on the three-dimensional cubic lattice that resembles a Sierpinski triangle, is quite different
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ii Tk- Ti

Figure 6-6: The classical spin model defined on the cubic lattice with fractal subsystem sym-
metry that corresponds to Haah's code. The spin model may be conveniently written as a sum
of two types of four-spin interactions at each cube, as indicated above.

from the planar symmetry for the plaquette Ising model. It is this fractal subsystem symmetry

that is "gauged" to obtain the corresponding topologically-ordered state, known as Haah's code
[461.

6.5.3 The Codimension Condition Implies Topological Order

The codimension of an ideal of polynomials fi is the codimension of the algebraic variety (zero-

locus) defined by the system of polynomial equations fi = 0. The variety may be neither
smooth nor connected. One has to look at the component of the largest geometric dimension

and take the difference of that dimension from the ambient dimension, in order to obtain the

correct codimension. For instance, the codimension of ((x - 1)(y - 1), (x - 1)(z - 1)) is 1 since

the zero-locus contains a plane x = 1 in three-dimensional space, whereas the codimension

of (z - 1, y - 1) is 2 since the zero-locus is the line given by z = 1 = y. Although this

codimension criterion can never be met in one spatial dimension, the codimension criterion

is fairly mild in higher dimensions. For example, it is satisfied by the standard Ising model

with nearest neighbor interaction on two or higher dimensional lattices, and the ideal I(Sc)
has codimension that is equal to the spatial dimension, the maximum possible value. In fact,
the exotic topological phases that we investigate exploits this mild requirement, and all our

examples have the property that I(Sc) has codimension exactly two, saturating the inequality

in the criterion codim I(Sc) > 2.

We now return to the stabilizer map Sf = E, D G and show that Sf indeed corresponds to
a topologically ordered and commuting Hamiltonian. First, S, - G = 0 implies that Gt -S= 0,
and hence Ef - Sj = 0; the Hamiltonian corresponding to the stabilizer map Sf consists of all

commuting terms. In addition, we have ker S, = Im G by definition. As a result, the local

indistinguishability condition for any degenerate ground-states of the stabilizer Hamiltonian on

the torus, given by ker Ef = Im Sf, is satisfied if and only if ker Gt = Im St. Said differently,
the complex

0 -+ R S t R e R" (6.35)
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where R' is a free module of rank n over the Laurent polynomial ring R = F2 [Xt, yt, z ],
must be exact. The equivalent condition for this to be true is our condition codim (Sc) 2.

The proof of this is purely algebraic, and a general reader might want to skip the rest of this

subsection.

A criterion for the exactness of a complex of free modules is provided by the following

1195, 194]:

Theorem [Buchsbaum-Eisenbud] A chain complex of free modules over R = F2 [x , y, z ]

0 -+ Fn " F._ - F2 --- F Fo (6.36)

is exact if and only if

" rank(F) = rank(i) + rank(Oi+1) for i 1, ... , n and

" codim I(#i) > i for i = 1, ... , n.

Here, I(#i) is the k-th determinantal ideal Ik(li) with the largest k such that Ik(#i) -# 0.

The k-th determinantal ideal is one that generated by all determinants of k x k submatrices.

It is important that the complex is terminated with 0 at the left end. (The original theorem

is more general than we state here, and is given in terms of depth of the determinantal ideal.

In general, the codimension only upper bounds the depth, and the two notions are not equal.

However, our Laurent polynomial ring is sufficiently nice, i.e., Cohen-Macaulay, that the two

quantities are equal for any ideal; our ring is obtained from a polynomial ring over a field

followed by localization by a single element xyz.)
We apply the Buchsbaum-Eisenbud criterion to our complex (6.37). Since ker S, = Im G,

we know by the theorem that rank S, + rank G = e and codim I(G) > 2. Since the conjugation

is an automorphism of R, the rank is invariant under conjugate transpose. This implies that

rank St + rank Gt = f and codim I(Gt) 2. Since St has one column, we have rank Si = 1.

These implies the first condition. All we need is the second condition, codim I(Gt) > 1 and

codim I(St) 2. The former is already shown, and the latter is exactly our requirement.

An example of a classical spin system that violates our codimension condition is given by

the stabilizer map S, = (f,g), withf= 1+x and g = l1+x+y+z+xy+yz+xz+xyz. This

classical spin system has a linear subsystem symmetry as the symmetry generator

h2= Zx (6.37)
nEZ

satisfies hxf = 0 = hxg. We see that codimI(Sc) = 1, since the zero-locus of the polynomials

f and g contains a plane given by x = 1. Therefore, the stabilizer map Sf = SC e G for

this classical spin model corresponds to a commuting Hamiltonian with degeneracy due to local

observables (order parameter) and does not exhibit topological order.
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While we have provided an algebraic condition on the classical spin model that guarantees

that the dual Hamiltonian with stabilizer map Sf, has no local observables, we may also argue

for the local indistinguishability of the ground-states using the F-S duality. Ground-states of the

Hamiltonian Hfracton, using the notation presented in the main text, satisfy B(') I) - A IT) =

IT), and will be locally indistinguishable if any local operator that commutes with Hfracton can

be written as a product of nexus charges Ai or generalized monopole operators B(k). Recall

that the generalized monopole operators are defined as the set of all local, Uz-type operators

that commute with the nexus charges. Therefore, by construction, the only az-type operators

that commute with Hfracton are products of B k).

We now invoke the F-S duality to argue that any local, a'-type operator that commutes

with Hfracton can be written as a product of nexus charges, provided that the classical spin

model Ho has no lower-dimensional (d, < 2) subsystem symmetries. Assume that such a a'-

type operator Ox does exist, that can distinguish the ground-states of Hfracton. Since this

operator commutes with all of the generalized monopole operators, Ox corresponds to a valid

domain wall configuration that can be created by acting on the ground-state of the spin model

Ho. Therefore, we may invoke the F-S duality to construct a dual representation of Ox in

terms of the Ising matter fields. Since Ox is a a'-type operator that cannot be written as a

local product of nexus charges, however, its dual representation ox will be given by a non-local

product of rf operators. Physically, this duality implies that performing spin-flips along a this

non-local by acting with Ox on the classical ground-state of Ho will flip a local set of interaction

terms O(a) at a point at the boundary of the region, as specified by the support of the operator

Ox. By taking products of the Ox operators, it is possible to reduce the dimension d, along

which the dual operator 5x has support to d, < 2. However, this immediately implies that

on the torus, the classical spin system Ho has a subsystem symmetry along a region that is

of smaller dimension than a plane. Therefore, by requiring that Ho has no lower-dimensional

d, < 2 subsystem symmetries, we guarantee the local indistinguishability of the ground-states

of Hfracton.

6.5.4 The Fracton Condition

We now consider the excitation map Ef for the commuting, topologically-ordered Hamiltonian

built from the data contained in the classical spin model. We show that the topological excita-

tions of this model are fractons if and only if the stabilizer ideal I(Sc) = (fi, . . . , f,) contains no

binomial terms (the fracton condition above). From the excitation map Ef (6.28), we observe

that one of the excitations (the nexus charge) lives on the sites of the lattice. An operator 0

that is a product of aZ terms, when acting on the ground-state, generates a pattern of nexus

charge excitations. The possible nexus charge configurations by finitely supported operators are

in one-to-one correspondence with the image of the excitation map; this is the defining property

of the excitation map. The submatrix of the excitation map that is responsible for the nexus

charge consists of one row, which is the same as Sc, and therefore the image is equal to the
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I(SC).
A topological excitation is a fracton if it is impossible to create an isolated pair of such exci-

tations from the ground-state. Hence, the stabilizer Hamiltonian Sf exhibits fracton topological

order if and only if I(Sc) contains no binomial terms

1 + xni ... X d 0 I(SC) (6.38)

for all ni, ... , nd E Z. This is a condition on the classical spin Hamiltonian that no product of

any interactions h@) [r] can simply be a product of a pair rZ terms. For example, the classical

Ising model, with nearest-neighbor spin-spin interactions, trivially violates this condition in any

dimension. It is not always obvious to test whether an ideal contains a binomial. We explain

one test technique with examples shortly.

The fracton condition cannot be satisfied if the codimension of I(Sc) is equal to the spatial

dimension, the maximum value [417]. In the latter is true, then any point-like excitation appears

at the tip of some string like operator, which can be freely bent in the system, and it behaves

as an ordinary particle.

6.5.5 Classical Spin Models with Planar subsystem Symmetry

In this section, we show that applying our construction to classical spin models with spin-flip

symmetries along planes always yields a fracton topological phase. Consider a stabilizer map

Sc = (fi, . . . , f,) for a classical spin Hamiltonian, where fi, . . . , f,, are Laurent polynomials. As

we have shown in Appendix 6.5. 1, the symmetry generators

nmEZ

hYZ = ynz m, (6.39)
n,mEZ

h = Z X

satisfy

hy fi = 0

hyzfi = 0

hzzfi = 0

for all i = 1, ... , n. We also have seen that hxyg(x, y, z) = g(1, 1, z), etc., for any Laurent

polynomial g. The symmetry condition then implies that the polynomials fi(1, 1, t), fi(1, t, 1),

fi(t, 1, 1) are identically zero for all i. That is, (1, 1, t), etc., are roots of the polynomials

fi. Geometrically, this means that the variety defined by fi(x, y, z) = 0 contains three lines
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parametrized by t -+ (1, 1, t), (1, t, 1), (t, 1, 1).

We can use this observation to show the fracton condition. Suppose on the contrary that

the ideal I(Sc) contains a binomial term.

1 + XaybzC E I(SC). (6.40)

Since any member of the ideal is a linear combination of generators, we have

1 + Xaybzc = gi(x, y, z)fi(x, y, z). (6.41)

Let us substitute x, y, z with the solution (1, 1, t):

1 + tc gi (1, 1, t)fi(1, 1, t) 0. (6.42)

Since this has to be true as a polynomial in t, we deduce that c 0. Likewise, the solution (1, t, 1)

implies b = 0, and (t, 1, 1) implies a = 0. Therefore, our binomial was actually 1 + x0 y0 z0 = 0,
and the ideal I(Sc) does not contain any binomial.

It has to be noted that the fracton condition (the absence of binomial) alone does not

imply that the F-S dual of the classical spin model is topologically ordered; the codimension

condition should be checked separately. If the initial classical model had line-like symmetries,
then we would have solutions of form e.g. (ti, t2 , 1). This has a codimension 1, and the hence

codim I(Sc) < 1, and the F-S dual would not be topologically ordered.

We conclude that for any classical spin system with spin-flip symmetries along all three

orthogonal planes and no "lower dimensional" symmetries, our construction for gauging this

symmetry will give rise to a fracton topological phase.

Let us demonstrate that the nexus charge in the "X-Cube" Hamiltonian is a fracton excitation

using the above technique. Recall that I(Sc) = (1 + x + y + xy, 1 + y + z + yz, 1 + x + z + xz)

for the plaquette Ising model. The symmetry generators hxy, hYZ, hxz of (G-39) is indeed the

symmetries of the X-Cube model, and therefore I(Sc) does not contain any binomial. By solving

the equation 1+x+y+xy = 0, 1+y+z+yz = 0, and 1+x+z+xz = 0, we see that (1, 1, t), (1, t, 1),
and (t, 1, 1) are the only solutions, which are lines of geometric dimension 1, and therefore the

codimension of I(Sc) is equal to 2. Therefore, X-Cube model has fracton (immobile) topological

excitations. This derivation provides a formal proof of the simple physical statement that no

product of the four-spin interactions in the classical plaquette Ising model can act exclusively

on an isolated pair of spins.

We can adapt the above argument to construct another spin model with fracton topological

order. Consider the classical spin system

Sc=(1 X+zxz,1+x+y+xy) (6.43)
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Observe that fi = 1+ x+ z+ x=T (1+ z)(x + z) and f2 = 1+ x + y + xy = V(1+ y)(x + y).
Thus we identify the three planar symmetries of this classical spin model

hi = E Xny", (6.44)
n,meZ

h2 = E (X + z)'(X + y)", (6.45)
n,meZ

h3 = 7 Xn(x + z)'. (6.46)
n,mEZ

It is routine to check that hifj = 0. Since fi(x, y, z) and f2 (x, y, z) do not have any common

factor, the ideal I(Sc) = (fi, f2) has codimension 2, satisfying our codimension condition. The

set of relations between fi and f2 (the kernel of Sc), is generated by G = (1 + T + V y, 1 +

T+ + Tz)T. Through our F-S duality, we obtain a stabilizer map

x+zzx7 0
+ X + y + X y 0

SCBLT (6.47)

0 1 +T + _f + Z
S1+7 z z

which corresponds to a stabilizer Hamiltonian with fracton topological order. In fact, this

stabilizer map has an extra property that ff2 + f1f2 = 0, which allow us to consider a simpler

stabilizer map

SCBLT = (1 (6.48)

corresponding to a fracton phase with "half" of the topological degeneracy. This stabilizer map

is precisely the CBLT model [178, 1771, which has a single type of fracton excitation, and

degeneracy D given by log 2 D = 8L [177, 471 on the length-L three-torus. The CBLT model is

conveniently represented on the face-centered cubic (fcc) lattice as shown in Figure 6- 7a.

6.5.6 Classical Spin Models with an rn-Site Unit Cell

So far we have assumed that a classical spin model had a single spin per Bravais lattice site.

When the unit cell has m spins (m > 1), our duality construction and criteria for topological

order directly carry over. However, the fracton condition and its relation to planar symmetries

require some extra attention.

The stabilizer map S,, for the classical spin (Tz) system is an m x f matrix of Laurent

polynomials (omitting the lower half-block representing T'), where f is the number of interactions
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per unit cell

7o-yz IZz

h" [-r] -- f h

- == . (6.49) ~2[r

CBLT Model

(a) (b)

Figure 6-7: The (a) CBLT model represented on an fcc lattice. The model consists of a single,
six-spin interaction term per lattice site. This model may be constructed from the interacting
spin model shown in (b) on the fcc lattice, with two four-spin interactions per lattice site.

per unit cell.

f fe
f (2) f (2) ... f(2) (.9

f~m f~m fm)

Our generalized gauge theory prescription produces a (quantum) stabilizer Hamiltonian de-
scribed by Sf -- St eD G where St =()T and G is a matrix of the generators of ker Sc. The

matrix G is nonzero if and only if k = rank S, < f. This condition is satisfied when S, is a row
matrix and there are two or more interactions per spin, as is the case in all the examples in this
paper with a single site per unit cell. The Buchsbaum-Eisenbud criterion for exact sequence

can be applied, and, if G $ 0, we see that the only nontrivial condition is that codim I(Sc) 2

where I(Sc) = Ik(Sc) is the k-th determinantal ideal with the largest k such that Ik(Sc) is

nonzero. Summarizing, the topological order is realized in Sf if and only if

" k=rankSc <i, and

* codim Ik(Sc) > 2.

We now assume that the classical system has planar subsystem symmetry. The three in-

dependent generators of spin-flip transformations along orthogonal planes are denoted h.y, hy,

and ho. The classical system on a lattice with an m-site basis has planar subsystem symmetry

if and only if

hy - f ()(x, y, z) = 0 (6.50)
i=1
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for all j = xy, yz, zx and k = 1, . . . , f. As before, this implies that

Ef i(1, 1,t) = 0, f (t, ,1) = 0, Efi (t, 1, 1) = 0.
i kfki=1=

Suppose the nexus charge exists for the moment. The condition that the nexus charges,
the excitation of St terms in Sf, are all fractons is that Im S, does not contain any two-term

element of form

0

1+aybzC.

0

If there is such a two-term element, then

kf (x, y, z)gk (X, y, z)

0f

0k=

fk (x, Y z)gk (x, y, z)
k=1

Summing all the components, we get

1 + XaybZc S Y, z). (6.51)
k,i

Evaluating the polynomial at (1, 1, t), etc., we conclude that a = b = c 0. Therefore, we

conclude that there is no two-term element.

The existence of the nexus charge might seem mundane, but we do not know whether this

is true even assuming the various conditions we have discussed. It is however known that

in three spatial dimensions any topologically ordered stabilizer Hamiltonian has a point-like

excitation [47]. This implies that either the nexus charge sector or the nexus flux sector admits

isolated point-like excitations. If this point-like excitation happens to be a nexus charge, then

the symmetry of the classical side implies that this charge is immobile (fracton). We note that

when the unit cell consists of a single spin in the classical side (m = 1), the existence of the

nexus charge was immediate since coker S, is a torsion module. We conclude this section by
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summarizing our discussion: given an aribitrary classical spin model with planar symmetries,
with the number of interaction terms per Bravais lattice site is greater than the size of the unit

cell, any nexus charge, if exists, is a fracton.

6.6 Degeneracy of the Checkerboard and X-Cube Models

Here, we derive the ground-state degeneracy of the checkerboard and X-cube model, constructed

from the tetrahedral Ising and plaquette Ising models, respectively.

Let us briefly review the properties of the checkerboard model. Consider a three-dimensional

cubic lattice of spin-1/2 degrees of freedom. Each spin sits at the vertex of a cube, with the

cubes arranged in a checkerboard configuration, so that any pair of neighboring cubes overlap

on exactly two spins as shown in Table (i. . We define the Hamiltonian

Ho = -Z a c -Zf ,. (6.52)
c ncc C nEac

where each product is taken over the eight spins sitting at the vertex of cube c, while the

sum is taken over cubes in the checkerboard configuration. The topological excitations in this

model are similar to that of the Majorana cubic model [6]. The fundamental fracton excitation

may be isolated at the corners of a membrane operator, given by the product of spin operators

along a flat, two-dimensional surface. Composites of fracton excitations, however, are topological

excitations that are free to move along one- and two-dimensional subsystems without any energy

cost. Wilson line operators, given by the product of spin operators along straight lines, create

pairs of fracton excitations at each end; these composite excitations are "dimension-i" particles,
which are only free to move along the Wilson line. A pair of parallel Wilson lines in adjacent

layers, however, maybe used to create excitations that are free to move within the plane. These

topological excitations are anyons with well-defined mutual and self-statistics.

The stabilizer map for the checkerboard model is given by the expression

f 0

f 0
Scheck = - (6.53)

0 f

\0 f

where f = I + X+y+z E F2 [xy ,z .

For a topologically ordered stabilizer Hamiltonian with the stabilizer map S and excitation

map E = St X, the ground state degeneracy D on a length-L torus is given by

2log 2 D = dimF2kerE/ImS over F2 [X,y,z]/(XL + iy L+ 1 zL + 1). (6.54)

If the number of spins in the unit cell, t, is equal to the number of interaction types (the number
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of columns in S), then

log 2 D = dimF 2 coker St. (6.55)

This is applicable for all examples in this paper, except for the Z2 gauge theory in three-

dimensions. In our examples where St = S, e Gt is block-diagonal, the formula further decom-

poses as

log 2 D = dimF2 coker S, + dimF2 coker G. (6.56)

Since the checkerboard stabilizer map has an extra structure that S, = Gt, the degeneracy

calculation reduces to that of

F2 [x, y, z]/(x +1, yL+1, zL )
log2 Dcheck = 2 dimIF2 (1 X-YZ, xyz+XY + yz+ZX)

This was calculated in Ref. [6], and the answer is log 2 Dcheck = 6L - 6.

The X-Cube model has different blocks in Sx Here we calculate the degeneracy ofX-Cube'
HX-Cube for odd L only. One component reads

F2 [X, Y, Z]/ (X L+1 L +11, ZL I (657
((1+x)(1+y), (1+y)(1+z), (1+ x)(1+z))(

One may extend the coefficient field to the algebraic closure F, and since L is odd, xL +1 = 0 has

L distinct roots, one of which is x = 1. Localizing at the maximal ideal (x+t, y +I , z+1), we see

that the factor ring becomes just F of dimension 1. Using the cyclic symmetry x -* y -* z -+ x,
we see that the factor ring has dimension 3(L - 1) + 1 = 3L - 2. The other component is

(F[x, y, z]/(xL + 1, y L+1, zL + 1))2 (6.58)
Z+1 1+X 0

(0 1+X 1+y)

The second determinantal ideal of the matrix in the denominator is the same as I(Sc), so we only

have to consider localization at points (1, 1, t), (1, t, 1), and (t, 1, 1). Localization at (1, 1, t -$ 1)

amounts to evaluating the matrix at that point due to the boundary conditions, and the factor

module becomes Fl. At (1, 1, 1), the matrix becomes zero, and the factor module becomes F2 .

Hence, the factor ring has dimension 3(L - 1) + 2 = 3L - 1. The degeneracy DX-Cube is thus

given by

log 2 Dx-Cube = 6L - 3 for odd L. (6.59)
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Chapter 7

Coupled Layer Construction

In the previous chapter, we demonstrated that gapped fracton topological phases may be un-

derstood through a generalization of conventional lattice gauge theory for interacting quantum

systems that have an extensive set of global symmetries (e.g. planar symmetries) [7]. As a con-

sequence, fracton topological phases may be obtained as the quantum dual of these interacting

systems, and this relationship may be used to search for new fracton phases, and to find ex-

otic, interacting systems with fractal symmetries such as the dual of Haah's code [7, 197]. This

relationship provides a generalization of the well-known Wegner duality in (2+1)-dimensions

that relates symmetry-breaking phase transitions to the confinement transition of conventional

lattice gauge theories [189]. Recently, certain gapless phases that have charge excitations with

reduced mobility have also been found in "higher-rank" U(1) gauge theories [198].

In this chapter, we introduce a new construction of a fracton topological phase introduced

in Ref. [7] which yields an intriguing connection between two-dimensional topological order

and exotic three-dimensional topological phases that have excitations with reduced mobility.

The starting point for our construction is an isotropic configuration of inter-penetrating, two-

dimensional (2D) toric codes [19]. We demonstrate that condensing appropriate excitations

in the layered system - termed "composite excitations" - can lead to (i) three-dimensional Z2

topological order, (ii) a fracton topological order known as the "X-cube" phase [7], whose phe-

nomenology we thoroughly review, or (iii) a topologically trivial paramagnetic state. Condensing

composite excitations effectively binds the charges or fluxes of the two-dimensional toric codes,

resulting in an emergent topological excitation with reduced mobility. Our proposal also gives

rise to a "loop-gas" picture for the ground-state wavefunction of fracton topological phases, as

well as a simple understanding of the origin of the immobile excitations, which opens a possible

route for constructing other exotic, three-dimensional topological orders.

We present a natural generalization of this procedure that yields a new, ZN analog of the

X-cube phase, before turning our attention to the rich phase structure of this microscopic model.

Our results are summarized in the schematic phase diagrams in Appendix B. Of importance is

a lattice duality between certain phase transition(s) into the fracton topological phase and a

confinement transition in a conventional (3+1)-d ZN gauge theory driven by the condensation
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2D Toric Code Layer

Intersecting 2D Toric Codes

Figure 7-1: Intersecting Layers of 2D Toric Codes: A stack of two-dimensional, square-
lattice toric codes in the xy (green), yz (red) and xz (blue) directions, which intersect at sites.
The resulting three-dimensional cubic lattice has two spins per link (-, /Z) as shown. A single
layer of the square-lattice toric code is shown as well, with the "star" and "plaquette" operators
defined as shown.

of ZN flux loops. We discuss this duality and the consequences for the phase diagram of the
coupled layer system, in Appendix B, where we also present a solvable projector model in which
the transition from the fracton topological phase to a trivial confined phase is first order, though

this behavior may be non-generic.

7.1 Isotropic Layer Construction

We begin by introducing the microscopic model for our layer construction, before analyzing its
rich phase structure and the emergence of fracton topological order. Consider a single layer
of the two-dimensional (2D) toric code on the square lattice [19], which describes the zero-
correlation length limit of the deconfined phase of two-dimensional Z2 gauge theory. The Z2

gauge field lies on the links of the square lattice, and at each lattice site and plaquette, there

are four-spin operators that measure the Z2 charge and flux, respectively (the so-called "star"

and "plaquette" operators), as shown in the inset in Fig. 7-1. We take as our convention that a
star operator is given as the product of the x-component of the Pauli spins, while a plaquette

operator involves a product of the z-component.

We now place L copies of the square-lattice toric code in the xy, yz, and xz planes, respec-
tively; any three mutually orthogonal planes intersect at a single site of the 2D square lattice.
As shown schematically in Fig. 7-1, this intersecting, three-dimensional arrangement of the
toric codes forms a three-dimensional (3D) cubic lattice with L sites and two spins per link.

The 2D Z2 charge operators lie at the sites of the cubic lattice while the Z2 flux operators lie

at plaquettes. Initially, different copies of the 2D toric codes are completely decoupled, and the
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Hamiltonian for the full system in terms of the two species of spins (- and A) at each link may

be written in the form

Ho =--JZ E [A$) + B) (7.1)
r j y, yz, xz

where the sum is over the sites r on the cubic lattice. Here, A$> is the four-spin star operator

at site r which measures the Z2 charge along the copy of the square-lattice toric code that is

oriented along the jth plane (with j = xy, yz, or xz). We associate three plaquette operators Bj

with each site of the cubic lattice, which measure the elementary Z2 flux through an elementary

plaquette oriented in the jth plane. All of the operators in Htoric mutually commute, and the

ground-state may be written exactly as an equal-amplitude superposition of closed electric-

charge loops within each plane. The topological degeneracy D is simply log 2 D = 6L after

imposing periodic boundary conditions. The topologically-degenerate ground-states are locally

indistinguishable, so that the 2D Z2 topological order of the decoupled toric codes is stable in

the presence of weak perturbations [196].

We now add an interaction

H1 = -h Y ogrpz,.,, - t S or'r, (7.2)

which couples the two spins on each link of the cubic lattice. We begin by analyzing the phase

diagram of the Hamiltonian

H = Ho + HI. (7.3)

The ground-state of (-1) will have the same topological order as a decoupled set of 3L toric

codes when t, h < J. We refer to this as the "decoupled phase" for the remainder of this

chapter. In addition, however, we will demonstrate that this Hamiltonian realizes (i) a (3+1)-d

Z2 topological phase and (ii) a fracton topological phase, along with (iii) a trivial paramagnet

which corresponds to a confined limit of the two topological phases.

7.1.1 Z 2 Topological Order from Composite Charge Condensation

Starting from the decoupled phase, we now increase h, while keeping J and t fixed, which

eventually leads to a (3 + 1)-dimensional Z2 topological phase. Before demonstrating this

explicitly with the microscopic Hamiltonian ('.1), we obtain intuition for this result by studying

how the ground-state wavefunction changes as h is increased. When acting on the decoupled

toric codes, the operator o ,p, creates four electric charge excitations in the orthogonal layers

that meet at the link connecting sites s and s'.Increasing h leads to the condensation of this

excitation, which we refer to as the composite electric charge.
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Composite Charge
Condensation

e e

Idecoupled) I'F3D Z2 )

Figure 7-2: Compostite Charge Condensation & "Gluing" Loops: Condensing the com-
posite charge excitation "glues" electric charge loops in adjacent, orthogonal layers. The resulting
wavefunction is that of the 3D Z 2 topological phase, as described in Sec. I.

Condensing the composite electric charge "glues" the planar electric charge loops in the wave-
function for the decoupled toric codes (|'Pdecoupled)). As shown in Fig. 7-2, adding a composite
electric charge has the effect of "cutting open" two electric charge loops in orthogonal layers that
appear in a loop configuration in the state IRdecoupled). This "cut" loop configuration is to be
interpreted as a single, three-dimensional loop of the emergent electric charge A(xy)AYz)A,(xz),
which remains well-defined in the condensed phase, and the resulting loop superposition is pre-
cisely the wavefunction for the 3D Z 2 topological phase. As we will soon show, composite charge
condensation also has the effect of binding the 2D Z 2 fluxes into flux loops. In this way, the
3D electric charge inherits its bosonic self-statistics and ir-mutual statistics with flux loops from
the 2D Z 2 phase.

We now derive this result from the microscopic Hamiltonian (8.1). When h > J, t, we let
of,,4r' = +1 and define a single spin degree of freedom for every link of the cubic lattice as

TZ - z X Ir,. r 1,. . (7.4)

In terms of this spin, we obtain an effective Hamiltonian in perturbation theory

Hef = - r - J E Bp - t -rr,., (7.5)
rP (r,r)

where the coupling Y~ Or (J3 /h 2). Here, the operator

Ar A-= x)A yz)A(xz) - J r Tix (7.6)
r'Estar(r)

is precisely the six-spin operator that measures the Z 2 charge in a (3+1)-dimensional Z 2 topo-
logical phase, while

Bp -rr,, (7.7)
r,rEi9p
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is the four-spin operator measuring the flux through plaquette p on the cubic lattice. When

t = 0, the effective Hamiltonian H(1) is precisely that of the 3D toric code [199]. Further-

more, increasing t eventually leads to condensation of the Z2 flux loops, resulting in a trivial,
confined phase. As advertised, the 2D Z2 fluxes are confined, while a bound-state of the Z2

fluxes survives as a topological excitation, which becomes the flux loop of the three-dimensional

Z2 topological phase. Condensing a composite excitation has led to the emergence of a new

topological excitation whose mobility is restricted.

7.1.2 Fracton Topological Order from Composite Flux Loop

Condensation

While composite charge condensation leads to three-dimensional Z2 topological order, condens-

ing a bound-state of the Z2 fluxes in adjacent layers - a composite flux loop - yields the so-called

"X-cube" fracton topological phase, as originally introduced and studied in Ref. [7] using an

exactly solvable, commuting Hamiltonian. We first review the phenomenology of the X-cube

fracton topological phase before demonstrating that this phase emerges within our layer con-

struction. A detailed description of this fracton phase is provided in Ref. [7].

Phenomenology of the X-cube Phase

The X-cube phase is a gapped topological phase that was introduced in Ref. [71], by studying the

dual description of the plaquette Ising model, an interacting spin system with an extensive set

of planar spin-flip symmetries; the finite-temperature behavior of this system has been studied

previously [183, 184, 185, 186]. While the plaquette Ising model exhibits only symmetry-breaking

or paramagnetic phases at zero temperature, its dual description is far more exotic, describing

the "confinement" transition of a fracton topological phase. The solvable Hamiltonian for this

fracton phase, termed the X-cube model, due to the geometry of the multi-spin interactions

[7], was shown to have a topological ground-state degeneracy log 2 D = 6L - 3 on the length-

L three-torus, along with exotic topological excitations whose mobility is severely restricted.

Since the degenerate ground-states are locally indistinguishable, this degeneracy is stable to

perturbations, so that the X-cube model [7] describes a stable, gapped phase of matter.

The X-cube phase has two types of gapped, topological excitations. The first are point-

like, immobile excitations (the "fractons") which are created by acting on the ground-state with

an operator supported on a flat, rectangular region. The fracton excitations are created at

the corners of this membrane and may only be created in groups of four. No local operator

can move a single fracton without creating other excitations in the system. While individual

fracton excitations are immobile, a pair of fractons are mobile within a plane and have bosonic

self-statistics. In the X-cube fracton phase, there is a second type of point-like topological

excitation, referred to as a "dimension-i quasiparticle", which may only move along straight

lines without creating additional excitations. Pairs of fractons which are mobile within planes

exhibit 7r mutual statistics with dim.-1 quasiparticles contained within their plane of motion.
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Figure 7-3: Composite Flux Loop Condensation: The operator o, ,A,,, when acting on
the decoupled layers of the toric codes, creates four flux excitations in orthogonal planes, as
shown. Condensing this composite flux leads to the "X-cube" fracton topological phase, with
fracton operator O as given in the main text, and shown in Fig. 7-5.

Isotropic Layer Construction

To observe the emergence of the X-cube phase in our layer construction, we start from the
decoupled phase of the Hamiltonian (8.1) and increase t, while keeping J and h fixed. Acting
with the operator a',.p',, on the ground-state of the decoupled planes of toric codes creates
four Z2 fluxes in orthogonal layers, which form a closed loop on the dual lattice as shown in
Fig. 7-3a. We refer to this excitation as a composite flux loop.

The X-cube fracton phase emerges after condensation of this composite flux loop. When
t > J, h, we let , , = +1 and define an effective spin degree of freedom for every link of
the cubic lattice as Tr,. ,,r1 ,, Trr ,, ,r,.i4  We then obtain an effective Hamiltonian in
perturbation theory as

H 2 Hx-cube - h Z rr.
(r, r')

where

Hx-cube = J A) - K Or
r~j r

with K O(J6 /t 5 ). Here, AV) is a four-spin operator for the spins along the four
emanating from site r that lie in the jth plane:

A =I
sEplanej (r)

xrrX

(7.8)

(7.9)

links

(7.10)
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(a) (b)

Figure 7-4: Loop-Gas Representation: Acting on the X-cube ground-state with (a) a straight,
line-like operator W, creates a pair of Z2 flux excitations at the ends. This operator "cuts" open a
closed loop configuration in the fracton ground-state; alternatively, this operator adds two open
strings at its endpoints, when acting on an empty region. For the indicated loop configuration,
acting with (b) a membrane operator Mr yields two separated, open strings of composite flux.
An isolated string endpoint cannot be moved on its own, or else it would be possible to generate
a configuration of broken loops that violate the global constraints explained in Sec. IIB. These
isolated excitations are the immobile fractons.

while the operator Or, given by

Or Bxy)B(yz)B(xz)B(yz)B(xz)B(xy 2

r r r r+ r+g r+z

= 7 'r, (7.11)
r,r'Ecube(r)

is precisely the product of the twelve rZ spins surrounding an elementary cube as shown in

Fig. 7-5. The Hamiltonian HX-cube is precisely the commuting Hamiltonian that describes the

"fixed-point" properties of the X-cube fracton phase, as introduced in Ref. [7]. The ground-state

at the solvable point satisfies Or IT) = A2 IT) = |l') for all r, j. Excitations may be created

by acting with string or membrane operators to violate these constraints. The operators 0 r

and Aj) measure the Z2 "charge" of the fracton and dimension-1 excitations (i.e. the presence

or absence of an excitation), respectively.

Loop Gas Wavefunction, Excitations and Degeneracy

Our layer construction provides insight into the origin of the exotic topological excitations and

sub-extensive ground-state degeneracy of the X-cube phase. First, the ground-state wavefunc-

tion of the X-cube fracton phase may be written as a superposition of composite flux loop

excitations of the layered 2D toric codes; heuristically

I'X-cube) E I) (7.12)
C
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with C, a configuration of loops on the dual lattice. Excitations may be obtained at the end-

points of "broken" composite flux loops. We note, however, that while any closed loop config-

uration is permissible in the ground-state, the manner in which these loops may be broken is

highly constrained. First, a composite flux loop that has broken at a single point is precisely

a 2D Z2 flux excitation of the underlying toric codes. Since these excitations must appear in

pairs, the composite flux loops can only be broken at pairs of points along xy, yz or xz planes.

As an example, acting on the ground-state with Wz = ~ T4,,, a string operator along a line

in the z-direction, has the effect of cutting composite flux loops at two points, as shown in Fig.

-7-a, and the resulting pair of 2D Z2 fluxes may move within a plane. This operator creates the

mobile anyon excitations in the X-cube phase, which clearly inherit their "topological" proper-

ties (i.e. self-statistics and mutual statistics with the dimension-i quasiparticle), from the 2D

Z2 fluxes in the toric code.

An isolated string endpoint is precisely the fracton excitation of the X-cube model, and

may be obtained by spatially separating the broken endpoints of composite flux loops. An

isolated string endpoint cannot be moved on its own without creating additional excitations, for

if such an endpoint were mobile, then it would be possible to smoothly deform a configuration of

open strings into one which violates the previously-derived constraint. The immobile, isolated

endpoints then describe the fracton excitations of the X-cube phase. In practice, acting on the

ground-state with a flat membrane operator Mr = ] ,, T4,, will localize these excitations

at the corners of E, as shown in Fig. 7i-4b. In the decoupled toric codes, this operator creates a

sequence of 2D Z2 fluxes in parallel layers. After condensing the composite flux loops, however,

only the ends of this layered excitation carry an energy cost, since the bulk of this excitation is

locally indistinguishable from a composite flux loop.

The topological degeneracy of the X-cube fracton topological phase - which was previously

obtained [7] by counting independent constraints on the operators O, Arfj on the three-torus

using an algebraic representation of the solvable Hamiltonian [46, 47] - may now be understood

by counting the number of topological sectors of the decoupled, two-dimensional toric codes

that are made equivalent after condensation of the composite flux loop. A discussion of this

counting is presented in the Supplemental Material [?].

7.1.3 ZN X-cube Topological Phase

The spirit of our proposal motivates the construction of new, three-dimensional topological

orders, by appropriately condensing "loop" objects in an array of two-dimensional topological

phases. An extended discussion of new topological phases that may be built in this manner is the

subject of forthcoming work [?]. Here, we discuss the simplest generalization of our construction,

involving an array of two-dimensional ZN toric codes [191 in the same configuration as shown in

Fig. 7-1, which gives rise to a ZN generalization of the X-cube model. After arranging the ZN

toric codes in a three-dimensional array, each link of the three-dimensional cubic lattice now has

two ZN qudit degrees of freedom, denoted X,,,, Zr,,' and Xr,,, Zrr' respectively, and satisfying

166



p

q

VO ~ Z t
S U 

>
T r 0C Zt ZW Zt I Z
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A(XZ) ~ XfXuXrXt Zt Z

Figure 7-5: The ZN X-cube Model: Shown are the commuting operators that appear in the
solvable Hamiltonian for the ZN X-cube model H = -K EC(O + Ot) - J E,, (A?) + A$&t).
The Z2 case discussed in Sec. IB, is obtained by replacing Z, Zt - TZ and X, Xt -+ r.

the algebra XZ =ZX, XZ = wZX with w = e2ri/N. We now consider the Hamiltonian

H'=H6 + Hi (7.13)

where HO describes the de-coupled layers of ZN toric codes

HO'= -J i [A2) + B] + h.c. (7.14)
r j=xy,yz,xz

with AV and Br the ZN charge and flux operators at site r, for the toric code oriented along

plane j, respectively. The layers are coupled through the interactions

H= - h E [ Zr,Zrr, + h.c.1 - t E [Xrri krrf + h.c.] (7.15)
(r,r') (r,r')

Following our previous analysis, we consider the limit h >> J, t, where we find that the

ground-state exhibits 3D ZN topological order. In this limit, we may identify a single ZN
degree of freedom on each link of the cubic lattice (with logical operators X, Z), and obtain

the effective Hamiltonian H'oric - t Err[Xerr + h.c.] where H'oric is now the 3D ZN toric code

Hamiltonian [200]. Alternatively, when t > J, h so that we have condensed the "ZN composite

flux loop", we obtain the effective Hamiltonian

H = HX-cubeN -h E [Zrr' + Z r, (7.16)

(r, r')

where

Hx-cubeN = K [c + (9] - J [A (A$9)t] (7.17)
C ,J

is the solvable Hamiltonian for the ZN generalization of the X-cube model. The microscopic
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form of the operators Oc and A are explicitly given in Fig. 7-5.

Since the operators 0, and A? commute, the ground-state of (7 17) again satisfies O, 1T)

A I IT) = I), and gapped excited states may be created by acting with straight Wilson line or

flat membrane operators, in a straightforward generalization of the operators in the Z2 X-cube

model. Now however, the dimension-1 quasiparticles and fracton excitations carry a ZN electric

and magnetic charge, respectively, which is inherited from the underlying 2D ZN toric codes.

As a result, a pair of fractons which are mobile in a plane have bosonic self-statistics, but non-

trivial mutual statistics egOpq with a dimension-1 quasiparticle of charge q E {1,..., N - 1} in

its plane of motion. Here, the statistical angle 0 pq = 27rpq/N, where p is the magnetic charge

carried by the fracton excitation.

7.1.4 Degeneracy of the ZN X-Cube Model

We now discuss the topological degeneracy of the ZN X-cube models on the three-torus. We

begin by elaborating on the degeneracy of the X-cube phase introduced in Ref. [6], as understood

from our isotropic layer construction.

The topological degeneracy of the X-cube fracton topological phase - which was previously

obtained [7] by counting independent constraints on the operators 0 r, Ar2j on the three-torus

using an algebraic representation of the solvable Hamiltonian [46] - may also be understood by

counting the number of topological sectors of the decoupled, two-dimensional toric codes that

are made equivalent after condensation of the composite flux. For example, the vacuum sector

of the completely decoupled theory is equivalent, after flux loop condensation, to the topological

sector where a single Wilson line - which creates two-dimensional Z2 flux excitations at its ends

- wraps around all of the xy planes in the x-direction Wxy) and all of the yz planes in the

z-direction WZ(Yz). We label this topological sector of the decoupled toric codes as W WYZ)

which is now equivalent to the vacuum sector after composite flux condensation. By cyclically

permuting the x, y and z indices and by taking products of the Wilson line operators, we obtain

seven additional topological sectors of the decoupled theory that are equivalent to the vacuum

sector in the flux condensed phase [we may explicitly enumerate these sectors, adopting the pre-
vious notation, as W$YZ) W xz), W(xz) xY), WXY) WYZ) Wy(YZ) W xz), W(XY) WYZ) W Xz) WSXY),

W(yz)W xz) WzXz) W ,, , and Wxy)W(yz)W(yz)W~ z)Wxz2)WxY ]. Since eight topological sec-

tors of the decoupled theory are identified after condensation, we are led to conclude that on an

Lx x LY x Lz three-torus, the X-cube fracton phase has topological degeneracy D = 4 L,+Ly+Lz /8
or log2 D = 2(L+Ly+Lz)-3 which reduces to the previously known degeneracy on the length-L

three-torus when L is odd [7].

We may also compute the topological degeneracy of the Z, generalization of the X-cube

phase, which we have introduced in the main text, when p is prime. This fracton phase is

constructed in the main text by coupling together copies of the Z, toric code, whose charge and

flux operators are shown in Fig. 7-G.

For the Zp generalization of the X-cube phase, we find that the degeneracy on the length-L

168



~. V.
C

V.

D 4

As a 0Zt Z4e
Z

4

Figure 7-6: 2D ZN Charge and Flux Operators: Show are the star A, and plaquette B,operators that measure the ZN charge and flux, respectively, in the 2D ZN toric code.

three-torus is given by log, D = 6L -3 when L = p - 1, through an extension of the arguments
presented in Ref. [6]. First, the algebraic representation [46, 47] of the ZN generalization of the
X-cube model is described by a stabilizer map S = S® E S, where

Sx = ( -10+.
1-9

0

0
1-g9 +)

- y)
- z)
- X)

(7.18)

(7.19)

0
-1+ 

-(1 -Z)(1

-(1 -y)(1

Here, X- 1, y-1, z-1, and the polynomials shown are elements of the Laurent
polynomial ring F , [x, ., y, g, z, .] over the field F, with prime p. Let R be the quotient ring
R = Fp[x, y, z]/(xL - 1 7L 1, ZL - 1). The degeneracy of the Z, X-cube model on the length-L
three-torus is given by log , D = kx + kz where the quantities kx and kz are given by

kX = dimF
.((-Z) (1 -* y), (1 - X) (1 - Z), (I - y) (1 - X))]_

and

k, = dimF,

1-X~

0

-1+Z

1 - y

0

In the second expression, we have taken advantage of the fact that only two of the columns of SX
are linearly independent. Both quantities kx and kz may be evaluated in the algebraic closure of
FY, which we denote F, when the length L = pf - 1, so that xL - 1 has L distinct roots. In this
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case, we determine k,, 3L - 2 by localizing at the maximal ideal (x - t, y - 1, z - 1), where

t z I is a root of xL - 1. Similarly, k, is determined from the fact that the second determinantal

ideal of -+ 1Y 0 is precisely ((I - Z) (I - y), (I - X) (I - Z), (I - Y) (1 - X)).1 -x 0 1+ )
As a result, localizing again at the maximal ideal (x - t, y - 1, z - 1) yields k, = 3L - 1. This

yields the desired result for the topological degeneracy of the Zp generalization of the X-cube

model on a three-torus of length L = pf - 1.
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Chapter 8

Generalizations of Non-Abelian Anyons

in Three Dimensions

A core concept in the quantum theory of indistinguishable particles is quantum statistics. While

fundamental particles in nature only obey either Bose or Fermi statistics, the notion of particle

statistics also applies to quasiparticles - emergent, point-like excitations in many-body systems

with an energy gap - through the geometric phase accumulated in a braiding process, whereby

two identical quasiparticles are adiabatically interchanged. The allowed statistics are constrained

by the topology of quasiparticle trajectories in the braiding process. As a consequence of the

non-trivial topology of braids in (2 + 1)-dimensional spacetime, certain quasiparticles in two

dimensions - known as anyons [201] - are allowed to have statistics other than Bose or Fermi [202,

156]. Non-Abelian anyons [85, 44] are particularly interesting, since a state of well-separated

non-Abelian anyons carries a degeneracy that cannot be lifted through local perturbations.

Braiding a pair of these excitations can implement a unitary transformation on this space of

states. Efforts to search for non-Abelian anyons are underway [203, 204].

Do particles with neither Bose nor Fermi statistics exist in three dimensions? A standard

argument rules out this possibility based on the observation that exchanging a pair of particles

twice in a (3+1)-dimensional spacetime is topologically equivalent to no exchange. This implies

that two exchanges must leave the quantum state invariant, hence a single exchange can only

generate a phase factor 1, corresponding to Bose or Fermi particle statistics, respectively.

Despite this no-go argument, the possibility of lifting anyons to three dimensions has long

fascinated physicists. It is known that in three-dimensional lattice gauge theories with a discrete,

non-Abelian gauge group, point-like charge excitations can carry a protected internal degeneracy

with integer "quantum dimension" [205, 2061. Nonetheless, these excitations still have Bose or

Fermi statistics, and their internal state remains unchanged under braiding. Other possibilities

have also been explored. An intriguing study [207] suggested that Majorana zero modes on the

surface of a superconducting topological insulator [14] display braiding properties analogous to

non-Abelian anyons, despite living in a three-dimensional system. However, these Majorana zero
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Figure 8-1: The Model: We consider layers of of complex fermions on the sites of a square
lattice (f), coupled to fermions that lie on the links (c) which play the role of a static Z2 gauge
field. Within each layer, the hopping and pairing interaction of the fermions are mediated by
the fermions on the links, which interact at each plaquette as shown. The gauge symmetry of
the Hamiltonian (8.1) is implemented by the operator Gj,e = rjj1 0 j IFT which couples
adjacent layers, with Oj,e as defined in the main text. The ground-state realizes an exotic phase
with immobile, point-like excitations that carry a protected internal degeneracy.

modes cannot be spatially separated at finite energy cost [208]. Such objects, now commonly
referred to "twist defects", are not deconfined quasiparticles.

In this chapter, we build on our understanding of exotic, three-dimensional quantum phases
by demonstrating the existence of a new type of deconfined point-like excitation in three dimen-
sions, which carries a protected degeneracy as non-Abelian anyons in two dimensions do, but
cannot move freely without paying an energy cost. These fundamentally immobile particles -
termed "fractons" [6] - have been theoretically discovered [46, 178, 177, 7] and have attracted
increasing interest in such diverse fields as topological quantum matter, lattice gauge theory,
quantum information, and many-body localization [7, 197, 179, 5, 209, 210, 151, 211, 1981. Be-
ing unable to move, fractons evade the standard argument for particle statistics relying on the
topology of worldlines. This enables our generalization of the notion of non-Abelian particles to
three dimensions. The non-Abelian fractons discussed in this chapter can provide an alternate
platform for quantum computation, with possibly increased robustness against thermal errors.

We introduce two lattice models which support such "non-Abelian fracton" excitations. The
first is an exactly solvable fermion model that describes a chiral phase where the fractons
have irrational quantum dimension. This phase is constructed from two-dimensional layers of
px + ipy superconductors interacting with Z2 gauge field, and by further coupling these layers
in a nontrivial way. The interlayer coupling turns fluxes into deconfined, immobile point-like
excitations, i.e., fractons. As a result, when the parent superconducting state on each layer
is topologically nontrivial, the fluxes acquire a v\/ quantum dimension, yielding "non-Abelian"

172



fracton excitations in a three-dimensional phase. Certain pairs of these fractons behave as

non-Abelian anyons with well-defined statistics. The second model we present is constructed

from interacting layers of two-dimensional G-gauge theories for a finite group G [19], which are

stacked along all three directions. This isotropic layer construction yields point-like, immobile

excitations with integer quantum dimension. In both models, fractons can only be created, in

multiples of four, at the corners of an operator with support on a membrane-like region. This

defining property of fractons is fundamentally distinct from that of anyons, which are created

in pairs, at the ends of string-like Wilson line operators.

8.1 A Solvable Model

We begin with a detailed description of our first model. Consider a vertical stack of two-

dimensional square lattice planes, as shown in Fig. R-1. Within each plane , there are two

types of fermions living on the sites (denoted fj,e) and bonds (denoted cij,e) of the lattice. Our

solvable Hamiltonian is given by:

H = H - K Bp,, - 1G,. (8.1)
f f,p e,j

where He is defined for every layer (i), Bp,e for every plaquette (p), and Gj,e at every site j on

adjacent planes f and i + 1, as indicated in Fig. 8- 1.

The first term in the Hamiltonian takes the form

He -t fX IFjc fj,e + Aij fi ITf + h.c.1 - p fhfi,f. (8.2)
(i I) P

where

IF) z(-)c) cj - 1 - 2cc (8.3)ii~~f ij,f cii,f 83

is the parity of the fermions along link (i, j) in layer . He describes f fermions in a (p. + ipy)-

wave paired state on each plane, with a nearest-neighbor hopping t and pairing Aij on the

two-dimensional square lattice, with Aij = A on +x links and iA on +y links. Importantly,

these "matter fermions" f interact with "gauge fermions" c via Ising gauge coupling, with the

parity of the c fermions on the links F(c) = 1 playing the role of a Z2 gauge field.

In the second term of (8.1), the operator Bp,, is given by the product of the fermion parities

Ijce along the links surrounding plaquette p in layer t

Bp,e JjJ I2 (8.4)
(i, j) E p

The 1 eigenvalue of Bp,, measures the Z2 flux of the gauge field through this plaquette.
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The last term in the Hamiltonian describes an interaction between fermions on adjacent

layers. The operator Gjf, which is shown schematically in Fig. 8-1, is defined on the sites of

the square lattice as

Gj,e = ryfOj) F (8.5)

where FS = (-1)4,efie is the fermion parity of the matter fermion on site s in layer i and

o0 ,j =f) (cie - cij,e)(cLje+i + cij,+1)]
iEstar(j)-

is an eight-body interaction that couples the fermions on the links forming a "star" configuration

around site s in layer f and in layer f + 1. The operators Gi,j mutually commute, and satisfy

Gg = 1. Remarkably, Gi,t also commute with the Hamiltonian (8 .1) since (i) He is invariant

under the local Z2 transformation fi,e - , -+ F c and (ii) B,e overlaps with Gif on

two links. For t, p, A, K < 1, all low-lying eigenstates of H satisfy the "gauge constraint"

Gi,e IT) = IF) (8.6)

at every site i and layer f. In the following, we will restrict our attention to these gauge-invariant

states.

It is instructive to first study the model (8. 1) in the limit t = A = 0. The ground state is

then simply a direct product state of the gauge and matter fermions IWgs) = Ig,) 0 1f). Here

0f) is the vacuum state of matter fermions with FM = 1 at every lattice site (assuming P > 0),
while Igc) is the ground state of the reduced Hamiltonian for the gauge fermions

He = -K Z Bp, - Z O. (8.7)
j,e

This commuting Hamiltonian was introduced in Ref. [6] as an exactly solvable model for a

fracton topological phase, whose universal properties are robust under any local perturbations.

When placed on the L x L x L three-torus, H, exhibits 2 3L-3 degenerate ground states that are

locally indistinguishable. An elementary ir-flux excitation is obtained when the eigenvalue of an

operator Bpt on a plaquette is flipped. Remarkably, these ir-flux excitations can only be created

in multiples of four by acting with a membrane operator on the ground state, which flips the

eigenvalues of Bpe's at the corners of the membrane. Therefore, a single ir-flux is a fracton-

it cannot be moved without creating additional fractionalized excitations. A self-contained

discussion of this model has been provided in Sec. 5-. .

Apart from the ir-flux, our model also hosts gapped fermionic quasiparticles originating from

the matter fermions on every layer. The fermionic excitations carry gauge charge, however, and

must bind additional excitations in order to be gauge invariant. Adding or removing a bare
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matter fermion fj,e flips the parity of IT and locally violates the gauge constraint (8.6). Instead,
a gauge-invariant quasiparticle is obtained by binding a matter fermion with an excitation of

gauge fermions having OJ,2 = -1 and Oj,&_1 = -1. Such a gauge excitation can only move

within the plane, and has 7r mutual statistics with the 7r-flux excitation, which is a fracton. As

a result, the fermionic quasiparticle also has 7r mutual statistics with the 7r-flux, reminiscent

of a conventional Z 2 gauge theory with charged matter fields. When t, A 4 0, gauge-invariant

eigenstates of H take the general form IT) = P 177) | Ip), where In) is a state of gauge fermions

with a fixed fermion parity on every link, so that F 7c ) =ijf 1n) with nijf = t1. 1W)n is

an eigenstate of the matter fermions in gauge field configuration 7. That is, IW), is obtained

by substituting the operators I(c) with their eigenvalues nijf in the first term of H, and thenijY
solving the resulting quadatric Hamiltonian for the matter fermions. Finally, P is a projection

operator, which projects the wavefunction of the matter and gauge fermions onto the gauge

invariant subspace

P 1= (1 +2Gi,) (8.8)

To verify that the above wavefunction is an eigenstate of H, we note that (i) [P, H] = 0 and

that (ii) by construction, Iln)1W), is an eigenstate of the first two terms in H, whose eigenvalue

we denote E(, p). It follows that

H IIQ) =HP In) 0 1), = PH ln) ® 1 ), = P (E(n, W) - E Gf) 1n) 91W),

=E E(n, (p) - N] IT) , (8.9)

where we have used the identity PGj,f = P, and N is the number of f fermion sites. The energy

spectrum of H is thus determined by that of the quadratic Hamiltonian for the matter fermions

in a fixed gauge flux configuration.

When K > t, A, the ground state belongs to the zero-flux gauge sector (e.g. with rij,e = 1

on all links), and the matter fermions realize a px + ipy superconductor on every layer. As

a result of the gauge-matter coupling, ir-flux excitations of the gauge field are now bound to

vortices of the px + ipy superconductor. When Itul > 4t, the p. +ipy superconducting state of the

matter fermions is fully gapped and adiabatically connected to the t = A = 0 limit. Therefore,

ir-flux excitations are topologically equivalent to the fractons of the Hamiltonian (8. 7) of gauge

fermions only. When pLI < 4t, however, the matter fermions in the zero-flux gauge sector realize

a fully-gapped px + ipy topological superconductor on every layer. In this case, r-flux excitations

become non-Abelian fractons with internal topological degeneracy, as we now show.

Recall that a two-dimensional p. + ipy topological superconductor hosts localized Majorana

zero modes in vortex cores [86, 16]. When this superconductor is coupled to a Z2 gauge field,

the ir-flux-vortex composite object becomes a deconfined quasiparticle, which is a well-studied
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example of a non-Abelian anyon-the Ising anyon [441. N well-separated Ising anyons carry

dN degenerate internal states which cannot be split by local perturbations, with the quantum

dimension d = , originating from the Majorana zero mode. Bringing two Ising anyons (o)
together, however, can split the degeneracy, resulting in either a fermionic excitation (0) or a

trivial boson (1). This behavior is captured by the fusion rules

a x a 1 + (8.10)

as well as the rules - x =o, @bx I land 1 x a = a, with a = 1, 4, a. Braiding Ising anyons

generates a non-trivial unitary transformation on their internal states.

In our three-dimensional model, when ipi < 4t, the ir-flux bound to a vortex on a single layer

hosts a Majorana zero mode, and hence acquires a protected internal degeneracy with quantum

dimension d = /. Unlike Ising anyons, however, these 7r-fluxes are fundamentally immobile

point-like excitations; this property originates from the fractons in the model (8 7 for the gauge

fermions before coupling to matter fields. We thus refer to these fractons, with a topologically

protected internal degeneracy, as "non-Abelian fractons".

We now study the nature of composite excitations made from a pair of non-Abelian fractons

in our model. First, we show that the internal degeneracy of pairs of non-Abelian fractons in

distinct layers is protected, even when they are brought close together. Splitting the degeneracy

requires quasiparticle tunneling between the two Majorana zero modes. This process is forbid-

den, however, since there is no gauge-invariant operator that can transfer quasiparticles between

distinct layers. This can be seen by observing that the local gauge constraint Gj,e = +1 gives

rise to conserved fermion parity on every pair of adjacent planes: 71 G = U U +1,

where Uf F- H jf) is the fermion parity in layer f. This parity conservation naturally forbids

inter-layer quasiparticle tunneling in the gauge-invariant subspace, so that a pair of non-Abelian

fractons in distinct layers f and C' - referred to schematically as o- x ot, - forms a topological

excitation with quantum dimension (d,)2 = 2. This excitation is a non-Abelian anyon that can

only move within the xy plane. Braiding this non-Abelian anyon around a fracton enclosed in

its plane of motion can implement a unitary transformations on this degenerate Hilbert space;

a particular example is explicitly given in Appendix C.A.

8.2 Coupled Layer Construction

We now summarize an alternate prescription for obtaining a non-Abelian fracton topological

phase where the fracton excitations carry integer quantum dimension, which is motivated by

an isotropic, layer construction 15, 209] of a particular fracton phase introduced in Ref. [7].

The starting point for this construction is an array of two-dimensional lattice gauge theories

for a finite gauge group G that are stacked in the xy, yz and xz directions, as shown in Fig.

8-2a. Initially, distinct layers are decoupled and each layer is in the deconfined phase of the G

gauge theory, which hosts gapped charge and flux excitations that are labeled by irreducible
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Figure 8-2: Coupled 2D G gauge theories: Intersecting layers of 2D gauge theories for finite
the group G, stacked in the xy, yz and xz planes as shown in (a). "Condensing" the excitation
in (b) - a composite of four [g] fluxes - can produce a fracton topological phase, where the
fracton excitation inherits certain properties from the non-Abelian [g] flux as shown in (c) and
described in the main text.

representations and conjugacy classes of G, respectively. Starting from this isotropic array, we
now introduce an interaction on the bonds of the lattice; when acting on the ground-state of
the decoupled layers, this coupling has the effect of creating a pair of fluxes (labeled [g]) in
orthogonal layers as shown in Fig. 8-2b. We refer to this as a "[g] composite flux loop", since
this excitation forms a closed loop on the dual lattice. Increasing the strength of the inter-layer
coupling eventually condenses this excitation, yielding a ground-state given by a superposition
of loop-like excitations built from the 2D [g] fluxes.

We observe that a fracton topological phase is obtained by considering the excitations that
remain deconfined after this condensation procedure. When the layers are decoupled, we may
act with an array of Wilson line operators in parallel layers to create a sequence of [g] fluxes, as
shown in Fig. 8-2c. This excitation carries an O(L) energy cost, where L is the linear dimension

of the array. After condensation of the composite [g] flux loop, the bulk of this excitation is
indistinguishable from a configuration of fluxes that appear in the ground-state. As a result, in
the condensed phase, the bulk of this excitation costs no energy. The membrane-like operator
formed from the array of Wilson lines may create excitations at its corners, however, as the
corners appear to be points where the composite [g] flux loops have broken open, as shown in
Fig. 8-2c. Due to the geometry of this operator, these point-like excitations cannot be moved
without nucleating other excitations in the system, and we conclude that a single [g]-flux has
become an immobile fracton excitation. The charges and dyons of the two-dimensional G gauge

theory will generically be confined due to their non-trivial statistics with the [g] flux. However,
the condensation procedure may bind these into emergent excitations with reduced mobility.

When the gauge group G 5 Z2 , this condensation procedure yields the so-called X-cube frac-

ton topological phase [7, 5, 209]; ZN generalizations of the X-cube phase may be constructed

in a similar fashion [5]. However, G can also be a finite non-Abelian group. In this case, con-
densing a composite flux loop made of non-Abelian fluxes of the G gauge theory will produce a
non-Abelian fracton topological phase where the immobile fracton excitations carry a protected
internal degeneracy, so long as a single [g]-flux remains deconfined after this condensation pro-
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cedure. Due to the non-trivial statistics and fusion rules of the [g] fluxes, the general conditions

under which this condensation procedure will yield a non-Abelian fracton topological phase is

not known, though certain examples may be explicitly analyzed.

In the Appendix .2, we study coupled layers of the S3 gauge theory, where S3 is the

permutation group on three elements. Condensing the composite flux loop formed from the S3

fluxes with quantum dimension 3 yields a fracton topological phase, where the non-Abelian flux

becomes an immobile topological excitation. The condensation procedure also has the effect

of binding certain two-dimensional charges into excitations with restricted mobility, while all

mobile charge excitations are confined. For example, while an isolated charge excitation that

corresponds to the alternating representation of S3 is confined, pairs of these charges remain

well-defined excitations that may only move along lines. It would be interesting if a similar

layer construction using other "string-net" models [431 could also yield exotic, 3D phases with

immobile fractionalized excitations.
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Part III

Scrambling and the Dynamics of

Quantum Information
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In this section, we study entanglement growth and the dynamics of operator spreading in

random unitary circuits, which provide minimal models for chaotic quantum dynamics. Exact

calculations of averaged quantities, such as the out-of-time-ordered commutator, reveal connec-

tions to classical stochastic growth processes. These relations motivate new heuristics for the

propagation of quantum information and entanglement that may apply in more generic quantum

many-body systems with conservation laws. This section is based on Ref. [9, 101.
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Chapter 9

Operator Spreading in Random

Unitary Circuits

A key challenge for many-body physics is to identify universal properties of quantum dynamics

and the approach to thermalization. Particularly important are universal results that hold for

generic quantum systems. Examples of such universal properties include the existence of effective

light cones for the propagation of quantum information [212] and the existence of universal

scaling forms for the growth and saturation of the von Neumann entanglement entropy in 1+1D

[50, 52, 62, 63, 213, 53, 77, 64, 9, 214, 67, 68, 69, 74].

By definition, generic systems lack the structures (for example large numbers of symmetries

or conservation laws) that allow for exact results in typical solvable many-body systems. Sur-

prisingly, insight into generic systems can come from studying dynamics with even less structure

than a generic Hamiltonian system, such as the dynamics generated by a random quantum cir-

cuit. Random circuit dynamics provide a minimally structured model with which real Hamilto-

nian dynamics can be compared [215, 216, 217, 218, 219, 220, 221, 222, 223]. Despite its simplic-

ity, this model is able to capture universal scaling forms for entanglement growth both in 1+1D

and in higher dimensions [9]. Random circuits are also toy models for information scrambling in

black holes and other strongly coupled systems [215, 216, 217, 218, 219, 220, 221, 222, 223, 224].

In this chapter, we provide both exact results and coarse-grained descriptions for the spread-

ing of quantum operators under random circuit dynamics, as measured by the 'out-of-time-order

correlator' (OTOC). The OTOC originally appeared in the study of quasi-classical approxima-

tions to superconductivity [225], and is closely related to the commutator norm that appears

in Lieb-Robinson bounds [21.2], but it has been studied recently as a means of quantifying

the scrambling of quantum information [226, 227, 228, 2291. It has been argued that early-

time exponential growth of the OTOC is a characteristic feature of chaotic quantum systems,

and such growth has been obtained within the AdS/CFT correspondence and in a range of

physical systems [230, 231, 232, 233, 234, 235, 236, 237]. The OTOC has also been applied

to characterize slow dynamics in the presence of disorder and in the many-body localized
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(a) (b)

Figure 9-1: Random unitary circuit in (a) (1+1)D and (b) (2+1)D. Each "block" represents
an independently Haar-random unitary, acting on the Hilbert space of two adjacent 'spins' of
local Hilbert space dimension q. In (b), we show the geometry of the (2 + 1)D Haar-random
circuit that we study in later sections.

phase [238, 239, 240, 78, 241, 242, 243, 244]. It has been calculated in 2D conformal field
theories [245] and integrable chains [246], and studied numerically in nonintegrable 1D sys-
tems [247, 248, 249]. Following theoretical proposals [250, 251, 252], experiments addressing the
OTOC have been conducted [253, 254, 255].

Random quantum circuits provide an ideal theoretical setting for the exact calculation of
quantities such as the OTOC. While the behaviour of the OTOC in a random circuit is inter-
esting in its own right, we conjecture that the long-distance properties of the OTOC that we
derive will also be applicable to deterministic dynamics. Therefore we believe that these results
will provide a useful starting point for understanding the generic spatial structure of spreading
operators.

An operator 0o which is initially localized near the spatial origin (say, on a single site of a
spin chain) will evolve under Heisenberg time evolution into a vastly more complicated operator
Oo(t) = Ut(t)OoU(t) that acts nontrivially on many sites. The 'size' of 00 (t) is the size of the
region in which 0(t) fails to commute with a typical local operator Y at position x. This may
be measured by

1
C(x, t) = r p[0o(t), YI t [0o(t), Y] (9.1)2

where the expectation value has been taken in an appropriate Gibbs state. (For our purposes this
will be taken to be the infinite temperature Gibbs state p., which is the state to which random
circuit dynamics equilibrate.) To make the connection with the out-of-time-order correlator
(OTOC), we may expand out the commutators in (9.1). For simplicity let us assume for the
moment that the operators 00 and Y are both Pauli-like operators squaring to the identity.
We then have

C(x,t ) = 1 - Tr px0o(t)Y0o(t)Y. (9.2)
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The second term, in which the operators are not time ordered, is the OTOC. Other measures of

the structure of an operator could be defined (for example correlation functions involving higher

powers of the commutator) but in this chapter we will restrict to the OTOC.

At a given time t, the range of x where the commutator C(x, t) is significantly larger than zero

gives a measure of the size of the operator. This region typically grows ballistically [256], even

when local conserved quantities exhibit diffusive transport [230, 237, 247, 248].1 The immediate

natural questions about C(x, t) include: What is the 'butterfly' velocity VB associated with this

ballistic growth? What is the spatial structure of C(x, t)? Is there a 'hydrodynamic' equation

for C(x, t) at large time and distance scales? Are there important differences between 1+1D and

higher dimensions? We will answer all these questions for the case where the time evolution

operator U(t) is a circuit composed of Haar random unitaries, as in Fig. 9-1.

We demonstrate that, both in ID and in higher dimensions, operator spreading and the

growth of the OTOC can be mapped to classical stochastic growth models. We show via an

exact calculation that operator spreading in 1+1D can be understood in terms of an equation

involving diffusion and drift. The 'front' of the operator propagates at a finite velocity VB.

However the front also broadens diffusively, so that its width is proportional to Vt (Fig. 9-2).

We conjecture that this physics also occurs in generic (nonintegrable) ID systems undergoing

deterministic Hamiltonian dynamics. For random circuit dynamics, we must also consider how

the averaged correlator C differs from the correlator C within a given realization of the random

circuit. We argue that fluctuations between realizations are small: typical variations in the

front position between different realizations are O(t1 / 4 ), so negligible in comparison with the fi
broadening of the front.

Turning to higher dimensions, we show by an exact mapping that there is a remarkable

relationship with a classical droplet growth problem in the Kardar-Parisi-Zhang universality

class [82]. (To avoid confusion, we note that this is not related to the connection between

entanglement growth and KPZ introduced in [9].) We use this relationship to quantify the

broadening of the 'front' of a growing operator in a higher dimensional random circuit. In

2+1D the front broadens like t1 / 3 [82], and in 3+1D like t0 .24 0 [257].2 In the two-dimensional

case, and in the absence of lattice anisotropies, recent breakthroughs in the theory of interface

growth [258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270] also translate to an

exact form for the OTOC, in terms of the celebrated Tracy-Widom distribution (Fig. 9-3). The

broadening of the front of the OTOC is summarized in Fig. 9-2. Again, we conjecture that these

universal scaling forms extend to nonintegrable models with time-independent Hamiltonians,

although we note that a previous calculation in a different setting has instead found a front

that does not broaden with time, and is governed by a traveling wave equation [230] (see also

[236, 237]). (A traveling wave equation arises from our mappings if we make a certain mean

'Strongly disordered Hamiltonians in 1+1D provide counterexamples to this ballistic spreading.
2 The phase diagram of the KPZ equation in higher dimensions [82] indicates that in 4+1D and above, two

distinct universality classes may be possible for operator growth in a random circuit, one with a growing front
width and one without.
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0t) =U(t)to,U(t) t 2T~ 2 1/3

4--D

Figure 9-2: "Operator Spreading" and the Schematic Behavior of the OTOC: We
find that the average OTOC C(x, t) (where the average is over the local unitaries in the quan-
tum circuit) has a front which broadens as ta, with the indicated exponents in various spatial
dimensions d.

field treatment, Appendix. E.9. But this mean field is not valid in physical dimensionalities.)
In higher dimensions the shape of the spreading operator' is also of interest. At first sight one

might expect the shape of the operator to be asymptotically spherical at late times. Instead, we
argue that in systems with an underlying lattice, which have only discrete spatial symmetries,
the spreading operator will not become spherical. Its asymptotic shape is determined by a
model-specific velocity function VB(ft), the speed of the front depending on the local normal
vector h. We verify this for random circuits by simulation in 2+1D.

The results above are for random circuits composed of generic (Haar-random) unitary ma-
trices. It is interesting to compare with random circuits composed of unitaries from the Clifford
group, a discrete subgroup which leads to efficiently simulable dynamics [271, 272]. In this case
the dynamics of the operator is much simpler [91, and randomness-induced fluctuations are much
more severe. But remarkably the results for the averaged OTOC U coincide with the results
for generic unitaries. This is a consequence of the fact that the Clifford group is a unitary
2-design [2731.

In one dimension we give a complementary exact calculation of the averaged OTOC, using
a mapping to the partition function of a classical Ising model. These Ising degrees of freedom
have a similar origin to those found in calculations in random tensor networks [274]. We show
that special structure arising from the unitarity of the quantum circuit means that this partition
function is exactly calculable for any value of the local Hilbert space dimension.

Another important question is how the speed VB associated with operator spreading relates
3That is, the shape of the spatial region in which C has saturated. We can neglect here the broadening of the

front, since at late times the length scale associated with this broadening is parametrically smaller than the size
of the operator.
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Figure 9-3: Cartoon for the form proposed here for the OTOC in two spatial dimen-
sions, when lattice anisotropy can be neglected. The functional form is given by the Tracy
Widom distribution F2 .

to the speed VE which can be associated with entanglement growth following a quench in iD
[50, 51, 52, 62, 213, 53, 77, 64, 214, 9]. Refs. [9, 214] pointed out that in general VE is smaller

than VB, unlike the situation in a 1D conformal field theory [52]. We extend this here, showing
that arbitrarily small values of VE/VB can be achieved without fine-tuning.

We also use the Ising mapping described above to give an exact calculation of the average
entanglement purity [275, 276, 277] (the exponential of the second Renyi entropy) for a random
circuit, complementing the scaling picture, in terms of a coarse-grained minimal cut, of Ref. [9].

9.1 Operator dynamics in 1+1D

We begin by defining the random circuit dynamics which we consider in 1+1D, and describing

the 'hydrodynamic' continuum picture we propose for the OTOC in 1+1D. In Sec. 9.3 we give

an alternative exact calculation of the OTOC, confirming and extending the results below.

9.1.1 Hydrodynamic equation for averaged OTOC

We consider time evolution by a quantum circuit on an infinite 1D spin chain where each spin
(qudit) has local Hilbert space dimension q. The structure of the quantum circuit is shown in
Fig. 9-2a. Two-site unitaries are applied to 'even' bonds on even time steps and 'odd' bonds on
odd time steps (a 'running bond' layout in the language of bricklaying). Each two-site unitary
is drawn independently from the uniform distribution on the two-site unitary group U(q 2 ).
Formally, our time evolution operator is U(t) = U(t, t - 1)U(t - 1, t - 2) ... U(1, 0), where a
single layer of the circuit is given by

( Ux,,+1(t', t' - 1) if t' is even,

U(t', t' - 1) = xE2Z (9.3)
& Ux,x+1 (t', t' - 1) if t' is odd.

IxE2Z+1
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Each two-site unitary Uxxg (t', t' - 1) is Haar random and independent of all of the others.

Given an operator 0, we write 0(t) = U(t)tOU(t). We will evaluate the following out-of-

time order correlator with respect to this time evolution:

1 1
C(x, t) = -Trpo[Xo(t),Y1t[Xo(t),Y] = Tr p [Xo(t), Y] 2. (9.4)

2 2

Here, p. is the infinite temperature Gibbs state, i.e., the mixture of all possible spin configu-

rations with equal weights. X0 is a Hermitian operator located at the origin of the spin chain,

and Y is a Hermitian operator located at site x. We take both X and Y to be traceless, and

normalized such that Tr X2 = Tr Y 2 = q. For example if q = 2 (the spin-1/2 chain) we can

take X and Y to be Pauli matrices at sites 0 and x, respectively.

Since the unitaries in the circuit are random, we must distinguish between averaged quan-

tities (denoted by Eu, or whenever unambiguous by an overline [ ... ]) and quantities within

a given realization of randomness. However, we will argue that fluctuations induced by the

random circuit are small, meaning that the spatial profile of C(x, t) in a given realization of the

circuit is, at large times, parametrically close to the average value C(x, t). Fig. 9-2 is a schematic

of the spatial profile we will show for C(x, t) at fixed large time. The 'size' of the operator is

determined by a butterfly speed which is

vB(q) = - (9.5)
q2 + 1

Within a region of size - 2 vB(q)t the commutator C(x) has saturated to a value very close

to unity. Note that for finite q the butterfly velocity is smaller than the 'naive' speed limit

of unity, which is set by the geometry of the quantum circuit, while in the limit q -> oc they

coincide. The 'front' of the operator, i.e. the region in which C varies between 0 and 1, broadens

diffusively. The width of the front is proportional to

o(q, t) = 2q ft. (9.6)
q 2 + 1

More precisely, letting 4< denote the error function (the cumulative density function of the

Gaussian distribution, <(y) = I f o e_ 2/2dx, which tends to zero for y < 0 and to 1 for

y > 0), we have

C(X, t) s te Vt fu nc Co oVt -k s tc ha

In Sec. 9. 3 we will see that Eq. (9.7) is the partition function of an Ising-like statistical mechanics
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problem, and will derive an exact formula on the lattice:

C(x, t)=(1t- )g t-11 ' 2 2 , P (9.8)
2- - 1 )- 2

+ (g t - X , P g t 1, 2

where p = 1/(q 2 + 1), and =q4lq - 1), while

g (n, a, p) = n (1 - p)n-k Pk.

k=O

Here we show how Eq. (9.7) can be related to a continuum hydrodynamic equation which is

asymptotically accurate at large times. For x near the operator's right hand front, C is related

to a diffusing conserved density p, i.e.

C(xt) = jdx'p(x', t), (9.9)

with

atT(X, t) = vB(q)axp(x, t) + D(q)&xp(x, t). (9.10)

We will explain the quantity p below.

We begin by focusing on the spin-1/2 chain (q = 2). At time t we may write the operator

in the basis of products of Pauli matrices [256, 64, 214, 221, 2221,

Xo(t) = E as(t)S (9.11)
s

where Xo (t = 0) is a single site operator. Here the 'string' S can be any product of Pauli matrices

on distinct sites. The number of strings in the sum generically grows exponentially with time

(at the naive lightcone velocity, set by the geometry of the circuit). The S are normalized as

TrpSS' = 6ss', (9.12)

and X0 is also normalized so Tr poXO = 1, implying

Zas(t) 2 = 1. (9.13)
s

It is useful also to introduce p(x, t), the 'fraction' of strings ending at x:

p(x, t) = 1 as(t)2, p(x, t) = 1. (9.14)
strings S X

ending at x
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We observe that the OTOC is determined by as(t)2 as follows. Let Y, be the Pauli matrix

o at site x. (This choice does not sacrifice generality due to Haar randomness of the circuit.)

Since distinct Pauli matrices anti-commute, we see

/ ) 2
[Xo(t),YX] 2  as= (S 2as(t)SY . (9.15)[XO~o~ 

(t y ]

Due to the orthonormality in Eq. (9. 12), we have

C o-- Trp Xo(t) YX] 2 =2as(t) 2 . (9.16)
S:Sx aY ,aZ

This tells us that if we determine the evolution of as(t)2 , then the averaged OTOC is

also determined. The dynamics of as(t)2 turns out to be remarkably simple, as shown in

Refs. [221, 222]. It is best understood if we first consider a system of just two sites (rather than

an infinite chain) over which a Haar random unitary is applied at time t. It is straightforward

to calculate (see Appendix E. 1) that for arbitrary q

asi(t + 1)2 = Ws,s as(t)2  (9.17)
s

where

1
Wss = 6s' 6 s,j + 4  (1 - 6 s',i)(1 - 6 s,1). (9.18)

Note two features. First, the result is linear in as(t) 2 . Second, S' must be the identity if and only

if S is, but otherwise as, (t + 1) is a constant for all S' 4 I. In other words, the random unitary

introduces a (fictitious) Markov process on the probabilistic ensemble {(S, as(t)2 )} of strings

[221, 222]. This Markov process describes a single string S which is stochastically updated over

time. If S is nontrivial, each update maps it to any nontrivial string, with uniform probability.

The generalization to multiple spins is immediate: for each pair of spins that interact in a given

timestep, the stochastic update is applied to the corresponding two-site substring of S. This

Markov process will also be used in higher dimensional setting below, as it is not specific to

the 1+1D setting. Note that the fictitious stochastic dynamics, which involves a single evolving

string, is entirely different from the stochastic dynamics of the operator Xo(t) itself (which is a

superposition of exponentially many strings).

Returning to the average of the OTOC, we realize that it only matters whether or not the

string component of Xo(t) at the site x is the identity. In the ensemble {(S, as(t)2 )}, the fraction

[t(x, t) = as(t)2  (9.19)
S:S ,4I
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of strings that occupy the site x, may fail to commute with Y. There are q2 - 1 possible

nontrivial operators at the the site, which are all equally probable in the ensemble of string

components of Xo(t). In the present case of q = 2, this yields"

C(x, t) = 2 q /I(x, t) (9.20)

In turn, the average occupation number p(x, t) can be related to the endpoint density p,

assuming that x is far to the right of the left-hand front of the operator:

A(X, t) = P p(', 0), q=2__ (9.21)

The constant of proportionality [o has been determined by assuming local equilibration of the

structure of the strings." Therefore

C(x,t) p(x', t). (9.22)

It is natural to conjecture that local equilibration of the strings, together with the exponentially

large number of strings contributing to p, will make this identity valid asymptotically even

without the average.

It remains to analyze the dynamics of ;(x, t). The above Markov process implies a simple

autonomous dynamics for P:

p(t + 1, x) = p p(x, t) + p(t, x + 1)]

p(t + 1, x + 1) = (1 - p) [p(x,t) + p(t, x + 1)] , (9.23)

where

q 
(9.24)

q4 - q2 +1

is calculated by counting the non-identity two-site operators S that have the identity at x + 1,
and the overline denotes averaging over unitaries applied up to a given time.

Recalling that unitaries are applied on even and odd bonds alternately, Eq. 9.23 gives a

4 For general q, one has to start with an operator basis that obeys our normalization condition in Eq. (9.12).
It is easy to construct such a basis. Define X = Zkezq jk + 1) (kl and Z = Ekezq e

2
7ik/q 1k) (kJ. Then, the

discrete group generated by these two matrices contains exactly q2 elements up to unimportant phase factors.
These are not hermitian, but no problem arises if one considers Jas 2. Over Haar random unitaries, one easily

obtains C(x, t) = q P(X, t).
5 To find po, make the ansatz that each [z(x) is independent from p(x') for x 0 x'. Under this ansatz, the

probability that a pair of sites is partially or fully occupied is 1 - (1 - LO)
2 , and such an occupied pair evolves to

fill one of the pair with probability 1 - p. Therefore, setting po= (1 - p) (2po - L2) = q2
1 yields the stationary

state.
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complete description of the dynamics of p(x, t). This is a lattice diffusion equation for the

conserved density j5. Formally, P behaves like the probability density for a random walker who

starts at the origin, and who prefers to travel to the right since p < -. In the continuum (i.e.

at long timescales) ; satisfies a simple diffusion equation,

0tp(x,t) = vB(q)&xp(x,t) + D(q)& p(x,t), (9.25)

whose drift and diffusion constants are determined in Appendix. E.2:

vB(q) = -1 D(q) = 2q (9.26)
q2 + V (q 2 + 1)2(

The peak in p corresponds to the front of the spreading operator Xo (t). It travels at speed VB (q)

and broadens as a-(q, t) (Eq. 9.6). We emphasize that this fictitious random walker should not

be thought of as 'the endpoint' of the operator Xo(t), which is a superposition of many strings

with different endpoints.

From (9 22), or in the continuum

C(X, t) = jdx'p(x, t) (9.27)

we see that C obeys the same equation as p(x, t) but with different boundary conditions,

tC(x, t) = vB(q)6xC(x, t) + D(q)x2C(x, t). (9.28)

Taking into account the similar behaviour at the left hand front gives (9.7).

Above we had to make two (very natural) assumptions. One was that we can ignore the

interaction between the left end and the right end, and the other was that the occupation density

p(x, t) reaches its equilibrium value. In Section 9.3 we give an exact calculation of the averaged

OTOC (including exact results for finite t and x, not necessarily large) without making any

approximation.

9.1.2 Hydrodynamic description including fluctuations

Having determined the averaged OTOC, the key question is about the fluctuations between

different realizations of the random circuits. From the point of view of exact results this is a

much harder question (it is possible to obtain bounds in regions far from the front: we return to

this in Sec. 9.3.3). However, we conjecture that the universal physics of fluctuations in p(x, t)

can be obtained by upgrading Eq. 9.25 to a stochastic diffusion equation for the random quantity

p(x, t). This description indicates that fluctuations are strongly suppressed at late times. Since

the diffusive broadening is present in a single realization (i.e. is not an artefact of disorder

averaging) it is natural to conjecture that it will also be present in generic non-random 1D

many-body systems.
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The postulated stochastic diffusion equation may contain noise in both the diffusion constant

and the drift, but we restrict to noise in the latter since it is more relevant in the RG sense:

=tP(X, t) = ax (vB + r(x, t)) p(x, t) + Daxp(x, t). (9.29)

Here rq(x, t) is white noise, uncorrelated in space and time.

The statistical properties of this equation are easy to analyze. In the absence of the noisy

drift term, p(x, t) forms a 'wavepacket' whose width grows like fi and whose center of mass is

at xcm = VBt- When the noisy drift is turned on, it induces statistical fluctuations in xcm whose

magnitude scales with time as

AXcm ~ t1/4. (9.30)

A quick way to see this is to ask what the drift velocity has been in a given realization, averaged

over the spacetime region visited by the wavepacket. The wavepacket visits a spacetime volume

of order f dt'Vt ~ t3/ 2 . Averaging the drift velocity 7(x, t) over this spacetime volume yields

Vav t- 3 / 4 . The typical random displacement of the wavepacket is thus of order Axcm V avt ~

11/4. A standard perturbative calculation in Appendix E,3 reproduces this exponent 1/4, which

also characterizes the spreading of directed waves in random media [278].

The quantity Axcm is parametrically smaller than Vt-, the width of the front of the averaged

commutator. Therefore this heuristic argument indicates that the front profile of the averaged

OTOC also applies to the OTOC within a given instance of the random circuit. This is somewhat

surprising. To see why, let us contrast the above Haar random dynamics with Clifford dynamics

for q = 2.

9.1.3 Comparison with Clifford Circuit Dynamics

The Clifford group is a discrete subgroup of the unitary group, defined by the property that any

Pauli matrix is mapped to a product of Pauli matrices. When the quantum circuit consists of

Clifford operators, an initial Pauli matrix remains a single string (rather than evolving into a

superposition of exponentially many strings as for dynamics with generic unitaries) and at any

given time the endpoint density p(x, t) is localized on a single site.

However, uniformly random Clifford circuits have a crucial relationship with Haar random

circuits. Under a uniformly random Clifford update on a pair of sites, a nontrivial operator

is mapped with equal probability to any of the nontrivial operators, and thus the dynamics

satisfies the master equation of the Markov process in Eq. (9. 17) [9]. As a result, the averaged

quantities such as the average end point density p(x, t), the average occupation number p(x, t),

and, most importantly, the average OTOC C(x, t), obey exactly the same dynamics as the Haar

random case. Formally, this is a consequence of the fact that random Clifford operators form

a unitary 2-design [273]; see Appendix E. for the definition of design and a proof for random

Clifford. One may say that Clifford dynamics realizes the a priori-fictitious Markov process in
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a physical system.'i

Despite the equivalence of averaged quantities, the quantities within a realization are entirely

different. In the Clifford case the endpoint density p and the OTOC C are strongly fluctuat-

ing, while we have argued that for generic unitaries they are self-averaging (fluctuations are

parametrically small).

9.2 Higher dimensions

We now address the structure of the out of time order correlator C(x, t) in spatial dimensions

greater than one, by exploiting the relationship between the averaged OTOC and a fictitious

classical Markov process (Sec. 9.1.1). We show that this process is a classical droplet growth

problem whose universal physics can be understood in terms of the Kardar-Parisi-Zhang equa-

tion [82]. By taking appropriate averages, we then obtain exact universal exponents and scaling

forms for the OTOC in a circuit composed of Haar random unitary matrices. We conjecture

that these scaling forms also apply to more realistic Hamiltonian dynamics in non-integrable

lattice models and field theories.

Somewhat surprisingly, we show that the 'shape' of the spreading operator at late times

does not become spherical, unless the microscopic dynamics has symmetry under continuous

spatial rotations. In a lattice model, the spreading operator remembers forever that the lattice

has only discrete point group symmetries. Our argument for this is not specific to random

circuit dynamics. The point is simply that 'the' butterfly velocity VB, which sets the speed at

which the operator's front moves, generically depends on the front's orientation, resulting in

an anisotropic profile for the spreading operator at long times. Another surprising outcome,

given previous work in the context of many-body perturbation theory including Ref. 1230], is

that for the dynamics considered here the averaged OTOC C does not satisfy a local differential

equation.

In 2+1D, when lattice anisotropy is absent (e.g. in an appropriate continuum model) or

negligible, recent results in KPZ theory [258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268,

269, 270] yield the the full functional form of C(x, t) as a function of position and time. For

an initially localized operator, this is expressed in terms of the GUE Tracy Widom distribution

[262, 265] (which describes the extremal eigenvalue statistics for the Gaussian Unitary Ensemble

of Hermitian matrices [279, 280]).

9.2.1 Higher dimensions: Setup & Mapping to Classical Growth

We now describe the unitary dynamics for which we wish to study operator spreading and the

OTOC. We choose a circuit where in each timestep Haar-random two-site unitaries are applied

to bonds of a d-dimensional cubic lattice in a manner that generalizes the 1+1D protocol. We

describe the 2+1D case for concreteness; the generalization to higher dimensions is immediate.

6 All the statements here hold for any prime power q such as q = 2, 3, 4, 5, 7, 8, 9, 11, 13, 16,.. ..
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Figure 9-4: Top: 2+1D Haar-Random Quantum Circuit: We consider unitary dynamics
in which two-site Haar-random unitaries are applied on the bonds of a two-dimensional square
lattice, in the columnar dimer configurations shown in (1-4). Bottom: allowed updates in the
corresponding stochastic process.

The periodicity of the circuit is 4 layers. Four successive layers cycle through the four columnar
'dimer coverings' of the square lattice as shown schematically in Fig. 9-4 and Fig. 9-1b, so that
the site at the origin interacts sequentially with its neighbours at x = (0,1), (-1, 0), (0, -1),
(1, 0).

We relate the dynamics of C to a fictitious classical stochastic process for a growing cluster,
described by the evolution of 'occupation numbers'

n(x) = 0 or 1 (9.31)

at each site. These arise from the higher-dimensional generalization of the one-dimensional
stochastic process for an evolving string 8 described in Sec. 9.1, in which we define the string's
occupation number n(x) to be 1 if the string has support on site x and zero otherwise. The
effective stochastic process for these occupation numbers is simple (Appendix E.1). Consider
two adjacent sites x and y which undergo a joint update in a given timestep. If both sites are
initially empty (n(x) = n(y) = 0) they remain so after the update. If at least one of the sites
is initially occupied (n(x) = 1 or n(y) = 1 or both) then the configuration after the update can
be n(x) = 1, n(y) = 0 with probability p, or n(x) = 0, n(y) = 1 with the same probability, or
n(x) = n(y) = 1 with probability 1 - 2 p, where as before

P = . (9.32)
q2 + 1

If we consider the OTOC for a spreading operator which is initially localized at a single site, then
the corresponding classical model is initialized with n = 1 at the origin and n = 0 everywhere

193

El



Figure 9-5: Growth of a Classical Droplet and the OTOC: We relate the behavior of
the OTOC (averaged over the unitaries in the circuit) to a classical stochastic process for the
growth of a droplet in two spatial dimensions. A given configuration of the classical droplet
is specified by a binary occupation number n(x, t) as shown the left. Remarkably, the average
droplet profile (n(x, t)) precisely reproduces the averaged OTOC.

else. A possible evolution of n(x) in a single timestep is shown in Fig. 9-4.

The Haar-avaraged OTOC is related to the mean occupation number for this Markov process
at time t by the relation

C(xt) = q2  1 (n(x, t))ciassical (9.33)
q -

as illustrated schematically in Fig. 9-5. The averages on the two sides of the above equation
have different meanings. On the left, the bar denotes an average over realizations of a unitary
circuit, and C is a correlator for this quantum dynamics. On the right, the angle brackets denote
an average in a classical stochastic process. The real number C and the integer n are only related
after averaging. (As we noted above, the fictitious Markov process can be physically realized by
random Clifford dynamics, whenever q is a prime power.)

9.2.2 Classical model in 2+1D: Analytical & Numerical Results

The 'seed' at the origin grows to produce a cluster of linear size - t. In the interior of this cluster
the state equilibrates rapidly to a state in which nearby sites are essentially uncorrelated, with
average occupation (n(x, t))ciassical = (q2 - 1)q2 . In a given realization there is an interface
between the occupied and unoccupied regions which is sharp on length-scales of the order of the
lattice spacing. The evolution of the droplet is very similar to well-studied growth models such
as the Eden model [281], and reduces to the stochastic growth of this one-dimensional interface.
The size of the occupied region grows linearly in time, with statistical fluctuations in the shape
of the interface. (The average shape in our 2D model is not circular, but has only four-fold
rotational symmetry; we discuss this in Sec. 9.2.5.)
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Typically such interface growth processes are in the universality class of the Kardar-Parisi-

Zhang (KPZ) equation [82]. Consider a section of the interface, with a coordinate parallel to

the interface and h its height in the perpendicular direction. The KPZ equation is

c-th = C + v&h + (0 h)2 + ((x, t), (9.34)

where ( is uncorrelated spatiotemporal noise. The constant c contributes to the average normal

growth rate for the interface, while the v term describes diffusive smoothing of sharp features.

Finally, the non-linear A term encodes the dependence of average growth rate on the slope. (In

the present setting, lattice symmetry also allows a term oc &9h if the axis is at a generic angle

to the lattice axes. This term may be removed by a coordinate boost.) The KPZ equation

renormalizes to a nontrivial fixed point. One of its most basic properties is the fact that the

fluctuations in the height at a given position grow with time as t0, with # = 1/3.

The KPZ description above is justified on RG grounds, assuming that the relevant length-

scales for the fluctuations of the classical interface are much larger than the lattice spacing.

(See Ref. [282] for a review of lattice growth models.) We will show numerically that KPZ

scaling does indeed apply to the growing droplet, so long as the front is not locally parallel to

the lattice axes, where - as a result of the discrete spacetime geometry we have chosen - an

additional effect can come into play. (We expect this additional subtlety to be absent in models

in continuous time.)

Let us write the shape of the droplet as a parameterized curve in polar coordinates, with

R(O) the radius at angle 0 from the origin. (As mentioned above, the interface is sharp on an

0(1) lengthscale, and therefore R(O) is well defined up to an 0(1) uncertainty; this is sufficient

since the properties we discuss below are on parametrically larger lengthscales when t is large.)

From KPZ scaling we would expect

(R(0,t)) = r()t - A(6)t0 + -- (9.35)

(R(0, t)2 ) - (R(0, t))2 = C(9) t0 + - - - (9.36)

with the exactly-known exponent 3 = 1/3. We will discuss the nonuniversal function r(9) below

and in Sec. 9.2.), and we will discuss more detailed universal properties in the next section.

We have examined the growth of the droplet for spin-1/2 degrees of freedom (q = 2) on

the square lattice, by tracking the average, evolving support of a cluster over M = 2 x 10 3

realizations of the classical dynamics up to time t = 1000. We store only the density (n(x, t)),

averaged over all M realizations, as a function of position and time, as this is the quantity with

a direct interpretation in the quantum setting. We have also investigated smaller values of q:

these do not have an interpretation in the quantum circuit, but in the classical model decreasing

q simply corresponds to increasing the probability p in the update. Taking q < 2 is a convenient

way to explore two regimes (discussed below) which differ in the properties of a lattice-aligned
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Figure 9-6: Growth of a 2D Cluster (q = 2): We determine the behavior of the averaged
OTOC by simulating the stochastic growth of a two-dimensional cluster over M = 2 x 10 3

realizations, with local updates applied at each timestep, as described in the text. The average
occupation number for the cluster (n(x, t)) is shown for the indicated times in the evolution as
it approaches its asymptotic shape.

front; both regimes could also be accessed at fixed q, say q = 2, by varying other parameters in

the random circuit such as the circuit geometry.

At each time slice, the form of (n(x, t)) is fitted, along cuts through lattice symmetry axes,
to extract the cluster size and the the width of the front (where (n(x, t)) is appreciably different

both from zero and from its t -+ oo value). We observe linear growth of the size as expected.

Note that the fluctuations in the second equation of (9.35) imply that the width of the front

region is expected to scale like t1/ 3 .

Fig. 9-7 (top) shows the growing width of the front for cuts along the diagonal, 0 = t7r/4.

There, at the largest times we can access, the fitted exponent is 3 = 0.3305 0.0269, extracted

from a fit to the blue data points in Fig. 9-7. As expected, this value is consistent with the

KPZ value ,3 = 1/3.

A slight surprise is that the behaviour along the axis, e.g. at 9 = 0 is rather different: see

Fig. 9-7 (bottom), which does not show KPZ growth. Generically the only stable fixed point for

the growth of a 1D interface is believed to be the KPZ fixed point. However anomalous growth

is possible in this model, for q greater than a critical value q, < 2, when the direction of the

front's local normal vector is fine-tuned to coincide with one of the axes, as occurs at 0 = 0.

In this regime, a front with normal parallel to a lattice axis moves at a speed exactly equal to

the naive light-cone speed, VB = 2, and does not roughen. This is a known phenomenon in

various lattice growth models in discrete time which have synchronous parallel updates, and

can be understood by a relationship with directed percolation [283, 284, 285, 286, 287]: see

Appendix. E.5 for an explanation. While interesting, this phenomenon is an artefact of the

specific discrete spacetime geometry we have chosen, which could be eliminated by modifying

this geometry,7 and we certainly do not expect it to be relevant to continuous time dynamics.

(It would be interesting to look for this effect in appropriate deterministic Floquet dynamics,

7 The effect disappears for smaller q. For example for q = 1.4 we see clear KPZ growth both at 0 = 0 (fitted
exponent value # = 0.3223 0.0199) and at 0 = 7r/4 (/B = 0.3304 0.0149).
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Figure 9-7: Fluctuation Exponent /3: We fit the profile of the evolving droplet for q = 2
along the 9 = tr/4 directions (top) to extract the mean operator size and magnitude of the
fluctuations about the mean. The fluctuations exhibit power-law growth with exponent /3 =
0.3305+ 0.0269, consistent with the KPZ value 13 = 1/3. When fitting the profile along 0 = 0
(bottom), we observe no appreciable growth of the fluctuations; we argue in Appendix E.5 that
this occurs for sufficiently large q when the front's local normal vector is precisely aligned with
a lattice axis (as a result of the specific circuit geometry).

however.) It has an effect on the shape of the droplet, leading to flat 'facets' on the front close
to 9 = 0, iir/2, ir and 3ir/2 (Sec. 9.2.5).

We now discuss the OTOC scaling that results from the KPZ mapping, neglecting effects of
lattice anisotropy (which we will return to in Sec. 9.2.5).

9.2.3 Scaling of the OTOC in 2+1D

We have already mentioned the basic consequence of KPZ growth, which is the t1 /3 broadening
of the front. But, unusually for a nontrivial fixed point, not only the exact critical exponents
but also certain exact scaling functions are known for the growth of an interface in iD [258, 259,
260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270] (see [288, 289, 290, 291] for reviews). We
can now apply this information to the OTOC to obtain scaling functions which we propose are
generic.

To simplify things let us consider a case where lattice anisotropy is absent or very weak, so
that the spreading operator is circular and the OTOC depends only on a radial coordinate and
time. Weak anisotropy could certainly be engineered in an appropriate random circuit. More
importantly, we conjecture that the scaling form below captures universal scaling in realistic
rotationally invariant many-body systems and field theories.

For the growth of a droplet, the probability distribution of the interface radius is given by
the GUE Tracy Widom distribution [262, 265] (which has been been observed experimentally in
striking experiments on the growth of a turbulent domain in liquid crystals [292, 293]). Following
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convention we write

R(O, t) = VBt + Ct 1/3X(9) t), (9.37)

where the non-universal constants VB and c are of order one, and x(9 , t) is a random variable

whose mean and variance are of order one at large times. Focussing on a fixed value of 0, the

cumulative probability distribution of x at a fixed time is t-independent at large times and

given by the Tracy Widom distribution F2 :

Pr(X < s) = F2(s). (9.38)

Remarkably, this allows us to fix the full functional form of C(x, t) in two dimensions, in the case

where lattice anisotropy is absent. In polar coordinates (r, 0), and in the continuum, Eq. 9.,33 is

C(r, 9, t) = (E [R(9, t) - r])ciassical , (9.39)

where E is the Heavyside step function. The right hand side is precisely the probability that x

is greater than (r - vBt) ct 1 / 3 . We suppress the 9 dependence since we are assuming rotational

symmetry:

C(r, t) = 1 - F2 ( VBt (9.40)

The form of C(r, t) is shown in Fig. 9-8.. The asymptotic behaviour near the trailing edge, close

to saturation, i.e. for [vBt - ri/ct1 / 3 > 1, is [294, 295]

c 1/ 8 t 1 / 2 4  [(r - VB+)3  -

iLr - VBt 1 /8  12c3 t +

where bi = 21/24e('(1) with ('(-1) ~ -0.165, the derivative of the Riemann zeta function.

Near the leading edge, [r - VBt]/ct 1 / 3  1,

___/2___1/2 F4(r -vBt) 3 / 2 1
C(r, t) = exp - + - - - . (9.42)

167r(r - VBt) 3/ 2  3c3/2t/2

The former asymptotic expansion of F2 was achieved only recently [294, 295].

One can also consider operator spreading with other initial conditions. For example we can

initialize an operator in a half-plane so that C(x, t) has a straight, rather than a circular, front.

The scaling form for C(x, t) will then be given by the Tracy Widom distribution of the Gaussian

orthogonal ensemble, denoted F1. The objects F1 and F2 are of fundamental importance in

a broad range of mathematical and physical problems and it would be very interesting to see

whether any of these connections shed light on operator growth.

It should be noted that the mapping to a classical growth process described above gives
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Figure 9-8: The OTOC in (2+1)D: Plot of the front of the averaged OTOC C(r, t) in two spa-
tial dimensions and in the absence of lattice anisotropy, as determined from the exact expression
in terms of the Tracy-Widom distribution in the main text.

exact results for the averaged OTOC U but does not immediately give access to the fluctuations

in C between different realizations of the circuit. (These circuit-to-circuit fluctuations in the

quantum expectation value should not be confused with the stochastic fluctuations of n(x) in

the auxiliary classical model.) A calculation of, say, C2 - 2 would need to go beyond the

mapping provided here for J. Nevertheless we conjecture that, by analogy with the ID case

described in Sec. 9.1.2, circuit-to-circuit fluctuations in C are parametrically small at late times

whenever the front broadens with time.

9.2.4 Scaling of the OTOC in 3+ ID and above

The basic features of the 3+1D case are very similar to those in 2+1D. The KPZ equation

extends to an interface of arbitrary dimensionality [82]. For the the 3+1D quantum problem,
the dimensionality of the interface is two and the critical exponent 8 relevant to the width is

# ~ 0.240 (Ref. [257] and references therein). The analogue of F2 which yields the universal

form of C is not known analytically, but has been determined numerically [291]. Numerical

simulations for the 3+1D random circuit, along the lines of those above, would be feasible.

Dimensions equal to or higher than 4+1 are of course inaccessible experimentally, but they

are nonetheless interesting because in these high dimensionalities the KPZ equation yields a

phase transition as a function of the strength of nonlinearity [82]. Both a rough phase, in which

fluctuations grow as tO with 8 > 0, and a smooth phase, where fluctuations remain of order

one as t -* oo, exist. It would be interesting to know whether both phases are accessible in

appropriate many-body systems.
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Figure 9-9: "Faceting" of the Cluster: Shown are the cluster shapes at fixed time t = 10 3,
for the indicated values of q. When q is sufficiently large (third panel), the cluster develops
"facets" along the 0 = 0, 7r directions, where the normal growth speed is the maximum possible
given the circuit geometry. The region shown is the naive light cone.

9.2.5 Shape of the operator at late times

It is interesting to consider the shape of the spreading operator at late times - i.e. the shape
of the growing spatial region in which the OTOC C(x, t) has already saturated to its late time
value (to within an exponentially small correction). Rescaling distances by a factor of t-1 gives
a 'droplet' of 0(1) size, which we expect to reach a fixed asymptotic shape. 8 What is this shape?

At first glance, one might expect that asymptotically the front is a circle in two spatial
dimensions and a sphere in higher dimensions. For example, this would be expected if the
OTOC satisfied a local nonlinear differential equation in which derivatives higher than 2 could
be neglected, as discrete lattice symmetries would ensure that such an equation had symmetry
under continuous spatial rotations. Instead, we argue that for many body systems on the
lattice the shape of the operator is model-dependent and retains information about the discrete
symmetries of the lattice, even at arbitrarily late times. For the random circuit model this
follows immediately from the mapping to domain growth processes, for which anisotropy is a
well-known feature [296, 297, 298, 299, 3001. Figure. 9-9 shows the shape of the droplet in the
present model for various values of q.

For concreteness consider the 2D case (similar statements hold in higher dimensions). The
asymptotic droplet shape is described by a radius R(9) = h(9)t depending on the polar coor-
dinate 9. Since the size of the operator is large at large times, the curvature of the front is
parametrically small, except possibly at isolated 9 values where h(9) is not smooth. Away from
such isolated points, the local velocity of the front, in the direction of its normal vector, can
depend only on the orientation of this local normal vector. This dependence is captured by a
velocity function VB(M), where q = #(O) is the angle of the local normal vector to the x-axis. A

8In this scaling limit the width of the front is negligible.

200

08

0.7

06

0.5-

0.4

0.3

0.2

01

0



t =66

1000

Figure 9-10: Anisotropy in the Cluster Profile: Numerically determined anisotropy in the
average shape of the 2D cluster R(9, t)/t, at the indicated times. The anisotropy in the cluster
shape grows in time, and appears to asymptote to a non-trivial steady-state shape.

priori yR (q) is constrained only by lattice symmetry; for example on the square lattice

VB(. ) = vo+ vi cos 4+ v2 cos85+ .... (9.43)

It is evident that the asymptotic shape cannot be a circle except when vBQ(#) is a constant
function. Since the front of the operator advances by VB(q)dt in the normal direction ?L, the
distance between the front and the origin grows by vja(ii)dt/n -i, which must be equal to h(?)dt.
Expressing the normal vector in terms of h, one obtains

VB(4#(9)) = () 2 +(h() (9.44)

where q5(O) is the angle of the normal at polar position 9 on the interface. This equation is solved

4a

by a geometrical construction described in Ref. [299, 300 : h() = min. ... s.-- When the effect
of lattice anisotropy is weak (as is likely to be the case in many realistic situations when the
relevant degrees of freedom are long-wavelength modes), we expect hB(q) to be a smooth, weakly
varying function, and we may also solve for the shape perturbatively in w() =

as described in Appendix E.6. Restoring the time dependence,

R() = =V()t exp ( v W()2 + co80 +...). (9.45)

However when VB(q) varies sufficiently strongly, the asymptotic shape R(9) can include sharp
corners or straight segments on the boundary: in this regime the perturbative solution above is
no longer appropriate.

For many-body systems in continuous time we expect yR (54) to be analytic. In the present
lattice model, s(#) is analytic for q < q (q 2) while for q> qc this function is nonanalytic
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near # = 0 as a result of the anomalous behaviour of a lattice-aligned front: vB(#) ' 2+const. 1

[287]. This leads to flat facets near 0 = 0 in the asymptotic shape [287]. This change in the

surface morphology as q is varied is shown in Fig. 9-9.

For the random circuit model, it is straightforward to determine VB(0) in the extreme limit

q = oo where growth becomes deterministic. The propagation of the front in this limit is similar

to that of the 'next nearest neighbour' deterministic Eden model introduced in Ref. [301] and

has the same nonanalytic angular dependence of the velocity ' [3011:

V () = 2 (1 cos01 + I sin 1). (9.46)

In this limit, the growing operator is simply a square.

Fig. 9-10 shows the angular dependence of the radius for the 2+1D random circuit dynamics

at q = 2, for several values of the time, showing a clear anisotropy. Note also that R(0 = 0) - 2t

at late times: the front has a small facet near 0 = 0 which moves at the naive lightcone speed

for propagation along an axis direction. In the light of our 1D results where, for finite q, VB is

always less than the speed associated with the naive lightcone, it is remarkable that in a higher

dimensional circuit it is possible for the OTOC front to propagate at the maximal speed in

some directions. However we emphasize that this effect relies on the specific discrete spacetime

geometry.

Before returning to 1D, we restate the higher-dimensional results of Sec. 9.2.1 in a more

formal language which parallels our discussion in 1D. We introduce a density on clusters, C,
where C is a collection of sites:

p (C)a, p(C) 1. (9.47)
S; supp(S)=C C

Here supp(S) is the support of S. After coarse-graining, we can represent C by a closed surface

of spherical topology, namely the boundary of the coarse-grained cluster. Therefore p(C) is

the natural analogue of the 'endpoint density' p(x) in ID. The surface growth picture implies

that the effective dynamics of p(C) are the dynamics of the probability distribution of a growing

interface. Therefore, when this is KPZ, p(C) satisfies the Fokker-Planck equation corresponding

to the KPZ equation. We will discuss this further elsewhere.

9.3 Exact calculation of OTOC in 'spacetime' picture

We now give an analytical treatment of the OTOC from a 'spacetime' point of view. This leads

to connections with domain walls in an effective Ising model. Similar Ising degrees of freedom

have appeared in work on random tensor networks [274]. Here the effective Ising model looks

complicated at first sight, but turns out to be much simpler than those encountered in random

9 This is seen by following the evolution of a front through the four layers comprising the time step.
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Figure 9-11: The calculation of the OTOC in the spacetime picture leads to a partition function
for two nonintersecting directed random walks (domain walls in an effective Ising model). These
walks have a bulk energy cost (Eq. 9.67), and a boundary potential (Eq. 9.68) that biases them
to a positive and negative velocity respectively. Directions of null coordinates u, v used in the
text are indicated.

(non-unitary) tensor networks, due to special structure arising from unitarity. We arrive at a
problem of two nonintersecting directed walks, shown schematically in Fig. 9-11.

This spacetime picture may be much more generalizable than the dynamical point of view
above. In Sec. 9.4 we will use it to calculate an entanglement-related quantity. In the future,
we hope that the tools introduced in this section will be generalizable to higher moments of
the OTOC which capture fluctuations (C 2 etc.), or higher powers of the commutator, or to a
direct calculation of the von Neumann entropy. We note that the OTOC is not the only tool for
characterizing operator spreading: the operator entanglement entropy of a spreading operator
is also of interest [302, 303]. Scaling forms for this quantity will be discussed in Ref. [304].

Our exact result for the OTOC for arbitrary x and t (not necessarily large) is given in Eq. 9.8.
There are no approximations in this equation. Approximating g by the cumulative density
function <D(y) = 1 f_ e-_2/2dx of the Gaussian distribution, we reproduce Eqs. 9.5, 9.6, 9.7
above. This approximation is valid when t is large.

Although the spin chain is spatially infinite in both directions and so is our quantum circuit,
the time evolved operator Ut(t)XoU(t) is supported only on the interval [-t, t - 1] of length 2t.
Therefore, it suffices to consider an observable Y inserted in this interval, and our correlator
becomes the trace of a q2t < q 2t matrix. The infinite temperature Gibbs state reduces to the
identity matrix divided by the dimension q2 t. Expanding the commutator, we see

Trpo([Ut (t)XoU(t) Y ])2 -2t Tr[Ut(t)X2U(t)Y2] - Tr[Xot)YxXo(t)Yx]

= -2t Tr[Ut (t)XOU(t)Y 2 - F (9.48)

The Haar average of the first term is easy to evaluate. The observable X2 is conjugated by
a unitary U..,o(1, 0) and after taking the Haar average becomes proportional to the identity.
The constant of proportionality is fixed by the trace-preserving condition. By the normalization
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convention, Tr X2 = q = Tr Y2, and therefore the Haar average of the first term is equal to

q- 2t Tr I = 1. The second term F contains all the complexity.

Observe that the local unitaries form a square lattice that is rotated by 45'. It is thus

natural to introduce null coordinates as

u:= (t + x + 1)/2, := (t - x + 1)/2, (9.49)

t u + v -, = U - v. (9.50)

Due to the cylic property of the trace, the only unitaries in the circuit that could affect the

correlator are those in the intersection (a rectangle) of the future light cone of Xo and the past

light cone of Y,. From now on, let us use fu and tv to denote the linear sizes of this intersection

along u- and v-direction, respectively. There are 4fuf local unitaries contained in the intersection

of the lightcones.

9.3.1 Reduction to Ising spins

For each local unitary U the expression F contains two Us and two Uts. We will see that

averaging over the local unitaries allows us to express F as a partition function for a set of

classical Ising spins. To see why such Ising spins arise, consider the standard expression for the

Haar average of a single unitary matrix in U(n):

EUEU(n) Ua'aUbbUc'cU*, = n2 1 [a'bI6cldI X 6 ab6 cd + 3 a'd'6 b'c' X 6 adbc (9.51)

I (6a'b'Jc'd' X 6 adbc + 6a'd'b'c' X Jab6
c d)]n

(See Appendix E.7 for a self-contained derivation of this formula.) It is convenient to regard

the above expression as a matrix whose rows are labelled by the multi-index (a', b', c', d') and

whose columns are labelled by (a, b, c, d). Note that two types of contraction appear for the

unprimed indices, namely Jab6 cd and 6 ad6 bc, and similarly for the primed ones. Correspondingly,

in bra-ket notation the above matrix can be written in terms of two vectors which we denote

lIt) and lI) (the reason for the notation will become clear below):

U 0 U* U®U= 2  ('t't+I')I -) (t) +I)tL) . (9.52)

In the natural basis, these vectors are

1 1
(abcd I I) = - ab6 cd, (abcd |I ) = adocb. (9.53)

n n

204



With this definition, we may write (9.52) as

n2
U 0 U* 9 U 9 U* = 2 S W (s, S') IIs) (Is'i,

s,s'=t,4

with

{ if s S'
-- S Sif s s'.

n

We see that the unitary may be associated with a pair of classical Ising 'spins' s and s'.

(9.54)

(9.55)

For the application of interest to us the unitaries are two-site unitaries acting on the q2_

dimensional space associated with spins i and i + 1. In this case it is easy to see that

(9.56)

with

lit) = |T)i I)i+ I

(OY6 IT)= -o 6a,86q

and now a, ... , 6 run over the q basis vectors

14) have norm 1 and satisfy

|11) = Wii 441i ,1

(a1-y5 4) = -56&136,,
q

associated with a given spin. The vectors it) and

q

When we consider F, the spins arising from each unitary in the circuit will form an interacting

network. The interactions between spins from the same unitary will be given by w(s, s'), while

the interactions between spins from different unitaries will arise from the inner products of kets

It, 4)j associated with a given spin. As a result of the second line of Eq. 9.5Y, the weight of an

Ising configuration may be negative. However we will see that the weights simplify when we

integrate out half of the spins. This leads to a simpler Ising partition function which can be

treated exactly in terms of domain walls.

As a final piece of notation, we generalize the definition of I t) and II). Given an operator

0 ab on the n-dimensional space, we define n4 -dimensional vectors JOt) and 104) via

(9 ab~cd(abcd IOt) - TOaOt,
OadOcb

(abcdlOt) Tr 0t

Choosing 0 to be the identity gives the vectors |It,1).

Before we evaluate F for arbitrary eL and fo, let us consider the simplest case where e =
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lo= 1.

q2

q-2 E, Tr UXUtYUXUtY = qU-2 Eu Yi 2yi Uili 2 Ui*4 3Uii 6 Ui*,Xi2 iXi6i7
,-4i8=1

= q 2 ((I0 Y) 1 j U 0 U* 0 U 0 U* (I ®X)T). (9.60)

In the third line, X' = I® X and Y' = IJ Y, and the fourth employs the formal correspondence

between matrices and normalized vectors introduced above.

The Haar average of the tensor product of four unitaries is given by (9,52) with n = q2 .

To complete the evaluation of F we observe that ((I® X)pI(Iq2)T) q 4(Tr X)2 (TrIq)2 = 0,

((I 9 X) T(Iq2)) = q- 4( TrX2)(r Iq) - q- 2, ((I0 Y) I(I2)t) = q 4(T1r Y 2)(r Iq) = q-2, and

((10 Y)g(Iq2)) = q- 4 (TrY) 2 (TrIq) 2 = 0. This gives P = -1/(q 4 - 1).

When ts, i, > 1, we map the layout of local unitaries to a partition function for the spins s,
s' in Eq. 9.5.4. To facilitate the mapping, we decompose the input bra (Is' and output ket 1Is)

into separate 'legs' corresponding to the two physical spins, as in Eq. (9,56),

U0@ U* ® U0 U*q= 4-1 w(s, s') Is) Is) (s'I (s'I. (9.61)
s,s'=T4

Similarly, the vectors encountered above for the case t, = v = 1 can be decomposed as

|(IX)t) = It) IXt) and l(IY)t) = 14) IY), which satisfy

(t iY) = q-2TrY2  _ ( 2 (Tr Y) 2 = 0,

(t IXT) = q- 2(TrX)2 = 0, (4 IXT) q2 Tr X 2 = -. (9.62)
q

The expression Eq. (9.60) is now depicted as in Fig. 9-1.2a.

It is now clear that for general ts, fe we may regard the array of unitaries as a tensor

network composed of tensors of the form (9.61). The boundaries of this tensor network - i.e.

the external legs of the array of f, x f, unitaries - involve inner products with fixed vectors.

Two of the boundary legs are dressed with q IXt) and q (YI; see Fig. 9-12a. Apart from these,

the external legs on the top boundary are dressed by states q (4I, while those on the bottom

boundary are dressed with q It). In addition F includes an overall dimension factor q- 2t coming

from the infinite temperature Gibbs state. For convenience, we absorb the overall dimension

factor q- 2 t into the vectors on the lower boundaries; these vectors are taken to be normalized,

whereas the boundary bras in the top boundaries have norm q.

We may now interpret F as a partition function for the Ising spins su,v and s' , which

according to Eq. (9.61) are associated with the unitary at position (u, v). These spins take

the values t, 4. The weight associated with the 'bond' between suv and s', comes from the
4=

single-unitary Haar average and is -~- if su~ = s',,~ and q~1if s~ 54 s' Thvego
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4 (a)

s q

(a) (b)

Figure 9-12: In (a), we show the elementary tensor for computation of F. The boundary
conditions in the top-left figure are for f, = 4, = 1. Shown in (b), are the weights due to
the interaction between adjacent Ising variables arising from the same unitary (top) and from
unitaries at adjacent time steps (bottom). After integrating out the 'bra' Ising variable s', we
obtain the weights shown in Fig. 9-13.

the tensor network connecting the unitary at (u, v) to that on (for example) its lower right
at (u, v - 1) yields an interaction between s', and suv-1 which comes simply from the inner

product (s's,_ilsuv). This gives weight 1 if s' = su,v_1, and weight - if s',, # suv_1. See
Fig. 9-12b.

We have thus mapped the Haar average of the out-of-time correlator to a partition function
for Ising degrees of freedom on a honeycomb lattice (with the q-dependence residing in the
interactions on the bonds). At first sight, this may appear to be a formidable problem. Note in
particular that some configurations have negative weight. However, a simplification is possible,
as a result of the unitarity of the underlying dynamics. A hint that a simplification is possible
comes from the fact that the expression for F, Eq. (9.48), becomes trivial if one of the operators
X0 and Y is the identity operator. In the Ising language this corresponds only to a slight change
of boundary conditions. The simplification is effected by integrating out the 'bra' variable s',
from each unitary. This generates a three-spin interaction among the 'ket' variables IsU, SU_1,,,
and su,,_1. The calculation is straightforward and yields the table of weights in Fig. 9-13. For
example, if su,v = su,v-1 = SU-1,v, then the weight is q491 - 1 - 1 + - } - j = 1.

We are left with an effective Ising model for the s spins only. One s spin is associated with
each unitary in the quantum circuit. The fact that the weight in Fig. 9-13 is zero for two of the
configurations means that only a very restricted subset of Ising configurations are allowed. We
will show that these can be summed exactly by viewing the configurations in a dual description,
in terms of domain walls.

Let us specify the new boundary conditions. The rules of Fig. 9-13 apply along the bottom
boundary (with the lower spins of Fig. 9-13 being fixed up spins) due to our normalization
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Figure 9-13: Weights for the 3-body interaction which arises after integrating out half of the
Ising variables (the bra variables).

convention for the boundary kets, except for the site where the observable ket IXT) is dangling.

-1
q4-1

Tfixed Xt

q2

q4- 1

Tfixed

(9.63)

Xt

The top boundary bras, which have norm q, follow the rule that

4 fixed

= 1,

t

-fixed

q, =1,

t

=0 (9.64)

4

9.3.2 Partition function for two directed paths

Now the problem is reduced to a partition function of Ising variables with the three-body

interaction and the boundary interaction. We first simplify the partition function by relating it to
one with modified boundary conditions as follows. We denote the weight of a given configuration

by Wx,y(s), where the subscripts indicate the dependence on the boundary conditions induced

by the operators X and Y. Because of the last rule in Eq. (9.64), the spin at the site where Y

is attached - null coordinate (i4, f,) - has to be se.,j, = t. As a result we can replace Y with

Ifixed, which according to Eq. (9.64) gives the same weight when sf.,f, =t. Let us denote the

weight of a configuration s under this modified top boundary condition by Wx (s), dropping the

subscript Y. We may then write the desired quantity F = Es Wxy(s) as

= > Wx(s)=EWx(s)- E Wx(s). (9.65)
S : s -S :
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(a) (b)

Figure 9-14: A section of one of the domain walls in the bulk (double line). The two configura-
tions shown have equal weight.

We claim that the first term is equal to 1, and thus

1
2 Tr pc,[U(t)XoU(t)t, , = 1 - F = Wx(s). (9.66)

sleu ev4

The claim can be shown in two ways. First, the out-of-time correlator 1 - P must vanish if the
operator Y is replaced by the identity. The boundary vector |Y) then becomes |4), and the
partition function for F becomes precisely E., Wx (s). Therefore 1 - E, Wx (s) = 0. The other
way to show the claim is by directly integrating out the Ising variables inductively, starting from
the top line with respect to the all-4 boundary condition along the top boundary. This is a
nontrivial consistency check on our reduction.

Now we focus on Wx(s) with the variable at null-coordinate (f", f,) fixed to be 4. If the
bottom variable where X is attached is t, then the second rule in Fig. 9-13 together with the
boundary condition along the bottom boundary dictates that all the bulk variables be T. This
cannot be fulfilled for the spin at (4u, t,), implying that the weight is zero.

Hence, we have fixed two Ising variables at the bottom and top boundaries to be 4 where
the observables X0 and Y are attached. Let us think of domain walls instead of spins. The key
point is the first rule in Fig. 9-13, which leads to the domain walls being directed, drastically
simplifying the partition function. If we follow a domain wall from the top to the bottom,
it should always go down-left or down-right. This implies that there are two non-intersecting
domain walls extending from the bottom to the top boundary. The starting vertices of the right
and left domain walls have null coordinates (1,0) and (0, 1), respectively.

The domain wall has a weight

q2 (9.67)

from the 3-spin interactions in Fig. 9-13, excluding that involving the spin at null coordinate
(1, 1). The domain wall can fluctuate freely in the bulk without changing this weight, see
Fig. 9-14.
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However, the end position of the domain wall at the top boundary does affect the weight, and

we will need to count the number of domain walls for each ending position. For the right domain

wall, the end position can be at a vertex (t-v, v) in null coordinates for some v = 0, 1,.. ., -1.

Likewise, the end position of the left domain wall can be (u, t - u) for some u = 0, 1, ... , u - 1.

The weight from the top boundary interaction is then

q 2 t-2u-2v (9.68)

by Eq. (9.64). It remains to count the number of domain walls given their end positions. The

right domain wall connects (1, 0) to (t-v, v) while the left domain wall connects (0, 1) to (u, t-u),

with the constraint that they must not intersect. To handle the constraint, we use a reflection

trick. Regard the domain walls as random walkers. The right random walker randomly chooses

between up-left and up-right edges, to proceed from A = (1, 0) to B = (t - v, v). Similarly,

the left random walker proceeds from C = (0, 1) to D = (u, t - u). Any pair of paths A -+ B

and C -+ D that have a common point can be viewed as a pair of paths A -+ D and C -+ B.

Conversely, any pair of paths A -+ D and C -+ B, which must meet at at a point, can be viewed

as a pair of paths A -* B and C -+ D with a common point. Therefore, the number of pairs

of paths from A - B and C -+ D without intersection is the number of all unrestricted pairs

from A -> B and C - D, minus the number of all unrestricted pairs from A -+ D and C -+ B.

The number of our domain wall configurations is therefore

(t1) (t I) - (9.69)

where the second factor vanishes when u = 0 or v = 0.

Finally we combine the results above:

S W(s) = q q 2t-2u-2v -1 - - -S Wx~) q4 ~ 1 ~[ 1) (t1 - (t 1)~ (t 1)]S - q - q _)+1 5- ) )v1 U1
Stu .4W '- , " u=O v=O Eq. (9.68)

Eq. (9.(3) Eq. (967) Eq. (9.69)

This correctly reproduces the answer q 4 /(q 4 - 1) when fu = fv = 1. This can be conveniently

rewritten as

C(tjx) p) g(t - 1,4t - 1) g(t - 1,4u - 1)
1 -2p

_ 
2

- 2 g(t - 1,4t - 2) g(t - 1,u - 2) (9.70)1 - 2p

where

1
X= - P:= , (9.71)t = u + V - 7 U fV)q2 + 1
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and

g (n, a) := () ~- k P k. (9.72)
k=0

Further simplification is possible since g(t - 1, a) ~ g(t - 1, a - 1) for large t.

C(t, x) ~ g(t - 1,e - 1, p)g(t - 1, if - 1, P) ~ (VD t + z vet- x) (9.73)

where

q 2 -1 2q/t 1 (974)

q2 +' q2 +' M /2-7 _oY

9.3.3 Bounds on Fluctuations

Here we estimate the fluctuation of C(t, x) due to the randomness of the unitaries. One might

wish to calculate this fluctuation directly, using a similar technique that we employ for the

average of C(t, x), but we found the exact computation unwieldy as it involves high powers of

unitaries. (See [276].) Nevertheless, we can argue that the fluctuations are negligible in two

regimes.

Since the random variable C(t, x) takes values between 0 and 2, the variance is upper bounded

by 2C. Therefore, the standard deviation is upper bounded by

VC (t, )2 - C( t, x)2 V 2C(t, x) ~ O(1I) e xp -4 x u (9.75)
(_I (lxi ~vBt )2)(95

This bound is valid for any t, x, but only meaningful when Ix > VBt. This basically says that

there is almost no "leakage" of operators beyond the lightcone defined by VB. (In passing, we

note that one can also use Markov inequality Pr[X > a] < a- 1EX which holds for any positive

random variable X and a positive number a to have a probability tail bound.)

In the opposite regime where lxi < VBt, we have shown that the average C(t, x) is almost

1; the discrepancy is upper bounded by 0(1) exp(-(vBt - X) 2 /2o 2 ). Thus, in this regime the

fluctuation is basically given by

EuF2(U) = N-2Eu(Tr UXUYUXUY) 2 > 0 (9.76)

where F is defined in Eq. (9.;48) and N is the dimension of the Hilbert space of spins where

UXUtY is supported on. Here U includes all the local unitaries in the evolution quantum

circuit.

To estimate the fluctuation, we consider a slightly different system where 2ct spins form a

ring, where c is some absolute constant that depends on q only. If c > 1, this does not modify

the dynamics at all, since the evolved operator UXOUt is supported on 2t spins. For c < 1, while
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Figure 9-15: The average entanglement purity P maps to the partition function for a directed
random walk. At the top boundary the walk terminates at the position of the entanglement cut
between subsystems A and B. At the bottom boundary the endpoint is free.

we do not insist that this allows us to compute the fluctuation rigorously, we anticipate that
qualitative conclusions from this modified setting carry over to the original open chain system.

In Appendix E.8, we show that if c = M - 6= O(q- 2 ), then for all |xi < ct

EuF2 (U) 5 11q 4 c. (9.77)

That is, deep in the lightcone, there is a region in spacetime bounded by a nonzero speed
where the fluctuation of C(t, x) is suppressed exponentially in t. It is likely that this is only
a bound, rather than a tight estimate of fluctuation. Eq. (9.77) is proved using previous re-
sults on approximate unitary designs [223], and estimates for EuF2 (U) when U is truly Haar
random [305].

9.4 Entanglement growth

Entanglement can by quantified in various ways, but perhaps the simplest measure is the entan-
glement purity P = Tr (TrAc I1) (1I) 2 < 1, where A is some region. A pure state [/) on A U Ac
is entangled if and only if the purity is not equal to 1. The logarithm of the entanglement purity
is the Renyi-2 entropy

S2 (A) = -log P. (9.78)

In this section, we calculate exactly the average purity of 'half' of the infinite chain, for arbitrary
t, under the evolution protocol in Section 9.1, with an initial product state. Previously, a
bound on the saturation time for q = 2 was obtained [2221. Also, the evolution of average
entanglement purity has been calculated using other techniques under a protocol where random
two-site unitaries are applied to random bonds [275] and other protocols [276].

Here we show that the averaged purity 5 can be mapped to the partition function for a
directed walk, shown schematically in Fig. 9-15. Our calculation technique below will be very
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similar to the OTOC calculation in the previous section; the difference is only in the boundary

conditions.

9.4.1 Random walk picture

Let A be the left half of our chain, and B be the right half. The initial pure density matrix is

p(t = 0) = . OP-1 0 PO 0 Pi 9 --, where Pi is the projector Ii) (il onto the initial state at site

i. If U is the full time-evolution unitary consisting of local unitaries, the entanglement purity

P across the cut between A and B is

qAI qIBI_

P(t) = E (ab| Up(0)Ut ja'b) (a'b'l Up(0)Ut |ab')
a,a'=1 b, b'=1

qAI+IBI x (tOIAltoIBI| U 0 U* 0 U ® U* -- (Po)t(P1)t .) (9.79)

The notation |t),14) is the same as in Sec. 9.3.1. For a one-dimensional projector P on q-

dimensional space, the q4 -dimensional vector It) satisfies

(t IPT) = (I4 Pt). (9.80)
q

The expression for the purity can be thought of as a partition function for classical Ising

spins as in Sec. 9.3.1. There are two Ising spins associated with each local unitary; see Eq. (9.54).

Due to Eq. (9.80), for any configuration of the Ising spins, the weight factor from the bottom

boundary is q- A-IBI, which cancels the factor qIAI+BI in front of Eq. (9.79). Hence, the average

purity is simply the sum of weights from the domain wall in the bulk (e.g. see Fig. 9-14).

In Sec. 93. 1, we first integrated out the 'bra' Ising variables s', but here we find it simpler to

integrate out the 'ket' Ising variables s. The transition rules of Fig. 9-13 are now upside down,

but otherwise the same. Then, we have a single domain wall starting from the top boundary

to reach the bottom. Any domain wall has length exactly t, giving rise to weight (q+1) . The

domain wall can choose between left-down or right-down moves as it proceeds from the top, and

therefore there are 2t domain walls. We conclude that

P(t)= q2.2 ) (9.81)

Note that the factor 2q/(q2+1) is directly related to the average "entangling power" of Ref. [3061.

We may define the 'purity speed'

q2 + 1
P(t) = qV, p= logq 2q (9.82)
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This quantity gives a bound on the growth rate of the second Renyi entropy:

S2(p(t)A) = -logq P(t) > -logq P(t) =vpt (9.83)

The inequality is because the function f(x) = -log x is convex. Note that this expression

bounds the growth rate of S2 but does not fix it. The distribution of S2 fluctuates in a window

of small size compared to its mean [91,10 but since S2 appears in the exponential in q-S2, this

does not rule out the possibility that this quantity is affected by rare anomalously small values

of S 2 , making it very different from q-S2.

The von Neumann entropy SvN is always greater than or equal to S2, so the growth rate VE

of SvN is also bounded by vp:

q2+1 log2 1
vE vP log =1 - + (984)

2q log q q2 log q

where the expansion is for large q.

In Ref. [9] we argued that the universal fluctuations of the entanglement in random cir-

cuit dynamics may be understood in terms of a coarse-grained minimal cut, of random shape,
through the random circuit. This picture may be contrasted with the domain wall calculation

of the averaged purity, which reduces to a statistical mechanics problem without quenched ran-

domness. This is reminiscent of the difference between a quenched and an annealed average in

the statistical mechanics of disordered systems [307]. A direct exact calculation of S2 (not to

mention SvN, or of the fluctuations in the entropy) for finite" q would be much more difficult

than the calculation above, as a replica-like limit [3071 would be required to handle the loga-

rithm. However structure arising from unitarity might make this calculation tractable. This is

an interesting task for the future.

The scaling limit of the representation obtained in this section, where we take length and time

scales to be large and of the same order, yields a 'deterministic' domain wall configuration. This

is simply a vertical line for the infinite geometry considered here.1 2 We expect that extending

the calculation to higher dimensions will give, in the scaling limit, a formula for -log P as the

'energy' of a minimal surface (representing the Ising domain wall) which has a deterministic

coarse-grained geometry, obtained from an effective elastic energy minimization problem. This

is precisely the scaling picture proposed in Ref. [9] for the growth of entanglement in higher-

dimensional systems.

10 Ref. [9] argued that the width of the distribution scales as tl/ 3. The mean value is of order t.
" In the limit q -+ oo it is easy to show that VE = up in the present model.
12This is because the v i fluctuations in the transverse position of the domain wall are negligible compared to

t; compare [9] where the minimal cut configuration is also deterministic in the scaling limit.
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left staircase right staircase

f bonds

Figure 9-16: Random Circuit built from "Staircase" Unitaries: We use "left" and "right"
staircases - built from random two-site unitary operators as shown, and extending over f bonds

- as the building blocks for a random quantum circuit in which the ratio of the entanglement
and butterfly velocities VE/VB may be made arbitrarily small.

9.4.2 Non-Universality of the Ratio VE/VB

In Ref. [9], see also Ref. [214], we showed that the speed VE associated with entanglement growth
is in general smaller than the operator growth speed VB, and gave explicit models displaying a
ratio VE/VB < 1. In these models1 3 this ratio happened to be 1/2. Values close to 1/2 were also
found numerically in Ref. [214] and Ref. [249]. These results might lead one to wonder whether
this value is in some sense generic. Here we show that it is not, by constructing random circuit
dynamics, involving interactions of large but finite range, which give arbitrarily small values of
VE/VB without any fine tuning. The construction uses random unitaries made up of 'staircases'
of length 0(q 2) which are made up of smaller random unitaries (Fig. 9-16). When q is large,
we obtain a ratio VE/VB which is at most of order 1/q2 . (In a deterministic spin chain with
quenched spatial disorder it is even possible to have VE/VB = 0 [239], but here we insist on
statistical translational invariance: i.e. we insist that the probability distribution for the circuit
is invariant under translations.)

Consider quantum circuit dynamics in which 'staircase unitaries' are applied at random
locations and at random times in a Poissonian fashion. A staircase is a collection of 2-site
unitaries arranged as in Fig. 9-1.6. Left and right-oriented staircases are applied with equal
probability. The staircase acts on f bonds and we take e large but finite, satisfying e/q 2  1.
Let r be the rate at which staircases are dropped at a given location.

A single staircase can increase the entanglement across a given bond by at most 2 units,
implying VE < 2re. On the other hand a single staircase can move the endpoint of an operator
a long way when ,> q 2 > 1. The random walk picture of Sec. 9.1.1 shows that in the limit
of large /q 2, a staircase advances the front of the OTOC by an average distance ~ q 2/2.
This involves an average over the two staircase orientations, only one of which is effective in

13 This was determined analytically for a certain large q model, distinct from that here, and numerically for
various circuits composed of Clifford gates.

215



advancing the front a long distance. The large value is because, when q is large, the small value

of p = 1/(q 2 + 1) (Eq. 9.24) means the random walker can 'run' a long way up a rightward-

oriented staircase before falling off. The previous implies VB -_ q2 rZ/2 at leading order in i.

This yields a ratio VE/VB < 4/q 2 in this regime, which can be made arbitrarily small by taking

q (and hence f) to be large.

9.5 Outlook

We have argued that universal scaling forms for the out-of-time-order correlator can be obtained

using mappings to paradigmatic problems in classical statistical mechanics. In one dimension

we gave an extremely simple hydrodynamic picture in terms of diffusion. In higher dimensions

we gave a mapping to classical surface growth and the KPZ equation:' ' the OTOC is given by

the averaged density for a growth process in the KPZ universality class.

These mappings were derived exactly for random unitary circuits, which are natural 'least

structured' models for chaotic quantum dynamics in situations where conserved quantities are

not playing an important role. We have conjectured that the universal scaling forms found here

also apply to OTOCs at asymptotically late times in generic, nonintegrable many body systems

and quantum field theories. It will be interesting to test this conjecture in other situations where

calculations are possible.

This picture differs from that obtained in a number of previous calculations using many-body

perturbation theory [230, 232, 237, 2361, and it will be interesting to understand the reasons

for these differences. Ref. [230] found an operator front that did not broaden in time, whereas

here we find a broadening front in all dimensions below 4 + 1. Additionally, in Ref. [230] the

OTOC was found to obey a local, nonlinear traveling wave equation, which is unlike what we

found for random circuits. In ID we obtained a linear hydrodynamic equation, while in higher

dimensions C(x, t) in a random circuit is not governed by a local differential equation at all,
contrary to standard lore about OTOCs.

Interestingly, a mean field approximation to the classical growth process would yield a lo-

cal differential (or rather difference) equation for the OTOC, of traveling wave form. This is

discussed in Appendix. E.9. However, the mean field approximation is not valid in physical

dimensionalities.

Assuming that the results here do indeed apply to realistic systems with Hamiltonians that

are fixed in time, it will be interesting to consider extensions of the present coarse-grained

pictures which take conserved quantities into account.

We have also given exact results for entanglement growth in 1+1D which support the scaling

ideas put forward in [91, as discussed in Sec. 9.4. In this picture (in any D) entanglement growth

14 Ref. [9] obtained a connection between entanglement growth in 1+1D random unitary circuits and the KPZ
equation. To avoid confusion we emphasize that the connection with KPZ discussed here is physically entirely
distinct from that one, and is not even in the same number of spatial dimensions.
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is determined by a minimal surface in spacetime, whose geometry becomes well-defined' in

an appropriate scaling limit and is determined essentially by an elastic minimization problem.

Furthermore, it was argued in that paper and in Ref. [2.14] that generically VE < VB, where VE

is the speed characterizing the growth of entanglement. Here we have shown that it is possible

to have arbitrarily small VE/VB in a random quantum circuit.

The effective Ising partition functions for calculating the OTOC and the purity turned

out to have interesting structure, making them drastically simpler than they appeared at first

sight, and much simpler than the analogous partition function for a non-unitary tensor network

[274]. It would be very interesting to explore whether similar simplifications occur when the

averaging involves higher powers of the unitary circuit. If so this would permit calculations of,
say, modified versions of the OTOC involving higher powers of the commutator (here we have

considered only the square). Similar techniques would also allow a calculation of fluctuations in

the OTOC due to randomness in the circuit. We have conjectured that these fluctuations are

small whenever the front broadens with time, but we have not attempted a direct calculation,
except via a heuristic argument in ID. '" Even more interesting would be a direct calculation of

the von Neumman entropy, which would have to use a replica limit to handle the logarithm.

OTOCs involving higher powers of the commutator are important for comparison with the

Lieb-Robinson bound. The OTOC considered here can be thought of as the squared Frobenius

norm of the commutator divided by the Hilbert space dimension, whereas the Lieb-Robinson

bound is on the operator norm of the commutator. The two norms are related as the operator

norm is always upper bounded by the Frobenius norm, but our results do not put any nontrivial

bound on the operator norm, due to the large dimension factor. The exact relation of the two

quantities is yet to be determined.

In addition to exploring implications for realistic many-body systems, interesting questions

remain that are specific to the random circuit context. (Note that, at the most basic level, our

results show that operator growth saturates the naive causal lightcone of the quantum circuit as

q -4 oo, but not for finite q.) The randomness in the circuit necessarily implies statistical fluctu-

ations in all observables including C(x, t). We have argued that these statistical fluctuations are

(perhaps counterintuitively) a subleading effect at late times. We have shown this in regimes

far from the front of the OTOC by giving inequalities, and we have given a heuristic argument

for it in the region near the front. This argument was based on a phenomenological extension

of the hydrodynamic equation for C(x, t) in the 1D case to allow for statistical fluctuations in

C(x, t) (Eq. 9,29). It would be desirable to give a microscopic derivation of Eq. 9.29. (For the

entanglement entropy, statistical fluctuations were investigated in Ref. [9].) It also remains to

characterize the classical growth problem in Section 9.2 more fully, for example by obtaining

the nonuniversal constants via an approximate analytic treatment.

The KPZ equation is connected to a remarkable array of topics in classical statistical me-

1 5But model dependent above 1+1D
16Circuit-to-circuit fluctuations in the OTOC should not be confused with KPZ fluctuations in the auxiliary

classical model.
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chanics [308], including the directed polymer in a random medium [309] and one-dimensional

hydrodynamics [310], and has beautiful experimental applications [292, 293]. Through the

Tracy-Widom distribution [279], it is also connected to random matrix theory and an array of

combinatorial problems (for example the longest increasing subsequence problem and the statis-

tics of random permutations [311, 312]). It will be interesting to explore which members of this

array can shed light on operator growth.
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Chapter 10

Dynamics of Entanglement Growth

In this chapter, we focus on heuristics for the dynamics of entanglement growth in generic, non-

integrable systems, both in ID and in higher dimensions. We arrive at these pictures by studying

'minimally structured' models for quantum dynamics: dynamics that are spatially local, and

unitary, but random both in time and space ('noisy'). Concretely, we will focus on quantum

circuit dynamics with randomly chosen quantum gates. Entanglement growth in these systems

exhibits a remarkable universal structure in its own right, related to paradigmatic problems in

classical statistical mechanics. We emphasize that the mapping presented here is distinct from

the relation between operator spreading and classical stochastic processes demonstrated in the

previous chapter, as the entanglement entropy is a non-local quantity, and its dynamics cannot

be extracted from the behavior of any single operator under Heisenberg evolution.

Random circuits provide a theoretical laboratory which allows us to derive scaling pictures

for entanglement growth and the so-called 'entanglement tsunami' [213] which, we conjecture,

generalize to quenches in many-body systems without noise. For example we propose a simple

'minimal membrane' picture which can be used to derive scaling forms for the growth of the

entanglement. We also argue that generically there is a well-defined 'entanglement speed' VE,

but this is generically smaller than the 'butterfly speed' vB governing operator growth, and we

give a physical explanation for this phenomenon.

We will show that noisy entanglement growth allows a long-wavelength description with an

emergent universal structure. Physically, the class of noisy dynamics includes closed, many-body

systems whose Hamiltonian H(t) contains fluctuating noise terms, and also quantum circuits in

which qubits are acted on by randomly chosen unitary gates. In this setting, we pin down both

the leading order deterministic behaviour of the entanglement and the subleading fluctuations

associated with noise. We argue that fluctuations and spatial correlations in the entanglement

entropy are characterized by universal scaling exponents, expected to be independent of the

details of the microscopic model.

For noisy systems in one spatial dimension (1D), we argue that the critical exponents for

entanglement growth are those of the Kardar-Parisi-Zhang (KPZ) equation, originally intro-

duced to describe the stochastic growth of a surface with time t [313]. In the simplest setting,
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we find that the 'height' of this surface at a point x in space is simply the von Neumann

entanglement entropy S(x, t) for a bipartition which splits the system in two at x. The av-

erage entanglement grows linearly in time, while fluctuations are characterized by non-trivial

exponents. We support this identification with analytical arguments and numerical results for

discrete time quantum evolution (unitary circuits).

A remarkable feature of the KPZ universality class is that it also embraces two classical

problems that at first sight are very different to surface growth [313, 314]. These connections

lead us to powerful heuristic pictures for entanglement growth, both in ID and higher dimen-

sions. The KPZ universality class embraces the statistical mechanics of a directed polymer in

a disordered potential landscape [309], and ID hydrodynamics with noise (the noisy Burgers

equation [310]). These problems, together with surface growth, are sometimes known as the

'KPZ triumvirate' [315]. They are summarized in Fig. 1.0-1. We will show that entanglement

growth can usefully be related to all three of the classical problems in in Fig. 10-1.

In the quantum setting, the directed polymer is related to the 'minimal cut', a curve in

space-time which bisects the unitary circuit representing the time evolution. This picture is

more general than the surface growth picture, as it allows one to consider the entropy for

any bipartition of the system. It also allows us to generalize from 1D to higher dimensions.

The picture is reminiscent of the Ryu-Takayanagi prescription for calculating the entanglement

entropy of conformal field theories in the AdS-CFT correspondence, which makes use of a

minimal surface in the bulk space [316], and analogous results for certain tensor network states

[317, 318, 274]. Here however the cut lives in spacetime rather than in space, and in a noisy

system its shape is random rather than deterministic. (For a different use of the idea of a minimal

cut in spacetime, see Ref. [77].) In d + 1 spacetime dimensions the minimal cut becomes a d-

dimensional membrane pinned by disorder. This picture allows us to obtain approximate critical

exponents for noisy entanglement growth in any number of dimensions.

This picture also leads us to a conjecture for entanglement growth in systems without noise,

both in ID and higher dimensions, as we discuss below. According to this conjecture, the

calculation of the entanglement in higher dimensions reduces to a deterministic elastic problem

for the 'minimal membrane' in spacetime. In ID, it results in particularly simple universal

scaling functions, which agree with scaling forms in holographic 1+1D CFTs [213, 76, 77], and

which we suggest are universal for generic, nonintegrable, translationally invariant ID systems.

The third member of the triumvirate in Fig. 10-1. is a noisy hydrodynamic equation describing

the diffusion of interacting (classical) particles in ID. We show that this can be related to the

spreading of quantum operators under the unitary evolution, giving a detailed treatment of the

special case of stabilizer circuits. Note that while the minimal cut picture generalizes to higher

dimensions, the KPZ and hydrodynamic pictures are special to ID.

We propose that noisy dynamics are a useful toy model for quantum quenches in generic (non-

integrable, non-conformally-invariant) systems, even without noise. The logic of our approach

is to pin down the universal behaviour of noisy systems (Secs. 10.1-10.5), to establish simple

220



KPZ universality cl:as~s

Classical Directed polymer in Stochastic
surface growth random medium particle dynamics

.ooo..Iooooo
*OOBSn0CBn

Growth of
entanglement

'Minimal cut'
through circuit

Hydrodynamics
of operator spreading

Figure 10-1: The KPZ 'triumvirate' is made up of three very different problems in classical
statistical mechanics which all map to the KPZ universality class. As we will discuss, each of
them can be usefully related to entanglement in 1+1D.

heuristics capturing this behaviour (Secs. 10.2, '10.3), and then to extend these heuristic pictures
to dynamics without noise (Secs. 1.0.4, 10.6).

The detailed physics of the entanglement fluctuations (including KPZ exponents) certainly
relies on noise. However the coarser features of the dynamics are in fact deterministic. These
include the leading order time dependence of the entanglement entropy and mutual information
when the length and time scales are large. We conjecture that this leading order behaviour,
as captured by the directed polymer and hydrodynamic pictures, carries over to Hamiltonian
dynamics without noise. On the basis of this we address (Sec. 10.4) features of entanglement
growth that have previously been unclear. We argue that in generic 1D systems the entanglement
growth rate can be interpreted as a well-defined speed VE, but that this speed is generically
smaller than another characteristic speed, which is the speed vB at which quantum operators
spread out under the dynamics (the 'butterfly' speed). Sec. 10.4 also addresses universal scaling
forms for the entanglement entropy in ID. In Sec. 10.6 we discuss the geometry-dependence
of the dynamical entanglement in higher-dimensional systems: we argue that there is again a
scaling picture in terms of a minimal surface, but that more nonuniversal parameters enter into
the time dependence than in 1+1D.

10.1 Surface growth in 1D

We begin by studying entanglement growth under random unitary dynamics in one dimension.
After summarizing the KPZ universal behavior, we derive this behaviour analytically in a solv-
able model, using a mapping to a classical surface growth problem. In the following sections we
provide alternative derivations of this universal behaviour by relating the 'minimal cut' bound
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on the entanglement to the classical problem of a directed polymer in a random environment,
and by relating the spreading of quantum operators to a ID hydrodyamics problem.

Consider a chain of quantum spins with local Hilbert space dimension q (for example spin-

1/2s with q = 2). We take open boundary conditions, and label the bonds of the lattice by

X = 1, ... L. We consider only unitary dynamics, so the full density matrix p = IT) (I represents

a pure state. For now we consider the entanglement across a single cut at position x; we will

generalize to other geometries later in the paper. The reduced density matrix px is defined by

splitting the chain into two halves at x and tracing out the left-hand side (Fig. 10-2). The nth

Renyi entropy for a cut at x is defined as

1
Sn~x = log (Tr pn") .(10.1)n

Logarithms are taken base q. In the limit n - 1 the Renyi entropy becomes the von Neumann

entropy,

SVN (X) -Tr px logp (10.2)

A basic constraint on the von Neumann entropy is that neighboring bonds can differ by at most

onel:

SvN(X + 1) - SvN(X)l < 1- (10.3)

In this section we focus on the growth of the bipartite entropies S(x, t) with time, starting

from a state with low entanglement. (Here S(x, t), without a subscript, can denote any of the

Renyi entropies with n > 0.) For simplicity we take the initial state to be a product state, but

we expect the same long-time behaviour for any initial state with area-law entanglement. We

will argue that for noisy unitary dynamics, the universal properties of S(x, t) are those of the

Kardar-Parisi-Zhang equation:

S 2 A
= V axS - (axS)2 + (x, t) + C. (10.4)

at 2

This equation was introduced to describe the stochastic growth of a 1D surface or interface

with height profile S(x) [313]. It captures an important universality class which has found a

wealth of applications in classical nonequilibrium physics, and its scaling properties have been

verified in high-precision experiments [293, 292]. The constant c in Eq. 10.14 contributes to the

positive average growth rate, while q (x, t) is noise which is uncorrelated in space and time. The

v term describes diffusive smoothing of sharp features. The nonlinear term, with coefficient A,
describes how the average growth rate depends on the slope; the negative sign is natural here,
as discussed in Sec. 10.1_1 (and implies that B in Eq. 10.6 below is positive).

KPZ scaling is characterized by an exponent 3 governing the size of fluctuations in the

'This follows from subadditivity of the von Neumann entropy.
2The setup with area-law entanglement in the initial state is analogous to a quantum quench which starts in

the ground state of a non-critical Hamiltonian. We briefly consider initial states with non-area-law entanglement
in Sec. 107.
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Figure 10-2: Spin chain with open boundary conditions. S(x) denotes the entanglement entropy
(von Neumann or Renyi depending on context) between the part of the chain to the left of bond
x, indicated by the box, and the part to the right.

interface height, an exponent a governing spatial correlations, and a dynamical exponent z
determining the rate of growth of the correlation length (z = a/0 by a scaling relation). These
are known exactly [313]:

8 = 1/3, a = 1/2, z = 3/2. (10.5)

In our context the height of the surface is the bipartite entanglement S(x, t). This is a random
quantity which depends on the realization of the noise in the quantum dynamics. The mean
height/entanglement grows linearly in time, with a universal sub-leading correction:

h(x, t) = (S(x, t)) = VEt + Bt0. (10.6)

Angle brackets denote an average over noise. The linearity of the leading t dependence is
expected from rigorous bounds for various 1+1D random circuits [220, 319, 3201. Linear growth
is also generic for quenches in translationally invariant ID systems [52, 62]. The fluctuations
grow as

w(x, t) = ((S(x, t)2)) 1/ 2 = Ct3. (10.7)

We will refer to w as the 'width' of the surface. The ratio C/B is universal (the constants VE
and B are not). The KPZ fluctuations are non-Gaussian: remarkably, their universal probability
distribution has been determined analytically [260, 261, 262, 263, 264, 265, 266, 267, 268, 269,
270].

The correlation length governing spatial correlations in the fluctuations grows with time as

w() ~ t1/Z, (10.8)

and the equal time correlation function has the scaling form

G(r) ([S(x, t) - S(x + r, t)]2 )1/2 = r'g (r/ (t)). (10.9)

On length scales 1 < r < (t), the surface profile S(x) resembles the trace of a 1D random
walk: this is consistent with the exponent a = 1/2. On scales r > (t) the fluctuations in
S(x, t) and S(x + r, t) are essentially uncorrelated.
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At short times the entanglement growth is affected by initial conditions, while on very long

timescales, of the order of the system size, the entanglement saturates. The formulae (10,6)-

(10.9) apply prior to this saturation. In a finite system the asymptotic (S(x)) profile is that of

a pyramid, with a maximum at height x = L/2, whose height is L/2, minus an 0(1) correction

[321, 322]. This profile is reached at a time

L
tsaturation 2 -, (10.10)

2VE'

with bonds closer to the boundary saturating sooner (Secs. 10.2, 10.4). Saturation is also

captured in the surface growth description, once we note that there are Dirichlet boundary

conditions on the entropy: S(0, t) = S(L + 1, t) = 0.

Note that the scaling described in Eqs. 10.6, 10.8 implies the existence of two distinct di-

verging lengthscales during entanglement growth. The fact that (S(x, t)) is of order t implies

that spins are entangled over distances of order t. In fact we will show in Sec. 1.0.4 that VEt

is a sharply defined lengthscale. But prior to saturation, the relevant lengthscale for spatial

variations in S(x, t) is parametrically smaller than VEt, namely (t) ~ t2/3.

Before deriving KPZ for entanglement, let us briefly consider the status of this equation. At

first sight we might try to justify this description of S(x, t) simply on grounds of symmetry and

coarse graining. If we were describing classical surface growth, we would appeal to translational

symmetry in the growth direction (S - S + const.) in order to restrict the allowed terms,

and would note that the right-hand-side includes the lowest-order terms in 0, and a-S. But

for entanglement we cannot rely on this simple reasoning. First, the transformation S -+

S + const. is not a symmetry (or even a well-defined transformation) of the quantum system.

More importantly, it is not clear a priori that we can write a stochastic differential equation

for S(x, t) alone, since the full quantum state contains vastly more information than S(x, t).

Despite these differences from simple surface growth, we will show that the above equation does

capture the universal aspects of the entanglement dynamics.

In the next section we exhibit a solvable quantum model which maps to a classical surface

growth problem that is manifestly in the KPZ universality class. Then in the two following

sections we give heuristic arguments for more general systems by making connections with

the other members of the KPZ triumvirate. Together with the results for the solvable model,

these arguments suggest that KPZ exponents should be generic for entanglement growth in any

quantum system whose dynamics involves time-dependent randomness. In Sec. 10.5 we perform

numerical checks on KPZ universality for quantum dynamics in discrete time.

10.1.1 Solvable ID model

We now focus on a specific quantum circuit model for the dynamics of a spin chain with strong

noise. We take random unitaries to act on pairs of adjacent spins (i.e. on bonds) at random

locations and at random times, as illustrated in Fig. 10-3. For simplicity we discretize time and
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time step

Figure 10-3: Dynamical update in the solvable model: application of a random unitary U to a
randomly chosen pair of adjacent spins.

apply one unitary per time step. (Dynamics in continuous time, with unitaries applied to the
links at a fixed rate in a Poissonian fashion, are equivalent.) We choose the initial state to be a
product state, with S.(x) = 0 for all n and x. We choose the unitaries from the uniform (Haar)
probability distribution on the unitary group for a pair of spins, U(q 2 ). This model is solvable
in the limit of large local Hilbert space dimension q.

Dynamics of Hartley entropy

A useful starting point is to consider the n -* 0 limit of the Renyi entropy, So. This is known as
the Hartley entropy, and quantifies (the logarithm of) the number of nonzero eigenvalues of the
reduced density matrix. Equivalently, the Hartley entropy determines the minimal necessary
value of the local bond dimension in an exact matrix product representation [72, 323] of the
state:

So(x) = log (bond dimension at x) . (10.11)

Like the von Neumann entropy, the Hartley entropy of neighboring bonds can differ by at most
one:

ISo(x + 1) - So(X)I < 1. (10.12)

Recall that logarithms are base q. For the present we keep q finite.
For the random dynamics described above (Sec. 10.1 1), the Hartley entropy obeys an ex-

tremely simple dynamical rule. In a given time step, a unitary is applied at a random bond,
say at x. Applying this unitary may change the Hartley entropy across the bond x; the entropy
remains unchanged for all other bonds. The rule for the change in So(x) is that, with probability
one, it increases to the maximal value allowed by the general constraint (10.12):

So(x, t + 1) = min{So(X - 1, t), So(x + 1, t)} + 1. (10.13)

This 'maximal growth' of So occurs with probability one when all unitaries are chosen randomly.
Fine-tuned unitaries (e.g. the identity) may give a smaller value, but these choices are measure
zero with respect to the Haar distribution.

We present a rigorous proof of Eq. 10.13 in Appendix D.I. The appendix also gives a
heuristic parameter-counting argument which suggests the same result, but as explained there
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the more rigorous argument is necessary as the heuristic argument can be misleading. We note

that Ref. [324] observed that the growth in bond dimension, when a unitary is applied to a

matrix product state, is upper-bounded by the right hand side of Eq. 1t0.1.3 and used this to

obtain an upper bound on bond dimension growth during a quantum computation.

For the random dynamics we are considering, the dynamical rule in Eq. 11J.13 leads to a

simple but nontrivial stochastic process. Before discussing its properties, we use Eq. -10._13 as

a starting point to show that in the limit of large Hilbert space dimension the von Neumann

entropy (and in fact all the higher Renyi entropies) obeys the same dynamical rule. This requires

an explicit calculation in the limit q -+ oo. The von Neumann entropy is of more interest than

So, since the latter behaves pathologically in many circumstances.,

Properties of the Solvable Model

The present quantum circuit dynamics lead to a solvable model in the limit of large local

Hilbert space dimension, q -÷ oo. In this limit all the Renyi entropies obey the dynamical rule

in Eq. 10.13.

To show this we consider the reduced density matrix for a cut at x, where x is the bond

to which we are applying the unitary in a given time step. We may write px(t + 1) in terms

of px-1(t) and the applied unitary matrix. Averaging Tr px over the choice of this unitary, we
then obtain:

(Tr pX(t + 1))Ha q2 + 1 rpX_1(t) 2 + Tr px+i(t) 2 )

See Appendix 1).2 for details. In terms of the second Renyi entropy S2 this is:

q-S(2(Xl+) _ + q S2(X+1.t1 (10.14)KHaar 1 + 1/q2

The general constraint S2 < So allows us to write

S2(x, t) = So(x, t) - A(x, t) (10.15)

with A > 0. We now use Eqs. 10.13, 10.14 to show that A is infinitesimal at large q. Rewriting

Eq. 1) 14 in terms of A, and substituting Eq. 10.13, immediately shows

K A(x,t+1) Haar qA(x-1,t) + qA(x+1,t) (10.16)

For a simple bound', define Amax(t) to be the maximal value of A(x, t) in the entire system.

3This is because it simply counts up all the (nonzero) eigenvalues in the spectrum of px, regardless of how
small they are. For example, Hamiltonian dynamics in continuous time - as opposed to unitary circuits like the
above - will generally give an infinite growth rate for So, in contrast to the finite growth rate for SvN and the
higher Renyi entropies.

4 For a large system, this bound on (qNmax) will be far from the tightest possible since we have not exploited
the large size of the system.
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Figure 10-4: Surface growth model for entanglement S(x, t) across a cut at x, in the large q
limit. Applying a unitary to bond x can increase the height of the surface locally (Eq. 10.19),
corresponding to dropping a 'block' of height AS = 1 or AS = 2.

The equation above implies

(q~ma(t+1)) Haar <2qAma(t) (10.17)

We may iterate this by averaging over successively earlier unitaries:

(e(In q)m (t)) < 2'. (10.18)

This shows that as q -+ oo at fixed time t, the probability distribution for A concentrates on
A = 0, so that S2 and So become equal.

This implies that the entanglement spectrum is flat, so in fact all the Renyi entropies obey
Eq. 10.13 for the application of a unitary across bond x.

The dynamical rule we have arrived at for the bipartite von Neumann and Renyi entropies
at large q,

S(x, t + 1) = min{S(x - 1, t), S(x + 1, t)} + 1 (10.19)

defines a stochastic surface growth model in which S(x, t) is always an integer-valued height
profile (Fig. 10-4). The remaining randomness is in the choice of which bond is updated in
a given time step. At each time step, a bond x is chosen at random, and the 'height' S(x)
is increased to the maximal value allowed by the neighbors. Fig. 1.0-5 gives examples of local
configurations before and after the central bond is updated.

This model is almost identical to standard models for surface growth [325, 3261. It is in
the KPZ universality class (it is straightforward to simulate the model and confirm the ex-
pected KPZ exponents) and some non-universal properties can also be determined exactly (see
below). Note that the boundary conditions S = 0 on the right and the left, and the restric-
tion IS(x + 1) - S(x) 1 < 1, imply that the entanglement eventually saturates in the expected
pyramid profile.

When we move to the continuum (KPZ) description of the interface (10.4) the nonlinear
A term appears with a negative sign, meaning that entanglement growth is slower when the
coarse-grained surface has a nonzero slope. This is natural given the microscopic dynamics: if
the slope is maximal in some region, local dynamics cannot increase the entropy there.
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Figure 10-5: Entanglement growth in the large q model: Effect of applying a random unitary
to the central bond, for four choices of the initial local entropy configuration of three adjacent
bonds.

In the present model the difference in height between two adjacent bonds is either AS = +1

or AS = 0. At early stages of the evolution both possibilities occur. However one may argue

that the 'flat points', where AS = 0, become rarer and rarer at late times.' At late times

the model therefore becomes equivalent to the well-known 'single step' surface growth model

[325], in which AS = 1 only. An appealing feature of this model is that, for a certain choice

of boundary conditions,6 the late-time probability distribution of the growing interface can be

determined exactly [325]. This shows that on scales smaller than the correlation length (and

prior to saturation) the interface looks like a ID random walk with uncorrelated AS = 1 steps.

This confirms the expected KPZ exponent a = 1/2. It also allows the mean growth rate of the

surface to be calculated [3251: the mean height increase in a given timestep can be calculated by

averaging over the four possible initial configurations for a bond and its two neighbours. After

rescaling time so that one unit of time corresponds to an average of one unitary per bond, this

gives an entanglement growth rate (1.0.6) of

yE = 1/2. (10.20)

As we will discuss below (Secs. 10.3, .10.4) one can also associate a speed VB with the growth

of quantum operators under the random dynamics; in the present large q model this speed is7

VB = 1. (10.21)

It is interesting to note that here yE < VB, contrary to ID CFTs (where yE = VB [50]) and

contrary to previous conjectures about generic systems [64]. In Sec. 10.3 we will give an appealing

5Flat points can disappear by 'pair annihilation' (Fig. 10-5, top left), and can diffuse left or right (Fig. 10-5,
top right), but cannot be created. As a result their density decreases with time.

6The solvable case corresponds to choosing periodic BCs in the classical problem. (These BCs are useful for
understanding the classical model, but they do not have an interpretation in terms of entanglement.) In this
setting the mean height grows indefinitely, but the probability distribution for the height fluctuations reaches a
well-defined steady state.

7The result VB = 1 arises because in the large q limit the growth of a typical operator is limited only by the
structure of the circuit. In Ref. [327] we give explicit derivations of VB in random circuits for arbitrary q.
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Figure 10-6: Any cut through the unitary circuit which separates the legs to the left and right
of x (on the top boundary) gives an upper bound on S(x, t). The best such bound is given by
the minimal cut (note that the cut shown in the figure is not the minimal one). Finding the
minimal cut in a random network is akin to finding the lowest energy state of a polymer in a
random potential landscape.

intuitive picture for why VE can be smaller than VB for the case of Clifford circuits.

The mapping to surface growth gives us a clean derivation of universal entanglement dynam-
ics in a solvable model. However this surface growth picture is restricted to the entropy for a
single cut (as opposed to the entropy of a region with multiple endpoints) and to one dimension.
It will be useful to find a more general language which extends the above results. To do this
we now make a connection with the second member of the KPZ triumvirate (Fig. 10-2), the
statistical mechanics of a polymer in a random environment.

10.2 Directed polymers and a "Minimal Cut" Prescription

In this section we relate the dynamics of S(x, t) to the geometry of a 'minimal cut' through the
quantum circuit which prepares the state (Fig. 10-6). This provides an alternative perspective
on the exact result (10.19) for the solvable model, and also a useful heuristic picture for noisy
quantum dynamics in general. This line of thinking reproduces KPZ behaviour in ID. Impor-
tantly, it also allows us to generalize to higher dimensions and to more complex geometries.

Our starting point is the minimal cut bound for tensor networks. This very general bound
has been related to the Ryu-Takayanagi formula for entanglement in holographic conformal field
theories [316, 317, 318, 274, 328], and has also been applied to unitary networks as a heuristic
picture for entanglement growth [77].

Consider again a random quantum circuit in 1+1D, and a curve like that in Fig. 10-6 which
bisects the circuit and divides the physical degrees of freedom into two at position x. Any such
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curve gives an upper bound on the entanglement: all the Renyi entropies satisfy S(x) < Scut,
where Scut is the number of 'legs' that the curve passes through. (This relies only on linear

algebra: the rank of the reduced density matrix pr is at most8 qscut.)
The best bound of this type is given by the minimal cut, which passes through the smallest

number of legs. We denote the corresponding estimate for the entropy Smin-cut(X). If the

geometry of the circuit is random, Smin-cut(x) and the corresponding curve are also random.

Finding Smin-cut(x) amounts to an optimization problem in a classical disordered system.

In the solvable large q model, Smin-cut (x) in fact gives the von Neumann entropy exactly.

This follows straightforwardly from the results of the previous section (see below). In a typical

microscopic model, on the other hand, Smincut is only a bound on the true entropy. Neverthe-

less we conjecture that the following picture based on the minimal cut is generally valid as a

coarse-grained picture: i.e. that it correctly captures the universal properties of the entangle-

ment dynamics in noisy systems. This conjecture is equivalent to the applicability of the KPZ

description to generic noisy systems; further evidence for the latter is in Secs. 10.3, 10,5.

The problem of finding the minimal curve is a version of a well studied problem in classical

statistical mechanics, known as the directed polymer in a random environment or DPRE [309,
329]. Here the 'polymer' is the curve which bisects the circuit, and its energy E(x) is equal to

Scut(x), the number of legs it bisects. The spatial coordinate of the polymer's upper endpoint

is fixed at x, while the lower endpoint is free. Finding Smin-cut(x) is equivalent to finding

the minimal value of the polymer's energy. This corresponds to the polymer problem at zero

temperature; however the universal behaviour of the DPRE is the same at zero and at nonzero

temperature.

DPRE models with short-range-correlated disorder are in the same universality class as the

KPZ equation [313]. Let E(x, t) be the minimal energy of the polymer in a sample of height

t. We may increase t by adding an additional layer to the top of the sample. E(x, t + 6t) can

then be expressed recursively in terms of E(y, t) for the various possible values of y. In the

continuum limit, this leads to an equation for E(x, t) which is precisely the KPZ equation (see

Refs. [313, 3301 for more details of the mapping between DPRE and KPZ). The KPZ exponents

given in Sec. 10.1 may therefore be applied to the energy of the polymer. The exponent z = 3/2

also determines the lengthscale for transverse fluctuations of the polymer on large length and

time scales:

AX ~ (At)2/3. (10.22)

Since in our case the minimal E is simply Smin-cut, we find that the latter executes KPZ

8 The cut divides the tensor network into two parts connected by Scut bonds. One part contains the physical
legs for subsystem A and the other part contains those for the complement. Regarding the two parts of the

circuit as composite tensors L and R gives a representation of the state as b(t)) = Zi= ,b Lb a) b)A,
where Ja)A and Ib)A are basis states in A and A respectively. This implies that the Schmidt rank for a bipartition
into A and A is at most qScut, so that So, which is the logarithm of the Schmidt rank, is at most Scut. In turn,
S, < So for any n > 0.

9 For any finite temperature, the DPRE flows under renormalization to a zero temperature fixed point at
which temperature is an irrelevant perturbation.
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growth. In the light of the previous section, this is not surprising. In fact in our solvable model,
Smin-cut is exactly equal to the true entanglement entropy (in the large q limit). This follows

from the fact that the recursive construction of E(x, t) described above (on the lattice, rather

than in the continuum) precisely matches the large q dynamics of Eq. 1 19. Examples of non-

unitary tensor networks in which the minimal cut bound becomes exact are also known [318],
including a large-bond-dimension limit similar to that discussed here [274].

The utility of the DPRE picture is that it is far more generalizable than the surface growth

picture, which is restricted to the entropy across a single cut in ID. As noted above, the value

of Smin-cut in a given microscopic model is typically not equal to any of the physical entropies

So, with n > 0. Nevertheless we conjecture that the DPRE and KPZ pictures are valid universal

descriptions for all noisy models, so long as they are not fine tuned or nonlocal. This includes

noisy Hamiltonian dynamics in continuous time (we discuss this case further in the Outlook

section). If we restrict to the leading order deterministic behaviour we can also make conjectures

about Hamiltonian systems without noise.

10.2.1 Scaling form for entanglement saturation

At leading order in time, the growth of the 'height' S(x, t) is deterministic: fluctuations are a

subleading effect when t is large. Similarly, Eq. 10.22 shows that the coarse-grained minimal

cut is essentially vertical (prior to saturation of the entropy): the lengthscale for its transverse

fluctuations is negligible in comparison with t. These pictures therefore have well-defined and

simple deterministic limits. They lead directly to deterministic scaling forms for the leading

order behaviour of the entanglement, which we will discuss in more detail in Sec. *I.4. Here

we consider the simplest case, the saturation of the entanglement entropy S(x, t) across a single

cut (or for a single interval). We reproduce a simple scaling function known from other contexts

[62, 213, 771].

The definition of the entanglement growth rate implies that the 'energy' E of such a vertical

cut is VEt to leading order. The entanglement in a finite system grows at this rate until time

tsaturation X/VE, when it reaches its saturation value S = x. (Here we are neglecting subleading

terms, and assuming x < L - x.) After this time a vertical cut is no longer favourable: instead

the minimal cut exits the circuit via the left-hand side. Its shape is no longer unique, but it

can be taken to be horizontal, and it has 'energy' E = x. This picture corresponds to a simple

scaling form (again, neglecting subleading terms)

S(x, t) = VEt f(x/vEt), (10.23)

with

fu for u <1 (10.24)
1 for u > 1

For a finite interval of length 1 in an infinite system there is a crossover between a configuration
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with two vertical cuts, and one with a single horizontal cut, giving instead S(t) = 2 VEt fl/(2vEt)-

These scaling forms are our first confirmation that vE is really a speed, as well as a growth

rate for the entanglement. We will give an independent derivation of this fact for Clifford circuits

in the following section, and will test the above scaling form numerically in Sec. 1 05.2. We will

discuss the interpretation of VE further in Sec. 10.4.

Note that fluctuations have dropped out of Eq. 10.23 as a result of considering only the

leading order behaviour of S(x, t). These scaling forms agree with the results for holographic

CFTs [213] and with a heuristic application of the minimal cut formula to a regular tensor

network [771. Here we see them emerging from a simple and well-defined coarse-grained picture,

suggesting that they are universal for all generic 1D systems, including for example translation-

ally invariant but nonintegrable spin chains.'() It is also worth noting that Eq. 10.24 is capable

of distinguishing generic systems from (nonrelativistic) integrable systems. In the latter case

the quasiparticle picture applies and yields different profiles for S(t) [52, 60]. For relativistic

systems in which the quasiparticle picture holds (rational CFTs), all quasiparticles travel at

the same speed, and as a result (10 .24) does apply [50, 521 (however the entanglement of more

complex regions will differ between the quasiparticle picture on the one hand, and the results

from holographic systems and the minimal cut picture on the other [52, 53, 76J).

In Secs. 10.4, 10.6 we propose that the above picture in terms of a coarse-grained minimal cut

is the simplest way to understand the basic features of the 'entanglement tsunami' for generic

many-body systems (with or without noise) both in ID and higher dimensions.

10.3 Entanglement Dynamics from Operator Hydrodynamics

An alternative way to think about the quantum dynamics is in terms of the evolution of local

operators Oi. For example, a Pauli operator initially acting on a single spin (e.g. Oi = Y; we

denote the Pauli matrices by X, Y, Z) will evolve with time into an operator Oi(t) which acts

on many spins. Operators typically grow ballistically [331], in the sense that the number of

spins in the support of Oi(t) grows linearly with t. In this section we relate the growth of the

bipartite entanglement to the spreading of operators. We focus on the special case of unitary

evolution with Clifford circuits (defined below), but we expect the basic outcomes to hold for

more general unitary dynamics. We find that the entanglement growth rate is not given by

the rate at which a single operator grows, but is instead determined by collective dynamics

involving many operators. Remarkably, in 1D these collective dynamics have a long wavelength

hydrodynamic description.

This hydrodynamic description turns out to be the noisy Burgers equation, which is related to

the KPZ equation by a simple change of variable and is the final member of the KPZ triumvirate

shown in Fig. 1.0-1. In the present case the hydrodynamic mode is the density of certain fictitious

1 0Ref. [239] includes numerical tests of scaling forms derived from the directed polymer picture in deterministic

systems, including extensions to inhomogeneous systems (a chain with a weak link).
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Figure 10-7: Spreading of stabilizer operators defining the quantum state (Sec. 10.3). Each blue
particle marks the right endpoint of some stabilizer (the rightmost spin on which it acts). Blue
particles hop predominantly to the right. Whenever a particle enters the right-hand region (A)
the entanglement SA increases by one bit. The particle density is described by the noisy Burgers
equation, which maps to KPZ. A 'hole' (empty circle) marks the left-hand endpoint of some
stabilizer.

'particles', shown in blue in Fig. 1.0-7. The quantum state is defined by a set of operators
(Sec. 10.3.1) which spread out over time, and the particles are markers which show how far
these operators have spread. We will derive their coarse-grained dynamics in Sec. 10.3.2 after
introducing the necessary operator language.

In generic many-body systems (with local interactions) this process of operator growth is
characterized by a speed known as the butterfly speed, VB. This speed defines an effective
lightcone within which the commutator between the spreading operator 0(t) and a typical local
operator is appreciable. The quantity VB is a characteristic speed for the spreading of quantum
information in a given model, and can be extracted from appropriate correlation functions. In
deterministic systems (time-independent evolution) VB can depend on temperature, and typi-
cally does not saturate the well-known Lieb Robinson bound [332, 235]. Generic noisy systems
equilibrate to infinite temperature, so in the present models there is no notion of temperature
dependence - VB is a constant defined entirely by the dynamics.

The scaling forms discussed in the previous section show that in 1D there is a well-defined
speed VE associated with entanglement spreading. The following picture gives a physical inter-
pretation of this speed, in terms of a certain set of growing operators. However it also shows
that in general the speed VE is smaller than the speed VB. This is perhaps surprising: in ID
CFTs the two speeds are equal, and it has been conjectured that they are equal in general [64].
(Note that we have already encountered a solvable model with VE = VB/2 in Sec. 10.14.)

10.3.1 Stabilizer operators

It will be convenient to use the language of 'stabilizer' operators to describe the entanglement
dynamics. We may define the initial state I Wo) by specifying L stabilizers under which it is
invariant (in this section we take the number of sites to be L). These operators, denoted (9

(i = 1,... , L) satisfy

Oi ITo) = ITo). (10.25)
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For example, if the spins are initially polarized in the y direction we may take O( = Yi. At a

later time, the above equation still holds, with each stabilizer Oi replaced with the time-evolved

stabilizer Oi(t) = U(t)OiUt(t), where U(t) is the unitary operator that evolves the initial state

to the state at time t.1

In the following, we focus on evolution of the initial state with unitary gates in the Clifford

group 271]. Such gates have recently been used in toy models for many-body localization [70].

The defining feature of Clifford unitaries is that they have a simple action on Pauli operators:

single-spin Pauli operators are mapped to products of Pauli operators.

Any product of Pauli matrices can be written as a product of X and Z matrices, so to follow

the dynamics of a given stabilizer Oi(t), we need only keep track of which Xi and Zi operators

appear in this product. Furthermore, the overall sign of the stabilizer Oi(t) does not affect the

entanglement properties of a system undergoing Clifford evolution, so we do not keep track of

it. By writing Oi(t) as

Oi(t) Oc XVjXZVuZ ... XLZ Z'Lz, (10.26)

we may specify any stabilizer by a binary vector iY with 2L components:

v= (vlx, v2x, ... , VLx, VLz) (10.27)

For example, the first component of the vector v= 1 if X1 appears in the product, and v, = 0

otherwise. The binary vector corresponding to a stabilizer (9 = Y is

v= (0,. .. , 0,1, 1, ,.. .,0), (10.28)

where the locations of the nonzero elements correspond to Xi and Zi.

We consider the dynamics in two stages. First we consider the evolution of a single operator.

Then we will generalize this to understand the dynamics of the state.

How does a single stabilizer Oi(t) evolve? Applying a one or two-site Clifford unitary to

Oi(t) corresponds to applying simple local updates to the string T. Although the precise details

of these updates will not be crucial, we now give some explicit examples of gates which we will

encounter again in the numerical simulations.

As single-site examples, consider the Hadamard and Phase gates. The Hadamard is a rota-

tion on the Bloch sphere' which exchanges the X and Z axes,

1
RH = (X + Z) (10.29)

so applying a Hadamard to site i updates the string by vi ,-+ viz. The Phase gate is a rotation

"Note that Oi(t) is not the standard Heisenberg picture operator, which would have U and U in the other
order.

12 The rotation is by 7r around the (1, 0, 1) axis.

234



around the Z axis which maps Xi to Yi = iXiZi

Rp = VZ. (10.30)

This means that an additional Zi is generated whenever Xi is present in the string, or equiva-

lently v, -+ viz + vi, (mod 2). For a two-site example, consider the left and right controlled-

NOT (CNOT) gates acting on the leftmost spins in the chain. In the Z basis, the action of

these operators is to flip the 'target' spin iff the 'control' spin is down:

CNOT(L) = [(1 + Z1 ) + (1 - Z1 )X 2], (10.31)
2

CNOT(R) - [(1 + Z2 ) + (1 - Z2)X1].2

Conjugating the Pauli matrices by CNOT(L) yields:

X 1 -+ X1 X2 , Z1 -+ Z1, X2 -4 X2 , Z2 -4 Z1 Z2.

We see that the operator X2 is added to the string if X1 is present (and similarly for Z1 and

Z2 ). Applying CNOT(L) therefore updates V by

V2x -+ V2x + Vlx (mod 2), V1z -4v1z + V2z (mod 2).

CNOT(R) acts similarly with the roles of the spins reversed.

It is simple to argue that random application of such operations causes the region of space in

which V is nonzero to grow ballistically. This corresponds to the operator spreading itself over

a region of average size 2 VBt, where VB is the operator spreading (Butterfly) velocity for this

system [235]. (For the present system, this velocity is also the analogue of the Lieb Robinson

velocity.) The value of VB depends on the precise choice of dynamics, but it is the same for

all initial operators so long as the dynamics (the probability distribution on gates) is not fine-

tuned. Further, one may argue that the interior of the region where the string 'Y is nonzero

is 'structureless'. Within the interior, v rapidly 'equilibrates' to become a completely random

binary string.

Now consider the dynamics of a quantum state. Once the sign information in Eq. 10.26 is

dropped, the relevant information in the state I1(t)) is contained in binary vectors 61, ... ,6L

1
3 Consider the late time dynamics of an operator, or equivalently its string if, in an L-site system. Random

application of Clifford gates gives random dynamics to 6. It is easy to see that the flat probability distribution on
9 is invariant under the dynamics, regardless of the probabilities with which the gates are applied. By standard
properties of Markov processes, this is the unique asymptotic distribution to which the system tends, so long as
the choice of Clifford gates is not fine-tuned to make the process non-ergodic. (If the gate set includes each gate
and its inverse with the same probability, detailed balance is also obeyed, but this is not necessary.) We expect
,Y to equilbrate locally to this structureless state on an 0(1) timescale, and similarly for the internal structure of
operators smaller than L.
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corresponding to the L stabilizers. We may package this information in a 2L x L matrix:

X(t) = (TI,..., .LT) (10.32)

Each column corresponds to a stabilizer, and each row to a spin operator Xi or Zi. The

dynamical updates correspond to row operations (with arithmetic modulo two) on this matrix.

For example, a Hadamard gate exchanges the rows corresponding to Xi and Zi.

A crucial point is that there is a large gauge freedom in this definition of the state. This gauge

freedom arises because we can redefine stabilizers by multiplying them together. For example if

a state is stabilized by {X 1 , Z2}, then it is also stabilized by {X1 Z2 , Z2 }, and vice versa. This

freedom to redefine the stabilizers corresponds to the freedom to make column operations on

T, or equivalently the freedom to add the vectors i modulo two. Note that by making such a

'gauge transformation' we may be able to reduce the size of one of the stabilizers, giving a more

'compact' representation of the state.

The final fact we need is an expression for the entropy SA (t) of a region A in terms of the

stabilizers. Heuristically, this is given by the number of stabilizers that have spread into region

A from outside. More precisely, define IA as the number of stabilizers that are independent when

restricted to region A." (Independence of the stabilizers corresponds to linear independence of

the vectors 0, with arithmetic modulo two, once they are truncated to region A.) The entropy

is equal to [333, 3341

SA(t) = IA - JAl, (10.33)

where JAl is the number of sites in A. See Appendix D-3 for a simple derivation of Eq. 10.33.

For Clifford dynamics all Renyi entropies are equal, so we omit the Renyi index on S. The

maximal value of IA is 2JA1, so SA is bounded by JAl as expected.

This formula has a simple interpretation. In the initial product state we may take one

stabilizer to be localized at each site, so IA = JAl and the entanglement is zero. As time goes

on, stabilizers that were initially localized outside of A grow and enter A. Each time a new

independent operator appears in A, the entanglement SA(t) increases by one bit. The linear

independence requirement in the definition of IA is crucial, as it leads to effective interactions

between the stabilizers which we discuss in the following subsection.

From now on we take A to consist of the spins to the right of the bond x, and revert to the

notation SA = Sx used in the rest of the text for the entanglement across a cut at x.
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Figure 10-8: Left: the initial product state represented in terms of the fictitious particles. Right:
a state with maximal S(x).

10.3.2 Coarse-Grained Operator Dynamics

Each stabilizer Oi(t) (labelled i = 1, ... L) has a left and a right endpoint 1i and ri, marking
the extremal spins included in the stabilizer. We view li and ri as the positions of two fictitious
particles of type 1 and r, represented in white and blue respectively in Figs. 1.0-7, 10-8. There
are L of each type of particle in total.

In the initial product state, 0j(0) is a single Pauli operator on site i, say Y. This means
that each site has one 1 particle and one r particle (since li = ri = i) as shown in Fig. 1 0-8 (left).
As time increases the r particles will typically move to the right and the 1 particles to the left.

The nature of this motion depends on how we define the stabilizers. At first sight the
obvious choice is to define Oi(t) as the unitary time evolution of the initial stabilizer, Oi(t) =
U(t)YUt(t). But in fact it is useful to exploit the gauge freedom in the choice of stabilizers to
impose a different 'canonical' form. One result of this is that the stabilizers effectively grow more
slowly than the Butterfly velocity VB (discussed in the previous subsection) for the spreading of
an operator considered in isolation.

Let pl(i) and pr(i) be the number of particles of each type at site i. The constraint that we
impose is:

p1 (i) + pr(i) = 2. (10.34)

To see that we can impose this constraint, consider the situation pl(i) = 3, so that there are
three stabilizers that start at i. The initial element of each string can be either X, Y, or Z. If
pj(i) = 3, it is impossible for all three initial elements to be independent. We can then redefine
one of the stabilizers, by multiplying it by one or both of the others, in such a way that its length
decreases by one.15 Making reductions of this kind wherever possible guarantees that pl(i) < 2,
and also that if pl = 2, the initial elements of the two stabilizers are distinct. (And similarly for
Pr.) With this convention it also follows that pj(i) + pr(i) < 2: otherwise the operators involved
could not commute, which they must. 16 (The initial stabilizers commute, and this is preserved
by the unitary dynamics and the redefinitions of the stabilizers.) Since there are a total of 2L

1 4 We truncate all stabilizers to region A by throwing away all the spin operators acting outside A. In this
process some of the stabilizers become trivial, and some become redundant: i.e., equal to products of the others.
IA is the number of stabilizers that are independent when truncated to A. Equivalently, IA is the rank of the
matrix 4I after the rows corresponding to the complement of A have been deleted; this is how we calculate the
entropy numerically for Sec. 10.5.1.

15By choosing the longer stabilizer we avoid adding length at the right-hand side.
16Consider the case where pM(i) = 1: for example let the corresponding stabilizer read 0 = ... Xi. Any

stabilizer contributing to p1 (i) must be of the form Xi ... in order to commute with 0. By the rule imposed in
the text this means that pi(i) < 1.
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particles which all have to live somewhere, we have Eq. 10.3-4.

With this convention, the dynamics of the bipartite entropy S(x) is simply related to the

hopping dynamics of the particles. By Eq. 10.34 it suffices to consider only the r particles: an

1 particle is just an r 'hole'. We will write the density Pr of r particles as p. See Fig. 10-7 for a

typical configuration in a subregion of the system.

The utility of the canonical form (10.31) is that the independence requirement becomes

trivial. One can easily check that all the operators which have spread into A (the region to

the right of x) are independent.' Therefore to find S(x) we need only count the number of r

particles to the right of the cut and subtract the number of sites:

S(X) = (pi - 1). (10.35)
i>x

To reiterate, the entanglement increases by one every time an r particle drifts rightward across

bond x (and decreases by one if it drifts across in the other direction).

Now consider the dynamics of the particles. Microscopically, a dynamical time step involves

(1) application of a unitary gate, and (2) potentially a 'clipping' of stabilizers to enforce the

canonical form. Effectively, the particles perform biased diffusion, with the restriction that more

than two particles cannot share a site,

p < 2. (10.36)

This constraint leads to 'traffic jam' phenomena familiar from the so-called asymmetric exclusion

process [308], and to the same continuum description. Our essential approximation is to neglect

the detailed internal structure of the stabilizers, and to treat the dynamics of the endpoints as

effectively Markovian. We expect this to be valid at long length and time scales for the reason

mentioned in the previous subsection: the internal structure of the operators is essentially

featureless, and characterized by finite time scales.

We now move to a continuum description. The coarse-grained density obeys a continuity

equation

atp = -49J (10.37)

with J the particle current. Further, there is a symmetry under spatial reflections, which

exchange left and right endpoints (pl ++ pr). Writing

p = I + Ap, (10.38)

1
7 Consider the stabilizers which act in region A, i.e. the stabilizers with ri > x. We may argue by contradiction

that they remain independent after truncation to subsystem A. If not, this means there is some product of the
truncated stabilizers which equals one. Let the rightmost spin appearing in any of these stabilizers be j. But by
our convention for 'clipping' the stabilizers, it is impossible for the Pauli matrices acting on spin j to cancel out
when they are multiplied together. Therefore the operators must in fact be independent.
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where Ap is the deviation from the mean density, the reflection symmetry is

x -> -x, Ap -+ -Ap. (10.39)

To obtain a long wavelength description, we write the current as a power series in Ap and ax.

Keeping the lowest order terms that respect the symmetry,

J= C- vap - -(Ap)2 +,q. (10.40)
2

These terms have a transparent physical meaning. The drift constant c > 0 reflects the fact

that the average motion is to the right (i.e. operators grow over time). The v term is simple

diffusion. The noise 7 reflects the randomness in the dynamics. Most importantly, the nonlinear

A term is the effect of the constraint (10.31). It reflects the fact that the current is maximal

when the density is close to one. The current evidently vanishes when p = 0, since there are no

particles, but also when p = 2 (the particles cannot move if the density is everywhere maximal).

Therefore we expect A > 0.

From the above formulas, the density obeys

atP p + -&x(P 1)2 - a2, (10.41)2

known as the noisy Burgers equation 13081. The entanglement S f(p - 1) obeys tS = J,

leading to the KPZ equation:

atS = c + va2S - A (S) 2 + 17. (10.42)
2

The sign of A is in agreement with that obtained from the surface growth picture in Sec. 10.1

and from the directed polymer picture in Sec. 10,2. While we have focussed here on dynamics

of a restricted type (Clifford), this derivation of KPZ for entanglement provides independent

support for the arguments in the previous sections.

In the language of the particles, the initial state corresponds to uniform density p = 1.

Saturation of the entanglement corresponds (neglecting fluctuations) to all of the r particles

accumulating on the right hand side and all of the 1 particles on the left (Fig. 10-8), i.e to a step

function density.

As an aside, it is interesting to consider fluctuations in S(x) at late times, i.e. long after

the saturation of (S(x)). Let us revert to our previous notation, where the system has L + 1

sites and bonds are labelled x = 1,... , L. Without loss of generality we take x < L/2. When

fluctuations are neglected, the region to the left of x is empty of r particles, and the entropy is

maximal, Smx(x) = x. Fluctuations will reduce the average. But in order for S(x) to fluctuate

downward, a blue r particle must diffuse leftward from the right half of the system in order to

enter the region to the left of x, as in Fig. 10-!. This is a fluctuation by a distance ~ (L/2 - x).
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Figure 10-9: Fluctuations at late times, after saturation of (S(x)), in the Clifford case. When
x <«L/2 it requires a rare fluctuation (fighting against the net drift) to remove a particle from
region A, leading to an exponentially small Smax(X) -- (S(x)).

Such fluctuations are exponentially rare events, because they fight against the net rightward
drift for the r particles. Thus when L/2 - x is large we expect

Smax - (S(x)) ~ e-(L/2-x). 1.3

Our coarse-grained picture does not determine the numerical constants.
The detailed nature of these exponentially small corrections will differ between Clifford

circuits and more general unitary circuits.1  Nevertheless the functional form above agrees with
the late time result for generic gate sets, which is simply the mean entanglement in a fully
randomized pure state [321, 3221:

2IAl-iAI 4 -(L/2-x)
Smax - (5(x)) ~ 1n - .n (10.44)

A| = x and |Al = L - x + 1 are the numbers of sites in A and its complement. For (generic)
Clifford dynamics, the probability distribution of the entanglement at asymptotically late times
will be that of a random stabilizer state. This has been calculated in Ref. [335].

10.4 The Entanglement Tsunami: Speeds and Scaling Forms

It is not a priori obvious that the rate yE governing entanglement growth can be viewed as
a speed in generic systems (see Ref. 12351 for a recent discussion), although this is known to
be the case in holographic CFTs [213]. Our results in the directed polymer picture and in the
operator spreading picture suggest that yE is indeed a well-defined speed in generic systems.
(We saw in the previous section that there is a simple visual interpretation of this speed in the
stabilizer formalism.) However, this speed is in general smaller than the speed VB which governs
the spreading of an operator considered in isolation: 'thermalization is slower than operator
spreading'.

In the stabilizer context the difference between vE and vB arises because in enforcing
Eq. 10.34 we 'clip' the stabilizers, reducing their rate of growth. We believe the phenomenon

18For example in the Clifford case Sn is independent of n, while in general the corrections will depend on n
[322].
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of VE being smaller than vB to be general and relevant also to non-noisy dynamics. This pic-

ture is contrary to that of e.g. Ref. [64] where the operator spreading velocity is assumed to

determine the entanglement growth rate. In the presence of noise, one may also argue that a

picture of independently spreading operators underestimates the exponent governing the growth

of fluctuations. L

The language of a 'tsunami' is often used in discussing entanglement spreading, so it is nice

to see that - at least in 1D - entanglement spreading can be related to a hydrodynamic

problem. (The motivation for the tsunami terminology is the idea that for a region A, the

entanglement SA is dominated by a subregion close to the boundary which grows ballistically,

like the advancing front of a tsunami.) In higher dimensions the boundary of an operator has

a more complicated geometry, so the hydrodynamic correspondence described above does not

generalize.

In order to understand the 'entanglement tsunami' better, we now return briefly to the

directed-polymer-in-a-random-medium picture developed for noisy systems in Sec. H).2.

When all length and time scales are large, fluctuations in the entanglement are subleading.

Neglecting them is equivalent to saying that the 'coarse-grained' minimal cut (prior to satura-

tion) is a straight vertical line. This deterministic picture generalizes to the entanglement or

mutual information of arbitrary regions, and also to higher dimensions (Sec. 10.). We conjec-

ture that these pictures are valid for the long-time behaviour of entanglement quite generally.

The setup relevant to us in the non-noisy case is a quench, in which the initial state is a ground

state of one Hamiltonian, and a different Hamiltonian is used for the evolution.

In the ID case, the deterministic scaling form for the entanglement (of an arbitrary region)

which results from the leading-order directed polymer picture is rather simple, and is not new -

it agrees with holographic results [213, 76], and as noted in Ref. [77], can also be obtained from

a more microscopic minimal cut picture in which the geometry of the minimal cut is highly non-

unique. We propose that coarse-graining fixes the geometry of the minimal cut. The derivation

of these scaling forms from a simple coarse-grained picture suggests that they are universal

in non-integrable, translationally invariant systems. (These scaling forms are generally not the

same as those obtained from the quasiparticle picture for rational CFTs [52, 53].) Our derivation

also opens the door to generalizations to higher dimensions (Sec. 10.6.2) and to ID systems with

quenched disorder [239].

We now consider some examples of the scaling of the mutual information. This will help

clarify the operational meaning of the speed VE-

To calculate the entanglement SA of a region A, we must take a cut, or multiple cuts,

1 9 Considering the unitary evolution of a single operator in isolation, its right endpoint executes a biased

random walk, traveling an average distance VBt with fluctuations 0(tl/2 ). If we were to neglect the independence

requirement in Eq. 10.33 then the entanglement would be estimated (incorrectly) as the number of independently

spreading operators which have reached A. The mean of this quantity is VBt and the fluctuations are of order

tl/ 4 . This is related to the difference between the KPZ universality class of surface growth, which is generic, and

the Edwards-Wilkinson universality class which applies when the strength of interactions is fine-tuned to zero

[313].
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A B C

Figure 10-10: Infinite chain with regions A, B, C marked. B is of length 1 while A, C are semi-
infinite. The mutual information between A and C is nonzero so long as 1 < 2vEt: correlations
exist over distances up to 2 VEt, not VEt.

d>l
IAC

d-1 -

1/2 d12 d-l/2 VEt

d I d

B A B C B

Figure 10-11: Bottom: Infinite chain with finite regions A and C each of length d, separated by
distance 1. Top: The mutual information between A and C in the case d > 1. In the opposite
regime the mutual information vanishes.

with endpoints on the boundary points of A at the top of the spacetime slice. These cuts can
either be vertical, in which case they cost an 'energy' VEt (to use the language of Sec. 10.2),
or they can connect two endpoints, in which case we take them to be horizontal and to have
an energy equal to their length. The entanglement SA(t) is given by minimizing the energy of

the cut configuration. It is a continuous piecewise linear function, with slope discontinuities

when the geometry of the minimal cut configuration changes. To generalize the conjecture to

systems without noise, we must allow for the fact that the asymptotic value of the entanglement

depends on the energy density of the initial state. We therefore replace the entanglement S in

the formulas with S/seq, where Seq is the equilibrium entropy density corresponding to the initial

energy density [51, 213]. This ensures that the entanglement entropy of an 1-sized region matches

the equilibrium thermal entropy when vEt > 1/2, as required for thermalization. Heuristically,

seq defines the density of 'active' degrees of freedom at a given temperature [235].

To clarify the meaning of VE, consider the mutual information between two semi-infinite

regions that are separated by a distance 1 (Fig. 10-10). With the labelling of the regions as in
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(b) _ _ _ _ _ _ _

(C)

Figure 10-12: Sequence
region B in Fig. 10-11.
2 VEt + 1 = 2d.

of minimal cut configurations (red lines) determining the entropy of
(a) gives way to (b) when 2 VEt = 1 and (b) gives way to (c) when

IBC

211

II

VEt1B-A 'B+BA

lA

..........

IBZ

1B

A B C

Figure 10-13: Bottom: Semi-infinite chain with regions A, B (length 1A, 1B respectively) and C
adjacent to the boundary. Top: The mutual information between B and C for this geometry,
for the two regimes indicated.

243

IBC
2 l

2 (iB-IA

-VEt

IA+IB

I

i

I i i I

I

IA



the figure, this is given by

IAC = SA + SC - SAUC = SA + SC - SB- (10.45)

We have SA = SC = VEt for all times, since the appropriate minimal cuts are vertical. If

1 > 2 VEt, SB is given by two vertical cuts, so 'Ac vanishes. When 1 < 2 VEt, SB is instead

dominated by a horizontal cut, so that IAC = 2 VEt - 1-

The 'entanglement tsunami' is sometimes taken to mean that at time t, a 'boundary layer'

of width VEt inside a given region is entangled with the exterior. If this region were maximally

entangled with the exterior, this would reproduce the correct value of the entanglement across a

cut (S = VEt). However this picture is not correct: the result for the mutual information shows

that correlations exist over distances up to 2 VEt, not VEt. So although vE is a speed, it should

not be thought of as the speed at which the boundary of the entangled region moves.

Although the rule for calculating the entanglement is almost trivial, the consequences are not

always intuitively obvious. First consider the case where the regions A and C above are finite

rather than infinite (and embedded in an infinite chain); see Fig. 10- 1. When the length d of

the regions A and C exceeds their separation 1, the time-dependence of the mutual information

is as shown in Fig. 10-11. [The sequence of minimal cut configurations required for calculating

SB in this case is (a), (b), (c) shown in Fig. 10-12.] By contrast, when the separation 1 exceeds

the length d, the mutual information is always zero (or more precisely, exponentially small0).

[The sequence of cuts for SB in this case is simply (a), (c)].

Finally, consider the effect of a boundary. Take a semi-infinite chain with regions A, B, C

adjacent to the boundary as in Fig. 10-13 (C is semi-infinite). Consider the mutual information

between B and C, IBC = SB + SC - SA. We must distinguish the case 1A < lB/ 2 from the case

1A > lB/2."' The resulting expressions for IBC are plotted in Fig. ].0-13.

10.5 Numerical evidence for KPZ growth

We now give numerical evidence that noisy entanglement growth in 1D is in the KPZ universality

class. We study the time evolution of spin-! chains with open boundary conditions, taking the

initial state to be a product state with all spins pointing in the same direction (either the positive

y or z direction) and keeping track of the entanglement entropy across each bond during the

evolution. The discrete time evolution is a circuit of one- and two-site unitaries. Fig. 10-1.4l

shows the structure of a single time step: two layers of 2-site unitaries are applied, one layer

on odd and one on even bonds, together with single-site unitaries. Each unitary is chosen

2 0 For a simpler example of exponentially small values of the mutual information, consider (IAc) at infinite

times in a finite system. If the system contains L qubits and A U C contains N qubits, the mutual information

is exponentially small whenever N < L/2, and given by Eq. 10.11 as (IAC) ~ (2in 2)-12-
21 In the former case the first 'event' is that the minimal cut at the boundary of A goes from being vertical to

being horizontal; in the latter the first event is that the two vertical cuts at the boundary of B are replaced by

a horizontal one.
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Figure 10-14: Schematic structure of a layer in the quantum circuits used for simulations.

independently and randomly (from a certain set specified below). We will use the symbol R to
denote a generic single-site unitary, and U to denote a 2-site unitary.

We consider three kinds of dynamics, distinguished by the choice of unitaries. To begin
with we study 'Clifford evolution' in which the unitaries are restricted to the set of so-called
Clifford gates (Sec. 10.3). Clifford evolution can be simulated efficiently (in polynomial time)
using the stabilizer representation discussed in Sec. 10.3. This allows us to access very long
times and to pin down KPZ exponents accurately. Next we study more general dynamics for
which polynomial-time classical simulation is impossible, giving evidence that KPZ behaviour
holds more generally. The two types of non-Clifford dynamics studied here are referred to as
the 'phase evolution' and the 'universal evolution': details are given below. For these dynamics
we use a matrix product representation of the state implemented via ITensor [336].

The fingerprints of KPZ behaviour that we search for are the two independent critical expo-
nents 3 and a (Sec. 10.1). We extract 3 both from the fluctuations in the von Neumann entropy
and from the corrections to the mean value (Eqs. 10.6, 10.7), and we extract a from the spatial
correlations in the entanglement at distances shorter than the correlation length (t) (Eq. 10.9).
For Clifford circuits we will also touch on the entanglement probability distribution.

10.5.1 Clifford evolution

Clifford circuits, or 'stabilizer circuits', are a special class of quantum circuits which play an
important role in quantum information theory. As shown by Gottesman and Knill, they can
be simulated efficiently, even when the entanglement entropy grows rapidly, by representing the
quantum state in terms of stabilizers [175]: see Sec. 10.3.

The time evolution operator for a Clifford circuit belongs to the Clifford group, a subgroup of
the unitary group on the full Hilbert space. This group may be generated by a small set of local
Clifford gates: the two-site controlled NOT gates (Eq. 10.31) and the single-site Hadamard and
Phase gates RH and Rp (Eqs. 10.29,10.30). For circuits built from these gates, time-evolving
the state on L spins up to a time t takes a computational time of order Lt and measuring the
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Figure 10-15: The von Neumann entropy S(x, t) for a system of length L = 459, as a function
of X, for several successive times (t = 340, 690,1024,1365, 1707, 2048 and 4096), in the Clifford
evolution. The figure shows how the state evolves from a product state to a near-maximally
entangled one. Prior to saturation the entanglement displays KPZ-like stochastic growth. S(x, t)
is in units of log 2.

entanglement across a given bond in the final state takes a time of order L3 at most. This is in
sharp contrast to the exponential scaling which is inevitable for more general circuits.

In all our simulations, each two-site unitary U in the circuit is chosen with equal probability
from three possibilities: the two types of CNOT gate (Eq. 10.31.) and the identity matrix:

U E {1, CNOT(L), CNOT(R) . (10.46)

In this section we discuss the simplest Clifford dynamics, which includes only these gates, and
no 1-site unitaries (R = r). When the initial state is polarized in the y-direction, this set
of gates is sufficient to give nontrivial entanglement evolution, with universal properties that
turn out to be the same as those for more generic gate sets. We have also studied the 'full'
Clifford dynamics in which all the Clifford generators are used, choosing the single site unitaries
randomly from the three options

R E {1, RH, RP} (10.47)

Results for this case are similar and are given in Appendix. D.5.

To begin with, Fig. 10-15 shows the evolution of the bipartite von Neumann entropy S(x)
(in units of log 2) for a single realization of the noise (i.e. a particular random circuit) in a
system of L = 459 sites. The curves show successively later times. Note that the entropy
saturates more rapidly closer to the boundary, because the maximum entanglement across a
bond is proportional to its distance from the boundary. At very late times S(x, t) saturates
to a pyramid-like profile representing close-to-maximal entanglement. Our interest is in the
stochastic growth prior to saturation, which we will show is KPZ-like. All observables in the
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Figure 10-16: The von Neumann entropy S(x, t) in units of log 2, far from the boundaries, in
a system of length L = 1025 at various times (from bottom to top t = 170, 340, 512 and 682)
evolved with the Clifford evolution scheme. schematically shows the typical correlation length
Eq. [10.8] which grows in time like t/z.

Table 10.1: Summary of all fitting parameters to Eq. 10.49 used in this section. The Errors set
the estimated 2o- uncertainty.

Evolution VE A3 h B
Clifford 0.1006 0.0001 0.33 0.01 0.66 0.04 0.32 0.02
Phase 0.133 0.03 - 0.54 0.04 -
Universal 0.202 0.001 - 0.09 0.005 -

Evolution C r7 D
Clifford 0.28 0.05 0.08 0.1 0.16 0.04
Phase 0.223 0.004 - 0.168 0.03
Universal 0.14 + 0.003 - 0.36 + 0.01

following are measured far from the boundary, in order to avoid finite-size effects associated
with saturation.

Fig. [10-1.6] shows successive snapshots for a subregion of a larger system of L = 1025 bonds
(times t = 170, 340, 512,682, from bottom to top). The maximal slope that can appear is 1, in
accord with Eq. .10.3. Note the gradual roughening of the surface and the growing correlation
length.

Fig. 10-17 shows the 'height' and 'width' of the growing surface,

h(t) = (SvN(X, t)), w(t) = ((Sv2N(xt)) (10.48)

for very long times. These quantities have been averaged over at least 10 5 realisations. In each
realisation only the entanglement across the center bond is used (therefore all data points are
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Figure 10-17: Top: Growth of the mean entanglement with time for the Clifford evolution with
only CNOT gates (in units of log 2). The solid red curve is a fit using Eq. [10.49]. The exponent
,3 is found to be 3 = 0.33 0.01, in agreement with the KPZ prediction 3 = 1/3. Dashed line
shows asymptotic linear behaviour. Bottom: Growth in the fluctuations in the entanglement
with time. The dashed line shows the expected asymptotic behaviour, w(t) ~ t0 with / = 1/3.
The fit includes a subleading correction: Eq. [10,49], with 8 = 0.32 0.02. Error bars denote
the 1o uncertainty.

uncorrelated) and the system size is L = at, where a is chosen to avoid finite size effects (see
Sec 10.5.2). We obtain estimates Aj and 03, of the exponent / by fitting the data to the expected
forms (cf. Eqs. 10.6,10.7):

h(t)= vEt+B th, w(t) = C t0' + D . (10.49)

Here q (with r < /3) captures subleading corrections. We find:

,3h = 0.33 0.01, 83, = 0.32 t 0.02. (10.50)

Both estimates of 3 are in excellent agreement with the KPZ value 3 = 1/3. The solid lines in
Fig. '10-1 7 show the fits (the fit parameters are in Table .10.1). The dashed lines show the slopes
corresponding to the expected asymptotic power laws, h(t) ~ t and w(t) ~ t 1 / 3 .

The analysis in Sec. 1-0.3 implies that VE is a well-defined velocity, and VEt is a sharply-
defined lengthscale characterizing the range of entanglement in the state. We may confirm this
by measuring this lengthscale directly, see the subsection below.
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Figure 10-18: The logarithmic derivative of the width, dw/d log t, vs. time for the Clifford
evolution. The universal behavior with exponent t1/ 3 is observed at shorter time scales compared
with Fig. 1.0-17.

Note the small value of the subleading exponent q obtained from the fit. This implies that
finite time corrections are reduced if we plot the numerical derivative dw/d log t rather than w
itself (both quantities scale as ti/ 3 at long times). This is done in Fig. .10-18. The data fits well
to the t1/ 3 law even at short times. This will be useful for the more general dynamics where
long times are not available.

To complete the check of the two independent KPZ exponents, Fig. 10-19 shows the spatial
correlator G(r) defined in Eq. 10.9, as a function of separation r, for three successive times. For
small r the correlation grows like a r' with a ~ 1/2, in agreement with the KPZ prediction for
this exponent. For distances r > (t), the correlator saturates to a value proportional to w(t).
The figure gives an idea of the size of the correlation length 6(t) for these times.

Finally, recent advances in KPZ theory have yielded an analytical expression for the full
probability distribution of the KPZ height field [260, 261, 262, 263, 264, 265, 266, 267, 268, 269,
270]. In Appendix D.7 we show that this analytical result compares well with Clifford numerics,
providing further support for KPZ universality in this system.

10.5.2 Numerics on Speeds and Scaling Forms

We argued in Sec. 10.-4 that in addition to determining the entanglement growth rate, VE can
also be viewed as a speed. This is the speed of the fictitious particles in Sec. 10.3. Operationally,
the simplest manifestation of this speed is in the saturation behaviour of the entanglement. The
analytical arguments imply that to leading order (at large t and 1) the entanglement across a
cut at position 1 (1 < L/2) has the simple scaling form given above in Eq. 10.24,

f u for u
SA = VEt f(l/VEt), f (U) = for u> 1 (10.51)

1 for u ;> 1
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Figure 10-19: Correlation function G(r) ([S(r) -S()]21/2 at time t 512,1024 and 2048
for the Clifford evolution, showing excellent agreement with the KPZ prediction G(r) ~ rX with
X = 1/2 in the regime r < (t).

This gives simply SA = VEt for t < 1/VE, and SA = 1 for t > l/VE- This means that there is no
influence of the boundary at times t < 1/VE- (See also the numerical results in Refs. [220, 31-9],
indicating sharp saturation in circuits where interactions between any pair of spins are allowed.)

In Fig. 1.0-20 we test this result numerically for the Clifford evolution. We set 1 = L/2 and
plot

S( L/2,t) L/2
vS. >(10.52)

as a function of L, for several values of the time (t = 29, 2'0) 2 " and 212). Here VE = 0 -1 is
taken from the fits to Fig. .1.0-1.7. According to (1.0.51.), this plot should converge for large t to a
plot of f (u) against u. The results are in excellent agreement with the scaling form, confirming,
for the case of Clifford circuits, that VE is a meaningful velocity.

It is also interesting to compare the entanglement velocity, VE, with the butterfly velocity,
VB- We obtain VB from the average spatial extent W of a growing Pauli string (see Sec. 1.0.3.1)
under the unitary Clifford dynamics at time t, as VB = W/2t. Remarkably, we find that

VE = VB/2 within numerical precision for both the CNOT-only Clifford dynamics and the 'full'
Clifford dynamics defined above. This is shown in Fig. 10-21., where we plot W starting vs. time
for the two protocols. The initial Pauli strings we consider in this simulation are single-site Y
operators.22 We compare W with four times the average entanglement entropy, 4S(t). The two
curves lie on top of each other, consistent with VEIVB = 1/2.

We also found the same ratio for VEIVB in the exactly solvable large-q model (Sec. 10.1.1).
However it is possible to construct non-fine-tuned random circuits , involving Haar-random uni-
taries at finite q, in which the ratio is less than 1/2 [327], so this value is not universal. A

22The CNOT dynamics is not ergodic on the space of Pauli strings (unlike the full Clifford dynamics). Never-
theless, any operator grows in size at the same rate VB.
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Figure 10-20: The entropy across the centre of the chain (in units of log 2) divided by VEt VS.
L/2vEt for various fixed values of t. This plot converges nicely to the scaling form in (10.51).

natural question is whether it is generic for random Clifford circuits.

10.5.3 Universal and Phase evolution

The 'Phase' and 'Universal' dynamics take us outside the Clifford realm, and cannot be simu-
lated efficiently on a classical computer (in polynomial time). We will give evidence that the
correspondence with KPZ continues to hold in this more generic situation. However, our results
will not be as conclusive as in the Clifford evolution as we will not have access to such long
times.

The simulations are performed on spin-1/2 chains of length L = 500 bonds (501 spins)
using the ITensor package [336]. The two types of dynamics are defined as follows. (The 2-site
unitaries are always chosen from the set in Eq. 10.46; the initial state is taken polarized in the
y-direction.)

Phase evolution: Each single-site unitary is chosen randomly and uniformly from the set of
eightfold rotations about the z axis in spin space: R = exp (7rinoz/8) with n E 1, ... ,8.

Universal evolution: This set of gates, unlike the others, is 'universal' in the quantum infor-
mation sense (any unitary acting on the full Hilbert space of the spin chain can be approximated,
arbitrarily closely, by a product of gates from this set). The single-site gates include the eight-
fold rotations mentioned above, together with the Hadamard gate RH (10.29). RH is applied
with probability 1/2 and the rotations with probability 1/16 each.

Fig. [10-22} shows the height and width h(t) and w(t) for the two protocols (averaged over
380 realisations for the Phase evolution and 200 realisations for the Universal evolution, and
over bonds x with 20 < x < 480). The figure shows fits to the forms in Eq. 10.49 with Oh and
f3 fixed to the KPZ value and 7 fixed to zero (fit parameters are in Tab. 10.1). The fits with
Eq. 1.0.49 are consistent with the data. It is not possible to extract precise estimates for ,3 from
the slope of the log-log plot of w(t), although for the Phase evolution the slope at late times is
in reasonable agreement with the expected KPZ value, shown by the dashed grey trendline.
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Figure 10-21: The average size W of a growing Pauli string as a function of time for two
protocols, CNOT evolution (subscript 'CNOT') and the full Clifford evolution (subscript 'Cliff').
The correspondence with the dashed lines, showing the average entanglement entropy multiplied
by four, is consistent with VE = VB/2. (Taken from a system of size L = 1024.)

For an alternative attack on # we plot the numerical derivative dw(t)/dlnt. We found in

the Clifford case that the slope of this quantity (when plotted against time on a log-log plot)

had smaller finite size corrections than the slope for w(t) itself. The corresponding plot is shown

in Fig. 10-23, for times up to t = 25 (averaging over more than 5000 realisations). The dashed

grey lines are the t1 / 3 trendlines. Results for both types of dynamics are in good agreement

with the expected slope # = 1/3.

Next we examine the spatial correlator (.10.9) in Fig. 1.0-24. For both types of dynamics,
the behaviour for r < (t) agrees well with the KPZ exponent value a = 1/2 at the largest

available time.

The very long times accessible in the Clifford simulation allowed us to establish KPZ expo-

nents with high accuracy there. For the more generic dynamical rules we cannot reach the same

level of precision, but nevertheless the KPZ exponent values are compatible with the data.

10.6 Higher dimensions

We have discussed several ways of thinking about entanglement growth in 1D. One of these,
the directed polymer picture, generalizes naturally to higher dimensions: the polymer is simply

replaced by a d-dimensional membrane embedded in (d + 1)-dimensional spacetime. As in

ID, we think of this membrane as as a coarse-grained version of a minimal cut bisecting a

unitary circuit. The membrane is subject to pinning by 'disorder' in space-time arising from

the dynamical noise. See Fig. 10-25 for the two-dimensional case.

We can explore two kinds of question using this picture. First, we can examine universal

properties that are specific to the noisy scenario: as in 1D, fluctuations are governed by uni-

versal exponents. Second, we can calculate leading order properties of S(t) that do not involve
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Figure 10-22: Top: Growth of the mean entanglement as a function of time for the universal
and phase gate set fitted to Eq. 1.0.49 with # set to 1/3. The dashed line shows the expected
asymptotic behaviour for comparison. Error bars indicate one standard deviation (10-) uncer-
tainty.

fluctuations and which are therefore likely to be valid even in the absence of noise, i.e. for
dynamics with a time-independent Hamiltonian. In higher dimensions the behaviour of S(t)
has nontrivial dependence on the geometry of the region for which we calculate the entangle-
ment. We suggest the 'minimal membrane in spacetime' as a simple and general heuristic for
such calculations. Below we discuss the case of a spherical region (Sec. 10.6.2) and contrast our
results with an alternative simple conjecture. For other toy models for entanglement spreading,
see Refs. [64, 77].

Denoting the region for which we wish to calculate the entropy by A, and its boundary by
OA, the membrane lives in a spacetime slice of temporal thickness t, and terminates at OA on
the upper boundary of this time slice: see Fig. 10-25. For simple shapes and for times shorter
than the saturation time, the membrane also has a boundary on the lower slice, as shown in
Figs. 10-25, 10-26. In this section we will focus on entanglement growth prior to saturation.

10.6.1 Universal fluctuations of S(t) in noisy systems

Consider the entanglement S(t) for a region A whose boundary OA has length or area JaAl.
In the d = 2 case, shown in Fig. 10-25, |OAl is the length of the spatial boundary. Neglecting
fluctuations, the 'world volume' of the minimal membrane scales as lOAl x t. This gives the
leading scaling of the membrane's energy and hence of the entanglement. As in ID, subleading

253



t1/3

0 'Universal' evolution
0.2 * 'Phase' evolution -

dw
dlogt

0.1 - -

10 14 18 22
t

Figure 10-23: The logarithmic derivative of the width dw/d log t vs. time for the Phase and
Universal evolution protocols. For comparison we plot the universal behavior with exponent t 1/3

in grey (dashed). (The derivative is calculated using three data points. Errors are estimated
from maximal and minimal slopes obtained within one standard deviation from the averaged
data points.)

terms encode universal data. We now consider these terms.
The pinning of a membrane or domain wall by disorder is well studied [309, 337, 338, 339, 340]

(a brief summary is in Appendix D.6). Translating standard results into the language of the
entanglement in a d-dimensional noisy quantum system, we find that in both d = 1 and d = 2
there is a unique dynamical phase with nontrivial critical exponents. The same is true for
continuum systems 23 in d = 3. However if a lattice is present, two stable phases (and thus a
dynamical phase transition) are possible in d = 3; one with nontrivial exponents and one with
trivial ones. In the trivial phase the membrane is 'smooth' and is pinned by the lattice. In the
nontrivial phases the membrane is instead pinned by disorder in a 'rough' configuration. We
will discuss the nontrivial phases (which are the only ones possible in d < 3 and for continuum
systems in d = 3).

Generally fluctuations have a weaker effect in higher dimensions than in 1D. For simplicity,
take a quantum system which is infinite in one direction and of size L in the other d- 1 directions,
and consider the entanglement for a cut perpendicular to the infinite direction. Since A and its
complement are both infinite, S(t) will grow indefinitely for this geometry. However there are
two regimes, t < L and t > L (here we drop a dimensionful prefactor). For times t < L (see
Appendix D.6 for details):

(S(t)) = Ld-1 (vEt + BtO+1-d +... (10.53)

((S(t)2 ))1/2 oc L(d- 1)/ 2t 0-(d-1)/2, (10.54)

where the exponent 9 is defined below. This reproduces the ID result with 9 = 8. Note
that when d > 1, fluctuations are suppressed with respect to the mean by a factor of I&A1/ 2:
distant regions of the boundary give rise to essentially independent fluctuations which add up

2 3 More precisely, for systems with continuous (statistical) spatial translational symmetry.
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Figure 10-24: Correlation function G(r) = ([S(r) - S(0)] 2)1/ 2 at three values of the time for the
Phase (top) and Universal (bottom) gate sets, showing good agreement with the KPZ exponent
value a = 1/2.

incoherently. In the opposite regime t >> L, the temporal dimension of the membrane is much
larger than its spatial dimensions, so there is a crossover to the 1D directed polymer problem.
However, the exponent of the higher dimensional problem appears in the universal L dependence
of the growth rate:

S(t) = (vLd- + wL-1)t +... (10.55)

(The higher corrections will include the t1/ 3 term associated with the 1D universality class.)
Numerically, the exponent is 0 = 0.84(3) in d = 2, and 0 = 1.45(4) in d = 3 [340]. The
subleading exponent in Eq. 10.53 is negative for d > 1, so this correction may be hard to
observe numerically.

10.6.2 Minimal membrane picture for dynamics without noise

In higher dimensions we can ask how S(t) depends on the geometry of region A when this geom-
etry is nontrivial. Interestingly, the membrane picture makes predictions about this which do
not involve the noise-induced fluctuations, and which are likely also to be valid for Hamiltonian
dynamics without noise (with the replacement S -+ S/seq discussed in Sec. 10.4).

As an instructive special case, take A to be a disc-shaped region of radius R in d = 2. (A ball
in higher dimensions is precisely analogous.) We assume continuous rotational symmetry, at
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Figure 10-25: Minimal membrane picture for the entanglement of two regions in d 2.

least on average. At short times, the leading scaling of the entanglement is S(t) ~ 27rVER t, since
the worldsheet area of the membrane is approximately 27rR x t. However there are corrections
to this arising from the curvature of OA.

We consider the limit of large t and large R with a fixed ratio t/R. In this regime the effects
of fluctuations may be neglected, and instead the energetics of the membrane are determined
by deterministic elastic effects. We write the energy of the membrane as

E = d2S'E, (10.56)

where d 2 S is the membrane's area element and & is its 'energy' density. S(t) is got by minimising
E with appropriate boundary conditions.

Next we Taylor expand S in terms of local properties of the membrane. For a flat 'vertical'
membrane (i.e. with normal perpendicular to the t axis) 9 = VE- In general however 9 will
depend on the angle 'p by which the surface locally deviates from verticality, as well as, for'
example, the local curvatures n, and Kt in the spatial and temporal directions. Using rotational
symmetry to parametrise the membrane by the radius r(t'),

d2 S S = vErdOdt (1 + a 2 + biK2 + cK2 + ci +...). (10.57)

However this simplifies in the limit of interest. We first send t, R -÷ oo with t/R fixed. In this
limit (t') remains finite but the curvature terms become negligible (see for example the explicit
solution below) so we can write E = C(f). Now we make the second approximation that t/R is
small, meaning that we can keep only the Q( 2 ) correction.

The boundary condition at the top of the spacetime slice is r(t) = R. We will consider times
prior to saturation, so the membrane also has a free boundary on t = 0. In the relevant limit
its 'energy' is

E = 2 7rVE j dt r (t) (1 + a (t1) 2 +...). (10.58)
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Figure 10-26: Minimal membrane for a disc-shaped region in d = 2.

Minimal energy requires the boundary condition i(0) = 0. When t/R is small we may expand
in 1/R. This gives r(t') ~ R - (t2 

- t'2 )/(4aR), as illustrated in Fig. 10-26. The corresponding
entropy is

S(t)= 27rvER t I - R+...). (10.59)12aR2 .. )

This calculation generalises trivially to higher dimensions, where the correction is of the same
order. Corrections due to fluctuations come in with negative powers of t, and are negligible in
the limit we are discussing.

Note that the first correction in the brackets in Eq. 10.59 is of order (t/R)2 , and not of order
t/R. This result differs from what one might naively have expected if one guessed that at time
t an annulus of width f) x t inside the disc is entangled with the outside, where iJ is a tsunami
velocity. This picture gives an entropy proportional to the area of the annulus,

S(t) 4 7rR2 - 7r(R - ut)2 = 27rRft 1 - , (10.60)

leading to a negative correction of order t/R. The difference between Eqs. 10.59, 10.60 also in-
dicates that a picture in terms of independently spreading operators is misleading, in agreement
with what we found in ID.

It is interesting to note that in the regime where t/R is of order one, the full # dependence
of S() plays a role. This suggests that an infinite number of nonuniversal parameters enter the
expression for S(t) in this regime, and that there is no general, universal scaling form for the
entanglement of a sphere in d > 1. However we do expect saturation to remain discontinuous,
as in ID (Eq. 10.24), occurring via a transition between an optimal membrane configuration
which reaches the bottom of the spacetime slice and one (with E = 7rR2 ) which does not.
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10.7 Outlook

Quantum quenches generate complex, highly entangled states whose dynamics cannot usually

be tracked explicitly. For this reason, analytical approaches to quenches have typically relied

on additional structure in the quantum dynamics: for example integrability, or absence of

interactions, or conformal invariance. This paper has instead studied dynamics that are as

unstructured as possible. We propose that noisy dynamics are a useful toy model for quantum

quenches in generic (non-integrable, non-conformally-invariant) systems.

Many of our results are of course specific to noisy dynamics: in particular the emergence of

KPZ behaviour at long wavelengths in ID, and the detailed pictures for entanglement growth

afforded by the 'KPZ triumvirate'. But we have suggested that some of our heuristic pictures

apply to non-noisy entanglement growth as well (with the replacement S -4 S/seq mentioned

above). We proposed a general directed polymer picture/minimal membrane picture for the

scaling of the entanglement and mutual information (Secs. 10. 1, 1.0.2) and we used the operator

spreading picture to clarify the meaning of the 'entanglement velocity' and its distinction from

the operator spreading velocity (Sec. 10.4). 'Thermalization is slower than operator spreading'

in generic 1D systems (i.e. in general VE is smaller than vB): by contrast this is not true in

1+1D CFTs [511, or in certain toy models [64]. It would be interesting to make more detailed

comparisons with holographic models [213].

Many interesting questions remain. First - within the realm of noisy systems - an ana-

lytical treatment for the regime with weak noise would be desirable, i.e. for dynamics of the

form

H(t) = Ho + AHi(t), (10.61)

where Ho is a time-independent many-body Hamiltonian, H1 (t) represents noise, and A is small.

Our conjecture is that KPZ exponents apply for any nonzero value of A (unless H(t) is fine-tuned)

- i.e. that there is no universal distinction between continuous time dynamics and quantum

circuits. (Note that there is no distinction between these two cases at the level of conservation

laws: once noise is added, energy is not conserved even in the continuous time case.) However

our derivations and numerics correspond, roughly speaking, to the large A regime. Perhaps

the opposite regime could be addressed using a more explicit RG treatment, although it is not

obvious how to set this up.

Such an RG treatment might also shed light on the nature of the entanglement spectrum, or

equivalently the dependence of Sn(t) on the index n. While we believe that all the Renyi en-

tropies execute KPZ growth in the presence of noise, we have not pinned down the n-dependence

of the various constants. The solvable models suggest that the leading order behaviour may be

independent of n at large times. What is the appropriate scaling form for the spectrum? Limited

timescales prevented us from addressing this numerically (except for Clifford circuits, where all

the S, are trivially equal).24

2 4 The entanglement spectrum is one window on the structure of the quantum states generated by the random
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As a more speculative question in the domain of noisy dynamics, we may ask whether there

exist time-independent Hamiltonians which show KPZ entanglement fluctuations, despite the

absence of explicit noise, in some dynamical regimes. We emphasize that this seems unlikely on

asymptotically long timescales for a generic system (since local reduced density matrices and

observables will eventually thermalize) but it may hold on intermediate timescales in certain

systems in which some degrees of freedom act effectively as chaotic classical variables and provide

effective noise.

In the text we have only discussed initial states with area law entanglement. A natural

extension is to initial states with, for example, sub-maximal volume law entanglement. The

natural expectation, say in ID, is that the directed polymer picture extends to this case if we

glue the unitary circuit to a tensor network representation of the initial state. Then the entropy

S(x, t) would include a fluctuating part with KPZ exponents together with a contribution from

the initial state. Another natural direction to explore is the role of conserved quantities. Turning

to higher dimensions, it would also be useful to test the higher-dimensional membrane pictures

of Sec. D) 6, perhaps exploiting Clifford circuits to reduce the numerical difficulty of higher-

dimensional dynamics.

dynamics. We can also ask in what ways these states differ from ground states of random Hamiltonians, when
the amount of entanglement is similar.

259



260



Appendix A

Quantum Information Processing with

Majorana Zero Modes

A.1 Calculation of the Persistent Current

To estimate the magnitude of the persistent current in a Majorana interferometer with a metallic

arm or another Majorana island, we compute the persistent current in a free electron ring with

one and two weak links.

A.1.1 Single Weak Link

Consider a free electron ring of length L with a single weak link. The bosonized form of the

action S = So + Sweak where So is [341, 3421

So = 1 dx dr [(OBro)2 + v2(Oq#)2 ] (A.1)
2VF fo f

with VF is the Fermi velocity of the metal. The "weak link" is modeled by a weak hopping

between the ends of the ring [343, 3441 Sweak = - f dr [iTft(L, 7)b(O, r) + h.c.], with 0 and Ot

the electron creation/annihilation operators respectively. After bosonizing, the most relevant

term in the action for the weak hopping is given by

Sweak = -j dT cos [/7(#(L, r) - 0(0, r)) + E]

with

27r - (A.2)

the flux through the ring, in units of the flux quantum 4o = h/e.

We observe that the fields #(x, r) for x $ 0, L may be integrated out to obtain an effective
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action that only involves the phase difference V(r) = - [#(L, r) - q5(0, r)] [343, 3441. Expanding

the phase difference as

'9(T) = eiWn-rP(wn) (A.3)

with Matsubara frequencies Wn = 27rn/3, and integrating out the bulk fields results in the

effective action for a finite-size system

Seff =->jWnI coth [ L IO(wn) 2 -tj dr cos [2 fi 79(r) + E] (A.4)

We may determine the persistent current I = ~- (0 In Z/&4)) perturbatively in the coupling t,

where Z = f D e-Seff is the path integral. The leading contribution to the persistent current

comes at O(T); observe that

1 ln Z _et f#
I= I dT (sin [2v' (r)+ ) -- -a34 (D J0 0o

et sin 27r e-2-)2) +- (A.5)

where (- )o denotes the expectation value with respect to the Gaussian part of the action.

From the two-point correlation function

(0(j)O (0))[ = -1(A.6)
iW, Wn Icoth2VF

we determine that the persistent current at zero temperature is given, to leading order in the

weak hopping, and after restoring factors of h, by

e - F sin 2 7r + 0 (t2) (A.7)
\EFL o

where y is the Euler-Mascheroni constant. Here, hi- the hopping strength across the Majorana

island - is given by hi= t2 (1/E++1/E_) with Ea the energy difference between adjacent charge

states on the Majorana island as defined in the main text, and t, the tunneling amplitude into

a single Majorana zero mode. We may re-express the persistent current in terms of E as well

as the tunnel-coupling F and the level-spacing in the metallic wire 6. The persistent current is

then given by I = Io sin(27r4)/)o) with

S 2eF I + e- (A.8)
h tE+ E_ o

Taking the tunnel-coupling IF to be approximately one-tenth of the superconducting gap A,
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which determines the level-broadening of the Majorana edge-states we find that 10 ~ 10 nA.

A.1.2 Double Weak Link

A similar answer is obtained in the case of a metallic wire with two weak links, which we model
as two independent wires, each of length L/2, whose ends are weakly coupled. In this case, the
bosonized action is given by S = So + Sweak with

2
VF JL

j
d-r E [paros2 _ -2 (axor) 2

]

f=1,2

(A.9)

and

Sweak = - Tl d cos [V7 ( 2 (0, r) - 01(L/2, r)) + 8]

-T 12 dT cos [V7 (q1(0, T) - #2(L/2, r))] (A.10)

with E again given by the flux through the ring e = 27r4/4o.

We now integrate out the bulk fields after expanding the phase differences V1 (T) [02 (0, r) -

01(L/2, T)]/2 and 19 2(T) [q1(0, 7) - #2 (L/2,Tr)]/2 in terms of Matsubara frequencies f(-r) =

#-~1 > enUe(wn) to obtain the effective action S =_ S e) + S~eQJ where

S(eff) - E w| coth

Seff) = 1i dr cosweak

L )2 +k.2(W")12 + sech 2vF *(n)92 (n)

[2\/7F91(T)+E] - 2 dr cos [2vt9 2(T)]
0O

We again compute the persistent current perturbatively in the hoppings T1,2 .
observing that in terms of the variable

9 (wn) = O1(w) + sech (IwnLL) 792(Wn)

the Gaussian part of the action is now diagonal

S(eff) = I0 coth L 2 + tanh ( 2VL

We begin by

(A.12)

(A.13)

The two-point correlation function

(192(T) 2 ) 0 = 1 E coth (IwL
2VF
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(A.11)

(A.14)

132 (Wn) 12 .-



diverges at low frequencies, so that

(cos [2VW902(T)]) 0 = 0. (A.15)

As a result, the leading contribution to the persistent current comes at O(t 1t 2), as expected.

To leading order in the weak hopping, the persistent current now takes the form

I = 1 2 j d-dr' (sin [2N/L91(T) + E] cos [2Vi92(T')] 0

We may explicitly evaluate the above the expression, after using the correlation function (A.14)

and the fact that

( 01(7)'02(0))o (A. 16)
Wn Ie n I sinh (JnI\ 2

VF

We find that at low temperatures T, the persistent current takes the form I = Io sin(27rI/Po)

where Io, after re-writing in terms of the level-spacing 5, the charging-energy cost for the islands

E , and the tunnel-coupling for each Majorana island Fi is given by

87re IF1 2 2  1 1N 2 e2y
I0 h k 2 6  Y +E) e 2 . (A.17)

h kBT (E+ E_
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Appendix B

Phase Diagram of the Coupled ZN

Topological Phases

We now turn to a discussion of the rich phase diagram of the coupled ZN toric codes, as described

by the Hamiltonian (71 3). Our results are summarized in the diagrams shown in Fig. B-1 a and

b when N < 5 and N > 5, respectively. Both figures include the four distinct phases discussed

previously, i.e.

I. J > h, t: Decoupled 2D ZN Topological Phase

II. h > J, t: 3D ZN Topological Phase

III. t > J, h: ZN X-Cube Fracton Phase

IV. h, t > J: Trivial, Confined Phase

The remaining details in the phase diagram arise from an interesting duality between the Hamil-

tonian (7.13) when h = 0, and the 3D ZN toric code in the presence of a field; increasing the

strength of this field eventually leads to condensation of the ZN flux loops and results in a

trivial, confined phase. From this duality, and from knowledge of the phase structure of ZN

lattice gauge theory, we deduce that when N < 5, the ZN X-cube model has a direct, first-order

transition to a phase where the layers are effectively decoupled. When N > 5, however, there is

an intermediate phase which is dual to a Coulomb phase that is known to appear in the phase

diagram of (3+1)-d ZN lattice gauge theory [345, 346], along the line h = 0. We argue, how-

ever, that this phase is gapped and topologically trivial when h > 0. Interestingly, one of the

transitions out of the gapless phase is believed to be continuous in numerical studies [18, 347],

which presents the intriguing possibility that there exists a continuum field theory description

for the ZN X-cube phase.

Several features of the phase diagrams in Fig. B-1, including the manner in which these

phases meet at the center of the phase diagram, as well as the generic behavior of the transitions

between the ZN X-cube and trivial confined phases, are unknown. We conclude by presenting a
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(a) N < 5 (b) N > 5

Figure B-1: Schematic Phase Diagram of the Coupled System: The duality derived in
Sec. II relates the points (x, y) = (t/J, 0) with (J/t, 1) that lie along the black and blue arrows,
respectively, in the schematic phase diagrams above. From knowledge of the phase diagram
of (3+1)-d ZN lattice gauge theory, we argue that when N < 5, there is'a direct, first-order
transition between the X-cube phase and the decoupled phase. Alternatively, when N > 5,
there must be an intermediate phase along the line h = 0 which is dual to a Coulomb phase
that appears in the phase diagram of the (3+1)-d ZN lattice gauge system. We argue that this
phase is unstable [17] and becomes a gapped, topologically trivial phase when h > 0. From
Monte Carlo studies of the transition along the blue arrow, between the deconfined phase of ZN
gauge theory and the Coulomb phase [181, we believe that the dual transition along the h = 0
line, into the fracton topological phase in (b), is continuous.

solvable projector model in which the transition is believed to be first-order, and by speculating

on directions for future work.

B.0.1 Confinement Transition from the ZN Topological Phase

We begin from the top left corner of the phase diagram (h > J, t), where our system is in
a 3D ZN topological phase. Increasing the strength of 'the coupling t eventually leads to a
condensation of ZN flux loops, and the associated phase transition is captured by the finite-
temperature behavior of the 4D classical ZN lattice gauge theory with a "Wilsonian" imaginary

time action Sw[0] = 3K E', cos[(A x ),], where 0 is a ZN variable defined on the links of the
4D cubic lattice, while (A x 9), is the lattice curl around plaquette p, and the sum is over all

plaquettes on the 4D lattice.

When N < 5, classical Monte Carlo studies [18, 347] have observed a direct, first-order

phase transition between a disordered phase where the magnetic flux loops have condensed at

high temperatures, to one where they remain energetically costly, with the expectation value

of classical Wilson loop operators decaying as the exponential of the area of an enclosed region

("area-law") and as their total length ("perimeter-law"), respectively, in the two phases. In
our problem, these two phases correspond to a trivial loop condensate and a phase with ZN
topological order, respectively, as indicated in the top portion of the phase diagram in Fig. B-1a.
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When N is large (N > 5), three phases are observed in Monte Carlo studies of the classical 4D

ZN lattice gauge theory [18, 347, 348]. This rich phase structure may be understood in a variety

of ways. To begin, we recall that a similar phenomenon occurs in 2D classical, Zk-symmetric

spin models when k is sufficiently large. In addition to a low-temperature symmetry-breaking

phase and a disordered phase at high temperatures, there is an intermediate phase with algebraic

correlations that resembles the low-temperature behavior of the XY model. The existence of

this XY-like phase with an emergent global U(1) symmetry may be motivated by recalling that

in the classical 2D XY model, Zk anisotropy is a marginally irrelevant perturbation when k > 4

[349]. A more rigorous argument for the existence of this phase, even when the anisotropy is

infinitely strong, is provided in Ref. [345].

A similar argument may be used for the presence of an intermediate phase with emergent

U(1) gauge symmetry in the phase diagram of 4D ZN lattice gauge theory in the large-N

limit [348, 345, 346]. Ref. [346] studied a Villain form of the 4D ZN gauge theory, which

exhibits a discrete analog of the electric-magnetic self-duality of compact U(1) gauge theory

[350], and whose action may be re-written as that of Maxwell electrodynamics in the presence of

both electric and magnetic charges. While the action exhibits only a ZN gauge symmetry, it was

argued that both the electric and magnetic excitations are strongly suppressed near the self-dual

point in the large-N limit, so that the effective action is that of pure Maxwell electromagnetism.

As a result, when N > 5, there is a "Coulomb phase" that is encountered in the top region of

the phase diagram in Fig. B-1b, with the ZN variable 0 effectively behaving as the emergent

U(1) gauge field.

These three phases may be distinguished by the behavior of the gauge-invariant Wilson loop

operator WC, which creates a closed tube of electric flux, along with its (electric-magnetic)

dual F,, which is a membrane-like operator that creates a closed magnetic flux loop along

loop C on the dual lattice. In the deconfined phase of the ZN gauge theory, a large Wilson

loop WC exhibits perimeter-law behavior while F has area-law behavior, while the opposite

behavior occurs in the confined phase. In the intermediate phase, however, both charge and loop

excitations are suppressed [346] and neither excitation has condensed. As a result, the Wilson

loop operator WC must exhibit perimeter-law behavior [3461. Since this phase is self-dual under

the electric-magnetic duality transformation, the same behavior holds for Tg. As argued in Ref.

[3511, due to the non-trivial statistics of ZN charges and flux loops, perimeter-law behavior for

both operators can only occur in the presence of a gapless gauge field, which is consistent with

the emergence of a Coulomb phase.

It remains unclear whether the transition between the Coulomb and confined phases is

continuous [352, 353] or weakly first-order [354, 3551. However, the transition between the

deconfined phase of the ZN gauge theory and the Coulomb phase appears continuous in Monte

Carlo studies [18, 347, 348]. Finally, as N increases, the region of stability for the ZN topological

phase shrinks, while the second transition from the Coulomb phase to the confined phase remains

robust [18]. This is consistent with the expectation that the limit "N -+ +oo", should somehow
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reproduce the phase diagram of the pure (3+1)-d compact U(1) gauge theory.

B.O.2 Transition(s) from the decoupled phase to the ZN X-cube phase

We now study the bottom half of the phase diagrams shown in Fig. Bl. a & b. We first

demonstrate that the transition from the decoupled layers of 2D toric codes to the X-cube

fracton phase is dual to the confinement transition for the (3+1)-d ZN gauge theory, which is

driven by the condensation of flux loops. This result is intuitively apparent from our "loop-gas"

representation of the X-cube phase, which suggests that the transition from the decoupled layers

must be driven by the condensation of a loop excitation. Physically, our duality transformation

maps the closed composite flux loops in the ground-state of the X-cube phase into the closed

electric flux loops in the ground-state of the ZN topological phase. We emphasize that this

duality relates the bulk spectrum of two seemingly distinct physical systems, and provides

relations between certain local operators on both sides.

We begin by explicitly implementing our lattice duality transformation on the Hamiltonian

for the coupled Z 2 toric codes (8.1) when h = 0, before discussing its consequences. In practice,

our transformation is identical to the (2+1)-d Wegner duality that maps the transverse-field

Ising model to the (2+1)-d Z 2 gauge theory [189], in each layer of our coupled system; as a

result, the generalization of this duality for the ZN case is apparent from our following discussion.

Recall that the Hamiltonian (S. 1) for the coupled toric codes when h = 0 is given by

H = Z[A-J A + B -t S o4,i,, (B.1)
r,ji (r,r'1)

We recognize that the 2D Z2 charge operator Ar) and the operator Or = B.XY) ByYZ) Brfz)

B(Yz) B(xz) B$72, which is the product of six flux operators around an elementary cube, as inr+: r +;

Eq. (.1), commute with the Hamiltonian (B.1) and with each other [Or, Af?] - [A , H]

[Or, H] = 0. Therefore, we work in a restricted Hilbert space where

A 4') - lilT) and Or IT) = IT) (B.2)

without loss of generality.

We now introduce a dual description of the transition from the decoupled theory (t < J)

to the X-cube phase (J > t) that solves the first of these constraints, by introducing spins (q)

on the links of the dual cubic lattice. These spins are to be interpreted as measuring the flux

through a plaquette in the decoupled toric code layers. We implement the dual representation

by performing the replacements

Br2) -- +xi (B.3)

Xsirs I- Z (B.4)
r',jEp1aq,,
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x x07rs-rs 1

Figure B-2: Bond-Plaquette Duality: We provide a dual representation of the Hamiltonian
(8.1) by introducing spins (77) on the links of the dual cubic lattice, which measure the flux
through an elementary plaquette in the decoupled layers. This dual representation allows us to
demonstrate that the transition from the decoupled layers to the ZN X-cube phase is dual to a
confinement transition in ZN gauge theory.

where Brs, is a four-spin operator on a plaquette of the dual lattice pierced by the link (r, s) as
shown in Fig. B-2.

The duality transformation preserves the algebra of local operators in (B.1.), and naturally
solves the constraint Afj |T) = IT). Furthermore, the dual description of the operator Or is
given by

Or -- Ar =7 X s (B.5)
s8jEstar,

where Ar is precisely the six-spin Z2 charge operator which acts along a "star" configuration of
the rl spins at each site of the dual cubic lattice. We therefore find that the dual Hamiltonian
is precisely

Hdual = -J1 ?7rxz - rr' (B.6)
r,j (r,r')

supplemented by the Z2 Gauss's law constraint on the dual cubic lattice

Ar IT) = IT) (B.7)

which describes the confinement transition for a 3D Z2 topological phase driven by the con-
densation of flux loops. As advertised, the lattice duality relates the Z2 X-cube phase to the
deconfined phase of (3+1)-d Z2 gauge theory, while the decoupled toric code layers are dual to
the trivial, confined phase.

Our duality transformation establishes that the bulk transition from the decoupled toric
codes to the X-cube fracton phase is dual to flux loop condensation in the 3D Z2 gauge theory,
which is known to be a direct, first-order transition. The natural ZN generalization of this
duality transformation leads us to conclude that along the h = 0 line of the phase diagram (i)
when N < 5, there is a direct, first-order transition between the decoupled layers and the X-cube
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phase and (ii) when N > 5, there is an intermediate gapless phase for the layered system, which

is dual to the Coulomb phase that emerges in the phase diagram of the (3+1)-d ZN gauge theory.

From our duality transformation, it appears that this gapless "dual Coulomb" phase along the

h = 0 line of the phase diagram is characterized by an emergent U(1) gauge symmetry, which

should be generated by the natural generalization of the Gauss's law condition 0 r = +1 for the

X-cube fracton phase. The U(1) generalization of this condition may be read off from Fig. 7-5;

if we consider an integer-valued "electric field" tensor Eij with vanishing diagonal components

Eii = 0, and a conjugate gauge field Aij, then this Gauss's law takes the simple form

AinL\Eij = 0 (B.8)

with Ai, the lattice derivative along direction i, and summation performed over repeated indices.

The "higher-rank", compact U(1) gauge theory [198, 356] defined by this Gauss's law con-

dition is equivalent to a generalized dimer model studied in Ref. [17], which was shown to be

in a gapped phase with crystalline order due to the proliferation of topological defects in the

gauge field configurations (i.e. "monopole" events). Due to this result, we believe that the

dual Coulomb phase is unstable, and gives way to a gapped, topologically trivial phase with

conventional long-range order when h > 0. The h = 0 line then corresponds to the fine-tuned

limit where monopole events in the gauge field are suppressed. This conclusion is consistent

with the fact that the perturbation op, ,a , corresponds to a highly non-local operator in terms

of the dual q spins, and with our expectation for the behavior of the phase diagram in the

N -+ +oo limit. The nature of the transitions between this trivial phase, the X-cube phase and

the decoupled layers are unknown when h > 0. When h = 0, however, our duality mapping

suggests that the phase transition from the X-cube phase to the dual Coulomb phase is dual

to the transition between the deconfined phase of (3+1)-d ZN gauge theory and the ordinary

Coulomb phase, which may be continuous [348, 18], though we are unaware of the continuum

field theory that governs the properties of this transition.

We conclude this section by identifying the following order parameters

WE X,.Xr Fr f Bi) (B.9)
(r~s) E E(p,j)E E

that distinguish the X-cube phase, the decoupled phase and the dual Coulomb phase along

the line h = 0. Here, E is a two-dimensional region with area AE and perimeter PE. The

product appearing in the definition of Wr is taken along the bonds perpendicular to the region

E, and this operator may be thought of as inserting a composite flux loop along the boundary

of E. Furthermore, JFE is the product of the plaquette operators that measure the 2D ZN flux

through the region E. Our notation is meant to emphasize that these operators are dual to

the Wilson loop and membrane operators that distinguish the various phases of the ZN gauge

theory. From our discussion in Sec. IIA, we determine that the operators WE, Fr exhibit the
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following behavior along the h 0 line, when the region E is sufficiently large:

* Decoupled Phase: (WE) ~-o e-A, (Fr) e-cPF

* Dual Coulomb Phase: (WE), (FE) ~ e-cPE

" X-cube Phase: (WE) ~ e-cP, (F.) - e--Ar

B.O.3 Confinement of the X-cube fracton phase

The generic behavior of the confinement transition for the ZN X-cube fracton topological phase -

by condensing the dimension-i quasiparticle excitations - are not known. This transition occurs

in the far right region of the phase diagrams in Fig. B-1. Instead of studying this transition

directly, however, we propose a solvable Hamiltonian that interpolates between the Z2 X-cube

fracton topological order and a confined phase in this section and determine that the transition

is first-order within this model. It is unknown whether this captures the generic behavior of this

transition, outside of the solvable model.

We construct a solvable projector model by placing spins (T) on the links of a three-

dimensional cubic lattice. Now, however, we consider the Hamiltonian

- -JZ A2) + J [ Ti e-(r) rs/J (B.10)
r~J rJ _sEplanej(r)

supplemented by the constraint Or I|) = IT), where A(P =seplane (r) T 8 is the four-spin

operator in the X-cube model that is oriented in the jth plane, and measures the presence of a

dimension-i quasiparticle excitation at site r. As before, the operator Or is the 12-spin r' opera-

tor as defined in Eq. (7.11) that measures the fracton "charge" at a cube or = Hs, r'Ecube(r) T', 8 .
We observe that the Hamiltonian W exhibits both the Z2 X-cube fracton phase (h < J) as well

as a trivial confined phase (h > J). Furthermore, when h < J, the Hamiltonian W reduces

to the effective Hamiltonian considered previously for the confinement transition of the X-cube

phase

Reff = -J A - 2h S ri+O(h 2/J) (B.11)
r~J (r, r/)

The full Hamiltonian 71 (BP0) is a sum of projection operators

Hr,j = -A + el eh-rs/J (B.12)
sEplanej (r)
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and therefore has a positive semi-definite spectrum. As a result, a ground-state of the Hamil-

tonian is found by explicitly constructing a zero-energy wavefunction. Projector Hamiltonians

similar to (B.10) have been extensively studied by considering generalizations of the Rokhsar-

Kivelson (RK) point in the two-dimensional quantum dimer model [357, 358, 359, 360, 361, 362],
where the ground-state may be written as an equal-amplitude superposition of dimer configura-

tions. For these generalized RK models, the Hamiltonian is related to the Markovian transition

matrix for a classical system which satisfies detailed balance [359]. Spatial correlation func-

tions of certain "diagonal" operators in the ground-state of the quantum model are identical to

classical correlation functions in equilibrium.

Let 4'fracton) be a ground-state of the Hamiltonian R- when h = 0, i.e. one of the ground-

states of the solvable X-cube fracton Hamiltonian. We may write 1/fracton) explicitly as

1 + A
10fracton) = 9 2 rT 8 , +1) (B.13)

where jT1, = +-) is the state with all spins polarized in the z-direction. The ground-state of 71

is then given by

XWgs) ~ 7 ehTrs/ 2J I'/fracton) (B.14)
(r, s)

It is straightforward to check that I4 'gs) is indeed a zero-energy eigenstate of the Hamiltonian,

as it is annihilated by all of the projectors Hrj. It is convenient to re-cast the ground-state

wavefunction in an alternate form. Observe that configuration of spins appearing in the state

V'fracton) may equivalently be specified by the action of the Afj) operators on the reference

state |T.,, = +1). As a result, the ground-state wavefunction IxJgs) may be re-written in terms

of dual Ising variables p, a at the sites of a three-dimensional cubic lattice, which label the

presence or absence of a particular operator Ar2j acting on the reference configuration. In this

dual representation, the ground-state takes the form

|Tgs) = IZ E e-,H/21{},{}) (B.15)
{o} {ip}

where the classical Hamiltonian OH is given by

fH = >3[or or+_ + pr/r+ + 0rIprUr+tr+] (B.16)
r

and Z is the partition function Z = 3} >{1 e-H for this classical model.

Preliminary Monte Carlo studies of the classical Hamiltonian /3H reveal a first-order phase

transition when h/J ~ 1.13 [363, 364], which implies the presence of a first-order phase transition

in our model. For example, the expectation value of the magnetization M = (r,,) Tr, is
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precisely the energy of the classical system E = (TI I M I ), which exhibits a discontinuity

at the putative phase transition point [363, 364]. Classical correlation functions that are not

invariant under the Z2 transformation o- -+ -o-, p -+ -- p along any plane of the cubic lattice

must vanish, as this is a symmetry of the classical Hamiltonian (B 16). To our knowledge,

however, the behavior of higher-point correlation functions near the classical phase transition

have not yet been studied. An intriguing possibility is that the dynamical behavior of this

classical system is "glassy" in a certain range of couplings h/J [363, 364], which would imply

in the quantum-mechanical problem that the Hamiltonian R has a gapless spectrum, and that

certain correlation functions exhibit power-law decay in time [359, 360], while remaining spatially

short-ranged. We leave an exploration of this exotic possibility to future work.

273



274



Appendix C

Non-Abelian Fracton Excitations in

Three Dimensions

C.1 Non-Abelian Fractons and Braiding

In this section, we demonstrate that appropriately moving and braiding the non-Abelian anyon

formed from a pair of fractons (or x o) in our model, implements a unitary transformation on the

space of degenerate, locally indistinguishable states. The nature of the unitary transformation

may be determined, up to an overall Abelian phase, by observing that a membrane-like operator

that moves a pair of fractons in distinct layers must conserve the parity of the matter fermions
(f )

U within each layer, as required by gauge invariance, and so that no other excitations are

created in the system. Therefore, a vertical membrane operator that exchanges pairs of well-

separated fractons, as in Fig. C-tb, must affect the following transformation on the fermionic

zero mode operators shown 'yi -4 72, y2 -4 -yi, -y3 -4 -y4, -y4 -4 -- y3, up to an overall choice of

sign in each layer.

The resulting unitary transformation may be written by pairing the fractons as shown in

Fig. C-la, to form a basis for the protected, 24-2 = 4-dimensional Hilbert space shown. Using

basis states 1, 1), 11,0'), 1', 1), 4', 4) which describe the fusion channels of a pair of fractons

in layer ii and in 2, respectively, and using the F- and R- matrices for Ising anyons [44],
we observe that the fracton exchange shown in Fig. C- Lb affects the diagonal transformation

B1 = e' 0 r diag (e-ir/4 , eir/4 , eir/4 , -e-iT/ 4 ), while the exchange process in Fig. (-1 c is off-

diagonal

B2 = eiOr B 0 B. (C.1)

where B -- ie"/4(I - iT)/2 and T' is the spin-1/2 Pauli-X operator. Here, the overall Abelian

Berry phase ei0r can depend on the number of fractons that lie in the planes between f1 and 2,
and that have been enclosed by the membrane operator used to exchange the fractons. Such a

phase arises since pairs of fractons in the Majorana checkerboard model have ir mutual statistics
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(a) (b)

Figure C-1: Braiding Transformations: By applying membrane-like operators, we may ex-
change pairs of fractons in nearby layers to affect unitary transformations on the degenerate
states in the Hilbert space.

with fractons contained within their plane of motion.

C.2 Coupled G Gauge Theories and Non-Abelian Fractons

Consider the quantum double model, as originally introduced in Ref. [19], which describes the
zero-correlation length limit of the deconfined phase of a 2D gauge theory with finite gauge
group G. Within each layer, degrees of freedom are placed on the oriented links of a square
lattice, and labeled by the elements of the finite group G. The Hamiltonian takes the form

Hi = - As - ZB 1  (C.2)
s p

where the "flux" operator at a plaquette p projects onto a state where the oriented product of
the degrees of freedom along links surrounding p are equal to the identity. We define B 'I as

B =9 |zI, z2, z3, z4) (zi, z2, z3 , z4 1 (C.3)
ziz2z3z4Eg]

where [g] is the conjugacy class associated with the group element g E G. The "star" operator
As multiplies the oriented links surrounding site s by elements of G as follows:

A s  iT As) (C.4)
g EG

where

A(9) 9 5gziz4 g ,gzzg 1 ) (z, z4, z 5 , z 6 1 + h.c.
{ziJEG

with z1, ... , z6 as shown in Fig. C-2a. The two operators A8, Bi] commute and are both
projection operators. As a result, the ground-state of a single layer satisfies As JI|) = B[1 |]) =

IT).
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The quantum double model, which describes the zero correlation-length limit of all lattice

gauge theories with a finite gauge group in (2-+ 1)-dimensions, admits gapped charge and flux

excitations, which live on the sites and plaquettes of the lattice, respectively, and are obtained

by acting on the ground-state with a "ribbon"-like operator [1-9]. Pure charge excitations are

labeled by irreducible representations of G, while pure fluxes are labeled by conjugacy classes

C of the group. More generally, a charge-flux composite (dyon) is labeled by C, as well as an

irreducible representation of the centralizer of C, denoted Cc. As an example, G S S 3 - the

permutation group on three elements - may be parametrized as

(C.5)

where the elements x and y satisfy

X2 3 = 1 yx = Xy 2 (C.6)

The three conjugacy classes of S3 - {1}, {y, y 2 }, and {x, xy, yx}, which we label as [1], [x] and

[y] respectively - have centralizers S3 , Z2 and Z3, respectively. The irreducible representations

of S3 include the trivial representation, the sign representation ("sgn"), as well as the standard

two-dimensional representation. A full list of the eight excitations in the S3 lattice gauge theory

are given below

Excitation Flux Charge d

A 1

B sgn 1

C 2 2

D []- 3

E [x] -1 3

F [y] 2

G [y] w 2

H [y] _ 2

(C.7)

Here w and Z label the two non-trivial

representation of Z2. The last column

given by

representations of Z3 while -1 denotes the non-trivial

is the quantum dimension of each excitation, which is

dC,Rep(C,) = ICI - dim Rep(Cc). (C.8)

The coloring of the excitations is to denote the neutral vacuum (black), pure charge (red),
flux (blue) or a dyon (green) excitation. For our purposes, we will be concerned with the non-

Abelian flux D, whose relevant fusion rules for our purposes we write suggestively as D x A = D;

D x F = D x (1 + B); D x D = (1 + C) + F x (1 + C).
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Figure C-2: Quantum Double Layers: In (a), we show single layer of the quantum double
model [191 on the square lattice. The action of the star (As) and plaquette (Bp) operators on
each link is described in the text. The setup for computing the commutator of 0[g', and Oc is
shown in (b).

We now consider intersecting layers of the quantum double model for a group G, where each
layer t is described by the Hamiltonian

Ht = - As, -E B[] (C.9)
s p

The layers are placed in an intersecting configuration, as shown in Fig. 8-2a of the main text,
to form a cubic lattice with two G-degrees of freedom per link. Furthermore, the layers are
arranged so that a pair of overlapping links from orthogonal layers have opposite orientation,
as shown in Fig. 8-2a. The state on link (s, s') is now labeled Izs', ws,). On a given link, we
may explicitly write the operator that creates two pure flux excitations in each of the adjacent,
orthogonal layers meeting at link (s, s') as Wi W where

w 1g]z 8 h) (z- 1 (C.10)ss, = FGzss h ifs

zSS, EG he[g]

acts on z,,,/, while W acts identically on other degree of freedom (w5 ,) on the same link. We
claim that the following Hamiltonian for the coupled quantum double layers

H = H -A S S, (C.11)

where

0 g] -wg]f-g
SS 931, = S/@ + h.c. (C. 12)

can give rise to a fracton topological phase in the limit that A > 1, for an appropriate choice
of flux [g]. The action of 0[g', on the decoupled layers of quantum double models is shown
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schematically in Fig. 8-2b of the main text. We refer to this process for generating a fracton

topological phase, where the immobile excitations carry a non-trivial quantum dimension, as

composite [g] flux loop condensation.

We now study the emergence of a fracton phase from an intersecting array of quantum double

layers for the group G = S3 - the permutation group on three elements - after condensing the

composite flux loop formed from the non-Abelian flux D associated with the conjugacy class

[x]. When A > 1, the state on each link must satisfy

[]- I ~
ss/ I has,) = lhas,) (C. 13)

2

and we may derive a low-energy effective theory that acts exclusively within this subspace. To

derive this effective Hamiltonian, we begin by noting that [As,,, O ] 0, which may be verified

by explicit calculation. Additionally, observe that the flux operators B do not generally
[xIf

commute with 088,, since the latter has the effect of creating D flux excitations. Specific

products of the charge and flux operators may commute with 02x, however, as certain local

conservation laws may remain even after condensing the non-Abelian D flux loop. When A >> 1,

we find that the effective Hamiltonian takes the form

Heff - As,e - K E Oc-- (C.14)
.Sf C

where K ~ A- 6 is determined in perturbation theory, and the operator O, is defined as

0,a (2B)x - 1) (C. 15)
pfEac

with the product taken over the six plaquettes surrounding cube c. The ellipsis in (C.14) denotes

other operators that commute with Onx at all sites that arise from higher-order perturbation

theory.

The second term appearing in the effective Hamiltonian reflects the fact that after condensing

the composite D flux loop, any configuration of fluxes appearing in the ground-state must be

such that there are an even number of these fluxes at every cube on the lattice. The zero-

flux condition in a single quantum double layer has been replaced by an emergent constraint

on the parity of the D fluxes at each cube. We now verify that this is indeed an emergent

conservation law (i.e. [O, 02x] - 0) by explicitly by evaluating the commutator between the

operators 1)( - 2B , -- 1) and 0"] - as defined on the orthogonal plaquettes p and

p' that overlap on the link (s, s') as shown in Fig. C-2b - when acting on an arbitrary state

|V) Z Z1, Z2, z3, Z4, z5, z6, w, W'). Observe that

O[x, (1 - 2B[x] (1 - 2B[x] ) |)= 1 f({zi}, w, w', h, h') {z}, wh, w'h')

IS1h,h' E [l
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where

f({zi}, w, w', h, h') (1 - 2 JZ6Z7W'z5E[X1- 2 6
wziz 2z 3 E[x])

- (1 - 26 z6 z7w'h'z5 E [X])(1 - 2 6 whzi z 2 z 3 E [x]

Here the Kronecker delta 6 gEjx] = 1 iff g E [x] and is 0 otherwise. We observe that a - b c [x] iff

only one of the elements a or b is a member of [x]. Therefore, for any g, k E S 3 and h E [x], we

find that (1 - 2 3 ghkE[x]) = -(1 -2eke[x]). This immediately implies that f({zi}, w, w', h, h') = 0

and confirms the claim that [Oc, O8, = 0.

To summarize, we have shown that even after condensing the composite D flux loop, the

parity of the fluxes at every cube on the lattice remains well-defined. While this parity is fixed

to be O = +1 in the ground-state, acting with line- and membrane-like operators can create

patterns of gapped excitations (OC = -1) which are fundamentally immobile. Observe that when

A >> 1, acting on the ground-state with a Wilson line [19] will create four such excitations, by

anti-commuting with four of the cube operators Oc; each pair of excitations will be located at

the two ends of the Wilson line. As explained in the main text, an array of these Wilson lines will

create four such excitations that are well-separated and which are fundamentally immobile due

the geometry of the membrane-like operator, i.e. a single excitation cannot be moved without

creating other such excitations in the system. As in the Majorana checkerboard model, the

product of the Oc operators along any plane is equal to the identity, after imposing periodic

boundary conditions. This non-local constraint implies that the cube excitations may only be

created in clusters of four at the corners of an operator with support on a flat, membrane-like

region. As advertised, the non-Abelian D flux remains deconfined after coupling the S3 quantum

double layers, and has become an immobile fracton excitation in the condensed phase.

Other excitations also remain deconfined in the condensed phase. We do not present an

exhaustive list of these excitations here, but instead argue that when A >> 1 a bound pair of

the B charges in orthogonal layers, which is only free to move along a line without proliferating

additional excitations (i.e. a "dimension-1 quasiparticle" in the language of Ref. [7]), remains a

deconfined excitation with reduced mobility, while all of the pure charge excitations are confined.

Recall that within a single layer of the 2D G gauge theory, the operator that creates a pure

charge excitation, associated with the irreducible representation R of the group G is given by

(R) _
WSS/ = X '(z.98/) Iz'.S) (Z S', (C. 16)

zss, EG

where XR (g) = Tr (g) is a character of the representation R. The operator that creates the

non-Abelian D flux does not commute with (C-16). Observe that [WN,, ] $ 0, so that an

isolated charge cannot be created within the low-energy subspace defined by (C, 13) when A > 1.

Notably, however, the operator that creates two B charges in orthogonal layers at a given link

commutes with the composite D flux loop condensation, i.e. [W" I W Y"), IO,[x] - 0, as may
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be verified by explicit calculation, using the fact that the characters for the sign representation

of S3 are simply Xsg(1) = Xsgn(Y) = 1, Xsgn(x) = -1. Here, the operators 88/ ") and W7j/(")

act on the two degrees of freedom z and w at link (s, s'), respectively:

= xRR)ss;)xR wss' z8 ', w8 s ( 8 ', -(R'
z,wEG

Therefore, we conclude that while all of the isolated pure charge excitations are confined, a

bound pair of B charges in orthogonal layers is a deconfined excitation, which may be moved

along a line by sequentially applying the operator W88") ® W5ssn"). Since this excitation is

formed from a composite of excitations in adjacent layers, it is only free to move along the line

along which the layers intersect, and is therefore a dimension-1 quasiparticle in the language of

Ref. [6].
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Appendix D

Entanglement Dynamics in a Random

Unitary Circuit

D.1 Growth of Hartley entropy So in ID

Consider a one-dimensional quantum spin chain of local Hilbert space dimension q, prepared

initially in a product state, and apply a sequence of random unitaries that couple two neighboring

spins. The location of the local unitary at a given time step is arbitrary. In the following we fix

the location of the unitary, but take it to be Haar random.

We prove that in this situation the Hartley entropy So generically (i.e. with probability 1)

obeys

So(x, t + 1) = min(So(x - 1, t), So(x + 1, t)) + 1, (D.1)

if a unitary is applied at the bond x. The logarithm is of base q.

This formula can be interpreted in matrix-product-state (MPS) language. If dx is the min-

imal value of the local bond dimension required for an exact MPS representation of the state,

then So(x) = log dx. A heuristic parameter counting argument for the local bond dimension,

given in Sec. D.1.3 below, suggests Eq. D.1.

However a more rigorous proof is necessary as such heuristic arguments can fail. In particular,

one might naively conjecture a stronger statement: namely that for any state at time t, if the

unitary at bond x is Haar random, then Eq. (D 1) is true with probability 1. This conjecture is

false; a counterexample will be given below in Sec. D.1.2. We now give a proof of Eq. D.

D.1.1 Proof of Eq. (W.1)

Our genericity proof consists of two parts. First, we will show that given locations of unitaries,

there exist certain unitaries such that at each time step, Eq. (1).1) is true. Second, we will show
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the negation of Eq. (D.1))

So(x, t + 1) < min(So(x - 1, t), So(x + 1, t)) + 1 (D.2)

happens if and only if a system of polynomial equations in the entries of the unitaries is satisfied.

(The inequality ">" never holds as we noted in the main text.) By the first part of the proof,

the zero locus of these polynomial equations does not cover the entire set of unitaries. Therefore

it is only a submanifold of strictly smaller dimension, which implies it has measure zero.

For the first part, it is sufficient to consider only three types of local unitaries: the identity I,

the swap gate W, and a unitary E with the property that it turns a pair of unentangled polarized

spins, Il), into q~1 /2  = Iii), a maximally entangled state. Without loss of generality we may

take the initial product state to be the polarized state I... 1111 ... ).

We are going to show that using these three types of unitaries at the given locations, one

can construct a state whose entanglement entropy is given by Eq. (D.1). Since Eq. (D. 1) defines

the entropy inductively, we only have to show it inductively too.

At t = 0, all the spins are unentangled, so we can simply choose E for every designated

location. Clearly, Eq. (D.1) is satisfied. At later times, if we do not apply E except on an

unentangled pair of spins, then a spin can be either unentangled or maximally entangled with

a single other spin. Therefore, at time t > 0 the spin SL that is immediately left to the bond x

can be

(i) unentangled,

(ii) entangled with a spin to the left of SL,

(iii) entangled with the spin SR that is immediately to the right of the bond y, or

(iv) entangled with a spin to the right of SR.

These are exclusive possibilities, and similarly SR has four options. Enumerating all 16 cases,

which in fact reduces to 7 different cases excluding invalid ones and those related by reflection,

one easily checks that there is always a choice among I, W, E that makes Eq. (D.1) true. Let

us treat three exemplary cases here. If SL and SR are entangled at time t, then S(x - 1, t) =

S(x + 1, t) and S(x, t) = S(x - 1, t) + 1, so one chooses the identity I. If SL is entangled with

a spin on the left of sL and SR is entangled with a spin on the right of SR, then S(x - 1, t) =

S(x + 1, t) = 1+ S(x, t). One chooses the swap W to obtain S(x, t + 1) = S(x, t) + 2. If sL and

SR are both unentangled, then one applies the entangling unitary E to obtain S(x, t + 1) - 1 =

S(x, t) = S(x - 1, t) = S(x + 1, t).

For the second part, recall that for any bipartite state

) Mij ii) 1j) (D.3)

284



the number of nonzero Schmidt coefficients is equal to the number of nonzero singular values

of the matrix M, which is nothing but the rank of M. For any positive integer r, the rank of

M is smaller than r if and only if every r x r submatrix has determinant zero, i.e., all r x r

minors vanish. Thus, a bipartite state I@) having Hartley entropy (log of rank of M) strictly

smaller than log r is expressed by a system of polynomial equations on the coefficients of 10). If

10) is given by Ut ... U2 U 10) where 10) is a fixed product state, then the coefficients are some

polynomials of the entries of the unitaries Ui, and hence the equations that expresses vanishing

determinants are polynomial equations in the entries of the unitaries.

Our claim Eq. (D1A) completely determines the Hartley entropy based on the location of

unitaries, and therefore the spatial configuration of the unitaries tells us which minors we should

check. Namely, the size r of the minors we turn into the polynomial equations is given by (the

exponential of) the right-hand side of Eq. (D.2). In other words, given a spatial configuration

of unitaries, the polynomial equations that express Eq. (1.).2) are determined. The polynomial

equations are over tL variables, and the actual number of equations is much larger yet finite. We

do not need explicit expressions for these polynomials, only the fact of their existence. These

polynomials might a priori read 0 = 0, i.e., they could be trivially satisfied. In that case, the

solution to the polynomial equation would be the entire set of unitaries, and Eq. (.11) could

never be satisfied. However, we just showed in the first part that this cannot happen because

there exists a choice of unitaries for which Eq. (D. 1) is satisfied. This implies that the polynomial

equations are nontrivial and define a measure zero subset of the entire set of unitaries. This

completes the genericity proof.

D.1.2 Counterexample to the stronger conjecture

We have shown that (.D1) holds when all unitaries are chosen generically and the initial state

is a product state. Naively one might make the stronger conjecture: that the update rule (D.1)

holds whenever a generic unitary U is applied to an arbitrary - possibly fine-tuned - state

I). We construct an explicit 11) which is a counterexample to this stronger conjecture.

Consider four degrees of freedom ABCD. The spins B and C have dimension 2 each, and A

and D have dimension 3 each. (To conform with our consideration of spin chains, the subsystems

A and D should be regarded as subspaces of two or more spin-i's.) The most general form of

a quantum state on ABCD is

2 1

Z Z Tabcd 1a) 1b) Ic) Id). (D.4)
a,d=O b,c=O
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We consider Tabcd = T'bco, i.e., C is in 10), where

0 1 0 0 0 1

TaOd= 1 0 0 Ti=d 0 0 . (D.5)

(0 0 0) a(1 0 0)a

(This does not give a normalized state, but we are only concerned about ranks.)

The Hartley entropy for the cut A/BCD is simple to compute. As remarked in the previous

subsection, it is the rank of the coefficient matrix. Interpreting this matrix as a linear map, the

rank is the dimension of the image of the map from BCD to A. The image is precisely the linear

span of columns of Taod and T'ld. They have three linearly independent columns, implying the

Hartley entropy for A/BCD is log2 3. Similarly, the rank of the coefficient matrix for ABC/D

is the dimension of the linear span of the rows of T Od and T ld, which reads 3. That is, the

Hartley entropy for ABC/D is log 2 3.

If Eq. (1).1) were to be true for generic choice of Haar random unitary on BC, then we

should be able to find a unitary on BC such that

So(AB/CD) = log 2 3 + 1 = log 2 6. (D.6)

We show this cannot hold. Applying the unitary U on BC the state, we obtain

E Ubjc',bcTabcd = Ub'c',00 T'od + Ub'c',10 T ald. (D.7)
bc

UO U1

where UO and U1 are 2 x 2 matrices. The coefficient matrix for the cut AB/CD is then

V = UO TO + U1 0 Tj (D.8)

whose rank should be 6 if So(AB/CD) = log 6. Computing all the minors of the 6 x 6 matrix

V for arbitrary matrices UO and U1 , we find that all (5 x 5)-minors vanish, implying that V has

rank at most 4. Therefore, for this nongeneric initial state,

So(x, t + 1) # min(So(x - 1, t), So(x + 1, t)) + 1. (D.9)

D.1.3 Parameter-counting argument

Consider a ID state 11F) in a matrix product representation. Labelling the states of the qubits

(spins) by o-, o-'... running from 1 to q,

T) =.A _ A', .. . (D.10)
ax 1,ax axa{}

f al {a}
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Since the state is not translationally invariant, we allow the bond dimension dx to vary from

bond to bond (ax = 1,..., dx). In an efficient representation, dx is equal to the rank of the

reduced density matrix for a cut at x:

dX qso(x) (D.11)

We ask how So(x) changes when we apply a unitary U to the two spins, - and o', either side of

bond x. This effects the change (repeated indices are summed)

A'[_iax A"" -a _/a 1 ,,-AT A' . (D.12)

To update the matrix product representation we must find new matrices A and A' which satisfy

'Aa1,ax Ala , ax+1 = Ua ,,,T AT na A' . (D. 13)

In order to solve this equation for A and A', it will generally be necessary to increase the

bond dimension at x to a new value d'. Naively, the necessary value of d' will generically be

determined by equating the number of independent equations in (D.13) with the number of

degrees of freedom in A and A'. (However, the previous subsection shows that this expectation

can fail for certain choices of A and A'.)

The number of equations is q2 dx-idx+1, since this is the number of possible values for the

external indices in (1.1'3). The numbers of degrees of freedom in A and A' are qdx-id' and

qdx+1d' respectively. However, d'1 of these are redundant, because the state is unchanged by the

transformation A' -+ A"M, ''a - M-''', with M an arbitrary d' x d' matrix. Equating

the number of equations with the number of independent degrees of freedom gives

(d' - qdx-_)(d' - qdx+1 ) = 0. (D.14)

Choosing the smallest solution,

d= q x min{dx_1, dx+1}. (D.15)

This agrees with Eq. D. 1 since So(x) = log dx.

D.2 Haar average for Tr p2

Let px(t) be the reduced density matrix for a cut at x, obtained by tracing out the spins to the

left of the cut. Each index on this matrix labels a configuration of the spins to the right of the

cut. Let us temporarily label these spins 1, 2,. . ., and let the spin immediately to the left of the

287



cut be denoted 0. The indices on the reduced density matrices are then:

Px+1(t) a',.... (D.16)

In the following we assume that repeated indices are summed. After applying a unitary on bond

p I(t + 1)'2 . = Uro,,fo,/ U* pX_1(t)?'Oj',j 2
r

Let us average Tr px(t + 1)2 over the choice of unitary, for a fixed initial state:

(Tr p(t + 1)2) = PXX(t)ap,_1(t)2 .. '. x U0. 1, U* U,,Il ,*
110,111[/22,... Oro al U2* ... 0 1 TA1 0 1 0 al

The Haar average for four elements of a U(d) matrix (here d = q2 , and each index on U represents

a pair of spin indices) is

d2 1 I f Jac'A,c'bd6 b'dd + a,c' Sa,cob,d' b,d}KUa,bUa,bI Uc*,dUc*, )Haar

h i xa ca',cb,d'id ea, cla', ci b,tdhb', d'

The index contractions give the result in the text,

(Tr px(t + 1) 2 )Haar = q(q2 + 1)~-1 (Tr p2 _1 - r p2+ 1)

D.3 Entanglement entropy of stabilizer states

A stabilizer state is a state of an n-qubit system defined by a complete set {gi,
commuting tensor products of Pauli matrices through equations

9i4 ) = +10) .

(D.17)

(D.18)

... ,g} of

(D.19)

The group generated by {gi,... ,g} is naturally called a stabilizer group, and denoted by

9 [175, 365]. A trivial example is the all-spin-up state, defined as

Zi 11) = +14) (D.20)

for all i = 1, . . . , n. The condition that 14) is nonzero and unique is equivalent to the condition

that the operator

(D.21)
gC9
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is a projector of rank one [366, 3671]. Since 1,) is in the image of this projector, we see

1# ) ) 7= g. (D .22)

Since this is a normalized pure density matrix, its trace is equal to 1. But a Pauli matrix has

the property that it is traceless. Therefore, only the identity element on the right has nonzero

trace:

1 = dim(C2)®n = 2n (D.23)

From this expression, it is straightforward to obtain expressions for reduced density matrices.

Suppose the n-qubit system is partitioned into two complementary regions A and B. Tracing

out B, we have

1
PA = 2n TrB(g). (D.24)

geg

TrB (g) is nonzero if and only if the tensor component corresponding to B is identity, in which

case

TUB(g) = 2|BIg A (D.25)

where gJA denotes the tensor components of g corresponding to A. The set of all 91A such that

TrB(g) $ 0 can be regarded as a subgroup of 9, which we denote by 9A. The formula for PA
now reads

PA = 2 B g = 19A 1 g. (D.26)PA 2n 21AI1 9 AI YS
9g-A 9E9A

It is immediate that PA is proportional to a projector since it is a sum over a group. It follows

that the rank of PA is equal to 2IAI/ 1gA. In particular, the (R6nyi or von Neumann) entropy of

PA with base-2 logarithm is

S(pA) = |A - log2 gAl. (D.27)

The subgroup 9 A has period 2, and therefore log 2 19 AI is an integer, which is equal to the number

of independent stabilizers supported only on A. This expression for the entanglement entropy

has also appeared in [333, 334].

Now, regard the stabilizer group 9 as a binary vector space V by ignoring the overall phase

(sign) factors. Let IA be the truncation map retaining the components corresponding to the

region A, and similarly II be the truncation map for B = A. It is routine to check that V

decomposes as VA D VB D V' for some subspace V' C V where VA and VB are the spans of
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Full Clifford evolution
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Figure D-1: Top: Growth of the mean entanglement in units of log 2 as a function of time for
the random Clifford evolution (only CNOT gates). The red solid curve is a fit using the form
Eq. [1.0.49]. Dashed line shows asymptotic linear behaviour. Bottom: Growth in the fluctuations
in the entanglement with time. The exponent 3 is found to be 3w = 0.3 t 0.04, in agreement
with the KPZ prediction # = 1/3. The dashed line shows the expected asymptotic behaviour,
w(t) ~t0 with )3 = 1/3.

stabilizers supported only on A and B, respectively. Both the truncation maps are injective on

V'. It follows that SA = BI - dimF2 VB = dimF2 (IAV) - AI. This completes the proof of

Eq. 10.33.

D.4 Free fermions are Non-Generic

The growth of entanglement in systems of free particles is highly non-generic. In the presence

of noise the entanglement of a system of free particles on the lattice grows only as S ~ v, in

contrast to the behaviour S ~ t of generic systems. The case of spatially homogeneous noise

has been discussed recently [368]. The basic point is the same when the noise varies in space:

the fact that the single-particle wavefunctions spread diffusively in the presence of noise implies

that the entanglement cannot be larger than O(x4 ) [368].

As a concrete example, consider a short-range hopping Hamiltonian for free fermions,

H(t) = ZHij(t)c , (D.28)
t i ii

with noisy matrix elements Hij (t). For simplicity, take the initial state to consist of particles
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localized at sites i E S for some set S; for example we could take S to consist of all the

even-numbered sites:

I4( ) c 10). (D.29)
ic S

Under the evolution, each creation operator evolves into a superposition of creation operators,

c (j, t)c , (D.30)
ji

where O(M (j, t) is the solution of the time-dependent Schrodinger equation for a particle initially

localized at i. In the absence of noise, ) spreads ballistically, but in the presence of noise it

spreads only diffusively. The fact that each creation operator is spread out over only O(vt) sites

after a time t immediately implies that the mean entanglement is at most of order V't. (See also

Ref. [368].) Note however that this argument does not tell us how large the fluctuations are.'

We have confirmed numerically that (S) cc \/t for a noisy ID hopping model, using the

formalism of Ref. [370] to construct the reduced density matrix. This is much slower than

the linear-in-time growth of generic interacting models. The VI scaling should apply for free

fermions in any number of dimensions. In ID it also applies to certain noisy spin models via

the Jordan Wigner transformation: for example the transverse field XY model,

H(t) = (Ji(t) [o of+1 + ay ay+1] + hi(t)) . (D.31)

However any generic perturbation to the spin chain spoils the free fermion correspondence. We

then expect the generic KPZ behavior to reassert itself.

D.5 Numerics for full Clifford evolution

In Sec. 10.5.1 we have presented numerical results for random unitary evolution using only the

CNOT gates Eq. 10.31. Here we present similar analysis using the full set of generators for the

Clifford group, showing that the additional gates do not modify the universal behavior. The

additional single-site gates are the Hadamard and phase gates defined in Eq. 1.29 and Eq. 1

respectively. (The Hadamard gate corresponds to swapping the X and Z vectors while the phase

gate corresponds to adding the X vector to the Z vector.)

The von Neumann entropy in units of log 2 and the corresponding width averaged over

2 x 10 5 realisations (except for the last data point where ~ 2 x 10 4 realisations were used

for the average) are plotted in Fig. [D-1. The fit to the KPZ universal form Eq. .1 49 gives

fh = 0.2 0.15 and /3w = 0.3 0.04. We also obtain VE = 0.194 0.001, B = 0.4 0.2,

C = 0.4 0.1, D = 0.4 0.6 and q = -0.4 0.8. These results are consistent with the KPZ

Random unitary evolution of a single wavepacket is discussed in Ref. [3691. However we must consider the

full many-body wavefunction, since the formalism of Ref. [370] for the free fermion density matrix shows that

the initially occupied orbitals do not simply contribute additively to the entanglement.
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universality and with the data presented in Fig. .10-1.7.

D.6 Details of statistics of membranes

The exponents governing the membrane problem are traditionally denoted 0 and (, and are
related by 2( - 0 = 2 - d [309]. Consider a patch of the membrane with linear dimensions
scaling as f. This includes both its temporal dimension and its internal spatial dimensions: after
a rescaling of time, the membrane is statistically isotropic on large scales. The mean 'energy' of
this patch of membrane scales as td + const x o, with fluctuations of order to. The lengthscale
for wandering of the membrane in the transverse direction is of order eC. The numerical results
quoted in the main text are in good agreement with an epsilon expansion about d = 4 which
gives ( ~ 0.208(4 - d) [339] (see also [371]). The scaling forms for the entanglement discussed
in the text are easily found by regarding the membrane as made up of patches of appropriate
linear size: size t for Eqs. 10.53, 10.54, and size L for Eq. 1.0.55.

Note that the geometry of the membrane, including the transverse lengthscale (which is
Ax ~ tC for the regime t < L) determines the dimensions of the spacetime region around &A
for which the final entanglement is sensitive to small changes in H(t), i.e. in the history of the
noise.

P(S)

0.06L

0.04

0.02!

390 395 400 405 410

P(S)
o 10-

0.08i

0.061

0,041:

0.02.

S 30 35 400 405 410

Figure D-2: Observed probability distribution for the entanglement entropy across the central
bond of chain of length L = 2048 at time t = 2048 under the full Clifford dynamics, fitted
to two probability distributions. Top: best fit to the Tracy-Widom (TW) distribution with
8 = 1. A fit to TW with 3 = 2 is not shown, but is indistinguishable at the scale of the figure.
Bottom: best fit to the Gaussian. Clearly, the Tracy-Widom distribution fits the data better
than Gaussian, as the latter shows systematic deviation. The 1 - R2 values for the fits are
2.1 x 10-4 for TW8= 1 , 2.0 x 10-4 for TWa= 2 , and 1.6 x 10-3 for Gaussian.
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D.7 Entanglement probability distribution

As mentioned in the main text, a remarkable recent advance in KPZ theory has been the

derivation of the full universal probability distribution for the height of the surface at fixed

position and fixed large time [260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270]; see [289,
290, 2911 for reviews. In our case this height corresponds to the entanglement S across a cut in

a system undergoing noisy unitary dynamics. One may separate out the nonuniversal growth

rate VE, and the nonuniversal constant D governing the scale of fluctuations, by writing

S = VEt + Dt3x. (D.32)

The rescaled random variable x is then expected to have a universal probability distribution

P(X) at late times. This probability distribution depends on the initial condition for the surface.

For a surface which is initially flat, P(X) is the Tracy-Widom distribution with # = 1. This is

the case relevant to our setup where S(x, t = 0) = 0. (In the directed polymer interpretation this

corresponds to a setup where the x-coordinate of the upper endpoint of the polymer is fixed but

that of the lower endpoint is free; again this is the setup relevant to our minimal cut picture.)
Other initial conditions for a growing surface can give different universal forms for P(X) -

for example the so-called 'narrow wedge' initial condition gives the Tracy-Widom distribution

with 3 = 2. (The latter distribution is likely to be relevant to noisy growth of entanglement

between two subsystems that are initially unentangled with each other, but separately highly

entangled. 2 )

In Fig. D-2 we fit numerical data for the probability distribution of S to the expected Tracy

Widom form and, for comparison, to a Gaussian distribution. The data is for the 'full' Clifford

dynamics (defined in Sec. 10,i5 ) at time t = 2048. Each fit involves two parameters, corre-

sponding to the mean and the variance. The Tracy Widom distribution used is the theoretically

expected one with / = 1, but in fact the present data does not allow us to discriminate between

TW3= 1 and TWa= 2 . The Tracy Widom distribution is a much better fit to the data than the

Gaussian, as quantified in the Figure caption. This is further confirmation of KPZ universality

in the Clifford case. A more detailed investigation of the probability distribution is beyond the

scope of this paper, in view of finite-time effects at the accessible timescales.

2The generalization of the directed polymer picture to entangled initial states (Sec. 10.7) indicates that the
lower endpoint of the polymer is then no longer free, and instead favours x = 0.
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Appendix E

Operator Spreading in Random

Unitary Circuits

E.1 Evolving Distribution on Operator Strings

In this Appendix we give a more detailed explanation of the relationship between the dynamics

of the coefficients as and a Markov process [221, 222] and of the derivation of the diffusion

picture. We consider Haar-random, local unitary dynamics. In an N-site system with a q-

dimensional Hilbert space at each site, a Hermitian operator that has evolved under the unitary

circuit 0(t) = U(t)t 0 U(t) may expanded in a basis of SU(qN) generators {S} as

0(t) = as(t)S (E.1)
S

Our normalization convention is Tr(SS') = qN6ss,, so that as(t) = q-NTr(O(t)S). The squared

coefficient as(t)2 evolves as

as(t)2 q 2 N S as, (t - 1)asu(t - 1)Tr[U S'UtS] Tr([ S"Ut S1
S',8"

= q- 2 N ag (t - 1)as" (t - 1) f tr[U, S,.UtS,] tr[U, S|UtSr]
S',Sl/

where U is a layer of m-site unitaries that were applied at time t - 1. In the second line, we have

written U = Hr Ur where r is the coordinate of disjoint, m-site clusters on which the unitary

Ur E U(qm) acts, and we have also decomposed S = Hr Sr as a product of basis elements acting

on these m-site clusters. These operators are normalized according to tr[SrS,] = qm3sr,,S and

tr[Sr] = qm6sr,,. The Haar average of the above expression is given by

tr[Ur SUr Sr] tr[Ur S"UtSr] = - , {q2m6s.,6,. + 1 - s,- s,1} (E.2)
1 - q 2m
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And so, the Haar-averaged as(t)2 evolves linearly

2= E ast (t - 1) asu(t - 1) fJ s (qam6,,ios,. + 1 - ,.- 6s,,)

= Wss, as,(t - 1)2 (E.3)
S/

with the real, symmetric matrix

(1 - 6s,i)(i - 6 S,,1)E4
WssI = se"ijs,.1 + 12 _ r (E.4)11 [ r1 q2m --

Averaging again over the unitaries applied in the previous timesteps gives an equation for Ps(t)

a2 (t)

Ps(t) = SWssPsI(t - 1) (E.5)
S'

which is formally a master equation for a fictitious Markov process [221, 222]; at a given time

there is a single string S which is updated stochastically in each time step, via local updates

involving a cluster of m sites. From the form of Wss, we see that the local update on m sites

is performed by replacing a non-trivial generator on the cluster randomly by any one of the

q 2m - 1 non-trivial generators. We emphasize that this fictitious Markov process is not the true

unitary dynamics of the operator O(t).

This fictitious classical stochastic process dramatically simplifies through the following ob-

servations. We focus here on one spatial dimension with updates on bonds. First, observe that

the matrix elements Wss, only depend on the support of the generators S and S', so that (E.5)

gives rise to a simpler Markov process for the binary occupation number n(x), which is 1 if the

corresponding generator has support at site x and 0 otherwise (if S acts as the identity at x).

The probability distribution of the occupation numbers is given by

P[{n}; t] = E ' as(t)2  (E.6)
S

where the prime indicates that the sum is only over strings S that are compatible with the

configuration n(x). Further, the endpoint of the string observes an autonomous Markovian

dynamics. Since m = 2, updates involving the endpoint either include the site to the right of

it which is empty or that to the left which may be empty or full. The dynamical rule above

implies that the probabilities for the position of the endpoint after the update are independent of

whether the leftward site was initially occupied or empty. Formally the probability distribution
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for the position of the endpoint in this fictitious dynamics is

Pend (X; t) = E P~fn}; t] =
nwith

endpt at x

r as (t) 2
S ends at x

(E.7)

which is precisely p(x, t), as defined in Sec 2. Therefore, for an endpoint at x or x + 1, a

single update applied to the sites x and x + 1 leaves the endpoint at x with probability p =

(q2 - 1)1(q 4 
- 1) - 11q 2 + 1 and at x + 1 with probability 1 - p. This establishes the claim in

Sec. 2 for the evolution of p(x, t) in a single timestep.

E.2 Velocity and diffusion constant for lattice diffusion equation

Our layout of the evolution operator is such that the local unitaries alternate between even and

odd bonds. In other words, a bond at time step I is either at the left or right of the bond at

t - 1. Thus, it suffices to count the left and right moves to specify the position of the right

end-bond of Xo(t). As described in the main text the probability of a left move is p. Let u > 0

be the number of right moves, and v > 0 be the number of left moves. We have u + v = t, and

u - v (or u - v 1) is the spatial coordinate of the right endpoint. Therefore, the probability

distribution of the position of the right end bond is

f(u,v) = (UV(1 - p)pV. (E.8)

This is correctly normalized since EZ+v=t f(u, v) = (1 - p + p)t - 1. Then, the probability that

a site x is left to the right end of Xo(t) is

(t-x)/2

U+V=ft, (u, v)V= (t) )-vv (vBt--)

where 1D is the cumulative density function of the normal distribution, and

q- 1
VB + '

q2 + 1

(E.9)

(E.10)
2qVt-

q= 2
q2

E.3 Noisy diffusion equation

Starting with Eq. 9.29, WLOG rescale space so D = 1 and set v =

frame. Let po be the solution without noise, po = (4,rt)-1/2e-x 2 /4

0 by going to the moving

In terms of the Green's
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function

p(x, t) - po(x, t) G(x - x', t - t')Ox'g(x', t')p(x', t')

= G'(x - x', t - t')n(x' t' )p W, t'). (E. 11)

The centre of mass position of the wavepacket within a given realisation is xcm = X xp(2x, t), so,
if - is the centre of mass position averaged over realisations,

Xcm - XCM = xG'(x - x', t - t')7(x', t')p(x', t') = - G(x - x', t - t')(x', t')p(x', t'),

(XCM - ycm) 2 =f , G(x - x', t - t)( - -;r', t - F ~, t' F~,i)p(x', t/ )pXiV, Fi).

Averaging over the noise with (77(x, t)(x', t')) = A6(x - x')6(t - t'),

[Xcm - Xcm] 2 =A f G(x - x', t - t')G(, - x', t - t')p(x', t') 2 . (E.12)

For the leading order scaling, we replace p with po on the right hand side. Then dimensional

analysis applied to the integral gives

(Xcm - Xcm) 2 Oc A1 /2t 1/ 4 + ... (E.13)

This is a statistical variation in xcm of order t1 / 4 , in agreement with the heuristic argument and

with Ref. [278]. This variation is small compared to the width of p, indicating that p-po < p at

late times. The typical size of 0 xp near the peak is O(1/t), so Xcm - Xcm ~ t 1/ 4 corresponds to

p-po ~ t-3/ 4 , as compared with p ~ t-1/ 2 . The approximation above is therefore self-consistent.

E.4 Random Clifford operators

Here we review that the left- and right- invariant probability distribution over the Clifford group

on n q-dimensional qudits is a unitary 2-design when q is a prime number. In other words, for

a qudit of prime power dimension qf, the unitary group U(q') has a finite subgroup that is a

unitary 2-design, and there is a linear operator basis that remains closed under conjugations by

this subgroup. This is a well-known result [2731, but we include it here for readers' convenience.

To define the Clifford group, we first need the Pauli group. Define X =:q- Ii + 1 mod q)

(jl and Z = e2xi/q Ii) (ji. Then, the Pauli group is the subgroup of U(q') generated by
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matrices X 1 , Z1,... , Xn, Z, where

Xy = IOU-1) (S X (& I (n--),
Zj 1-((j-1) (gZ(® Onj

= I(j-1) q Z I (4-). (E.14)

The Clifford group is defined to be the normalizer of the Pauli group in U(qn). The Pauli group

quotiented out by its center (w = e27ri/q) is abelian since XZXt w= - 1Z, and is isomorphic to

the additive group Z n. We define P, for V C Z2n to be an element of the Pauli group (Pauli

operator) as

X1 X~V2 
... Xn" Zn+1 Zvn+2 .- Z. 2. (E.15)

The center of the Pauli group is also contained in the center of U(qn), and therefore the

conjugation action by the Clifford group on the Pauli group induces an action on Z n. It turns

out that this group S of action consists precisely of those that preserves the symplectic form

An 0 In) (E.16)
In 0

over Zq.

A probability distribution v of unitary matrices to form a 2-design means that

E~,U o U* o U o U* = E ~,U o U* o U o U* (E.17)

where M is the Haar probability distribution over U(qn), and U* is the complex conjugate of U.

Tautologically, the Haar distribution is a 2-design. This is equilvalent to having that

Eu~,UOUt 0 UO'Ut = Eu,,UOUt 0 UO'Ut (E.18)

for any qf x qf matrices 0 and 0'. Since Pauli operators (the elements of the Pauli group

defined above) generates over the complex numbers the full operator algebra, it is enough to

have Eq. (E. 18) with 0 and 0' being Pauli operators.

Let v be the left-invariant (hence right-invariant) probability distribution over the Clifford

group. This is the uniform distribution over the finite Clifford group. Consider a C-linear map

1, on the set of operators defined by

1:0 0' 0 EU~,UOUt 0 UO'Ut. (E.19)

Since v is a left-invariant distribution over a group of unitaries, H, is a projector (which is

hermitian under the Hilbert-Schmidt inner product). Since the Clifford group includes the
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Pauli group, we have for arbitrary a, b E Z

II,(Pa Pt) = Xa y
x,yEZgn

(i7,y E C, Pauli basis expansion)

Pc2Hj Pa 0 P (Pc2) -1

(for any c E Z2" by the left-invariance of v)

ab CTAn(X-y) & pt
x,y(EZgn

(commutation relation among Pauli operators)

XC7Z
2 n
q

(det An = 1, and c was arbitrary).

The use of inverse Pt here instead of Pb is for notational convenience later.

Now, observe that for any nonzero x, y E Z n there exists a symplectic transformation S E S

such that y = Sx. For this step, it is essential that q is prime. By the right-invariance of v by

S, we see H,(Px 0 Px) = H,(Py 0 Pt). This implies that

]1v(Pa 0 Pb) = 7,1 +ab P, P g Pt. (E.20)
xE7Zg"\{O}

We claim that this is a linear combination of the identity operator and the swap operator F =

Z _=0 Iu) (v 0 Iv) (ul. This is easily verified once we expand F in the Pauli operator basis; using

Tr(FO ® O') = Tr(OO') for any qf x qf matrices 0 and O', we see that F oc E Z2 Px 0 Px.

The identity operator and the swap operator commute with U 0 U where U E U(q"). This

implies that HV(Pa 0 Pt) commutes with U 0 U, and hence is equal to H H (Pa 0 P).

By the right-invariance of the Haar distribution pHaar, we conclude that Eq. (E.1 ) is proved.

When q is not prime, any probability distribution over the Clifford group fails to be a unitary

2-design. Let n = 1. Since the image of flA is a linear combination of the identity and the swap,

we must have (see App. E 7 below)

H'4 (00 0') Tr(0) Tr(O') + s Tr(OO') I + sF (.1H,(O 00O') = [ .+ ~ +s (E.21)
s=+1 q(q + s) 2

When q = 6, there are non-identity Pauli operators P and Q such that P 2 = I and Q 3 - I

By Eq. (E 21), we have H,(P 0 Pt) = I7JI(Q 0 Qt) f 0. However, Hy(P 0 Pt) is a linear

combination of Pauli operators, each of which squares to identity, whereas H,(Q 0 Qt) is a

linear combination of those that cube to identity, so they cannot be equal.
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E.5 Anomalous behaviour of the front for q = 0

Above we noted that for sufficiently large p, p > pc, the lattice growth process which we consider

has anomalous behaviour when the front is oriented parallel to a lattice plane. This is a known

phenomenon in various lattice growth models in discrete time which have synchronous parallel

updates and is well understood in terms of directed percolation [283, 284, 285, 286, 287].

In the regime p > pc the lattice-aligned (0 = 0) front has a speed VB(# = 0) = 2 which is

precisely the maximum possible speed allowed by causality. In this regime the front is pinned

to the 'light front' and is not rough (i.e. the width is of order one). (Exactly at pc, the aligned

front is logarithmically rough [286].) For our lattice model it appears that pc ,< 2.

This phenomenon is easily understood via a correspondence with directed percolation [2851.

First consider a straight, lattice-aligned front in the trivial deterministic limit p = 0 (q = oo).

Apart from possibly on the first time step, this flat front advances by two lattice spacings every

period: the front keeps pace with the 'light cone' which is the line x = 2t. Let h(y, t) = 0, 1

denote the occupation numbers of the column of sites at the lightcone: h(y, t) is the occupation

number of the site at position (2t, y) at time t. When p = 0 we have ii(y, t) = 1. We are

interested in the density (i!) (averaged over y) at late times when p is nonzero. If this density

remains finite, that means the front has an 0(1) width, and is attached to the light cone. If it

instead tends to zero, the front detaches from the light cone, and we expect to recover standard

KPZ roughening. Note that, in order to determine i! at time t + 1, it is sufficient to know only

h at time t. The dynamics of the occupation numbers h(y, t) are as follows. Under a horizontal

dimer update (which advances the lightfront) each occupied y has a chance (1 - p) of becoming

unoccupied. Under a vertical update pairs of adjacent y undergo the pairwise update described

in the main text. This allows occupied sites to 'reproduce'. This is therefore a birth-death

process of the directed percolation type [3071. When p is large the death rate is small and the

reproduction rate is large, and the process is in an 'active' phase with (h) > 0, while when p is

small the population of occupied sites dies out.

E.6 Shape of a spreading droplet for weakly varying v(q)

Consider an asymptotic front shape described by the parameterized curve (6, rt (0)) in polar coor-

dinates, which grows simply by rescaling: rt (6) = t x r(0). Let #(0) be the angle of the front's nor-

mal (to the x axis) at polar position 0. The radial growth rate is t (0) = vB(0(0))/ cos[0(0) - 01.

Since the curve grows by rescaling we have o[rt(O)/rt(O)] = 0. Note that

4o ln r(0) = - tan[0(0) - 01. (E.22)

Combining these gives [299]

(tan[#(0) - 0] + w(0(0))) #'(0) = 0. (E.23)
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Therefore at a location where r(9) is smooth we either have 0'(0) = 0, i.e. a straight segment,
or

tan[#(9) - 9] - w(#()). (E.24)

If the solution is everywhere smooth then the above equation must be satisfied everywhere.

(Such solutions exist for sufficiently weakly varying VB.) It is straightforward to solve this

equation in powers of w:

1 12
-tan[#(9) - 9] = w(9) - 2OW(0)2 + 10w(2)3 .. (E.25)

We find that the RHS involves only total derivatives of periodic functions. (Just from looking at

Eq. E.24 this is at first sight surprising since it emerges from various cancellations.) Therefore,

integrating the right hand side according to (E22) gives a periodic r(9).

For a formal explanation for why the expansion of tan(# - 9) contains only total derivatives

of periodic functions, consider a flow in the space of functions yE (#) which interpolates between

the function of interest and the trivial function VB(q)=const. Let v1() and v2(0) be two

functions that are infinitesimally close on this flow and let #1 (9) and 02(0) be the corresponding

solutions. Assuming that q1 (9) is periodic and corresponds to a periodic r(9) we show that this

property is inherited by #2(0) to order 02 - #1. Using (E.22), (E 24) we obtain

tan[o 1 (9) - 9] - tan[# 2 (9) - 9] = &o [lnv2(#1(9)) - lnv(O1(9))] (E.26)

As required, the RHS is indeed the total derivative of a periodic function (note that 02 does not

appear on the RHS). Integrating along the flow then establishes the property for general yE(#)

at the formal level - i.e. assuming that the solution evolves smoothly during the flow.

E.7 Haar average formula

Here we review a standard formula for the average of matrix elements of unitary matrix with

respect to the Haar probability measure [ on U(N). (See e.g. [276].) Let us abbreviate

fU(N) dp(U) as Eu. We are going to prove that

Eu U 1a) (bi Ut 0 U c) (d Ut I + sF ( 6 ab 6 cd + ScbOad) (E.27)
s=2N(N + sl)

where F is the swap operator on (CN)®2. Evaluating a particular matrix element, we have

E u Ua'aUb*lbUc'cU*d N2 -_ 1 [SaIbI 6 'Jd'6ab6cd - 6a'd' 6b'c' 6ad6bc

I (Saboc6 aa'd'b'c' + a'b'6 c'd'6aa6bc)]. (E.28)
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Proof of Eq. (E.27). The average is a matrix on W = (CN)O2 that commutes with every U®2 .

Hence, the average is block-diagonal in the basis where the representation of U(d) is block-

diagonal. The irreps appearing in N are the symmetric subspace and the anti-symmetric sub-

space. In each irrep, the average must be proportional to the identity 1 by the Schur's lemma,

and we need to evaluate the trace in order to determine the constant of proportionality. The

projection onto the (anti-)symmetric subspace is (I F)/2 where F is the swap operator:

F Jac) = Ica). So the trace is

1 T r [U a) (bi Ut 0 U Ic) (d Ut U Ic) (bi Ut 0 U 1a) (d UI = [6ab 6 cd A: 6 cb ad] (E.29)

This must be equal to C Tr(I ) = C N(N l)/2 Therefore, the average is equal to EZ= C9(I+

sF)/2.

E.8 Proof of Eq. (97)

Let N be the Hilbert space dimension of n q-dimensional qudits; N = qf. For any N x N unitary

U, denote by U3t', the tensor product (U 0 U*)Ot, where U* is the complex conjugate of U.

Let pt be the Haar probability distribution on U(N), and define for any probability distribution

v on U(N), a real number

g(v, t) = Eu~,U't',' - Eu~,U .t 't  (E.30)
frl flk 0

Here, ||-|K denotes the maximum singular value. Due to left and right invariance of [t, it follows

that 112 = H,= 1,,, = HI,. (H, is not in general a projector.) Therefore,

g(v*', t) = flhT"' -- H,, =(H, -- 11 m,)" = g(v, t)M , (E.31)

where v*m is the m-fold convolution of v, i.e., v*" is the distribution of the product UIU2 ... Un

when every Ui obeys distribution v.

Now, let v be the distribution on U(N) obtained by applying one layer of even bond local

Haar random unitaries (U(q 2 )) and then one layer of odd bond local Haar random unitaries.

Brandao-Harrow-Horodecki's result 1223] implies that

g(v, t) < exp(-1/M,q), (E.32)

Mt,q = 4250[logq(4t)1 2 q2 t5 3 .1/ log q. (E.33)

Their theorem does not directly cover this, but they have lemmas that are good enough for our

purpose; eq. (48) of Ref. [223] is what we actually need.

Consider f(U) = N-2(Tr UXUIYUXUtY) 2 > 0 where all the matrices U, X, Y are N x N.
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f(U) can be thought of as (I U04 '4 jI) for some vectors Xi) and f). Assume Tr(X) =

Tr(Y) = 0, but R(X 2 ) - Tr(Y 2 ) =- N. Then, the Euclidean norms of X) and IY) are both N 2.

Normalizing so that IX) := X1) /N2 and IY) := Yk) /N 2 , we can write f(U) = N 2 (XI U@4,4 IY).

By Eqs. (E.31) and (E.32), we have

IEULm f(U) - Eu,,f (U)I ,-m/M4, q2 n (E.34)

If JEu~,f(U)| I q-cn , then Eys,*m f(U) 5 2q -n whenever m/n > (c + 2)M4,q log q.

Hastings' Schwinger-Dyson trick [305] gives

Eu,4f(U) 10N 2  10q 2 n. (E.35)

Therefore, whenever m/n > 4 M4,q log q, we have

EuL,-m, f (U) < I11q-24 (E.36)

E.9 A mean field approximation

Ref. [2301 argued, on the basis of Keldysh perturbation theory, that in various circumstances

the out-of-time-order correlator would satisfy a traveling wave equation such as the Fisher-KPP

equation (the details of this equation depending on the physical system). An example is the

Fisher-KPP equation itself:

atC = DV 2 C + AC(1 - C). (E.37)

The key feature is A term, which means that if C is 'seeded' with a small nonzero value, it will

increase to a value close to one on a timescale of order A-' (and then saturate). This equation

has stable solutions describing a front propagating with a speed VB 2/V'ib. This front does

not broaden.

This phenomenology is very different from the picture which we have obtained from the

random circuit and the mapping to classical growth processes. Recall that in ID we related C to

a homogeneous (linear) equation, and in higher dimensions we found that C was not governed

by a partial differential equation.

The purpose of this Appendix is to show that a traveling wave picture can emerge from

our mappings if we make a certain mean field approximation. This mean field approximation

is not valid in the systems we have studied - it is an uncontrolled approximation which does

not capture the true behavour either at short or at large times. However in variant models a

small parameter could be present which justified the mean field approximation up to some finite

but large timescale. In this situation we expect that mean field will nevertheless break down at

asymptotically long times, with the front eventually roughening in the manner discussed in the

text.
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Recall that for the random circuit we have

2

C(x t) = q (n(x, t)), (E.38)
q -1

where n(x, t) is the occupation number in the fictitious classical cluster growth problem. Let

us consider the joint probability distribution P({r}; t) for this occupation number. This distri-

bution involves nontrivial correlations between sites which are crucial for capturing the correct

asymptotic behaviour. Nevertheless let us explore the mean field approximation in which we

pretend all sites are independent, P({n}; t) = ]IT P (n(x); t), with

Px(n(x); t) = [1 - (n(x, t)) ] 6(x),o + (n(x, t)) 3 n(x),1. (E.39)

For simplicity, consider a model on the hypercubic lattice in d dimensions (with coordination

number z = 2d) in which unitaries ('updates') are applied to bonds in a Poissonian fashion

at rate ]F/2 per bond. This continuous time protocol does not change the basic point but it

simplifies the equations. Write m = (n). Note that if we update a bond which contains at least

one fictitious particle, the subsequent (conditionally) averaged density on that bond is 1 - p.

This implies

m(x, t + At) = (1 - zITAt)m(x, t) + FAt(1 - p) ((1 - Jn(x),O n(y),O)) , (E.40)
yEx

where the first term is the probability that site x does not receive an update in the interval At.

Making the mean field approximation, (Ontx),On(y),O) factorizes into (1 - m(x))(1 - m(y)), so

that

tm(x, t) = F (- pm(x, t) + (1 - p)m(y, t) - (1 - p)m(x, t)m(y, t)). (E.41)
yEx

The first term on the right is a 'death rate'. The second term is spreading. The third term is a

correction to overcounting in the second term. An analogous equation could be written down for

the regular circuit considered in the main text, but we would have to use discrete time. Eq. E.41

is a lattice traveling wave equation. This is most apparent if we make a formal expansion in the

lattice spacing a to second order (valid, given the approximations already made, if the solution

is slowly varying). Recalling p = 1/(q 2 + 1) and Eq. E.38,

F-1OtO(x, t) =a2 (1 - p) - (1 - 2p) U V2C + 2d(1 - 2p) U(1 - U). (E.42)

This differs from the Fisher-KPP equation only in the C-dependence of the diffusion constant,

and we expect similar properties.

Above, the mean field limit was an unjustified formal approximation. We could of course

construct random circuit models in which the (lattice) mean field approximation was quanti-
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tatively accurate up to a large time, for example by using long range interactions or a large

coordination number to reduce the effect of correlations. However at long times, in physical

dimensionalities, we expect the front to roughen so that the mean field traveling wave picture

breaks down. In (unphysically) high dimensions, mean field may be valid even at late times

(recall that the phase diagram of the KPZ equation allows for a non-roughening phase in high

dimensions, as discussed in the text).
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