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Abstract

We consider investment problems that can be viewed as asset/liability management (ALM)
problems, and assume that the investor faces several market imperfections and trading
restrictions (transaction costs, restrictions on borrowing, and limits on short sales of assets).
It is shown that such problems can be modeled naturally as multistage stochsstic programs,
and that these models provide substantial flexibility for describing many practical instances.
We only consider interest-rate uncertainty and portfolios of fixed-income and derivative
securities in this thesis, but the extension to additional sources of uncertainty is discussed.

The study of stochastic programming models for investment problems in the literature
has concentrated primarily on the development of efficient solution methods, while little
attentior: has been given to the question of how to describe uncertainty in the model. We
show that the optimal solution is very sensitive to this description, and argue that it is both
reasonable and important to require that asset prices in the event tree representing the
uncertainty are arbitrage-free. We also show how financial term-structure models provide a
rigorous way to obtain a description of the uncertainty in future asset prices which satisfies
this requirement.

The event tree that follows from a term-structure model, however, is often too large to
include fully in a stochastic programming model without losing the ability to solve it. We
present state and time aggregation methods that enable a reduction in the size of the event
tree while maintaining arbitrage-free prices ir. the aggregated event tree. These methods
furthermore guarantee that the aggregated event tree remains consistent with observed
market prices if this was true for the original tree.

We describe how the aggregation metiiods can also be used as the basis for a novel
solution approach to the ALM problem, in which the description of the uncertainty in the
stochastic program is iteratively refined. These iterative disaggregations provide additional
insights into the effect of uncertainty on the optimal portfolio strategies. The feasibility of
decomposition methods to re-optimize the stochastic program in each iteration is discussed.
Computational results from the application of this algorithm to a simple ALM problem are
presented.

'Thesis Supervisor: Jeremy F. Shapiro
Title: Professor of Operations Research and Management
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Chapter 1

Problem Definition

The last twenty years have shown a tremendous growth in the markets of derivative
financial securities!. This growth has been spurred by the development of a theory
for the valvation of such securities, which started with the well-known options pric-
ine models of Black and Scholes [6] anid Merton [44], and has been extended to a
host of other derivative instruments (see Hull [33] for a comprehensive and accessible
treatment). Today, this theory is widely used in financial practice.

The payoff patterns of derivative instruments enable investors to better hedge
against specific risks and to tailor their portfolios more precisely to their investment
objectives than was possible in the past. However, little work has been done on
the development of data-driven portfolio optimization models that explicitly consider
derivative securities, and which can help investors to determine exactly how these
instruments are best included in their portfolios. The formulation and solution of
such models is the subject of this thesis, and we will show that financial asset pricing
theory plays a central role in this.

Most of the portfolio optimization models that have been used in practice are
variants of the mean-variance model which was developed by Markowitz [41]. These
models are generally used to construct equity portfolios, and we will show later in
this chapter that the assumptions behind this model do not allow for the inclusion of
derivative securities or other types of investments. Furthermore, the mean-variance
models are static (one-period) models, and thus ignore the dynamic nature of actual
portfolio management. Being able to change one’s investiment portfolio in response

1A derivative security is a security whose value depends on one or more underlying variables.
Examples are option and future contracts on stocks and bonds. A bond itself can also be viewed as
a derivative security, as its value is dependent on interest rates.
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to future events may substantially influence the optimal portfolio composition today.
Optimal portfolio decisions that follow from a static model may therefore be signifi-
cantly more expensive than the ones that follow from a model that explicitly includes
the possibility for adjustment of the portfolio composition in the future. We therefore
consider dynamic portfolio optimization models in this thesis.

In the financial economics literature, dynamic models for optimum consumption
and portfolio selection have been studied. These models consider the maximization
of the expected utility of intertemporal consumption for an individual investor. The
analytic solution of these optimization models by (stochastic) dynamic programming
necessitates idealized assumptions about the preferences and the behaviour of the
investor, the structure of asset prices and the functioning of financial markets. For
example, it does not tolerate the inclusion of market frictions such as transaction
costs, taxes and position limits, nor does it allow for the consideration of investment
constraints that investors face in practice. Although these financial models have been
powerful tools in the development of theories about the structure of financial markets,
they cannot capture the complexities of realistic portfolio investment problems.

In this thesis, we will study the use of stochastic linear programming models for
dynamic portfolio investment problems. Stochastic linear programs were originally
formulated by Dantzig [12], and have long been recognized for their ability to model
realistic decision problems under uncertainty. Their application in practice has been
limited as these models become very large very quickly, and must be solved by nu-
merical optimization methods whose efficiency very much depends on the size of the
optimization model. The continuing advances in computer technology, however, to-
gether with the development of specialized solution methods for stochastic programs,
has renewed interest in the application of these models in recent years.

Several other researchers have considered stochastic programming models for fi-
nancial applications, many of which will be reviewed in section 1.2. The emphasis in
these studies has nearly exclusively been on the devise of efficient solution methods
for the resulting models, whereas little attention has been given to the specification of
the uncertainty in the model. We will show in this thesis that a “careful” description
of the uncertainty in a stochastic programming model for portfolio optimization is
crucial to obtain reasonable results from the model. Furthermore, we will show how
financial asset pricing theory provides a structured way to obtain such a description.

As indicated before, stochastic programming models can only include a fairly
limited description of the uncertainty in the future in order to remain computationally



tractable. Not only is it therefore important how one describes the uncertainty in
the model, but the optimal solution may also depend significantly on the level of
uncertainty. This dependency has hardly been studied in the stochastic programming
literature. For the portfolio optimization medels that are the subject of this thesis
we will develop an iterative solution algorithm that gradually increases the level
of uncertainty in the stochastic program. This algorithm therefore enables one to
monitor exactly how the optimal solution changes with additional uncertainty in the
model, and which uncertainty affects the optimal solution most.

The remainder of this chapter is organized as follows. In section 1.1 we will
state assumptions for the portfolio optimization problems that we consider in this
thesis. Section 1.2 contains a classification and discussion of optimization models for
portfolio management under uncertainty that have been proposed in the literature.
A summary of the contents of the thesis is given in section 1.3.

1.1 Assumptions

We consider an investor who wants to manage an asset portfolio over time such that
the payoffs from this portfolio meet a stream of future target payoffs (liabilities).
Both the asset returns and the target payoffs are allowed to be stochastic. A problem
with this structure is usually called an asset/liability management problem, and we
will refer to it as the ALM problem.

Depending on the nature of the target payoffs ard the length of the investment
horizon, this type of problem arises in many contexts in practice. Examples are a
pension fund or insurance company that has to meet fixed (pensions) or estimated
(insurance claims) liabilities over time. Another example is the selection of a port-
folio strategy that provides certain return characteristics over time (e.g., indexing).
Hedging is still another application, where the target payoffs equal the expected de-
preciation in the asset that one wants to be hedged. We do not consider models
for the sole purpose of speculation or return maximization. However, obtaining an
attractive portfolio return is obviously important to any investor, and this will be
reflected in our models.

In this section we will make assumptions about the nature of the stochasticity in
the ALM problem, and about the financial markets in which the investor operates.

Assumption 1 Interest-rate uncertainty is the only source of uncertainty.



As a consequence we restrict ourselves to portfolios that consist of interest-rate-
dependent securities only. Asset/liability management under interest-rate uncertainty
is sometimes called immunization in the literature, and the asset portfolio that is
formed for this purpose a structured bond portfolio.

Assumption 1 allows us to focus our discussion and simplify the exposition, but
the methodology we develop is not limited to it. In the final chapter of the thesis we
will indicate how the methodology can be extended to include additional sources of
risk like exchange-rate risk and stock-market risk. Besides, management of interest-
rate risk constitutes an important problem in its own right. Special models and
methods have been developed just for this purpose, some of which will be reviewed

in section 1.2.

Assumption 2 Markets of interest-rate-dependent securities are dynamically com-

plete and security prices are arbitrage-free under the following conditions:

1. There are no transaction costs or tazes.
2. Securities are infinitely divisible.
3. Interest rates for borrowing and lending are the same.

4. Short sales of assets with full use of proceeds are allowed.

We will often refer to the conditions in this assumption as the perfect market cond:-
tions.

Loosely stated, market completeness means that the payoffs of any security can
be obtained exactly by dynamically managing some portfolio of other securities over
time. It should be intuitive that equilibrium in financial markets requires that the
price of the security equals the value of such a replicating portfolio at all times; prices
are then said to be arbitrage-free. Assumption 2 thus imposes such an equilibrium
structure on financial markets. Appendix A contains a more precise description of
the main ideas in the theory on asset pricing by arbitrage.

We note that assumption 2 does not imply that all investors face perfect market
conditions. In fact, we will assume that the situation for the particular investor in
our models differs from these conditions. However, assumption 2 does require that
at least some investors can trade under these conditions, and that they will do so if
market. prices violate arbitrage relationships. This is not as unrealistic as it may seem
at first. There are large investors in today’s financial markets whose main objective
is to find and take advantage of arbitrage opportunities, and who face conditions that
do not deviate much from the perfect market conditions.
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The market imperfections confronung the investo. in our models are recorded in
the following assumption.

Assumption 3 The individual investor that we consider in our models faces trading
restrictions that violate the perfect market conditions in assumption 2.

This assumption essentially demands sufficient flexibility of a portfolio optimization
model to accomodate such trading restrictions. The specific trading restrictions that
we will focus on in the sequel are propcrtional transaction costs, limits on borrowing
and short sales of assets, and an interest-rate differential between borrowing and
lending rates.

1.2 Optimization Models for Portfolio Manage-

ment under Uncertainty

This section contains a classification of various optimization models that have been
proposed in both the financial and the operations research literature for portfolio
management under uncertainty. The emphasis is on the structure of and assumptions
behind the different types of models, and we will not limit our discussion to models
that satisfy the specific assumptions of the previous section. Instead, we will point
out how earlier studies differ in their assumptions from the ones we make in this
thesis. We successively discuss static and dynamic portfolio optimization models.

1.2.1 Static Portfolio Optimization Models

Static portfolio optimization models are concerned with the selection of a portfolio
such that the selected portfolio optimizes certain characteristics among all feasible
portfolios. In the discussion below, we make a distinction between one-period models,
which include the well-known mean-variance optimization models, and models for
duration matching.

One-Period Models

In one-period portfolio optimization models, the objective is typically to find a portfo-
lio that maximizes the investor’s expected utility of the portfolio value at some future
date. They thus ignore the inherently dynamic nature of portfolio management, in
general, and asset/liability management in particular.
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In practical applications, the maximization of expected utility is mostly replaced
by Markowitz's mean-variance analysis [41]. The objective is then to minimize the
variance of the portfolio return at a future date, subject to the constraint of a mini-
mum required expected return. It is well-known that this is equivalent to the maxi-
mization of expected utility only if investors have quadratic utility, or else if security
returns follow a joint normal distribution. Because mean-variance analysis has be-
come quite popular in practice for the selection of equity portfolios, we will discuss in
some detail why it is not suitable for the problems we consider in this thesis. First,
we will argue that the mean-variance criterium is inappropriate when fixed-income
securities and derivative instruments are considered. Second, mean-variance analysis
conflicts with equilibrium asset pricing in complete markets (unless all investors have
quadratic utility). And third, minimizing the variance of the portfolio return leads
to inconsistent strategies in a multiperiod model.

The use of Markowitz’s mean-variance models for the construction of equity port-
folios is sometimes justified by the claim that the expected rate of return on a stock
and its variance tend to be fairly constant over short periods of time, as are the
covariances between the rates of return on different stocks. Although this may be
a reasonable approximation in the case of equities, it is unrealistic for assets with a
fixed maturity date such as derivative instruments and fixed-income securities. For a
straight bond, the variance of its return is a nonlinear function of the time to maturity,
and decreases to zero close to its maturity date.

In addition, derivative instruments typically have an asymmetric payoff pattern.
The popularity of these instruments indicates that investors generally do not value
upside and downside risk equally, and thus that the variance as measure of risk is
inappropriate. Ritchken [50] shows that a mean-variance investor who invests in a
well-diversified mutual fund (which Ritchken takes as a proxy for the market portfolio)
can decrease his portfolio’s variance of return without sacrificing expected return
by writing call options on part of his mutual-fund holdings. The resulting return
distribution is negatively skewed, but this is ignored by mean-variance analysis.

The second objection to the use of mean-variance analysis is due to Dybvig and
Ingersoll [14]. Assuming perfect markets, and if all investors choose mean-variance
efficient portfolios, then the prices of all assets have to follow the Capital Asset Pricing
Model (CAPM) in equilibrium. However, Dybvig and Ingersoll show that arbitrage
opportunities exist if all assets are priced according to the CAPM and if markets
are also complete. Investors will take advantage of these arbitrage opportunities,

12



thus violating the equilibrium. (The only possible, and unrealistic, exception is when
investors have quadratic utility, and all have reached their point of satiation.) The
theory of complete markets forms the basis for the valuation of derivative securities,
as well as for the optimization models we will develop (see assumption 2). A mean-
variance optimality criterium is therefore inappropriate.

As for the third objection, minimization of the variance over a multiperiod invest-
ment horizon violates the conditional weak independence of preferences (Johnsen and
Donaldson [39]). If the variance of the final portfolio value is being minimized, then
optimal portfolio decisions at intermediate points in time (when some of the uncer-
tainty will have been resolved) will depend on the portfolio decisions that would have
been taken in unrealized states of the world. That is, such portfolio decisions depend
on actions that would have been taken if the world would have evolved differently.
Preferences are then said to exhibit conditional weak dependence. This is clearly an
undesirable property.

Duration Matching

Duration matching models have been specifically designed for asset/liability man-
agement under interest-rate uncertainty. Given a stream of future liabilities, they
aim to eliminate the interest-rate exposure from the combined asset/liability port-
folio by constructing an asset portfolio whose interest-rate sensitivity matches the
interest-rate sensitivity of the liabilities. In their simplest form this is accomplished
by selecting a portfolio whose value and duration (defined as the first-order derivative
of the portfolio value with respect to the interest rate) equal, respectively, the present
value and the duration of the future liabilities. To improve the matching, equality of
higher-order derivatives is sometimes added as requirement.

Duration matching thus reduces the dynamic nature of asset, liability management
to a calculation of present values and the matching of derivatives. This makes the
approach structurally simple and computationally attractive, which accounts to a
large extent for its popularity. However, it fully ignores the possible mismatch in
the timing of individual asset cash flows and liabilities, and the associated costs.
Furthermore, one continuously has to monitor whether the duration of the asset and
liability portfolio remains matched when time proceeds and interest rates change,
and adjust the asset portfolio if it does not. With transaction costs present, this
can lead to a very expensive strategy over time. We refer to Hiller and Schaack [29]
for further discussion of duration matching and comparison with other approaches to

13



asset/liability management under interest-rate uncertainty.

1.2.2 Dynamic Portfolio Optimization Models

Static models Jor portfolio optimization are attractive from a computational perspec-
tive, but cannot cope with many important costs and considerations that follow from
the dynamic nature of portfolio management. The last two decades have shown in-
creased attention to dynamic models, both in theory and practice. In the financial
literature, the emphasis has been on models in continuous time, whereas most models
in the operations research literature are stated in discrete time. We will discuss both
classes of models in turn.

Continuous-Time Models

Continuous-time models for portfolio selection in the financial literature generally
consider an investor who wants to maximize his expected utility of consumption and
final wealth over some fixed period of time. Given some initial level of wealth, the
problem is thus to simultaneously determine an optimal consumption pattern and
investment strategy over time as a function of the state of the world. The emphasis
in these studies has nearly exclusively been on the structure of optimal soluticns in
an idealized environment and its implications for asset prices and market equilibrium,
and not on the solution of realistic instances involving actual market data. We will
indicate why continuous-time models are ill-suited for the last purpose.
Continuous-time models for optimum consumption and portfolio selection were in-
troduced by Merton [42, 43] (see also [45, chapters 4 and 5]). It is typically assumed
that there is a finite number of state variables that define the state of the world, each
of which follows a diffusion process over time. The price process of each security in the
economy is also described by a diffusion process, and the parameters of these processes
depend on at most the state variables and time. It is furthermore assumed that in-
vestors can trade continuously and that perfect market conditions prevail. With some
regularity conditions on tle utility functions, one can then use stochastic dynamic
programming to write the optimal objective function value over time (as a function
of the state variables) as the solution to a nonlinear, second-order partial differential
equation, and express the optimal consumption and investment strategy in terms of
this value function. The explicit solution to this differential equation, however, is
only known for particular choices of utility functions and further restrictions on the

14



behaviour of state variables and securities.

In a few recent studies, some of the perfect market assumptions have been re-
laxed. Grossman and Vila [21] introduce a borrowing limit as well as a nonnegativity
constraint on wealth, but they limit their analysis to an investor with constant rela-
tive risk aversion who can only choose between one risky and one riskless asset. He
and Pearson [25] consider short-sale constraints. However, most of the assumptions
are crucial for the use of stochastic dynamic programming and therefore cannot be
relaxed. This and the fact that the approach cannot cope with many additional
constraints that would arise in practical applications render continuous-time models
unsuitable for our purposes. Besides, most investors do not want to monitor and
revise their portfolio in a continuous fashion, but rather only at fixed points in time.
We therefore turn our attention to dynamic models in discrete time.

Discrete-Time Models

Multiperiod models in discrete time require that the uncertainty can be approxi-
mated by an event tree with a finite number of possible states of the world at cach
time. They offer substantial flexibility for incorporating market imperfections and
constraints that continuous-time models cannot deal with. However, the cost of this
flexibility is that such models can not be solved by an analytic solution method, and
one has to resort to numerical optimization methods. Efficient application of numer-
ical methods imposes limits on the size of the model, which must be accomplished
through restrictions on the level of uncertainty and the number of time periods and as-
sets. Furthermore, additonal structure is often assumed in the models (e.g., linearity)
so that relatively efficient numerical methods can be used.

Some authors have applied dynamic programming to solve multiperiod problems.
Eppen and Fama [16] calculate the solution of a cash-balance problem with transac-
tion costs, in which the level of cash fluctuates randomly over time, but the returns on
the two available assets (“stock” and “bond”) are assumed to be known. Edirisinghe,
Naik and Uppal [15] consider the replication of options and option portfolios for an
investor facing proportional transaction costs as well as trading restrictions in the
form of lot-size constraints and position limits. Their model has the structure of an
asset /liability management model, but they limit their analysis to one riskless and
one risky asset. Dynamic programming is extremely sensitive to the dimensions of
the problem as the optimal decisions at each time and in each state have to be deter-
mined for every possible portfolio composition. It effectively evaluates every possible

15



portfolio strategy to find the optimal one, and is therefore impractical for problems
of a realistic size and complexity.

Bradley and Crane [7] and Kusy and Ziemba [40] consider stochastic linear pro-
gramming models for bank asset/liability management. Both models consider pro-
portional transaction costs and taxes, and include policy constraints. The model of
Bradley and Crane concentrates on the selection of an optimal bond portfolio invest-
ment strategy. Theirs is a truly stochastic model in which the size of the investment
portfolio fluctuates over time, as do the returns on classes of bonds with different
maturities that they consider. The way in which they define the variables enables
them to solve the model by Dantzig-Wolfe decomposition, where the subproblems
(corresponding to the inventory balance equations) can be solved in an efficient re-
cursive manner. They apply their approach to models with three time periods, three
events per period, and eight asset classes, and claim that it is faster than solving the
model as a large linear program.

Kusy and Ziemba only consider uncertainty in the level of future deposits, and
assume that the returns on different investments are constant throughout the whole
planning horizon. They further simplify their model by letting the portfolio decisions
at future dates be independent of the state of the world (i.e., the level of deposits).
This gives the model the structure of a stochastic linear program with simple recourse,
which they solve using a specialized algorithm of Wets [56]. Although they perform
simulations to compare their optimal strategy with the optimal solution from a version
of the Bradley and Crane model, they do not explicitly analyze what the effect of their
assumption of constant asset returns on the optimal strategy is. Birge [4] shows that
neglecting the stochastic nature of the problem can substantially affect the optimal
solution.

Hiller and Eckstein [28] consider a stochastic programming model for general as-
set/liability management under intercst-rate uncertainty. To make their model suit-
able for a massively parallel implementation of Benders decomposition, they exclude
rebalancing decisions and assume that any mismatch between portfolio payoffs and
future liabilities is resolved by short-term borrowing and lending. The resulting sim-
ple structure allows them to solve models with 360 periods (months), 58 different
assets and up to 2043 interest-rate scenarios. The implementation on a parallel com-
puter with 16,000 processors gave a speedup factor of less than eight when compared
to a serial implementation.

Mulvey and Vladimirou [46] and Carifio et al. [9] describe multiperiod models for
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asset allocation that include different classes of bonds, equities and real estate. Both
models assume that returns on all asset classes are stochastic, and allow for stochastic
liabilities. Mulvey and Vladimirou employ a generalized network structure in their
formulation, and use the progressive hedging algorithm of Rockafellar and Wets [52] to
solve problems with up to 8 periods, 15 asset classes and 100 scenarios. Carilio et al.
formulate the asset/liability management problem of a Japanese insurance company
as a multistage stochastic linear program, where the liabilities consist of payments on
certain types of insurance policies. They experiment with different solution methods,
and conclude that Benders’ decomposition (see Birge [3]) is most efficient for large
problems (which include 6 periods, 7 asset classes and 1024 economic scenarios).

Despite the use of specialized algorithms and significant increases in computer
power, it is clear that stochastic programming models which consider uncertainty
in future asset returns and include portfolio rebalancing opportunities can only in-
corporate a fairly limited description of the true uncertainty. However, few of the
papers discussed so far elaborate on how such an approximate description should
be obtained. Carifo et al. describe a sampling procedure from return distributions
that are estimated from historical data. Hiller and Eckstein are the only ones that
use a financial model to describe the uncertainty in future interest rates. However,
they ignore its consistency with current market data and thereby introduce arbitrage
opportunities in their model. They use the interest-rate model to calculate a theo-
retical present value for each fixed-income and derivative security, as well as for the
stream of future liabilities. The optimal portfolio maximizes the difference in present
value between the asset portfolio and the liabilities, subject to a budget constraint
that limits the cost of the asset portfolio as calculated from observed market prices.
They thus implicitly assume that the market prices do not reflect the true values of
the assets, which causes a strong bias in the optimal portfolio towards assets with
high value/cost ratios. Their use of financial asset pricing theory thus violates our
assumption 2.

Zipkin [59] also observes some of the missing links and inconsistencies with finance
theory in structured bond portfolio models, but he does not discuss the consequences
of such inconsistencies or suggest ways to correct them. We will show in chapter 2
that careless specification of asset returns in a necessarily limited description of the
uncertainty easily leads to substantial and unwanted biases in the optimal solution.
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1.2.3 Conclusion

The static models for mean-variance analysis and duration matching have been pop-
ular in practice, mainly because they are conceptually simple and relatively easy to
solve. However, it is clear that they ignore most of the dynamics of actual portfolio
management.

Continuous-time models for optimum consumption and portfolio selection are pri-
marily used to analyze the structure of optimal investment strategies under idealized
conditions, and their implications for market equilibrium. Their solution by stochastic
dynamic programming requires specialized assumptions about investors’ preferences
and the structure of the economy, and quickly becomes impossible when market im-
perfections and other constraints are added.

Dynamic portfolio optimization models in discrete time offer substantial flexibility
to describe a large variety of realistic portfolio investment problems. Their applica-
tion in practice has been hampered by the fact that the numerical methods used to
solve them impose severe limitations on the size of such models. The development of
new algorithms, however, particularly in the area of stochastic programming, together
with the continuing advances in computer technology have already shown a tremen-
dous increase in the size of the models that can be solved. We will therefore focus
our attention on stochastic programming models for the asset/liability management
problem that was characterized by the assumptions in section 1.1.

The power of stochastic programming models to describe realistic decision prob-
lems under uncertainty has not only been recognized for financial applications, but
for a host of other application areas as well. Ermoliev and Wets [17] provides an in-
troduction to stochastic programming models and methods in general, and describes
many applications in a variety of areas.

1.3 Thesis Overview

In the next chapter we will present a multistage stochastic programming formulation
for the ALM problem that was characterized by the assumptions in section 1.1, and it
will become clear that the problem naturally fits in this framework. This formulation
will be referred to as the ALM model.

As we saw in section 1.2, the specification of the asset-price uncertainty in stochas-
tic programming models for portfolio management has not received much attention
in the literature, and its effect on the optimal solution has never been thoroughly
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studied. We will show in the second part of chapter 2 that this effect can be very
significant. In particular, we will show that if asset prices in the ALM model are not
arbitrage-free, then the optimal solution to the ALM model may be biased substan-
tially towards the resulting arbitrage opportunities. This is true even if the investor
in the model cannot take advantage of arbitrage opportunities directly because of
market frictions and trading restrictions.

Besides being important, the requirement of arbitrage-free asset prices in the
model is also a very reasonable one: it is unrealistic to assume that any investor can
predict arbitrage opportunities that will arise in the future. We will therefore impose
this requirement on the specification of the uncertainty in the ALM model.

In chapter 3 we will discuss how financial models of the term-structure uncer-
tainty can be used to obtain a description of the asset-price uncertainty that satisfies
this restriction. The primary purpose of these models has been to value interest-
rate-derivative securities in a way that precludes arbitrage opportunities. To obtain
accurate security price estimates, however, these models must include a detailed de-
scription of the uncertainty in the future term structure of interest rates. We wviill
show that this description is much too detailed to include in a stochastic program
without losing the ability to solve it. It is therefore necessary to approximate the
description of the uncertainty that follows from a term-structure model before we can
use it in the ALM model.

In performing such an approximation, we want the asset prices in the approximate
description to remain arbitrage-free. Furthermore, if the security prices that follow
from a term-structure model are consistent with observed market prices (it will be as-
sumed that such a term-structure model exists), we want to maintain this consistency
in the approximate description. We will show that several intuitive approximations
violate one or both of these requirements. The state and time aggregation methods
that will be introduced at the end of chapter 3 avoid the pitfalls of these intuitive
approximations, and are guaranteed to maintain both properties.

The state and time aggregation methods reduce the number of states, and thereby
the number of scenarios, in an event tree that describes the uncertainty in future in-
terest rates and asset prices. By repeated application of these methods one can reduce
the number of scenarios to any desired number (in the extreme, to one expected-value
scenario) without losing the consistency with observed asset prices or the property
that asset prices in the aggregated event tree are arbitrage-free. This enables us to
bring the size of the ALM model down to any desired level. The optimal solution
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to the ALM model, however, will in general depend on the level of uncertainty that
is included in the model. To obtain a robust investment portfolio, it is therefore
important to include as much of the relevant uncertainty in the model as possible.

In chapter 4 we will present au iterative solution algorithm in which one gradually
increases the level of uncertainty in the ALM model by reversing state and time
aggregations that were performed to obtain the initial version of the model. The
iterative nature of the algorithm enables one to judge where the uncertainty in the
future affects the optimal solution most, and in what fashion. In addition, when
more aggregations are reversed, events of decreasing probability are introduced in the
model, and this allows for a direct trade-off between the cost of the asset portfolio
that hedges against the future liabilit es and the probability of events that one wants
to be hedged against.

Adding uncertainty to the ALM model by reversing a state or time aggregation
in the underlying event tree corresponds simultaneously to a relaxation (addition of
variables) and a restriction (addition of constraints) of the stochastic program. This
implies that an optimal solution in one iteration of the iterative disaggregation algo-
rithm may not be feasible in the next iteration. We will show, however, that one can
always construct a feasible solution to a relaxation of the ALM model. Furthermore,
by choosing appropriate parameter values in this relaxed model, we will show that
this relaxation has the same optimal solutions as the true model.

In chapter 5 we will discuss decomposition methods for the re-optimization of
the ALM model in each iteration of the iterative disaggregation algorithm. The
most widely used decomposition method for stochastic programs is (nested) Benders'’
decomposition. We will show, however, that it is not an efficient method to perform
the re-optimizations of the ALM model. This is due to the fact that the ALM
model after a state or time disaggregation is not just a restriction of the model
before the disaggregation. This invalidates the Benders’ cuts that are obtained in one
iteration for the ALM model of the next iteration. We will also discuss a different
decomposition method, primal-dual decomposition, and show that it has a better
ability to use the optimal solution to the ALM model before a disaggregation to find
the solution for the model after a disaggregation.

Computational results from the application of the iterative disaggregation algo-
rithm to the solution of a simple asset/liability management problem will be presented
in chapter 6. Chapter 7 contains conclusions, and discusses several possible extcnsions
of the models and the solution methodelagy in this thesis.
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Chapter 2

Stochastic Programming Models
for Asset/Liability Management

In this chapter, we will formulate the asset/liability management problem under
interest-rate uncertainty that was characterized by the assumptions in section 1.1
(the ALM problem) as a multistage stochastic linear programming model (the ALM
model). In the stochastic programming formulation, decisions can only be made at a
finite number of discrete points in time, and the uncertainty must be represented as an
event tree with a finite number of possible events at each time. In section 2.1 we will
introduce terminology and notation for event trees, which will be used throughout this
thesis. The ALM model will be presented in section 2.2. We will also mention several
possible variations on this formulation, based on models that have been proposed in
the literature.

As we indicated in section 1.2, little attention has been given in the literature
to the question how the uncertainty in future interest rates and asset prices should
be specified in stochastic programming models for optimal portfolio management.
We will show in section 2.3 that a careful specification is very important in order to
obtain sensible results from the model. Spec:fically, we will show that if the future
asset prices in the model are not arbitrage-free, then the optimal solution to the ALM
model can be substantially biased towards the hypothesized arbitrage opportunities
in the model. This is the case even if the investor in the model cannot directly
take advantage of the arbitrage opportunities because of market frictions and trading
restrictions. These results form the main motivation for the use of arbitrage-free
term-structure models from the financial literature to specify the uncertainty in the
ALM model. This is the topic of the next chapter.
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Figure 2-1: A bhinomial lattice.

2.1 Notation and Terminology

Let the index t denote the points in time at which events occur in an event tree. We
assume here for simplicity that these points are equally spaced with t = 0,...,T.
Period ¢ extends from time ¢ — 1 to time ¢. The events in an event tree are also called
states, and correspond to the nodes in a pictorial representation of the event tree. We
will refer to a state with the index n.

Figure 2-1 shows an event tree in the form of a binomial lattice, which will be
used throughout this section to illustrate the notation and terminology. In a binomial
lattice, there are t + 1 possible states at time ¢, which are numbered 0 through ¢. The
index number of a state at time ¢ thus equals the number of upward movements in
the lattice between time 0 and time .

A scenario at time t corresponds to a path in the event tree from time 0 to time f.
In a binomial lattice, there are 2* different scenarios at time ¢, and figure 2-2 presents
a way of numbering the scenarios. We will refer to a scenario by the index s. The
set of all scenarios at time ¢ is denoted by S;, and the set of all scenarios that visit
node n at time ¢ by S*. The set S2 thus contains all scenarios that visit node 2 at
time 3, which are the scenarios 4 through 6 in figure 2-2. For a scenario s at time ¢,
we denote the corresponding node at time ¢ as n(s).

For each scenario s at time ¢ there is a unique scenario at time ¢ — 1 that follows
the same path in the event tree up to time t—1. We will call this scenario at time ¢ —1
the predecessor of scenario s. For example, the predecessor of scenario 5 at time 3 in
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Figure 2-2: Scenario nu.nbers in a binomial lattice.

figure 2-2 is scenario 2 at time 2. We will often denote the predecessor of a scenario s
by s”.

Furthermore, for each scenario s at time ¢ there are several scenarios at time ¢ + 1
that share scenario s up to time t. We will call these scenarios at time ¢ + 1 the
successors of scenario s. Each of these successors will sometimes be denoted as s*.
For example, scenarios 9 and 12 at time 4 are the successors of scenario 5 at time 3
in figure 2-2.

The predecessor and successors of a scenario at time ¢ refer to scenarios at time t—1
and t + 1, respectively. Sometimes we want to relate scenarios at points in time that
are more than one period apart. For this purpose, we introduce the terms ancestor
and descendant. A scenario s at time t is the ancestor of scenario s’ at time 7 > ¢
if these scenarios share the same history up to time t. Vice versa, a scenario s at
time t is a descendant of scenario s' at time 7 < t if these scenarios share the same
history up to time 7. Note that every scenario at time ¢ has exactly one ancestor at
each time before time ¢, but multiple descendants at each time after ¢. For example,
in figure 2-2 scenarios 14, 20, 23 and 27 at time 5 are descendants of scenario 5 at
time 3, and this scenario has scenario 1 as its ancestor at time 1.

We will let D,(s,t) denote the set of all descendants at time 7 > t of scenario s
at time . In a binomial lattice, every scenario at time ¢ has 2"~* descendants at time
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T > t. For 7 < t we use the notation A,(n,t) to denote the set of all scenarios at
time 7 that are ancestors of scenarios that visit node n at time t. That is, A, (n,1)
contains all scenarios at time 7 that are ancestors of scenarios in the set S;'. In
figure 2-2 we have for node 3 at time 4: A;3(3,4) = {4,5,6,7}, Ax(3,4) = {1,2,3},
A, (3,4) = {0,1}, and Ay(3,4) = {0}.

We will use the terms predecessor, successor, ascendant and descendant with
respect to nodes in the event tree as well, and their meaning in that case is analogous
to the ones just described for scenarios. Notice, however, that a node can have more
than one predecessor when the event tree has a lattice structure, whereas a scenario
always has just one.

2.2 A Stochastic Programming Formulation for
the ALM Problem

In section 1.1 we have made assumptions about the investment environment of the
investor in the ALM problem. These assumptions, together with the additional as-
sumption that will be made in section 3.2, form the basis for the model development
and solution methodology in this thesis. To actually formulate the ALM problem
as a mathematical optimization program, however, we need to make additional as-
sumptions about the specific situation and preferences of the investor. We will do so
below, but note that they are by no means crucial to our subsequent development, and
primarily serve to make our discussion concrete. After presenting the basic formula-
tion in the section 2.2.1, we will discuss in section 2.2.2 how alternative assumptions
about the situation and preferences of the investor can be accommodated in the model
formulation.

2.2.1 The ALM Model

In asset/liability management one generailv faces a trade-off between the initial cost
of the asset portfolio whose payoffs must match the liabilities, and the remaining
portfolio value at the end of the model horizon. We will assume here that no shortfalls
are allowed in meeting the stream of liabilities, or stated differently, that it is very
expensive for the investor not to meet his liabilities at any point in time. The investor
has the option, however, to borrow short-term if the asset cash flows fall short of
the liabilities. Short-term borrowing creates in effect an extra liability in the next
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period, and thus allows for a redistribution of the liabilities over time. The trade-off
between the initial investment and the value of the portfolio at the planning horizon
is captured in the objective function: the initial portfolio investment is minimize,
but any positive or negative final portfolio value is credited to, respectively penalized
in, the objective.

Following assumption 3 in section 1.1, the formulation includes proportional trans-
action costs, limits on borrowing and short sales of assets, and a difference (spread)
between interest rates for short-term borrowing and lending. However, the formula-
tion does not include side constraints that could be imposed in practical applications,
and would depend on the application context. Examples are Jegal restrictions and
constraints that reflect management policy. It should become clear that many con-
straints of this type can be added to the formulation without changing its basic
structure or impairing the application of the solution methods that will be the topic
of later chapters. Other constraints, however, that are imposed in simpler models
to control the riskiness of the solution should be much less necessary in a stochastic
programming model as risk (uncertainty) is included explicitly in the model.

Let H denote the planning horizon of the investor (in years). The investor can
revise his portfolio at the beginning of each of T periods, and we assume here for
simplicity that the length of every period is the same, denoted as A = H/T. Let
L} denote the liability that is due at the end of period ¢ if state n occurs. Let D}
be the vector of dividends paid (comprising coupon, principal and other payments)
on all securities at the end of period t if state n occurs, and S;' the vector of ex-
dividend security prices in state n at time ¢. (We assume that liabilities are due and
dividends are paid at the end of a period only.) The riskless one-period interest. rate
(continuously compounded and annualized) in state n at time ¢ is denoted as ry’, and
we define the discount factor P* = exp(—r;'A); P;* can be interpreted as the price in
state n at time t of a riskless one-period zero-coupon bond that pays one dollar at the
end of period ¢. The interest-rate spread (continuously compounded and annualized)
between the investor’s one-period borrowing rate and r} is assumed to be constant
through time and denoted by p. The upper bound on one-period borrowing for the
investor in state n at time ¢ < T is written as Z", while Z% denotes the upper bound
on a negative final portfolio value in state n at time T. The proportional transaction
cost rate c is assumed to apply to both purchases and sales of securities, but. not to
one-period borrowing or lending.

Although we have assumed that the liabilities as well as the asset prices and
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dividends are state dependent and not path dependent, trading strategies will in
general be path dependent. To illustrate this, consider an event tree in the form of a
binomial lattice, and an investor who chooses to invest in one-period discount bonds
only. If the sequence of events is an “upstate” at t = 1 followed by a “downstate” at
t = 2, then his wealth at ¢t = 2 will be equal to 1/(P,P}) for every dollar invested at
t = 0. However, if the sequence of events would have been a “downstate” followed
by an “upstate” (resulting in the same state at t = 2 in the lattice) then his wealth
would have been equal to 1/(PyP?) at t = 2 per dollar invested at t = 0. As P # P}
in general, the investor’s wealth at time 2 depends on the sequence of events leading
up to that time.

In the special case that markets are dynamically complete and frictionless, and
when the investor’s objective is to minimize the initial cost of a self-financing trading
strategy whose payoffs match or exceed the liabilities (i.e., final portfolio values are
ignored in the objective function), then the arguments in appendix A show that an
optimal trading strategy exists that is path independent. (Notice that this prob-
lem is analogous to the valuation of a security by arbitrage, where the liabilities
correspond to the security pay-ffs.) Cox and Huang [10] have shown that, under
the same market conditions, this path independence property also holds in optimal
consumption/investment problems in which the investor has a fixed investment bud-
get, and maximizes state-dependent utility of intertemporal consumption and final
wealth. They solve the optimal consumption/investment problem in two steps. First,
the irvestor’s optimal consumption pattern over time is determined, given his initial
budget. In the second step, a self-financing trading strategy is found that finances
this consunption pattern, and this step thus resembles the earlier cost minimization
problem. He and Pearson [24, 25] have shown that this approach can be extended to
the case of incomplete markets and short-sale constraints. If transaction costs exist,
however, this two-step solution procedure can no longer be applied, and the trading
strategies will become path dependent. Edirisinghe, Naik and Uppal (15, pg.123] il-
lustrate this with a simple example for an investor facing proportional transaction
costs.

The variables in the optimization model, corresponding to the initial and future
portfolio decisions, are therefore path dependent (also called scenario dependent)
instead of just state dependent. We use the following variables:
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a{ = vector of asset purchases in scenario s at time ¢.
S

xs] = vector of asset sales in scenario s at time t.

ahi = vector of asset holdings in scenario s at time ¢t after rebalancing (i.e.,
the portfolio holdings during period ¢ + 1).

y! = if t < T, amount available at time ¢ + 1 from one-period lending in
scenario s at time ¢;
if t = T, value of final portfolio if positive (0 otherwise).

z2 = if t < T, amount due at time ¢t + 1 from one-period borrowing in

scenario s at time ¢;
if t = T, value of final portfolio if negative (0 otherwise).

The variables 2b{, 25}, y¢ and 2 are nonnegative by definition. If no short sales are
allowed, zh; must also be nonnegative.

Notice that the variables y§ and 2{ do not equal the amount of short-term lending,
resp. borrowing, in scenario s at time t, but the amounts that will be received, resp.
have to be paid back, in the successor scenarios at time ¢t + 1. Thus, the actual

(’)yf and

amounts of short-term lending and borrowing in scenario s at time ¢ are P;"
(e=PAP*)) 22 respectively. This definition of y§ and z will simplify the analysis in
later chapters.

The objective function of the investor that was discussed earlier can now be stated
mathematically as

v = (1+¢)Sozho + Poyo — (€2 Po) 20 — M Y a3(45 — Xo77) (2.1)

SEST

which has to be minimized. The first three terins capture the cost of the initial asset
portfolio, where it is assumed that the investor does not start with an initial portfolio
(i.e., ahg = abp). The first term represents the cost, including transaction costs, of
investing in the available assets, while the second term is the amount of short-term
lending. The investor is allowed to borrow at time 0 (to be paid back at time 1), and
the third term in the objective equals the borrowed amount. Short-term borrowing
is limited by the constraint zy < Zp. .

The last term in the objective function represents the expectéd present value of
the final portfolio, with A; and A, as weights. The coefficient g7 is a probability
weighted present-value factor for the final portfolio value in scenario s at time 7. We
postpone a discussion of the specific definition of g7 to section 2.3.1. The parameter
A1 < 1 represents a (subjective) weight on the total final portfolio value, and Ay > 1
an extra weight on negative final portfolio values.
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At every point in time ¢t = 1,...,T — 1, we impose the following constraints for
each scenario s € S;:

DM ahd” 4y, -2+ (1 - c)S,"(’)as: — (1 +¢)SM) abs

P4 (R = Y (22)
ahi_ | —as) +ab — 2t =0 (2.3)
2 < Z;®) (2.4)

The first constraint makes sure that sufficient cash flow is generated to meet the
liability. This constraint will be referred to as the cash-balance constraint. The
first three terms in this constraint represent the net cash flow from the portfolio in
the previous period: dividend payments on the assets plus the return on short-term
lending, and minus the required payment for short-term borrowing. The next two
terms reflect rebalancing of the asset portfolio: revenues are generated by selling
assets, and money can be invested by buying assets, where both are adjusted for
transaction costs. The final two terms on the left-hand side equal the amounts of
short-term lending and borrowing, respectively.

The second constraint (2.3) represents a set of constraints, one for each asset,
that links the portfolio hoidings in the previous and the current period (i.e., before
and after rebalancing). These wil be called portfolio-balance constraints. The last
constraint (2.4) imposes an upper bound on short-term borrowing, where we note
that the upper bound is specified on the amount that has to be paid back in the next
period. This constraint will be referred to as the borrowing constraint.

For every scenario s at the planning horizon the final portfolio value (yg — z7) is
determined through the constraints:

(DR + SE)ahgy + ¥y = 2y — 4+ 25 = Ly (25)
% < 23" (26)

The first three terms in the first constraint, the cash-balance constraint, determine the
final portfolio value before meeting the liability. The portfolio holdings are converted
at the current market prices, the return on short-term lending is added and the
required payment on short-term borrowing subtracted. If this value is higher than
the liability L*®, then y2 > 0 and z3*) = 0; otherwise yp” = 0 and 2 > 0 (note
that we need \; > 1 in the objective function to prevent both y4 and 27 from being
positive in an optimal solution). Constraint (2.6) imposes an upper bound on the
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negative final portfolio value 27.

This completes the mathematical formulation of the ALM problem. We have
assumed that both the objective function and the constraints are linear, so the for-
mulation constitutes a linear program. Because the model describes a multiperiod
problem in which every two successive periods are linked, the linear program is gen-
erally called a multistage linear program. Furthermore, the constraints at time t have
the same structural form for every scenario s, and differ only in the values of the
coefficients and the right-hand sides. These coefficients and right-hand sides are ran-
dom variables whose values were assumed to depend on the (random) state of nature
at time t. The formulation for the ALM problem is therefore called a multistage
stochastic linear program.

Although we have assumed that all data (asset prices, dividends, and liabilities)
are state dependent, it is clear that path-dependent data would not change the for-
mulation as constraints are included for every single scenario. We further note that
the stochastic program treats ail scenarios equally in the sense that it forces the lia-
bilities to be met exactly in every scenario, irrespective of their relative likelihood of
occurrence. The only place in the formulation where the scenario probabilities can
appear is as part of the probability-weighted discount factors g7 for the final portfolio
values in the objective.

Finally note that this formulation of the ALM problem always has a feasible
solution. As no upper bound is imposed on the initial investment, it is possible to
meet every future liability by investing enough in a short-term lending strategy.

2.2.2 Variations on the Formulation

This section discusses several possible modifications to the formulation of the ALM
problem in the previous section, reflecting alt2~native assumptions about the specific
situation and preferences of the investor.

Edirisinghe, Naik and Uppal [15] consider a special case of the formulation in
which A\; =0 and Z} = 0 for all scenarios s at the terminal date. They thus require
that the final portfolio value after meeting the liabilities is nonnegative in all scenarios,
but assume that the investor places no value on any positive value.

If the investor owns an initial portfolio of securities, then constraints (2.2)-(2.4)
can be used at time 0 with zh_;, y_; and z_; representing the existing portfolio (which
are thus constants). Minimization of the total cost of the portfolio as in (2.1) then
comes down to the minimization of the additionally required investment
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This formulation is considered by Hiller and Shapiro [30].

Many consumption/investment problems assume that the investor has an initial
budget W available for investment at time 0, and that he wants to maximize his
expected utility of final wealth. The objective would thus be to maximize E{U (§r —
#1)} where U(-) is the investor’s objective function of final wealth, and the expectation
is taken with respect to the investor’s probability beliefs about the states of nature at
time T. (§r — Zr) represents the random value of the final portfolio. The constraints
at time 0 would be:

(1 + ¢)Soaho + Poyo — e PPPyzg =W
20 < Zy

Typically, it is assumed that the investor is risk averse, and thus that U{:) is a concave
function.

Mulvey and Vladimirou [46] discuss the use of nonlinear utility functions in their
stochastic network programming models. To keep the models linear, one can approx-
imate the utility function by a piecewise linear function. Bradley and Crane [7] just
maximize the expected value of the portfolio at the terminal date, and incorporate
the risk attitudes of the investor through additional (linear) constraints.

We have assumed that the liabilities have to be met exactly at each point in
time and in all scenarios. However, short-term borrowing and lending is allowed
so that cash shortages at one point in time can be offset by surplsses at other
points. Hiller and Schaack [29] and Zipkin [59] also follow this approach. Kusy and
Ziemba [40] and Carifio et al. [9] use shortfall and surplus variables instead. Any
shortfall in the matching between assets and liabilities is directly penalized in the
objective, and surplusses are credited to the objective. The main difference with
our approach is thus that shortfalls and surplusses appear in the objective function
directly, while they get incorporated in the initial cost of the portfolio strategy or the
final portfolio value in our approach. Shortfall and surplus variables can be used in
other types of constraints as well (e.g., policy and regulatory constraints), and the
associated penalties can reflect the likelihood of the scenarios. Although estimation
of the penalties may not be straightforward, it should be clear that they can be easily
accommodated in our formulation.

Specification of the model horizon H is somewhat arbitrary in many applications
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as there is often no natural terminal date for the asset/liability management problem.
In the choice for H one has to trade off the additional realism of the model when H
is large with the increase in computational complexity. Grinold [20] shows for gen-
eral multistage decision problems that reducing the length of the planning horizon
in the model can significantly influence the optimal solution, and compares several
ways to deal with this problem of so-called “end effects”. His favorite method, the
dual equilibrium technique, adds an additional period to the model for which the con-
straints and the variables represent a discounted weighted average of the constraints
and variables of all periods after H that were not included in the model. Carino
et al. [9] discuss the application of this technique in their stochastic programming
model for asset/liability management. We handle possible end effects in our formu-
lation by including the final portfolio value in the objective function with a certain
weight (corresponding to the “salvage” technique of Grinold).

Bradley and Crane [7] and Kusy and Ziemba [40] include capital gains taxes in
their models. As these taxes are levied on the difference between the sales price
and the original purchase price of an asset, a separate variable must be defined for
every possible holding period of an asset. This significantly increases the number
of variables in the model. Furthermore, it implies that the constraints would not
only link the variables of a scenario s at time ¢ to the variables of its predecessor
scenario s~ at time ¢ — 1, but to the variables of all of its ascendent scenarios before
time ¢ — 1 as well. Although we perform our analysis in this and the next chapters
for the ALM model of section 2.2.1, it should not be difficult to extend the results to
this alternative formulation.

2.3 Specification of the Data in the ALM Model

In section 1.1 we made the assumption that asset prices in financial markets are
arbitrage-free, i.e., they do not enable investors to make riskless, unlimited profits
(see appendix A for a precise definition of arbitrage-free asset prices). Although this
assumption may not always be fully satisfied in practice, we argued that it is a rea-
sonable approximation of reality as there are many firms in today’s financial markets
which have as their main business to look for, and take advantage of, violations of
arbitrage-pricing relationships.

For the specification of the asset-price uncertainty in the ALM model we will re-
quire that future asset prices in the model are arbitrage-free as well. This requirement

31



is even more reasonable than the earlier assumption, as it is unrealistic to assume that
any investor can forecast future mispricings of assets that would enable riskless ar-
bitrage profits. Besides being reasonable, we will show in section 2.3.2 that it is
also an important requirement in order to obtain sensible solutions from the ALM
model. Specifically, we will show that the optimal solution to the model can be sub-
stantially biased towards the hypothesized arbitrage opportunities if asset prices are
not arbitrage-free in the model. This is the case even if the investor is inable to
take advantage of the arbitrage opportunities directly because of market frictions and
trading restrictions. We will first, however, give a mathematical characterization of
arbitrage-free asset prices, and show in section 2.3.1 that this property together with
the assumption of dynamically complete markets implies a natural definition of the
discount factors ¢} in the ALM model from the previous section.

From theorem A.l in appendix A we know that the property of arbitrage-free
asset prices implies that there must exist a probability measure on the event tree
(not necessarily representing the investor’s probability beliefs) such that the expected
one-period return on all assets, calculated with respect to this probability measure,
equals the riskless one-period return in all states of the event tree. Let 77 denote the
unconditional probability of scenario s at time t according to this risk-neutral prob-
ability measure, and 7} its conditional probability, given its predecessor scenario s~
at time t — 1. That is, #{ = 7} /n{_,. We note that this conditional probability only
depends on the state of scenario s at time ¢, and thus #1) = 7. The fact that asset
prices are arbitrage-free in the event tree can now be formulated mathematically as:

n P (zfrr:. (s::;,w::;l)) 1)
7l+

where the summation is over all successor nodes n* of node n at time ¢. This relation
must hold for all assets i == 1,..., I, and in every node n at each timet =0,...,T -1
in the event tree.

2.3.1 Definition of the Present-Value Factors

In addition to the assumption of arbitrage-free asset prices, we have also made the
assumption in section 1.1 that financial markets are dynamically complete. This
implies that the risk-neutral probabilities 7 are unique (see proposition A.2 in ap-
pendix A). We will argue in this section that both assumptions imply the following
natural definition for the present-value factors ¢y in the ALM model:
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T-1
@ = 7y (H P ’) (2.8)
t=0

The term between brackets is the discount factor, which equals the product of the one-
period risk-free discount factors along the path in the event tree that corresponds to
scenario s. A final portfolio value (positive or negative) is thus discounted to time 0
using the one-period interest rates along the scenario path in the event tree, and
weighted by its risk-neutral probability of occurrence.

To argue that this is a reasonable definition, first consider the set of scenarios at
time T in which the final portfolio value is positive (i.e., all s € Sy for which y3 > 0).
Because of the assumption of dynamically complete markets, it is possible in principle
to construct a self-financing trading strategy in the available securities that provides
payoffs of y4 at time T in all scenarios s € Sy for which y; > 0, and zero in all other
scenarios. It can thus be viewed as if the investor owns a marketed security with
random payoffs y; at time T.

As security prices are assumed to be arbitrage-free, a natural candidate for the
discount factor ¢4 is the weight on y# in the arbitrage-free value of this hypothetical
security at time 0. By a recursive application of relation (2.7), it is not difficult to see
that ¢ in (2.8) is exactly this weight. As the arbitrage-free value of this hypothetical
security at time 0 may not reflect the actual value that the investor assigns to the
random surplus portfolio value at the terminal date, the parameter A, is used for
adjustment.

The argument that deficits 23 at time T should also be discounted with the dis-
count factor g} in equation (2.8) is similar. It can be viewed as if the investor is short
a hypothetical security that pays 25 in scenario s € Sr. In dynamically complete and
arbitrage-free markets it is natural to value this hypothetical security by arbitrage,
which leads to the discount factor of equation (2.8). To correct for the fact that the
investor may attach a value to the random portfolio deficit at time T that is different
from its arbitrage-free value, we have included the parameter \; in the formulation.

The choice of values for the parameters A; and A is investor dependent. As we
have assumed that the investor’s main goal is the construction of a portfolio strategy
in order to meet his future liabilities, it is reasonable to assume \; < 1 and (A A) > 1.
An interpretation in terms of the hypothetical securities that we discussed earlier is
that the investor would not be able to sell his (scenario-dependent) final portfolio
surplus at time T at more than its arbitrage-free value at time 0, whereas he would
have to pay more at time 0 than the arbitrage-free value of his deficits at time T to
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cover this future short position.

The choice of A; and ), as simple constants is a particularly simple one, and
can be easily generalized. A straightforward generalization is to make them state or
scenario dependent. Instead of being a linear operator, A; could also be replaced by
a piecewise linear, increasing and concave function that is evaluated for the surplus
value in every single scenario. This would reflect a situation in which differences in
the portfolio surplus across scenarios negatively influences the value that the investor
attaches (at time 0) to a portfolio surplus at time T. Similarly, the product (A;A;)
could be replaced by a piecewise linear, increasing and convex function with an anal-
ogous interpretation. The use of such piecewise linear functions is similar in spirit to
calculating the expected utility of the final portfolio value with respect to a concave
utility function.

2.3.2 Effects on the Optimal Solution

In this section we will show that a violation of the no-arbitrage condition (2.7) by the
asset prices in the ALM model can lead to a substantial bias in its optimal solution.
This bias is caused by spurious profit opportunities that are introduced in the model
by a violation of condition (2.7). To perform our analysis, we will first make some
simplifying assumptions about the parameters in the ALM model, and then discuss
the generalization of the results when these assumptions are relaxed. The following
lemma will play an important role.

Lemma 2.1 If\; = 1 in the ALM model, and if g} is defined by (2.8), then the only
possible value for the dual variable ¢} on the cash-balance constraint for scenario s at
time t in an optimal solution to the ALM model is given by:

t—-1
o =g with @¢=x (1‘[ P;‘(")) (2.9)

7=0

forallt=1,...,T and s € ;.

PROOF: The result follows from the constraints in the dual formulation of the ALM
model that correspond to the variables y} for all t =0,...,T and s € ;. These dual
constraints are (the corresponding primal variable is listed at the beginning of each
constraint):

w : Yy <P (2.10)
8€S
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v, : —: P n(') +z¢¢+l <0 (2.11)

st

yvr : —or < —qr (2.12)

where we have used A\, = 1 in the last constraint. We will first prove that ¢f > g; for
allt=1,...,T and s € S;, and subsequently that equality must hold.

Constraint (2.12) states ¢! > ¢ for t = T. We will prove that it also holds
for t < T by induction. Assume the inequality holds for all t = t* +1,...,T and
s € S,. To show that it also holds for t = t*, note that constraint (2.11) for ¢t = ¢*
implies:

o P >3 ol (2.13)
’+

. . . . . +
where the summation is over all successor scenarios s* of s. By induction, ¢j. ., >

gi’,1, and thus
op. PR® > Zq. " (2.14)
By definition, ¢{.',; = g5 Pr22e) for each successor st of s. Substituting this
in (2.14), and noting that ) ,+ 1rt.+1) = 1, we obtain . > ¢;.. Thus ¢} > ¢; for
allt=1,...,T and s € S;.
We will now show that equality holds, again by induction. Because @] > g for
all s € Sy, it follows from constraint (2.10) that:

Ya<Y vi<h (2.15)

8€S 8€ES

By definition, g} = Pym{. Because ¥ ,cs, m; = 1, it follows that equality must hold
throughout in (2.15), and thus ¢{ = ¢{ for all s € S;. This establishes (2.9) for ¢ = 1.

To show that the equality also holds for all ¢t > 1, we will prove that ¢j,, = ¢;,
must hold for each s € Sy, if ¢} = ¢} for all s € S,. If the latter equality holds, then
constraint (2.11) implies for an arbitrary scenario s € S:

S < St S PP = PO (2 16)
st st

where we have used the earlier result that o, . @ '+, for all successors s of s.
Because g}}, = ¢; s P07 for each st by definition, and as ¥+ 7’:‘4(:1 ) =1, we see
that equality must hold throughout in (2.16). This implies cpfj:l = ‘I:+1 for each s.

Because scenario s € S, was chosen arbitrarily, it follows that ¢f,, = gf,, for all
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s € 84 if ! = ¢ for all s € S,. By induction therefore ¢} = ¢; forallt=1,...,T
and s € ;.
QED

The interpretation of the quantity ¢} in (2.9) is analogous to the interpretation of g7
in (2.8), namely the arbitrage-free value at time 0 of a dollar in scenario s at time ¢.
Notice that this lemma does not require any assumptions about the ALM model
beyond the ones that were explicitly stated. That is, the result is true for any level of
the transactions cost rate ¢ and the interest-rate differential p, for any choice of A,
and for arbitrary upper bounds on short-term borrowing. The assumption A; = 1
corresponds to an investor who has no time preference for money, i.e., he is indifferent
between one dollar now and a random payment at time 7" whose arbitrage-free value
at time 0 equals one dollar.

Notice also that the lemma restricts the possible value for ¢ in an optimal solution
to the dual of the ALM model. That is, the dual may not have an optimal solution at
all, implying that the ALM model itself is unbounded. An unbounded solution to the
ALM model is obviously an undesirable outcome, as it means that the investor would
generate unlimited benefits (as measured by the objective function) from meeting his
liabilities.

One way in which the ALM model will have an unbounded solution is if A; > 1,
which follows directly from the proof of the lemma. We will show below that an
unbounded solution can also occur if \; < 1 and if the asset prices in the ALM
model do not satisfy the no-arbitrage condition (2.7). We will first consider the
case that A; = 1 in proposition 2.1, where we also assume that the investor has no
possibility for short-term borrowing. This assumption, together with the assumption
that he cannot short sell assets, implies that he cannot directly take advantage of an
arbitrage opportunity in the model by forming an arbitrage portfolio (in the sense
of definition A.1 in appendix A). In proposition 2.2 we will allow for short-term
borrowing, which enables us to relax the assumption A; = 1.

A Special Version of the ALM Model

We will assume for now that the transaction cost rate ¢ = 0, and generalize the results
later to the case ¢ > 0. We also impose the restriction that the final portfolio value
has to be positive in all scenarios, and define the present-value factors g1 by (2.8).
The assumption of no transaction costs allows us to eliminate the variables for asset
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purchases and sales (2] and 3!) from the ALM model, and write it in terms of
the portfolio holdings ah! only. (To see this, we note that ¢ = 0 implies that b
and 25} have the same coefficient in the cash-balance equation. Using the portfolio-
balance equations, one can therefore substitute (zh{_, — zh{) for (zs; — ab;) in the
cash-balance equation.) Instead of the vector notation that was used in section 2.2.1
we will rewrite the model in terms of individual securities and let D}, and S}, denote
the dividend payment and ex-dividend price of security 7 in state n at time ¢. Under
these assumptions, and with A\; = 1, the ALM problem can be written mathematically

as:

1 T-1
min Y S;othio + Poyo — Y 77 (H P )) yr (2.17)

i=1 SEST t=0

I I
st. Y (DI +SIO) ahg, + i, — YoSi by, — PMy; = L0
1=1

1=1

Vses,t=1,...,T -1

I
S (DI + Si9) ahipoy + v, — v = L VseSs

i=1

i, >0,1>0 VseS,t=0,...,T

To interpret this formulation, we note that in the case of zero transaction costs, it is
sufficient to know the value of the portfolio in a scenario instead of the individual asset
holdings because it is costless to change the portfolio composition. This is reflected in
the cash-balance constraints. The first term in each cash-balance constraint represents
the value of the portfolio thai is carried over from the previous period, and the second
term the return on short-term lending from that period. Their sum is the total
available wealth, which can be used to construct a new portfolio after the liability is
met. When ¢ = T, the difference between the available wealth and the liability equals
the final portfolio value. The objective function is the same as in the original ALM
model, except that a term for short-term borrowing is not included here.

The following proposition states that the solution of the ALM model (2.17) is
unbounded if there is a security and a state in the event tree in which the expected one-
period return on the security (calculated with respect to the risk-neutral probability
measure) exceeds the riskless one-period return, i.e., violates relation (2.7).!

1 Actually, the proof does not depend on the fact that the probability 7% in the expression for
¢% (note that this is the only place in the formulation where a probability appears) represents the
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Proposition 2.1 The solution to (2.17) is bounded if and only if the following in-
equality holds for every asset i in all states n at every timet = 0,...,T — 1 n the
event tree:

w2 P (2 i (S:‘:-H + D; t+l)) (2.18)

where the summation is over all successor states n* of state n in the event tree.

PROOF: We prove the proposition by considering the dual of (2.17). By linear pro-
gramming duality, (2.17) has a bounded solution if and only if its dual is feasible.
Let ¢} denote the dual variable for the cash-balance constraint of scenario s at time ¢.
These are the only variables in the dual of (2.17), and because A, = 1, it was shown
in lemma 2.1 that ¢} = ¢} is the only possible solution to this dual problem. This
was derived from the dual constraints that correspond to the variables for short-term
lending y;.

Now consider the dual constraints that correspond to the asset holding variables:

D Y (D + i) < Sio (2.19)
€S
+ s gnis
Z ‘Pt+1 :‘g-l) nt(+1)) ©;S ( <0 (2.20)

where the corresponding primal variables are listed at the beginning of each con-
straint. We will show that these constraints are feasible in ¢] = ¢ if and only if
relation (2.18) is satisfied.

By substitution of ¢! = gi = Py7} in (2.19) we obtain for each i = 1,...,I:

Sio > Py 3 (DX + 87)) (2.21)
5€S)

As every scenario s € S corresponds to a different node in the event tree, and 7} = 77,
this is precisely relation (2.18).

For ¢ > 0, substitute ¢ = ¢f and ¢}, = gf;, = ¢ s Pr)376") for each s* in (2.20)
to obtain

Sn(a) > Pn(a) Z »n(s"') :‘g‘_":) + S”t(::)) (222)

risk-neutral probability of scenario s at time T. If 7% would be the probability that follows from
some other probability measure on the event tree, then the proposition holds with respect to this
other measure. However, as we argued in section 2.3.1, it is natural to choose 77 in the expression
for g4 as the risk-neutral probability given the assumptions we have made about financial markets.
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Because every successor scenario st of s corresponds to a different node in the event

tree, this is relation (2.18).
QED

We note that neither the proof of lemma 2.1 nor the proof of this proposition depends
on the stream of liabilities. The results are thus valid for any multiperiod investment
problem that is formulated as a stochastic program.

The following corollaries immediately follow from the lemma and the proposition.

Corollary 2.1 If inequality (2.18) is satisfied for all assets i = 1,...,I in every
state in the event tree, then the optimal solution value of (2.17) equals the arbitrage-
free value at time 0 of a security whose payoffs ezactly match the stream of future
liabilities.

PROOF: Because A\, = 1 in (2.17), we know from lemma 2.1 that @] = ¢; is the
only possible solution to the dual problem of (2.17). As condition (2.18) is satisfied,
the previous proposition tells that this must be the dual solution. The value of the
objective function in the dual problem is therefore equal to

T T t—1
%=y ¥ (I )

t=1 seS; t=1 s€S; 7=0

which is the arbitrage-free value at time 0 of the stream of liabilities.
QED

Corollary 2.2 If inequality (2.18) holds with equality for all assets i = 1,...,1 in
every state in the event tree, then every feasible solution in (2.17) is optimal.

PROOF: If equality holds in (2.18) for all assets : = 1,...,I in every state in the
event tree, then it follows from the proof of proposition 2.1 that all constraints in the
dual of (2.17) will be satisfied with equality. Thus, for every feasible solution in (2.17)

complementary slackness holds, and thus this solution must be optimal.
QED

We note that the condition in this corollary is precisely the condition that asset prices
are arbitrage-free.

Before qualifying these results with respect to the assumptions that were made in
formulation (2.17), we will present a trading strategy that would lead to an unbounded
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solution in this simplified formulation when inequality (2.18) is violated. Let the
expected one-period return on asset ¢* (calculated with respect to the risk-neutral
probability measure) exceed the riskless one-period return in state n* at time ¢*, and
consider the following self-financing trading strategy:

1. Take $1 for investment at time 0, and invest it at the riskless one-period interest
rate until time ¢*.

2. For all scenarios s € S, invest the accumulated money in asset i* during
period t* + 1. For all other scenarios, lend the accumulated money at the
riskless one-period rate during period t* + 1.

3. For all scenarios at time ¢* + 1, take the accumulated money and roll it over at
the riskless one-period interest rate until time T'.

Through a somewhat tedious but otherwise straightforward argument, one can show
that this trading strategy strictly improves the objective function of (2.17). That
is, the expected present value of the payoffs from this strategy at time T', which is
credited to the objective, exceeds the initial cost of this strategy (one dollar). As no
limit has been imposed on how much the investor can invest at time 0, an arbitrarily
large amount can be spent on this trading strategy, causing an unbounded solution
value for the stochastic program. Note that this trading strategy is independent of
the stream of liabilities.

Relaxation and Modification of the Assumptions

It is clear from the discussion above that a violation of condition (2.18) leads to a
solution in the ALM model (2.17) that is unbounded because there is no restriction on
the initial investment. It should also be clear, however, that the optimal solution will
still be strongly affected by violations of condition (2.18) when a constraint on t'e
initial budget is added to (2.17), despite the fact that it can no longer be unbounded
in that case.

To derive condition (2.18) we have assumed that the transaction cost rate ¢ = 0.
When ¢ > 0, we can use a similar argument as in the proof of proposition 2.1 to
obtain the following sufficient condition on the expected one-period asset returns
which prevents an unbounded solution to the ALM model:

(1+4¢)S%, > PP (Z i (1 - oSk + D}j;,)) (2.23)
nt
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This condition has to be satisfied for all assets ¢ = 1,...,[ in every state n at each
time t = 0,...,T — 1 in the event tree. Notice that it reduces to condition (2.18)
for ¢ = 0. However, when c > U this is only a sufficient condition for the ALM model
to be bounded, while it is both sufricient and necessary when ¢ = 0. This can be seen
intuitively from the trading strategy, described earlier, which leads to an unbounded
solution if condition (2.18) is violated for some asset i* in some state n* of the event
tree when ¢ = 0. If condition (2.23) is violated for asset i* in state n* when ¢ > 0, then
exactly the same trading strategy can be followed to obtain an unbounded solution.
Notice that this trading strategy only involves a one-period investment in asset i,
and that condition (2.23) states that the 2xpected one-period excess return (i.e., in
excess of the risk-free return) must compensate for the transaction costs incurred by
buying the asset at the beginning of the period and selling it at the end. However, if
condition (2.18) is violated for asset i* in several states in the event tree, while (2.23) is
satisfied in all states, it could be possible to construct a self-financing trading strategy
that involves an investment in asset i* over multiple periods, and which would lead
to an unbounded solution to the ALM model.

We can strenghten our results by relaxing the assumption that no short sales of
assets are allowed. If short selling is allowed, then condition (2.18) in proposition 2.1
must be satisfied with equality to prevent an unbounded solution to the ALM model
in (2.17), and thus reduces to the no-arbitrage condition (2.7). If the transaction cost
rate ¢ > 0, then condition (2.23) together with the condition

(1- C)S::t <F (2 ir?:l ((1 + C)S;::ﬂ + D::H)) (2.24)
nt

are sufficient (but not necessary) to prevent an unbounded solution to the ALM
model.

The assumption A\; = 1 has been crucial in our analysis sofar. We can derive
similar conditions on the asset returns for arbitrary A, € (0, 1], however, if we allow
for short-term borrowing in the ALM model. The possibility of short-term borrowing
essentially enables the investor to take advantage of an arbitrage opportunity in the
model if it exists. To show this formally, consider the modification of the ALM model
in (2.17) where we include the possibility for unlimited short-term borrowing, while
allowing an arbitrary value for \;:
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min ZS,',oﬂh.',o + Poyc — ( —f Po) 20 — A] E 1I'T (H P"(’ )) (2.25)
i=1

SEST t=0

! 1
5.t Z n(s) "(’)) Sty —Eo — ESI:S’)M{:
i=1 i=1
-Py; +(""AR"(’))z:=L?“" VseS,t=1,...,T-1

I
Z (D"\S) + S"(‘)) o+ yT— zT- T = Lﬂ(’) Vs€Sr

i=1

020,420,220 VseS&, t=0,...,T.
For this version of the ALM model, we have the following result:

Proposition 2.2 If 0 < )\, < 1, then the solution to (2.25) is unbounded if the
following inequality is violated for any asset i in at least one state n in the event tree:

nt+

Sy 2 e P (Z e (S 1+ D H-l)) (2.26)

where the summation is over all successor states n* of state n in the event tree.

PRrOOF: We prove the proposition by showing that the dual of (2.25) is only feasible,
and thus (2.25) itself bounded, if condition (2.26) is satisfied for every asset ¢ in each
state n of the event tree.

Through an analogous induction argument as in the first part of the proof of
lemma 2.1, but with the inclusion of the parameter \;, we find that the dual con-
straints with respect to the lending variables y; imply that ¢} > A q; for all s € S,
andt=1,...,T.

The dual constraints that correspond to the borrowing variables 2; are:

g 1 — Y pl<—e PR (2.27)
3€S)
2 0 Qe PP =3 el <0 (2.28)
st

where the corresponding primal variable is listed at the beginning of each constraint.

First consider t = 0. If we divide the dual constraint (2.27) through by e *2 Py,
and the dual constraint (2.19) that corresponds to zh;o by S;¢, and then add both
constraints, we obtain:
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@ Sio e PAP | ~

Using ¢} > Mg} = M\ Pori, it follows that it must also be true that

D) 4 57 1
M P, | —= b — <0
1£0 ag;l 1 ( Si,o e_pAPO =

For A\, > 0, this inequality will only be satisfied if the sum in this expression is
nonpositive. Noting that every scenario s € S, corresponds to a different node in the
event tree, and m§ = &, this will be true only if relation (2.26) holds for ¢ =0

The proof for t > 0 is identical, and therefore omitted.
QED

Notice that condition (2.26) in this proposition is only a sufficient condition for un-
boundedness of the ALM model, and not a necessaiy condition, unlike condition (2.18)
in proposition 2.1.

If there are limits on short-term borrowing, then a violation of condition (2.26)
does not lead to an unbounded solution, but the optimal solution will certainly
be biased towards the corresponding arbitrage opportunity. If the transaction cost
rate ¢ > 0, then condition (2.26) can be modified in a similar way as was done earlier
for the case A\; = 1.

In conclusion, we have shown that a specification of asset prices in the ALM
model that is not arbitrage-free can lead to substantial biases in the optimal solution.
The requicement of arbitrage-free asset prices in the model is therefore not only
legically reasonable, but also important to obtain sensible solutions from the model.
The conditions in propositions 2.1 and 2.2 were obtained independent of the stream
of future liabilities in the model, and therefore apply to a stochastic programming
model for any dynamic portfolio management problem. Even if the assumptions
behind these propositions are not satisfied (i.e., if A; < 1 and short-term borrowing
is not possible) then a violation of condition (2.18) in proposition 2.1 may still lead
to biases in the optimal solution towards hypothesized arbitrage opportunities. In
that case, however, whether a bias is actually present will not only depend on the
size of the violation and the parameter values in the model (c, A, Az), but also on
the correlation between the payoffs from the security for which the violation occurs
and the required liability payments.

43



Chapter 3

Using Term-Structure Models to
Describe the Uncertainty in the
ALM Model

In the previous chapter we imposed the restriction on a description of the asset-price
uncertainty in the ALM model that asset prices cannot admit arbitrage opportunities.
It was shown that this is a crucial restriction in order to obtain reasonable results
from the model. In this chapter we wiil discuss how financial term-structure models
can be used to obtain a description of the asset-price uncertainty that satisfies this
restriction.

Financial term-structure models aim to describe the uncertainty in the future
term structure of interest rates, and have primarily been used to value interest-rate-
derivative securities. In section 3.1 we will give a brief overview of the literature on
arbitrage-free term-structure models, and present the model of Ho and Lee [31] in
some detail as most of our numerical results in this and later chapters are obtained
with this model.

Security prices that are calculated from a term-structure model have the important
property that they are arbitrage-free. This makes these models good candidates to
provide a description of the uncertainty for the ALM model. To obtain accurate
security price estimates, howevel, these models allow the term structure to change
either in a continuous fashion, or in short time increments if a description in discrete
time is used. We will show in section 3.2 that a stochastic programming model
can only incorporate a relatively limited description of the uncertainty to remain
computationally tractable. It is therefore necessary to approximate the description
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of the uncertainty that follows from a term-structure model before we can use it in
the ALM model.

In performing such an approximation, we want the asset prices to remain arbitrage-
free. Furthermore, if the security prices that follow from a term-structure model are
consistent with observed market prices, we want to maintain this consistency in the
approximate description. We will show in section 3.2 that several intuitive ways to
obtain an approximate description from a term-structure model violate one or both
of these requirements. With the insights obtained from this analysis, section 3.3.2
will then present state and time aggregation methods which do maintain both proper-
ties. A reformulation of the ALM model in which the description of the uncertainty is
based on an aggregated term-structure model, obtained from an initial term-structure
model through multiple state and time aggregations, closes this chapter.

3.1 Arbitrage-Free Mcodels of the Term-Structure

Uncertainty

The primary purpose of arbitrage-free term-structure models that have been proposed
in the financial literature is the valuation of interest-rate-derivative securities. Most
models assume that the prices of such securities, as well as the term structure of
interest rates, are fully determined by the process of the instantaneous (i.e., very
short-term) interest rate (also called the short rate) and are thus one-factor models.
To calculate the prices, they assume that no arbitrage opportunities can exist (see
appendix A for an explanation of asset pricing by arbitrage).

To specify a process for the short rate, two different approaches have been taken.
In the first approach, the process is stated in terms of some unknown parameters,
and values for these parameters are chosen such that the prices of a set of securities
that are implied by the interest-rate model match their market prices as closely as
possible. The continuous-time models of Vasicek [55] and Cox, Ingersoll and Ross [11]
are examples of this approach.

The second approach takes the observed term structure of interest rates as given,
and constructs a process for the short rate that is consistent with this term structure,
and does not permit arbitrage opportunities. This approach guarantees that the
prices of default-free zero-coupon bonds (also called discount bonds) that follow from
the model equal their counterparts in the market. This second approach is adopted in
the models of Ho and Lee [31) and Black, Derman and Toy [5]. Hull and White [34]
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describe how the models of Vasicek [55] and Cox, Ingersoll and Ross [11] can be
extended to match the current term structure of interest rates. These extended
models, as well as the model of Black et al., can in addition be fitted to any given
term structure of yield volatilities on zero-coupon bonds. Hull and Whitz [36] describe
a general procedure for the construction of interest-rate models in discrete-time that
fit the term structure of interest rates as well as the term structure of discount-bond
yield volatilities.

The stochastic programming formulation for the ALM problem requires a descrip-
tion of the interest-rate uncertainty in the form of an event tree. The models of Ho
and Lee [31] and Black, Derman and Toy [5] are discrete-time models that spec-
ify a binomial lattice for the possible movements in the short rate, while Hull and
White [36] assume a trinomial lattice, and these models can therefore be used directly.
The Vasicek [55] and Cox, Ingersoll and Ross [11] models are continuous-time models
that specify a diffusion process for the instantaneous interest rate, and therefore have
to be approximated by a discrete-time model before they can be used in a stochastic
programming formulation. Hull and White [35] describe a general method to accom-
plish this in a way that preserves the drift and the variance of the diffusion process
in the discrete-time approximation, and which guarantees that prices of derivative
securities that are calculated from the discretized model converge to the prices in
the continuous-time model when the length of the time step approaches zero. As in
Hull and White [36), the discretized interest-rate process is described by a trinomial
lattice.

Although it may seem at first that one-factor models are quite restrictive, they
are in fact able to accommodate many different shapes of the term structure. They
do, hcwever, imply that instantaneous price changes of all interest-rate-dependent
securities are perfectly correlated. Brennan and Schwartz [8] and Heath, Jarrow and
Morton [26, 27) have proposed multifactor models for the term structure that do not
carry this implication, but the valuation of derivative securities according to these
models is computationally much more demanding. Furthermore, they have not been
proven superior in the explanation of observed security prices.

There is no agreement or conclusive empirical evidence about which of the pro-
posed models of the term structure is the most realistic one and fits market data
best. Clearly, the ability to match the observed term structure of interest rates is an
attractive feature. The models of Vasicek and Cox. et al. assume mean reversion of
the short rate, which seems to be supported by empirical data. A drawback of the

46



Vasicek model and the Ho and Lee model is that interest rates can become negative,
which is not possible in the other models.

Although not necessarily the most realistic model, we have chosen to describe
the term-structure model of Ho and Lee in detail in the next section because it is a
relatively simple model, it highlights important characteristics of geneza! one-factor
term-structure models, and it has been used widely in practice. e have also used
this model for numerical computations in this and subsequent chapters.

3.1.1 The Ho and Lee Model

In the term-structure model of Ho and Lee [31], the short rate is the single determinant
of the prices of interest-rate-derivative securities. Instead of specifying the process
for the short rate directly, however, Ho and Lee describe the evolution of the prices
of default-free zero-coupon bonds with different maturities, and derive from that the
process of the short rate. We will follow their development in this section’.

Consider a multiperiod economy with a finite horizon H, equally spaced trading
datest =0,...,T (T = H) and a finite number of possible states at each time. Let
P (7) denote the price in state n at time t of a default-free zero-coupon bond that has
7 time periods left to maturity (r =0,...,T —t). P*(7) as a function of 7 is called
the discount function, and Ho and Lee model the changes of this discount function
over time. They assume that the complete discount function at time 0 is known?.

In a world of certainty (only one possible state at each trading date), it must be
true that Py (1) = Py(T + 1)/P.,(1) to prevent arbitrage opportunities (note that
P.;1(7) and Py(7 + 1) represent prices of the same bond, but at different points in
time). Under uncertainty, Ho and Lee assume that the discount function can change
in two directions in each periud. They describe the possible changes for each discount

! For general one-factor term-structure models, Hull and White [36] show the relationship between
the specification of price processes for default-free zero-coupon bonds, processes for the instantaneous
forward rates, and the process for the short rate.

2This is equivalent to knowing the complete term structure of interest rates at time 0. If rj’(7)
denotes the continuously compounded yield in state n at time ¢ on a zero-coupon bond with 7
periods left to maturity, then r}*(7) is defined by

=In P} (1)
TA

and r7(7) as a function of 7 is called the term structure of interest rates (or yield curve) in state n
at time . In their paper, Ho and Lee assume A = 1, i.e. that interest rates are defined per period.

re(r) =
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bond as perturbations from the required change in a world of certainty:

Upstate: PAti(r) = S thir) (31)
Downstate: P, (1) = E‘%Z(—;Qh‘(’r) (3.2)

The perturbation functions h(-) and h*(-) are assumed to depend only on the re-
maining time to maturity of the bonds, and satisfy h(0) = h*(0) = 1 and h(7) > 1,
h*(t) < 1 for 7 > 0.

The first restriction that Ho and Lee impose on the perturbation functions is that
the discount bond prices in the event tree do not admit arbitrage opportunities. They
show that this is equivalent to the requirement that

wh(t)+ (1 —7)h*(1) =1 (3.3)

for some constant 7, independent of 7. Using the definition of the perturbation
functions, this can be rewritten as Pj*(7 + 1) = P*(1) [1rP )+ (- w)P,';,('r)],
and the constant 7 is therefore referred to as the implied (or risk-neutral) binomial
probability.

As the second restriction on the perturbation functions, Ho and Lee require that
the price processes are path independent. That is, if the price of a discount bond in
state n at time t follows an “upstate” and a “downstate” in the next two periods,
respectively, then its price at time t + 2 must be the same as when it would have
followed a “downstate” and an “upstate” move, respectively. The number of different
states at time t is therefore limited to (¢ + 1), which are indexed as n = 0,...,¢,
and the changes in the discount function over time can be represented by a binomial
lattice (see figure 2-1). Ho and Lee show that the path-independence condition,
together with condition (3.3), leads to the following expressions for the perturbation
functions:

W) = — (11_ 5w W)= T 2 (3.4)
where 4 is some constant between 0 and 1 (§ = 1 is the certainty case). The parameters
7 and 4, together with the initial discount function, thus completely define the term-
structure model of Ho and Lee.

The short rate 7 in state n at time ¢ is defined as the continuously compounded in-
terest rate on the zero-coupon bond with one period left to maturity: r} = —In P*(1).
Equations (3.1) and (3.2) enable us to write:
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Po(t + 1) ot
<t.
P rt(-me "=!

The process for the short rate can thus be written as

Pr(1) =

Ty = r?+nln6 forn <t.

We note that r7*! — rP = Ind, independent of n and t. Thus, the volatility of the
short rate is independent of the state at a given time. Furthermore, to prevent the
short rate from being negative anywhere in the binomial lattice, we need that r{ > 0
for all ¢ (note that Ind < 0), or equivalently,

Ro(tt)) _ p7+
Po(t) =
N .

So far, no explicit assumptions were made about probability beliefs of investors
about changes in the term structure. If an investor assigns a probability ¢ (0 < ¢ < 1)
to every “upstate” movement in the binomial lattice, then the expected short rate
and its variance (evaluated at time 0) can respectively be written as

w = Eo{fe}=In [_ﬁ%?ﬁ +In [1r6"‘ +(1- 7r)] +tqlné (3.6)
o7 = Eof(.— m)’} = tg(1 - g)(Iné)? 3.7)

The term premium on a 7-period discount bond is defined as the difference between
the expected one-period return on this bond and the riskless one-period return. Ho
and Lee prove that this term premium in state n at time ¢ equals:

7 ([:i = :))(;] - 1)

where q is defined as before. If all term premia are zero (i.e., ¢ = 7), then the (local)

ezpectations hypothesis is said to hold.

3.1.2 Asset Prices in the Ho and Lee Model

One of the explicit requirements in the construction of the Ho and Lee model was
that the prices of the discount bonds are arbitrage-free. This section shows how
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the model can be used to determine arbitrage-free prices of general interest-rate-
derivative securities. We will also illustrate how these arbitrage-free prices depend on
the number of time periods (T') within the model horizon H.

Consider an interest-rate-contingent claim that matures at the end of period T
(i.e. the model horizon), and which pays a dividend D} to its holder in state n at
time t (¢ = 1,...,T;n = 0,...,t). To avoid that riskless arbitrage profits can be
made by dynamic trading in the discount bonds and the contingent claim, Ho and
Lee prove that the following relation must hold between the ex-dividend prices of the
contingent claim in the event tree forallt =0,...,T-1and n=0,...,t:

= PP(1) - [n(SE! + D) + (1 = m) (St + D)) (3.8)

where S} = 0 for all n = 0,...,T. The proof follows directly from the theory of
asset pricing by arbitrage, which is explained in appendix A. Relation (3.8) specifies
a recursive relationship between the contingent-claim prices, which is very convenient
for computation. It is clear from this recursive relation that one only needs to know
the short rate in each state of the event tree to calculate arbitrage-free asset prices,
which shows that the Ho and Lee model is a one-factor model. Notice further that
the pricing formula only involves the implied binomial probability m, and not the
subjective probability g; that is, the arbitrage-free prices do not depend on individual
probability beliefs.

We have assumed that the dividends on the contingent claim depend only on the
state in the event tree, and not on the history of states. This excludes some classes
of interest-rate-contingent claims such as floating-rate bonds and mortgage-backed
securities. It is conceptually straightforward to extend the pricing relation to such
securities with path-dependent payoffs: we just need to redefine the states at each
trading date as the sequence of states up to that trading date. However, this will
cause the number of states at trading date t to grow from ¢ + 1 to 2, and thus
the computational effort to value securities with path-dependent payoffs will increase
exponentially with T instead of quadratically.

To use the Ho and Lee model, one has to decide in how many time steps T'
to divide a given horizon H. Increasing the number of time steps enables a more
accurate valuation of securities, but at an increasing computational cost. For a set of
European call options on a discount bond, we will illustrate the dependence of their
arbitrage-free prices at time 0 (calculated using equation (3.8)) on the number of time
steps.
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We consider four European call options that are written on a default-free zero-
coupon bond with a maturity of 5 years and face value of 100. The time to maturity
for the options is 1, 2, 3, and 4 years, and we will refer to them as options 1 through 4
respectively. For the construction of the Ho and Lee model, we assume that the yield
curve is flat with a yield of 8% for all maturities. We have chosen m = 0.5 as risk-
neutral binomial probability. The strike price of each option equals the expected bond
price at the option’s maturity, calculated with respect to the risk-neutral probability
measure. We have varied the number of time steps in the model between 5 and 120 to
calculate arbitrage-free option prices at time 0. For each number of time steps in this
range, the value of the parameter § is chosen such that the volatility of the short rate
equals 0.31% per year (again with respect to the risk-neutral probability measure)>.

Figure 3-1 depicts the arbitrage-free time-0 prices for the options as a function
of the number of time steps in the Ho and Lee model*. The prices converge with
an increasing number of time steps in the model, but more than 100 time steps are
needed before all prices have converged to within a precision of at least two decimal
digits (corresponding to prices in dollar cents). We note that 100 time steps in the
model (5 years) corresponds to 20 periods before the maturity of option 1, 40 periods
before the maturity of option 2, and so forth. Thus, the security with the shortest
maturity will often determine the minimum number of time steps that is required for
the convergence of all prices to within a certain precision.

We have performed the same calculations with different assumptions about the
shape of the initial term structure, the exercise prices of the options, and the volatility
of the short rate, and the results are very similar. That is, when the interest-rate
model is used to value interest-rate-contingent claims with various maturities, a sub-
stantial number of time steps may be needed to make sure that the implied arbitrage-
free prices at time 0 of all securities have converged to a realistic level of precision.
As we will show in the next section, this complicates the use of term-structure models
to describe the uncertainty in the ALM model.

3 This level of volatility guarantees that interest rates in the model are nonnegative at all times
for any number of time steps in the given range. Inequality (3.5) specifies a lower bound for the
value of the parameter 8, which implies an upper bound on the volatility of the short rate through
equation (3.7) (note that § < 1). Under our assumption of a flat yield curve, it is not difficult to see
that the lower bound for & will be highest for ¢t = T and T == 120. The volatility of 0.31% is just
below the corresponding upper bound on the volatility.

4The time-0 price of the underlying discount bond is independent of the number of time steps
as the Ho and Lee model is constructed such that the implied prices of discount-bonds match their
actual prices at time 0 (see the previous section).
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Figure 3-1: Arbitrage-free option prices at time 0 from Ho and Lee model as a function
of the number of time steps.

3.2 Combining Stochastic Programs and Term-
Structure Models

Discrete-time term-structure models can in principle be used directly to specify the
uncertainty in asset prices and interest rates in the stochastic programming formu-
lation for the ALM problem: the event tree that describes the uncertainty in the
term-structure models is used to define the (interest-rate) scenarios in the stochastic
program, and the arbitrage-free security prices at each node in the event tree serve as
estimates of future security prices. Of course, one has to be able to specify the liabil-
ities and the security dividends (such as interest and principal payments on bonds)
as a function of the states in the event tree of the term-structure model.

An important issue is the consistency of the arbitrage-free security prices at time 0
that follow from the model with observed market prices. As mentioned before, there is
no conclusive empirical evidence about which of the proposed term-structure models
explains observed security prices best. We make the following additional assumption
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for our models.

Assumption 4 There erists a term-structure model whose implied arbitrage-free se-
curity prices at time 0 equal the observed market prices.

Section 3.1.2 has illustrated for the Ho and Lee model what is true for discrete-
time term-structure models in general: the number of time steps needed to obtain
convergence of arbitrage-free security prices that are calculated from the model in at
least two decimal digits (i.e., dollar cents) can be substantial, especially if securities
have different maturities. Although the calculation of prices for securities with state-
dependent payoffs from a term-structure model with several hundred time steps is still
relatively fast if the event tree has a lattice structure®, the ALM model as presented
in section 2.2.1 cannot take advantage of a lattice structure and includes separate
variables and constraints for every scenario. As the number of scenarios increases
exponentially with the number of time steps, the ALM model imposes a strict limit
on this number of time steps.

To illustrate this, let I denote the number of assets available for trading at each
trading date t = 0,...,T. If the interest-rate uncertainty is described by a binomial
lattice, as in the Ho and Lee model, then the number of variables in the formulation
of the ALM problem of section 2.2 equals® (37 + 4)2T — (5I + 2) and the number of
constraints’ (excluding the upper bounds on short-term borrowing) (I+2)27-2(1+1).
The number of variables and constraints thus roughly doubles with each extra time
step, and increases linearly with the number of assets. Table 3.1 lists the number
of variables and constraints for different values of I and T'. If a trinomial instead of
a binomial lattice is used to describe the interest-rate uncertainty, as in the models
of Hull and White [35, 36], then the size of the models explodes even faster as is
illustrated in table 3.2.

This “curse of dimensionality” forces us to seriously limit the number of time steps
in the ALM model, and we have indicated that this number will generally be much
smaller than the minimally required number of time steps in a discrete-time term-
structure model that satisfies assumption 4. The next section will discuss methods

5The computational effort is proportional to the number of nodes in the event tree, which is a
quadratic function of the number of time steps if the event tree is a binomial or trinomial lattice.

SThere are 2* scenarios at each time t, I +2 variables at time 0, (31 +2) variables for each scenario
at times 1 through T — 1, and 2 variables for each scenario at time T'.

"One cash-balance constraint and I portfolio-balance constraints for each scenario at ¢t =
1,...,T -1, and a cash-balance constraint for each scenario at time T.
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I T=10 T=20 | T=50
T | Variables | Constraints || Variables | Constraints || Variables | Constraints
2 84 26 154 46 364 106
3 220 74 410 134 980 314
4 492 170 922 310 2,212 730
5 1,036 362 1,946 662 4,676 1,662
6 2,124 746 3,994 1,366 9,604 3,226
7 4,300 1,514 8,090 2,774 19,460 6,554
8 8,652 3050 | 16,282 5500 | 39,172 13,210
9 17,356 6,122 32,666 11,222 78,596 26,522
10 34,764 12,266 65,434 22,486 157,444 53,146

Table 3.1: Number of variables and constraints in the ALM model of section 2.2.1
for different numbers of traded securities (I) and time periods (T'), and when the
interest-rate process follows a binomial lattice.

I=10 | 1=20 | I =50
T | Variables | Constraints || Variables | Constraints || Variables | Constraints
2 126 42 226 72 526 162
3 450 159 820 279 1,930 639
4 1,422 510 2,602 900 6,142 2,070
5 4,338 1,563 7,948 2,763 18.778 6,363
6 13,086 4722 || 23,986 8352 | 56,686 19,242
7 39,330 14,199 72,100 25,119 170,410 57,879
8 118,062 42,630 216,442 75,420 511,582 173,790
9 354,258 127,923 649,468 226,323 || 1,535,098 521,523
10 || 1,062,846 383,802 || 1,948,546 679,032 || 4,605,646 | 1,564,722

Table 3.2: Number of variables and constraints in the ALM model of section 2.2.1

for different numbers of traded securities (I) and time periods (T'), and when the
interest-rate process follows a trinomial lattice.
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that can be used to approximate the description of the interest-rate uncertainty that
follows from a term-structure model.

3.3 Approximation of the Interest-Rate Uncer-
tainty

The approximation methods that we will present in this section all approximate the
description of the uncertainty in interest rates and asset prices that follows from a
discrete-time term-structure model. We will assume that a discrete-time model of the
term-structure uncertainty is known that satisfies assumption 4, but which implies a
number of interest-rate scenarios that is too large to include in the ALM model. This
model will be referred to as the fully consistent (term-structure) model.

As mentioned in the introduction to this chapter, we want an approximation
method to maintain two properties of the asset prices. First, we want the asset
prices to be arbitrage-free in the approximate description. Besides being a reasonable
requirement, we have shown in the previous chapter that a violation of this property
can have a very significant and undesirable effect on the optimal solution to the ALM
model. Second, we want the approximate description to satisfy assumption 4, i.e.,
maintain consistency with the observed market prices. This is important because we
want to be able to use observed market prices in the ALM model. If we nse market
prices in the ALM model while the approximate description of the uncertainty is
inconsistent with them, then we essentially create an arbitrage opportunity in the
model.

In the first part of this section we will describe three somewhat intuitive ways to
redivce the number of scenarios in the fully consistent term-structure model, and for
each of them we will indicate how the approximated asset prices will violate one or
both of these required properties. The analysis of the errors in these approximation
methods forms a warming-up for the state aggregation and time aggregation methods
in the second part of this section. These aggregation methods combine states and
time periods in the event tree from a discrete-time term-structure model such that
the two properties in the previous paragraph remain satisfied.
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Figure 3-2: Coarse tree approximation: every time step in the coarse tree (solid lines
and filled nodes) has the length of two time steps in the fully consistent tree (dotted
lines and open nodes).

3.3.1 Inconsistent Approximations

As noted earlier, financial ~odels of the term-structure uncertainty have hardly been
considered in the literature as a means of describing the uncertainty in future interest
rates and asset prices in stochastic programming models for fixed-income portfo-
lio management, and our approximations therefore do not reflect common practice.
However, much of the literature does not discuss at all how this unceriainty must be
specified, and it should be clear that an arbitrary specification has an even nigher
risk of introducing opportunities for riskless arbitrage profits in an optimization model
than the ones considered here.

Coarse tree approximation

In the coarse tree approximation we use the data that form the basis for the fully
consistent term-structure model to construct a version of the model with a longer
time step, and thus fewer states and implied scenarios. For example, if the fully
consistent model is the Ho and Lee model with a certain number of time steps that is
constructed from a given yield curve and short-term interest-rate volatility, then the
“coarse tree” is a version of the Ho and Lee model that is constructed from the same
market data, but with a smaller number of time steps. This situation is depicted in
figure 3-2, where every time step in the coarse tree has the length of two time steps
in the fully consistent tree.
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It is clear that the asset prices within the coarse-tree approximation are arbitrage-
free as the coarse tree is itself a term-structure model. Furthermore, because the same
yield curve is used as input for the coarse tree and the fully consistent tree, the implied
arbitrage-free prices at time 0 for discount bonds of all maturities are the same in
both models. However, this is not true for general interest-rate derivative securities.
This has been illustrated in figure 3-1 (section 3.1.2) for the prices of European call
options on a discount bond that follow from the Ho and Lee model when the number
of time steps changes, but the same underlying market data are used. If the Ho and
Lee model with 120 time steps is taken as the fully consistent model in this figure (i.e.,
the arbitrage-free security prices from this model are assnmed to match the observed
market prices), then it is clear that the arbitrage-free values for the options that follow
from a coarse tree approximation with a significantly smaller number of time steps
(e.g., 5 or 10) substantially differ from their market prices. Using both the coarse
tree approximation and the current market prices in a stochastic programming model
thus leads to an inconsistency between current prices and (arbitrage-free) values of
securities, and an optimal portfolio will most likely be biased towards assets that seem
underpriced. To what extent this will happen may depend on other model parameters
as well, as was discussed in section 2.3.2.

Subtree approximation

The subtree approximation takes a subset of states from the fully consistent term-
structure model as approximate description of the uncertainty for the stochastic pro-
gramming model. To iliustrate this, suppose that the fully consistent term-structure
model uses a binomial lattice to describe the uncertainty in interest rates (e.g., the
Ho and Lee model). Consider the subtree (or properly, sublattice) of this lattice that
only includes states at the end of every second time step, and of those states only
every second state. If the states in the full lattice are numbered as in figure 2-1, and if
node n at time ¢ is included in the sublattice, then this node has nodes n and n+2 at
time ¢ + 2 as its successors in the sublattice. This subtree approximation is depicted
in figure 3-3.

We will show that asset prices in this sublattice are not in general arbitrage-free
when the prices at a node in the sublattice are copied from the full lattice. Consider
a security S with dividend D} and ex-dividend price S;* in node n at time ¢ in
the full lattice. For simplicity, assume that this security does not pay dividends at
time ¢ + 1, and that the risk-neutral conditional probability of un upstate move in the
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Figure 3-3: Subtree approximation: both the subtree (solid lines and filled nodes)
and the fully consistent tree are assumed to be binomial lattices.

full lattice equals 7 in all states. Using the arbitrage-free pricing relation (3.8), S}
can be expressed as follows as a function of the prices of the security at time ¢ + 2:

SP=PM((1-m) Phy [m(SE3+ D) +(1-m)(Sha+ D)) (39)
+n PR [ﬂ + D) + (1= m)(Siy + Diy)])

For the sublattice, let # denote the risk-neutral conditional probability of an upstate
move, P the price in state n at time ¢ of a riskless investment that pays one dollar
at time ¢ + 2, and S the arbitrage-free ex-dividend price of security S in state n at
time t. Assuming SP', = S\, for n’ = n,n+ 1,n + 2 and using pricing relation (3.8)
in the sublattice, we have

5r = PP (R(SF7 + D) + (1 — 7)(Shy; + D)) (3.10)

To show that no arbitrage opportunities exist in the sublattice, we need to find
expressions for 7 and P}, independent of the security, such that S} = S (theorem A.1
in appendix A). We will see that this is not possible in general. Suppose S is a
discount bond that matures at time t + 2 (i.e., D}, = D}y = D} and S, =
Syt = SiH2 = 0). Ther for S = S it must be true that

Pr =P (nPr +{1-m)PL,)

Substituting this in (3.10), we can solve for the value of # that makes SI' equal to
SP for an arbitrary security S. If we denote cum-dividend prices as S = (S + Dy'),

58



then the value for # must satisfy
yy- 2 A
7(Sivz — Siv2) =

W( PRy (Suf - s:*++2‘)+[ R (1 m) PR (S - ‘:;2))
n+l 1- pPn
+( m) P,

If 3{'++22 = A, Yo then it is easy to see that this equality can only be satisfied if
Sptl = Spt? = Sp,, and 7 is undetermined in this case. If Spi2 # 8.5, then there
is a unique solution for 7, but it is clear that it depends on the cum-dividend prices of
security S at time ¢+2, and thus will be different for different securities. Furthermore,
nothing guarantees that # is a probability: it is possible to choose values for S{‘++22,
Srt and 8P, such that # <0 or @ > 1.

For other choices of subtrees, it can be shown in a similar way that prices in
the subtree will in general not be arbitrage-free if these prices are copied from the
corresponding nodes in the fully consistent tree. In the full tree, the security price Sy’
can be written as a function of the prices in all the states at any time t + 7 > ¢ that
can be reached from state n at time . In the subtree, however, we want to write the
same price S as a function of only a subset of the prices at time ¢ + 7, where the
form of the function is not allowed to depend on the security prices themselves. It
should be clear that this is not possible in general.

In contrast to the coarse tree approximation, which leads to arbitrage opportuni-
ties in the first period only when used as description of the uncertainty in the ALM
mode!, the subtree approximation will cause arbitrage opportunities at any point in
time. To illustrate that the difference between the implied arbitrage-free value of
a security, calculated from the subtree, and its actual price at time 0 can be very
substantial, we compare these numbers in figure 3-4 for European call options on a
discount bond. The characteristics of the call options and the data for the Ho and
Lee model on which the calculations are based are the same as in section 3.1.2. The
subtrees were chosen similarly to the one in figure 3-3, but with an increasing number
of time steps in the fully consistent tree (assumed to be the Ho and Lee model with
120 time steps) making up one time step in the subtree. That is, if 7 time steps in
the fully consistent tree span one period in the subtree, than a node n at time ¢ in
the subtree has nodes n and n + 7 as its successors at time t + 7. To calculate the
arbitrage-free security values in the subtree, we have assumed that the conditional
probability of an upward move in the subtree is the same as in the full tree (i.e.,
# = m = 1/2). The increase in the arbitrage-free option values that follow from a
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Figure 3-4: Arbitrage-free values at time 0 for European call options, as a function
of the number of time steps in a subtree.

subtree when the number of periods in the subtree decreases can to a large extent
be attributed to the fact that the interest-rate volatility is higher if the number of
periods in the subtree is smaller.

Sampling approximation

Another way to reduce the number of scenarios in the stochastic programming for-
mulation is by sampling scenarios from the fully consistent term-structure model.
(Hiller and Eckstein [28] apply sampling from a term-structure model in their solu-
tion approach, but they ignore the inconsistency of their term-structure model with
observed market prices; see section 1.2). The risk-neutral .. obability measure on the
event tree in the fully consistent model serves as the sampling distribution, and each
sampled path is assigned equal probability in the stochastic programming model. We
will show that security prices in the sampled set of scenarios easily admit arbitrage
opportunities.
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Consider state n at time ¢ in the fully consistent event tree, and let nt denote a
successor state at time ¢+ 1. Furthermore, let #7* denote the conditional risk-neutral
probability of state n* at time t + 1, given state n at time ¢. As prices in the fully
consistent tree are arbitrage-free, the price S;' of any security must satisfy

Sp=Pr LA (St + D).
nt

Let M denote the number of sampled scenarios from the fully consistent tree that
visit state n at time ¢, and let M* be the number of scenarios from these M sce-
narios that visit the successor state n* at time ¢ + 1. As all sampled scenarios have
equal probability in the stochastic programming model, the necessary condition for
arbitrage-free prices within the sampled set of scenarios is that the M* are such that
(M+/M) = #1". It is clear that exact equality will only happen by chance. Although
it may be approximately satisfied for t close to 0 when the sample size is large, severe
violations will almost certainly occur in states close to the planning horizon, which
are only included by few sampled scenarios.

Dantzig and Infanger [13] use importance sampling in their solution approach to
multistage stochastic linear programs for portfolio optimization. Importance sampling
is often used for the computation of multiple integrals or sums, and is a variant of
Monte Carlo sampling. It aims to reduce the variance of the estimate for the value of
the integral or sum (as compared to ordinary Monte Carlo sampling) by changing the
sampling distribution in a way that gives a higher probability to events with a large
impact on the value of the estimate. In the context of the ALM problem, importance
sampling would increase the sampling probability of scenarios that have a relatively
large effect on the objective function. Changing the sampling distribution from the
risk-neutral probability measure, however, will increase the likelihood of arbitrage
opportunities within the sampled set of scenarios even further.

3.3.2 State and Time Aggregation

In contrast to the approximation methods of the previous section, the state aggrega-
tion and time aggregation methods that will be presented in this section enable us
to approximate a description of the interest-rate uncertainty from a term-structure
model that satisfies assumption 4, but which is too large to include in the ALM model,
in a way that preserves the consistency with observed market prices and guarantees
that asset prices are arbitrage-free within the approximate description.

61



State Aggregation

Let N, denote the number of states at time ¢ (t = 0,...,T) in the event tree that de-
scribes the interest-rate uncertainty in the original (i.e., unaggregated) term-structure
model that satisfies assumption 4. We number the states at each time ¢ from n =)
ton = N, — 1. We say that state aggregation is performed in state n at time ¢ if all
the successor states of state n in the event tree are combined into one (aggregate)
state. In an aggregated event tree, a state is characterized by the triplet of num-
bers (t,n,k): the time ¢, node number n and aggregation level k. The aggregation
level of a state indicates how many state aggregations were performed to obtain the
state. (In the original event tree, all states have aggregation level 0.) We impose
the restriction that all successor states of a state in an aggregated event tree must
have the same aggregation level. This implies that we always aggregate states with
the same aggregation level when we perform state aggregation. If state aggregation
is performed in state (t,n, k), and if all its successor states have aggregation level k',
then the aggregated successor state will have aggregation level k + 1 and it will be
assigned the node number n.

To illustrate this, consider the (unaggregated) event tree in figure 3-5°. If state
aggregation is performed in state 1 at time 2, then the resulting tree is depicted in
figure 3-6(a). Figure 3-6(b) shows the aggregated tree if state aggregation is instead
performed in state 0 at time 1. For the aggregated event tree in figure 3-6(a), the
restriction from the previous paragraph implies that we cannot perform state aggre-
gation in state 1 at time 1, as its aggregated successov state at time 2 would have
successor states at time 3 with different aggregation levels. One would first need
to perform state aggregation in states 2 and 3 at time 2 before state aggregation in
state 1 at time 1 is possible. Figure 3-7(a) shows the result of these aggregations.
If state aggregation is performed in state (0,1) at time 2 in the aggregated tree of
figure 3-6(b), then the resulting tree is depicted in figure 3-7(b). Note that the aggre-
gation level of the successors of state (0,1) at time 2 was zero before the aggregation,
whereas its single aggregated successor has aggregation level 2.

It follows from our definitions that state n at time ¢ with aggregation level k
in an aggregated event tree is the result of the aggregation of all states at time ¢
in the original (i.e., unaggregated) event tree that had state n at time ¢ — k as

8For states with aggregation level 0 we only denote the node number n, otherwise we will denote
the pair (n, k).
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Figure 3-5: An unaggregated event tree.

their ancestor. The number of states with aggregation level k at time ¢ is thus at
most Ny_x (k < t). Furthermore, descendant states at time t + 7 of state (t,n,k)
can at most have aggregation level k + 7. For state (t,n,k), we will denote the
collection of node numbers of its successors in an aggregated event tree as Nt("'k)(lc’ )s
where k' < k+1 is the aggregation level of its successors. For the event tree in figure 3-
5, N{¥9(0) = {1,2,3,4}, N§*9(1) = {1} (see figure 3-6(a)), and N5 "V(1) = {1,2,3}
(see figure 3-7(a)). The way in which we assign node numbers to aggregated states
implies that N™® (k + 1) = {n} and NP (k') = NGk + 1) with &' < k+1.
We will now describe how to define interest rates and asset prices in an aggre-
gated event tree such that the asset prices are arbitrage-free, and the arbitrage-free
prices at time 0 equal the ones in the original tree. To show that the prices in the
aggregated tree are arbitrage-free, we use theorem A.1 in appendix A and construct
an equivalent martingale measure on the aggregated event tree. Let P,(""‘) represent
the price in state (t,n, k) of a riskless investment that pays one dollar at time ¢ + 1.9
Furthermore, let DS""‘) denote the dividend payment on a security S in state (¢, n, k),
and S,("'k) its ex-dividend price in that state. The risk-neutral conditional probability

of visiting state (¢ + 1,n’,k’') in the aggregated event tree, given state (t,n,k), is

9The continuously compounded one-period riskless interest rate r{™* in state (t,n, k) thus equals

-(1/A)In P,("'k), where A is the length of a time step in the event tree.
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Figure 3-6: (a) Result of state aggregation in state 1 at time 2 in the event tree of
figure 3-5. (b) Result of state aggregation in state 0 at time 1 in the event tree of

figure 3-5.
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Figure 3-7: (a) Result of state aggregation in states 2 and 3 at time 2, followed by
state aggregation in state 1 at time 1, in the event tree of figure 3-6(a). (b) Result of
state aggregation in state (0,1) at time 2 in the event tree of figure 3-6(b).



A~ (n,k)/(n' k')

written as 7 , with k' < k + 1. We will use the following definitions:
t/t+1
( P if k=0
P = > “f"{‘/t"""' A=D L pORD e g (310)
| eV (k-1)
( Dr if k=0
DR — 3 fri"l",z"’ k=) prk= i k=1, (3.12)
| eV (k-1)
( Sr if k=
Sk = ) frfﬁl",,"/("' k1) gk e =1, ...t (3.13)
neN TV (k-1)
Fmk)/(n'k) A?/;ll Pl
~(n n' n' k-1
Me/e+1 7 (mk=1)/(n' ke~ 1)(Pt )) if k=1 t (3.14)
M1/t P(n k) T

where n < N;_i; ir;'/ﬁ',;_’l denotes the risk-neutral conditional probability in the original
event tree. Note that it follows from definition (3.14) that

' , P( k=1)
> g st (Bo) oo
' e (k) ' eNED (k-1) P
where we have used N D(k — 1) = N{™(k) in the first equality, and defini-
tion (3.11) in the second equality. This shows that the #’s as defined in (3.14) are
indeed probabilities. The aggregated quantities in (3.11)-(3.13) for k > 1 are there-
fore in effect weighted averages of the quantities with aggregation level k — 1, where
the weights are the 7’s of (3.14).

For a state (t, n, k) with successors of aggregation level k at time ¢ + 1, the follow-
ing proposition states that the conditional probabilities in (3.14) define a risk-neutral
probability measure on the aggregated event tree if interest rates, asset prices and
dividends are calculated according to the formulas in (3.11)—(3.13). As a consequence,
the aggregated asset prices in the tree do not admit arbitrage opportunities. Further-
more, because asset prices at time 0 cannot be aggregated, they are the same in the
aggregated and the original (i.e., unaggregated) event tree.

Proposition 3.1 If security prices are arbitrage-free in the unaggregated event tree,
then definitions (3.11)—(3.14) imply for allt = 0,...,T -1,k =0,...,t and n =
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0,..., N

n.k nk ~(n,k)/(n' k n' k n' k
s = P ’-( Y g™ (st + DY) (3.15)
n'eN ™) (k)
= P (Y + DY) (3.16)

" PROOF: If equation (3.15) is true, then equation (3.16) follows directly from defini-
tions (3.13) and (3.12). We will prove equation (3.15) by induction on k.

For k = 0, equation (3.15) is the arbitrage-free pricing relation in the unaggregated
event tree (compare with equation (3.8) for the Ho and Lee model), which holds by
assumption. Suppose that equation (3.15) holds for k = k. We will show that it also
holds for k = k + 1.

From definition (3.13):

St(n,l'c-i-l) _ z ‘ﬁ’fﬁ llc/)'/(n' k) S(" k) (3.17)
n’eN.(:';E)(k)

From the induction hypothesis:

St(n',l_c) — Pt(n’,l—c) (S(n' J+1) + D(n' k+l))

By substituting this equation in (3.17), and using N (l'iE)(E) = NFHD (k + 1) and
definition (3.14), we get:

S,("’k“) — z ﬁfz,lk/)t/(n"k) . Pt(""k) . ( St(-t'l'kﬂ) + Dt:’fkﬂ))
n'eN P ()
— pink+) Z «(n k)/(n' k) B(n',;:) ( G+ D(n k+l))
-4t t—1/t P(n'E-H) t+1
ﬂ'ENQ("'LH)(E-f-l) t

k41  (n,k+1)/(n' k+1 ! E+1 ' k+1
= Pl >-( S AR (st +>+Ds::1+>)),
n’GM("'iH'”(’-C-Fl)

which had to be proved.
QED.

Equations (3.15) and (3.16) in proposition 3.1 imply that asset prices in an ag-
gregated tree, as defined in (3.13), are arbitrage-free when the aggregation level of a
state is lower than or equal to the aggregation level of its successors. However, by

66



substituting definitions (3.13) and (3.12) recursively into (3.15), the aggregated asset
prices in a state can be written as a function of the prices in its successor states in case
the aggregation level of the state is higher than that of its successors. This recursive

substitution directly indicates the appropriate risk-neutral conditional probabilities

“( :k) ( '»k')
7rt7t+l/ "

where k' < k is the aggregation level of the successors of state (¢,n,k) (note that

that guarantee that the asset prices are also arbitrage-free in this case,

relation (3.14) only defines the risk-neutral conditional probabilities for the case that
the successors of an aggregated state have the same aggregation level as the state
itself). We thus have the following result:

Corollary 3.1 Asset prices in an aggregated event tree that is obtained after one or
more state aggregations have been performed in the original event tree, are arbitrage-
free if asset prices in the original tree are arbitrage-free, and if interest rates, asset
prices and dividends in the aggregated tree are calculated according to the formulas
(3.11)-(3.13).

Although aggregated asset prices thus remain arbitrage-free when state aggre-
gations are performed, they may no longer satisfy certain relationships that were
satisfied in the original event tree. To see this, suppose that state n at time ¢ in the
unaggregated event tree has two successor nodes at time t + 1, denoted here as n,
and n,. Let the risk-neutral conditional probability of state n, at time ¢ + 1, given
state n at time ¢, be equal to 1/2, and suppose there is a bond with a price of 95 in
state n; and 105 in state ny. Consider a call option on this bond which expires at
time ¢ + 1, and has an exercise price of 100. By definition, its dividends in states n,
and n, are respectively 0 and 5. If we perform state aggregation in node n at time t,
then the aggregated bond price at time ¢+ 1 will be equal to 100, while the aggregated
option dividend becomes 2.5. The payoff on the option in the aggregated tree thus
violates its definition as the positive part of the difference between the bond price
and the exercise price!®.

Time Aggregation

Time aggregation involves the merging of time steps in an event tree. Specifically, we
say that time aggregation is performed in state (¢,n, k) in an (aggregated) event tree

105uch violations will occur for any derivative security with payoffs that are a nonlinear function
of the value of the underlying security. When the payoff pattern is convex or concave, Jensen’s
inequality can be used to formally show this.
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Figure 3-8: (a) Result of time aggregation in state 1 at time 1 in the event tree of
figure 3-5. (b) Result of time aggregation in state 1 at time 1 in the event tree of
figure 3-7(a).

if we replace the transitions from state (t,n, k) to its successors by direct transitions
from state (¢,m,k) to the successors of its successors. We have illustrated this in
figure 3-8. Figure 3-8(a) depicts the event tree after time aggregation is performed
in state 1 at time 1 in the event tree of figure 3-5. Figure 3-8(b) shows the result
if time aggregation is performed in state 1 at time 1 in the aggregated event tree of
figure 3-7(a).

We impose two restrictions on time aggregation. First, we require that all succes-
sors of a state occur at the same point in time in the event tree. This implies that we
cannot perform t'me aggregation in state 0 at time 0 in the event tree of figure 3-8(a),
as it would cause this state to have successors at both time 2 and time 3. The second
restriction is the one we aiso imposed for state aggregation, namely that all successor
states of a state in the event tree have the same aggregation level. This restriction
prohibits time aggregation in state 0 at time 1 in the event tree of figure 3-8(b).

If state (t,n, k) in an aggregated event tree has its succe.sors, all of aggregation
level k', at time ¢t + 7 (1 > 1) then we denote the set of node numbers of these
successors by (/':fl(k’ ). (From the discussion in the previous section, k' < k + 7.)
Thus, N} (0) = {1,2,3,4,5,6} in figure 3-8(a), and A" (1) = {1,2,3} in figure 3-
8(b). It is not difficult to see that t(/':fl(k’) = t(/':fl ++(K' + 7) and (/':ﬁ(k’) =
M(:';';::,(k’ ) with £ <t and k' < t + 7. Furthermore, Nt(/':ﬂ(k +7) = {n}.

Because time aggregation in state (¢,n, k) increases the length of the period fol-

68



lowing that state in the event tree, the definition of the “short-term” riskless interest
rate in that state needs to be adjusted to account for this longer period. Let rf"_ffl.,
denote the (continuously compounded) riskless interest rate in state (t,n, k) that is
valid between time ¢ and t + 7, and define Pt(f,ﬂ,, = exp(—r{"H . A7) (ie., PoE.
can be interpreted as the price in state (¢,7,k) of a riskless investment that pays $1

at time ¢ + 7). The value of (:'HT (and implicitly r,‘_;fj_,) is defined by:
t(ztk-z-r - H t(-:-ljk-'-j) (3'18)

Our next concern is how to account for dividend payments in states that are
eliminated from the event tree due to time aggregation. In principle, we have two
options (besides ignoring them): bring them forward in time to the state in which time
aggregation is performed, or postpone them to the successor states of the state that is
eliminated. It is easy to see that this last method introduces path-dependency of asset
payoffs in the aggregated event tree if the original tree has a lattice structure, and
we therefore choose the first option. To be precise, if time aggregation is performed
in state (f,n, k), then we assumne that the arbitrage-free value of the dividends in
its successor states is paid out in state (¢,n, k). Let fo,flr denote the arbitrage-free
value in state (¢,n, k) of all dividends paid out in its descendant states between time ¢
and t + 7 (with the dividends at times ¢ and t + 7 excluded). From proposition 3.1,

and using (3.18):

0 for 7=1
D), = : 3.19
t—rt+T Z t(_r_z' tklj ffif“) for T>1, ( )
where Dfl’f“ ) is defined by (3.12) for all j.
In an aggregated event tree, suppose that state (n,k) at time ¢ has successors
at time ¢t + 7 (7 > 1), all of aggregation level k + 7 — 1. We define the risk-neutral

conditional probability wf;‘tﬂ/ (w'k+7=1) of visiting the successor state (t+7,n’, k+7—1)
as:

. (n,k)/(n' k+7—1 A (nk+7-1)/(n' k471

AL A (3.20)

The next proposition generalizes proposition 3.1 to event, trees in which both state
and time aggregations have been performed. It relates the aggregated asset prices in
a state (t,n, k) to the prices in its successor states at some time ¢t + 7 (7 > 1) when
all successors have aggregation level k + 7 — 1.
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Proposition 3.2 If security prices are arbitrage-free in the unaggregated event tree,
then definitions (3.11)-(3.14) and (3.18)—(3.20) imply the following relation for all

t=0,....,.7T-1,k=0,...,t,n=0,...,Nrand7=1,..., T - t:
N k N
s = DN, + P!i‘.tl,-

> A(mE)/ (0! tr-1) (s(" kt7=1) | Dﬁi'r'r'k“_l)) (3.21)

t/t+T
n'e! ‘Vl(/"‘:_)r(k+r-l)

= DRk + PO (S + D) (3.22)

ProOF: Equation (3.22) follows directly from equation (3.21) because of the identities

NG k47— 2) = AR 547 — 1) and 2G040 = gk boas )
(definition (3.20)), and substitution of definitions (3.12) ard (3.13). We will prove
equation (3.21) by induction on 7 and k.

For 7 = 1, proposition 2.2 reduces to prcposition 3.1. Suppose that equation (3.21)
holds for some 7 = 7 > 1 and k = k, with 0 < k < t. The proof that it is also true
for 7 =7 and k = £+ 1 when k < t is analogous to the proof of proposition 3.1, and
is therefore omitted here. We show that the equation will also hold for 7 = 7 4+ 1 and
k=k.

By hypothesis it is true that:

T & e
St(n) = Dflt-}--r Pt(:t-})-‘?
. o« (nk+7-1)/(n' k+7—1 tk+7-1 ! k+7-1
Y Ak (g 4 DY) 13.23)
N (k+-1)

- . (n.k) (nf+7-1) (F L -
where we have used definition (3.20). As N+ ( k+7—1) =N It r(k+7—1),
we have from defnition (3.12):

- (n,k+F7-1)/(n’ E+7-1 ! k4+7-1) _ o k+
Z "f:f—l/t+¥(n ) D(n D(' "
neNE) (R+7-1)
Noting further that Dszﬂﬂl = Dﬂﬂ, P,(f.,kl, Dﬂ’;’”), we can rewrite (3.23) as:
* k &
S = Ds'-'m)vrn })t(:t-i)-i'
. (nk+F7-1)/(n' k+7-1 ' E4T-1
Y e sy (3.24)
neN oy (F+7-1)
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From proposition 3.1:

! k47— ! k+7-1 'k ! k47
ST = pltTh. (St(:fﬁﬂ + Dx‘wﬁf))'

Substituting this in (3.24), using definition (3.18) to write R(f,fl., R(:Tk”) = R(_';'flf +1y

and definition (3.14) to write:

_ _ (n' k+7-1) _ _
7.i_(n,k+-r—1)/(n',k+'7‘—1) (P t+7 ) — A (n,k+7)/(n' k+7T)

t+T—1/t4+F plnkt) t+T [t T+
t+7
we get:
S(n R = Dg::'t-c-)l-‘?+l I)t(f)tk-i)-r-f-l
~ (n,k+7)/(n' k+7 ! k+7 ! k47
> Wf:-f/t:—l"/i'; g (St(:-ﬂl ' D§-'|l-1"+-‘i‘r))
n'eN‘/",fL(kH -1)
s Y
= fo.ciw I)t(:t-l)-‘r+l
~ (nk)/(n' k+7 '+ ' RAT
> ”§7z+¥$ s (St(::rﬂﬂ 1+ D ))
n'eﬁlt(/';f’; (E+7)
where definition (3.20) and the identity N,(/':fl( -1)= N,(/':ﬂ +1(k +7) are used

in the last equality. This completes the proof.
QED.

By substituting relations (3.12) and (3.13) into equation (3.21), one can write
(S,('"k) - fo,'fl,) as a discounted weighted average of aggregated asset prices and
dividends in the successors of state (t,n, k) at time ¢ + 7 when the aggregation level
of these successors is lower than k + 7 — 1.

The added dividend term fo;HT in equation (3.21) somewhat complicates its
interpretation as compared to the interpretation of equation (3.15) in proposition 3.1,
which was recorded in corollary 3.1. If we view fo;w, as a dividend on the security
that is paid out directly after time ¢, then equation (3.21) can be interpreted as an
arbitrage pricing relation. We can also rewrite equation (3.21) as:

S(" k) _ P(" k)

tot+7°

(nk)/(n' k+7-1) | o(n' k+7-1) (n' k47-1) fo.fl
Z 7rt/t'-i-'r ' Styr + Dy, + —oh U

n’GN.(/"t_:)f(k+r—l) })t-n+1'
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in which case ( 51’:1, ,(f.,kl,) can be viewed as a postponed dividend that is paid out

in each successor state of state (¢,n, k) in the aggregated tree. Again, equation (3.21)
can be interpreted as an arbitrage pricing relation. As noted before, however, postpon-
ing the interim dividends to a later point in time makes them predecessor-dependent
in the successor states if the original event tree had a lattice structure.

3.4 The Aggregated ALM Model

In this section we present the formulation of the ALM model when it is based on
an aggregated event tree, obtained from some original event tree by multiple state
and time aggregations. This model will be czlled the aggregated ALM model. For its
formulation, we need to define what the liabilities and the upper bounds on short-
term borrowing (which we assumed to be state dependent) are in the states of such
an aggregated event tree. Not surprisingly, we define these quantities in a similar way
as the aggregated interest rates, asset prices and dividends in the previous section.

Let L™ denote the liability and Z{™*) the upper bound on short-term borrowing
in state (¢,n, k) of an event tree in which only state aggregations have been performed.
LS"’k) and Z, (rk) are defined by the recursive relations:

( Lr if k=0
LMY = > frf"l"/z""""“” LE*D if k=1,...,t (3.25)
neN D (k-1)
( zr if k=0
Zmk =] ¥ g /RN ZEED i k=1, (3.26)
| NV (k-1)

When time aggregation is performed in the event tree and states are eliminated
in which iiabilities are due, then the assumption is made that the arbitrage-free value
of the liabilities has to be paid in the predecessor state of the state at which they
were due originally. (This is analogous to the assumption in section 3.3.2 about the
prepayment of dividends in states that are eliminated from the event tree.) If Lf'_',ﬂ,
denotes the arbitrage-free value (in state (t,n,k)) of the liabilities that have to be
paid in state (,7, k) and all its descendant states between time ¢ and ¢ 4+ 7 (with the

liabilities at time t + 7 excluded), then Lf'_‘,'fl, equals:
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LM if =1
Lk - . 3.27
U I F 2 PO LD i 1>, (3.27)
J—
which follows from proposition 3.1 and definitions (3.18) and (3.25).
The elimination of states due to time aggregation also requires an extra definition

of a short-term borrowing limit that extends over multiple periods. Define:

Zk) Z5 (3.:28)
T ™ 0,71 -PA(T'-’)Pt(I]k—TgT |

This upper bound makes sure that the amount of short-term borrowing will not exceed
any of the (aggregated) upper bounds between time t and ¢ + 7 if the amount that is
borrowed in state (n, k) at time ¢ is rolled over from period to period until time ¢ + 7.

The trading dates in the aggregated event tree are written as tg,t;,...,¢r, with
to = 0 and t; = H. Furthermore, period j in the aggregated event tree (i.e., the time
between t;_, and t;) consists of 7; = t; — t;_, time steps in the original event tree
(each of which had length A). In analogy with the definition of ¢; in section 2.3, the
discount factors in the aggregated ALM model are defined as:

tj q:j__] ( l:(_’l —)HJ' frz(jl/)tin(’)) if j = 1, ce ,T. '

The aggregated ALM model can now be formulated as:

v= min (S — Digot,) Dy + Pty Yto — (e"”An P,o_,t,) 2t (3.30)
N Y g (vl - Mzl) + Lio,
3€Siy
st. Dpahy 4yl -zl +(1-0)SiOas) — (1+0)S b},
+ D::'(‘:f)tj+1m:j - t',l(—i)t,“yt + (e pAT’“P?(—':)t,H) z,
o VseS,, j=1,...,T -1
hy | — sy, +ab —ah; =0 VseS§,,j=1,...,T-1
z, < ,':(_':),JH VseS,, j=1,....,T -1
(D, ) 4 S"(')) toy T Uty = Ztp, — Yip T 20p = LY vses,
2 < ZpY Vs€ES,

To simplify notation, this formulation assumes that all states at time t; have suc-
cessors at time ¢;4;. Furthermore, we have not explicitly mentioned the aggregation
level of quantities, but subsumed this in the index n(s).
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The main difference between the structure of this aggregated ALM model and the
original model of section 2.2.1 stems from the prepayment of intermediate dividends.
This is reflected in the extra terms Dz(i),j “ah;‘) in the cash-balance constraints, and
the adjustment in the coefficient for ah,, in the objective function. In addition, the
objective function includes the constant L., , the present value of the liabilities
before time t,.

The state aggregation and time aggregation methods thus enable us to use fi-
.aiancial models of the term-structure uncertainty to build stochastic programming
models for the ALM problem with a realistic and internally consistent description of
the uncertainty in future interest rates and asset prices, and at the same time control
the size of the optimization models. The next chapter will show how the aggregation
methods can in addition be used as the basis for a flexible, iterative solution algorithm

to solve these optimization models.
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Chapter 4

Solving the ALM Problem by
Iterative Disaggregation

In the previous chapter we have shown how the state and time aggregation methods
can be used to reduce the number of states, and thereby the number of scenarios, in
an event tree that describes the uncertainty in future interest rates and asset prices.
We have seen that such a reduction is necessary if one wants to base the description
of the uncertainty in the ALM model on a discrete-time term-structure model that
is consistent with observed market prices. We proved the important result that asset
prices in an aggregated event tree, resulting after the application of state and time
aggregation, are arbitrage-free and consistent with observed market prices if this is
true for the prices in the original eveni tree (which was assumed to be the case in
assumption 4 of section 3.2). As was shown in section 2.3.2, this property is crucial
in order to prevent unwanted biases in the optimal solution to the ALM model.
However, the optimal solution will in general depend on the level of uncertainty
that is included in the ALM model. To obtain a robust investment portfolio, it is
therefore important to include as much of the relevant uncertainty in the model as
possible. In this chapter we present ar iterative solution algorithm that gradually
increases the level of uncertainty in the ALM model by reversing state and time
aggregations that were performed to obtain the initial version of the model. The
iterative nature of the algorithm allows us to judge where the uncertainty in the
future affects the optimal solution most, and in what fashion. In addition, when
more aggregations are reversed, events of decreasing probability are introduced in the
model, and this enables a direct trade-off between the cost of the asset portfolio that
hedges against the future liabilities and the probability of events that one wants to
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be hedged against. As noted before, a stochastic programming model itself treats all
scenarios in the model equally in the sense that it forces the constraints to be satisfied
for each individual scenario, irrespective of its probability of occurrence.

Cur analysis makes use of Zipkin's work [58, 57] on the aggregation of variables
(columns) and constraints (rows) in general linear programs, and the relevant results
of his work are summarized in section 4.1. Section 4.2 will show how both state and
time aggregation correspond to the aggregation of variables and constraints in the
stochastic programming formulation of the ALM problem. Because this implies that
the ALM model after a state or time disaggregation is at the same time a relaxation
(addition of variables) and a restriction (addition of constraints) of the ALM model
before the disaggregation, it is not obvious how to recover a feasible solution for the
disaggregated ALM model from an optimal solution to the aggregate ALM model.
In section 4.3 we will show how one can always construct a feasible solution to a
relaxation of the disaggregated ALM model. Ey choosing appropriate parameter
values, we will furthermore show that this relaxation has the same optimal solutions
as the true model.

4.1 Aggregation of Variables and Constraints in

Linear Programs

This section follows Zipkin [58, 57]. Consider a linear program in the general form

v* = min cx
subject to Az >b (4.1)
20

where ¢ = (c;) is an n-vector, b = (b;) is an m-vector, 4 = (a;;) is an m x n matrix,
and z is an n-vector of variables. We will refer to this problem as the original problem.

Let p= {Re: k =1,...,K} be a partition of the set {1,...,m} and o = {S; :
| =1,...,L} a partition of {1,...,n} , where | Ry |= m and | §; |[= . In an
aggregation of (4.1), one replaces all rows in each set Ry by a single row, and all
columns in each set S; by a single column.

We assume that rows and columns are aggregated by taking weighted sums. For
each k and [, let f* be a nonnegative m-vector and g' a nonnegative n;-vector. These
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vectors are called weignting vectors'. Define

¢ = (¢)jesn & = dd, and é¢ = (&)
b = (b)ier,, be = bEfk, and b = (b)
AL = (a)ierojes, » au = fFALG, and A = (aw)
The aggregate problem is:
V= min cX
subject to AX > b (4.2)
X>0

which has K constraints and an L-vector of variables X. We assume that both (4.1)
and (4.2) have finite optimal primal and dual solutions.

Let (X,U) denote a pair of optimal primal and dual solutions to (4.2), and define
the following solution to (4.1):

# = ¢X, l=1,...,L
it = Uf*, k=1,....K

If £ denotes the sequence of #!’s in proper order for (4.1), and similarly for i,
then (Z, @) is called a fized-weight solution to (4.1) and its dual, derived from (X,0).
The following result is easy to see.

Proposition 4.1 ¢ =ub=v.

If only columns are aggregated (i.e., K = m and Ry = {k}), then & is feasible
in (4.1) and thus ¥ > v*. However, if both columns and rows have been aggregated,
then Z need not be icasible in (4.1), nor @ in the dual of (4.1), and it is therefore not
clear whether ¥ > v* or ¥ < v*. The fixed-weight solution (Z,a) still satisfies an
aggregate form of complementary slackness, namely (44 — ¢)Z = @(b — Az) = 0.

To derive bcunds on the deviation of ¥ from v*, Zipkin assumes that (generalized)
upper bounds are known for the values of primal and dual variables in an optimal
solution to the original problem. Let o' = {R} : k = 1,...,K'} be a partition
of {1,...,m} and ¢’ = {S]: l =1,...,L'} a partition of {1,...,n}. It is assumed
that positive numbers {d,...,d,} and nonnegative numbers {py,...,pr } are known
such that some optimal solution z* to (4.1) satisfies:

1Zipkin [57] assumes that columns and rows are aggregated by taking weighted averages, i.e.,
that the elements of each weighting vector f; and ¢; sum to one. We do not make that assumption
here.
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Y diz; < mi, l=1,...,L (4.3)
JES;
as well as positive numbers {ey,...,en} and nonnegative numbers {qi, ..., gk} such
that some optimal solution u* to the dual of (4.1) satisfies:
> uie; < gx, k=1,..., K" (4.4)
i€ER}
Let A; denote the ith row of the matrix A, A ; the jth column, and [y]* the positive
part of y. Zipkin [57] proves the following proposition.
Proposition 4.2 If upper bounds (4.3) and (4.4) are known, then
Ve <v*<v+et (4.5)
where
K’ +
et = ) {ma.x{(bi - A,-,:E)/e,-}] k
k=1 ‘ER&
v +
e = 3 [ma(an; -/
=1 JGSI
PROOF: For the upper bound:

v'=ul < uh+(c—u'A)x
= cZ+u'(b— AZ)

K’ — AT
= ﬁ+22u,‘e,(%§)

k=1ieR; i

K' b: — A; T
k=1 €R% € icR,
"The upper bound on v* now follows from (4.4). The lower bound on v* is proved in

a similar manner.
QED

These bounds on v* thus provide a measure of the error that is introduced by solving
the aggregate problem (4.2) instead of the original problem (4.1). Note that €* is
a function of the infeasibilities [b; — A; Z]* in (4.1) with respect to the fixed-weight
solution Z, and €~ of the infeasibilities in the dual?® of (4.1) with respect to i.

2]t is tempting to think of the infeasibilities in the dual problem as corresponding to negative
reduced costs of the associated primal variables, but we note that reduced costs are only defined
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In the preceding discussion, we have assumed that the aggregate linear problem
is solved to optimality before the bounds in proposition 4.2 are calculated. They also
apply, however, if only a suboptimal solution to this problem is known. As primal
suboptimality is equivalent to dual infeasibility, the value of ¢~ will probably be higher
in this case.

4.2 Aggregation in the ALM Model

In this section we show how both state and time aggregation correspond to the ag-
gregation of variables and constraints in the ALM model. We can therefore use the
results from the previous section to estimate the loss of accuracy when the ALM
model with an aggregated description of the uncertainty is being solved. These re-
sults will be especially useful in the iterative disaggregation algorithm, which is the
topic of section 4.3.

To apply state and time aggregation, we imposed the restriction in section 3.3.2
that all successors of a state in an aggregated event tree occur at the same point in
time and have the same aggregation level. For expositional convenience, we will make
the following additional ass-mption in this section: if the successors of a state (¢,n, k)
occur at time t+7 (7 > 1), then the aggregation level of the successors is either k+7 (in
which case there is only one successor) or k+7—1. (We note that this is the situation
which was explicitly considered in propositions 3.1 and 3.2.) As was emphasized in
section 3.3.2, the state and time aggregation are not limited to situations that conform
to these assumptions, and this is true for the analysis in this section as well.

For the remainder of this section we furthermore assume that transaction costs are
zero (¢ = 0), as positive transaction costs would only complicate the notation but not
change the results. Our starting point is the aggregated ALM model of section 3.4.

4.2.1 State Aggregation

To see how state aggregation in the event tree corresponds to the aggregation of both
variables and constraints in the stochastic programming formulation of the ALM
problem, we consider the state aggregation that is depicted in figure 4-1. State
aggregation is performed in state (n, ko) at time ¢;. We have defined k; = kg + 741,

with respect to a basis in the primal problem, and the fixed-weight solution may not define a basis.
Furthermore, even if  does define a basis, it may not be the corresponding dual vector.
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(a) Before state aggregation: (b) After state aggregation:

(nm, k1 —1)  (nm,k2 - 1) (nar, kg — 1)
¥ )

(nn kO) (na kO) (na k1)

(n1, by — 1) (n1, k2 — 1) (n1,ky — 1)

(no, k1 —1)  (no k2 —1) (no k2 — 1)
t; tiv1 tjt2 t; tis1 tjv2

Figure 4-1: Basic state aggregation (ki = ko + 7j41; k2 = k1 + Tj42).

and kp = k; + Tj42, with 7j4; > 1 and 7,4, > 1. Before the aggregation, the successor
states at time t;4; of state (n, ko) at time t; have aggregation level k; — 1, and are
identified by the node numbers ng, n,,...,npy. State aggregation in a situation as
depicted in figure 4-1 will be called busic state aggregation.

Consider a scenario s~ in state (¢;, 1, ko) of figure 4-1(a). Let s; denote its successor
scenario in node (n, k; — 1) at time £;4;, and s} the descendant scenario of s~ in
node (ny, ky — 1) at time ¢4 (! = 0,1,...,M). Assume for now that ¢;;, < tr =
H. The constraints in the aggregated ALM model that stem from scenario s~ in
state (t;,7, ko) and correspond to the arcs in figure 4-1(a) are (for [ =0,1,..., M):

D(n"k‘_l)ah:— + y:‘ _ z:— + gmki=1) s S(ﬂukl-l)abt
] J ) ) i+l

tj+1 7] ti+1 ti+1 tj+1

+D gi'xk—’»?,-?z“htm })tg’:;’i;tJi')zytJ'H + (e_pAﬁHP (;':l'k—l":i)z) z:j’+l

= L5, (4.6)
m:j_ - By, + by, — Dy, = (4.7)
2, <zl (4.8)

+
D(::‘L'zkz l)aht:-n ¢;+1 - Z¢J+x + Sz(ﬂ', 2—1) ‘:42 St(;ll'lkz_l)"lb::"n
ot
+ Dg?-:—;k"z"tjl-|)-3mta+2 Rgz;tﬁ‘)?ayt1+3 + (6 PAT+a P(':;k'z’t:i)s) z‘1+2
= L) (4.9)
8+ l+

f'htm ISy}, + Iy, — ah,m = (4.10)
ol < gk (4.11)

where constraints (4.6)-(4.8) correspond to the successor scenarios at time t;,,, and
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constraints (4.9)-(4.11) to the descendant scenarios at time ¢;,2

We will show how these constraints, and the variables in these constraints, can
be aggregated to obtain the set of constraints in the /.LM model that corresponds to
figure 4-1(b), i.e., after the state aggregation in state (tj,n, ko). First, we multiply
constraints (4.6)-(4.8) for each | = 0,1,..., M by the risk-neutral conditional proba-
bility 73, ,, and then sum these constraints over all . Constraints (4.6)-(4.8) for all
1=0,1,...,M are thus replaced by the three aggregated constraints:

M
.\n‘ (ng,k1—-1) s~ _ Ay (nl,kl—l)) st
(IZ ¢J+1Dl;+1 t; +ng zt + Z Tt 419t IS¢, 41
=0
_ am glnuki=1) praki=1) st
Z( T4 i:+1 \"’btﬁl + Z( ¢;+1 t;+1-"j+2 mtnl

M
_ i pnoki=1) ) s —pAT, 42 ~ny p(rnki=1) Y s
Z ( Ttj1 ¢;+1-*¢J+2 Yi;,) T € Z “tj+lPtj+1—*lj+2 241

=0
— amgp(nk—1)
Z Tt ¢J+1—>lj+2 (4.12)
- ~ 1y st ~ 7y ~ny
Z Ttipr " Bt + Zﬂt,ﬁ-l t j+1 z Mjpr !J+| =0 (4'13)
=0
~ny sy i (n,,k.-—l)
Z"‘:H z¢j+1 t;+1 ti+1t 42 (4'14)
=

where we have used that ¥, 7"r:“+l = 1. The second step is to aggregate the vari-

ables zs;!, over I = 0,1,..., M by taking an unweighted sum (that is, add the

constraint coefficients of all 57, in each constraint), and do the same for the vari-

ables ab;! ' .1+ the variables 2hy! .10 the variables Ye,,, and the variables zf).' - We will
ZqJ+1’ ’dl:j-i—l ! y:j+l

respectively. Using the fact that S}, # ‘{';lDf;'i;k' D Df'::", and analogous rela-

tions for the other data, the variable aggregations reduce the constraints (4.12)-(4.14)
and (4.9)-(4.11) to:

denote the corresponding aggregated variables as s, , and z; .,

DIMMahy™ +ys — 28 + Siasy, — SO by

Lt i
+D$+,1Cl—)u,-+2 tj1 Ptg':.fl—zlj+2yt1+1 + (e "AT’”P(,':,,M—L,H) Zf,+,
= Lsﬁfl—itﬁz (4.15)
:zhfj — o5y, taby,, —dhy,, =0 (4.16)
z . < Zt(;l)r':llt,-n (4.17)
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(nak2—1) 25 s s (n4,k2—1) (n1,k2-1)
Dy m‘ﬂl + y‘:+l 241 + St:+1 315':,+2 tit1 abt1+2

tj+2
+
+D('."'k2 1) mt,“ P(’ll,kz 1) + (e PArJ+3P(Ylhk2 1) ) Zt,+2

tiv2—¥t+3 2-"J+3y11+2 ty+2—ti43
= ngfg;}ja (4.18)
.'lh‘: i+ ms‘rw + ablﬂ-z m¢1+2 = (4.19)
at, < Zmkr ) (4.20)

where constraints (4.18)—(4.20) are present for each [ = 0,1,..., M. The set of con-
straints (4.15)-(4.20) corresponds precisely to the situation in figure 4-1(b), witho s
denoting the single successor scenarios at time t;; of scenario s~ at time ¢; after the
state aggregation.

When tj;p = tp or tj;, = tr, the row and column operations in the ALM model
that correspond to state aggregation in state (tj,n, ko) are identical to the ones  ust
described, although the constraints themselves will slightly differ from (4.6)-(4.11).
State aggregation in more complicated situations than the one depicted in figure 4-1,
for example when the aggregation level of the successors of state (t;,n,ko) is lower
than k; — 1, or when the states at time ¢, have more than one successor at time ;..
(whose aggregation level is therefore lower than k,—1), correspond to row and column
operations in the ALM model that follow the same pattern as the operations for ba-
sic state aggregation: constraints relating to states that are aggregated at time 1;,,
are combined by taking a weighted average, with the weights equal to the condi-
tional probabilities, and variables in these constraints are combined by unweighted
aggregation.

When t;,, = tr, the variable aggregatiors will also affect the objective function.
Before the state aggregation, the term in the objective value that corresponds to the
scenarios s; is

A Z th- (y!T Agz:;.)

Because definition (3.29) implies

n

— ANy S
thrp th 1 t'p,l—)t'r Z"rt‘ﬁ.] th 1Pt =t T th

we see that the aggregated ubjective function has precisely the form of the objective
function in the ALM model after the state aggregation.
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(a) Before time aggregation: (b) After time aggregation:
(nm, k2 — 1) (nm k2 — 1)

(n11k2 - 1) (na kO) (Th,k-) - l)

(n, ko) (n,k
@ ] @
— o
(no, k2 — 1) (no, k2 — 1)
tj ti+1 tj+2 tj ti+2

Figure 4-2: Basic time aggregation (k; = ko + Tj+1; k2 = k1 + Tj42).

4.2.2 Time Aggregation

To show how time aggregation affects the variables and constraints in the ALM model,
we consider the time aggregation of figure 4-2, which will be referred to as basic time
aggregation. Time aggregation is performed in state (¢;,n, ko) of figure 4-1(a). We
note that the situat.on in figure 4-2(a) is identical to figure 4-1(b), and we employ
the same notation as used there.

Assuming tj42 < tr, the constraints in the ALM model that stem from a sce-
nario s~ in state (tj,n, ko) and correspond to the arcs in figure 4-2(a) are (4.15)-
(4.20), where s denotes the successor of >~ at time ¢;;; and s} its descendant in
node (n;, k2 —1) at time tj,2 (I = 0,1,..., M). To derive the constraints for the ALM
model that corresponds to figure 4-2(b) by aggregating variables and constraints,
we also use the constraints that link scenario s~ at time ¢; to its predecessor (as-
sume t; > 0). Let s~ denote this predecessor scenario at time ¢;_;. The constraints
that link scenarios s~ and s~ are:

DI*ahe " yi | — 2+ S asy — S "%:J

b R+ (e )

= L) (4.21)
ahi_, —asi +ab —ahf =0 (4.22)
2 < Z0,, (4.23)
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Time aggregation in state (t;,n,ko) implies zs; = 0 and ab; | =0, and we
substitute these constraints in the cash-balance and portfolio balance-constraints at
time ¢,,, (equations (4.15) and (4.16))%. The portfolio-balance constraint (4.16) is
now :lhf = ah; . If we substitute :xh;‘; for ahi | in all constraints (or equivalently,
aggregate these variables and call the resulting variable ahf; ), then constraints (4.15)

(4.20) become (note that the portfolio-balance constraint (4.16) has become a vacuous

constraint):

(Dg:':l) + Dl(;l;,:!-)ﬂjn) :, + yt, - zt, - Cg'.:.lklzt_,.’.zytr'_l

+ (eanm P, V2l = LU, (4.24)
2., S ZMY, ., (4.25)
Dy Vahy + Vi = % Simdba=Vgil | sirka Nyt

+ Dg‘i;k—z';:’lliiﬂ Uyt I)t(l"':;,iitji):iy‘rf? * ( PP (J'rzk—)'hi)%) z,;)

= LSJ‘;;"E.:,‘L, (4.26)
fd‘:,— mt,ﬂ + 1bt,+g - mz,“ = (4.27)
s < 2, (4.28)

where constraints (4.26)-(4.28) are present for each I =0,1,..., M.
Next, we multiply the cash-balance constraint (4.24) of scenario s at time ;4
by P,(J,"_f,"il , and add it to the cash-balance constraint, (4.21) of its predecessor s~ at

time ¢;. Using

N & k D
R(J"_,.‘;l,P,(J';,'_Z,j 2 P,(("_,,") (see definition (3.18))

k k k & & .
DM+ P9 (DAY + DAY, L) = DI, (see definition (3.19))

Wk nk W« & v e
LM+ P L, = L (see definition (3.27))

the resulting cash-balance constraint of scenario s~ at time t; is

DM*Oahy T by = 2l 4 S sy — ST 4 DI e
(n,ko) A (n,ko) -
‘Jn“"‘(:wy‘ T ((e PR~ )P%n—"(;“) z,j
Wk Wk
+ (P A = LR (4.29)

31n terms of row operations, this is equivalent to subtracting S,‘ +’l" times zs{ . = 0 from and
adding S,‘"j" times ab; . = 0 to the cash-balance constraint (4.15), and adeing zs7 . = 0 to and

subtracting abj | = 0 from the portfolio-balance constraint (4.16).
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Finally, we add ( ”A’J“P('lf‘_l, +,) times the column of zf; to the column of 2,0

and use z,’: to denote the associated aggregated variabie. If we also rename the
variable y; | to y{;, then the complete set of (aggregated) constraints is:

D(n ko) t, -l + y:, 1 ZzJ ) L+ S(n ko)m:: - S(n'ko)’lb’-
+ D™ ko) :, t(,n—ft(:)»,zyt, + ( /'A(r;+|+T;+2)P(" ko) ) z:,—

t—tig2 t—tj2

= L") (4.30)

'J—btl.'.z
ahy | —asy +aby —afy =0 (4:31)
( —pA'r,-g-nI)l(" k) ) ~S” < Z(" ko) (4.32)

142 ) L L=

2 < 20 (4.33)

4142

DIFVahy” gy - zg‘ + s‘"""’""mw Simkangyel

tj+2 tj+1 tji+1 ty+e

+
+ Dinokz=1) -'d’-t”g proka=1) + (e PAT;+3P("1J¢2 1) ) Zt,+2

ti+2-t43 1+2_'t1+3y‘1+2 tj+2—t543

_ (mka=1) (4.34)

l;+2—’¢,+3
ahfj— :w‘:n + abt,+z - mtﬂz - (4.35)
< 2505 (4.36)

zt j+2 = Tty

Except for the two upper bounds on zfj— , this set of constraints corresponds exactly
to the situation in figure 4-2(b). By noting that definition (3.28) implies
Zmko) { Z‘(;":":?J')H 7(n.k1) }
£ 3tj4p = MIN s Zy. .

k1) tit1—t42
—pi\Tj42 (n,k1
’ I)tJ-H""tJ'H

we can replace the two upper bounds on 27, " by the single upper bound z, < Z,(J"_,k?J)H

We have assumed that t;12 < t7 and t; > t;. When t;,5 = tr, the variable and
constraint aggregations remain exactly the same as they don’t involve the variables or
constraints for scenarios at time t;;,. When time aggregation is performed at time 0
(t; = to), the aggregations change in the following manner. As there is no budget
constraint at time 0 in the ALM model, we cannot add P, times the cash-balance
constraint (4.24) at time ¢, to that budget constraint, and instead we add it to the
objective function. The objective function then becomes:

v = (S = Digorts) ey + Promsta¥l, — ((€772™ = 1) Piysy ) 26
+ (e_pA‘mPlo—-)tz) z:l + Llo—)tg - ’\l Z (I:T (y:T - A2“’5':]7~)

sGScT
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The subsequent aggregation of the variables 2; and z, is then performed analogous
to the aggregation of the variables z;, | and z;'; described earlier, while y;, is renamed

tO Yeo-

4.3 The Iterative Disaggregation Algorithm

We assume that a discrete-time model! of the term-structure uncertainty is known that
satisfies assumption 4 in section 3.2, and that state and time aggregations have been
performed in the corresponding event tree to obtain a set of intercst-rate scenarios
that is sufficiently small to serve as description of the uncertainty in the ALM model.*
We furthermore assume that this initial ALM mode! has been solved 1o optimality,
for example by one of the special solution methods for stochastic programs that are
discussed in the next chapter, or possibly as a straight linear program. This is the
point at which the iterative disaggregation algorithm starts. An iteration of the
algorithm consists of the following steps:

1. Perform a disaggregation (i.e. reverse one or more aggregations) in the aggregated
event tree.

2. Find a feasible solution to the disaggregated ALM model, based on the optimal
solution froin the previous iteration.

3. Re-optimize the disaggregated ALM model.

We will discuss steps 1 and 2 of the algorithin in sections 4.3.2 and 4.3.1 below. A
discussion of the re-optimization in step 3 is postponed to the next chapter, where we
will present a new decomposition method for multistage stochastic linear programs.
It will be shown that this decomposition method can take full advantage of a feasible
solution that is constructed in step 2, and thus of the information that has been
obtained from previous iterations.

Our analysis will partly be based on the dual of the aggregated ALM model (3.30),
and we therefore state this dual formulation here. For scenario s at time ¢, let ¢}
denote the dual variable that is associated with the cash-balance constraint in the
ALM model, pf = (43, ..., u},) the vector of dual variables for the portfolio-balance
constraints, and —&; the dual variable for the borrowing constraint. The index i =

4The state aggregation method allows us in principle to reduce the complete event tree to a single
“expected value” scenario. In this expected-value scenario, the one-period return on all assets would
equal the riskless one-period return.
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., I is used to refer to the individual assets.The dual of the aggregated ALM
model is:

T-1
vemax Y 3 (0hLi%. ~ 6 200,) + X (el Li” - 6, 207) (437)

1=l SGStJ SE€ESty
subject to

i Y (08 DI + ) < (14 0)Sise = Digeoy (i)
aEStl

Yo ¢ 2 @1 < Pyoy (ii)
IGS"

2y i— Y@ — & S —€TPAT Py (i)
SES,

wsf,, ool (1—0)Si) — g, <0 (iv)

by, -t (L+0)SHY +py, <0 (v)

‘,Ih:,!j : ‘p:j DZS;)—)!,.H u'l W + Z (‘pl,“ :‘S;-H) + i t1+l) S 0 (Vi)

n(s n(s + .
m: Sr-1 : (p:T-l Di,f(.'r)_l—ftr - ll"t?,lr_l + Z‘p‘t‘-’- (Di,s'p ) + Sn(s )) 0 (Vll)
8+

'y:j ‘- ‘Pt, t',lg)t,ﬁ + Z‘Pt i S (viii)
2 o (e -PA’:“P"" Chn) — & - Zsot,“ < (ix)
Yir i = 0 < Mgy (x)
zi, e — & S (Mg (xi)

f:JZO VSGSgJ-,j=0,...,T

The associated primal variables have been listed at the beginning of the constraints.
We have not denoted the scope of each constraint, as this follows directly from the
indices of the associated primal variables.

4.3.1 Constructing a Feasible Solution

It follows from the previous section that a state or time disaggregation introduces
new variabies as well as constraints in the ALM model, and the disaggregated ALM
model is thus at the same time a relaxation and a restriction of the model before the
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disaggregation. It is therefore not obvious how to construct a feasible solution to the
disaggregated model from an optimal solution to the aggregated model. A natural
starting point is the fixed-weight solution that is derived from this optimal solution,
(see section 4.1). We will analyze below what infeasibilities the fixed-weight solution
that corresponds to state and time disaggregation causes in the disaggregated ALM
model. We will then show how the fixed-weight solutions can be modified so that
they are feasible in a relaxation of the ALM model, and indicate how this relaxed
version of the model can be used in the iterative disaggregation algorithm to solve
the unrelaxed model.

Fixed-Weight State Disaggregation

Suppose that we know an optimal solution to the ALM model in which the un-
derlying (aggregated) event tree includes the situation of figure 4-1(b). Let z§ =
(ds3, ib}, 3h, 9§, 2¢) denote the optimal primal solution in this model for scenario s at.
time t, and 4§ = (pf, ﬂf,é{) the corresponding optimal dual solution. If we reverse
the state aggregation of figure 4-1, then the fixed-weight solution for each scenario s~
in state (¢;,n, ko), its successor s; in state (tj41, 7, k1 — 1), and its descendant s}t in
state (tj42,m, ko — 1) is:

Primal : Z{ =12;
J )
L — S —
Ty, =T, W1 yeo o M
g =gl z M
frsand frovmd /
xtj+2 xt_H.z ) ] [} (438)
Dual :af =1
J J
~ 5 ~n} NS
"t,~++1 ey Ut A=0,.... M
..3, S
utj+2 utJ+2 ) l = 0, M

One can verify by substitution that this fixed-weight solution will satisfy all con-
straints for the scenarios at times ¢; and t;1o in the disaggregated ALM model, as
well as the portfolio-balance constraints for all scenarios at time t;,,. However, it
may violate the cash-balance and borrowing constraint for the scenarios at time ¢;4,.
By subtracting the cash-balance constraint in scenario s at time t;;, before the dis-
aggregation (with £ as the optimal, and thus feasible, solution) from the cash-balance
constraint in scenario s; at time t;;, (with  as proposed solution), we can see that
this last cash-balance constraint is only satisfied by & if
(D(ﬂhkl—l) _ D("hkl)) iht‘,- +(1-c¢) (S(ﬂlukl"l“ _ St(m'kl)) s

st tit1 t+1 i+ ti41
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...(1 + c) (S("l.kl—l) _ (m.kl)) b+ (D(n,,kl—l) _ D(n"k') ).ih"

4+1 441 t+1 G142 L4142 4+
_ (plnki-1) _ pl(uk) -3 —pATy 42 [ p(niki=1)  p(ngky) 58
( G142 Lotz ) Yoy te ’ P¢:+l—";+2 L=tz ) Bty
— r(nkr-1) (n1,k1)
- Ll,+|—blj+2 - L!j+|—’lj+2 (4‘39)
The borrowing constraint for scenario s; at time ¢;4, s only satisfied if

58 7(nyk1-1)

zlj.,.) S Zt,.’.]-—)l,‘.',z (440)

Although it is very unlikely that these two constraints will be satisfied by all sce-
narios s;, we note that they hold on average, that is, if we sum the constrain
over all [ and weigh constraint ! with the conditional probability of the correspond-
ing state. This implies that if the borrowing constraint is violated for some of the
scenarios at t;.;, then it must be satisfied by others. In the special case that the
upper bound on short-term borrowing is state independent, (4.40) will be satisfied
foralll=0,1,..., M.

If we substitute the dual variables of the fixed-weight solution in the dual of the
ALM model after the disaggregation, we find that the constraints that correspond
to the primal variables for the scenarios s; at time ¢;;; may be violated®, while the
constraints that correspond to the primal variables for scenarios at time: #; and t;.,

will be satisfied. Furthermore, if the dual constraint that corresponds to s’

1 .
i1¢j+| fOI

some asset 7 and scenario s; is violated, then the dual constraint with respect to zbfftj i

will be satisfied, and vice versa. Similarly, if the dual constraint that corresponds

to ys;,, (2,,) is violated for some scenario s;, then the dual constraint with respect

t;+1 (Yi1,,) will be satisfied. Also, the fixed-weight solution can only violate the

dual constraint that corresponds to s}, | (abj'

Jiti+1 W+
&
than Sc(,-':, D,

to 2

) if St(;:'lk‘*” is greater (smaller)

Fixed-Weight Time Disaggregation

We consider reversing the time aggregation in figure 4-2. Let £§ = (4s3, 4b¢, 3h{, 97, 2°)
denote the optimal primal solution for scenario s at time ¢ in the ALM model before
the time disaggregation (figure 4-2(b)), and 4} = (3, i3, €°) the associated optimal
dual solution. The fixed-weight solution for the ALM model after the time disaggre-

5As the weighted average of these constraints gives precisely the set of constraints for scenario s
at time £, before the disaggregation with 4y, as solution, the fixed-weight solution can again be

said to satisfy the constraints on average.
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gation (figure 4-2(a)) that is derived from this optimal solution is:

. ~e= A g™ k ~
Primal: Z;, =1j except g, = ,(J"_,&ly:’ (4.41)
i - & .
and z; = (e ”A"“P("_,,‘:)H) 2z
— S —
Bt 11 ab¢j+l 0
s ~hs~
t+1 3
s —_ ST
LI Y,
5& — 58~
%t =2y
0 il l=0,...,.M
xt,+3 xtj.'.z 1V )
Dual: @i =@/ (4.42)
~8T ST
e, = Hq;
é,- Z(n ko)
- t if Zt(n.k?) — L+
s e—PAT (n,k1) 42 — AT (n,k1)
5‘1’ PATI+2 Py ti+1otiy2 e’ ’npl,-n—btjn
0 otherwise
_ pinko) -
(p¢1+‘ — 4t —)tJ+| ‘th
( ko) ~s

“‘J+1 = P‘J‘*‘:H tj

s, L& ez, =z

£ tiotiv2 — “tipi—tige
i+ i 0 otherwise
+ +

....Sl _ .8' _

utj+2—utj+2 ,l—O,-..,M

It is straightforward to verify by substitution that the primal fixed-weight solu-
tion (4.4i) satisfies all constraints in the disaggregated ALM model with the possible
exception of the cash-balance constraint for scenario s~ at time ¢; and scenario s at

time ¢;4,. The cash-balance constraint for scenario s~ at time ¢; will only be satisfied
if

Wk Wk A K
(D gl—'gj)ﬂ -D g‘—'g:)m) ihy, 6 Lg—*g:?ﬂ - Lg'_,‘g“
and the cash-balance constraint for scenario s at time ¢, only if

(Dt(;:,:l) + D(fl.kl) . )ﬂ":j- — L(ﬂ.kl)

tiv1—tj42 L1442

Notice that these equations can only be violated if prepayment of dividends and/or
liabilities occurs in state (n, ko) at time t; before the disaggregation. Thus, if no divi-
dends are paid on the assets and if no liabilities are due between time t; and ¢;2, then
the primal fixed-weight solution after the time disaggregation constitutes a feasible
solution.
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When substituting the dual fixed-weight solution (4.42) in the dual of the ALM
model after the time disagzregation, one finds that the constraints that correspond
to the primal variables 111{;, y;’;, z,’; and z; ~may be viclated.

Modifying the Fixed-Weight Solutions to Obtain Feasibility

We have seen that fixed-weight disaggregation may cause violations in the cash-
balance constraints for some scenarios in the ALM model, and possibly in the bor-
rowing constraints if state disaggregation is performed. If the cash-balance constraint
for a scenario s at time t is violated after a fixed-weight disaggregation, an obvious
way to make it feasible is by increasing the amount of short-term lending in case of
a cash surplus, and the amount of short-term borrowing in case of a casn deficit. In
the last case, however, this may lead to a violation of the borrowing constraint in the
scena-0. Furthermore, additional short-term lending or borrowing in scenario s at
time t also increases the amounts of short-term lending, respectively borrowing, in
its descendant scenarios if we correct for violations in the cash-balance constraints in
these scenarios in the same manner. Thus, even if additional borrowing in scenario s
at time t does not violate the borrowing constraint in that scenario, it may cause a
violation of the borrowing constraint in one of its descendants.

It follows that the upper bounds on short-term borrowing may obstruct the con-
struction of a feasible solution from the fixed-weight solution that only involves ad-
justments in the amounts of short-term borrowing and lending. We therefore propose
to relax the ALM model by including for all t; = t,...,¢7_; and each s € S, an
additional variable for short-term borrowing, Ug, s in the ALM model on which there is
no upper bound, but for which the interest-rate differential with the short-term lend-
ing rate, p, is greater than p. Furthermore, an additional variable v;_ is introduced
for each s € S, to take care of a negative final portfolic value that exceeds -;"'T, and
the weight A3 on this quantity in the objective function is chosen to exceed A,.

In proposition 4.3 below we will show that values for p and A can be chosen such
that an optimal solution to the ALM model will not involve short-term borrowing or
cause a negative final portfolio value in any scenario. If we therefore set p and A3
equal to these values, we are guaranteed that an optimal solution to the relaxation of
the ALM model will satisfy v§ = 0 for all ¢ and s, and will thus be an optimal solution
to the true model. Furthermore, as the relaxation and the true model have the same
set of optimal solutions in this case, the objective value of the feasible solution in vne
relaxed ALM model provides an upper bound on the optimum objective value of the

91



true model.
We will need the upper bounds on the dual variables ey, from the following lemma
to prove proposition 4.3.

Lemma 4.1 If asset prices in the aggregated event tree are arbitrage-free, then any
feasible solution in the dual (4.37) of the aggregate ALM problem (3.30) satisfies:

Mg, < ;< g + By, (4.43)

foralls€ S, and j =1,...,T, where

B =min{(1 - M)Pgorss, 7} with (4.44)
'Y:. = min ((1 + C)Si,to - Di to-—)tl) n(?)l(l _niz)(si,to - Di,t(?--)tl)
ier; (1-1¢)Siy,’ + Dy,
and
B =min {B; P forj=2,...,T, with (4.45)
,ys = min ﬁtj—l ((1 + C) nt(: l) D:lgj_l)—ft ) + A qts 1 (ZSn(s : D::ﬁ::l)—)tj)
Y ser® (1-o)SIY + DI

while the subset of assets I{‘j(’) is defined as {z €f1,....1}: S "(3) D} ff) > 0}.

PROOF: We will first establish the lower bounds on ¢j,. Constrairi (x) in (4.37)
states the lower bound for j = T. Consider a scenario s at time t; (j < T'), and
suppose that the lower bound holds for each of its successors s* at time t;,,, i.e.,
cpf;l > Alq:j:l. We will show that this implies 7 > Mgy, and by induction it follows
that ¢ for all j =1,...,T must satisfy the lower bound in (4.43).

Using the induction hypothesis, constraint (viii) in (4.37) implies

n(s) +
:, tortien 2 Z:‘Pt i+1 = 2 A quj+l
s

Because q, o =@ P,:'(;',),J +l1'r{' (:l ) for all successor scenarios s* of s, we have
n(s) n(s) ~n(st)
})t,—bt‘,.H 2 /\lth })t,—)t,.H it
st

As ¥+ 7 (:, ) = 1, the lower bound for v directly follows.
We will now prove the upper bound for ¢f . Constraint (ii) in (4.37) allows us to
write
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'
(P:, .<_ Pto—)tl - Z ‘pfl
s’GS;l,a';és

Using the previously established lower bounds for ¢}, and noting that ¢}, = P, ),

we get
‘P:, S I)to—vtl - '\lplo—tll Z ,”‘r:"(’ )
a'GSg,.a’;ts

= Bo—bll - Al])to—b!) ( - ﬁ.tnl(a))
= Mgy, + (L = A1) Py

This proves the first part of the upper bound for ¢}, in (4.43).
For the second part we consider constraint (i) in (4.37). Constraint (iv) specifies
a lower bound on 4, , and using this in constraint (i) enables us to write
Y o (DI + (1= 0)SE)) < (14 0)Site = Dison
€S,
Using the same strategy as before, we can derive an upper bound on j, for a specific
scenario s € S;, by rewriting this as:

e, (DY + (1= )SisY)
<(1+0)Sio = Ditos — 3. @ (DI + (1= 0)S7))
$'€Sy, s'#s
< (1+0)Sito — Diggrts = MPygorty 3 ™) (D"(s) (1-¢)si ))

it 1,1
s'ESgl,s'#s
< (1 + C)Sl'.to - Di,to—)tx -

M Py ( Y (DI + (1 - 0sp) - (DI + (1 - ¢ )Sl‘ff’))

S'EStl
S (1 + C)Si to Di,to—)ll - A (1 - C) (Si,lo - Di,lo—)tl) +
MPrgoan 0 (DED + (1= 0)SE)

where the last inequality follows from the fact that asset prices in the aggregated
event tree are arbitrage-free, i.e. (see proposition 3.2),

Pto-m Z “n(’) (D:ng:’) + Sn(s )) - Si.tn - Di.lo—btl

§'€St,

If D} Ef) + S"(’) 0, then the inequality above does not imply an upper bound on ¢ .
Otherwise, we have (use agair g;, = P,oq.,fr?,(’) ):

93



o < Agl + (((1 +¢)Sito — Diggnty) = M(1 =€) (Siee — Di.to-ﬂ.))
Hh — t

(1-c)SM® 4 Do

Because this inequality holds for all assets i with D] fl’) +S; ,(f )'> 0, we obtain the
upper bound on ¢}, that is stated in the lemma.

The upper bound on ¢ when j > 1 is derived in a similar fashion from con-
straints (viii) and (vi) in (4.37). Consider a scenario s at time t; (j > 1) and suppose
that o; satisfies the upper bound in the lemma. We will show that this implies that
cp::“ for all successors s* of s must satisfy the upper bound in the lemma as well.
This proves the lemma by induction.

Let scenario s* at time t;4; be an arbitrary successor scenario of scenario s at
time ¢;. From constraint (viii) in (4.37)

‘p:nl = ‘f’b P'?(—?':H -2 "9:;++n
st #s®

N +
The induction hypothesis and the lower bounds cpff > gt = N P"(_’,),J o ::(,:l )

allow us to write

. nlst
‘p:j.'.] - ('\I% + ﬁl,) ‘?l—'b)l,+; AlQl, I)l':(—sb)l,.n 7rl':(.:1 )

st#s®
) ~n(s
(Alqll + ﬂ! ) l:'g)t,.'.] AIQIJ ’)‘:'(-:’,.0.] (1 - ::(+| ))
= ﬁ‘ t?(—.))¢1+| + Alql,.ﬂ
This proves the first part of the upper bound for 99?;“ in (4.45).
The second part follows from constraint. (vi) in (4.37) if j + 1 < T, and from

constraint (vii) if j + 1 = T. When j + 1 < T, constraints (iv) and (v) enable us to
derive the following inequality from constraint (vi):

+ +)
—ot (1 +)Si - DI, L) + Zv.”. (DI + (1-)si ) <0
For an arbitrary successor s* of scenario s we can rewrite this inequality as:

‘pll.'.] (D:'$:+)| ( (')'Slnt(: )
<ol (1+asi - D, ) - X e, (D) + (1= asie™”)
st#s®
7/,
< (Mt +8) (1 + S - Diil,,,)
~n(st + n(at
“hg PR 5w (Dr) + (1= oSt

£ L+ L840
st#s®
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< (ng +8) (A +08i - DI, ) — Mg (- o) (SiY - Ditl,,,)
+hge PR, L i) (D) + (1 - 0)S7i)

= (Mg + ;) (1 + oS — DI, ) — Mg (1= o) (S - Digly, )
+hgs,, (DR + (- osi”)

')tJ+l

where we have used the lower bounds on cp::“ and the induction hypothesis in the
second inequality, and proposition 3.2 in the third inequa':ity As such an inequality
holds for all assets i, and only implies an upper bound for ¢}, when St t(’ )+ D} £j 2
0, the upper bound (4.45) follows.
When j+1 = T, we use constraint (vii) in (4.37) instead of constraint (vi) to find
the upper bound on ¢j, . The derivation is analagous, and therefore omitted here.
QED

It is instructive to consider the special case of zero transactior costs (¢ = 0). The
quantities ﬂ,’j then reduce to:

. . Sl t Dl to—t
B =(1—X\) -ming Py, min 0 AL
t) i ud iGI,"l(") S:;:;«:) + D,ﬂff)

n(s) n(s”)
B = omind PO, | min { Smt — Ditio j = 2,...,T
t; — Mty b1 7'61""(‘) S"(s) N ])n(s) yJ &y d

it

This shows clearly that the upper bound on ¢j is a function of the realized asset
returns in state n(s) at time t;. The higher ilicse realized returns are, the lower the
upper bound is. As ¢j is the dual variable on the cash-balance constraint, this agrees
with the economic intuition that an extra dollar in a state with high asset returns is
worth less than an extra dollar in a state with low asset returns.

If the parameter J, is one, then 37 =0, and thus ﬂ,’) =0forallj=1,...,T. This
implies that the upper bound on ¢} coincides with its lower bound in lemma 4.1,
and thus Py, =q, as only possible solution. This result was also found in lemma 2.1
in section 2.3.2.

The bounds of lemma 4.1 are used in the following proposition to derive lower
bounds on the interest-rate differential p and the parameter A, so that an optimal
solution to the aggregated ALM model will not involve short-ter: borrowing if p
exceeds this lower beund, and exclude negative final portfolio values if A, is greater
than its lower bound.
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Proposition 4.3 If asset prices in the aggregated event tree are arbitrage-free, if
A > 0, and if the aggregated ALM model (3.30) is feasible, then an optimal solution

satisfies:

1 1
=0 if p>——1 [—] 4.46
1 By,
s =0 if p>———1In|1 i SES,,j=1,....,T—1 (4.47)
, P AT “[ +A1q:,] € (
, . Jix
7 =0 if Ag>1+ ,\1:;: ,S € Sty (4.48)
T

where [, is defined in lemma 4.1.

PRoOOF: Without loss of generality, we consider the aggregated ALM model (3.30)
without short-term borrowing constraints. This implies that the variables &, disap-

pear from the dual problem (4.37).
Constraint (ii) in (4.37) states that any feasible soluticn to this dual problem must

satisfy

epA‘r] > Pto—*tl

ZsESq (P:I
Using the lower bounds from lemma 4.1, we can bound the fraction on the right by

})to—)tl < Bo—)tl = })to—ttl — l
ZSESH ‘pt") - 236811 Alqtﬂl Alljto—btl Al

where we have used ¢f = Pigose, 72, 1t follows that if p is such that e?™ > 1/A;,
then any feasible solution to (4.37) will satisfy constraint (ii) with strict inequality,
and by ~omplementary slackness, any optimal solution to (3.30) must have zy = 0.
This proves relation (4.46).

To prove relation (4.47), note that constraint (ix) in (4.37) implies that any feasible
solution to the dual ALM problem must satisfy

n(s)

8
ity "pt,'

ePATi+1 >
Zar'*' (F:_,:,l
Using lemma 4.1, we can derive an upper bound for the quantitv on the right:
‘p:jP‘?(‘:)‘j-H < 3(—’»’6“ (/\1(1{,. + ﬁ::) < P‘?(:')‘:‘H (Aquj + ﬂ::) — _’B_:g__
S + = - -
Lo+ Piyy Lot Plyy g, Pt',-'(—av)t,-...l Lo+ '”r,(:: ‘ i,
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If we choose p such that e?A™+! is greater than this upper bound, then constraint (ix)
will be satisfied with strict inequality fc: any feasible solution to (4.37), and comple-
mentary slackness implies that z§, = 0 in every optimal solution to (3.30).

The condition on A, in (4.48) for z; = 0 follows directly from consiraint (xi)

in (4.37), the upper bound on ¢;_ from lemma 4.1, and complementary slackness.
QED

We noted before that ,B{J, =0 for all s and j > 1if A\; = 1. In that case any p > 0
will prevent short-term borrowing in an optimal solution, and any A, > 1 a negative
final portfolio value.

4.3.2 Choosing a Disaggregation

In step 1 of the iterative disaggregation algorithm one has to choose a state in an
aggregated event tree in which to perform a state or time disaggregation. We will
discuss two ways of making this choice. The first method determines bounds on the
possible change in the optimum objective value of the ALM model, and is based
directly on proposition 4.2. The second method uses sensitivity analysis to estimate
the sensitivity of the objective value to a disaggregation.

Bounds on the Change in Optimum Objective Value

In the previous section we have shown hov. to construct a feasible solution to a
relaxation of the ALM model from the fixed-weight solution after a state or time
disaggregation. The objective value of this feasible solution in the relaxed model forms
an upper bound on the optimum objective value of the true model if the parameters
for the additional borrowing variables in the relaxed model satisfy the bounds in
proposition 4.3.

It should be noted that the arbitrage-free value of all liabilities always forms a
lower bound on the objective value of the ALM model, aggregated or not. This follows
directly from the definition of the liabilities in an aggregated event tree and the fact
that the asset prices in the ALM model are arbitrage-free.

We will show here how proposition 4.2 can be used to derive bounds on the change
in optimum objective value of the ALM model after one state or time disaggregation
is performed in the underlying event tree. These bounds may be tighter than the
bounds just mentioned.
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Remember that the bounds of proposition 4.2 are based on the size of the con-
straint violations of the fixed-weight solution in the primal and dual problem, together
with (generalized) upper bounds on the dual and primal variables. For basic state
and time disaggregation in the ALM model, we analyzed the constraint violations
of the fixed-weight solutions in section 4.3.1. We will show in proposition 4.4 below
how upper bounds on the primal variables can be found if an upper bound on the
initial investment is known, and state upper bounds on the relevant dual variables in
proposition 4.5.

To choose a disaggregation in the ALM model, we propose to calculate the bounds
on the objective value change for each single state and time disaggregation in the
underlying event tree. The state with the largest difference between the upper and
lower bound ((¢* + €~) in proposition 4.2) is chosen for the actual disaggregation.

Proposition 4.2 can also be used to calculate bounds if one wants to perform several
state and/or time disaggregations before re-optimizing the ALM model. However, the
sheer number of possible combinations makes the calculation of the bounds a daunting
task in that case. Instead, one can use the bounds that apply to individual state and
time disaggregations as a guide for choosing multiple disaggregations.

The next proposition states bounds on the primal variables that can be used in
proposition 4.2 to calculate a lower bound on the objective value of the ALM model
after a disaggregation.

Proposition 4.4 If there is a mazimum Wy on the initial investment, and if short-
term borrowing is limited (z;, < ZZ:.(S) < 00) at all times, then an optimal solution in
the aggregated ALM model (3.30) satisfies:

(Sto = Digorty) Tao + PioostsYto < Wo + (€727 Prgsty) Zay (4.49)

forallse S, and j=1,...,T - 1:

(Sn(s) D;;j(:))tj“) Zlh:j + Png)t‘,.f.]yt] Ws ( —pATJ+an(s t,+|) Z‘tff(S)
(Sn(s) D;:(:,)t’,“) ab:] S Wt.j + (e—pAT]+1Pn(3)tJ+l) Zﬂ(3) (4.50)
(Sg';(_s, ) DZ(S,-)n,) .’leJ < VV:’;, + ( —PAT) P"(s,—)n)) Z};(j.—)

and for all s € S;,.:
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where for each s € S, andj=1,...,T:

n(s) n(s)
- - 1 Siq, + Di,
W =W/ _| -max P n(st;’ Y o (4.52)
’ ’ P i=l. S Dl tj—1ty

t,—1—tj it

— - Sn(s) + Dn(s)

+ Ztns_s ) - max 0 max L) P—PAT) I)tn(s _.),t _ 1 _ L;;(s-)

j—1 Sn(s ) Du(s ) -1 ) )
hty-1 ity—1o

PRrROOF: We derive the bounds by setting the transaction cost rate c equal to zero.
Bounds on the portfolio holdings that apply in the absence of transaction costs are
certainly valid when transaction costs are positive.

Inequality (4.49) follows immediately from the assumption that the initial portfolio
investment is restricted by Wy and 2y < Zp.

When ¢ = 0, the cash-balance constraiut for scenario s at time Z; can be written

(D5 +57) i, +vi, — 2, = (4.53)
(S:;(S) - D?j(j))tj+l) "Ih:j + P"(_s.)t,“y, (e-pATj“R';(—sb)th) zt + Ln(S)

The left-hand side of this equation equals the value in scenario s at time ¢; of the
investment portfolio that has been constructed in its predecessor s™ at time ¢;_;. We
will show how to determine an upper bound on this value, given a maximum on the
investment at time ¢;_;. This upper bound in turn implies an upper bound on the
values of the variables zh{; and y;; in the right-hand side of equation (4.53).
Suppose W:]‘._ is an upper bound on the total investment in scenario s~ at

-1
time tj_l, i.e.,

(557 = D, )

tJ—l t_) 1

(s7) -pA ) - Jrs™
Pf; s] -n,yz, 1 ( P T’P?(sl—n,) z:,-_, < W

i

while zf;_ < Z"(" ). Furthermore, let i* be the index of the asset with the highest
return between states n(s~) and n(s), i.e.,

t‘, . — - - . '
A L e a

To determine the highest possible portfolio value in scenario s at time t; from in-
vestments at time t;_;, we consider three possible situations. First assume R:'(‘;Z >

(ePATJ / t’:("l_),t ) In that case, the maximum portfolio value would be obtained if
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money is borrowed up to the limit at time ¢;_,, and everything is invested in asset 4"
Thus in this situation

(D5 + i) ahy,_, + yf: -z, < (4.54)
(Wi, + (e P, ) 2500) RS - 25
The second possibility is (ePA’: /P"(‘i ) ) > R}’.(,‘::. > (1 /P, "(’l_),t ) In this case, the
highest portfolio value in scenario s results if no money is borrowed at time t;_;, and
all available funds are invested in asset ¢*, implying:

(D +559) ahi, + i, — 2, S Wi RED) (4:55)

Alternatively, (1 / "(’l_),,]) > R?(iz The most profitable strategy would now be to
invest all available funds in the riskless asset at time ¢;_;, and not borrow money. In
this situation therefore
n(s) n(s) - - 5™ T7s” 1
(Dtj + Sl,' ) :j—l + yfj_l - th-l S Wtj-l (Fn—(;_)—') (456)
1
Combining the three possible situations concerning the structure of asset returns

between state n(s™) at time t;_; and state n(s) at time t;, we obtain from (4.54),
(4.55) and (4.56)

(D;;‘” + s:;"’) AT AR

tji—1 tj—y

W;-
< max{( +e“PA‘r, Pn(-.sl_)nJ Zns” )) R?.(z Zn(a ) W, R?'(i:, t,_—)l }

n(s~)

tj—1—t;

T78" 1 S —_ n\s nis +
A R el Cal AN

where [z]* denotes the positive part of z. Using this inequality and z;; < ZZ in the
cash-balance constraint (4.53), we get

(55— Dy, ) ahi, + P, 0, < (750 PL,.0) 2 - L+

tj ity
Ve 1 (s7) [( —pAT; pn(s™) ) _ 17"
Wi, max{R,. e P"(’ }+ ,':’l [( P TJP': s.—n,)R:' ’,J ]
15

By substitution of definition (4.52) we obtain the relation in (4.50), and by induction
this relation must hold for all j =1,...,T - 1.
For j =T and s € S, the cash-balance constraint is
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(D"(’) + S"(")) ‘T 1 + y"l‘ 1 zt'r T yl'r - zt'r + L"(SJ
and following an analogous derivation as above, we obtain
Yir — 2r S Wi

Because A\, > 1, y;. and z; will not simultaneously be greater than zero in an optimal
solution to (3.30), which establishes the upper bound (4.51).
To obtain the relation in (4.50) that involves the vector abj , we note that for all

assets i, ab, < ah{, , and thus (S"(’) - D}:f:)_,,m) fy < (S,"ff) - D} f;f,!j +l) .

Summing over all 7 gives:

(Sn(S) D;;(s—b)t,“) .:j < (Stnj(S) _ D:lj(j))tj+1) :dl:j
< (S":(S) - D?j(j’)‘j-i-l) "'hs + Pn(—s')tmy%

<We + (ee2mn PSS L) 20

ti =4

where we have used the previous result for the last inequality.
The inequality in (4.50) that involves the vector asy, can be derived in an analogous

manner by noting that for all assets 4, 257, < ah{, .
QED

To calculate the upper bound on the objective value according to proposition 4.2,
restrictions on the size of the dual variables are needed.® In section 4.3.1 we have
seen that the fixed-weight solutions after a state or time disaggregation can only
violate cash-balance and borrowing constraints, and it is therefore sufficient to state
bounds on the dual variables that correspond to these constraints (<pfj and ffj). In
lemma 4.1 bounds were stated on the variables ©; and the next proposition uses
these bounds to derive upper bounds on the variables &, -

6 These dual variable bounds are used in conjunction with constraint violations in the primal
problem when the fixed-weight solution is implemented. In section 4.1, the constraints in the pri-
mal problem were all stated as greater-than-or-equal-to constraints, whereas the cash-balance and
portfolio-balance constraints in the ALM model have been formulated as equality constraints. How-
ever, it is easy to see that they could have been written as greater-than-or-equal-to constraints
instead of equalities without changing the set of optimal solutions to the ALM model. It follows
that the upper bound of proposition 4.2 when applied to the ALM model will only incorporate con-
straint violations in the cash-balance and portfolio-balance constraints with respect to this inequality
formulation.
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Proposition 4.5 In any optimal solution to the dual (4.37) of the aggregated ALM

model:
+
§to < Prose, [(e_pAT' - /\1)] (4.57)
n(s —pATj 4 s s st -
& < PO, [e2m (g +8;) - M) s€S,, i=1,...,T - 4.58)
S + =
&, <[ - e —1) Mgl S E Sy (4.59)

where [z]* denotes the positive part of z.

PRrooOF: To prove (4.57), we first note that &, only appears in constraint (iii) of the
dual problem (4.37). Furthermore, an increase in &, leads to a deterioration of the
objective function, and &, will therefore be chosen as small as possible in an optimal
solution. Thus from constraint (iii) and the nonnegativity constraint:

— —pA s
£to = max {Oie P Tlljto—nl - 2 (.Dtl}

S€Sy,

)

Using lemma 4.1 and the fact that ¢; = P¢0~,¢,7“r;:(’ , we can bound the quantity on

the right by

P Pty = 2 0 €A Py = Mt S @y = P (672 = )
36‘5(‘ JEGS(‘
from which the upper bound (4.57) follows.
The bounds on &, and &, can ve proved in an analogous fashion from the bounds

of lemma 4.1 and constraints (ix), respectively (xi), in (4.37).
QFD

The quality of the bounds on the change in optimal objective value after a disaggre-
gation depends to an important extent on the quality of the upper bounds on the
variables. The bounds on the dual variables ¢j; in lemma 4.1 are calculated by for-
ward recursion, and couid therefore be fairly weak when ¢; is large. In the special case
that &, =0 for all s € Sy; and j =0,...,T (i.e., there are no borrowing constraints,
or they ace not binding in an optimal solution), we can use constraints (xi) and (ix) in
the dual (4.37) of the aggregated ALM problem to obtuin the following upper bounds
on ¢y :

0r, < MAgePtirllgp ,S€S,, j=1,...,T. (4.60)
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These upper bounds are calculated by backward recursion, which implies that they
may be tighter than the upper bounds in lemma 4.1 at points in time close to the
planning horizon.

Even if one isn’t sure thet the borrowing constraints are not binding in an optimal
solution, the upper bounds in (4.60) can be used to calculate an approzimate bound
on the change in objective value.

Sensitivity Analysis

Instead of computing bounds on the change in the objective value of the ALM model
after a disaggregation, sensitivity analysis can be used to provide an estimate of
this change. A computational advantage of sensitivity analysis is that it saves the
calculation of the quantities ﬂ;'j and Wé for each scenario in the upper bounds on the
primal and dual variables.

Let &§ = (4s],db], 3h{, §;, 2;) denote an optimal solution for scenario s at time ¢
in the ALM model before a disaggregation, and i; = (¢}, fi5, €) the corresponding
dual solution. We will show how to use sensitivity analysis when a basic state or time
disaggregation is performed in the aggregated event tree that underlies the ALM
model. Our starting point in each case is the fixed-weight solution.

For the basic state disaggregation that corresponds to figure 4-1, we have seen
earlier that the fixed-weight solution as defined in (4.38) may violate the cash-balance
and borrowing constraints in states at time t;4,. For scenario s, in state (n;, k; — 1)
at time tj4,, define U} .1 as the violation of the cash-balance constraint:

Jk1-1
U¢1+1 —L(n' e —

L1042
(D Dan + 357 — 27 + (1= oS Vs
— (L+ oS0y, + DL, — PULSON,
+ ( —pATHzP(JT;ﬁt,?z) z‘1+1] (4.61)

and Vi, as the violation of the borrowing constraint:

A &
v, =&, - 2o (4.62)

J+l—’t1+2

where scenario s at time ¢;4, is the single successor of scenario s~ at time ¢; before
the state disaggregation.

If we associate the fixed-weight dual solution (i.e., @;/,, = #;', @}, and {,) o=

1?{:;16,1 i 7r,J ', is the risk-neutral conditional probability of state (nk; — 1) at
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time t;41, given state (n, ko) at time ¢;) with these constraints, we have

~8) _ ATy
Z‘pb-n t;+1 ('ot,-n Zwl;+1 ¢1+1 =0

because the sum in the last expression is zero (the cash-balance constraints are sat-
isfied on average; see also section 4.3.1). Thus, the “normal” way of performing
sensitivity analysis with respect to the cash-balance constraints (and on the basis of
the fixed-weight solution) predicts that the objective value will not change after the
state disaggregation.

Instead, we propose to measure the sensitivity of the objective function to the
state disaggregation in state (n, ko) at time ¢; by only considering the scenarios s; at
time ¢4, for which U;" i 1S positive’. The sensitivity measure is then defined as:

p— ~ 81
o= ¥ o( P U] + VL) (463)
s‘n 1 =

41

— 2 ~ T ~ny

- z(:k ) (‘ptj-f-l IZ"’t,“ [ ¢1+1] + Et i+l Zwt1+l t,+1)

sES," !

41

Note that the sum is taken over all scenarios s in state (n, k;) at time ¢4, as state
disaggregation in state (n, ko) at time ¢; splits each of these scenarios in M + 1 new
scenarios.

A similar sensitivity measure can be defined for basic time disaggregation, corre-
sponding to the reversal of the aggregation in figure 4-2. It was found inr section 4.3.1
that the fixed-weight primal solution satisfies all constraints in the disaggregated
ALM model with the possible exception of the cash-balance constraints for each sce-
nario s~ in state (n, ko) at time ¢;, and its successor scenario s at time t;,,. Let U{J_—
and Uéﬂ equal the discrepancies in the respective cash-balance constraints (defined
as in (4.61)). The fixed-weight dual solution has @i = ¢} and ;= Pé"_ﬁ‘;llgbt;
(see (4.42)), and it is easy to see that ¢j, Uy + @;,, Uy, = 0. That is, the esti
mated effect of the time disaggregation on the objective value is zero. To measure

the sensitivity of the objective value to the time disaggregation, we only consider the

"This corresponds to writing the cash-balance constraints as greater-than-or-equal-to constraints
instead of equalities in the ALM model, and defining U; as the violation by the fixed-weight solution
of the cash-balance constraint in inequality form. See also footnote 6 in this chapter.
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scenarios in which U} is positive, and define

= T (o ]+ e U]") (464
s—es{mko)
2
-5 () R )
s~ ES(""O)

As we noted in section 4.3.1, the fixed-weight primal solution will satisfy the cash-
balance constraints after the time disaggregation if no dividends are paid and no
liability payments are due between time t; and time t;,, (i.e., if no prepayment of
dividends and liabilities takes place in state (n, ko) before the time disaggregaticn).
In that case, the sensitivity measure n will be zero.

It is clear from this discussion that the sensitivity measure ¢ for a state disaggre-
gation may very often dominate the sensitivity measure 7 for a time disaggregation.
If one would therefore base the disaggregation solely on the values of € and 7, a new
trading date may only occasionally be added to the aggregated ALM model. If that
is the case, one may want to use a different criterium to decide when to perform a
time disaggregation. An example is to impose the somewhat arbitrary restriction that
the number of successors of a state in an aggregated event tree can never exceed a
certain maximum. If a state is chosen for a state disaggregation according to its value
of €, but if this state disaggregation would lead to a number of successor states that
exceeds this maximum, then a time instead of a state disaggregation is performed.

Obviously, many other criteria, less rigorous than the ones discussed here, can be
devised to perform the disaggregations in an aggregated event tree. The efficiency
of such rules can only be judged through computational experiments, and may be
problem specific. In chapter 7 we report on some results for a simple asset/liability
management problem.

4.3.3 Terminating the Algorithm

For the decision when to termina.e the iterative disaggregation algorithm, we would
like to have a measure of how close the current solution is to the solution of the
unaggregated ALM model (i.e., the ALM model that is based on the unaggregated
event tree). Because an aggregated ALM model is neither a restriction nor a relaxation
of the unaggregated model, it is impossible to tell precisely how the optimal solution
to the aggregated model relates to the solution for the unaggregated model. To
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choose the disaggregations in each iteration of the iterative disaggregation algorithm,
we have suggested the use of proposition 4.2 to calculate bounds on the difference in
optimum objective value between the aggregated ALM models in successive iterations.
However, these bounds are most likely too weak to be meaningfull (if at all possible to
calculate) if one would try to translate the optimal solutior to an aggregated model
to a solution for the unaggregated model by fixed-weight disaggregation, because the
unaggregated model is typically very mwuch larger than the aggregated models that
are solved in the algorithm.

Instead, a decision to terminate the algorithm will have to be based on the results
in past iterations, and a trade-off has to be made between the value of extra detail
in the ALM model and the cost of re-optimizing the resulting model. In practical
applications, the ALM model will generally be updated and re-solved when new
information becomes available over time, and an investor will primarily be interested
in the optimal portfolio decisions at time 0. One can therefore decide to terminate
the algorithm if the optimal portfolio decisions at time 0 have remained stable in
recent iterations.

An extra test for the robustness of the optimal portfolio strategy could be per-
formed as follows. Define a version of the ALM model which is significantly less
aggregated than the last model that was optimized in the iterative disaggregation
algorithm, and construct a feasible solution to this model (or a relaxation of it; see
section 4.3.1) from the optimal strategy by fixed-weight disaggregation. If this fixed-
weight solution does not lead to large violations of the cash-balance constraint, partic-
ularly at times close to time 0, one can conclude that the obtained portfolio stravegy
forms a good hedge against additional uncertainty that was not explicitly considered
in the model. Otherwise, one may decide to continue the algorithm.

Obviously, many different criteria can be employed for the decision when to stop,
depending on the nature of the specific problem on hand and the investor’s objectives.
These may also influence the strategy that is followed for choosing the disaggregations
in each iteration. The iterative disaggregation algorithm provides the flexibility for
variations on these points, and enables the investor to see the corresponding effects.
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Chapter 5

Decomposition Methods for the
Optimization of the ALM Model

In chapters 2 and 3 we have formulated the ALM problem as a multistage stochastic
linear program, and in chapter 4 we proposed to solve this ALM model by the iterative
disaggregation algorithm. The different parts of this algorithm were discussed in detail
there, except for the re-optimization of the ALM model in each iteration. That is the
topic of this chapter.

Probably the best known and most widely used solution method for stochastic
programs is Benders’ decomposition. The method was originally developed by Ben-
ders [1] for mixed-integer programming problems, and adapted to two-stage stochastic
programs by Van Slyke and Wets [54]. Birge [3] extended the method to multistage
stochastic programs. It has been successfully applied to a variety of practical sto-
chastic programming problems (see, for example, Ermoliev and Wets [17]), and in a
recent comparison of different solution methods, Carifio et al. [9] concluded that Ben-
ders’ decomposition was the method of choice for large instances of their asset/liability
management model, which they formulated as a multistage stochastic linear program.
We will show, however, that Benders’ decomposition is not well suited to perform the
re-optimizations of the ALM model in the iterative disaggregation algorithm as it has
to discard most of the information from previous iterations.

We will also present a different decomposition method, primal-dual decomposition,
and show that it can make full use of a previous solution to the ALM model to
perform the re-optimizations in the iterative disaggregation algorithm. The version
of the method that we will discuss is directly based on the primal-dual method which
Grinold, [19] describes for two-stage linear programs. He shows that this method is
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equivalent to a steepest-ascent algorithm for linear programs. Grinold also discusses
an application of his two-stage method to solve multistage linear programs, which he
calls trajectory optimization. Our proposed extension of the method to multistage
stochastic programs differs from his, however, aind we will point out the differences
in the sequel.

To convey the basic idea of both Benders’ and primal-dual decomposition, we
will introduce both methods in section 5.1 for two-stage stochastic linear programs.
It will become clear that both decomposition methods essentially consider the same
reformulation of a stochastic program, although they differ in how they make use
of it. Their extension to multistage stochastic linear programs will be discussed in
section 5.2. In section 5.3 we will study the applicability of each of the decomposition
methods for the re-optimization of the ALM model in the iterative disaggregation
algorithm.

We only describe the basic version of Benders’ decomposition in this chapter. In
the literature, several enhancements have been described for the method, many of
which are based on the assumption that the stochasticity in the stochastic program
is restricted to the right-hand-side vector (we note that this is not the case in the
ALM model). Infanger [37] provides a recent overview, and contains many references.
Other decomposition methods for stochastic programming have been proposed in the
literature as well. We will not discuss these methods here, but refer to Ermoliev and
Wets [17] for a relatively complete overview and many references.

5.1 Decomposition Methods for Two-Stage Sto-

cnastic Linear Programs

We view the two-stage stochastic program as a sequential decision problem under
uncertainty over two periods (stages). Uncertainty exists about the state of the world
that will occur at the beginning of the second period. The problem is to determine a
first-stage decision as well as a set of second-stage decisions, one for each possible state
of the world in the second period, so as to optimize some objective. This problem
can be stated mathematically as:
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(SLP): v* =min cozoy +cizl +c?z? +...4cfzk (5.1)

s.t. Apzo = by
Flzy +Alz] = b}
F2z, +A2z? = b
F¥az, +AK K = pk
o >0,z >0,22 >0, ... ,zK >0

where 1 is a ny-vector of first-stage decisions, z'f a n,-vector of second-stage decisions

if state of the world k occurs at the end of the first stage, the right-hand-side vectors
bo and b¥ have length my and m, respectively, and all other vectors and matrices are
dimensioned accordingly. We assume that this problem is feasible, and has a finite
optimal solution.!

The vector of objective coefficients ¥ has the form mqF in a stochastic program,
where 7, denotes the probability that state of the world k occurs at the end of the
first stage, and gF is a n;-vector. We note that the formulation of (SLP) allows that
the right-hand-side vectors bf, constraint matrices Ff and A%, and the vectors of
objective coeeficients ¢f all depend on the particular state of the world k after the
first stage.

We will now derive a different formulation for (SLP) that forms the basis of the
decomposition methods that we are going to discuss. Given some vector of first-stage
decisions zg, define a separate subproblem for each of the possible states of the world &
at the beginning of the second stage:

(SUBk): h*(z¢) = min ckzk (5.2)
s.t.  Akzh = bt — Ffxy
>0

This allows us to rewrite the stochastic program as:

(SLP): v* = min cyzo + LK, h*(x0) (5.3)
s.t. Ao:L‘o = bo
To 2 0

Consider the dual of the subproblem (5.2), where u¥ is the m;-vector of dual
variables:

1 The assumption of feasibility is necessary for the primal-dual method, whereas the assumption
of a finite optimal solvtion is needed to apply Benders' decomposition.
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(DSUB*) : h*(zo) = max uk (b¥ — FFux,) (5.4)
st. ubAb <t

We will denote the set of feasible solutions of this dual subproblem by U*, i.e., U* =
{uluA® < ct}. Because (SLP) is assumed to have a bounded solution, (DSUB¥) must
be feasible, and thus U* is non-empty. Note that the feasible set U* does not depend
on the vector of first-stage decisions z;.

U* is a polyhedron in R™, and we denote its set of extreme points by P*, and its
set of extreme rays by RF. The set of extreme rays R* can be characterized as the
set of extreme points of the set Y = {y|lyA* < 0,ey = 1}, where e is a vector with all
elements equal to one (sec Murty [47]).

It is well-known that if a linear program has an optimal solution, then there exists
an extreme point that is optimal (see Murty [47, theorem 3.3]). This property allows
us to write the optimal solution to (DSUB*) as:

W (20) = ;ré%)fp(b’f — FFzy)  if r(b¥ — FFzy) <0 VreRF (5.5)

00 otherwise

The condition r(b%¥ — Ffzy) < 0 for all r € R* states that there is no extreme ray
of U* that strictly improves the objective function of (DSUB¥) for the current value
of xy, and thus would lead to an unbounded solution. By linear programming duality,
an unbounded solution to the dual subproblem (DSUB*) implies infeasibility of the
primal subproblem (SUB¥) for the given vector of first-stage decisions zy, and thus
infeasibility of (SLP). The vector of first-stage decisions zy should therefore be chosen
such that forall k =1,...,K:

(rF¥)zo > bt VreRk (5.6)
1

These constraints will be called feasibility cuts. If zy satisfies all feasibility cuts,
then (DSUBF) can be rewritten as

(DSUB*) : h*(zo) = min 6* (5.7)
s.t. 0% > p(bk — FFxp) Vpe Pt
where we have used the characterization of h*(z,) in (5.5). The constraints in (5.7)
are called optimality cuts.

Two properties of h*(xo) follow directly from its characterization in (5.5). First,
h¥(z,) is a piecewise linear and convex function when it is finite. Second, if Z, is such
that h*(%,) is finite, and if h¥(Zy) = p(b¥ — FF,) for some p € P*, then (—pFF) is a
subgradient of h¥(zg) in 7o = Zo. This second property follows directly from
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h¥(zo) > B(b¥ — Fzo) = p(b¥ — FF[Zo + xo — Zol) = h*(Z0) — PFY' (%o — %0)(5.8)

and plays an important role in the decomposition methods.
By adding the feasibility cuts (5.6) to (5.3) for each k, and using the characteri-
zation of h¥(x,) in (5.7), we obtain the following formulation of (SLP):

(SLP): v* = min cozo + ¥f, 0* (5.9)
s.t.  Apxzo = by
(rF¥) zo > rbk VreeRr, k=1,... K
(pFf) zo + 6F > pb} VpeP* k=1,....K
To >0

This formulation of (SLP) forms the basis of both Benders’ and primal-dual decomposition.?

5.1.1 Benders’ Decomposition

The number of extreme points and extreme rays of the feasible region U* in a dual
subproblem (DSUBF) could be very large, leading to a large number of constraints
in (5.9). In an optimal solution to (5.9), however, only few of the feasibility and
optimality cuts will typically be binding, and knowledge of a small subset of the
extreme points and extreme rays of U* for each k would therefore in principle be
sufficient to determine a solution to (SLP). Benders’ decomposition aims to find these
subsets in an iterative manner without enumerating all extreme points and rays of
each U*.

Suppose that only a subset P* C P* of the extreme points and a subset R* C R
of the extreme rays of the feasible region U* are known in some iteration of the
method. (At the start of Benders’ decomposition both P* and R* may be empty.)
By only including the cuts that correspond to these subsets, one obtains the following
relaxation of (5.9):

vV = min cozy + X, 6F (5.10)
s.t. Apxo = by
(rFF) o > rb¥ VreRFCRF, k=1,...,K
(pFf) zo + 65 > pbf VpePrc Pk k=1,....K
Tg 2> 0

2This formulation of (SLP) can also be derived by first taking the dual of (SLP) in (5.1), and
then applying Lagrangean relaxation to the constraints in this dual formulation that correspond to
the vector of first-stage decisions zo (the coupling constraints). This is essentially what Grinold [19]
does.
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This problem is called the master problem. As long as no elements of P* are known
(i.e., P* = @), the variable 6* is set equal to zero; this corresponds to the situaticn
that no feasible solution to (SLP) has yet been found. We will now describe an
iteration in Benders’ decomposition.

Suppose (Zo, 8", .. .,6%) is an optimal solution to the master problem (5.10). Solve
each of the K subproblems for £y = Zy. The optimal solution to the k-th subproblem
will satisfy one of the following:

1. h*(Zg) = oo:
This corresponds to the situation that (SUB*) is infeasible, and (DSUB*) is
unbounded. We thus find an extreme ray 7 of U* with #(b¥ — FFzo) > 0.
Equivalently, (FF¥)Z, < 7b%, and %, therefore violates the feasibility cut in (5.9)
that corresponds to 7. That is, 7 € R*, and the set R* is increased with this

new extreme ray.

2. 00 > h¥(Zg) > 6*:
Let 5 denote the optimum extreme point solution to (DSUB¥). Then h*(i,) =
p(b% — Fkio) > 6, or equivalently (5FF)o + 6% < pbk. Thus (io,6*) violates
the optimality cut in (5.9) that corresponds to the extreme point p € P*,
implying § € P*. The new extreme point p is therefore added to the set Pk,

3. hk(.'io) = ékt
In this case, (&, %) satisfies the feasibility and optimality cuts for all r € R*
and p € P, respectively.

When situation 1 or 2 occurs for a subproblem k, a new feasibility or optimalit;
cut is added to the master problem. After the appropriate cuts are added for all
subproblems, the master problem can be re-optimized. This re-optimization can
be done efficiently using the dual simplex method, as the added cuts are the only
constraints that are violated by the current solution (o, 6", ...,8%).

If situation 3 occurs for all K subproblems, then we have

K K
V= cofio + 3 0* = cofo + Y h¥(T0) > v*
k=1 k=1
where the inequality follows from the formulation of (SLP) in (5.3). On the other
hand, v < v* because the master problem is a relaxation of (SLP). Thus ¥ = v*, and
T is an optimal first-stage solution. The optimal second-stage decisions follow from
the solutions to the subproblems.
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Because the number of extreme points and extreme rays is finite for each polyhe-
dral set U*, situations 1 and 2 can only occur a finite number of times for each sub-
problem. This proves the finite convergence of the Benders’ decomposition method. In
practical applications, however, Benders’ decomposition is usually terminated before
absolute convergence, based on the bounds on v* that it provides in each iteration.

When P* is nonempty for every subproblem k = 1,..., K, the solution to the
master problem v is a lower bound on v* as this master problem is a relaxation
of the true problem (5.9). Because a constraint is added to the master problem in
each iteration, the last solution to the master problem always gives the highest lower
bound.

An upper bound on v* is obtained whenever situation 2 or 3 occurs for each sub-
problem in an iteration, i.e., all dual subproblems are bounded. This implies that the

primal subproblem (SUB*) has an optimal solution, say %, for each k, and the solu-
i
forms an upper bound on v*. This upper bound, however, does not necessarily de-

tion (Zo, !, ..., &) constitutes a feasible solution to (SLP). Thus cofip + Lf ., & &

crease with every new feasible solution that is found.

5.1.2 Primal-Dual Decomposition

In contrast to Benders’ decomposition, the primal-dual decomposition method finds
a better feasible solution (i.e., with lower objective value) to (SLP) in each iteration,
given some initial feasible solution. However, it does not supply a bound on the
deviation of the corresponding solution value from the optimum solution v*.

For the primal-dual decomposition method it is assumed that an initial feasi-
ble first-stage solution Zo is known such that all subproblems (SUB*) are feasible
(i.e., h¥(Zo) < oo for all k). It is clear from the preceding paragraph that any sub-
sequent first-stage solution that is generated by the primal-dual method will also
satisfy this assumption. Given this assumption, (%o, 6!, ...,0%) with 8* = h*(z,) for
each k =1,..., K is a feasible solution to (SLP) in (5.9). What follows is an outline
of an iteration in the primal-dual decomposition method. The individual parts in the
iteration will be discussed in detail after that.

Each iteration passes through two steps, but possibly several times, in order to find
a new and improved solution to (SLP) in (5.9). In the first step, a direction-finding
problem is solved that either establishes the optimality of the current solution z,
or supplies a descent direction (d,d’,...,0¥) from (&,6',...,6%). In the second
step, the maximum stepsize a is determined that can be taken from (Zo, 6!,... 6% )
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in this direction (d,d',...,0¥) while maintaining feasibility in (SLP). If a = 0,
then the descent direction (d,d!,...,0¥) is not a feasible direction. We will show,
however, that this gives us information that can be used to update the direction-
finding problem, and we return to the first step. If @ > 0, then (d,0!,...,0%) is a
feasible direction, and (Z+ad, 8! +ac', . ..,0% +ac¥) an improved solution to (SLP)
n (5.9). A ncw iteration is then started.

Our description below of the individual steps in each iteration largely follows
Grinold [19], although we will present a more efficient way to update the direction-
finding problem if a descent direction turns out to be an infeasible direction. A
description of Grinold’s method can be found in Shapiro [53, section 6.5] as well, who
also provides a convergence proof of the method.

The Direction-Finding Problem

Let P*(Z,) denote the set of all optimal extreme points in the dual subproblem (DSUB¥)
when zo = %o, and R¥(Z,) the set of all binding extreme rays. That is,

PE(%o) = {p € P*|p(b} — Ffio) = h*(Z0)}
R*(%0) = {r € R*|r(b} — FfZ,) = 0}

Notice that these sets correspond to the binding optimality and feasibility cuts in
the current solution (o, 8", ...,0%) for (SLP) in (5.9); all other cuts are satisfied by
strict inequality.

The direction-finding problem aims to determine a feasible direction (d, o', ..., o)
in which to change (Z,8",...,0%) so as to maximize the decrease in the objective
function value of (SLP) in (5.9). We will first assume that we have complete knowledge
of the sets P*(Z,) and R*(Z,). An optimal direction in the direction-finding problem is
then guaranteed to be a feasible descent direction. We will then relax this assumption,
and ~onsider the case that only partial knowledge of P*(iy) and R*(Z) exists.

Assuming that the sets P¥(Z,) and R*(Z,) are known completely, the direction-

finding problem is:
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K
(DIR): 6" = min cod + ) _o* (5.11)

k=1
s.t. Aod =0
(rFf)d >0 VreR¥), k=1,...,K
(pF¥)d+0* >0  VpePki), k=1,...,.K
d; >0 if ;=0

—e<d<e

The constraints —e < d < e are imposed to normalize d. The other constraints
make sure that d is a feasible direction, which follows directly from the formulation
of (SLP) in (5.9) and the definition of the sets P*(Zo) and R¥(%,). Grinold [19)]
shows that an optimal solution to this direction-finding problem is the steepest-descent
direction among all feasible directions. Notice that (d,o?,...,0%) = (0,0,...,0) is a
feasible solution, and thus 6* < 0. An optimal value 6* = 0 implies that no descent
direction can be found, and thus the current solution Z, is optimal. If 6* < 0, then
we can strictly improve the current objective value of (SLP) by changing o in the
direction d*; the value for o* equals the corresponding change in h*(z,).

To see this interpretation for o, suppose that d* is an optimal solution for d
in (DIR). The value of o* is then completely defined by the constraints:

of > (-pFf)d®  Vpe P*)
As o* is being minimized in (DIR), we have

k Ky g
7= Perg'?i)éo)(—pFl )d

We have seen in (5.8) that (—pF}) is a subgradient of h*(z,) in zo = &, for each p €
P*(iy). Furthermore, the subdifferential (the set of all subgradients) of h*(z)
in g = #, consists of all convex combinations of the vectors (—pF¥), p € P*(3y)
(see, for example, Nemhauser and Wolsey [48, section 1.2.4]). Rockafellar [51, section
23] shows that o* therefore equals the directional derivative of h*(Zy) in the direc-
tion d*. Because h*(z) is a piecewise linear function, this implies that there exists a

constant & > 0 such that
h*(Zo + ad*) = h*(Z) + ac® Vael0a)

That is, for a small enough stepsize, o* equals the change in h*(zy) when zy makes
a step in the direction d* from its current value Z,.Thus, if §* < 0 in (DIR), then the
optimal solution d* for d is a descent direction from &, and we are guaranteed that a
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positive step can be taken in this direction. The new solution to (SLP) will therefore
have a strictly lower objective value.

We now consider the relaxation of (DIR) that arises if only subsets P*(&) of
P*(%,) and R¥(Z,) of R¥(i) are known for each k = 1,..., K. This approrimate
direction-finding problem is:

(DIR): & = min cod + f:ok (5.12)
k=1
s.t. Aod =0
(rF¥)d >0  VreRKi), k=1,...,.K
(pFF)d+0* >0 VpePi), k=1,...,K
3 di 2> 0 if .’i‘o,‘ =0
—e<d<e

In solving this approximate problem, we sacrifice the guarantee that an optimal di-
rection (J, d',...,6%) is a feasible descent direction, and thus that we can take a
positive step in that direction.

To find out if a solution (d, 5!, ...,5%) to (DIR) is a feasible descent direction,
Grinold [19] suggests to solve the following feasibility problem for each of the K
subproblems:

f¥(d) = max —uk(Ffd) (5.13)
st. ukAF <ck
uf (b} — Ffo) = h*(o)

The last constraint imposes that only solutions u¥ € U* can be considered that are
optimal in the dual subproblem when zy = Z,. If f"((f) is unbounded, then we must
have found an extreme ray r € R¥(%,) with —r(FFd) > 0, and thus r ¢ R*(Z).
Alternatively, if f%(d) > &*, then —a*(FFd) > &* for the optimal solution @¥, and
thus ¥ & P*(Zo). In these two cases, we have found a constraint in (DIR) that
is violated by d, and d is therefore not a feasible direction from Z,. The violated
constraint should be added to (DIR), which can then be re-optimized to obtain a
new direction. If f¥(d) = G* for all subproblems k, then d satisfies all constraints
in (DIR), and thus is a feasible descent direction.

We will show below that we do not need to solve these separate feasibility problems
to update the sets P*(Z,) and R¥(Z,) in (DIR), but that the procedure that is used
to determine the maximum stepsize supplies the necessary information. Obviously,
this maximum stepsize will be zero if (J, d',...,5%) is not a feasible direction.
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If ((i, a!,...,5%) is a feasible descent direction, then the stepsize procedure finds
some maximum stepsize «« > 0 that can be taken in this direction without losing
feasibility in (SLP). Let &9 = T + ad denote the new first-stage solution after this
step. The sets P*(Zo) and R¥(2o) can now be initialized for each subproblem k with
all elements in P*(Z,) and R¥(&,) that correspond to binding constraints in (DIR).
This follows directly from the fact that

h* (2o + ad) = h¥(Zo) + ad® = p (b¥ — Ff) — a(pFy) d=p (b — FFio + ad))
for all p € P¥(&,) such that 6* = —pFkd, and
r (b5 — F5(Zo + ad)) = 7 (b5 — Ffzy) — a(rFf)d =0

for all r € R¥(Z) such that 7FFd = 0. Note that P*(#) will contain at least one
element.

Finally, because (DIR) is a relaxation of (DIR), we can conclude that the current
first-stage solution Z, is optimal whenever 6 =0 in (DIR).

Stepsize Determination

Assume that the approximate direction-finding problem (ﬁﬁ{) has been solved, and
that the optimal solution (d, ', ...,5%) is such that § < 0. The question is now how
to determine the maximum stepsize & > 0 that can be taken in this direction from
the current solution (Zo,6",...,0%) to (SLP) without losing feasibility in (5.9). Note
that we allow the direction to be infeasible, in which case a = 0.

As Aogd = 0, the constraints Ag(Zo + a(f) = by are satisfied for any a. The
first restriction on « stems from the nonnegativity of the first-stage solution, that is,
Ig + ad > 0. Thus, o must satisfy:

00 if d>0
a<ay= —Zo;i . 5.14
=0 min {—‘Z’l} otherwise. (5.14)
i:d; <0 i

Because we have imposed that d; > 0 if Zo; = 0 in (ﬁTR), oy > 0.

The second restriction on the stepsize is that all feasibility and optimality cuts
remain satisfied in (5.9). Shapiro [53, section 6.5] suggests a line-search procedure to
determine this maximum stepsize. We will show that it can be obtained efficiently
by parametric linear programming in the subproblems (SUB*). If the stepsize turns
out to be zero in a subproblem, then the corresponding parametric linear program
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will indicate a constraint in (DIR) that is violated by the current solution to (DIR).
Grinold [19] also uses parametric linear programming, but only after he has ascer-
tained that a descent direction is feasible (and thus the stepsize is guaranteed to be
positive) by solving the feasibility problems that were discussed earlier.

To simplify notation, we will omit the superscript & and describe the procedure
for the generic subproblem

(SUB) : h(zo) = min ¢z, (5.15)
s.t. Al.’l?l = b] - leo
I, Z 0

Let %, denote an optimal basic feasible solution in this subproblem for zo = z,. We
will write this subproblem in canonical form with respect to this optimal solution to
perform parametric linear programming.

Let P denote the vector of basic variables in Z;, and £}’ the vector of nonbasic
variables. Let B represent the optimal basis (i.e., the columns of the constraint
matrix A, that correspond to the basic variables) and AV the columns of A4, that
correspond to the nonbasic variables. The cost vector ¢, is partitioned correspondingly
in ¢B and ¢V. For 7y = %o+ ad, we can now write the subproblem (SUB) in canonical
form as:

“1(b, — Fy(Z + ad)) (5.16)

h(zo + acZ) = min (CN - CBB—IAN) {v Ty
=B~ (bl Fi(Zo + ad))

st. B+ (B1AN)zYN
2,2 >0
The dual solution that corresponds to #; is #; = (cBB~!), which is an optimal dual

solution if @ = 0, and thus @; € P(%,). We will assume 4, € P(Zo) as well. Notice
that the second term in the objective is a constant, which can be rewritten as:

cBBL(b, — F\(Z0 + ad)) = h(%) — ail, Fid
To simplify notation further, define

eB =cB-cBB"'B =0
eV =cN —cBB 1AV

AN = B-14V (5.17)
E = B_l(bl - Fl.'io)
d =-B'Fd
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so that the subproblem in \5.16) can be written concisely as

k(o + ad) = h(%) — o, Fid (5.18)
+ min ViV
st. P+ AViN =b+ad
i,zV >0

The vector &" is an (n; — m,;)-vector with individual elements ¢V, b and d are m;-
vectors with individual elements b; and d;, and A" is an m, x (n, — m;) matrix with
elements &f} . The basis B is an invertible m; x m; matrix, and an element of its
inverse B~! is denoted as f3;;. For any matrix D, the i-th row is denoted by D;, and
the j-th column by D ;.

We have the following result:

Proposition 5.1 If a; > 0 is the largest value for o in (SUB) so that the current
basis B remains feasible, then (Zg +ad, 0+ad) will satisfy all feasibility and optimality
cuts of this subproblem in (5.9) when a < o;. Furthermore, if the current solution is
dual nondegenerate (i.e., c¥ > 0), then at least one cut will be violated if a > a.

PROOF: We first note that the definitions of the reduced-cost coefficients 2 and ¢V
do not involve o, so that B remains optimal as long as it remains feasible. Notice
further that the corresponding dual solution %, does not depend on « either, and
; therefore remains optimal in the dual subproblem as long as the basis B is optimal
in the primal subproblem.

Assume a < a;. Then B is feasible in (SUB), and thus there cannot exist an
extreme ray r in the dual subproblem such that r (b; — F\ (% + ad)) > 0. This implies
that all feasibility cuts for this subproblem in (5.9) are satisfied in &g + ad.

Furthermore, i, is still optimal in the dual subproblem, and thus for an arbitrary
extreme point p of the dual feasible region:

p(bl - Fl(.'io + aJ)) <1y (b1 - Fl(i'o + aci)) = h(:i‘o) —_ aﬁlF,J < é-{- a0

because § = h(Zo), and —~# Fid < & from the solution to ([ﬁﬁ). This implies that
all optimality cuts are satisfied in (&, + ad, 8 + o).

Now assume a > a;. This implies that the basis B is no longer feasible in (SUB),
and (because of the nondegeneracy assumption) @, is no longer optimal in its dual.
Two cases can occur. The first is that the subproblem (SUB) becomes infeasible
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altogether, in which case there must be an extreme ray r in the dual subproblem
with 7 (b — Fy(Zo + ad)) > 0. This corresponds to a feasibility cut that is violated
in g =T + ad.

Alternatively, (SUB) remains feasible, and the dual subproblem has a new optimal

extreme-point solution, say ;. Mote that there must be at least one element ir. P (%),
say 4, for which & = —4,Fd in (DIR). Thus

Uy (b1 — Fl(io + aJ)) > U (bl - Fl(.'i'o + a(f)) = ’lil (bl - Fl(.’i‘o + acf))
= h(i‘o) - on:qFch= é+ oo

which corresponds to an optimality cut that is violated by (Zo + od,§ + aF).
QED

Although this proposition tells us that, barring degeneracy, a cut will be violated
if @« > oy, it does not tell us which one. We will show shortly that this violated
cut can be identified by one dual simplex pivot in the subproblem. If the current
solution is dual degenerate, and if the dual simplex pivot is a degenerate pivot (i.e.,
resulting in a change of basis but not in a change of the solution), then the current
direction d may still be a feasible descent direction from Z,, and a new value for o,
can be calculated by parametric linear programming with respect to the new basis.

We distinguish three different possibilities for the value of o that is obtained by
parametric linear programming in (SUB):

1. a3 = o0
This situation occurs if d > 0.

2. 0< oy < o0
This happens if d; > 0 for all rows 4 in (5.18) with b; = 0, and there is at least
one row i such that b; > 0 and d; < 0. Then a; is equal to

_Br . _ . _51'
o = ( a ) with T = arg if«ril;lgo {(T,} (5.19)

3. ) = 0:
This can only be the case if there is a row r in (5.18) with b, = 0 and d, < 0,
i.e., the current solution must be (primal) degenerate.

Suppose that we have performed the parametric linear programming in each of the K
subproblems (SUB*), and let a* denote the upper bound on « that is obtained from
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subproblem k. When a{‘ > 0 for all k (i.e., situation 1 or 2 occurs for each subprob-
lem), then the actual stepsize equals

a = min{ay, a},...,af}, (5.20)

where oy was defined in (5.14). If @ = oo, then (SLP) is unbounded. Otherwise, the
new feasible solution for (SLP) in (5.9) is (&0 + od, 8' + 06!, .. .,0K + a5¥). We will
refer to this new solution as (%o, !, .. .,8%).

Before we solve the approximate direction-finding problem (]ﬁﬁ) for this new so-
lution, the constraints in this problem have to be updated. We noted before that
the sets P*(%,) and R*(&,) for each subproblem k can be initialized with the ele-
ments in P*(%,) and R*(Z,) which corresponded to binding constraints in (DIR) in
the solution (d,d"',...,6%). (Note that each P*(&) will contain at least one ele-
ment.) Furthermore, if & = ap < 0o in (5.20), then one of the elements in the new
first-stage solution %, has become zero, say the k-th element, and we must add the
constraint dp > 0 to (ljﬁl).

Alternatively, if @ = of in (5.20) for some subproblem k, then the solution to
this subproblem becomes degenerate in the new first-stage solution zo = Z,. We
will show below that a dual simplex pivot in this subproblem with row r as the
pivot row (r as defined in (5.19)) supplies us with either a new optimal extreme
point p € P*(&) \ P*(io), or a new binding extreme ray r € R*(z) \ R*(o). The
appropriate set P*(Zo) or R* (&) should be enlarged with the new element, and the
corresponding constraint added to (DIR).

We note that this situation of (primal) degeneracy in the subproblem is precisely
what causes a; = 0 in case 3 above. If this happens for at least one subproblem k,
then the actual stepsize & = 0, and we can resolve this situation in exactly the same
manner by performing a dual simplex pivot in this subproblem.

Finding New Optimal Extreme Points and Binding Extreme Rays

Let %o denote the current first-stage solution, and (J, &',...,5%) the solution to the
approximate direction-finding problem (ﬁﬁ{) for o = To. Consider a subproblem k,
and let it be represented by the formulation in (5.18). (We will omit the superscript &
in what follows.) We assume that row r in this formulation of the subproblem has b, =
0 and d, < 0. That is, the current optimal basic feasible solution to the subproblem is
primal degenerate, and becomes infeasible if Z, changes to Z, + ad for any positive a.
If we choose row r as the pivot row for a dual simplex pivot in this subproblem, two
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situations can occur:

1. AN >o0:

This implies that a dual simplex pivot is not possitle in row r. The following
proposition shows that the vector (—B;!) is then an extreme ray in the dual
subproblem which is binding in zo = %o, and for which the constraint in (DIR)
is violated by the current solution to (DIR). Thus (-B;!) ¢ R(Z), and we
should add (—B;!) to the set R (&), add the corresponding constraint to (DIR),
and re-optimize this direction-finding problem to obtain a different proposal for
a descent direction.

Proposition 5.2 Under the conditions stated above, (—B[ ') € R(%), —B;'Fid <
0, and thus (—B ) € R(&).

PROOF: The set of feasible solutions in the dual subproblem is U = {u | uA; <
¢1}. Because B! AN = AN > 0 by assumption, while B;!B is a unit vector
with a one in the r-th position, it follows that (—B;!) is a ray of the set U.
That (—B;!) is an extreme ray of U follows from the fact that (—B;!') is an
extreme point of the set {u | ud; < 0,ue = 372! 3,;} (see Murty [47, sections
3.4 and 3.7)).

Using the definition of & = in (5.17) and the fact that b, = 0, we verify
that (—B;!) is a binding extreme ray in (SUB) when zo = Z:

—B (b, — Fyiy) = —b, =0
Thus (—B;!) € R(Z). Finally, (—B;!) € R(Zo) because
—B:lFld.:(i,- < O

which violates the constraint in (DIR).
QED

2. @ < 0 for at least one nonbasic variable j:
Let the column index s refer to the column that achieves the dual simplex
minimum ratio®:

31f the minimum ratio is achieved by more than one column, an anti-cycling rule should be used
to choose the index s.
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—eN
§ = arg min { — } (5.21)

alN
J.arj<0

Perform a dual simplex pivot on column s with pivot element aY, and let B
denote the new optimum basis. From elementary row operations in the revised
simplex method it follows that the optimal dual solution #; that corresponds
to the new basis B equals:

iy = i — (e /aly) B! (5.22)

If ¥ = 0, then 4, = 4, and the simplex pivot is dual degenerate. However,
the updated direction with respect to the basis Bisd= -B-'Fd, with d, =
(d./alN) > 0. Thus, o, is no longer restricted by row r to a value of 0, and a
new stepsize determination should be performed in the subproblem.

If Eﬁv > 0, and thus 4; # i, the next proposition states that %, is an optimal
extreme point in the dual subproblem when zo = Zj, and the corresponding
constraint in (DIR) is violated by the current solution to (DIR) if —iiy Fid = &
(i.e., the constraint in (DIR) with respect to i, is binding). We then add this
constraint to (lﬁﬁ) and re-optimize the direction-finding problem to find a new

-~

descent direction. We note that the condition —u, F\d = & is satisfied if i; was
the most recent addition to the set P(&,) when (DIR) was solved, and thus will
be satisfied in the course of the primal-dual method.

Proposition 5.3 Under the conditions stated above, @, € P(Z). Furthermore,
if —i Fid = G, then 4, & P(i).

PROOF: From the fact that 4, is defined with respect to the basis B it follows
that 1, is an extreme point of the dual feasible region. Furthermore:

iy (by — FyZo) = ity (by — Fio) — (Y /al) B (b — Fio)
= h(Zo) — (e /al )b,
= h(Z)

Thus 4, € P(Zo). To prove that i, ¢ ﬁ(:i'o) if —ii, Fyd = &, we write

4 Fid=1i,Fd- (" /a¥)B;'Fd

=-0- ﬁ:v/ﬁﬁ)d;

123



Because @V < 0, d. < 0 and &V > 0, we have @1 Fid + 6 < 0. Thus, @, cannot

have been an element of P (%) when (DIR) was solved.
QED

If there is more than one row r in the formulation of the subproblem in (5.18) that
has b, = 0 and d, < 0, then we must choose a row index for the dual simplex pivot
using some anti-cycling rule.

The sets P*(zq) and R*(xzy) in each subproblem k are finite for any feasible
first-stage solution zg, and the situation that of = 0 in the stepsize determination
can therefore only occur a finite number of times before we find a descent direction
in (].TIR) that is feasible, and therefore allows a strictly positive stepsize. Because
each of the functions h*(z) is piecewise linear and has a finite number of segments,
the primal-dual method converges to an optimal solution of (SLP) in a finite number
of iterations.

5.2 Decomposition Methods for Multistage Sto-

chastic Linear Programs

We consider the multistage stochastic linear program as a sequential decision problem
under uncertainty, where each stage corresponds to a time period, and uncertainty
exists about the state of the world at the beginning of each period. It is assumed
that this uncertainty can be represented by an event tree, and we will make use of the
terminology and notation for event trees that was introduced in section 2.1. In this
section we will describe the extension of both Benders’ decomposition and primal-dual
decomposition to multistage stochastic programs.
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A multistage stochastic linear program can be stated mathematically as

(MSLP) : v* =min cozo+ Y iz} + Y. cszy+...+ Y chap (5.23)
SES) 3€ES?2 SEST
s.t. Apxo = by
Fyzy +Ajx} =b VseS
Fiz} + Ajx) =b Vs€eS

Fixs |+ Ayzi=b5 VseSr
20,2, 20 Vse S, ,t=1,...,T

where z is a ng-vector of first-stage decisions, and z; a n,-vector of decisions at time ¢

if scenario s occurs (remember that a scenario at time ¢ was defined as a sequence
of events, or path, in the event tree from time 0 to time t). The right-hand-side
vectors by and b have length mgo and m,, respectively, and the constraint matrices
are dimensioned accordingly. As in the two-stage stochastic program, the vector
of objective coefficients ¢! has the form 7]g{, where m{ denotes the (unconditional)
probability of scenario s at time ¢, and ¢; is a n,-vector. Note that the formulation
of (MSLP) allows that all data are scenario dependent. We assume that this problem
is feasible, and has a finite optimal solution.?

If the stochastic program is decomposed by stage (time period), then we obtain a
separat'e subproblem for each scenario at the beginning of a stage. The subproblem
for a scenario s at time T, given some decision vector z._, from its predecessor
scenario s~ at time T" — 1, is

(SUB%) : h¥(zy_;) = min chzh (5.24)
s.t. Arzh =by — Fizy_,
zr >0

At each time t = 1,...,T — 1, the subproblem for a scenario s, given some vector of
decisions z{_, from its predecessor scenario, can be written as:

4See footnote 1.
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(SUB): hi(z:Z,) = min cjz} + 3 _h} () (5.25)

s+
st. Afz} =b — Fiz!_,
z; 20
where the summation in the objective is over all successor scenarios s* of s. The
problem (MSLP) can now be written in decomposed form as

(MSLP) : v* = min cozo + Y_ hj(zo) (5.26)
€S
s.t. Ao.’L‘o = bo
Zo 2 0

Similar to what was done for two-stage stochastic programs, we will describe the value
of each function h{(z]_,) in terms of feasibility and c)timality cuts.

We first note that the subproblem for a scenario s at time T'—1 is a two-stage sto-
chastic linear program, and we can thus use our results from section 5.1 to reformulate
this subproblem as:

(SUBT_1) : hp (a7 p) = (5.27)
min cp_,op_, + Y 0F
st
st Ap_ 177, =bp_y — Fj_127_,
(rFf") 24y >rbyt  VreRY, steDp(s,T-1)
(pF") x4y + 05 > pby Vpe Py, st €Dr(s,T-1)
7,20

where 65" represents the value of hS' (z%_,), ard the sets P& and R3 contain all
extreme points and extreme rays, respectively, of the feasible region in the dual
of (SUBY).

To describe hi._,(z%_,) in terms of feasibility and optimality cuts, consider the
dual of (SUB%._,) in (5.27), where u}_, is the dual vector for the set of constraints
A% zf_, = b3_, — Fj_,z5_,, and 45 ® (V& ") the dual variable for the optimality
cut (feasibility cut) that corresponds to the extreme point p (extreme ray r) in the

set Py (RE):
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(DSUB7_,) : hr_1(z7_5) = (5.28)

- st r st R
max up_, (bp_, — Fp_1z7_,) + Z ( Z vp T+ Z T pp) by’

st \reryF peP;t

st. wp_Ap, + 3| T o r+ X e | B <o
st \rerst pePst

> =1 Vst e Dp(s, T — 1)
’,e'Pl"'

3+'|I; ’+|P st st +
vp ",y 20 VreRy, pePf, st €Dyp(s,T - 1)

Because the sets P4 and RS are independent of z4_,, it follows that the feasible
region of (DSUB3._,) is independent of z3_,.

To interpret this formulation, let U denote the feasible region in the dual of
the successor subproblem (SUBS'). It is well-known that any point in Us" can be
written as the sum of a convex combination of the extreme points and a nonnegative
combination of the extreme rays of Us' (see, for example, Murty [47, section 3.7]),
i.e., as

> T AL > ¥ Pp  with S P =1 (5.29)
rers’ pepst pePst

and & VP >0 Vre RS pe Py

The formulation of (DSUBZ._,) in (5.28) has therefore in effect replaced each dual
vector uf and its associated constraints (u§: A3 < i) by this equivalent descrip-
tion.

We will denote the feasible region of (DSUBZ_,) in (5.28) as Uj_,, its set of
extreme points as P4_, and the set of all extreine rays as Ry_,. Each of these
extreme points and extreme rays consists of a value for the vector u}._; as well as
values for V-}-+" and 'y.‘,'f"’ for all r € RS', p € P&" and every st € Dy(s, T — 1). The
collection of these values will be written concisely as (us_,, {v3 "}, {v& *}).

To formulate the feasibility and optimality cuts that follow from the formulation
of (DSUBS._,) in (5.28), we simplify notation and define
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Forr e Ry : Gy =rF} and g7 = rby (5.30)
Forpe P;y: Epf =pFp and er? = pbs.
Forr € Ry_, : Gy, = ay_,F}_, and

g;'::l = ﬁ';‘-lb';'—l d.z ( z: gt o s+,r’ + Z __,+'Pl ’,r+,p;

st ,.IGR¢+ IG'PI+
where r = (@_,, {75 "}, {3 *})
Forpe Ps_,: Ex?, =45_,F}_, and
8P — s ~st ! st ~stp stp
erty = dp_,bp_, + 2 Z vp' gr' + Z Yr " er
st '.Iekl+ ple'p';ﬁ'

where p = (a5_,, {o5 "}, {3 *})

Now the feasibility cuts for z5._, can be written as:

GrL\ZT-2 2 974 VreRr, (5.31)
and the optimality cuts as

Ef? zh o +6p_, > ep?, V pePr, (5.32)
where 65._, represents the value of the function h}_,(z%_,). These optimality cuts

are derived from the fact that —E7?, = —d4_,F#_, is a subgradient of hf_,(z%_,)
in z§_, = &5_, if p = (4f_,, {D {2577}, {357 *'}) € P4_, is an optimal dual solution
for hi_, (#4,).

By adding these cuts to (SUB3._,) for each successor subproblem (SUB%._,) of s~,
and replacing hi_,(z¥_,) by 64_,, we obtain a reformulation of (SUB%_,) that is
similar in form to (5.27). In general, by repeating the procedure recursively for sub-
problems at times T—2,. .., 1, we obtain the following formulation for the subproblem
of a scenario s at timet (t=1,...,T —1):

(SUB}) : hi(z;_,) = (5.33)
min cjz] + Z 6:,

s.t.  Ajz; = b} — Fiz;_,
+ +
G:+i’zt > geri VreRy, st €Dulst)
+
H-l Pz} 0t+1 > et Vpe P+11 st € Dei(s,)
z; 20
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while the the full problem (MSLP) can be written as

(MSLP) : v* = min cozo + ZO{ (5.34)
SES)
s.t.  ApTo = by
Gl o >q VreR], se€S
ElPzo+ 07 > e” VpePi, s€&
To Z 0

The matrices G;" and E;" and the constants g;"" and e;”” were defined in (5.30)
fort = T and t = T — 1. Their definitions for ¢ < T — 1 are analogous to the
definitions for t = 1" — 1, and are given below for completeness:

Forre R::G)" = @ F? and 5.35"
¢ t ttt
ST =s)s _str! st _stp! ,+ ’
g = u;b; ‘*‘Z Z S S R 2 Yea i’ €est
st r’G'RfIl PEPY,

where r = (ut’ {Vt+ir } {’Yt+ })
Forp € P} : E;* = 4} F; and

+ + +p!
1p P S I ,1' 3 17' 25 1p s
= u3b; + E E Uil Geeil t+ z , Yest €t
st r'engjt, pePy),

st p!

where p = (i, {Vt+1 ERCHS)

It should be clear that the cuts in the subproblem for a scenario s at time ¢ > 0 reflect
all necessary information from its descendant subproblems at times ¢t +1,...,T. By
extension, the cuts in the formulation of (MSLP) in (5.34) represent all necessary
information in the original formulation from time 1 onwards.

Both Benders’ decomposition and primal-dual decomposition are based on this
reformulation of (MSLP), and each of them iteratively generates cuts from the solu-
tions to (approximate) formulations of the subproblems. One should note, however,
that the cuts which were described above assumed a complete knowledge of the set
of extreme points and extreme rays of the feasible region in the dual subproblems.
Specifically, the cuts that were derived from the subproblem of a scenario s at some
time ¢t < T assumed knowledge of the complete sets 'Pf:l and R}, for all succes-
sors st of scenario s. It is clear that this knowledge will generally not be available. In
fact, the whole purpose of the decomposition methods is to gather this information
in the course of the algorithm, and only to the extent needed. We will show below
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that cuts which are derived from the subproblem of a scenario s at time t =T —1 are
still valid, although weaker, if they are based on only partial knowledge of the sets of
extreme points 'P,;f and extreme rays ’R:}‘+ for all its successors s*. The argument is
analogous when t < T — 1.

Consider the formulation of (DSUB%_,) in (5.28), and suppose that only subsets
Pst and R4 of P4 and Ry are known for each successor scenario s* of s, where
each 13;+ is assumed to contain at least one element. We will refer to this approx-
imate formulation as (D§I—JB;_,), and to the corresponding optimal objective value
as hg_,(&3,), with &5_, a given vector. It is obvious from (5.28) that partial knowl-
edge of the sets P4 and R4 restricts the feasible region, and thus hf._,(z}_,) >
hs._,(z4_,) for any vector z4_,. We note, however, that every extreme point (ray)
of the feasible region in (D§TJB;-_1) when P2" # 0 is also an extreme point (ray) of
the feasible region in (DSUB%._,); this follows directly from the characterization of
extreme points in Murty [47, section 3.4].

Assume first that (DSUB;._,) is bounded, and let p = (@5_,, {uT Y, {5 53771 be
the optimal solution. Then —a3._, F3_, is a subgradient of hs._, (z5_,) in 2§_, = &5_,,
and thus for all z§_,

18 s~ ~8,p s,p .8
T-1(x7_g) > €78, — Exf x1_,
where

»p — 33 bl
Ey? =as_Fi_, and

. + + +p' stp!
~Pp — S8 (] ns ,r s ,r ~8T,p s
ety = p_bp_ + ) orer T+ Y Ar

’+ r'G"i;."' peP.+

Because hi_, (z4_,) > h4_,(z4_,), it follows that
Ep? \zyy+ 65, > &P

is a valid optimality cut in (SUB%_,).
If (DSUBy._,) is unbounded, it must have a ray 7 = (@}_,, {7 o } {'yT "} such
that

Gy, =4 _F:_, and
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~sfF _ -8 s —st ! sty ~st.p atp
97‘-1=“T-1b1‘-1+z Z p " gr" + Z Yr " er

st \reryt pepyt

By setting v " = 0 for all ' € Ry \ R4 and M =0forall p e PP\ Py it
is clear that 7 also defines a ray in (DSUB%._,) that leads to an unbounded solution
when z§_, = £}_,. Thus

Grlizr_a 2 7,
is a valid feasibility cut for (SUB%_,).

A third possibility is that (D§I’JB;_,) is infeasible. We note, however, that
(DSUB4._,) is feasible because of the assumption that (MSLP) is bounded. The
infeasibility in (DSUBy._,) must therefore be due to the fact that only the partial sets
Pz and R are included in its formulation. More elements of P2 and R4 should
then be generated to make (DSUB;._,) feasible.

An analogous argument establishes the validity of the cuts that are generated from
subproblems at times ¢t < T — 1 when only subsets of all extreme points and rays are
known of the dual subproblems at time ¢ + 1.

5.2.1 Nested Benders’ Decomposition

In nested Benders’ decomposition, information between subprobleins is passed for-
ward as well as backward in time. On the one hand, the subproblem for a scenario s
at time ¢ (1 <t < T —1) serves as a master problem for its successor subproblems at
time t + 1, to which it passes values of the decision vector z;. On the other hand, it
is used to generate feasibility and optimality cuts that are added to the (sub)problem
of its predecessor scenario at time ¢t — 1. Although different strategies are possible
for the order in which subproblems are solved and information is exchanged, we will
describe the so-called fast-forward-fast-backward method. This strategy was found
superior among the strategies that Gassmann [18] tested on several multistage sto-
chastic linear programming models.

In the fast-forward-fast-backward method, one makes alternatingly a forward pass
and a backward pass through time. We will briefly describe each of these passes, and
assume that in each subproblem only a subset of the complete set of cuts is known.
If a subproblem is solved that contains no optimality cuts from one or more of its
successor subproblems (this can only be the case during the first forward pass), then
the corresponding variables @ are assigned a value of zero.
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A Forward Pass

In a forward pass, the aim is to construct a feasible solution to (MSLP) by passing
decision vectors from subproblemns to successor subproblems. At the start of a forward
pass, the master problem at time 0 is solved, and the optimal solution 7, is passed to
the subproblems at time 1. If any of these subproblems is infeasible, a feasibility cut
is found that is violatec by Z,, this cuts is added to the time-0 master problem, and
a new solution for £y must be found. Alternatively, if all subproblems at time 1 are
feasible, then their optimal solutions ] are passed to the successor subproblems at
time 2. Each of these subproblems at time 2 is solved, and if any of them is infeasible,
say (SUB3"), then a feasibility cut is added to its predecessor subproblem (SUB}) at
time 1. If (SUB{) becomes infeasible with the additional cut and for the current value
of g = &y, then a new feasibility cut is added to the master problem at time 0, and
a new solution for zy must be obtained. Otherwise, the new solution zj to (SUBJ) is
passed to all its successor subproblems, and these subproblems are re-optimized.

In general, the subproblem (SUBS) of a scenario s at some time ¢t =1,..., 7 -1
is solved in the course of a forward pass when either a solution #;_, is passed from
its predecessor subproblem, or a feasibility cut is added from one of its successor
subproblems. If (SUB{) has an optimal solution Z{, then this solution is passed
to each of its successor subproblems, and these successor subproblems are solved
next. Otherwise, (SUBY) is infeasible, and a feasibility cut is added to its predecessor
subproblem, which needs to be re-optimized.

A forward pass ends when a solution has been obtained to all subproblems at
time T. At that point, Zy, the solution to the master problem at time 0, and all
subproblem solutions i} constitute a feasible solution to (MSLP). The corresponding
objective value is thus an upper bound on v*.

A Backward Pass

In a backward pass, an optimality cut is generated from each subproblem and added
to its predecessor subproblem. First, for each subproblem at time T an optimality
cut is constructed from the solution that was found at the end of a forward pass, and
these cuts are added to the formulation of the respective predecessor subproblems
at time T — 1. (Note that the added optimality cuts can never cause infeasibility
of these subproblems, as the variables 64 are unrestricted in sign.) A new solution
is then determined for each of these subproblems at time T — 1, optimality cuts
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are constructed from these solutions, and added to the predecessor subproblems at
time T — 2.

This procedure continues, moving backward in time, until new optimality cuts
have been added to the master problem at time 0. The solution value of the master
problem after these cuts have been added provides a new lower bound on the optimum
value v* of (MSLP). At that point, a new forward pass can be started.

One obtains a better lower bound on v* after each backward pass, and a feasible
solution in each forward pass. The decomposition algorithm can be terminated if
the solution value of the best feasible solution that has been found is deemed close
enough to the last lower bound. Obviously, if upper and lower bound are equal to
each other, an optimal solution has been found.

5.2.2 Primal-Dual Decomposition

The extension of primal-dual decomposition from two-stage to multistage stochastic
programs is not possible in the same way as was discussed for Benders’ decomposition.
That is, it is not possible to gradually increase the sets of extreme points and extreme
rays of each dual subproblem by making multiple forward and backward passes. This
is due to the fact that one cannot ensure the feasibility of a descent direction for
the decision vector z{ at some time ¢ < T' — 2 without knowing the complete sets of
extreme points and extreme rays in the dual subproblems at time ¢ + 2.

To see this, suppose we solve the approximate direction-finding problem for a
scenario s at time T' — 2, where Z%_, is the current value of z3_,:

(DIR;_,): &= (5.36)
min cy_,d+ E af_,
st
s.t. Ap_od =0
Gy d >0 VreR, (3_,), st €Dpy(s,T-2)
EXPd+ost, >0 VpePs (#_,), st €Dri(s,T—2)
d; >0 if &4_p; =0
-e<d<e

The sets P37, (£5_,) and R3,(&5_,) are subsets of the sets of optimal extreme
points Pj' (5_,) and binding extreme rays R4 _,(Z5_,), respectively, in the dual
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subproblem of successor scenario s* at time T — 1 when z§._, = #._,. Let d denote
the optimal solution for d in (DIRy_,), and &5, the optimal value for a4 ,. To
check the feasibility of d as a descent direction, we could solve the feasibility problemn
for each succesor scenario s* of s:

37 (d) = max —uj_ Fid (5.37)
S.t. u%‘tlA;?'_l + E Z VT'r s + Z ’y 'p A ‘p < ("l'+—|
s'€Dr(s*,T-1) re'R‘ pE'P.,.
Zpe,,.' ’yr}'”’ =1 Vs €Dp(st,T-1)
u'r 1( -'BT 2)
+ ) Y vpterm+ Y pPert | = by (#1-0)
s'€Dr(s*,T-1) \reRs pEPY

Za TP >0 VreRs, r€ Py, s € Dr(st,T—1)

The constraints in this problem are the constraints of the dual subproblem (DSUBS™ )
plus an additional constraint that says that attention must be limited to feasible
solutions which are optimal for 5_, = T7_,.

As in the two-stage case, if f,’-t,(tf) > &,}f_l, then d is not a feasible direction,
and we either find a new binding extreme ray (if fi',(d) = 0o) or optimal extreme
point (if 54 -1 < 3 1(d) < 00) for which we should add a constraint to (DIR;_,). 1

2t (d) = 347, then d is a feasible direction from Z4._, as far as the subproblem for
successor scenario st is concerned.

Now suppose only a subset Pg # @ of P§ and a subset R4 of RS is known for
each scenario s’ € Dp(s*,T — 1) in the formulation of the feasibility problem. This
approzimate feasibility problem is thus a restriction of the true feasibility pfoblem,
and its objective value f3! (d) < fof (d). If fa% (d) = 65", while f37,(d ) > a5 |,
then the approximate feasibility problem suggests that d is a feasible direction, while
in reality it is not. If a step @ > 0 would therefore be taken from I7_, in the
direction d, the new solution Z5_, + ad and 63" | + a3, for all s* € Dp_,(s,T —2)
i not feasible in (SUB%_,). As it is impractical to collect all extreme points and
extreme rays of the dual subproblems, we therefore need a different decomposition

approach.
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An Alternative Decomposition Approach

We can apply the primal-dual decompositicn method to multistage stochastic linear
programs by essentially solving a sequence of two-stage programs. Suppose a feasible
solution for (MSLP) is known, which we will denote as Z, and z; for all s € S; and t =
1,...,T, or concisely as (Zg, {Z;}). Given the solution z7._, for each s € Sy_3, we can
solve the subproblems (SUB%._, ) for all s € Sr_; using the primal-dual decomposition
method for two-stage stochastic programs that was described in section 5.1.2. Once
the optimal solution to (SUB%._,) for each s € Sr_, is found, we move backward in
time one period, and solve (SUB%._,) for each s € Sr_2, given the solution £j._, from
its predecessor subproblem (SUB%_,). This optimization can again be performed
by the primal-dual decomposition mechod for two-stage stochastic programs, where
the second-stage problems are the subproblems at time T' — 1. This procedure is
continued, moving backwards in time, until the problem at time 0 has been solved.
At that point, we have an optimal solution to (MSLP).

One point in this approach needs elaboration. Suppose we have solved the sub-
problem for a scenario s at time T — 1 by the primal-dual decomposition method
for two-stage stochastic programs as described in section 5.1.2. If parametric linear
programming was used to determine the maximum stepsize in a descent direction
from z5._,, then we know an optimal extreme-point solution to (SUB%') for each
successor scenario s* of s in each iteration of the algorithm, and thus also when the
optimum value of z§_, is found. Let Z5._, denote this optimum value, and @57 the op-
timum extreme-point solution to (SUBZ") for each successor s*. Thus, (25_,, {25 })
constitutes an optimal solution to (SUB%._,), but it is not necessarily an optimal
eztreme-point solution. Before we can apply the primal-dual decomposition to solve
its predecessor subproblem at time T — 2, however, we need such an extreme point
solution in order to perform the parametric linear programming. We thus have to
convert the optimal solution (Z5_,, {5 }) to an extreme point solution before we
can proceed. Obviously, this will be not only be the case if we move backward from
time T — 1 to time T — 2, but for any step backward in time in the algorithm.

A drawback of this decomposition approach is that all subproblems have to be
solved to optimality before one can move a stage backward. This is necessary to deter-
mine whether a descent direction is feasible, and to make sure that a positive stepsize
maintains feasibility in all subproblems. These properties in turn are necessary to
prove finite convergence of the method.

It is clear that the subproblems increase in size when we move backward in time.
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The computational effort that is involved in performing the parametric programming
pivots in the subproblems thus increases when we approach time 0. We note, however,
that the direction-finding protlems remain approximately the same in size at any
stage, as their size is determined only by the number of successor subproblems.

Trajectory Optimization

Grinold [19] describes an alternative approach for solving multistage deterministic
linear problems by primal-dual decomposition, which is easily generalized to multi-
stage stochastic linear programs. He essentially transforms the multistage problem
into a two-stage problem, and solves it by the primal-dual decomposition method of
section 5.1.2.

For each scenario s at every time t = 1,...,7T, a new vector z; of length m, is
defined by zf = F/z ,, where s~ is the predecessor scenario of scenario s. The
collection of all these vectors 2] is called a trajectory, and will be denoted by z.
Given a value Z for the trajectory, the multistage stochastic program decomposes
into separate subproblems, one for each scenario s at every time ¢t =0,...,T:

h;(2) = min c¢jz;

st. Az =b—
+ ~gt
Fzg = 2/, Vst € Dip(s,t)
z; 20

where the subproblems at time 0 and time T are obvious specializations of this formu-
lation. After a solution has been obtained for each of these subproblems, a direction-
finding problem is solved to find a descent direction for the trajectory z, or conclude
that it is an optimal trajectory. This direction-finding problem includes cuts from
all the subproblems. Grinold shows formally that the combined solutions to the
subproblems constitute an optimal solution to (MSLP) if 2 is optimal.

In terms of a two-stage stochastic program, the variables in the trajectory z form
the first-stage variables, and the decision vectors z; the second stage-variables. We
note that the direction-finding problem may be quite large as it includes a variable
for each variable in the trajectory, and cuts from all subproblems. However, if a
subproblem has a unique dual optimum solution given the current trajectory, implying
only one optimality cut in the direction-finding problem, then the direction-finding
problem can be split into disjoint problems.
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5.3 Re-Optimizations in the Iterative Disaggre-
gation Algorithm

It is straightforward to write the ALM model of section 2.2.1 in matrix notation
such that it has the form of (MSLP) in (5.23). To convert all constraints in the
ALM model to equality constraints, we need to introduce a slack variable wj in the
borrowing constraint for each scenario s at every time ¢. All variables in the ALM
model were assumed to be nonnegative, which agrees with the assumption in (MSLP).
The decision vector z; in the formulation of (MSLP) corresponds to the set of all
variables for scenario s at time ¢ in the ALM model:

8 — 8 8 8 8 S S
I, = (mt""bumt’yuzuwt)

In the relaxation of the ALM model which is being solved during the iterative dis-
aggregation algorithm (see section 4.3), the decision vector z; also includes the extra
borrowing variable v;.

The definition of the vectors of objective coefficients c;, the constraint matrices A;
and F?, and the right-hand-side vectors b; for the ALM model follows directly from
this definition of the decision vectors z;. In the ALM model, the matrices A; and F;
and the vectors b] were assumed to depend on the states in the event tree, but to
be the same for all scenarios that correspond to the same state. Thus, if there are
multiple scenarios in a state, which is the case if the event tree has a lattice structure,
then the ALM model is a special case of (MSLP).

As the ALM model has the form of (MSLP) in (5.23), we can in principle use any
of the decomposition methods that have been described in this chapter to optimize
the ALM model. If no information about the solution itself is available, then Benders’
decomposition is probably the most efficient method. Computational experience has
indicated that for many problems Benders’ decomposition finds a “good” approximate
solution fairly quickly, although convergence to the optimum solution often slows
down considerably in the course of the algorithm. A potential problem with Benders’
decomposition is that degeneracy in the dual subproblems can lead to the generation
of many redundant cuts (see Birge [3]).

The primal-dual method is a more rigid method as it maintains feasibility of the
solution in each iteration. This requires more work per iteration of the method, and
limits the changes in the solution between iterations. A starting solution that is far
from the optimum may therefore require a prohibitively large number of primal-dual
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steps before the solution approaches the optimum. Furthermore, as a local-search
method, the primal-dual method is not able to provide bounds on the proximity to
the of timum.

We will show in section 5.3.1, however, that Benders’ decomposition is not an
efficient method to re-optimize the ALM model in each iteration of the iterative dis-
aggregation algorithm. In particular, we will show that many cuts which are generated
during the solution of an aggregated version of the ALM model can no longer be used
after a disaggregation is performed. As a consequence, Benders’ decomposition has
to discard mucn of the information about the solution that was obtained in previous
iterations.

The primal-dual decomposition method, in contrast, has a much better ability to
use this information. We will elaborate on this in section 5.3.2.

5.3.1 Benders’ Decomposition

Suppose that an aggregated ALM model has been optimized by Benders’ decomposi-
tion, and that a state or time disaggregation is performed in a node of the aggregated
event tree. We will show below that this disaggregation will destroy the validity of
the feasibility and optimality cuts in the scenario subproblems at that node. These
cuts can therefore not be used in the subsequent re-optimization of the ALM model.
Furthermore, as these cuts have been used in the construction of the optimality and
feasibility cuts in the subproblems of all ascendant scenarios as well, the disaggre-
gation also destroys the validity of the cuts in these subproblems. A fortiori, none
of the cuts in the master problem at time 0 remains necessarily a valid cut after a
state or time disaggregation. Thus, the disaggregation necessitates the generation of
a completely new set of cuts in each of these subproblems as well as the time-0 master
problem.

State Disaggregation

Consider the state disaggregation that is the reversal of the basic state aggregation in
figure 4-1. Using the notation of the current chapter, the subproblem for scenario s* in
state (n, k;) at time ¢; before the disaggregation (i.e., corresponding to figure 4-1(b))
can be written as:
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(SvB:j): iz;’; (z7_,) = min ¢} z{ +h¢m( ) (5.38)
s.t. A(" "0) — b(" ko) F(n ko) .8

J 1

thO

In this formulation, scenario s~ at time t;_, represents the predecessor scenario of sce-

nario s*, and x:j'_l is the associated decision vector. Scenario s at time ¢;,, denotes
the single successor scenario of scenatio s* before the state disaggregation, corre-
sponding to node (n, k2) in figure 4-1(L). The objective value function fzfj (@) of

its subpioblem (SUB:J. +l) is characterized by the optimality cuts:

: “(x, ) > ef, — Eb xy VpeP,, (5.39)

where it is assumed that x:j' satisfies all feasibility cuts. The state disaggregation
splits node (n, kp) at time ¢;4; in M + 1 new nodes, and we denote the successor
scenario of scenario s* in the new node (n;,k; — 1) as s; for . = 0,...,M. The
subproblem for scenario s* at time t; after the state disaggregation is then:

(STfB:J_) : h‘ (z¢,_,) = min Zh¢J " (:1:,J (5.40)

s.t. A("k°)th bg’ ko) F(" ko) o

J—1
>0
¢]

We have shown in section 3.3.2 that (ST.TB:;) can be obtained from (S’ITB:;) through
column and row aggregations, and one is therefore neither a restriction por a relax-
ation of the other. Thus we don’t know whether ﬁ,"; (zy,_,) 2 fzf; (z_,), or, equiva-
lently, whether M, h! ) (xf;) > iz:j - (:1:2;). This implies that the optimality cut

zht].'.l (xtJ > e:; Et1+1 lJ V p € t,,'.] (5’41)

may not be a valid cut, and we therefore cannot use it in (STJ’B:), )-
To see that the feasibility cuts for a::; in (STJ\B:j) are not necessarily valid in

(STI'B:;), it suffices to note that an unbounded extreme ray in the dual subproblem
of scenario s before the disaggregation is not necessarily an unbounded ray in any
of the dual subproblems of the scenarios s; after the disaggregation. This follows
directly from the fact that the feasible region and the objective function in the dual
subproblems are state dependent.
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Time Disaggregation

To illustrate the problems with the Benders’ cuts in case of tune disaggregation, we
consider the reversal of the basic time aggregation in figure 4-2. Before the time
disaggregation, the subproblem for a scenario s* in node (n,kq) at time t; can be

written as:
—_ 5° ~ o - .
(SUB,,): h¢ (zy,_,) = min c, :v, + Z h,”z (=) (5.42)
st APz = gt - MR
z; >0

As before, scenario s~ at time ¢;_; is the predecessor scenario of scenario s*, and z; _,
is the associated decision vector. Scenario s at time t;., denotes the successor
scenario of scenario s* that corresponds to node (n;, k, — 1) in figure 4-2(b), with
l =0,...,M. The function value izf}iz(x;’;) for each [ = 0,...,M in (S’I‘J\B:;) is
defined by optimality cuts that are derived from the corresponding subproblem at
time ¢4, while x;’; is restricted by feasibility cuts from all of these subproblems.

After the time disaggregation, a new node (n, k) is introduced at time ¢;.,, and
the successor scenario of scenario s* in this node is denoted by s. The subproblem
for this successor scenario is:

(SUB,, ) ,m(zt )=min ¢ z{ + Z h,”z(m:jﬂ) (5.42)
& & &
s.t. Ag'“‘)x, - bg'“') F(,'l.')zz,
It,~+: >0

Because the time disaggregation does not change the subproblems of the scenarios
at time ¢;42, we can characterize the functions fz:;:z (z,,) in (STJ’B:),“) by the same
optimality cuts that were used in (S’I-J\B:;), except that :z:,"j' is replacea by zj, . In a
similar manner, the feasibility cuts that were used to restrict z:; in (S/U\B:;) can now
be used in (STJ’B:J. 1) to restrict zg .

The subproblem for scenario s* at time ¢; after the time disaggregation is

(SUB,,) : l.zf;( _,) = min c, a:, + h,J +l(:v:;) (5.44)
st AMIgr =y _ plmkolge
zi > 0

J
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As i-zi'J - (zfj) is the objective value function of the new subproblem (5.43), we do not
know any optimality or feasibility cuts from it. Furthermore, because the cuts in
the subproblems of all ascendant scenarios of s* were derived from the old cuts in
(ST.TB:;), which do not apply to (S’l‘J/B:;), new cuts need to be derived for all these
ascendent subproblems as well.

5.3.2 Primal-Dual Decomposition

In order to start the primal-dual decomposition method, one needs an initial feasible
solution, but any feasible solution will do. We have shown in section 4.3 how a feasible
solution for a relaxation of the ALM model can be constructed after a disaggregation
is performed in the underlying event tree. This feasible solution is directly derived
from the optimum solution in the previous iteration of the algorithm. Furthermore, if
certain conditions on some parameter values are satisfied, then the relaxation of the
ALM model is guaranteed to have the same solution as the true model. We can thus
apply the primal-dual decomposition method to this relaxation of the ALM model,
starting from the constructed feasible solution, to find an optimal solution to the
ALM model.

We mentioned before that the primal-lual method is most likely not a very ef-
ficient method if the initial solution is far from the optimum solution. However,
each disaggregation in the iterative disaggregation algorithm makes only a relacively
minor modification to the ALM model, and the optimum solution to the previous
model should therefore provide a good starting solution. Furthermore, we note that
Lenders’ decomposition constructs a global piecewise-linear approximation of the ob-
jective function in the course of the method to find the optimum solution. Primal-dual
decomposition, in contrast, only builds a local piecewise-linear approximation around
the current solution before a step in a descent direction is taken (where the linear
pieces correspond to the set of optimal extreme points and binding extreme rays).
Close to an optimal solution, this may cause the primal-dual decomposition method
to converge faster to the optimum solution than Benders’ decomposition.

In the discussion of the primal-dual decomposition method fer multistage stochas-
tic linear programs in section 5.2.2, we mentioned as drawbacks of the method that
each subproblem has to be solved to complete optimality before we can can move back-
ward one stage, and that the subproblems continue to increase in size when moving
backward in time. The parametric linear programming pivots in these subproblems.
needed to establish feasibility of a descent direction or find violated cuts, thus become
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increasingly more computational intensive. However, the direction-finding problem
remains relatively small as its size is dependent only on the number of successor sub-
problems. We note that once we are solving the first-stage problem, i.e., improving
the solution of zg, it is not necessary to find its optimal value before starting the next
iteration in the iterative disaggregation algorithm.

If we would apply the trajectory optimization method of Grinold to re-optimize the
ALM model, the situation is basically reversed. Trajectory optimization essentially
solves the ALM model as a large two-stage stochastic program, in which there are
many small subproblems, but a very large direction-finding problem. Due to the
many subproblems, it is likely that the approximate direction-finding problem has
to be updated with cuts and re-optimized many times before a descent direction
is found that is feasible in all subproblems. Because of its size, re-optimizing the
direction-finding problem may be very costly.
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Chapter 6
A Computational Example

In this chapter we will present the results from the application of the iterative disag-
gregation algorithm to a simple asset/liability management problem. The problem we
consider is small and highly structured, but it enables us to illustrate many features
of the algorithm as well as the state and time aggregation methods of chapter 3. Fur-
thermore, we will show that the solution of the problem by iterative disaggregation
provides useful information about the sensitivity of the optimal solution to changes
in the description of the uncertainty in the model.

The purpose of this computational exercise is to show the feasibility and value
of solving asset/liability management problems by the iterative disaggregation algo-
rithm. The emphasis is not on computational efficiency or the size of the problems
that can be solved, and we have therefore not implemented any of the decomposition
methods that were discussed in chapter 5.

6.1 A Simple Asset/Liability Management Prob-

lem

Interest-rate options on treasury bonds that are traded in the market have a time to
maturity of only a few months. They can therefore be used to hedge against short-
term interest-rate exposure, but not directly for long-term hedging purposes. We
will consider the problem of an investor whose exposure to interest-rate variability is
long-term (“long” in the sense that it exceceds the maturity of the traded options),
and who wants to devise a dynamic trading strategy in the short-term options that
guarantees him the payoffs of a long-term option.
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This problem is similar to the problem that Hamilton [22] considers for the repli-
cation of a long-term option on a stock. He does not, however, construct a dynamic
trading strategy, but compares several “myopic” approaches. In the first approach,
he constructs a portfolio of options that are traded today such that the sensitivity
of the portfolio value with respect to changes in the price of the stock (as measured
by the first and second derivatives, the so-called delta and gamrma rmicasures, which
can be readily calculated from the Black-Scholes option-pricing formula) equals the
sensitivity of the option that is being replicated. This approach is thus very similar
to duration matching for asset/liability management under interest-rate uncertainty
(see section 1.2).

In the second approach, he uses a linear programming model to construct a port-
folio of options that are traded today such that the portfolio value at the time when
the first options in the portfolio expire exceeds the theoretical value of the replicated
option at that point in time for a number of different stock-price scenarios. Hamilton
concludes that the second approach provides a better hedging portfolio. We note,
however, that neither of the approaches can give a guarantee that one ends up with
sufficient funds at the time when the payoffs from the replicated option are needed.
Furthermore, these approaches cannot take transaction costs into account which are
incurred when the portfolio is rebalanced (i.e., new short-term options are bought at
future points in time), and therefore ignore the effect of these costs on the optimal
portfolio composition.

6.2 Problem Statement

We consider an investor who owns a zero-coupon treasury bond that matures in two
years from the current date, and assume that he plans to sell the bond after one year.
However, he wants to be guaranteed a minimum return on the bond, for example, to
meet a fixed liability at that date. That is, he wants to protect himself against rising
interest rates (and thus falling bond prices). One way to achieve this is to enter into
a forward contract that allows him to sell the bond after one year at a specified price.
Although this protects him against rising interest rates, it also prevents him from
making a profit if interest rates fall. We assume that the investor wants to be able to
henefit from a fall in interest rates, and therefore in effect wants to buy a one-year put
option on the bond. Options that are traded in the market, however, are assumed to
have a maturity of at most four months. The problem is thus to construct a dynamic
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trading strategy, including the short-term options, whose payoffs match the payoffs
of the hypothetical one-year put option (the replicated option). We assume that the
investor does not allow for shortfalls, and the final portfolio value must therefore be
nonnegative in all scenarios.

The face value of the two-year zero-coupon bond is $1000. We assume that the
yield curve is flat with a yield of 8% for all maturities' and the current price of the
bond is therefore $852.14. The forward price? of the bond for delivery after one year
is $923.12, and we assume that the investor wants to generate a cash flow from the
sale of the bond of at least $932.35 (101% of the forward price). That is, the strike
price of the one-year put option that he wants to replicate is $932.35.

We assume that traded option contracts on the two-year bond are initiated at the
beginning of every two-month period, and that the options have an initial maturity
of four months. Furthermore, for every option maturity, three call options and three
put options are traded, which differ only in their exercise prices (respectively 99.5%,
100% and 100.5% of the forward bond price on the maturity date of the options).
This implies that at every point in time, the investor can trade in six different put
options and six different call options on the two-year bond.

It is furthermore assumed that the prices of the options that are traded at time 0
are consistent with a version of the Ho and Lee model that incorporates 120 time steps,
in which the implied binomial probability is 1/2, and the volatility of the short-term
interest rate 0.7% per year. (This number of time steps is large enough so that the
calculated option values have converged to at least two-decimal precision, and the
volatility level prevents negative interest rates in the model at any point in time;
see also section 3.1.1.) The theoretical value of the replicated put option at time 0
according to this model is $8.73. The data for the traded options, including their price
at time O if applicable, are listed in table 6.1. The initiation and expiration dates are
specified in terms of the time steps in the Ho and Lee model. Because options 10,
11 and 12 were initiated before time 0, no initiation date is specified for them. The
strike price of each option is both given as absolute number and as percentage of the
forward bond price (between brackets).

! As before, we assume that the yields are given as continuously compounded yields.

2If Po(7) denotes the current price of a zero-coupon bond with maturity 7, then the forward price
of a zero-coupon bond with maturity T for some time ¢t < T is equal to (Po(T)/Po(t)) times the face
value of the bond. This is the arbitrage-free delivery price in a forward contract for delivery of the
bond with maturity T at time ¢.
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Option || Initiation | Expiration Price at time 0:
number date date Strike price put | call
10 20 $859.26 ( 95.5%) || $0.40 | $4.66
11 20 $863.58 (100.0%) || $1.76 | $1.76
12 20 $867.90 (100.5%) || $4.66 | $0.40
20 0 40 $870.80 (1 99.5%) || $0.76 | $5.03
21 0 40 $875.17 (100.0%) || $2.28 | $2.28
22 0 40 $879.55 (100.5%) || $5.03 | $0.77
30 20 60 $882.49 (1 99.5%) - -
31 20 60 $886.92 (100.0%) - -
32 20 60 $891.36 (100.5%) - -
40 40 80 $894.33 ( 99.5%) - -
41 40 80 $898.83 (100.0%) - -
42 40 80 $903.32 (100.5%) - -
50 60 100 $906.34 ( 99.5%) - -
51 60 100 $910.89 (100.0%) - -
52 60 100 $915.44 (100.5%) - -
60 80 120 $918.50 ( 99.5%) - -
61 80 120 $923.12 (100.0%) - -
62 80 120 $927.73 (100.5%) - -

Table 6.1: Data for traded options on the two-year zero-coupon bond.

6.3 Disaggregation Strategy

To start the iterative disaggregation algorithm, we have aggregated states and time
steps in the Ho and Lee model of the previous section to obtain the aggregated
event tree for iteration O in figure 6-3. The interest rate (as a percentage per year)
ranges between 8.128% in the lowest state to 7.872% in the highest state, and the
corresponding liability (payoffs on the replicated put option) between $10.55 and
$8.38. Because trading dates are included in this aggregated event tree for all points in
time at which dividends are paid (i.c., options expire) and liabilities are due (¢ = 120),
no adjustment for the prepayment of dividends and liabilities is necessary in the ALM
model (compare with the aggregated ALM model in section 3.4). Note that the initial
event tree has only four different scenarios at t = 120, and the corresponding ALM
model is thus small and easy to solve.

To choose a state in the aggregated event tree in which to perform a disaggrega-
tion, we have used the sensitivity analysis that was described in the second part of
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section 4.3.2. In the specific example that we consider here, however, it is not possible
to base the disaggregation directly on the value of the sensitivity measures that were
introduced in that section. To see this, we note that it only makes sense to calculate
the sensitivity measures for a state disaggregation in states that have successor states
in which a liability payment is due. In the problem at hand, these are the states
at the beginning of the last period in the aggregated event tree. A disaggregation
strategy that is solely based on the level of this sensitivity measure would therefore
only perform state disaggregations in these states. Furthermore, it was shown in sec-
tion 4.3.2 that the sensitivity measure for a time disaggregation will be zero in every
state of the aggregated event tree from the previous paragraph as there are no prepaid
dividends and liabilities. We have therefore modified the disaggregation strategy in
the following way.

First, we have imposed the restriction that a state in the aggregated event tree
can never have more than two successor states.3 As a consequence, if the sensitivity
measure indicates that a state disaggregation should be performed in a state which
already has two successor states, then we perform a time disaggregation in that state
instead.

Second, we identify a critical scenario in each state for which the sensitivity mea-
sure is calculated. The critical scenario in a state is the scenario that gives the highest
single contribution to the sensitivity measure £ in that state (remember that the sen-
sitivity measure in a state is a summation of the sensitivities over all scenarios in that
state). If a state is selected for a state disaggregation based on its value for €, then a
disaggregation is performed along the path in the event tree that corresponds to the
critical scenario in that state (the critical path). If possible, a state disaggregation is
performed somewhere along this critical path. When there are multiple possibilities,
then the state disaggregation is performed at the earliest point in time at which it
is possible. If no state disaggregation is possible, then a time disaggregation is per-
formed in the state at the beginning of the longest period on the critical path (i.e.,
comprising the largest number of time steps in the original Ho and Lee model). If
there is more than one possibility, then the time disaggregation is performed as early
as possible in the tree.

We have also used the critical path to define the way in which a new state after a

3In additicn, we have imposed the restrictions that have been imposed throughout this thesis,
namely that all successor states of a state must occur at the same point in time, and that they must
all have the same aggregation level.
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Iteration 30:

t=0 20 40 60 80 100 120

Iteration 31:

t=0 20 40 60 80 100 120

Figure 6-1: Change in event tree after a state disaggregation on the critical path.

state disaggregation is connected to the existing event tree. After a state disaggrega-
tion is performed in some state along the critical path, then the state disaggregation
is basically pushed forward along the path until all new states are connected to the
existing tree, or the end of the tree is reached. This is illustrated in figure 6-1 for the
state disaggregation in iteration 31 of the iterative disaggregation algorithm when ap-
plied to the base-case problem that will be discussed in the next section. The critical
path in the event tree of iteration 30 is indicated by the fat line. In iteration 31, a
state disaggregation is performed in the state on the path at time 30. The new arcs
in the event tree of iteration 31 after the state disaggregation are indicated in bold,
and the ones that have disappeared from the event tree are drawn as dashed lines.
A time disaggregation in our implementation consists of a basic time disaggre-
gation (i.e., the reversal of figure 4-2), followed by a basic state disaggregation (the
reversal of figure 4-1) in the same state. This is depicted in figure 6-2. If a time dis-
aggregation adds a state between time ¢ and ¢ + 7 in the aggregated event tree, then
this state is added in the middle between these points in time, i.e., at time ¢ + 7/2.
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(a) Before time disaggregation: (b) After time disaggregation:

Figure 6-2: A time disaggregation that comprises one basic time disaggregation fol-
lowed by a basic state disaggregation.

6.4 Computational Results

We have coded the iterative disaggregation algorithm for this problem on a Sun 10
workstation with 32 MB of internal memory (RAM) in the C programming language.
The CPLEX callable library for linear programming was used to perform the opti-
mizations in each iteration. The ALM model has been re-optimized in each iteration
as a large linear program, where the optimal basis from the previous iteration was
used to define a starting basis. The optimal basis columns from one iteration typically
do not define a full basis for the model in the next iteration, but CPLEX allows the
specification of an incomplete basis, and will complement it with additional columns
to construct an initial basis.

We have defined a base-case problem in which the transaction cost rate is 1%,
and the final-portfolio weight A; = 0.9. The investor has the possibility to borrow
up to 108 in each state at the riskless one-period interest rate plus one basis point
(one hundreth of a percent), and he faces a 1% borrowing spread for any amount in
excess of that. We have assumed that the investor can only take long positions in the
short-term options.

We will first analyze the development of the event tree in the course of the algo-
rithm, and then study the optimal solution for this base-case problem. Subsequently,
we will show how this optimal solution changes under different assumptions about
the transaction costs and the weight A; on the final portfolio value in the objective
function.
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| Event tree ALM model
Iteration || states | scenarios || rows | columns | nonzeros
0 18 23 | 131 485 1007
) 27 60 || 312 1018 2368
10 28 99 || 423 1405 3259
15 28 120 || 492 1611 3788
20 45 140 | 596 1963 4570
25 43 186 || 780 2564 5999
30 57 206 || 926 3033 6990
35 58 253 || 1111 3624 8418
40 68 342 || 1572 5120 11770

Table 6.2: Size of the event tree and the corresponding ALM model in selected itera-
tions of the iterative disaggregation algorithm when applied to the base-case problem.

6.4.1 Results for the Base-Case Problem

Figures 6-3 and 6-4 depict the development of the aggregated event tree in the course
of the algorithm. Time disaggregations are performed in iterations 17, 26, 30 and 38,
and state disaggregations in all other iterations. In the final event tree (iteration 40),
the interest rate at time 120 deceases from 8.384% at the bottom of the tree to 7.617%
at the top. The corresponding payoffs from the replicated put option (the liabilities)
range from $12.82 to $6.33.

Table 6.2 lists the number of nodes and scenarios in these event trees, as well as
the corresponding dimensions of the ALM model. The complete run of 40 iterations
only takes a few minutes in real time. The number of simplex pivots that is needed
to re-optimize the ALM model in each iteration varies between less than ten and
a few hundred. We have run the algorithm for more than 40 iterations as well,
but this had no substantial effect on the optimal solution. Furthermore, after an
additional 20 to 30 iterations CPLEX is no longer able to optimize the resulting
ALM model with the available computer memory because of the large size of the linear
program at that point (approximately 18,000 columns and 6,000 rows, corresponding
to an event tree with over 1200 scenarios). This clearly illustrates the need for the
use of decomposition methods when one wants to solve large stochastic programming
models.

The development of the event tree in the course of the algorithm is partly deter-
mined by the value of the sensitivity measure in states at the beginning of the last
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Iteration O:

—

t=0 20 40 60 80 100 120

Iteration 5:

t=0 20 40 60 80 100 120

Iteration 10:

t=0 20 40 60 80 100 120

Iteration 15:

t=0 20 40 60 80 100 120

Iteration 20:

t=0 20 40 60 80 100 120

Figure 6-3: Changes in the event tree during the iterative disaggregation algorithm
fur the base-case model: iterations 0 through 20.
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Iteration 25:

t=0 20 40 60 80 100 120

Iteration 30:

t=0 20 40 60 80 100 120

Iteration 35:

t=0 20 40 60 80 100 120

Iteration 40:

t=0 20 40 60 80 100 120

Figure 6-4: Changes in the event tree during the iterative disaggregation algorithm
for the base-case model: iterations 25 through 40.
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Figure 6-5: Change in the optimal objective value and the value of the sensitivity
measure as a function of the iterations in the iterative disaggregation algorithm (the
base-case problem).

period in the tree (the only states for which the measure is calculated), and partly
by the critical scenario in that state. Figure 6-5 compares the value of the sensitivity
measure with the actual change in the optimum objective value of the ALM model
in each iteration. The correlation between the two is high in the early iterations, but
decreases in later iterations.

A study of the sensitivity measure across different states in each iteration shows
that the number of scenarios in a state (and correspondingly, its probability of oc-
currence) is an important determinant of its value. The sensitivity measure therefore
exhibits a bias towards states in the center of the event tree. As the variance in the
number of scenarios per state increases with the growth of the event tree, this bias
becomes stronger in the course of the algorithm. This is clear from the development
of the event tree in figures 6-3 and 6-4. An implication is that the critical scenario
in the state with the largest value of the sensitivity measure plays an increasingly
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important role for the actual disaggregation that is performed in the event tree.

Figures 6-3 and 6-4 show that relatively many disaggregations occur in the upper
half of the event tree. This may seem unintuitive at first, as states in that part of
the event tree are most favorable to the investor. Analysis of the critical path in
each iteration, however, reveals the reason for this. Typically, the interest rates along
the critical path decrease initially, and increase after a certain point in time. (In the
event tree, this corresponds to paths that move upward in the event tree at first,
and downward later on.) That is, the interest-rate path is initially favorable for the
investor, but turns unfavorable after a while. It is not surprising that this kind of
scenarios are the most difficult to hedge against.

We will continue with a discussion of the optimal solution to the base-case problem.
The optimal value of the objective function in the course of the algorithm is depicted
in figure 6-6, together with the cost (including transaction costs) of the optimal
portfolio at time 0. The objective value remains relatively siable after iteration 15,
and the cost of the initial portfolio after iteration 20. The difference between the
two lines represents the value of the excess portfolio at the terminal date that is
credited to the objective. The average excess in a scenario at time 120 is $0.11 with
a standard deviation of $0.28. The standard deviation is high because the excesses
almost exclusively occur in the upper part of the event tree (corresponding to the
states with low liabilities).

In each iteration, the optimal portfolio at time 0 only consists of the put options 10
and 20 and short-term lending. Because positions in the options are restricted to long
positions, and as the investor wants to replicate a long put option, it is clear that
the call options have an unattractive payoff pattern, and are therefore not included
in the portfolio. Of the short-term put options, the selected options are the ones that
are most out-of-the-money (i.e., with the lowest strike price). These options provide
the investor with the largest relative difference in payoff in different states of the
world per option bought. As a consequence, to obtain a certain absolute difference
in payoffs between different states of the world in the future, the out-of-the-money
options require the smallest investment in dollars. This is attractive as we have
assumed a transaction cost rate that applies to the dollar investments in the options,
but not to short-term lending.

Figure 6-7 shows the optimal portfolio composition as a function of the iteration
number. Notice that this figure depicts the number of options bought (the vertical
axis on the left) versus the dollar amount of short-term lending (the vertical axis on
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Figure 6-6: Optimal objective value and initial portfolio cost as a function of the
number of iterations in the iterative disaggregation algorithm (the base-case problem).

the right). Convergence in the optimal portfolio composition is not nearly as clear as
the convergence in the optimal objective value in figure 6-6. In fact, a small change in
the event tree sometimes has a substantial effect on the option holdings in the optimal
portfolio at time 0. However, the dollar amount invested in the options as fraction
of the portfolio cost remains approximately constant (a little below 20%). These
observations strongly suggest that there are multiple optimal solutions to the problem,
each of which contains approximately the same amount in short-term lending, but
they differ in the division of the remaining part of the portfolio investment among the
short-term put options. As is clear from a comparison of figures 6-6 and 6-7, different
divisions can correspond to a different trade-off in the objective function between the
initial portfolio cost and the final portfolio value, although the objective value itself
remains approximately the same.

To provide an idea of the portfolio rebalancing that takes place after time 0,
figure 6-8 shows the optimal portfolio composition in the scenarios up to time 20 in
the final ALM model (i.e., the model in iteration 40). The “wealth” in each scenario
in this figure equals the portfolio value, calculated from the corresponding option
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Figure 6-7: Optimal portfolio composition as a function of the number of iterations
in the iterative disaggregation algorithm (the base-case problem).

prices in the event tree. Put option 10 expires at time 20, while put option 30 is
initiated at that time. This is reflected in the portfolio composition.

Notice that additional options are bought whenever the interest rate decreases
(corresponding to an “upstate” in the event tree), whereas the option holdings remain
uncharged when the interest rate increases. That is, additional options are bought
whenever the value of the options in the portfolio decreases. The total dollar value
of the options in the portfolio, however, is lower in states that correspond to a lower
interest rate, as is the investor's wealth. This is to be expected, as his liabilities at.
time 120 are lower when the interest rate is lower.

6.4.2 Variations in the Transaction Cost Rate

To see what the effect of the transaction cost rate is on the optimal portfolio at time 0
and the portfolio rebalancing strategy after time 0, we have varied the transaction cost
rate ¢ between 0.1% and 2%, all with the final-portfolio weight A\, = 0.9. Table 6.3
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put 20: 2.265
put 30: 1.265
lend :$6.49 <
wealth: $8.13
put 10: 0.450 —
put 20: 2336153 put 20: 2.265
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Figure 6-8: Portfolio rebalancing in the base-case problem.

compares the optimal portfolio composition at time 0 and the corresponding objective
values. When transaction costs increase, more of the initial portfolio is invested in
short-term lending (on which no transaction costs are paid) and less in the options. A
consequence of the changing portfolio composition is that the asset cash flows match
the liabilities less precisely when transaction costs increase. This is reflected in the
expected value of the cash surplus at the model horizon (the expected final excess in
table 6.3).

The variations in the relative option holdings in the optimal portfolio for differ-
ent transaction cost rates is another indication for the existence of multiple optimal
solutions, as discussed earlier. Analysis of the changes in the optimal portfolio com-
position in the course of the algorithm for the different transaction cost rates shows
a similar pattern as in figure 6-7: the division of the initial prtfolio investment be-
tween short-term lending and option purchases is approximately constant, but the
individual option holdings can show fairly large swings in successive iterations.

Transaction costs have a significant effect on portfolio rebalancing after time 0. To
illustrate this, figure 6-9 shows the optimal portfolio composition in the scenarios up
to time 20 of the final event tree (corresponding to iteration 40) when the transaction
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Portfolio | Expected [ Portfolio composition
c = [ Objective | cost time 0 | final excess || put 10 | put 20 | lending
0.1% $8.74 $8.74 $0.00 0.872 1.713 $7.08
0.5% $8.77 $8.78 $0.00 0.000 2.403 $6.93
1.0% $8.61 $8.89 $0.11 0.450 | 1.718 $7.39
1.5% $8.84 $9.02 $0.22 0.000 | 2.006 $7.46
2.0% $8.85 $9.18 $0.40 0.118 1.711 $7.80

Table 6.3: Optimal solution and portfolio composition at time 0 unaer different trans-
action cost rates.

cost rate is 2.0%. In this case, no changes are made to the optimal option holdings
in any of the scenarios except the top scenario at time 20, where some investment is
made in put option 30. For a transaction cost rate of 1.0%, it was seen in figure 6-8
that additional investments in the options were made after every upward move in the
event tree.

6.4.3 Variations in the Final-Portfolio Weight

To see the effect of changes in the final portfolio weight A, on the optimal solution, we
have varied this parameter between the values 0.8 and 0.98. The transaction cost rate
was kept coastant at 1%, as in the base-case problem. Table 6.4 displays the opti-
mization results. When A, increases, it becomes less important to match the liabilities
exactly. As a consequence, the transaction cost rate increases in relative importance,
and a larger part of the initial portfolio investment is spent on short-term lending. A
higher value of A\, also decreases the need for active portfolio rebalanciny. Although
the optimal objective value decreases slightly when ), increases, the initial portfolio
cost. increases relatively steeply. Correspondingly, the expected final portfolio value
increases significantly with A;.

6.5 Concluding Remarks

The application of the iterative disaggregation algorithm to the solution of the sim-
ple asset/liability management problem in this chapter has illustrated several useful
features of the algorithm. Most importantly, the solutions that are generated in the
course of the algorithm provide a good insight into the sensitivity of the optimal
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Figure 6-9: Portfolio rebalancing when the transaction cost rate equals 2.0%.

solution to an increasing level of uncertainty in the stochastic programming model.
For the particular problem in this chapter, the optimal objective value was shown to
converge fairly rapidly. The optimal portfolio composition exhibited a more volatile
behaviour, but the general structure of the optimal solution was stable, with approx-
imately fixed proportions of the optimal portfolio at time 0 invested in riskless assets
(short-term lending) and risky assets (short-term options). Furthermore, the selected
options were the same in each iteration, only the holdings in these selected options
var.ed in successive iterations. As these variations did not correspond to changes in
the objective value, this suggests that multiple optimal (or very close to optimal) so-
lutions exist. As many of these solutions correspond to a somewhat different trade-off
between the cost of the initial portfolio and the final portfolio value, the choice of the
actual portfolio may be based on this trade-off.

Judging from the results for the particular problem in this chapter, therefore, the
solutions that are obtained in the course of the algorithm give strong suggestions
about the general structure of the optimal portfolio (often referred to as asset allo-
cation in the literature) as well as the individual assets that should be included in
this portfolio. It was also shown that the selected assets were independent of the
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Portfolio Expected Portfolio composition
A= “ Objective | cost time 0 | final excess || put 10 | put 20 | lending
0.80 $8.81 $8.81 $0.00 0.000 2.423 $6.94
0.85 $8.81 $8.82 $0.01 0.846 1.723 $7.15
0.90 $8.81 $8.89 $0.11 0.450 | 1.718 $7.39
0.95 $8.79 $9.07 $0.31 0.266 1.704 $7.65
0.98 $8.77 $10.25 $1.64 0.000 { 0.084 | $10.19

Table 6.4: Optimal solution and portfolio composition at time 0 for different values
of the final-portfolio weight in the objective.

values for the transaction cost rate and the final-portfolio weight, while these pa-
rameters did influence the proportion of risky versus riskless assets in the optimal
portfolio. Whether these results hold in general can only be determined by further
experimentation on different problems.

In our implementation of the iterative disaggregation algorithm, we have made
some particular choices for the disaggregation strategy, and an open question is how
the results are affected if different choices are made. The sensitivity measure that we
have used to select states for a state disaggregation was shown to have a bias towards
states in the center of the event tree, where the number of scenarios per state is large
(and thus the probability of occurrence high). The resulting portfolio strategy can
therefore be viewed as a hedge against the most likely course of events. In many
problems, one may be primarily interested in hedging against extreme scenarios, each
of which has only a small probability of occurring, but a possibly large effect on the
investor’s wealth. In such cases, one should modify the disaggregation strategy so
that it has a tendency to select these extreme scenarios.

Furthermore, we have restricted the number of successor states in the event tree
to a maximum of two, and a time disaggregation was performed if a state was chosen
for a disaggregation that already had two successor states. An obvious modification
is to allow for more than two successors in the event tree before a time disaggregation
is performed. This would also enable us to avoid states in the event tree with only one
successor state, corresponding to a period with no uncertainty, which is a somewhat
undesirable situation in an event tree. For example, if a maximum of three successor
states is allowed in the event tree, then one could perform time disaggregations as in
figure 6-10. With an increase in the maximum number of successor states, however,
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(a) Before time disaggregation: (b) After time disaggregation:
(n+2,ky—2) (n+2,h—2)
(n+1,k—1)

(n, k) (n+1,k2—2) (n, k)
®

(n+1,kx—2)
(n,kl - 1)
(n, k2 —2) (n,ky —2)

t t+7 t t+7/2 {47

Figure 6-10: Time disaggregation when the maximum number of successor states in
the event tree equals three (ky = k + 7/2; ko = k + 7).

the event tree will grow faster in the course of the iterative disaggregation algorithm,
thereby limiting the number of iterations.

The sensitivity measure that we have used to select states for a state disaggregation
in the event tree appeared to be a good indicator of the size of the change in the
objective function, especially in the earlier iterations of the algorithm. Whether it is
superior to the calculation of bounds on this change, which was discussed in chapter 4
as an alternative method for choosing the disaggregation, can only be verified by more
computational testing.

In our implementation of the iterative disaggregation algorithm, the stochastic
program was re-optimized as a large linear program in each iteration. As we have
indicated, this puts a heavy demand on the available computer memory, which turned
out to be the decisive factor for the size of the models that could be solved in our case
(rather than computer time). This illustrates the need for the use of decomposition
methods when large stochastic programming models have to be solved.
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Chapter 7

Conclusions and Directions for
Further Research

In this thesis we have shown that financial asset pricing theory plays an important role
in the formulation of stochastic programming models for asset/liability management
under interest-rate uncertainty. Specifically, we have shown that if the description
of the asset-price uncertainty in the stochastic program is not arbitrage-free, then
the optimal solution to the model may be substantially biased towards the arbitrage
opportunities that are present in this description. This is the case even if the investor
in the model cannot directly take advantage of these arbitrage opportunities because
of market frictions and trading restrictions. As it is unrealistic to assume that any
investor can predict arbitrage opportunities that will arise in the future, this also is
a very reasonable restriction to impose on the description of the uncertainty.

To obtain a description that satisfies this restriction, we have shown that financial
models of the term-structure uncertainty provide a very useful starting point. Prices
of interest-rate-derivative securities that are calculated from such models have the
desired property that they are arbitrage-free. However, to obtain accurate security
price estimates, these models have to include a level of detail about the term-structure
uncertainty that is much too large to include in a stochastic program without losing
its computational tractability. To resolve this, we have presented state and time
aggregation methods which aggregate states in the term-structure model, thereby
reducing the number of interest-rate scenarios that is implied by the model, without
losing the consistency of security prices in the model. That is, the security prices in
the aggregated model remain arbitrage-free, and the calculated prices at time 0 equal
the prices from the original model.
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Although the state and time aggregation methods enable a reduction of any size in
the number of interest-rate scenarios, the optimal solution to the stochastic program-
ming model will generally be sensitive to the level of uncertainty in the model. To
be able to explicitly study this sensitivity, we have shown how the state and time ag-
gregation methods can be used as the basis for an iterative disaggregation algorithm
to solve the ALM model. In this algorithm, the aggregation methods are initially
used to construct an optimization model with only few scenarios, which is therefore
easy to solve. In subsequent iterations, additional uncertainty is introduced in the
model by reversing earlier state and time aggregations (called disaggregations). We
have shown that the optimal solution in each iteration provides information as to
where additional uncertainty in the model will affect the solution most, and this in-
formation can therefore be used to choose the disaggregations. Furthermore, we have
shown that the optimal solution in one iteration can provide a starting point. for the
optimization in the next iteration, despite the fact that the stochastic programming
models in subsequent iterations are neither restrictions nor relaxations of each other.

We have reported on the application of the iterative disaggregation algorithm to
the solution of a simple asset/liability management problem. It was shown that the
history of solutions in the course of the algorithm provides useful information about
the optimal portfolio composition and the sensitivity of the objective function with
respect to additional uncertainty in the model. Both the objective function value and
the structure of the portfolio composition converged fairly quickly with the number
of iterations in this specific example.

In the implementation of the algorithm, however, we have imposed several restric-
tions on the structure of the aggregated event tree and the disaggregation strategy.
Only further experimentation with the algorithm on a variety of problems, and with
different and possibly less restrictive assumptions, can give us more insights in the
dependence of the observed solution behaviour on the particular assumptions as well
as the problem itself. Furthermore, we have re-optimized the stochastic programming
model as a large linear program in each iteration. The associated memory require-
ments on the computer severely limited the size of the models that could be solved,
and therefore the number of iterations in the algorithm. This shows the need fer al-
ternative optimization methods, in particular decomposition methods, to re-optimize
the stochastic program in the course of the algorithm.

The most commonly used decomposition method for stochastic programs is (nested)
Benders’ decomposition. We have shown in this thesis, however, that this decompo-
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sition method cannot take advantage of the optimal solution in one iteration of the
algorithm to perform the re-optimization in the next. We have also discussed a
primal-dual decomposition method which does not have this disadvantage, and can
make full use of the previous optimal solution. As was shown, this method is essen-
tially a local-search method in which the optimal solution from the previous iteration
can act as the starting point for the local-search procedure. Because this starting
point will be relatively close to the new optimum, especially in later iterations of the
algorithm when the stochastic program model is large and individual disaggregations
have a relatively minor effect on the model formulation, this approach has intuitive
appeal.

As described in chapter 5, however, the method requires that the stochastic pro-
gram is essentially fully optimized in every iteration of the algorithm in order to
apply it in a decomposed fashion. F:'rthermore, the convergence proof of the method
requires that feasibility is maintained in every step of the method, which makes the
determination of a descent direction a somewhat cumbersome and possibly time-
consuming effort, and may have the effect that only small changes in the solution
can be realized for every descent direction that is found. The practical efficiency of
the primal-dual decomposition method as it was described in chapter 5 is therefore
questionable. Because a local-search method seems a sensible approach in the con-
text of the iterative disaggregation algorithm, however, many of the concepts in the
primal-dual method may prove useful for the design of heuristic methods in which the
above requirements are relaxed. Research in this direction, both on an algorithmic
and a computational level, is needed.

We will discuss below how the model formulation that we have considered in
this thesis can be generalized by relaxing some of the underlying assumptions. Key
assumptions in our model development, however, are that security prices do not admit
arbitrage opportunities, and that a term-structure model exists that is consistent with
observed market prices of securities. Satisfaction of this last assumption is clearly too
much to ask for in reality. Although it may be possible to choose the parameter
values in a term structure model such that differences between implied arbitrage-free
values and market prices are small, a perfect match will seldom be possible. The
question is then which prices to use in a portfolio optimization model, the observed
prices or the arbitrage-free values according to the term-structure model. We have
shown that arbitrage opportunities in the description of the uncertainty, which would
be created if market prices are used that differ from the arbitrage-free values, can
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have a significant effect on the optimal solution to a portfolio optimization model.
Furthermore, the primary purpose of a model for asset/liability management is to
obtain a portfolio strategy that forms a reliable hedge against the future liabilities.
Such a strategy should not be influenced by hypothesized arbitrage opportunities.
We therefore suggest the use of the arbitrage-free values instead of the market prices
in a portfolio optimization model if therc is a difference betwee: the two. Of course,
one can always optimize the model twice, once with the arbitrage-free values and once
with the market prices, and analyze what the differences are.

Extensions of the Model Formulation

In the formulation of the ALM model we have assumed that all variables are contin-
uous, and all constraints and the objective function linear. This is attractive from a
computational viewpoint as it enables the use of efficient linear programming methods
to optimize the model. The formulation, however, is certainly not limited to these
assumptions.

Integer variables (in particular, binary variables) would for example be necessary
if on= wants to model a transaction cost rate that decreases with the traded dollar
amount or when transaction costs are discrete, and if one wants to impose lower
bounds on the trading size when trading takes place. In a different problem context,
Bienstock and Shapiro [2] show that integer variables can be embedded in Benders’
decomposition method to solve the resulting stochastic program. All integer variables
must then be included in the master problem at time 0.

A nonlinear objective function would arise if one chooses to use a nonlinear utility
function instead of the simple scalars A, and A, to evaluate the final portfolio value
in the objective function. Mulvey and Vladimirou [46] include utility functions in
their stochestie programming models for portfolio optimization, and they apply the
progressive hedg.ng algorithm of Rockafellar and Wets [52] with apparent success to
solve these models. One could also approximate the utility function by a piecewise
linear function, in which case the model can still be solved by linear programming
methods.

Another alternative for the evaluation of the final portfolio value in the objective
function is to view the scalars \; and )\, as Lagrange multipliers on constraints that,
specify a desired final portfolio value in each scenario! (the weights would then ob-

1].F. Shapiro, personal communication.
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viously be scenario dependent). Lagrangian relaxation techniques could be used to
determine values for these multipliers, which then provide an indication of the trade-
off in cost of realizing the desired portfolio value in different scenarios. This would in
essence create a nested solution approach to the ALM model, in which values for the
multipliers are determ.ned and iteratively updated in the outer loop, and the ALM
model is solved inside the loop.

In our model development we have made the simplifying assumption that interest-
rate uncertainty is the only source of uncertainty, and we have only discussed the
one-factor term-structure model of Ho and Lee [31] in some detail. The structure of
the ALM model does not change, however, if term-structure models with more than
one factor are considered (on which we briefly commented in chapter 3), or other
sources of uncertainty are included. The only real restriction is that the uncertainty
can be represented as an event tree in discrete time with a finite number of states at
each time.

Grabbe [49] describes an extension of the Black-Scholes option-pricing model to
the valuation of options on foreign exchange. His model includes uncertainty in both
the interest rate and the foreign-exchange rate, and could therefore be used to add
currency risk to the ALM model. Although Grabbe’s model is a continuous-time
model, the method of Hull and White [35] can be applied to obtain a discretized
version that can be used in the ALM model (see also Javaheri [38]).

A challenging research question is how to add equity investments, and thus stock-
market uncertainty, to the ALM model. To our knowledge, no models have been
proposed in the literature that combine a description of interest-rate and stock-market
uncertainty. A major difficulty in the construction of a model that describes the
uncertainty in stock prices is the fact that there is no single factor that determines
stock prices as much as the interest rate does in the case of fixed-income securities.
Any reasonable description is therefore likely to involve several (if not many) different
factors. As the size of an event tree tends to increase exponentially with the number
of stochastic factors, a large number of such factors easily leads to event trees of
unmanageable dimensions.

As a tirst approximation, one could therefore model the risk in some stock-market
indez instead of individual stocks. In recent years, large markets for trading in op-
tions and futures contracts on stock market indices have been established, and these
derivative securities could therefore be included in the resulting ALM model. A solu-
tion to the ALM model would give an indication of the optimal division in the asset
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portfolio between fixed-income and equity investments. Different models may then
be used to select individual stocks within the equity component of the portfolio.

Extension of cthe Solution Approach

The iterative disaggregation algorithm that we have proposed to solve the ALM prob-
lem is a novel approach to the solution of stochastic programs in general. In most
cases, stochastic programming models are solved for some particular and approxi-
mate description of the uncertainty only. Sometimes bounds can be calculated on the
deviation of the obtained solution from the “true” optimum solution (corresponding
to the description of the uncertainty from which the approximate drscription in the
stochastic program is derived). These bounds may be fairly loose in practice, how-
ever, and only provide information on the objective value, and rot on the sensitivity
of the optimal solution. We have shown that the iterative disaggregation algorithm
supplies information on both.

Although we have described the algorithm and the aggregation methods on which
it is based specifically for the asset/liability management model that is the subject of
study in this thesis, the underlying ideas can be applied to any stochastic program. We
have shown that the aggregations and disaggregations have to be performed carefully
in the ALM model in order to prevent arbitrage opportunities, which ca1 substan-
tially bias the optimal solution. In other applications this may not be a concern,
in which case more freedom exists in how to perform the disaggregations. Further-
more, if the stochasticity in the stochastic program is restricted to the right-hand-side
vecter, then Benders’ decomposition method can be used efficiently to perform the re-
optimizations in the course of the algorithm, as the Benders’ cuts from one iteration
remain valid for the next iteration in that case.
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Appendix A

Asset Valuation by Arbitrage

This appendix explains the basic concepts of the theory on asset valuation by arbi-
trage. This theory started with the option pricing models of Bla~k and Scholes [6] and
Merton [44], but has since developed in a complete theory on the structure of financial
markets. Our overview here is adapted from Huang and Litzenbe:ger [32], to which
we also refer for proofs of the theorems and propositions. We assume throughout that
perfect market conditions prevail: there are no transaction costs or taxes, securities
are infinitely finely divisible, interest rates for borrowing and lending are the same,
and short sales of assets with full use of proceeds are allowed.

A.1 Market Equilibrium and Arbitrage

We consider a multiperiod economy in which one of a finite number o ccenarios,
collectively referred to as the scenario space 2, will occur. Over time, information
becomes available as to which scenario will occur, and this process of information
revelation is formally denoted by the information structure F = {F;t =0,1,...,T}.
We assume that Fy = {Q}, and that the exact scenario will not be known until
the final date . The information structure can be represented in the form of an
event tree, as in figure A-1 for a two-period economy with five possible scenarios
(2 = {w,ws,ws,ws,ws}). In this example, Fy = {Q}, F, = {{w1, w2}, {ws, ws,ws}},
and F; = {w;,ws, w3, wy,ws}. We will refer to the elements of F; for each ¢ as states
or events.

We assume that prices and dividends for all securities in the economy are adapted
to the information structure, i.e., that they can be written as functions of the states
in the event tree. We furthermore assurne that all investors in the economy agree on
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Figure A-1: Information structure in a 2-period economy.
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these mappings, and that each of them assigns a strictly positive probability to each
possible state. However, they may disagree on the magnitude of the probabilities and
thus the likelihood of occurrence of each scenario.

An important question is whether the system of state-dependent security prices,
as agreed upon by all investors, is a “reasonable” one. Central to its answer is the
notion of an arbitrage opportunity.

Definition A.1 (Arbitrage opportunity) An arbitrage opportunity is present in
the economy if there ezists a self-financing trading strategy' whose payoffs are non-
negative everywhere and strictly positive in at least one state a, € F, for some t, and
whose initial investment is nonpositive.

It is clear that investors would engage in such a trading strategy as much as
possible (assuming they always prefer more to less), and such a trading opportunity
therefore cannot exist if markets are in equilibrium. We will henceforth assume that
markets are in equilibrium, and thus that arbitrage opportunities cannot be present.
The following theorem, due to Harrison and Kreps [23], provides an important char-
acterization of the absence of arbitrage opportunities in the economy.

Theorem A.1 Asset prices in the economy do not admit arbitrage opportunities if
and only if there exists an equivalent probability measure® on F such that the one-
period ezpected return in any period with respect to this probability measure is identical
for all assets.

1A trading strategy is self-financing if it does not require any cash inflows after time 0.
2Two probability measures are equivalent if they have the same sets of nonzero probability.
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Figure A-2: A two-period economy with two securities.

This theorem can be restated as saying that arbitrage opportunities are excluded
if and only if there exists an equivalent probability measure on F such that relative
asset prices are martingales with respect to this probability measure. This is why
the equivalent probability measure of A.1 is often called the equivalent martingale
measure. It is also sometimes referred to as the risk-neutral probability measure, as
it could represent the probability beliefs of a risk-neutral investor in equilibrium.

Figure A-2 depicts the cumn-dividend prices (i.e., prices plus accumulated divi-
dends) of two securities in the economy of figure A-1. The numbers on the arcs
represent an equivalent martingale measure, and thus theorem A.1 tells us that the
security prices are arbitrage-free.

A.2 Asset Pricing by Arbitrage

In addition to being a proof that no arbitrage opportunities exist, the equivalent
martingale measure also simplifies the calculation of arbitrage-free security prices in
the event tree. This section shows how.

Consider a security S* in the economy whose dividend process is adapted to F.
Security S* is said to be marketed if there exists a self-financing trading strategy in
the other securities whose payoffs exactly match the divider.ds of S*. (This trading
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strategy is said to finance security S*, and is also called a replicating trading strategy
for security S*.) We note that all investors will agree on whether S* is marketed, and
that this does not depend on investors’ individual probability beliefs. It should be
clear that if no arbitrage opportunities are allowed, the price of security S* at time
0 must be equal to the initial cost of the replicating portfolio, and its price at later
dates to the corresponding value of the replicating portfolio.

Consider again the two-period economy of figure A-2 with two securities, and let,
S* be a new security which pays dividends of 2, 4, 2, and 1 in states w;, ws, ws,
and w4 at time 2, respectively, and nothing in all other states. S* is marketed as a
self-financing trading strategy in the two existing securities can be constructed that
exactly provides the payoffs from S*. If & and S represent the portfolio holdings of
the two securities in this replicating trading strategy, then (o, 3) = (4, —1) at time 0
and in state {ws,ws,ws} at time 1, and (@, B) = (1,2) in state {w;,w,} at time 1
(negative holdings represent short sales). The price of security S* must therefore be 2
at time 0, 3 in state {w;,w,} at time 1 and 1 in state {ws, wy, ws} at time 1 to prevent
arbitrage opportunities.

Alternatively, we can calculate the arbitrage-free prices of security S* through
the equivalent martingale measure. Notice that the one-period conditional expected
return on the two existing securities in figure A-2 with respect to the equivalent,
martingale measure is zero in all states. By theorem A.1, this must also be true for
S* to prevent arbitrage opportunities. Thus the price of S* must equal 3 in state
{wi,ws} at time 1 and 1 in state {ws,wy,ws} at time 1. Using these time 1 prices, it
follows that the price at time 0 must be equal to 2.

This way of valuing securities is called asset pricing by arbitrage. We note that it
depends crucially on whether securities are marketed; if a secu.ity is not marketed,
then its price cannot be uniquely determined. The next section presents a sufficient,
condition for all securities to be marketed.

A.3 Complete Markets

The ability to replicate any state-dependent payoff pattern is captured by the defini-
tion of dynamically complete markets.

Definition A.2 (Dynamically complete markets) Markets are dynami-ally com-
plete if every state-dependent payoff pattern can be obtained exactly by a self-fincncing
trading strategy in the available securities.
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Markets that are not dynamically complete are called incomplete. In the economy
of figure A-2, it is not possible to construct a self-financing trading strategy in the
existing two assets that gives a payoff of 1 in state ws at time 2, and nothing in all
other states. The security markets in this economy are therefore incomplete. The next
proposition gives a necessary and sufficient condition for markets to be dynamically
complete.

Proposition A.1 Security markets in a multiperiod economy are dynamically com-
plete if and only if at every node in the event tree that represents the information
structure, the number of traded securities having linearly independent random returns
over the nezt period equals the number of branches leaving the node.

It is clear that this condition is violated in state {w3,ws,ws} at time 1 in figure A-
2. We would need one more security, whose returns in states ws, w; and w; at time 2
are linearly independent of the returns on the two existing securities, to complete the
markets in this example.

If the price system in an economy does not admit arbitrage opportunities, then the
following proposition gives another characterization of dynamically complete markets.

Proposition A.2 If an equivalent martingale measure exists in a securities markets
economy, it is unique if and only if markets are dynamically complete.

Figure A-3 depicts the two-period economy of figure A-2 with an additional se-
curity that completes the markets. Moreover, the cum-dividend prices of this third
security in the event tree are such that the equivalent martingale measure of figure A-2
still is an equivalent martingale measure. From proposition A.2, this equivalent mar-
tingale measure is therefore unique.
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Figure A-3: A two-period economy with three securities.
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