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Model order reduction for Linear Noise Approximation using time-scale
separation

Narmada Herath1 and Domitilla Del Vecchio2

Abstract— In this paper, we focus on model reduction of

biomolecular systems with multiple time-scales, modeled using

the Linear Noise Approximation. Considering systems where

the Linear Noise Approximation can be written in singular per-

turbation form, with ✏ as the singular perturbation parameter,

we obtain a reduced order model that approximates the slow

variable dynamics of the original system. In particular, we show

that, on a finite time-interval, the first and second moments of

the reduced system are within an O(✏)-neighborhood of the

first and second moments of the slow variable dynamics of the

original system. The approach is illustrated on an example of

a biomolecular system that exhibits time-scale separation.

I. INTRODUCTION

Time-scale separation is a ubiquitous feature in biomolec-
ular systems, which enables the separation of the system dy-
namics into ‘slow’ and ‘fast’. This property is widely used in
biological applications to reduce the complexity in dynamical
models. In deterministic systems, where the dynamics are
modeled using ordinary differential equations, the process
of obtaining a reduced model is well defined by singular
perturbation and averaging techniques [1], [2]. However,
employing time-scale separation to obtain a reduced order
model remains an ongoing area of research for stochastic
models of biological systems [3].

Biological systems are inherently stochastic due to ran-
domness in chemical reactions [4], [5]. Thus, different
stochastic models have been developed to capture the ran-
domness in the system dynamics, especially at low popula-
tions numbers. The chemical Master equation is a prominent
stochastic model which considers the species counts as a
set of discrete states and provides a description for the
time-evolution of their probability density functions [6], [7].
However, analyzing the chemical Master equation directly
proves to be a challenge due to the lack of analytical tools to
analyze its behavior. Therefore, several approximations of the
Master equation have been developed, which provide good
descriptions of the system dynamics under certain assump-
tions. The chemical Langevin equation (CLE) is one such
approximation, where the dynamics of the chemical species
are described as a set of stochastic differential equations [8].
The Fokker-Plank equation is another method equivalent to
the CLE, which considers the species counts as continuous
variables and provides a description of the time evolution
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of their probability density functions [6]. The Linear Noise
Approximation (LNA) is another approximation, where the
system dynamics are portrayed as stochastic fluctuations
about a deterministic trajectory, assuming that the system
volume is sufficiently large such that the fluctuations are
small relative to the average species counts [7], [9].

In our previous work, we considered a class of stochastic
differential equations in singular perturbation form, which
captures the case of multiple scale chemical Langevin equa-
tion with linear propensity functions. We obtained a reduced
order model for which the error between the moment dy-
namics were of O(✏), where ✏ is the singular perturbation
parameter [10], [11]. In this work, we consider systems with
nonlinear propensity functions, modeled using the Linear
Noise Approximation.

There have been several works that obtain reduced order
models for systems modeled using LNA, under different
approaches for time-scale separation. One such model is
derived by Pahlajani et. al, in [12], where the slow and fast
species are identified by categorizing the chemical reactions
as slow and fast. In [13], [14], Thomas et. al, derive a reduced
order model by considering the case where the species are
separated using the decay rate of their transients, according
to the quasi-steady-state approximation for chemical kinetics.
It is also shown that, imposing the time-scale separation
conditions arising from slow and fast reactions, on their
model, leads to the same reduced model obtained in [12]. In
these previous works, the error between the original system
and the reduced system has been studied numerically and
has not been analytically quantified. The work by Sootla
and Anderson in [15] gives a projection-based model order
reduction method for systems modeled by Linear Noise
Approximation. The authors extend this work in [16], where
they also provide an error quantification in mean square sense
for the reduced order model derived in [13] under quasi-
steady state assumptions. However, to provide an error bound
the authors explicitly use the Lipschitz continuity of the
diffusion term, which is not Lipschitz continuous in general.

In this paper, we consider biomolecular systems mod-
eled using the Linear Noise Approximation where system
dynamics are represented by a set of ordinary differential
equations that give the deterministic trajectory and a set of
stochastic differential equations that describe the stochastic
fluctuations about the deterministic trajectory. We consider
the case where the system dynamics evolve on well separated
time-scales with slow and fast reactions, and the LNA can be
written in singular perturbation form with ✏ as the singular
perturbation parameter, as in [12]. We define a reduced order



model and prove that the first and second moments of the
reduced system are within an O(✏)-neighborhood of the first
and second moments of the original system. Our results do
not rely on Lipschitz continuity assumptions on the diffusion
term of the LNA.

This paper is organized as follows. In Section II, we
describe the model considered. In Section III, we define the
reduced system and derive the moment dynamics for the
original and reduced systems. In Section IV, we prove the
main convergence results. Section V illustrates our approach
with an example and Section VI includes the concluding
remarks.

II. SYSTEM MODEL

A. Linear Noise Approximation

Consider a biomolecular system with n species interacting
through m reactions in a given volume ⌦. The Chemi-
cal Master Equation (CME) describes the evolution of the
probability distribution for the species counts to be in state
Y = (Y
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N

), by the partial differential equation
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where a
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(Y, t) is the microscopic reaction rate with
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(Y, t)dt being the probability that a reaction i will take
place in an infinitesimal time step dt and v

i

the change in
state produced by reaction i for i = 1, . . . ,m [17].

The Linear Noise Approximation (LNA) is an approx-
imation to the CME obtained under the assumption that
the system volume ⌦ and the number of molecules in the
system are large [7]. To derive the LNA it is assumed that
Y = ⌦y+

p
⌦⇠, where y is a deterministic quantity and ⇠ is a

stochastic variable accounting for the stochastic fluctuations.
Then by expanding the chemical Master equation in a Taylor
series and equating the terms of order ⌦1/2 and ⌦0, it is
shown that y is the macroscopic concentration and ⇠ is a
Gaussian process whose dynamics are given by [7], [9]
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reaction rate which can be approximated by ã
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1

⌦

a
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(⌦y, t) at the limit of ⌦ ! 1 and Y ! 1 such that
the concentration y = Y/⌦ remains constant [18].

B. Singularly Perturbed System

We consider the case where the biomolecular system in (2)
- (3) exhibits time-scale separation, with m

s

slow reactions
and m

f

fast reactions where m
s

+ m
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= m. This allows
the use of a small parameter ✏ to decompose the reaction
rate vector as ã(y, t) = [â
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f

(y, t)]T where
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fast reactions. However, such a decompo-
sition does not guarantee that the individual species in the
system will evolve on well-separated time-scales. Therefore,
a coordinate transformation may be necessary to identify the
slow and fast variables in the system as seen in deterministic
systems [19] and chemical Langevin models [20]. Thus, we
make the following claim.
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y, allows the
deterministic dynamics in (2) to be written in the singular
perturbation form
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Proof: See Appendix A-1.

Based on the result of Claim 1, in this work, we consider
the Linear Noise Approximation represented in the singular
perturbation form:
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white noise process. We assume that the system (8) - (9) has
a unique solution on a finite-time interval t 2 [0, t
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We refer to the system (8) - (11) as the original system

and obtain a reduced order model when ✏ = 0. To this end,
we make the following assumptions on system (8) - (11) for
x 2 D

x

⇢ Rn

s , z 2 D
z

⇢ Rn

f and t 2 [0, t
1

].
Assumption 1: The functions f

x

(x, z, t), f
z

(x, z, t, ✏) are
twice continuously differentiable. The Jacobian @f

z

(x,z,t,0)

@z

has continuous first and second partial derivatives with
respect to its arguments.

Assumption 2: The matrix-valued functions
�
x

(x, z, t)�
x

(x, z, t)T , �
z

(x, z, t, ✏)[�
x

(x, z, t) 0]T and
�
z

(x, z, t, ✏)�
z

(x, z, t, ✏)T are continuously differentiable.
Furthermore, we have that �

z

(x, z, t, 0) = 0 and
lim

✏!0

�

z

(x,z,t,✏)�

z

(x,z,t,✏)

T

✏

= �(x, z, t) where �(x, z, t) is
bounded for given x, z, t and @�(x,z,t)

@z

is continuous.
Assumption 3: There exists an isolated real root z =

�
1

(x, t), for the equation f
z

(x, z, t, 0) = 0, for which, the
matrix @f

z

(x,z,t,0)

@z

��
z=�

1

(x,t)

is Hurwitz, uniformly in x and
t. Furthermore, we have that the first partial derivative of
�
1

(x, t) is continuous with respect to its arguments. Also,
the initial condition z

0

is in the region of attraction of
the equilibrium point z = �

1

(x
0

, 0) for the system dz

d⌧

=
f
z

(x
0

, z, 0, 0).
Assumption 4: The system ẋ = f
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III. PRELIMINARY RESULTS

A. Reduced System

The reduced system is defined by setting ✏ = 0 in the
original system (8) - (11), which yields
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the following claim:
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the linearity of the expectation operator we can write the
moment dynamics of the reduced system as (16) - (17).
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Proof: The equations (10) - (11) can be written in the
form
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Employing the linearity of the expectation operator, we can
sum the corresponding entries of the matrices in equation
(25), and multiply by ✏ to write the moment equations
(23) - (25) in the form of (18) - (22). Note that, since
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])T , we have eliminated the dynamics
of the variable E[ 
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 T

z

].
Claim 4: Setting ✏ = 0 in the system of moment dynamics

(18) - (22) and the dynamics of x and z given by (8) - (9),
yields the moment dynamics of the reduced system (16) -
(17) where the dynamics of x̄ are given by (14).

Proof: Setting ✏ = 0 in the equations (8) - (9) and (19)
- (20), yields

0 = f
z

(x, z, t, 0), (26)
0 = B

1

(x, z, t, 0)E[ 
x

] +B
2

(x, z, t, 0)E[ 
z

], (27)
0 = B

1

(x, z, t, 0)E[ 
x

 T

x

] +B
2

(x, z, t, 0)E[ 
z

 T

x

]. (28)

By definition of the reduced system, we have that z =
�
1

(x, t) is an isolated root for equation (26). Then, under
the Assumption 3, we have that the unique solutions for the
equations (27) and (28) are given by

E[ 
z

] = �B
2

(x, �
1

(x, t), t, 0)�1(B
1

(x, �
1

(x, t), t, 0)E[ 
x

])

= �
2

(x, t)E[ 
x

], (29)
E[ 

z

 T

x

]

= �B
2

(x, �
1

(x, t), t, 0)�1(B
1

(x, �
1

(x, t), t, 0)E[ 
x

 T

x

])

= �
2

(x, t)E[ 
x

 T

x

]. (30)

Substituting z = �
1

(x, t) and equations (29) - (30), in (8)
and (18) - (22) results in

ẋ = f
x

(x, �
1

(x, t), t), (31)
dE[ 

x

]

dt
= A

1

(x, �
1

(x, t), t)E[ 
x

]

+A
2

(x, �
1

(x, t), t)�
2

(x, t)E[ 
x

], (32)
dE[ 

x

 T

x

]

dt
= A

1

(x, �
1

(x, t), t)E[ 
x

 T

x

]

+A
2

(x, �
1

(x, t), t)�
2

(x, t)E[ 
x

 T

x

]

+ E[ 
x

 T

x

]A
1

(x, z, t)T

+ (�
2

(x, t)E[ 
x

 T

x

])TA
2

(x, �
1

(x, t), t)T

+ �
x

(x, �
1

(x, t), t)�
x

(x, �
1

(x, t), t)T . (33)

It follows that equation (31) is equivalent to the reduced
system given by (14) and since we have that A(x, t) =
A

1

(x, �
1

(x, t), t) ̄
x

+ A
2

(x, �
1

(x, t), t)�
2

(x, t), the system
(32) - (33) is equivalent to the moment dynamics of the
reduced system given by (16) - (17).

IV. MAIN RESULTS

Lemma 1: Consider the original system in (8) - (11), the
reduced system in (14) - (15), and the moment dynamics
for the original and reduced systems in (18) - (22), (16) -
(17) respectively. We have that, under Assumptions 1 - 3,
the commutative diagram in Fig. 1 holds.

Proof: The proof follows from Claim 1, Claim 2 and
Claim 3.

Theorem 1: Consider the original system (8) - (11), the
reduced system in (14) - (15) and the moment dynamics for
the original and reduced systems in (18) - (22), (16) - (17)
respectively. Then, under Assumptions 1 - 4, there exists
✏⇤ � 0 such that for 0 < ✏ < ✏⇤, we have

kx(t)� x̄(t)k = O(✏), t 2 [0, t
1

], (34)
kE[ 

x

(t)]� E[ ̄
x

(t)]k = O(✏), (35)
kE[ 

x

(t) 
x

(t)T ]� E[ ̄
x

(t) ̄
x

(t)T ]k = O(✏). (36)
Proof: From Lemma 1, we see that setting ✏ = 0 in

the moment dynamics of the original system (18) - (22) and
in the dynamics of x and z given by (8) - (9), yields the
moment dynamics of the reduced system (16) - (17) where
the dynamics of x̄ is given by (14). Therefore to prove
Theorem 1, we apply Tikhonov’s theorem [1] to the system
of moment dynamics of the original system given by (18) -
(22) together the dynamics of x and z given by (8) - (9). In
order to apply Tikhonov’s theorem, we first prove that the
assumptions of the Tikhonov’s theorem are satisfied. To this
end, let us define the boundary layer variables

b
1

= z � �
1

(x, t), (37)
b
2

= E[ 
z

]� �
2

(x, t)E[ 
x

], (38)



Original System

ẋ = f

x

(x, z, t),

✏ż = f

z

(x, z, t, ✏),

 ̇

x

= A

1

(x, z, t) 
x

+A

2

(x, z, t) 
z

+ �

x

(x, z, t)�
x

,

✏ ̇

z

= B

1

(x, z, t, ✏) 
x

+B

2

(x, z, t, ✏) 
z

+ �

z

(x, z, t, ✏)�
z

.

˙̄
x = f

x

(x̄, �
1

(x̄, t), t),

˙̄
 

x

= A(x̄, t) ̄
x

+ �

x

(x̄, �
1

(x̄, t), t)�
x

.

˙̄
x = f

x

(x̄, �
1

(x̄, t), t),

d

dt

✓
E[ ̄

x

]
E[ ̄

x

 ̄

T

x

]

◆
= . . . .

ẋ = f

x

(x, z, t),

✏ż = f

z

(x, z, t, ✏),

d

dt

0

BBB@

E[ 
x

]
E[ 

x

 

T

x

]
✏E[ 

z

]
✏E[ 

z

 

T

x

]
✏E[ 

z

 

T

z

]

1

CCCA
= . . . .

Moments of the Original System Moments of the Reduced System

Reduced System

✏! 0

Fig. 1. Commutative Diagram.

b
3

= E[ 
z

 T

x

]� �
2

(x, t)E[ 
x

 T

x

]. (39)

The dynamics of the boundary layer variables are given by

db
1

dt
=

dz

dt
� d�

1

(x, t)

dt
,

db
2

dt
=

dE[ 
z

]

dt
� d�

2

(x, t)E[ 
x

]

dt
,

db
3

dt
=

dE[ 
z

 
x

]

dt
� d�

2

(x, t)E[ 
x

 T

x

]

dt
.

Denote by ⌧ = t/✏ the time variable in the fast time-scale.
Then, expanding using the chain rule, we have

db
1

d⌧
= ✏

dz

dt
� ✏

@�
1

(x, t)

@t
� ✏

@�
1

(x, t)

@x

dx

dt
,

db
2

d⌧
= ✏

dE[ 
z

]

dt
� ✏E[ 

x

]
@�

2

(x, t)

@t
� ✏E[ 

x

]
@�

2

(x, t)

@x

dx

dt

� ✏�
2

(x, t)
dE[ 

x

]

dt
,

db
3

d⌧
= ✏

dE[ 
z

 T

x

]

dt
� ✏E[ 

x

 T

x

]
@�

2

(x, t)

@t

� ✏E[ 
x

 T

x

]
@�

2

(x, t)

@x

dx

dt
� ✏�

2

(x, t)
dE[ 

x

 T

x

]

dt
.

Substituting from equations (9), (20) and (22) yields

db
1

d⌧
= f

z

(x, z, t, ✏)� ✏
@�

1

(x, t)

@t
� ✏

@�
1

(x, t)

@x

dx

dt
, (40)

db
2

d⌧
= B

1

(x, z, t, ✏)E[ 
x

] +B
2

(x, z, t, ✏)E[ 
z

]

� ✏E[ 
x

]
@�

2

(x, t)

@t
� ✏E[ 

x

]
@�

2

(x, t)

@x

dx

dt

� ✏�
2

(x, t)
dE[ 

x

]

dt
, (41)

db
3

d⌧
= ✏E[ 

z

 T

x

]A
1

(x, z, t)T + ✏E[ 
z

 T

z

]A
2

(x, z, t)T

+B
1

(x, z, t, ✏)E[ 
x

 T

x

] +B
2

(x, z, t, ✏)E[ 
z

 T

x

]

+ �
z

(x, z, t, ✏)[�
x

(x, z, t) 0]T � ✏E[ 
x

 T

x

]
@�

2

(x, t)

@t

� ✏E[ 
x

 T

x

]
@�

2

(x, t)

@x

dx

dt
� ✏�

2

(x, t)
dE[ 

x

 T

x

]

dt
. (42)

where we take z = b
1

+ �
1

(x, t) and E[ 
z

] = b
2

+
�
2

(x, t)E[ 
x

], and E[ 
z

 T

x

] = b
3

+�
2

(x, t)E[ 
x

 T

x

]. Since,
from Assumption 3, �

1

(x, t) is a continuously differentiable
functions in its arguments, we have that @�

1

(x,t)

@t

, @�

1

(x,t)

dx

are bounded in a finite time interval t 2 [0, t
1

]. Since
�
2

(x, t) = �B
2

(x, �
1

(x, t), t, 0)�1B
1

(x, �
1

(x, t), t, 0), and
B

1

and B
2

are continuously differentiable from Assumption
1, we have that @�

2

(x,t)

@x

and @�

2

(x,t)

@t

are bounded in a finite
time interval t 2 [0, t

1

]. Then, the boundary layer system
obtained by setting ✏ = 0 in (40) - (42) is given by

db
1

d⌧
= f

z

(x, b
1

+ �
1

(x, t), t, 0), (43)

db
2

d⌧
= B

1

(x, b
1

+ �
1

(x, t), t, 0)E[ 
x

]

+B
2

(x, b
1

+ �
1

(x, t), t, 0)(b
2

+ �
2

(x, t)E[ 
x

])

=: g
1

(b
1

, b
2

, x, t), (44)
db

3

d⌧
= B

1

(x, b
1

+ �
1

(x, t), t, 0)E[ 
x

 T

x

]

+B
2

(x, b
1

+ �
1

(x, t), t, 0)(b
3

+ �
2

(x, t)E[ 
x

 T

x

])

=: g
2

(b
1

, b
2

, b
3

, x, t). (45)

To prove that the origin of the boundary layer system is
exponentially stable, we consider the dynamics of the vector
b = [b

1

, b
2

, b
3

]. Linearizing the system (43) - (45) around the
origin, we obtain the dynamics for b̃ = b� 0 as

db̃

d⌧
=

2

4
J
11

0 0
J
21

J
22

0
J
31

J
32

J
33

3

5 b̃ (46)

where J
11

= @f

z

(x,b

1

+�

1

(x,t),t,0)

@b

1

��
b

1

=0

, J
21

= @g

1

(b

1

,b

2

,x,t)

@b

1

,
J
22

= B
2

(x, b
1

+ �
1

(x, t), t, 0)
��
b

1

=0

, J
31

= @g

2

(b

1

,b

2

,b

3

,x,t)

@b

1

,
J
32

= @g

2

(b

1

,b

2

,b

3

,x,t)

@b

2

, J
33

= B
2

(x, b
1

+ �
1

(x, t), t, 0)
��
b

1

=0

.
Since the eigenvalues of a block triangular matrix are
given by the union of eigenvalues of the diagonal blocks,
we consider the eigenvalues of @f

z

(x,b

1

+�

1

(x,t),t,0)

@b

1

��
b

1

=0

and B
2

(x, b
1

+ �
1

(x, t), t, 0)
��
b

1

=0

. Under Assumption 3,



we have that the matrix @f

z

(x,b

1

+�

1

(x,t),t,0)

@b

1

��
b

1

=0

=
@f

z

(x,z,t,0)

@z

dz

db

1

��
z=�

1

(x,t)

= @f

z

(x,z,t,0)

@z

��
z=�

1

(x,t)

is Hurwitz.
From the definition of the original system (8) - (11), we
have that B

2

(x, z, t, ✏) = @f

z

(x,z,t,✏)

@z

. Therefore, B
2

(x, b
1

+

�
1

(x, t), t, 0)
��
b

1

=0

= @f

z

(x,z,t,0)

@z

��
z=�

1

(x,t)

. Under Assump-

tion 3 we have that the matrix @f

z

(x,z,t,0)

@z

��
z=�

1

(x,t)

is Hur-
witz, and thus, the boundary layer system is exponentially
stable.

From Assumptions 1 and 2 we have that the
functions f

x

(x, z, t), f
z

(x, z, t, ✏), A
1

(x, z, t), A
2

(x, z, t),
B

1

(x, z, t, ✏), B
2

(x, z, t, ✏), �
x

(x, z, t)�
x

(x, z, t)T ,
�
z

(x, z, t, ✏)[�
x

(x, z, t) 0]T and �
z

(x, z, t, ✏)�
z

(x, z, t, ✏)T

and their first partial derivatives are continuously
differentiable. From Assumption 1 we have that the
@f

z

(x,z,t,0)

@z

, @B

1

(x,z,t,0)

@z

, @B

2

(x,z,t,0)

@z

have continuous
first partial derivatives with respect to their arguments.
From Assumptions 1 and 3 we have that the �

1

(x, t),
�
2

(x, t)E[ 
x

], �
2

(x, t)E[ 
x

 T

x

] have continuous first
partial derivatives with respect to their arguments. From
Assumption 4 we have that the reduced system (14) has a
unique bounded solution for t 2 [0, t

1

]. Since the moment
equations (16) - (17), are linear in E[ ̄

x

] and E[ ̄
x

 ̄T

x

] there
exists a unique solution to (16) - (17) in for t 2 [0, t

1

].
From Assumption 3 we have that the initial condition
z
0

is in the region of attraction of the equilibrium point
�
1

(x
0

, 0), and thus the initial condition z
0

� �
1

(x
0

, 0) for
the boundary layer system b

1

is in the region of attraction
of the equilibrium point b

1

= 0. Since the system (18) -
(22) is linear in the moments, the system (20) - (22) has
a unique equilibrium point for given x and thus the initial
conditions  

z

0

and  
z

0

 
x

T

0

are in the region of attraction
of the equilibrium point for (20) - (22). Therefore, the initial
conditions  

z

0

� �
2

(x
0

, 0) 
x

0

,  
z

0

 
x

T

0

� �
2

(x
0

, 0) 
x

0

 
x

T

0

for the boundary layer variables b
2

and b
3

are in the region
of attraction of the equilibrium point at b

2

= 0 and b
3

= 0.
Thus, the assumptions of the Tikhonov’s theorem on a finite
time-interval [1] are satisfied and applying the theorem to
the moment dynamics of the original system in (18) - (22)
and the dynamics of x and z given by (8) - (9), we obtain
the result (34) - (36).

Remark: From [7], we have that the  
x

(t) and  ̄
x

(t) are
multivariate Gaussian processes. Since a Gaussian distribu-
tion is fully characterized by their mean and the covariance,
and from Theorem 1, we have that the

lim
✏!0

E[ 
x

(t)] = E[ ̄
x

(t)], (47)
lim

✏!0

E[ 
x

(t) 
x

(t)T ] = E[ ̄
x

(t) ̄
x

(t)T ]. (48)

we have that for given t 2 [0, t
1

], the vector  
x

(t) converges
in distribution to the vector  ̄

x

(t) as ✏! 0.

V. EXAMPLE

In this section we demostrate the application of the model
reduction approach on an example of a biolomelcular system.
Consider the system in Fig. 2, where a phosphorylated
protein X⇤, binds to a downstream promoter site p which

produces the protein G. Such a setup can be seen commonly
occurring in natural biological systems, an example being
the two component signalling systems in bacteria [22].
Moreover, similar setups are also used in synthetic biology to
design biological circuits that are robust to the loading effects
that appear due to the presence of downstream components
[23], [24].

Fig. 2. Protein X is phosphorylated by kinase Z and dephospho-
rylated by phosphatase Y. Phosphorylated protein X⇤ binds to the
downstream promoter p.

The chemical reactions for the system are as follows: X+

Z
k

1�! X⇤+Z, X⇤+Y
k

2�! X+Y, X⇤+p
k

on��*)��
k

off

C, C
��! C+

G, G
��! �. The protein X is phosphorylated by kinase Z and

dephosphorylated by phosphatase Y with the rate constants
k
1

and k
2

, respectively. The binding between phosphorylated
protein X⇤ and promoter p produces a complex C, where
k
on

and k
o↵

are the binding and unbinding rate constants.
Protein G is produced at rate �, which encapsulates both
transcription and translation processes and decayed at rate
�, which includes both degradation and dilution. We assume
that the total concentration of protein X and promoter p are
conserved, giving X

tot

= X + X⇤ + C and p
tot

= p + C.
Then, the dynamics for the macroscopic concentrations of
X⇤, C and G denoted by x⇤, c and g, respectively, can be
written as dx⇤

dt
= k

1

Z(t)(X
tot

� x⇤ � c)� k
2

Y x⇤

� k
on

x⇤(p
tot

� c) + k
o↵

c, (49)
dc

dt
= k

on

x⇤(p
tot

� c)� k
o↵

c, (50)

dg

dt
= �c� �g. (51)

Binding and unbinding reactions are much faster than phos-
phorylation/dephosphorylation, and therefore, we can write
k
2

Y/k
o↵

= ✏⌧ 1. Taking k
d

= k
o↵

/k
on

, we have
dx⇤

dt
= k

1

Z(t)(X
tot

� x⇤ � c)� k
2

Y x⇤

� k
2

Y

✏k
d

x⇤(p
tot

� c) +
k
2

Y

✏
c, (52)

dc

dt
=

k
2

Y

✏k
d

x⇤(p
tot

� c)� k
2

Y

✏
c, (53)

dg

dt
= �c� �g. (54)

The system (52) - (54) is in the form of system (2), with y =
[x⇤, c, g]T . To take the system in the singular perturbation
form given in (8) - (9), we consider the change of variable
v = x⇤ + c, which yields

dv

dt
= k

1

Z(t)(X
tot

� v)� k
2

Y (v � c), (55)

dg

dt
= �c� �g, (56)



✏
dc

dt
=

k
2

Y

k
d

(v � c)(p
tot

� c)� k
2

Y c. (57)

This change of coordinates corresponds to having A
x

=
[1 1 0, 0 0 1]T , A

z

= [0 1 0], x = [v, g]T and z = c in
Claim 1. Then, the dynamics for the stochastic fluctuations
can be written as

d 
v

dt
= (�k

1

Z(t)� k
2

Y ) 
v

+ k
2

Y  
c

+
p

k
1

Z(t)(X
tot

� v)�
1

�
p

k
2

Y (v � c)�
2

, (58)
d 

g

dt
= � 

c

� � 
g

+
p
�c�

5

�
p
�g�

6

, (59)

✏
d 

c

dt
=

k
2

Y

k
d

(p
tot

� c) 
v

+

✓
�k

2

Y

k
d

v � k
2

Y

k
d

p
tot

+ 2
k
2

Y

k
d

c� k
2

Y

◆
 

c

+

r
✏
k
2

Y

k
d

(v � c)(p
tot

� c)�
3

�
p
✏k

2

Y c�
4

. (60)

with  
x

= [ 
v

, 
g

]T and  
x

= [ 
v

, 
g

]T . Therefore, the
equations (55) - (60) are in the form of the original system
in (8) - (9) with x = [v, g]T and z = c. It follows that
Assumptions 1 and 2 are satisfied since the system functions
of (55) - (57) are polynomials of the state variables. We
evaluate f

z

= k

2

Y

k

d

(v � z)(p
tot

� z) � k
2

Y z = 0, which
yields the unique solution z(v) = 1

2

(v + p
tot

+ k
d

) �
1

2

p
(v + p

tot

+ k
d

)2 � 4vp
tot

, feasible under the physical
constraints 0  c  p

tot

. We have that Assumption 3 is
satisfied since @f

z

@z

is negative. Thus, we obtain the reduced
system

dv̄

dt
= k

1

Z(t)(X
tot

� v̄)� k
2

Y (v̄ � c̄),

dḡ

dt
= �c̄� �ḡ,

d ̄
v

dt
= (�k

1

Z(t)� k
2

Y ) ̄
v

+ k
2

Y  ̄
c

+
p

k
1

Z(t)(X
tot

� v̄)�
1

�
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where

c̄ =
1
2
(v̄ + p
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+ k
d

)� 1
2

p
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+ k
d
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d
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Fig. 3 includes the simulation results for the error in
second moments of the stochastic fluctuations of v and g.
We use zero initial conditions for all variables and thus the
first moment of the stochastic fluctuations remains zero at all
times. The simulations are carried out with Euler-Maruyama
method and the sample means are calculated using 3⇥ 106

realizations.
VI. CONCLUSION

In this work, we obtained a reduced order model for the
Linear Noise Approximation of biomolecular systems with
separation in time-scales. It was shown that, for a finite time-
interval the first and second moments of the reduced system
are within an O(✏)-neighborhood of the first and second
moments of the slow variable dynamics of the original

Fig. 3. Errors in the second moments decreases as ✏ decreases.
The parameters used are Z(t) = 1, k

1

= 0.01, k
2

= 0.01, k
d

=
100, X

tot

= 200, Y = 200, p
tot

= 100, � = 0.1, � =
0.1, v(0) = 0, c(0) = 0, g(0) = 0,  

v

(0) = 0,  
g

(0) = 0.

system. This result can be used to approximate the slow
variable dynamics of the LNA with a system of reduced
dimensions, which will be useful in analysis and simulations
of biomolecular system especially when the system size is
large. The reduced model that we obtain is equivalent to the
reduced order model derived in [12]. Our results are also
consistent with the error analysis that they have performed
numerically, where it is approximated that the maximum
errors in the mean and the variance over time are of O(✏).

In future work, we aim to extend this analysis to obtain
an approximation for the fast variable dynamics.

APPENDIX

A-1: Applying the coordinate transformation
x = A

x

y, z = A
z

y to equation (2), with
ã(y, t) = [â

s

(y, t), (1/✏)â
f

(y, t)]T and v =
[v

1

, . . . , v
m

s

, v
m

s

+1

, . . . , v
m

s

+m

f

], with y = A�1[x, z]T we
have

ẋ = A
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sX
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Thus, from equation (61), if follows that A
x

v
i

= 0 for i =
m

s

+ 1, . . . ,m
s

+m
f

.
Applying the coordinate transformation  

x

= A
x

⇠,  
z

=
A

z

⇠, to equation (3), we have that
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x

[A(y, t)⇠] +A
x

�(y, t)�,

 ̇
z

= A
z

[A(y, t)⇠] +A
z

�(y, t)�.



Since A(y, t) = @f(y,t)

@y

and we have that y = A�1[x, z]T ,
using the chain rule we can write
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Using the linearity of the differentiation operator and the
transformation x = A

x

y, z = A
z

y, we obtain
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From (61) - (62), we have that A
x

f(A�1[x, z]T , t) =
f
x

(x, z, t) and A
z

f(A�1[x, z]T , t) = 1

✏

f
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(x, z, t, ✏).
Furthermore, substituting for ã(A�1[x, z]T , t) =
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 ̇
x

=
@f

x

(x, z, t)
@x

 
x

+
@f

x

(x, z, t)
@z

 
z

+

A
x


v
1

p
â
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â
s

m

s

(A�1[x, z]T , t)

�
�
x

+A
x


v
m

s

+1

r
1
✏
â
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(63)
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(64)

where � = [�
x

,�
f

]T . From (61) we have that, A
x

v
i

= 0
for i = m

s

+ 1, . . . ,m
s

+m
f

. Then, multiplying (64) by ✏,
we can write the system (63) - (64), in the form of system
(6) - (7), where �

z

= [�
x

,�
f

]T .
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