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Abstract This paper analyzes the adjoint equations

and boundary conditions for porous media flow mod-

els, specifically the Buckley-Leverett equation, and the

compressible two-phase flow equations in mass conser-

vation form. An adjoint analysis of a general scalar

hyperbolic conservation law whose primal solutions in-

clude a shock jump is initially presented, and the results

are later specialized to the Buckley-Leverett equation.

The non-convexity of the Buckley-Leverett flux func-

tion results in adjoint characteristics that are parallel to

the shock front upstream of the shock, and emerge from

the shock front downstream of the shock. Thus, in con-

trast to the behavior of Burgers’ equation where the ad-

joint is continuous at a shock, the Buckley-Leverett ad-

joint, in general, contains a discontinuous jump across

the shock. Discrete adjoint solutions from space-time
discontinuous Galerkin finite element approximations of

the Buckley-Leverett equation are shown to be consis-

tent with the derived closed-form analytical solutions.

Furthermore, a general result relating the adjoint equa-

tions for different (though equivalent) primal equations

is used to relate the compressible two-phase flow ad-

joints to the Buckley-Leverett adjoint. Adjoint solu-
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tions from space-time discontinuous Galerkin finite el-

ement approximations of the two-phase flow equations

are observed to obey this relationship.

Keywords adjoint solutions · Buckley-Leverett · two-

phase flow · conservation law · continuous analysis ·
shockwaves

Nomenclature

u Scalar primal solution

f 1D spatial flux

xs Spatial location of shock

ẋs Speed of shock
~F Space-time flux

Ω Space-time domain

Γs Path of shock in space-time

J Output functional

ψ,ψs Scalar adjoint solutions

φ Porosity

Sw, S Wetting-phase saturation

uT Total velocity

fw Wetting-phase fractional flow function

µw, µn Wetting and non-wetting phase viscosities

p Wetting phase pressure

pc Capillary pressure

ρw, ρn Wetting and non-wetting phase densities

λw, λn Wetting and non-wetting phase mobilities

qw, qn Wetting and non-wetting phase sources

K Rock permeability

ψw, ψn Wetting and non-wetting phase adjoint solu-

tions
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1 Introduction

The adjoint equations to a set of partial differential

equations (the primal equations) are useful for com-

puting the sensitivity of an objective function to per-

turbations in the primal problem. For optimization of

PDE-constrained problems, adjoint analysis is an effi-

cient approach to determine the sensitivity of a problem

when the number of objective functions and constraints

is much smaller than the number of design parameters

(controls) [15,24]. For porous media flows, which are the

focus of this paper, an important application of adjoint

analysis is data assimilation (or history-matching) in

which the initial conditions, boundary conditions, and

model parameters are adjusted so that the flow solution

best matches the available measured data. The opti-

mized primal problem can then be used as the basis of

a predictive model for future behavior. Adjoint-based

sensitivity analysis methods have been used for per-

forming history matching in single-phase [8,7,29,26],

multi-phase [30,24,18,2] and compositional flow prob-

lems [9,23].

Adjoint solutions also play an important role in the

analysis and control of numerical errors. Becker and

Rannacher have developed the dual-weighted residual

(DWR) method based on the fundamental result that

the residual of the approximate primal solution weighted

by the adjoint is the error in the objective function [5,6].

With this insight, Becker and Rannacher developed a

grid adaptive method to control a DWR-based estimate

of this objective function error. While the DWR method

fits most naturally with finite element discretizations,

the key ideas have been extended to other discretiza-

tions [12,17,4]. An extensive literature now exists on a

variety of DWR-based adaptive methods applied to a

wide range of problems [27,28,20,31,10,25,22,21].

Most applications of the adjoint method outlined

above make use of a discrete adjoint solution that is

obtained by linearizing the discrete residual operator.

Although the discrete adjoint method works for gen-

eral problems, it does not necessarily provide a clear

insight into the nature of the adjoint solution. An ana-

lytic approach can be used to provide a theoretical un-

derstanding of the adjoint PDE, boundary conditions,

and solution behavior, which can then also be used to

verify discrete adjoint solutions on simplified problems.

This work is motivated by the desire for a theo-

retical understanding of the adjoint equations for rep-

resentative models of porous media flows. Specifically,

the focus is on the Buckley-Leverett equation and a

two-equation two-phase flow model. First, the adjoint

equation for a general nonlinear scalar hyperbolic con-

servation law is derived, and then the result is special-

ized to the Buckley-Leverett equation. While adjoint

analyses for nonlinear scalar hyperbolic equations have

been performed previously [13,11], the specific case of

the Buckley-Leverett equation has not been considered.

In particular, the non-convexity of the Buckley-Leverett

flux function, which gives rise to entropy-satisfying so-

lutions with combined rarefaction-shock waves, results

in an adjoint solution that does not require a bound-

ary condition at the shock for the region upstream of

the shock. This is in contrast to the adjoint behavior

of equations with convex fluxes, such as Burgers’ equa-

tion, where the adjoint is continuous across a shock [1].

Further, numerical adjoint solutions obtained using

the space-time discontinuous Galerkin (DG) finite ele-

ment method detailed in [22] are shown to be consistent

with the closed-form analytic solutions of the Buckley-

Leverett adjoint equation derived in this work. The

numerical method employs an adjoint consistent for-

mulation [19], which ensures that the discrete adjoint

problem is a consistent discretization of the continuous

adjoint problem. It is expected that any adjoint consis-

tent discrete numerical scheme, independent of the use

of a space-time approach or a finite-element method,

will produce discrete adjoint solutions that are consis-

tent with the analytic ones presented in this paper.

Hence, these analytic solutions can serve as reference

data to validate the implementations of such numerical

schemes.

Finally, this paper presents a derivation of the an-

alytic adjoint equations for the compressible two-phase

flow equations in mass conservation form, which is a

generalization of the Buckley-Leverett equation. Fur-

thermore, the adjoint solutions of the two-phase flow

problem are shown to be directly related to the adjoint

solution of the Buckley-Leverett equation.

2 Scalar conservation laws with shocks

This section presents a derivation of two 1D scalar con-

servation law adjoint equations with different output

functional types. These general results are later spe-

cialized to the case of the Buckley-Leverett equation

and compared against numerical results. Consider the

1D scalar conservation law given in Eq. (1), with the

initial and boundary conditions given by Eq. (2) - (3).

∂u

∂t
+
∂f

∂x
= 0, (1)

u(x, 0) = u0(x), x ∈ [0, L] (2)

u(0, t) = uL(t), t ∈ [0, T ] (3)

Without loss of generality, characteristics are assumed

to enter the domain from the left boundary at all times
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(∂f∂u > 0 at x = 0). If the solution u(x, t) contains

shocks, then the Rankine-Hugoniot jump condition,

ẋs JuK− JfK = 0, (4)

must be satisfied, where xs(t) and ẋs represent the spa-

tial location and speed of the shock respectively. The

jump operator in 1D, defined as J·K = (·)+ − (·)−, rep-

resents the jump in a certain quantity between the left

(+) and right (−) sides of the shock. The primal prob-

lem described by Eq. (1) - (4) is represented in the

following space-time form:

∇ · ~F = 0, ~x ∈ Ω, (5)

where ~x = (x, t) is the augmented space-time coordi-

nate, Ω = [0, L]× [0, T ] is the space-time domain, and
~F represents the space-time fluxes,

~F = (Fx(u), Ft(u)) = (f(u), u) . (6)

The Rankine-Hugoniot jump condition given in Eq. (4)

transforms to the equivalent jump condition in space-

time, given by:

r
−~F

z
= 0, ~x ∈ Γs, (7)

where Γs is the curve that tracks the path of the shock,

and the jump operator definition has been extended to

multiple dimensions for scalar and vector quantities as

follows,

JsK = s+~n+ + s−~n− = (s+ − s−)~n+, (8)

J~vK = ~v+ · ~n+ + ~v− · ~n− = (~v+ − ~v−) · ~n+, (9)

where ~n+ is the space-time unit normal vector pointing

from the left to the right of interface Γs, and ~n− = −~n+.

The components of the space-time unit normal vector

~n+ =
(
n+x , n

+
t

)
depend on the shock speed as follows:

n+x =
1√
ẋ2s + 1

, n+t =
−ẋs√
ẋ2s + 1

. (10)

A schematic of the space-time domain and the shock

path is given in Figure 1.

Let Ω1 and Ω2 be partitions of the space-time do-

main to the left and right of the shock respectively, sep-

arated by the interface Γs as shown in Figure 1. The

boundaries of Ω1 and Ω2, including Γs, are denoted by

Γ1 and Γ2 respectively. Next, consider the weak form

of the primal equations in Ω1 ∪ Ω2 and the Rankine-

Hugoniot relation across Γs:

R(u, xs, w, ws) =

∫
Ω1∪Ω2

w∇ · ~FdΩ −
∫
Γs

ws

r
~F
z
dΓ,

(11)

Ω1

Ω2

0
x

t

L

T

u(0, t)

= uL(t)

u(x, 0) = u0(x)

~n+

+−

Γs

Fig. 1 Schematic of space-time domain Ω

where w and ws are admissible test functions. The lin-

earized form of Eq. (11) is obtained by considering in-

finitesimal perturbations of the solution, denoted by

δu(x, t), and the shock location, denoted by δxs(t). Per-

turbing the shock location by δxs(t) results in a hori-

zontal perturbation of the shock interface Γs by a vector
~δs = (δxs(t), 0). The resulting perturbed weak form is

given by Eq. (12).

R+ δR =

∫
Ω1∪Ω2

w∇ · (~F + δ ~F )dΩ (12)

+

∫
Γs

w+(∇ · ~F+)~δs · ~n+dΓ

−
∫
Γs

w−(∇ · ~F−)~δs · ~n+dΓ

−
∫
Γs

ws

r
(~F + δ ~F )

z
dΓ

−
∫
Γs

ws

(
~F+ − ~F−

)
· δ~n+ dΓ

Using the definition of R in Eq. (11) to cancel out terms,

and rewriting in terms of the jump operator yields:

δR =

∫
Ω1∪Ω2

w∇ · (δ ~F )dΩ +

∫
Γs

r
w(∇ · ~F )

z
· ~δs dΓ

(13)

−
∫
Γs

ws

r
δ ~F

z
dΓ −

∫
Γs

ws

(
~F+ − ~F−

)
· δ~n+ dΓ.

Note that the second integral in Eq. (13) vanishes since

∇ · ~F = 0. Invoking the chain rule to represent the flux
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perturbations δ ~F in terms of δu and δxs gives:

δR =

∫
Ω1∪Ω2

w∇ ·
(
~Aδu

)
dΩ (14)

−
∫
Γs

ws

t(
~Aδu

)
+
∂ ~F

∂x
δxs

|

dΓ

−
∫
Γs

ws

(
~F+ − ~F−

)
· δ~n+ dΓ,

where ~A = ∂ ~F
∂u . Performing integration by parts on the

volume integral yields:

δR = −
∫
Ω1∪Ω2

∇w ·
(
~Aδu

)
dΩ (15)

+

∫
Γ1∪Γ2

w
(
~Aδu

)
· ~n dΓ

−
∫
Γs

ws

t(
~Aδu

)
+
∂ ~F

∂x
δxs

|

dΓ

−
∫
Γs

ws

(
~F+ − ~F−

)
· δ~n+ dΓ.

The boundary integral in Eq. (15) is separated into an

integral over the shock interface Γs and an integral over

the domain boundary, ΓB = (Γ1 ∪ Γ2)\Γs, as shown

below:

δR = −
∫
Ω1∪Ω2

∇w ·
(
~Aδu

)
dΩ +

∫
ΓB

w
(
~Aδu

)
· ~n dΓ

(16)

+

∫
Γs

(r
w
(
~Aδu

)z
− ws

r(
~Aδu

)z)
dΓ

−
∫
Γs

ws

(t
∂ ~F

∂x
δxs

|

+
(
~F+ − ~F−

)
· δ~n+

)
dΓ.

The expression inside the brackets in the last integral

of Eq. (16) is simplified using the approach outlined in

Appendix A, resulting in the following equation for δR:

δR(δu, δxs, w, ws) = (17)

−
∫
Ω1∪Ω2

∇w ·
(
~Aδu

)
dΩ

+

∫
ΓB

w
(
~Aδu

)
· ~n dΓ

+

∫
Γs

(r
w
(
~Aδu

)z
− ws

r(
~Aδu

)z)
dΓ

+

∫
Γs

ws
d

dt

(
(F+
t − F−t )δxs

)
n+x dΓ.

Given a generic output functional J(u) and its lineariza-

tion δJ(δu, δxs), the adjoint solutions ψ and ψs satisfy

the following equation for all δu, δxs [14]:

δR(δu, δxs, ψ, ψs) = δJ(δu, δxs). (18)

The relationship of these adjoint solutions to the cal-

culation of output sensitivities, as required for inverse

analysis and design optimization, is described in Ap-

pendix B.

The following sub-sections formulate the adjoint equa-

tion and boundary conditions for two different output

functionals.

2.1 Output: spatial integral at t = T

This section assumes that the output functional of in-

terest is the spatial integral of some solution dependent

quantity g(u) at t = T :

JT =

∫ L

0

g(u(x, T ))dx. (19)

Splitting the output into integrals to the left and right

of the shock and linearizing gives:

δJT (δu, δxs) =

∫ xs(T )

0

∂g

∂u
δu(x, T ) dx (20)

+

∫ L

xs(T )

∂g

∂u
δu(x, T ) dx+ JgKt=T δxs(T ),

where JgKt=T represents the jump in the value of g

across the shock at the final time T .

The adjoint definition (Eq. (18)) with this output yields:

−
∫
Ω1∪Ω2

∇ψ ·
(
~Aδu

)
dΩ +

∫
ΓB

ψ
(
~Aδu

)
· ~n dΓ (21)

+

∫
Γs

(r
ψ
(
~Aδu

)z
− ψs

r(
~Aδu

)z)
dΓ

+

∫
Γs

ψs
d

dt

(
(F+
t − F−t )δxs

)
n+x dΓ

=

∫ xs(T )

0

∂g

∂u
δu(x, T ) dx+

∫ L

xs(T )

∂g

∂u
δu(x, T ) dx

+ JgKt=T δxs(T ).

The adjoint PDE is obtained by equating volume in-

tegrals on both sides of Eq. (21) and noting that the

resulting equation is valid for any perturbation δu.

−
∫
Ω1∪Ω2

∇ψ ·
(
~Aδu

)
dΩ = 0 (22)

∇ψ · ∂
~F

∂u
= 0 (23)
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The adjoint boundary conditions are obtained by col-

lecting the domain boundary integrals in Eq. (21). All

domain boundary integrals at t = 0 and x = 0 van-

ish since the primal initial condition and left boundary

condition requires δu(x, 0) and δ(0, t) to be zero, respec-

tively. As a result, there are no adjoint boundary con-

ditions at the bottom (t = 0) and left (x = 0) bound-

aries. The absence of a primal boundary condition at

the right (x = L) boundary implies that δu(L, t) 6= 0,

hence requiring the following adjoint boundary condi-

tion in order for the boundary integrals at x = L to

vanish:

ψ(L, t) = 0. (24)

The boundary integrals at t = T give:

∫ xs(T )

0

ψ(x, T )
∂Ft
∂u

δu(x, T ) dx (25)

+

∫ L

xs(T )

ψ(x, T )
∂Ft
∂u

δu(x, T ) dx

=

∫ xs(T )

0

∂g

∂u
δu(x, T ) dx+

∫ L

xs(T )

∂g

∂u
δu(x, T ) dx.

Requiring Eq. (25) to hold for any perturbation δu(x, T )

yields the following adjoint boundary condition at t =

T :

ψ(x, T )
∂Ft
∂u

(x, T ) =
∂g

∂u
(x, T ), ∀x 6= xs(T ). (26)

The behavior of the adjoint variables at the shock is

found by analyzing the shock interface integrals in Eq.

(21). Collecting all shock interface integrals that depend

on δxs gives:∫
Γs

ψs
d

dt

(
(F+
t − F−t )δxs

)
n+x dΓ = JgKt=T δxs(T ).

(27)

Performing integration by parts in time using dΓ =

dt/n+x , and noting that δxs(0) = 0 due to the primal

initial condition, yields:

ψs(T ) JFtKt=T δxs(T ) (28)

−
∫ T

0

dψs
dt

(F+
t − F−t )δxsdt = JgKt=T δxs(T ),

where JFtKt=T is the jump in Ft across the shock at

time T . Requiring Eq. (28) to hold for any δxs(t) gives

the following conditions for ψs(t):

ψs(T ) JFtKt=T = JgKt=T , (29)

dψs
dt

= 0. (30)

Therefore, ψs is a constant which takes the following

value:

ψs =
JgKt=T
JFtKt=T

. (31)

Lastly, the third integral on the left-hand side of Eq. (21)

gives the following condition across the shock:

r
ψ
(
~Aδu

)z
= ψs

r(
~Aδu

)z
. (32)

Expanding all components of Eq. (32) using the defini-

tions of ~A and Eq. (101) yields:

(
ψ+ − ψs

)(∂Fx
∂u

+

− ẋs
∂Ft
∂u

+)
δu+

−
(
ψ− − ψs

)(∂Fx
∂u

−
− ẋs

∂Ft
∂u

−)
δu− = 0.

(33)

Conditions on ψ+, ψ− and ψs are obtained by analyzing

the nature of the terms in Eq. (33). If
(
∂Fx
∂u

+ − ẋs ∂Ft∂u

+
)

is non-zero, then ψ+ = ψs satisfies Eq. (33) for any

variation δu+. By the same argument, ψ− = ψs, if(
∂Fx
∂u

− − ẋs ∂Ft∂u

−)
is non-zero. This is the case for the

Burgers’ equation, where the adjoint is continuous across

the shock (i.e. ψ+ = ψs = ψ−) [1].

However, if
(
∂Fx
∂u

+ − ẋs ∂Ft∂u

+
)

or
(
∂Fx
∂u

− − ẋs ∂Ft∂u

−)
is identically zero for a particular set of primal fluxes,

then the equality of ψ+ and ψs, or ψ− and ψs respec-

tively, cannot be inferred from Eq. (33) alone. In partic-
ular, the Buckley-Leverett equation contains this com-

plexity, and Section 3 gives a more detailed analysis of

Eq. (33) in this context.

2.2 Output: volume integral over space-time domain

This section assumes that the output functional of in-

terest is the integral of some solution dependent quan-

tity g(u) over the entire space-time domain:

J =

∫
Ω

g(u)dΩ. (34)

The linearized output variation is given by:

δJ(δu, δxs) =

∫
Ω1∪Ω2

∂g

∂u
δu dΩ +

∫
Γs

JgK · ~δsdΓ. (35)

Using the same approach as in Section 2.1, the adjoint

definition given by Eq. (18) yields:
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−
∫
Ω1∪Ω2

∇ψ ·
(
~Aδu

)
dΩ +

∫
ΓB

ψ
(
~Aδu

)
· ~n dΓ (36)

+

∫
Γs

(r
ψ
(
~Aδu

)z
− ψs

r(
~Aδu

)z)
dΓ

+

∫
Γs

ψs
d

dt

(
(F+
t − F−t )δxs

)
n+x dΓ

=

∫
Ω1∪Ω2

∂g

∂u
δu dΩ +

∫
Γs

JgK · ~δsdΓ.

From this, the adjoint PDE is given by:

∇ψ · ∂
~F

∂u
= −∂g

∂u
. (37)

The adjoint boundary conditions are determined by

following the discussion in Section 2.1. However, the

change in output functional gives a different adjoint BC

at t = T :

ψ(x, T ) = 0, ∀x 6= xs(T ). (38)

Manipulating the integrals along the shock in Eq. (36)

gives the following ODE for ψs(t):

dψs
dt

= − g+ − g−

F+
t − F−t

, (39)

subject to the condition:

ψs(T ) = 0. (40)

3 Buckley-Leverett equation

This section applies the results of Section 2 to the case

of the Buckley-Leverett problem:

∂

∂t
(φSw) +

∂

∂x
(uT fw(Sw)) = 0, (41)

Sw(x, 0) = 0.1, x ∈ [0, L] (42)

Sw(0, t) = 1, t ∈ [0, T ] (43)

where the wetting phase saturation Sw is the dependent

variable, porosity φ = 0.3, and total velocity uT = 0.3

ft/day. Sw is a non-dimensional quantity that takes

physical values in the range [0, 1]. The fractional flow

function fw(Sw) [3] is a nonlinear, non-convex function

defined as:

fw(Sw) =
S2
w

S2
w + µw

µn
(1− Sw)2

. (44)

In this work, the wetting-phase to non-wetting phase

viscosity ratio µw
µn

is assumed to be equal to 0.5, and the

relative permeabilities are modeled as quadratic func-

tions. The domain length L is equal to 50 ft, and the

final time T is 25 days. The fluxes for this PDE are:

~F = [Fx(Sw), Ft(Sw)] = [uT fw(Sw), φSw] . (45)

The solution to this particular problem is a combined

rarefaction-shock wave that originates at x = 0. The

downstream state of the shock is given by the initial

saturation value in the domain:

Sw(x−s , t) = 0.1. (46)

The upstream state of the shock can be obtained by

solving the following nonlinear problem, which equates

the characteristic speed on the upstream state of the

shock to the shock speed given by the Rankine-Hugoniot

jump condition:

uT
φ

dfw(S+
w )

dSw
=
uT
φ

(
fw(S+

w )− fw(S−w )

S+
w − S−w

)
dfw(S+

w )

dSw
=
fw(S+

w )− fw(0.1)

S+
w − 0.1

, (47)

Sw(x+s , t) =

√
249− 3

24
≈ 0.53249. (48)

The corresponding shock speed is given by:

ẋs(t) =
uT
φ

∂fw
∂Sw

+

= 1.61324 ft/day. (49)

Figure 2 contains a plot of the primal space-time solu-

tion obtained using a second-order discontinuous Galerkin

(DG) finite element method, on a structured triangu-
lar space-time mesh with 750, 000 degrees of freedom

(DOF). Figure 3 shows the familiar Buckley-Leverett

saturation front propagating to the right at a constant

speed, obtained from constant-time slices of the space-

time solution in Figure 2. The numerical solutions from

the space-time DG method (solid lines) agree well with

the analytical solution (dashed lines). This figure clearly

shows the compound wave behavior of the Buckley-

Leverett solution, where a rarefaction wave is observed

upstream (to the left) of the propagating shock.

Figure 4 depicts characteristic paths of the Buckley-

Leverett problem defined above. The characteristic paths

downstream of the shock either end at the shock (blue

region), or leave the domain through the top (t = T )

and right (x = L) boundaries (grey and red regions re-

spectively). Upstream of the shock, all characteristics

leave the top boundary. The equality of the limiting

upstream characteristic speed and the shock speed (Eq.

(49)) causes the limiting upstream characteristic to be

parallel to the shock front.
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Fig. 2 Primal solution of Buckley-Leverett problem using a
second-order space-time DG method with 750,000 DOF.
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Fig. 3 Comparison of space-time DG (solid lines) and exact
(dashed lines) primal solutions at different times.
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Fig. 4 Primal characteristics of the Buckley-Leverett prob-
lem entering the shock (blue region) or exiting the top (grey
region) and right (red region) boundaries.

3.1 Output: spatial integral at t = T

This section presents the adjoint problem and its so-

lution for the Buckley-Leverett problem defined above,

for the output functional given in Eq. (50).

JT =

∫ L

0

g(Sw(x, T ))dx =

∫ L

0

S2
w(x, T )dx (50)

Using Eq. (23), the adjoint equation for this problem

is:

φ
∂ψ

∂t
+

(
uT

∂fw
∂Sw

)
∂ψ

∂x
= 0. (51)

Following the discussion on boundary conditions in Sec-

tion 2.1, no adjoint boundary conditions are required at

the left or bottom boundaries. The boundary conditions

at the right and top boundaries follow from Eq. (24) and

(26) respectively:

ψ(L, t) = 0, ∀t ∈ [0, T ] (52)

ψ(x, T ) =
2Sw(x, T )

φ
, ∀x 6= xs(T ). (53)

The value of ψs is computed from Eq. (31):

ψs =
JgKt=T

JφSwKt=T
=

1

φ

(
Sw(x+s , T ) + Sw(x−s , T )

)
. (54)

The analytical values of Sw on either side of the shock,

given previously, reduce Eq. (54) to:

ψs = ψ(x−s , t) =
1

36
(5
√

249− 3) ≈ 2.10830. (55)

Finally, Eq. (33) gives:

(
ψ+ − ψs

)(
uT

∂fw
∂Sw

+

− φẋs
)
δu+ (56)

−
(
ψ− − ψs

)(
uT

∂fw
∂Sw

−
− φẋs

)
δu− = 0.

Since the upstream characteristic speed converges to

the shock speed (Eq. (49)), the upstream flux term in

Eq. (56) vanishes, yielding:

(
ψ(x−s , t)− ψs

)(
uT

∂fw
∂Sw

−
− φẋs

)
δu− = 0. (57)

Recognizing that the characteristic speed to the right

of the shock does not generally match the shock speed,

and requiring Eq. (57) to hold for any δu− gives the

following condition on the adjoint:

ψ(x−s , t) = ψs(t). (58)

Eq. (56) cannot give a relationship between ψ(x+s , t)

and ψs(t) because the first term vanishes, which means

that these two quantities differ by an arbitrary amount.
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Fig. 5 Exact adjoint solution for output JT .

Fig. 6 Numerical adjoint solution for output JT from a
second-order space-time DG method with 750,000 DOF.

However, by using the method of characteristics out-

lined in Appendix C, the value of ψ(x+s , t) is obtained

by tracing the characteristic path to the top boundary,

where the value of ψ is given by Eq. (53). Note that this

result differs from the usual result obtained for PDEs

with convex fluxes, such as the Burgers’ equation, where

characteristics flow into the shock from both sides caus-

ing the adjoint variable to be continuous across the

shock (i.e. ψ(x+s , t) = ψ(x−s , t) = ψs(t)) [16,11]. How-

ever, the rarefaction-shock behavior of the Buckley-

Leverett equation causes this property to no longer

hold, allowing a finite jump between ψ(x+s , t) and ψs(t).

Figure 5 shows a contour plot of the analytical ad-

joint solution in the space-time domain, computed by

analyzing the characteristics of the adjoint equation in

x - ft
0 10 20 30 40 50

ψ
(x
,
t)

0

1

2

3

4

5

6

7

t = 5 days
t = 10 days
t = 15 days
t = 20 days
t = 25 days

Fig. 7 Comparison of space-time DG (solid lines) and exact
(dashed lines) adjoint solutions at different times, for output
JT .

Eq. (51) (as outlined in Appendix C). Figure 6 con-

tains the same plot with a numerical adjoint solution,

obtained by a second-order DG finite element method,

on a structured triangular mesh with 750, 000 degrees

of freedom.

The adjoint solution has a constant value of ψs along

all characteristics emanating from the shock. Further-

more, the absence of a source term in the adjoint PDE

(Eq. (51)) means that ψ(x, t) is also constant along each

characteristic that emanates from the top and right

boundaries. Figure 7 compares the DG adjoint solutions

(solid lines) at different times, with the corresponding

exact solutions (dashed lines). The numerical results

agree well with the analytical solutions, with the largest

errors occuring around discontinuities as a result of nu-

merical diffusion.

3.2 Output: volume integral over space-time domain

This section presents the adjoint problem and its solu-

tion for the Buckley-Leverett problem, with the output

functional given in Eq. (59).

J =

∫
Ω

g(Sw)dΩ =

∫
Ω

S2
w(x, t)dΩ (59)

Noting that J is exactly in the form of the general out-

put function considered in Section 2.2, the results de-

rived previously are applicable to this specific problem.

Using Eq. (37), the adjoint equation for this problem is

given by:

φ
∂ψ

∂t
+

(
uT

∂fw
∂Sw

)
∂ψ

∂x
= − ∂g

∂Sw
. (60)

As before, no adjoint BCs are required for the left and

bottom boundaries, and the right boundary remains a
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Fig. 8 Exact adjoint solution for output J .

homogeneous Dirichlet condition. The adjoint bound-

ary condition at t = T is exactly as given in Eq. (38):

ψ(x, T ) = 0, ∀x 6= xs(T ). (61)

The results given in Eq. (56) - (58) are valid for this out-

put functional as well, showing that ψ(x−s , t) = ψs(t),

and that ψ(x+s , t) and ψs(t) may differ by an arbitrary

amount.

The ODE governing ψs(t), given by Eq. (39) - (40),

simplifies to the following:

dψs
dt

= − 1

φ

(
Sw(x+s , t) + Sw(x−s , t)

)
, (62)

subject to the condition:

ψs(T ) = 0. (63)

Noting that the exact solution of Sw to the left and right

of the shock is constant in time, and solving the ODE

given by Eq. (62) - (63) yields the following expression

for ψs(t):

ψs(t) =
1

φ

(
Sw(x+s , t) + Sw(x−s , t)

)
(T − t) (64)

=
1

36
(5
√

249− 3)(T − t). (65)

Figure 8 shows a contour plot of the analytical ad-

joint solution in the space-time domain, obtained using

the approach outlined in Appendix C. Figure 9 con-

tains the same plot for the numerical adjoint solution,

obtained by a second-order discontinuous Galerkin fi-

nite element method on a structured triangular space-

time mesh with 750, 000 degrees of freedom. The source

term in Eq. (60) causes the adjoint to increase along

Fig. 9 Numerical adjoint solution for output J from a
second-order space-time DG method with 750,000 DOF.
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Fig. 10 Comparison of space-time DG (solid lines) and exact
(dashed lines) adjoint solutions at different times, for output
J .

each characteristic path emanating from shock, or the

top and right boundaries. Figure 10 compares the DG

adjoint solutions (solid lines) at different times, with

the corresponding exact solutions (dashed lines). The

space-time DG solutions agree well with the analyti-

cal results in general, except in the vicinity of solution

discontinuities.

4 Two-phase flow equations

This section presents a derivation of the adjoint equa-

tions for the compressible two-phase flow equations in

mass conservation form. The wetting phase pressure

p(x, t) and the wetting phase saturation S(x, t) are cho-

sen as the dependent states. The governing equations

for the wetting (w) and non-wetting (n) phases are
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given by:

(ρwφS)t − (ρwKλwpx)x = ρwqw (66)

(ρnφ(1− S))t − (ρnKλn (px + p′cSx))x= ρnqn, (67)

where ρw(p) and ρn(p) are the phase densities, λw(S)

and λn(S) are the phase mobilities, K is the rock per-

meability, φ(p) is the rock porosity, pc(S) is the capil-

lary pressure, and qw(p, S) and qn(p, S) are source/sink

terms for each phase. All spatial and temporal deriva-

tives are denoted with (·)x and (·)t subscripts respec-

tively, while all derivatives with respect to the state

variables are denoted with primes (i.e. ∂ρw
∂p = ρ′w and

∂λw
∂S = λ′w). Furthermore, ∂pc∂S is replaced with γ(S) for

the rest of this paper.

Eq. (66) and (67) is written in the space-time formula-

tion as:

∇ · ~F(u,∇u)−Q(u) = 0, ~x ∈ Ω, (68)

where u = (p, S)T ,

~F(u,∇u) =

(
~Fw
~Fn

)
(69)

=

[(
−ρwKλwpx

−ρnKλn(px + γSx)

)
,

(
ρwφS

ρnφ(1− S)

)]
,

Q(u) =

(
Qw
Qn

)
=

(
ρwqw
ρnqn

)
, (70)

and Ω = [0, L] × [0, T ] is the space-time domain as

before.

4.1 Output: volume integral over space-time domain

The adjoint analysis of the two-phase flow equations

assumes the following volume integrated output func-

tional:

J =

∫
Ω

g(u) dΩ. (71)

The extension of this analysis to boundary integral out-

puts follows the procedure described in Section 2.1 for

the Buckley-Leverett equation. As before, the adjoint

derivation considers infinitesimal perturbations to the

solution, δu, and equates the linearized weak form to

the linearized output:∫
Ω

ψT
(
∇ · δ~F− δQ

)
dΩ =

∫
Ω

δg dΩ, (72)

where the adjoint vector ψ = (ψw, ψn)
T

contains the

adjoint solutions for the wetting and non-wetting phase

equations respectively.

Expanding out the terms of each phase equation yields:

∫
Ω

ψw

(
∇ · δ ~Fw − δQw

)
dΩ

+

∫
Ω

ψn

(
∇ · δ ~Fn − δQn

)
dΩ =

∫
Ω

δg dΩ. (73)

Performing integration by parts and substituting in the

flux definitions, the integrand of the volume integral is

given by:

− (ψw)t δ(ρwφS) (74)

+ (ψw)x δ(ρwKλwpx)

− (ψn)t δ(ρnφ(1− S))

+ (ψn)x δ(ρnKλn(px + γSx))

− ψw δ(ρwqw)− ψn δ(ρnqn) = δg.

Further use of integration by parts and the chain rule

produces the following form of the volume integrand

where only variations of p and S appear:

− (ψw)t [(ρ′wφ+ ρwφ
′)Sδp + ρwφδS] (75)

− (ψn)t [(ρ′nφ+ ρnφ
′)(1− S)δp − ρnφδS]

+ (ψw)x [ρ′wKλwpxδp + ρwKλ
′
wpxδS]

+ (ψn)x [(ρ′nKλn)(px + γSx)δp]

+ (ψn)x [(ρnKλ
′
n)(px + γSx)δS]

+ (ψn)x [ρnKλnγ
′SxδS]

− ψw [(ρ′wqw + ρwqwp)δp + ρwqwSδS]

− ψn [(ρ′nqn + ρnqnp)δp + ρnqnSδS]

− [ρwKλw(ψw)x]x δp

− [ρnKλn(ψn)x]x δp − [ρnKλnγ(ψn)x]x δS

= gpδp+ gSδS,

where qwp = ∂qw
∂p , qwS = ∂qw

∂S , qnp = ∂qn
∂p , qnS = ∂qn

∂S , gp =
∂g
∂p and gS = ∂g

∂S .

Grouping together terms that multiply δp and noting

that Eq. (75) holds for any δp, yields the first adjoint

equation, given in Eq. (76). Repeating the process for

terms multiplying δS yields the second adjoint equa-
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tion, given in Eq. (77).

− (ψw)t · (ρ′wφ+ ρwφ
′)S (76)

− (ψn)t · (ρ′nφ+ ρnφ
′)(1− S)

+ (ψw)x · (ρ′wKλwpx)

+ (ψn)x · [(ρ′nKλn)(px + γSx)]

− [ρwKλw(ψw)x]x − [ρnKλn(ψn)x]x

− ψw · (ρ′wqw + ρwqwp)− ψn · (ρ′nqn + ρnqnp) = gp

− (ψw)t · (ρwφ) (77)

− (ψn)t · (−ρnφ)

+ (ψw)x · (ρwKλ′wpx)

+ (ψn)x · [(ρnKλ′n)(px + γSx) + ρnKλnγ
′Sx]

− [ρnKλnγ(ψn)x]x

− ψw · (ρwqwS )− ψn · (ρnqnS ) = gS

Next, the boundary conditions of the adjoint problem

are derived by collecting the boundary integral terms

from Eq. (72), and accounting for the integration by

parts that led to Eq. (76) and (77). Specifically, the

boundary integrals at t = T are:

∫ L

0

[ψw(x, T )(ρ′wφ+ ρwφ
′)S] δp dx (78)

+

∫ L

0

[ψn(x, T )(ρ′nφ+ ρnφ
′)(1− S)] δp dx

+

∫ L

0

[ψw(x, T )(ρwφ) + ψn(x, T )(−ρnφ)] δS dx = 0.

Requiring Eq. (78) to hold for any δp and δS gives the

following conditions on the adjoint variables:

ψw(x, T )(ρ′wφ+ ρwφ
′)S (79)

+ ψn(x, T )(ρ′nφ+ ρnφ
′)(1− S) = 0,

and

ρwψw(x, T )− ρnψn(x, T ) = 0. (80)

Similarly, isolating the boundary integrals for the right

boundary gives:∫ T

0

[−ρ′wKλwpxψw − ρ′nKλn(px + γSx)ψn] δp (81)

+

∫ T

0

[ρwKλw(ψw)x + ρnKλn(ψn)x] δp

+

∫ T

0

[−ρwKλ′wpxψw] δS

+

∫ T

0

[−(ρnKλ
′
n(px + γSx) + ρnKλnγ

′Sx)ψn] δS

+

∫ T

0

[ρnKλnγ(ψn)x] δS

+

∫ T

0

[−ρwKλwψw − ρnKλnψn] δpx

+

∫ T

0

[−ρnKλnγψn] δSx = 0.

Inspecting the integrands in Eq. (81), and accounting

for the nature of the imposed primal boundary condi-

tions yields the adjoint boundary conditions at the right

boundary. For example, if the primal problem imposes

Dirichlet boundary conditions for pressure and satura-

tion at the right boundary, then δp(L, t) = δS(L, t) = 0,

and therefore the adjoint solutions would only need to

satisfy the conditions corresponding to the δpx and δSx
terms. Specifically:

ρwKλwψw(L, t) + ρnKλnψn(L, t) = 0, (82)

ρnKλnγψn(L, t) = 0. (83)

Assuming γ 6= 0, the two conditions above reduce to

ψw(L, t) = ψn(L, t) = 0. Isolating the boundary inte-
grals for the left boundary produces an equation similar

to Eq. (81), from which the adjoint boundary conditions

can be determined in an analogous manner to the right

boundary. As before, the primal initial condition elim-

inates the need for an adjoint boundary condition at

t = 0.

4.2 Relationship with Buckley-Leverett

It is possible to reduce the two-phase flow equations

presented in Eq. (66) and (67) to the Buckley-Leverett

equation given in Eq. (41) by assuming incompress-

ibility (i.e. ρ′w = ρ′n = φ′ = 0), zero capillary pres-

sure (i.e. γ = 0), and the absence of source terms

(qw = qn = 0). Under these assumptions, the primal

equations in Eq. (66) and (67) reduce to:

φSt− (Kλwpx)x = 0, (84)

−φSt− (Kλnpx)x = 0. (85)
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Taking the sum of Eq. (84) and (85) produces an elliptic

pressure equation:

− (K(λw + λn)px)x = 0. (86)

The Buckley-Leverett equation is a combination of the

wetting-phase saturation equation (Eq. (84)) and the

pressure equation (Eq. (86)). Integrating Eq. (86) in

space shows that −K(λw+λn)px is equal to a constant

(namely, the total velocity uT ), thereby allowing the

spatial flux in Eq. (84) to be written as:

−Kλwpx = uT
λw

λw + λn
= uT fw(S), (87)

where the last equality uses the definition of the wetting

phase fractional flow function, fw(S) = λw
λw+λn

. Using

Eq. (87) in Eq. (84) yields the Buckley-Leverett equa-

tion given in Eq. (41).

Eq. (84) and (86) are written in the space-time for-

mulation as:

∇ · ~̂F(û,∇û) = 0, (88)

where û = (p, S)T , and

~̂
F =

 ~̂
FBL

~̂
Fp

 =

[(
−Kλwpx

−K(λw + λn)px

)
,

(
φS

0

)]
.

(89)

As before, the adjoint problem for this new, but equiv-

alent, set of primal equations is obtained by equating

the linearized weak form to the linearized output:∫
Ω

ψBL

(
∇ · δ~̂FBL

)
dΩ (90)

+

∫
Ω

ψp

(
∇ · δ ~̂Fp

)
dΩ =

∫
Ω

δg dΩ,

where the new adjoint vector ψ̂ = [ψBL, ψp]
T

contains

the adjoint solutions for the Buckley-Leverett and pres-

sure equations respectively.

The relationship between ψ̂ and ψ is obtained by via

the analysis presented in Appendix D, which derives a

simple relationship between the adjoint solutions of two

equivalent sets of primal equations that are linear com-

binations of each other. Following the definitions given

in Appendix D, the transformation matrix H from the

wetting-nonwetting primal equations to the Buckley-

Leverett-pressure primal equations is:

H =

(
1
ρw

0

1
ρw

1
ρn

)
. (91)

Eq. (144) states that ψ̂ = H−Tψ, which when applied

to this particular problem, gives:

(
ψBL

ψp

)
=

(
ρwψw − ρnψn

ρnψn

)
. (92)

The ability to derive analytical solutions for ψBL, as

described in Appendix C, makes the above relationship

useful for verifying numerical adjoint solutions of the

two-phase flow equations, which do not have analytical

solutions in general.

4.3 Numerical results

The space-time adaptive DG finite element method de-

scribed in [22] is used to compute the adjoint solutions

of a two-phase flow problem that is consistent with the

Buckley-Leverett problem defined in Eq. (41) - (43).

This requires setting Dirichlet BCs for saturation S

along the t = 0, x = 0 and x = L boundaries. The pres-

sure p requires a Neumann BC at the x = 0 boundary,

and Dirichlet BCs at the t = 0 and x = L boundaries.

The pressure gradient used for the Neumann BC is cal-

culated from Eq. (87), to be consistent with the Dirich-

let saturation condition given by Eq. (43) on the x = 0

boundary. No boundary conditions are imposed at the

t = T boundary, where all fluxes are evaluated from the

states in the interior of the domain. The problem is in-

compressible and contains no source terms. However, a

small amount of capillary pressure (γ = 0.1) is required

to stabilize oscillations that occur at the shock due to

the Gibbs’ phenomenon. Although this is a slight devia-

tion from the Buckley-Leverett problem, which assumes

zero capillary effects, it has no discernible impact on the

numerical solutions.

Figures 11 and 12 show contour plots of the two-

phase flow adjoint solutions, ψw and ψn respectively,

obtained using a second-order space-time DG finite el-

ement method with approximately 750,000 degrees of

freedom per state variable. Figure 13 shows a plot of

ψBL, computed using ψw and ψn according to the first

equation in Eq. (92). Visually comparing Figure 13 with

Figure 8 demonstrates that ψBL agrees well with the

adjoint solution of the Buckley-Leverett equation. How-

ever, in order to make a more formal comparison, pro-

files of ψBL at different times are compared with the

analytical Buckley-Leverett adjoint derived in Section

3.2, as shown in Figure 14. The near-perfect agreement

between the two solutions except in the vicinity of the

shocks provides a satisfactory numerical confirmation

of Eq. (92).
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Fig. 11 Numerical adjoint solution ψw for output J from a
second-order space-time DG method with 750,000 DOF per
state variable.

Fig. 12 Numerical adjoint solution ψn for output J from a
second-order space-time DG method with 750,000 DOF per
state variable.

5 Conclusions

This paper presents a derivation of the adjoint equation

and boundary conditions for a scalar conservation law

containing a shock, for two different output functionals:

one involving a spatial integral and the other involv-

ing a space-time integral of solution dependent quanti-

ties. The results are specialized to the Buckley-Leverett

problem, where attention to the combined rarefaction-

shock wave behavior of the equations is essential to pro-

duce the correct analytical solution. In contrast to the

behavior of equations with convex flux functions, such

as the Burgers’ equation, where the adjoint is contin-

Fig. 13 Space-time contour plot of ψBL = ρwψw − ρnψn,
computed from the numerical adjoint solutions.
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Fig. 14 Comparison of ψBL with the exact Buckley-Leverett
adjoint at different times.

uous across a shock, the Buckley-Leverett equation is

found to admit a discontinuous jump in adjoint value

across a shock.

This work also presents the adjoint equations for

the compressible two-phase flow equations in mass con-

servation form, and gives the relationship between the

adjoint solutions of the two-phase flow and Buckley-

Leverett problems, under appropriate assumptions. All

space-time DG numerical results presented in this work

are observed to be in good agreement with the derived

analytical solutions.

The derivation of adjoint equations and boundary

conditions for multi-dimensional, multi-phase flow prob-

lems is viewed as a tedious but straight-forward exten-

sion of the two-phase flow analysis presented in this

paper. However, it is highly unlikely that closed-form

analytic adjoint solutions exist for such complex prob-

lems, and therefore discrete approaches are necessary.
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A Linearization of weighted residual

In order to simplify Eq. (16) further, consider the expression
inside the brackets in the last integral of Eq. (16). Expanding
out all components of space-time fluxes and normal vectors,
and rewriting the expression in terms of 1D jump operators,
yields:

ξ =

t
∂ ~F

∂x
δxs

|

+
(
~F+ − ~F−

)
· δ~n+ (93)

=

s(
∂Fx

∂x
nx +

∂Ft

∂x
nt

)
δxs

{
+ JFxK δn+

x + JFtK δn+
t , (94)

where δn+
x and δn+

t are the spatial and temporal components
of the perturbed unit normal vector of Γs. Since δxs is unique
for both sides of the shock, it is moved out of the jump op-
erator, and the ∂Fx

∂x
term is replaced with −∂Ft

∂t
using the

space-time primal equation in Eq. (5), giving:

ξ =

(s
∂Fx

∂x

{
+

s
∂Ft

∂x

{
n+
t

n+
x

)
n+
x δxs + JFxK δn+

x + JFtK δn+
t

(95)

=

(s
−
∂Ft

∂t
− ẋs

∂Ft

∂x

{)
n+
x δxs + JFxK δn+

x + JFtK δn+
t .

(96)

Following the approach used in [13] and using the definition
d(·)
dt

= ∂(·)
∂t

+ ẋs
∂(·)
∂x

, yields:

d JFtK
dt

=

s
∂Ft

∂t
+ ẋs

∂Ft

∂x

{
, (97)

and therefore:

ξ = −
d JFtK
dt

n+
x δxs + JFxK δn+

x + JFtK δn+
t . (98)

Expanding the space-time jump condition in Eq. (7) gives:

JFxK = − JFtK
n+
t

n+
x

, (99)

which is substituted in Eq. (98) to obtain:

ξ = −
d JFtK
dt

n+
x δxs − JFtK

(
n+
t δn

+
x

n+
x

− δn+
t

)
. (100)

The final step requires a relationship between δxs and the
components of the perturbed unit normal vector ~n+. This
is derived by linearizing the ratio of n+

t /n
+
x as defined in

Eq. (10):

ẋs = −
n+
t

n+
x

(101)

ẋs + δẋs = −
n+
t + δn+

t

n+
x + δn+

x

. (102)

Eq. (102) is simplified further using a Taylor series expan-
sion of the right-hand side and retaining the linear terms as
follows:

ẋs + δẋs = −
(
n+
t + δn+

t

)( 1

n+
x

−
δn+
x

n2+

x

+O(δn2+

x )

)
(103)

δẋs =
n+
t δn

+
x

n2+

x

−
δn+
t

n+
x

. (104)

Noting that the right-hand side of Eq. (104) appears inside
the brackets of the last term in Eq. (100), the expression for
ξ is finally given by:

ξ = −
d JFtK
dt

n+
x δxs − JFtK δẋsn+

x (105)

= −
d

dt
(JFtK δxs)n+

x (106)

= −
d

dt

(
(F+
t − F

−
t )δxs

)
n+
x . (107)

B Output sensitivities via adjoint solutions

This section outlines how solutions to the continuous adjoint
problem can be used to compute the sensitivities of an output
functional to parameters in the model. Assume that the weak
form residual equation which needs to be satisfied by the
primal solution u(x, t, α) is given by:

R(u,w, α) = 0, (108)

where w(x, t) is an admissible test function and α is a model
parameter. The linearized form of the above equation is ob-
tained by considering infinitesimal perturbations of α as fol-
lows:

R(u+ δu, w, α+ δα) = 0,

δR(δu, w, δα) = 0. (109)

Furthermore, the δR constraint in Eq. (109) can be expanded
as:

δR(δu,w, 0) + δR(0, w, δα) = 0. (110)

For a given generic output function J(u, α), the adjoint solu-
tion ψ(x, t) satisfies the following equation for all δu:

δR(δu, ψ, 0) = δJ(δu, 0). (111)

The total perturbation in the output is given by δJ(δu, δα),
which can be decomposed and re-written using Eq. (111) and
(110) as:

δJ(δu, δα) = δJ(δu, 0) + δJ(0, δα)

= −δR(0, ψ, δα) + δJ(0, δα) (112)

It is worth noting that the absence of δu in the right-hand
side of Eq. (112) allows the output perturbation to be evalu-
ated directly from δα without first calculating δu. Therefore,
this adjoint-based sensitivity method is more efficient than
the direct method when multiple sensitivity evaluations are
required.

C Analytic adjoint solutions for

Buckley-Leverett

This section presents a derivation of analytical solutions for
the Buckley-Leverett adjoint problems considered in Sections
3.1 and 3.2, using the method of characteristics.

The adjoint PDEs given in Eq. (51) and (60) are written
in a general form as follows:

∂ψ

∂t
+ a

∂ψ

∂x
= q, (113)
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where a(Sw(x, t)) = uT
φ
∂fw
∂Sw

, and q(Sw(x, t)) is the source-

term of each adjoint equation. The first-order linear PDE in
Eq. (113) is transformed into an ODE along the characteristic
curve (xc(η), tc(η)).

dψ

dη
=

∂ψ

∂xc

dxc

dη
+
∂ψ

∂tc

dtc

dη
(114)

Assuming that dxc
dη

= a and dtc
dη

= 1 simplifies Eq. (114) to:

dψ

dη
= a

∂ψ

∂xc
+
∂ψ

∂tc
= q. (115)

The characteristic paths of the primal and dual problems
for Buckley-Leverett are identical, and the primal solution
Sw(x, t) remains constant along each characteristic path. This
allows for a straight-forward integration of the ODEs assumed
above, dxc

dη
= a and dtc

dη
= 1, producing the following linear

expressions for the characteristic path:

xc(η) = aη + x∗, (116)

tc(η) = η + t∗, (117)

where (x∗, t∗) denotes the space-time location of where the
adjoint value is desired. If the characteristic line through the
point of interest (x∗, t∗) terminates at the top boundary, then
Eq. (115) is integrated along that characteristic from η =
η0 = 0 to η = ηT = (T − t∗), to obtain:

ψ(ηT )− ψ(η0) =

∫ ηT

η0

q dη (118)

ψ(xT , T )− ψ(x∗, t∗) =

∫ T−t∗

0

q dt (119)

ψ(x∗, t∗) = ψ(xT , T )−
∫ T−t∗

0

q dt, (120)

where xT denotes the x-location of the characteristic at t = T ,
which is given by:

xT = x∗ + a(Sw(x∗, t∗)) · (T − t∗). (121)

Since the adjoint source term q(Sw(x, t)) is also constant
along a given characteristic, the integral in Eq. (120) eval-
uates to:

ψ(x∗, t∗) = ψ(xT , T )− q(Sw(x∗, t∗)) · (T − t∗). (122)

If xT > L, then the characteristic through (x∗, t∗) exits the
domain via the right boundary, and therefore a slightly mod-
ified version of Eq. (122) is required to obtain ψ(x∗, t∗):

ψ(x∗, t∗) = ψ(L, tB)− q(Sw(x∗, t∗)) · (tB − t∗). (123)

where tB is the time at which the characteristic reaches the
right boundary, and ψ(L, tB) is specified by the adjoint bound-
ary condition.

Similarly, if the characteristic line through the point (x∗, t∗)
terminates at the shock interface, then integrating Eq. (115)
along that characteristic from η = η0 = 0 to η = ηs = (ts−t∗)
yields:

ψ(ηs)− ψ(η0) =

∫ ηs

η0

q dη (124)

ψ(x∗, t∗) = ψ(x−s (ts), ts)− q(Sw(x∗, t∗)) · (ts − t∗),
(125)

where ts denotes the time at which the characteristic line
intersects the shock. In this case, ts is calculated by solving
the following equation:

xs(ts) = x∗ + a(Sw(x∗, t∗)) · (ts − t∗), (126)

where xs(ts) is the shock location at time ts. Recalling that
the shock speed ẋs is constant and that xs(0) = 0, gives an
explicit expression for ts:

ts =
x∗ − a · t∗

ẋs − a
. (127)

The result of Eq. (58) and the value of ts from above simplifies
Eq. (125) to:

ψ(x∗, t∗) = ψs(ts)− q(Sw(x∗, t∗)) · (ts − t∗), (128)

where ψs(ts) is known from Eq. (55) or Eq. (64), depending
on the output functional used.

D Adjoint relationships between equivalent

sets of PDEs

Consider the following linearized primal problem:

Lu = f, in Ω, (129)

Bu = e, on Γ, (130)

where u ∈ Rn is the primal solution vector, L : Rn → Rn
is a linear differential operator in the domain Ω ∈ Rd, and
B : Rn → Rn represents the primal boundary condition op-
erator on Γ ∈ Rd−1.

The following notation for volume and boundary inner prod-
ucts,

(u, v) =

∫
Ω

uT v dΩ, (131)

〈u, v〉 =

∫
Γ

uT v dΓ, (132)

allows the output of interest to be written as:

J = (g, u) + 〈gB , u〉. (133)

The duality condition produces the following relationship:

(g, u) + 〈gB , u〉 = (ψ, f) + 〈C∗ψ, e〉, (134)

which is used to derive the corresponding dual problem:

L∗ψ = g, in Ω, (135)

B∗C∗ψ = gB , on Γ, (136)

where the adjoint operators L∗, B∗ and C∗ are derived using
integration by parts, as described for the porous media model
equations in the main body of the paper.

Next, consider an equivalent set of primal equations defined
by the transformation matrices M ∈ Rn×n and H ∈ Rn×n:

û = Mu, (137)

f̂ = Hf. (138)
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Rewriting the primal problem in terms of these new quantities
yields:

L̂û = f̂ , in Ω, (139)

B̂û = e, on Γ, (140)

where L̂ = HLM−1 and B̂ = BM−1. Similarly, rewriting the
output functional gives J = (ĝ, û)+〈ĝB , û〉, where ĝ = M−T g
and ĝB = M−T gB .

The duality condition for the transformed problems is ma-
nipulated as follows:

(ĝ, û) + 〈ĝB , û〉 = (ψ̂, f̂) + 〈Ĉ∗ψ̂, e〉 (141)

(M−T g,Mu) + 〈M−T gB ,Mu〉 = (ψ̂,Hf) + 〈Ĉ∗ψ̂, e〉 (142)

(g, u) + 〈gB , u〉 = (HT ψ̂, f) + 〈Ĉ∗ψ̂, e〉
(143)

Comparing the volume integrals of Eq. (134) and Eq. (143)
gives the relationship between the adjoint variables of the
original primal problem and those of the transformed primal
problem:

ψ̂ = H−Tψ. (144)

Further, comparing the boundary integrals yields Ĉ∗ = C∗HT .
Note that the adjoint variable transformation given in Eq. (144)
is independent of the solution variable transformation matrix
M .
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