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An N -stage Cascade of Phosphorylation Cycles as an Insulation Device
for Synthetic Biological Circuits∗

Rushina Shah1 and Domitilla Del Vecchio2

Abstract— Single phosphorylation cycles have been found
to have insulation device abilities, that is, they attenuate the
effect of retroactivity applied by downstream systems and
hence facilitate modular design in synthetic biology. It was
recently discovered that this retroactivity attenuation property
comes at the expense of an increased retroactivity to the input
of the insulation device, wherein the device slows down the
signal it receives from its upstream system. In this paper, we
demonstrate that insulation devices built of cascaded phospho-
rylation cycles can break this tradeoff allowing to attenuate the
retroactivity applied by downstream systems while keeping a
small retroactivity to the input. In particular, we show that there
is an optimal number of cycles that maximally extends the linear
operating region of the insulation device while keeping the
desired retroactivity properties, when a common phosphatase
is used. These findings provide optimal design strategies of
insulation devices for synthetic biology applications.

I. INTRODUCTION

A multitude of functional units have been developed in
synthetic biology: genetic switches [1], oscillators [2] and
digital gates [3]. The aim of synthetic biology is to connect
these different functional units to design larger circuits for
various applications [4], [5]. One of the problems faced when
connecting such units is that of retroactivity [6]. Retroactivity
is the change in dynamics in the upstream system due to the
interconnection of a downstream system. When two units
are interconnected, predicting the behaviour of the system
is made easy by a property called modularity, i.e., when
the properties of the individual units do not change on
connection. However, the effect of retroactivity interferes
with this property. This introduces the need for insulation: a
way to connect these units such that the effect of retroactivity
is negligible. Functional units that attenuate the effects of
retroactivity are called insulation devices [6].

A single phosphorylation-dephosphorylation (PD) cycle
has been theoretically [6] and experimentally [7], [9] shown
to behave as an insulation device due to a high-gain feedback
mechanism. In these works, the total substrate and phos-
phatase concentration of the cycle is increased to attenuate
the effect of retroactivity on the output due to the presence of
load. The output is thus made independent of the presence of
load, however, such a device slows down the dynamics of the
input. This tradeoff was theoretically characterized in [8] and
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experimentally verified using a NRI-NRI∗ PD cycle [9]. The
results of [10] suggest that this tradeoff may be overcome
by using multiple stages of PD cycles. In [11], a cascade of
PD cycles are analyzed for the propogation of downstream
disturbances to the input, and sufficient conditions for atten-
uating these disturbances are provided. This motivates the
current work, which analyzes the insulation properties of an
N -stage cascade of PD cycles with a common phosphatase.
We find that the tradeoff present in a single PD cycle is
overcome by cascading two cycles. Furthermore, increasing
the number of cycles N up to an optimal N̄ increases
the linear operating region of the insulation device. Thus,
based on the total amount of load, the Michaelis-Menten
constants of the cycles and the operating range of the input,
the cascade can be designed to be an insulation device for
various applications in synthetic biology.

This paper is organized as follows. The next section
formally defines retroactivity and insulation, and provides
a mathematical framework to analyze the cascade of PD
cycles. Section III describes a model of the system based on
the reaction rate ODEs of the system. Section IV states and
proves the mathematical result for designing the insulation
device based on the model. Section V discusses the implica-
tions of this result and verifies these implications based on
simulations.

II. RETROACTIVITY AND INSULATION

As introduced in the previous section, retroactivity is
the change in dynamics in the upstream system due to its
interconnection with a downstream system. For example,
consider the behaviour of a simple module with an activator
Z, which activates the production of a transcriptional com-
ponent X, shown in Fig. 1a. Throughout this paper, species
are referred to in Times New Roman, such as X and Z,
and their concentrations are referred to in the corresponding
italics, such as X and Z. For this system, then, Z acts as
a periodic input, and X is the output. The response of X
when the downstream system is not present is shown by the
black plot in Fig. 1b. However, when X is used to activate
the downstream system, its response to the same input Z
changes dramatically, as shown by the dashed red plot in
Fig. 1b. This loading phenomenon has been experimentally
shown both in vivo and in vitro in bacteria and yeast [12],
[7], [10].

Fig. 2 shows a system S that formally captures this loading
effect through retroactivity signals [6], [12], [7]. The state
of S is described by x, the input by u, which ranges from
umin to umax, i.e., u ∈ [umin, umax] and the output by y. The
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Fig. 1: (a) The upstream system produces a gene product, the pro-
tein X; when the upstream system is connected with the downstream
system, X acts as a transcription factor for downstream promoter
sites p (b) The response of X to a periodic input Z is shown when
the upstream system is not connected to the downstream system in
black; the red dotted graph shows the response of X when it is
connected to a downstream system.

retroactivity to the input is r(u, x) and the retroactivity to
the output is s(x, v). We define the ideal input, uideal, as
the input received from the upstream system when nothing
is connected to it downstream, i.e., uideal = u when r = 0.
The ideal output, yis, is the output of S when it has no
downstream load, i.e., yis = y when s = 0.

u y

r s
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S (x)

Fig. 2: A system with state x, input u and output y, with
retroactivity to the input r and retroactivity to the output s.

Retroactivity effects make it difficult to design intercon-
nected systems. The problem of retroactivity can be solved
by an intermediate module, connected between the upstream
and downstream systems to act as an insulation device, as
shown in Fig. 3.

Definition 1: (Adapted from [13]) System S is called an
insulation device when it satisfies the following properties:

(i) Small retroactivity to the input r: here, the effect of r
is characterized by the change in the dynamics of the
input due to r, i.e., |u̇ideal(t)− u̇(t)| � 1.

(ii) Attenuation of retroactivity to output s: the effect of s
on x, the state, and therefore y, the output, is attenuated,
i.e., |yis(t)− y(t)| � 1.

(iii) Linearity: the input-output response is approximately
linear for u ∈ [umin, umax] with gain G = 1, i.e.,
|u(t)− yis(t)| � 1.

Upstream
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Downstream
System (v)

Insulation
Device (x)

Input u Output y

r s

Fig. 3: Insulation device connected between two systems: (i)
minimizes r, (ii) attenuates the effect of s on x, and (iii) shows
a linear relationship between u and y.

Referring to Fig. 3, the model for the system is:

u̇ = f0(u, t) +G1Ar(u, x),

ẋ = G1Br(u, x) +G1f1(u, x, ηv) + Cs(x, v),

v̇ = Ds(x, v).

(1)

Here, the variables t ∈ [ti, tf ], x ∈ Dx ⊂ Rn+, u ∈
[umin, umax] ⊂ R+, y ∈ Dy ⊂ R+, v ∈ Dv ⊂ R+,
r(u, x) ∈ R+, s(x, v) ∈ R+. The matrices A ∈ R1×1,
B ∈ Rn×1, C ∈ Rn×1 and D ∈ R1×1.

The positive scalar G1 depends on parameters of the insu-
lation device, and η is a constant that depends on parameters
of the downstream system and the insulation device.

Assumption 1: G1 � 1 and eigenvalues of ∂(Br+f1)
∂x have

negative real parts.
Assumption 2: There exist invertible matrices T and P ,

and matrices Q and M , such that TA+MB = 0, Mf1 = 0,
QC + PD = 0 and MC = 0.

For this system, we state the following Theorem, adapted
from [14].

Theorem 1: For system (1), under Assumptions 1 and 2,
||x(t) − γ(u(t), ηv(t))|| = O( 1

G1
), for t ∈ [tb, tf ], where

x = γ(u, ηv) is the solution to f1(u, x, ηv) + Br(u, x) = 0
and tb is such that ti < tb < tf and tb− ti decreases as G1

increases.
Corollary 1: If f0(u, t)+G1Ar(u, x) is Lipschitz continu-

ous in x, then under Assumptions 1 and 2, ||u̇(u(t), x(t), t)−
u̇(u(t), γ(u(t), ηv(t)), t)|| = O( 1

G1
), for t ∈ [tb, tf ].
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Fig. 4: The ith cycle is highlighted in a cascade of N cycles
that together act as an insulation device; for the ith cycle, Xi is
phosphorylated by X∗

i−1 to produce X∗
i , which is the kinase for

the (i + 1)th cycle; M is the common phosphatase for all cycles;
for i = 1 the kinase is the input Z; for i = N the phosphorylated
product X∗

N is the output of the insulation device, which is the
transcription factor for downstream promoters.

The next section describes the system model for an N -
stage cascade of PD cycles. The section after that uses the
framework described by Theorem 1 to analyze this system.



III. SYSTEM MODEL
We consider a cascade of N PD cycles, shown in Fig.

4. We denote the substrate of each cycle by Xi and the
phosphorylated product as X∗i , where i is the number of
the cycle in the cascade. The input to this device is Z,
the kinase of the 1st cycle. The output of this device is
X∗N , the phosphorylated protein of the N th cycle, which
acts as a transcription factor for a number of downstream
sites. The phosphorylated protein of each cycle but the last
is the kinase for the next cycle, i.e., X∗i−1 is the kinase that
phosphorylates Xi to form X∗i , for 2 ≤ i ≤ N . For simplicity,
we sometimes denote Z by X∗0, since it is the kinase for
the first cycle. The common phosphatase for each cycle is
M, which dephosphorylates X∗i to Xi for all i. The input
signal u to the insulation device is concentration Z and the
output signal y is concentration X∗N . We define Zideal as the
input when no downstream cascade is connected to it and
X∗N,is = X∗N when there are no downstream sites.

The kinase Z is assumed to be the only molecule to
undergo degradation, due to attached degradation tags. Com-
plexes that the kinase forms with other molecules, as well
as the substrate and the phosphorylated protein are assumed
to not undergo degradation, and are only removed from
the system by dilution. Dilution rates for non-degrading
compounds are governed by the cell growth rate, typically
measured in hour−1 [15], which is much smaller than PD
rates, typically measured in second−1 [16]. Dilution can
therefore be neglected compared to PD. Apart from Z, the
other species in the system are conserved. The total substrate
concentration of each cycle is denoted by XTi and the total
phosphatase concentration is denoted by MT . The number
of downstream sites are pT (load).

The two-step reactions for the cascade are shown below.
The reactions involving species of the first cycle are given
by:

φ
k(t)−−⇀↽−−
δ

Z, X1 + Z
α11−−⇀↽−−
α21

C11
k11−→ X∗

1 + Z,

X∗
1 +M

β11−−⇀↽−−
β21

C21
k21−→ X1 +M,

X∗
1 +X2

α12−−⇀↽−−
α22

C12
k12−→ X∗

1 +X∗
2 .

The reactions involving species of the ith cycle, for i ∈
[2, N − 1], are given by:

Xi +X∗
i−1

α1i−−⇀↽−−
α2i

C1i
k1i−→ X∗

i +X∗
i−1,

X∗
i +M

β1i−−⇀↽−−
β2i

C2i
k2i−→ Xi +M,

X∗
i +Xi+1

α1i+1−−−−⇀↽−−−−
α2i+1

C1i+1

k1i+1−→ X∗
i +X∗

i+1.

And those for the final cycle are given by:

XN +X∗
N−1

α1N−−−⇀↽−−−
α2N

C1N
k1N−→ X∗

N +X∗
N−1,

X∗
N +M

β1N−−−⇀↽−−−
β2N

C2N
k2N−→ XN +M,

X∗
N + p

kon−−⇀↽−−
koff

C.

The conservation laws for the system are:

XTi = Xi + C1i +X∗
i + C2i + C1i+1 , for i ∈ [1, N − 1],

XTN = XN + C1N +X∗
N + C2N + C, MT = M +

N∑
i=1

C2i.

The Michaelis-Menten constants for the system are:

Km1i = α2i+k1i
α1i

, Km2i = β2i+k2i
β1i

.

The reaction rate equations for the system are then given
below, for time t ∈ [ti, tf ]. For the first cycle,

Ż = k(t)− δZ
−α11(XT1 − C11 −X∗

1 − C21 − C12)Z + (α21 + k11)C11︸ ︷︷ ︸
r

,

(2)

Ċ11 = α11(XT1 − C11 −X∗
1 − C21 − C12)Z − (α21 + k11)C11,

(3)

Ċ21 = β11X
∗
1 (MT −

N∑
i=1

C2i)− (β21 + k21)C21, (4)

Ẋ∗
1 = k11C11 − β11X∗

1 (MT −
N∑
i=1

C2i) + β21C21

− α12X
∗
1 (XT2 − C12 −X∗

2 − C22 − C13) + (α22 + k12)C12.
(5)

For the ith cycle, where i ∈ [2, N − 1]:

Ċ1i = α1i(XTi − C1i −X∗
i − C2i − C1i+1)X∗

i−1

− (α2i + k1i)C1i,
(6)

Ċ2i = β1iX
∗
i (MT −

N∑
i=1

C2i)− (β2i + k2i)C2i, (7)

Ẋ∗
i = k1iC1i − β1iX∗

i (MT −
N∑
i=1

C2i) + β2iC2i

− α1i+1X
∗
i (XTi+1 − C1i+1 −X

∗
i+1 − C2i+1 − C1i+2)

+ (α2i+1 + k1i+1)C1i+1 .

(8)

For the last, N th, cycle:

Ċ1N = α1N (XTN − C1N −X∗
N − C2N − C)X∗

N−1

− (α2N + k1N )C1N ,
(9)

Ċ2N = β1NX
∗
N (MT −

N∑
i=1

C2i)− (β2N + k2N )C2N , (10)

Ẋ∗
N = k1NC1N − β1NX∗

NM + β2NC2N

+ pT (−kon(1− c)X∗
N + koffc)︸ ︷︷ ︸

r

, (11)

ċ = kon(1− c)X∗
N − koffc, where c =

C

pT
∈ [0, 1]. (12)

We make the following Assumptions 3-8 for the system:
Assumption 3: The input is bounded, i.e., 0 < |Z(t)| ≤

ZB .
Assumption 4: The time derivatives of the input Z and

of the ideal input Zideal, i.e., Ż and Żideal are bounded, i.e.,
|Ż(t)|, |Żideal(t)| ≤ ZDB .

Assumption 5: All cycles have the same reaction con-
stants, i.e., ∀i ∈ [1, N ], k1i = k1, k2i = k2, α1i = α1, β1i =
β1, α2i = α2, β2i = β2. Then, Km1i = Km1,Km2i = Km2.
Define λ = k1Km2

k2Km1
.



Assumption 6: ∀t, Km2 � X∗i (t).
Assumption 7: Protein PD reactions, typically measured

in second−1 [16], are much faster than gene expres-
sion, typically measured in min−1 [17]. Define εTS =

max{
√

δ
α2+k1

,
√

k2
k1

δ
β2+k2

, δ
β2+k2

}. Then, εTS � 1.
Assumption 8: The Jacobian of the set of equations (3)-

(11) describing the cascade has all eigenvalues with negative
real parts.

IV. RESULTS
For designing the N -stage cascade of PD cycles described

in Section III as an insulation device according to Definition
1, we now state the following theorem:

Theorem 2: Let Θ = (XT1, XT2, ..., XTN ,MT ), N ≥ 2.
For the system defined by equations (2)-(12), under
Assumptions 3-8, ∀pT > 0, ∀0 < εTS < ε� 1, there exists
a Θ, a Zmax > 0 and a tb ∈ (ti, tf ) which decreases with
εTS , such that:

(a) | ˙Z(t)− Żideal(t)| ≤ k1εTS + εZDB ,∀t ∈ [tb, tf ],

(b) |X∗N (t)−X∗N,is(t)| ≤ k2εTS + εZB ,∀t ∈ [tb, tf ],

(c) |Z(t) − X∗N,is(t)| ≤ k3εTS + εZB , for Z(t) ≤ Zmax,

∀t ∈ [tb, tf ].
Here, k1, k2, k3 > 0 are independent of εTS .
One such parameter tuple Θ̄ is given by:
(i) XT1 : εTS

1−εTS
≤ XT1

Km1
≤ ε

1−ε ;

(ii) XTN : XTN ≥ X̃TN where X̃TN > max{pTε , XT1};

(iii) XTi = XTN , i ∈ [2, N − 1];

(iv) MT = λX
1
N

T1X
N−1
N

TN .

In particular, Zmax = g(N) ε
1−ε , where g(N) > 0

is a continuous function of N ∈ [2,∞), such that
limN→∞ g(N) = 0.

Proof: Follows from Lemmas 1, 2, 3 and 4 given below.

Remark 1: The tradeoff encountered in the single cycle
(requiring a large substrate concentration XT to attenuate
retroactivity to the output versus requiring a small XT for
a small retroactivity to the input) is overcome by picking a
small XT1 to ensure a small retroactivity to the input and a
large XTN to attenuate the retroactivity to the output.

Remark 2: Since g(N) > 0 is continuous on N ∈ [2,∞)
and limN→∞ g(N) = 0, there exists an N = N̄ such that
g(N), and therefore Zmax is maximized over N ∈ [2,∞) for
a fixed ε.
These properties will be further illustrated in Section V.

Lemma 1: Define 1
G1

= max{ δ
α2+k1

, δ
β2+k2

,

maxi
δ

α1XTi
, δ
β1MT

}. If XT1 ≤ XTi for i ∈ [2, N ],

MT = λX
1
N

T1X
N−1
N

TN , and εTS

1−εTS
≤ XT1

Km1
then, under

Assumption 7, 1
G1
≤ εTS � 1.

Proof: Since 1
G1

is the maximum of
{ δ
α2+k1

, δ
β2+k2

,maxi
δ

α1XTi
, δ
β1MT

} by definition, to

prove that 1
G1
≤ εTS , we prove that each of these terms is

less than or equal to εTS .
(a) δ

α2+k1
≤ ε2TS ≤ εTS under Assumption 7.

(b) δ
β2+k2

≤ εTS under Assumption 7.
(c) δ

α1XT1
= δ

α1Km1

Km1

XT1
= δ

α2+k1
Km1

XT1
≤ ε2TS 1−εTS

εTS

< εTS
Then, δ

α1XTi
≤ δ

α1XT1
< εTS as shown above, since

XT1 < XTi.
Thus, maxi

δ
α1XTi

≤ εTS .
(d) δ

β1MT
= δ

β1λX
1
N
T1X

N−1
N

TN

= δ

β1λX
1
N
T1X

N−1
N

TN

XT1

Km1

Km1

XT1

= δ

β1
k1
k2
Km2

Km1

XT1

(
XT1

XTN

)N−1
N

< k2
k1

δ
β2+k2

Km1

XT1

≤ ε2TS 1−εTS

εTS
< εTS .

Thus, 1
G1
≤ εTS � 1 under Assumption 7.

Lemma 2: For the system defined by equations (2)-(12),
under Assumptions 3-8, for any 0 < ε � 1, if XTN ≥
pT
ε , for i ∈ [2, N − 1] : XTi = XTN > XT1 and MT =

λX
1
N

T1X
N−1
N

TN , we have |X∗N (t)−X∗N,is(t)| ≤ k2εTS + εZB ,
for t ∈ [tb, tf ], where tb ∈ (ti, tf ) which decreases with εTS ,
and k2 > 0 is independent of εTS .

Proof: In the system described by equations (2)
- (12), the first cycle applies a retroactivity r to the
input, seen in equation (2). Retroactivity to the out-
put s is applied to the N th cycle, as seen in equa-
tion (11). We now proceed by bringing the system to
form (1). To this end, we define u(t) = Z(t), x(t) =[
C11(t) .. C1i(t) C2i(t) X∗i (t) .. X∗N (t)

]T
for

all i, v(t) = c(t) and the constant η = pT
XTN

. We define
G1 as in Lemma 1. Under Assumption 7, G1 � 1. As a
demonstration of how the system can be brought to form
(1), we show how the ith cycle can be brought to the
desired form. Using Assumption 5, we now assume equal
reaction rates for the system. Define constants q1 = α1XTi

δG1
,

q2 = β1MT

δG1
, q3 = k1+α2

δG1
and q4 =

α1XTi+1

δG1
. By the

definition of G1, q1, q2, q3, q4 ≥ 1. We rewrite the dynamics
of the ith cycle as follows (here again, we do not explicitly
state that the signals are functions of time):

Ċ1i = G1δq1

(
1− C1i

XTi
− X∗i
XTi

− C2i

XTi
− C1i+1

XTi

)
X∗i−1

−G1δq1Km1
C1i

XTi
,

Ċ2i = G1δq2

[
X∗i

(
1−

∑N
j=1 C2j

MT

)
−Km2

C2i

MT

]
,

Ẋ∗i = G1δ

[
q3C1i

k1

k1 + α2
− q2X

∗
i

(
1−

∑N
j=1 C2j

MT

)]

+G1δ

[
q2Km2

C2i

MT
+ q4Km2

C1i+1

XTi+1

]
−G1δ

[
q4X

∗
i

(
1− C1i+1

XTi+1

− X∗i+1

XTi+1

− C2i+1

XTi+1

− C1i+2

XTi+1

)]
.

Similarly, the first and last cycles can also be brought to
this form, and the system is in form (1) with A ∈ R1×1,



B ∈ R3N×1, C ∈ R3N×1, D ∈ R1×1, f0, f1, r, s defined as:

A = 1, B =
[
−1 0 .. 0

]T
1×3N

,

C =
[

0 .. 0 1
]T
1×3N

, D = −1,

r =
(−α1X1Z + (α2 + k1)C11)

G1
,

s = pT (−kon(1− c)X∗N + koffc) ,

f0 = k(t)− δZ,

f1 =
[

0 1
G1
Ċ22...

1
G1
Ċ1i

1
G1
Ċ2i

1
G1
Ẋ∗i ...

1
G1
Ẋ∗N

]T
1×3N

.

Matrices T = 1, M =
[

1 0 . . . 0
]
1×3N

,
Q =

[
0 . . . 0 1

]
1×3N

, P = 1 then satisfy TA +
MB = 0, Mf1 = 0, QC + PD = 0 and MC = 0,
and, using Assumption 8, ∂(Br+f1)

∂x has eigenvalues with
negative real parts. Theorem 1 can then be applied to get
||x(t)−γ(u(t), ηv(t)|| = O( 1

G1
) for t ∈ [tb, tf ]. The function

γ(u, ηv) is found by setting Br + f1 = 0. We describe the
states thus found by a bar, for example, the expression of
X∗i (t) found by setting Br + f1 = 0 is denoted by X̄∗i (t).
These are found as shown below:
k1i

k2i
C̄1i(t) = C̄2i(t) ≈

MT

Km2i
X̄∗i (t), under Assumption 6,

(13)

X̄∗i (t) ≈ XTiX̄
∗
i−1(t)

MT

λ + ((k2k1 + 1) MT

Km2
+ X̄i+1(t)

Km1
+ 1)X̄∗i−1(t)

,

for i ∈ [1, N − 1],
(14)

and

X̄∗N (t) ≈ XTN X̄
∗
N−1(t) (1− ηc(t))

Km1Nk2N
Km2Nk1N

MT +
((

1 + k2N
k1N

)
MT

Km2N
+ 1
)
X̄∗N−1(t)

.

(15)

Let ai(t) =
(
X̄i+1(t)
Km1

+ (k2k1 + 1) MT

Km2
+ 1
)

for i ∈
[1, N − 1], aN =

(
(k2k1 + 1) MT

Km2
+ 1
)

and b = MT

λ . We
have from equations (14) and (15):

X̄∗1 ≈
XT1Z

b+ a1Z
,

X̄∗2 ≈
XT2X̄

∗
1

b+ a2X̄∗1
=

XT2
XT1Z
b+a1Z

b+ a2
XT1Z
b+a1Z

=
XT2XT1Z

b2 + (ba1 + a2XT1)Z
,

X̄∗3 ≈
XT3X̄

∗
2

b+ a3X̄∗2

=
XT3XT2XT1Z

b3 + (b2a1 + ba2XT1 + a3XT2XT1)Z
,

and similarly:

X̄∗N (t) ≈
∏N
i=1XTiZ(t) (1− ηc(t))

bN + (
∑N
i=1(bN−iai(t)

∏i−1
j=1XTj))Z(t)

. (16)

To achieve unit gain, we have bN =
∏N
i=1XTi =

XT1X
N−1
TN , given XTi = XTN , for i ∈ [2, N ]. Since b was

defined as MT

λ , we then get the following expression for MT

to achieve unit gain:

MT = λb = λX
1
N

T1X
N−1
N

TN . (17)

Expression (16) can then be rewritten as:

X̄∗N ≈
Z(t) (1− ηc(t))

1 + (
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

. (18)

The output when a load pT = 0 is X∗N,is(t). Substituting
η = pT

XTN
= 0 in equation (18), we find X̄∗N,is(t):

X̄∗N,is ≈
Z(t)

1 + (
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

. (19)

By the triangular inequality:

|X∗N (t)−X∗N,is(t)| ≤ |X∗N (t)− X̄∗N (t)|
+ |X∗N,is(t)− X̄∗N,is(t)|+ |X̄∗N (t)− X̄∗N,is(t)|.

(20)

By Theorem 1, |X∗N (t) − X̄∗N (t)| = O( 1
G1

) and
|X∗N,is(t)− X̄∗N,is(t)| = O( 1

G1
). By the definition of O and

1
G1

, we have some k′1 > 0 and k′2 > 0 independent of 1
G1

and
therefore εTS such that |X∗N (t)− X̄∗N (t)| ≤ k′1 1

G1
≤ k′1εTS

and |X∗N,is(t)− X̄∗N,is(t)| ≤ k′2 1
G1
≤ k′2εTS . Thus we have:

|X∗N (t)− X̄∗N (t)|+ |X∗N,is(t)− X̄∗N,is(t)| ≤ k2εTS , (21)

for t ∈ [tb, tf ]. Here, k2 = k′1 + k′2 is independent of εTS .
We now evaluate |X̄∗N (t)− X̄∗N,is(t)| from equations (18)

and (19) to get:∣∣X̄∗N (t)− X̄∗N,is(t)
∣∣ = |ηc(t)X̄∗N,is(t)| ≤ |ηX̄∗N,is(t)|.

Note from equation (19) that |X∗N,is(t)| ≤ Z(t) ≤ ZB by
Assumption 3. Thus,∣∣X̄∗N (t)− X̄∗N,is(t)

∣∣ ≤ ηZB .
Thus, for η = pT

XTN
≤ ε, i.e., XTN ≥ pT

ε , we have:∣∣X̄∗N (t)− X̄∗N,is(t)
∣∣ ≤ εZB . (22)

Using equations (21) and (22) to re-evaluate the inequality
in (20), we prove the required inequality:

|X∗N (t)−X∗N,is(t)| ≤ k2εTS + εZB ,∀t ∈ [tb, tf ].

Lemma 3: For the system (2)-(12), under Assumptions 4-
8, for any ε : 0 < εTS < ε � 1, if XTi ≥ XT1,
MT = λX

1
N

T1X
N−1
N

TN and for εTS

1−εTS
≤ XT1

Km1
≤ ε

1−ε , we

have
∣∣∣Ż(t)− Żideal(t)

∣∣∣ ≤ k1εTS + εZDB , for t ∈ [tb, tf ],
and k1 > 0 is not dependent on εTS .

Proof: We proceed with the system expressed in the
form of system (1), under Assumptions 6-8, with G1 as
defined in Lemma 1 as shown in the proof of Lemma 2,
to get x = γ(u, ηv). In particular, we have:

C̄11 ≈ k2
k1

MT X̄
∗
1

Km2
, X̄∗1 ≈ XT1Z

b+a1Z
, (23)

where b = MT

λ and a1 =
((

k2
k1

+ 1
)

MT

Km2
+ X̄2

Km1 + 1
)

.



Zideal is the input without the cycle present. Thus, if the
dynamics of the input Z are given by: Ż(t, Z(t), x(t)), the
dynamics of Zideal are given by Ż(t, Z(t), 0). We define ˙̄Z
as the dynamics of the system where x = γ(Z, ηc), i.e.,
˙̄Z = Ż (t, Z(t), γ(Z(t), ηc(t))). By the triangular inequality,

|Ż(t)− Żideal(t)|
≤ |Ż(t)− ˙̄Z(t)|+ | ˙̄Z(t)− Żideal(t)|.

(24)

By Corollary 1 of Theorem 1, we have:

|Ż(t)− ˙̄Z(t)| = O(
1

G1
), ∀t ∈ [tb, tf ].

By the definition of O, we have:

|Ż(t)− ˙̄Z(t)| ≤ k1
1

G1
≤ k1εTS , ∀t ∈ [tb, tf ], (25)

where k1 > 0 is independent of εTS .
The dynamics of Zideal, i.e., Ż(t, Z(t), 0) is computed

from equation (2) as:

Żideal(t) = k(t)− δZ. (26)

Finally, we compute ˙̄Z(t). Define z = Z(t, γ(t))+C̄11(t),
from equations (2) and (3), we have:

ż = ˙̄Z + ˙̄C11 = k(t)− δZ. (27)

ż can also be expressed as:

ż = ˙̄Z + ˙̄C11 = ˙̄Z

(
1 +

∂C̄11

∂Z

)
. (28)

From equations (27) and (28), we get:

˙̄Z(t) =
k(t)− δZ
1 + ∂C̄11

∂Z

. (29)

Using equation (23), and Assumption 5 to compute ∂C̄11

∂Z ,
we obtain:

∂C̄11

∂Z
=
∂C̄11

∂X̄∗1

∂X̄∗1
∂Z

=
k2MT

k1Km2

XT1b

(b+ a1Z)2
,

where b = MT k2Km1

k1Km2
which gives k2MT

k1Km2
= b

Km1
. Thus,

∂C̄11

∂Z
=

b

Km1

XT1b

(b+ a1Z)2
=
XT1

Km1

1

(1 + a1Z
b )2

≤ XT1

Km1
.

(30)
Thus, if XT1

Km1
≤ ε

1−ε , then the following is true:

∂C̄11

∂Z

1 + ∂C̄11

∂Z

≤ ε, i.e.,
∂C̄11

∂Z
≤ ε

1− ε ,

We now compute
∣∣∣ ˙̄Z(t)− Żideal

∣∣∣ using equations (26) and
(29) as follows:∣∣∣ ˙̄Z(t)− Żideal(t)

∣∣∣ =

∣∣∣∣∣k(t)− δZ
1 + ∂C̄11

∂Z

− k(t)− δZ
∣∣∣∣∣

=
∂C̄11

∂Z

1 + ∂C̄11

∂Z

∣∣∣Żideal(t)
∣∣∣ .

We then have:∣∣∣ ˙̄Z(t)− Żideal(t)
∣∣∣ ≤ ε ∣∣∣Żideal(t)

∣∣∣ ≤ εZDB , (31)

by Assumption 4. Using equations (25) and (31), we re-
evaluate the inequality in (24) to get:

|Ż(t)− Żideal(t)| ≤ k1εTS + εZDB ∀t ∈ [tb, tf ].

Lemma 4: For the system (2)-(12), under Assumptions 3-
8, with XTi = XTN > XT1 for i ∈ [2, N − 1] and MT =

λX
1
N

T1X
N−1
N

TN , if Zmax = g(N) ε
1−ε , then for Z(t) ≤ Zmax,

|Z(t)−X∗N,is(t)| ≤ k3εTS+εZB , for t ∈ [tb, tf ]. Here, k3 >
0 is not dependent on εTS . Here, g(N) > 0 is continuous
over N ∈ [2,∞) and such that limN→∞ g(N) = 0.

Proof: By the triangular inequality,∣∣Z(t)−X∗N,is(t)
∣∣ ≤∣∣Z(t)− X̄∗N,is(t)
∣∣+
∣∣X∗N,is(t)− X̄∗N,is(t)∣∣ . (32)

Proceeding with the system expressed in the form of
system (1) as shown in the proof of Lemma 2, under
Assumptions 6-8, we get:

X̄∗N ≈
Z(t) (1− ηc(t))

1 + (
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

, (33)

X̄∗N,is ≈
Z(t)

1 + (
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

, (34)

for XTi = XTN > XT1 for i ∈ [2, N − 1] and MT =

λX
1
N

T1X
N−1
N

TN . Here, ai(t) =
(
X̄i+1(t)
Km1

+ (k2k1 + 1) MT

Km2
+ 1
)

for i ∈ [1, N − 1], aN =
(

(k2k1 + 1) MT

Km2
+ 1
)

and b = MT

λ .
As previously defined, X̄∗N,is(t) is X̄∗N (t) when pT = 0.

By Theorem 1, |X̄∗N,is(t) − X∗N,is(t)| = O( 1
G1

). By the
definition of O, then, we have a k3 > 0 independent of 1

G1

and therefore of εTS , such that:

|X̄∗N,is(t)−X∗N,is(t)| ≤ k3
1

G1
≤ k3εTS ,∀t ∈ [tb, tf ]. (35)

From equation (34), we have:

|Z(t)− X̄∗N,is(t)| =
(b−iai(t)

∏i−1
j=1XTj))Z(t)2

1 + (
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

.

To get
∣∣Z(t)− X̄∗N,is(t)

∣∣ ≤ εZ(t), we must have:

(
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)2

1 + (
∑N
i=1(b−iai

∏i−1
j=1XTj))Z(t)

≤ εZ(t).

By Assumption 3, Z(t) 6= 0. Thus, we must have:

(
∑N
i=1(b−iai(t)

∏i−1
j=1XTj))Z(t)

1 + (
∑N
i=1(b−iai

∏i−1
j=1XTj))Z(t)

≤ ε,

i.e., (

N∑
i=1

(b−iai

i−1∏
j=1

XTj))Z(t) ≤ ε

1− ε .
(36)



Note that b and
∏i−1
j=1XTj are constants. The upper bound

for ai(t) =
(
X̄i+1(t)
Km1

+ (k2k1 + 1) MT

Km2
+ 1
)
, i ∈ [1, N ],

is given by seeing that the maximum value for X̄i+1 is
XTi+1

(t) = XTN , i ∈ [1, N − 1]. Let the maximum value
of Z(t) for which

∣∣Z(t)− X̄∗N,is(t)
∣∣ ≤ εZ(t) be Zmax. We

then have:

(

N∑
i=1

(b−iai

i−1∏
j=1

XTj))Z(t)

≤

 N∑
i=1

(b−i
(
XTN

Km1
+ (

k2

k1
+ 1)

MT

Km2
+ 1

) i−1∏
j=1

XTj)


︸ ︷︷ ︸

ε3

Zmax.

We define ε3 as shown above. Then,

(

N∑
i=1

(b−iai

i−1∏
j=1

XTj))Z ≤ ε3Zmax. (37)

Substituting the value of b = X
1
N

T1X
N−1
N

TN into the expression
for ε3, we get:

ε3 =
XTN

Km1
+ (k2k1 + 1) MT

Km2
+ 1

X
1
N

T1X
N−1
N

TN

+

(
(k2k1 + 1) MT

Km2
+ 1
)

XTN

+

(
XTN

Km1
+ (

k2

k1
+ 1)

MT

Km2
+ 1

)(
XT1

X2
TN

)N−1∑
i=2

(
XTN

XT1

) i
N

.

Substituting MT = λX
1
N

T1X
N−1
N

TN , and using the geometric
series sum, we get the following expression for ε3:

ε3 =
1

Km1

(
XTN
XT1

) 1
N

+
1

X
1
N
T1X

N−1
N

TN︸ ︷︷ ︸
(1)

+(
k2
k1

+ 1)
λ

Km2

+

(
XT1

XTNKm1
+ (

k2
k1

+ 1)
λ

Km2

(
XT1

XTN

)1+ 1
N

+
XT1

X2
TN

)
.︸ ︷︷ ︸

(2a) XTN
XT1

−
(
XTN
XT1

) 2
N

(
XTN
XT1

) 1
N − 1


︸ ︷︷ ︸

(2b)

+
λ( k2

k1
+ 1)

Km2

(
XT1

XTN

) 1
N

︸ ︷︷ ︸
(2c)

+
1

XTN
,

where (2a).(2b) are being multiplied.
(38)

From equations (36) and (37), and the corresponding discus-
sion, we have that when ε3Zmax = ε

1−ε , |Z(t)− X̄∗N,is(t)| ≤
εZ(t) ≤ εZB , by Assumption 3 for Z(t) ≤ Zmax. We define
g(N) as 1

ε3
, since ε3 > 0. Then, for Zmax = g(N) ε

1−ε we
have, for Z(t) ≤ Zmax:

|Z(t)− X̄∗N,is(t)| ≤ εZB . (39)

Using equations (35) and (39), we re-evaluate the inequality
(32) to get the required inequality for Z(t) ≤ Zmax:

|Z(t)−X∗N,is(t)| ≤ k3εTS + εZB ,∀t ∈ [tb, tf ].

We return to g(N), which was 1
ε3

for ε3 defined by
equation (38). Starting from N = 2, we see that since
XT1 < XTN , term (1) decreases with N , terms (2a), (2b)
and (2c) increase with N and as N → ∞, ε3 → ∞.
The function ε3 is continuous, and therefore we have the
following property of g(N): limN→∞ g(N) = 0.

V. IMPLICATIONS AND SIMULATION RESULTS

We first note that, for εTS , ε � 1, the properties (a), (b)
and (c) of the cascade as described in Theorem 2 imply
the properties (i), (ii) and (iii) of an insulation device as
given in Definition 1. We motivated the above analysis by
the tradeoff faced when the single PD cycle was used as an
insulation device. As mentioned in Remark 1 this tradeoff
can be broken by cascading PD cycles. The first and last
cycles decouple the requirements for the first two properties
in Definition 1 of an insulation device and break the tradeoff
that was faced in the case of a single cycle.

We note, however, that there is a limit to which r and s can
be made small. This is governed by εTS , which limits how
small ε can be made. εTS represents the degree of timescale
separation between the dynamics of the input and that of the
PD reactions. For realistic cases, however, since PD reactions
are much faster than gene expression, it is possible to make
εTS small enough to achieve small retroactivity.

The above discussion is verified in Fig. 5. Figs. 5a-5d show
the tradeoff in the case of a single cycle, while Figs. 5e and 5f
show this tradeoff being overcome with a two-cycle cascade.
When the total substrate concentration for a single cycle is
low, the retroactivity to the input is small (Fig. 5a) but the
retroactivity to the output is not attenuated (Fig. 5b). When
the total substrate concentration of this cycle is increased,
the retroactivity to the output is attenuated (Fig. 5d) but the
input, and therefore the output, slow down due to an increase
in the retroactivity to the input (Figs. 5c, 5d). When the same
two cycles are cascaded, with the low substrate concentration
cycle being the first and the high substrate concentration
cycle being the second, retroactivity to both the input as
well as the output are attenuated (Figs. 5e, 5f).

The final condition that the cascade must satisfy to qualify
as an insulation device is (iii) linearity between the input and
output with unit gain. While two cycles are enough to satisfy
conditions (i) and (ii), as seen from Theorem 2(i) and (ii),
more than two cycles might be required to achieve linearity
for a larger input range, Zmax, as established by g(N). As
g(N) increases, the operating input range Zmax increases, as
seen in Theorem 2. As stated in Remark 2, there is an optimal
N = N̄ at which g(N) is maximized, and therefore so is
Zmax. The change in N̄ as the amount of load pT increases is
shown in Fig. 6. We see that with load, the number of cycles
needed increase. Note that, it may not be necessary to have
N̄ cycles to get a desirable result, i.e., a sufficiently large
operating range. However, it is possible that no N is capable
of producing linearity for the desired operating range, since
g(N) is bounded above.

The above discussion is captured in the input-output
characteristics shown in Fig. 7. As shown in Fig. 7a, for



(a) (b)

(c) (d)

(e) (f)

Fig. 5: Simulation results that show how two cycles (e)-(f) over-
come the tradeoff present in a single cycle (a)-(d). Simulation
parameters: k(t) = 0.01nM.s−1, δ = 0.01s−1, α1 = β1 =
6(nM.s)−1, α2 = β2 = 1200s−1, k1 = k2 = 600s−1. We choose
ε = 0.01 and load pT = 10nM .
(a) Comparison of response of input Z with and without the 1st

cycle: XT = 3nM (b) Comparison of the output response X∗

with and without load with just the 1st cycle as insulation (c)
Comparison of response of input Z with and without just the 2nd

cycle: XT = 1000nM (d) Comparison of the input response X∗

with and without load with just the 2nd cycle as insulation (e)
Comparison of input response Z with and without the cascaded
system with XT1 = 3nM and XT2 = 1000nM (f) Comparison
of the output response X∗

2 with and without load with the cascaded
system as insulation

(a) (b)

Fig. 6: Figures showing the variation of g(N) with N , for ε = 0.01
with different loads pT . Parameter values are: Km1 = Km2 =
300nM , k1 = k2 = 600s−1, λ = 1, (a) pT = 10nM , where
resulting N̄ = 6 and (b) pT = 1200nM , where resulting N̄ = 10.

N = 2, the operating input range over which the input-
output characteristic is linear with unit gain is low. When

(a) (b)

Fig. 7: Figures comparing the input-output characteristic for
two cascades with different N ’s. Simulation parameters: k(t) =
0.01nM.s−1, δ = 0.01s−1, α1 = β1 = 6(nM.s)−1, α2 = β2 =
1200s−1, k1 = k2 = 600s−1. We choose ε = 0.01 and load
pT = 10nM , (a) N = 2 and (b) N = 5.

N is increased to 5, for the same ε, pT and reaction
rates, the operating range of the input increases dramatically.
The retroactivity to the input and to the output are both
attenuated, and are similar to the results shown in Figs. 5e
and 5f. Thus, this system, with N = 5, now satisfies all
the three requirements of the Definition 1 of an insulation
device.
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