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We investigate the charge-dependent flow induced by magnetic and electric fields in heavy-ion collisions. We
simulate the evolution of the expanding cooling droplet of strongly coupled plasma hydrodynamically, using
the iEBE-VISHNU framework, and add the magnetic and electric fields as well as the electric currents they
generate in a perturbative fashion. We confirm the previously reported effect of the electromagnetically induced
currents [Gursoy et al., Phys. Rev. C 89, 054905 (2014)], that is a charge-odd directed flow �v1 that is odd
in rapidity, noting that it is induced by magnetic fields (à la Faraday and Lorentz) and by electric fields (the
Coulomb field from the charged spectators). In addition, we find a charge-odd �v3 that is also odd in rapidity
and that has a similar physical origin. We furthermore show that the electric field produced by the net charge
density of the plasma drives rapidity-even charge-dependent contributions to the radial flow 〈pT 〉 and the elliptic
flow �v2. Although their magnitudes are comparable to the charge-odd �v1 and �v3, they have a different
physical origin, namely the Coulomb forces within the plasma.

DOI: 10.1103/PhysRevC.98.055201

I. INTRODUCTION

Large magnetic fields �B are produced in all noncentral
heavy-ion collisions (those with nonzero impact parameter)
by the moving and positively charged spectator nucleons that
“miss,” flying past each other rather than colliding, as well
as by the nucleons that participate in the collision. Estimates
obtained by applying the Biot-Savart law to collisions with
an impact parameter b = 4 fm yield e| �B|/m2

π ≈ 1–3 about
0.1–0.2 fm/c after a RHIC collision with

√
s = 200 A GeV

and e| �B|/m2
π ≈ 10–15 at some even earlier time after an LHC

collision with
√

s = 2.76 A TeV [1–8]. The interplay between
these magnetic fields and quantum anomalies has been of
much interest in recent years, as it has been predicted to
lead to interesting phenomena including the chiral magnetic
effect [2,9] and the chiral magnetic wave [10,11]. This makes
it imperative to establish that the presence of an early-time
magnetic field can, via Faraday’s law and the Lorentz force,
have observable consequences on the motion of the final-state
charged particles seen in the detectors [1]. Since the plasma
produced in collisions of positively charged nuclei has a
(small) net positive charge, electric effects—which is to say
the Coulomb force—can also yield observable consequences
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to the motion of charged particles in the final state. These elec-
tric effects are distinct from the consequences of a magnetic
field first studied in Ref. [1], but comparable in magnitude.
Our goal in this paper will be a qualitative, perhaps semiquan-
titative, assessment of the observable effects of both magnetic
and electric fields, arising just via the Maxwell equations and
the Lorentz force law, so that experimental measurements can
be used to constrain the strength of the fields and to establish
baseline expectations against which to compare any other,
possibly anomalous, experimental consequences of �B.

In previous work [1] three of the authors noted that the
magnetic field produced in a heavy-ion collision could result
in a measurable effect in the form of a charge-odd contribution
to the directed flow coefficient �v1. This contribution has the
opposite sign for positively vs negatively charged hadrons in
the final state and is odd in rapidity. However, the authors
of [1] neglected to observe that a part of this charge-odd,
parity-odd effect originates from the Coulomb interaction.
In particular it originates from the interaction between the
positively charged spectators that have passed by the collision
and the plasma produced in the collision, as will be explained
in detail below.

The study in Ref. [1] was simplified in many ways, in-
cluding in particular by being built upon the azimuthally
symmetric solution to the equations of relativistic viscous
hydrodynamics constructed by Gubser in Ref. [12]. Be-
cause this solution is analytic, various practical simplifi-
cations in the calculations of Ref. [1] followed. In reality
magnetic fields do not arise in azimuthally symmetric col-
lisions. The calculations of Ref. [1] were intended to pro-
vide an initial order of magnitude estimate of the �B-driven,
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charge-odd, rapidity-odd contribution to �v1 in heavy-ion
collisions with a nonzero impact parameter, but the authors
perturbed around an azimuthally symmetric hydrodynamic
solution for simplicity. Also, the radial profile of the energy
density in Gubser’s solution to hydrodynamics is not realistic.
Here, we shall repeat and extend the calculation of Ref. [1],
this time building the perturbative calculation of the elec-
tromagnetic fields and the resulting currents upon numerical
solutions to the equations of relativistic viscous hydrodynam-
ics simulated within the iEBE-VISHNU framework [13] that
provide a good description of azimuthally anisotropic heavy-
ion collisions with a nonzero impact parameter.

The idea of Ref. [1] is to calculate the electromagnetic
fields, and then the incremental contribution to the velocity
fields of the positively and negatively charged components
of the hydrodynamic fluid (also known as the electric cur-
rents) caused by the electromagnetic forces, in a perturbative
manner. A similar conclusion has been reached in [14] and
[15]. One first computes the electric and magnetic fields �E
and �B using the Maxwell equations as we describe further
below. Then, at each point in the fluid, one transforms to the
local fluid rest frame by boosting with the local background
velocity field �vflow. Afterwards one computes the incremental
drift velocity �vdrift caused by the electromagnetic forces in this
frame by demanding that the electromagnetic force acting on a
fluid unit cell with charge q is balanced by the drag force. One
then boosts back to the laboratory frame to obtain the total
velocity field that now includes both �vflow and �vdrift , with �vdrift

taking opposite signs for the positively and negatively charged
components of the fluid. The authors of Ref. [1] then use
a standard Cooper-Frye freeze-out analysis to show that the
electromagnetic forces acting within the hydrodynamic fluid
result in a contribution to the charge-odd directed flow param-
eter �v1 ≡ v1(h+) − v1(h−). We shall provide the (standard)
definition of the directed flow v1 in Sec. II. The charge-odd
contribution �v1 is small but distinctive: in addition to being
antisymmetric under the flip of charge, it is also antisymmetric
under flipping the rapidity. That the contribution has opposite
sign for oppositely charged hadrons is easy to understand: it
results from an electric current in the plasma. The fact that
it has opposite sign at positive and negative rapidity can also
easily be understood, as we explain in Fig. 1 and below.

As illustrated in Fig. 1, there are three distinct origins for a
sideways push on charged components of the fluid, resulting
in a sideways current:

(1) Faraday. As the magnetic field decreases in time (see
the right panel of Fig. 3 below), Faraday’s law dictates the
induction of an electric field and, since the plasma includes
mobile charges, an electric current. We denote this electric
field by �EF . Since �EF curls around the (decreasing) �B that
points in the y direction, the sideways component of EF points
in opposite directions at opposite rapidity; see Fig. 1.

(2) Lorentz. Since the hydrodynamic fluid exhibits a strong
longitudinal flow velocity �vflow denoted by �u in Fig. 1, which
points along the beam direction (hence perpendicular to �B),
the Lorentz force exerts a sideways push on charged particles
in opposite directions at opposite rapidity. Equivalently, upon
boosting to the local fluid rest frame in which the fluid is not
moving, the laboratory frame �B yields a fluid frame �E whose

x

z
B

s s

FIG. 1. Schematic illustration of how the magnetic field �B in a
heavy-ion collision results in a directed flow of electric charge, �v1.
The collision occurs in the z direction, meaning that the longitudinal
expansion velocity �u of the conducting QGP produced in the colli-
sion points in the +z (−z) direction at positive (negative) z. We take
the impact parameter vector to point in the +x direction, choosing
the nucleus moving toward positive (negative) z to be located at
negative (positive) x. The trajectories of the spectators that “miss”
the collision because of the nonzero impact parameter are indicated
by the red and blue arrows. This configuration generates a magnetic
field �B in the +y direction, as shown. The directions of the electric
fields (and hence currents) due to the Faraday, Lorentz, and Coulomb
effects are shown. The two different Coulomb contributions are
indicated, one due to the force exerted by the spectators and the other
coming from Coulomb forces within the plasma. The dashed arrows
indicate the direction of the directed flow of positive charge in the
case where the Faraday + spectator Coulomb effects are on balance
stronger than the Lorentz effect. Hence, the total directed flow in
this example corresponds to v1 < 0 (v1 > 0) for positive charges
at space-time rapidity ηs > 0 (ηs < 0), and opposite for negative
charges.

effects on the charged components of the fluid are equivalent
to the effects of the Lorentz force in the laboratory frame.
We denote this electric field by �EL. Both �EF and �EL are of
magnetic origin.

(3) Coulomb. The positively charged spectators that have
passed the collision zone exert an electric force on the charged
plasma produced in the collision, which again points in op-
posite directions at opposite rapidity. We denote this electric
field by �EC . As we noted above, the authors of Ref. [1] did
not identify this contribution, even though it was correctly
included in their numerical results.

As is clear from their physical origins, all three of these
electric fields—and the consequent electric currents—have
opposite directions at positive and negative rapidity. It is also
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FIG. 2. The electric (left) and magnetic (right) fields in the transverse plane at z = 0 in the laboratory frame at a proper time τ = 1 fm/c
after a Pb + Pb collision with 20–30% centrality (corresponding to impact parameters in the range 6.24 fm < b < 9.05 fm) and with a collision
energy

√
s = 2.76 ATeV. The fields are produced by the spectator ions moving in the +z (−z) direction for x < 0 (x > 0) as well as by the

ions that participate in the collision. In both panels, the contribution from the spectators is larger, however. The direction of the fields is shown
by the black arrows. The strength of the field is indicated both by the length of the arrows and by the color. We see that the magnetic field is
strongest at the center of the plasma, where it points in the +y direction as anticipated in Fig. 1. The electric field points in a generally outward
direction and is strongest on the periphery of the plasma. Its magnitude is not azimuthally symmetric: the field is on average stronger where it
is pointing in the ±y directions than where it is pointing in the ±x directions.

clear from Fig. 1 that �EF and �EC have the same sign, while
�EL opposes them. Hence, the sign of the total rapidity-odd,
charge-odd, �v1 that results from the electric current driven
by these electric fields depends on whether �EF + �EC or �EL is
dominant.

In this paper we make three significant advances relative
to the exploratory study of Ref. [1]. First, as already noted
we build our calculation upon a realistic hydrodynamic de-
scription of the expansion dynamics of the droplet of matter
produced in a heavy-ion collision with a nonzero impact
parameter.

Second, we find that the same mechanism that produces the
charge-odd �v1 also produces a similar charge-odd contribu-
tion to all the odd flow coefficients. The azimuthal asymme-
try of the almond-shaped collision zone in a collision with
nonzero impact parameter, its remaining symmetries under
x ↔ −x and y ↔ −y, and the orientation of the magnetic
field �B perpendicular to the beam and impact parameter direc-
tions together mean that the currents induced by the Faraday
and Lorentz effects (illustrated in Fig. 1) make a charge-odd
and rapidity-odd contribution to all the odd flow harmonics,
not only to �v1. We compute the charge-odd contribution to
�v3 in addition to �v1 in this paper.

Last but not least, we identify a new electromagnetic
mechanism that generates another type of sideways current
which generates a charge-odd, rapidity-even, contribution to
the elliptical flow coefficient �v2. Although it differs in its
symmetry from the three sources of sideways electric field
above, it should be added to our list:

(4) Plasma. As is apparent from the left panel of Fig. 2
in Sec. III and as we show explicitly in that section, there
is a nonvanishing outward-pointing component of the electric
field already in the laboratory frame, because the plasma (and
the spectators) have a net positive charge. We denote this

component of the electric field by �EP , since its origin includes
Coulomb forces within the plasma.

At the collision energies that we consider, �EP receives
contributions both from the spectator nucleons and from the
charge density deposited in the plasma by the nucleons partic-
ipating in the collision. As illustrated below by the results in
the left panel of Fig. 2, the electric field will push an outward-
directed current. As this field configuration is even in rapidity
and odd under x ↔ −x (which means that the radial com-
ponent of the field is even under x ↔ −x), the current that
it drives will yield a rapidity-even, charge-odd, contribution
to the even flow harmonics; see Fig. 1. We shall demonstrate
this by calculating the charge-dependent contribution to the
radial flow, �〈pT 〉 (which can be thought of as �v0) and to
the elliptic flow, �v2, that result from the electric field �EP .
Furthermore, we discover that these observables also receive
a contribution from a component of the spectator-induced
contribution to the electric field �EF + �EL + �EC that is odd
under x ↔ −x and even in rapidity.

In the next section, we set up our model. In particular, we
explain our calculation of the electromagnetic fields, the drift
velocity, and the freeze-out procedure from which we read
off the charge-dependent contributions to the radial 〈pT 〉 and
to the anisotropic flow parameters v1, v2, and v3. In Sec. III
we present numerical results for the electromagnetic fields.
Then in Sec. IV we move on to the calculation of the flow
coefficients, for collisions with both RHIC and LHC energies,
for pions and for protons, for varying centralities and ranges
of pT , and for several values of the electrical conductivity
σ of the plasma and the drag coefficient μm, the latter two
being the properties of the plasma to which the effects that we
analyze are sensitive. Finally in Sec. V we discuss the validity
of the various approximations used in our calculations, discuss
other related work, and present an outlook.
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II. MODEL SETUP

We simulate the dynamical evolution of the medium pro-
duced in heavy-ion collisions using the iEBE-VISHNU frame-
work described in full in Ref. [13]. We take event-averaged
initial conditions from a Monte Carlo–Glauber model, ob-
taining the initial energy density profiles by first aligning
individual bumpy events with respect to their second-order
participant plane angles (the appropriate proxy for the reaction
plane in a bumpy event) and then averaging over 10 000
events. The second order participant plane of the averaged
initial condition, �PP

2 , is rotated to align with the x axis, which
is to say we choose coordinates such that the averaged initial
condition has �PP

2 = 0 and an impact parameter vector that

points in the +x direction. The hydrodynamic calculation that
follows assumes longitudinal boost invariance and starts at
τ0 = 0.4 fm/c.1 We then evolve the relativistic viscous hydro-
dynamic equations for a fluid with an equation of state based
upon lattice QCD calculations, choosing the s95p-v1-PCE
equation of state from Ref. [17] which implements partial
chemical equilibrium at Tchem = 150 MeV. The kinetic freeze-
out temperature is fixed to be 105 MeV to reproduce the mean
pT of the identified hadrons in the final state. Specifying the
equations of relativistic viscous hydrodynamics requires spec-
ifying the temperature dependent ratio of the shear viscosity
to the entropy density, η/s(T ), in addition to specifying the
equation of state. Following Ref. [18], we choose

η

s
(T ) =

⎧⎪⎪⎨
⎪⎪⎩

(
η
s

)
min

+ 0.288
(

T
Ttr

− 1
)

+ 0.0818

[(
T
Ttr

)2
− 1

]
for T > Ttr

(
η
s

)
min

+ 0.0594
(

1 − T
Ttr

)
+ 0.544

[
1 −

(
T
Ttr

)2
]

for T < Ttr

. (1)

We choose (η/s)min = 0.08 at Ttr = 180 MeV. These choices
result in hydrodynamic simulations that yield reasonable
agreement with the experimental measurements over all cen-
trality and collision energies; see for example Fig. 5 in Sec. IV
below.

The electromagnetic fields are generated by both the spec-
tators and participant charged nucleons. The transverse dis-
tribution of the right-going (+) and left-going (−) charge
density profiles ρ±

spectator (�x⊥) and ρ±
participant (�x⊥) are gener-

ated by averaging over 10 000 events using the same Monte
Carlo–Glauber model used to initialize the hydrodynamic
calculation. The external charge and current sources for the
electromagnetic fields are then given by

ρext (�x⊥, ηs ) = ρ+
ext (�x⊥, ηs ) + ρ−

ext (�x⊥, ηs ), (2)

�Jext (�x⊥, ηs ) = �J+
ext (�x⊥, ηs ) + �J−

ext (�x⊥, ηs ) (3)

with

ρ±
ext (�x⊥, ηs ) = ρ±

spectator (�x⊥)δ(ηs ∓ ybeam )

+ ρ±
participant (�x⊥)f ±(ηs ), (4)

�J±
ext (�x⊥, ηs ) = �β±(ηs )ρ±

ext (�x⊥, ηs ) with

�β± = [0, 0,± tanh(ηs )]. (5)

Here we are making the Bjorken approximation: the space-
time rapidities ηs of the external charges are assumed equal
to their rapidity. The spectators fly with the beam rapidity
ybeam and the participant nucleons lose some rapidity in the
collisions; their rapidity distribution in Eq. (4) is assumed to

1Starting hydrodynamics at a different thermalization time, be-
tween 0.2 and 0.6 fm/c, only changes the hadronic observables by
few percent [16].

be [1,2,19]

f ±(y) = 1

4 sinh(ybeam/2)
e±y/2 for − ybeam < y < ybeam.

(6)
The electromagnetic fields generated by the charges and

currents evolve according to the Maxwell equations(∇2 − ∂2
t − σ∂t

) �B = −�∇ × �Jext, (7)

(∇2 − ∂2
t − σ∂t

) �E = 1

ε
�∇ρext + ∂t

�Jext. (8)

Here σ is the electrical conductivity of the QGP plasma. As in
Ref. [1], we shall make the significant simplifying assumption
of treating σ as if it were a constant. We make this assumption
only because it permits us to use a semianalytic form for the
evolution of the electromagnetic fields rather than having to
solve Eqs. (7) and (8) fully numerically. This simplification
therefore significantly speeds up our calculations. In reality,
σ is certainly temperature dependent: Just on dimensional
grounds it is expected to be proportional to the temperature of
the plasma, meaning that σ should be a function of space and
time as the plasma expands and flows hydrodynamically, with
σ decreasing as the plasma cools. Furthermore, during the pre-
equilibrium epoch σ should rapidly increase from zero to its
equilibrium value. Taking all of this into consideration would
require a full, numerical, magnetohydrodynamical analysis,
something that we leave for the future. Throughout most of
this paper, we shall follow Ref. [1] and set the electrical
conductivity to the constant value σ = 0.023 fm−1 which,
according to the lattice QCD calculations in Refs. [20–24],
corresponds to σ in three-flavor quark-gluon plasma at T ∼
250 MeV. The numerical code that we have used to compute
the evolution of the electromagnetic fields can be found at
https://github.com/chunshen1987/Heavy-ion_EM_fields.

With the evolution of the electromagnetic fields in hand,
the next step is to compute the drift velocity �vdrift that the
electromagnetic field induces at each point on the freeze-out
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surface. Because this drift velocity is only a small perturbation
compared to the background hydrodynamic flow velocity,
|�vdrift|  |�vflow|, we can obtain �vdrift by solving the force-
balance equation [1]

m
d �v lrf

drift

dt
= q �v, lrf

drift × �B lrf + q �E lrf − μm�v lrf
drift = 0 (9)

in its nonrelativistic form in the local rest frame of the fluid
cell of interest. The last term in (9) describes the drag force on
a fluid element with mass m on which some external (in this
case electromagnetic) force is being exerted, with μ the drag
coefficient. The calculation of μm for quark-gluon plasma in
QCD remains an open question. In the N = 4 supersymmetric
Yang-Mills (SYM) theory plasma it should be accessible
via a holographic calculation. At present its value is known
precisely only for heavy quarks in N = 4 SYM theory, in
which [25–27]

μm = π
√

λ

2
T 2 (10)

with λ ≡ g2Nc the t’Hooft coupling, g being the gauge
coupling and Nc the number of colors. For our purposes,
throughout most of this paper we shall follow Ref. [1] and use
(9) with λ = 6π . We investigate the consequences of varying
this choice in Sec. IV B. Finally, the drift velocity �v lrf

drift in
every fluid cell along the freeze-out surface is boosted by
the flow velocity to bring it back to the laboratory frame,
V μ = (�flow)μ ν (ulrf

drift )
ν , where (�flow)μ ν is the Lorentz boost

matrix associated with the hydrodynamic flow velocity u
μ
flow.

With the full, charge-dependent, fluid velocity V μ—
including the sum of the flow velocity and the charge-
dependent drift velocity induced by the electromagnetic
fields—in hand, we now use the Cooper-Frye formula [28],

dN

dypT dpT dφ
= g

(2π )3

∫
�

pμdσμ

×
[
f0 + f0(1 ∓ f0)

pμpνπμν

2T 2(e + P )

]
, (11)

to integrate over the freeze-out surface (the space-time surface
at which the matter produced in the collision cools to the
freeze-out temperature that we take to be 105 MeV) and
obtain the momentum distribution for hadrons with different
charges. Here, g is the hadron’s spin degeneracy factor and the
equilibrium distribution function is given by

f0 = 1

exp[(p · V )/T ] ± 1
. (12)

With the momentum distribution for hadrons with different
charge in hand, the final step in the calculation is the evalua-
tion of the anisotropic flow coefficients as function of rapidity:

vn(y) ≡
∫

dpT dφ pT
dN

dypT dpT dφ
cos [n(φ − �n)]∫

dpT dφ pT
dN

dypT dpT dφ

, (13)

where �n = 0 is the event-plane angle in the numerical simu-
lations. In order to define the sign of the rapidity-odd directed
flow v1, we choose the spectators at positive x to fly toward

negative z, as illustrated in Fig. 1. We can then compute the
odd component of v1(y) according to

vodd
1 = 1

2
[v1(�+) − v1(�−)]. (14)

Experimentally, the rapidity-odd directed flow vodd
1 is mea-

sured [29] by correlating the directed flow vector of particles
of interest, QPOI

1 = ∑MPOI

j=1 eiφj , with the flow vectors from the
energy deposition of spectators in the zero-degree calorimeter
(ZDC), QZDC

± = ∑
j E±

j rj e
iφj . The directed flow is defined

using the scalar-product method:

v1(�±) = 1

〈MPOI〉ev

〈
QPOI

1 · (QZDC
± )∗

〉
ev√

〈|QZDC+ · (QZDC− )∗|〉ev

. (15)

In the definition of QZDC
± , the index j runs over all the

segments in the ZDC and Ej denotes the energy deposition at
xj = rj e

iφj . In our notation, the flow vector angle �+ = π in
the forward (+z direction) ZDC and �− = 0 in the backward
(−z) direction ZDC. The odd component of v1(y) that we
compute according to Eqs. (13) and (14) can be directly
compared to vodd

1 defined from the experimental definition of
v1(�±) in (15).

In order to isolate the small contribution to the various flow
observables that was induced by the electromagnetic fields,
separating it from the much larger background hydrodynamic
flow, we compute the difference between the value of a
given flow observable for positively and negatively charged
hadrons:

�〈pT 〉 ≡ 〈pT 〉(h+) − 〈pT 〉(h−) (16)

and

�vn ≡ vn(h+) − vn(h−) (17)

are the quantities of interest.

III. ELECTROMAGNETIC FIELDS

It is instructive to analyze the spatial distribution and the
evolution of the electromagnetic fields in heavy-ion collisions.
We shall do so in this section, before turning to a discussion
of the results of our calculations in the next section.

Figure 2 presents our calculation of the magnitude and
direction of the electromagnetic fields, both electric and mag-
netic, in the laboratory frame across the z = 0 transverse
plane at a proper time τ = 1 fm/c after a Pb + Pb collision
with 20–30% centrality and a collision energy of

√
s = 2.76

A TeV. These electric and magnetic fields are produced by
both spectator and participant ions in the two incoming nuclei.
We outlined the calculation in Sec. II; it follows Ref. [1]. The
spectator nucleons give the dominant contributions to the �B
field. The beam directions for the ions at x > 0 (x < 0) are
chosen as −z (+z), as in Fig. 1.

The left panel in Fig. 2 includes three of the four different
components of the electric field that we discussed in the
Introduction, namely the electric field generated by Faraday’s
law �EF , the Coulomb field sourced by the spectators �EC , and
the Coulomb field sourced by the net charge in the plasma �EP .
Their sum gives the total electric field in the laboratory frame,
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FIG. 3. Left: The x component of the electric field in the local fluid rest frame at points on the freeze-out surface at space-time rapidity
ηs = 0, as a function of proper time. Each cross corresponds to a single fluid cell on the freeze-out surface, with the vertical line of crosses
at any single τ corresponding to different points on the freeze-out surface at that τ . Only the Coulomb electric field generated by the net
charge in the plasma contributes at ηs = 0, and by symmetry there for every point where E lrf

x > 0 there is a point where E lrf
x < 0. Right: Time

dependence of the y component of the magnetic field in the laboratory frame at ηs = 0. Again, each cross corresponds to a single point on the
freeze-out surface. We see that By > 0 as diagramed in Fig. 1 and shown in Fig. 2, and here we can see how By decreases with time.

which is what is plotted. When we transform to the local
rest frame of a moving fluid cell, namely the frame in which
we calculate the electromagnetically induced drift velocity of
positive and negative charges in that fluid cell, there is an
additional component originating from the Lorentz force law,
�EL, as explained in the Introduction. The total electric field in

the rest frame, which now also includes the EL component,
is shown below in the left panel of Fig. 4 as a function of
time.The magnetic field in the right panel of Fig. 2 indeed de-
cays as a function of time as shown in the right panel of Fig. 3.
Via Faraday’s law this induces a current in the same direction
as the current pushed by the Coulomb electric field coming
from the spectators, and it opposes the current caused by the
Lorentz force on fluid elements moving in the longitudinal
direction, as sketched in Fig. 1 and seen in Fig. 4.

When solving the force-balance equation, Eq. (9), we find
that the drift velocity is mainly determined by the electric field
in the local fluid rest frame. To understand how the Coulomb,
Lorentz, and Faraday effects contribute to the drift velocity
on the freeze-out surface it is instructive to study how the
different effects contribute to the electric field in the local fluid
rest frame. We do so at ηs = 0 in the left panel of Fig. 3.
At ηs = 0, only the Coulomb effect contributes. This means
that when in Sec. IV we compute the charge-odd contribution
to the even flow harmonics at ηs = 0 this will provide an
estimate of the magnitude of the Coulomb contribution to the
flow coefficients. In Fig. 4 we look at the different contribu-
tions to the electric field in the local fluid rest frame at ηs = 1
and ηs = 3. We see that the Coulomb + Faraday and Lorentz
effects point in opposite directions, and almost cancel at large
space-time rapidity. We discuss the origin and consequences
of this cancellation in Sec. IV A below.

IV. RESULTS

In this section we present our results for the charge-
dependent contributions to the anisotropic flow induced by

the electromagnetic effects introduced in Sec. I. As we have
described in Sec. II, to obtain the anisotropic flow coefficients
we input the electromagnetic fields in the local rest frame of
the fluid, calculated in Sec. III, into the force-balance equation
(9) which then yields the electromagnetically induced compo-
nent of the velocity field of the fluid. This velocity field is then
input into the Cooper-Frye freeze-out procedure [28] to obtain
the distribution of particles in the final state and, in particular,
the anisotropic flow coefficients [1].

To provide a realistic dynamical background on top of
which to compute the electromagnetic fields and consequent
currents, we have calibrated the solutions to relativistic vis-
cous hydrodynamics that we use by comparing them to experi-
mental measurements of hadronic observables. To give a sense
of the agreement that we have obtained, in Fig. 5 we show
our results for the centrality dependencies of charged hadron
multiplicity and elliptic flow coefficients are shown for heavy-
ion collisions at three collision energies as well as data from
STAR, PHENIX, and ALICE Collaborations [30–35]. Since
we do not have event-by-event fluctuations in our calculations,
we compare our results for the elliptic flow coefficient v2

to experimental measurements of v2 from the four-particle
cumulant, v2{4} [36]. With the choice of the specific shear
viscosity η/s(T ) that we have made in Eq. (1), our model
provides a reasonable agreement with charged hadron v2{4}
for heavy-ion collisions with centralities up to the 40–50%
bin.

To isolate the effect of electromagnetic fields on charged
hadron flow observables, we study the difference between the
vn of positively charged particles and the vn of negatively
charged particles as defined in Eq. (17). We also study the dif-
ference between the mean transverse momentum 〈pT 〉 of posi-
tively charged hadrons and that of negatively charged hadrons.
This provides us with information about the modification in
the hydrodynamic radial flow induced by the electromagnetic
fields. The difference between the charge-dependent flow of
light pions and heavy protons is also compared. Hadrons with
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FIG. 4. Contributions to the electric field in the local rest frame of a unit cell in the fluid on the freeze-out surface at a specified,
nonvanishing, space-time rapidity ηs : ηs = 1 in the left panel and ηs = 3 in the right panel. Each unit cell is represented in the figure by
a black cross, a red cross, and a green cross. Black crosses denote the contribution to the electric field at a given fluid cell in its local rest
frame coming from the Coulomb and Faraday effects. Red crosses denote the contribution from the Lorentz force. Green crosses represent
the total electric field at the fluid cell, namely the sum of a black cross and a red cross. We observe that the Coulomb + Faraday and Lorentz
contributions to the electric field point in opposite directions, as sketched in Fig. 1, and furthermore see that the two contributions almost
cancel at large ηs , as we shall discuss in Sec. IV A. We shall see there that the Coulomb + Faraday contribution is slightly larger in magnitude
than the Lorentz contribution.

different masses have different sensitivities to the underlying
hydrodynamic flow and to the electromagnetic fields.

We should distinguish the charge-odd contributions to
the odd flow moments, �v1, �v3, . . ., from the charge-
dependent contributions to the even ones, �v2, �v4, . . .,
as they have qualitatively different origins. The charge-odd
contributions to the odd flow coefficients induced by elec-
tromagnetic fields, �v2n−1, are rapidity odd: �v2n−1(ηs ) =
−�v2n−1(−ηs ). This can easily be understood by inspecting
Fig. 1, where we describe different effects that contribute to
the total of the electric field in the plasma. This can also be
proven analytically by studying the transformation property
of �vn under η → −η. As we have seen in Sec. I, there are
three basic effects that contribute. First, there is the electric
field produced directly by the positively charged spectator

ions. They generate electric fields in opposite directions in the
z > 0 and z < 0 regions. We call this the Coulomb electric
field �EC , as the resulting electric current in the plasma is a
direct result of the Coulomb force between the spectators and
charges in the plasma. Then there are the two separate mag-
netically induced electric fields, as discussed in Ref. [1]. The
Faraday electric field �EF results from the rapidly decreasing
magnitude of the magnetic field perpendicular to the reaction
plane, see Fig. 1, as a consequence of Faraday’s law. Note
that �EF and �EC point in the same directions. Finally, there
is another magnetically induced electric field, the Lorentz
electric field �EL that can be described in the laboratory frame
as the Lorentz force on charges that are moving because of
the longitudinal expansion of the plasma and that are in a
magnetic field. Upon transforming to the local fluid rest frame,

FIG. 5. To get a sense of how well the solution to relativistic viscous hydrodynamics upon which we build our calculation of
electromagnetic fields and currents describes heavy-ion collisions, we compare our results for charged hadron multiplicities (left) and elliptic
flow coefficients (right) to experimental measurements at the top RHIC and LHC energies from Refs. [30–32] and [33–35], respectively.
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FIG. 6. The solid black curves display the principal results of our
calculations for 20–30% centrality Au + Au collisions at 200 GeV, as
at RHIC. We show the contribution to the mean-pT of charged pions
and the first three vn coefficients induced by the electromagnetic
fields that we have calculated, isolating the electromagnetically
induced effects by taking the difference between the calculated value
of each observable for π+ and π− mesons, namely the charge-odd or
charge-dependent contributions that we denote �〈pT 〉 and �vn. We
see rapidity-odd contributions �v1 and �v3 and rapidity-even con-
tributions �〈pT 〉 and �v2. The red dashed curves show the results
we obtain when we calculate the same observables in the presence
of the electromagnetic fields produced by the spectators only. We
see that the dominant contribution to the odd vn’s is generated by
these spectator-induced fields, whereas the even vn’s also receive a
significant contribution from the Coulomb force exerted on charges
in the plasma by other charges in the plasma, originating from the
participant nucleons.

the laboratory-frame magnetic field becomes an electric field
that we denote �EL.2 As shown in Fig. 1, �EL points in the
opposite direction to �EF and �EC .

On the other hand, the charge-dependent contributions to
the even order anisotropic flow coefficients v2n are even under
ηs → −ηs . Obviously this cannot arise from the rapidity-odd
electric fields described above. Instead, we find that although
the electromagnetic contribution to the v2n receives some
contribution from components of the electric fields above that
are rapidity even and that are odd under x → −x, it also
receives an important contribution from the Coulomb force
between the net positive electric charges in the plasma. This
arises as a result of the Coulomb force exerted on the charges
in the plasma by each other—as opposed to the Coulomb force
exerted on charges in the plasma by the spectator ions. This
electric field is nontrivial even at z = 0 as shown in Fig. 2
(left). We call this field the plasma electric field and denote
it by �EP . This contributes to the net �v2 and it is clear from
the geometry that it makes no contribution to the odd flow
harmonics.

2This electric field was called the Hall electric field in Ref. [1].

In Fig. 6, we begin the presentation of our principal results.
This figure shows �vn, the charge-odd contribution to the
anisotropic flow harmonics induced by electromagnetic fields,
for pions in 20–30% Au + Au collisions at 200 GeV. It also
shows the difference in the mean pT of particles with positive
and negative charge, which shows how the electromagnetic
fields modify the hydrodynamic radial flow. The radial out-
ward pointing electric fields in Fig. 2 increase the radial flow
for positively charged hadrons while reducing the flow for
negative particles. We see that the effect is even in rapidity.
Figure 6 shows that these fields also make a charge-odd,
rapidity-even contribution to v2.

We compare the red dashed curves, arising from elec-
tromagnetic effects by spectators only, with the solid black
curves that show the full calculation including the partic-
ipants. Noting that the lines are significantly different, it
follows that the Coulomb force exerted on charges in the
plasma by charges in the plasma makes a large contribution
to �〈pT 〉 and �v2. The induced �〈pT 〉 is larger at forward
and backward rapidities, because the electric fields from the
spectators and from the charge density in the plasma deposited
according to the distribution (6) are both stronger there.

The electromagnetically induced elliptic flow �v2 origi-
nates from the Coulomb electric field in the transverse plane,
depicted in Fig. 2. We see there that the Coulomb field is
stronger along the y direction than in the x direction. This
reduces the elliptic flow v2 for positively charged hadrons and
increases it for negatively charged hadrons. Hence, �v2 is
negative.

Note that �〈pT 〉 and �v2 are much smaller than 〈pT 〉 and
v2; in the calculation of Fig. 6, 〈pT 〉 ≈ 0.47 GeV and v2 ≈
0.048 for both the π+ and π−. The differences between these
observables for π+ and π− that we plot are much smaller,
with �〈pT 〉 smaller than 〈pT 〉 by a factor of O(10−3) and �v2

smaller than v2 by a factor of O(10−2) in Au + Au collisions
at 200 GeV. This reflects, and is consistent with, the fact
that the drift velocity induced by the electromagnetic fields
is a small perturbation compared to the overall hydrodynamic
flow on the freeze-out surface.

The electromagnetically induced contributions to the odd
flow harmonics �v1 and �v3 are odd in rapidity. In our
calculation, which neglects fluctuations, v1 and v3 both vanish
in the absence of electromagnetic effects. We see from Fig. 6
that the magnitudes of �v1 and �v3 are controlled by the
electromagnetic fields due to the spectators, namely �EF , �EC ,
and �EL. By comparing the sign of the rapidity-odd �v1 that
we have calculated in Fig. 6 to the illustration in Fig. 1, we
see that the rapidity-odd electric current flows in the direction
of �EF and �EC , opposite to the direction of �EL, meaning
that | �EF + �EC | is greater than | �EL|. Our results for �v1 are
qualitatively similar to those found in Ref. [1], although they
differ quantitatively because of the differences between our
realistic hydrodynamic background and the simplified hydro-
dynamic solution used in Ref. [1]. Here, we find a nonzero
�v3 in addition, also odd in rapidity, and with the same sign
as �v1 and a similar magnitude. This is natural since �v3

receives a contribution from the mode coupling between the
electromagnetically induced �v1 and the background elliptic
flow v2.
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FIG. 7. The electromagnetically induced difference between the
mean pT and vn coefficients of π+ and π− mesons (solid lines)
and between protons and antiprotons (dashed lines) as a function of
particle rapidity for 20-30% Au+Au collisions at 200 GeV. Three
different pT integration ranges are shown for each of the �vn as a
function of particle rapidity.

In Fig. 7 we see that the heavier protons have a larger
electromagnetically induced shift in their mean pT compared
to that for the lighter pions. Because a proton has a larger
mass than a pion, its velocity is slower than that of a pion with
the same transverse momentum, pT . Thus, when we compare
pions and protons with the same pT , the hydrodynamic radial
flow generates a stronger blueshift effect for the less rela-
tivistic proton spectra, which is to say that the proton spectra
are more sensitive to the hydrodynamic radial flow [37].
Similarly, when the electromagnetic fields that we compute
induce a small difference between the radial flow velocity
of positively charged particles relative to that of negatively
charged particles, the resulting difference between the mean
pT of protons and antiprotons is greater than the difference
between the mean pT of positive and negative pions. Turning
to the �vn’s, we see in Fig. 7 that the difference between the
electromagnetically induced �vn’s for protons and those for
pions are much smaller in magnitude. We shall also see below
that these differences are modified somewhat by contributions
from pions and protons produced after freeze-out by the decay
of resonances. For both these reasons, these differences cannot
be interpreted via a simple blueshift argument. Figure 7
also shows the charge-odd electromagnetically induced flow
coefficients �vn computed from charged pions and protons
+ antiprotons in three different pT ranges. The �v1, �v2,
and �v3 all increase as the pT range increases, in much the
same way that the background v2 does. In the case of �v1,
this agrees with what was found in Ref. [1].

In Fig. 8 we study the centrality dependence of the electro-
magnetically induced flow in Au + Au collisions at 200 GeV.
The difference between the flow of positive and negative
pions, both the radial flow and the flow anisotropy coeffi-
cients, increases as one goes from central toward peripheral
heavy-ion collisions. However, the increase in �〈pT 〉 and �v2
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FIG. 8. The centrality dependence of the electromagnetically
induced flow difference in π+ vs π− as a function of particle rapidity
in Au + Au collisions at 200 GeV.

is smaller than the increase in the odd �vn’s. This further
confirms that the odd �vn’s are induced by the electromag-
netic fields produced by the spectator nucleons only—since
the more peripheral a collision is the more spectators there
are.

Compared to any of the anisotropic flow coefficients �vn,
the �〈pT 〉 shows the least centrality dependence because, as
we saw in Fig. 6, �〈pT 〉 originates largely from the Coulomb
field of the plasma, coming from the charge of the partici-
pants, with only a small contribution from the spectators. The
increase of �v2 with centrality is intermediate in magnitude,
since it originates both from the participants and from the
spectators, as seen in Fig. 6. Another origin for the increase
in electromagnetically induced effects in more peripheral
collisions is that the typical lifetime of the fireball in these
collisions is shorter compared to that in central collisions. This
gives less time for the electromagnetic fields to decay by the
time of peak particle production in more peripheral collisions.
In the case of �〈pT 〉, which is dominantly controlled by
the plasma Coulomb field which is less in more peripheral
collisions where there is less plasma, this effect partially
cancels the effect of the reduction in the fireball lifetime, and
results in �〈pT 〉 being almost centrality independent.

Figure 9 further shows the centrality dependence of the
electromagnetically induced difference between flow observ-
ables for positive and negative particles at a fixed rapidity. We
observe that �〈pT 〉 does not vanish in central collisions. This
further confirms that it is largely driven by the Coulomb field
created by a net positive charge density in the plasma itself,
as this Coulomb field is present in collisions with zero impact
parameter whereas all spectator-induced effects vanish when
there are no spectators. This charge density creates an outward
electric field that generates an outward flux of positive charge
in the plasma and leads to a nonvanishing charge-identified
radial flow.

In Fig. 10, we study the collision energy dependence of
the effects of electromagnetic fields on charged hadron flow.
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FIG. 9. The centrality dependence of the electromagnetically in-
duced differences in the radial flow and anisotropic flow coefficients
for positively and negatively charged hadrons, here at a fixed rapidity
y = −1.

The electromagnetically induced effects on the differences
between flow observables for positive and negative particles
are larger at the top RHIC energy than at LHC energies. This
can be understood as arising from the fact that because the
spectators pass by more quickly in higher energy collisions
the spectator-induced electromagnetic fields decrease more
rapidly with time in LHC collisions than in RHIC collisions.
Furthermore, in higher energy collisions at the LHC the
fireball lives longer, further reducing the magnitude of the
electromagnetic fields on the freeze-out surface. The results
illustrated in Fig. 10 motivate repeating our analysis for the
lower energy collisions being done in the RHIC Beam Energy
Scan, although doing so will require more sophisticated un-
derlying hydrodynamic calculations and we also note that in
such collisions there are other physical effects that contribute
significantly to �〈pT 〉 and �v2 [38–44], in the case of �v2

for protons making a contribution with opposite sign to the
one that we have calculated. For both these reasons, we leave
such investigations to future work.

Finally, in Fig. 11, we investigate the contribution of
resonance decays to the electromagnetically induced charge-
dependent contributions to flow observables that we have
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FIG. 10. The collision energy dependence of the electromagnet-
ically induced charge-odd contributions to flow observables. The
difference of particle mean pT and vn between π+ and π− are plotted
as a function of particle rapidity for collisions at the top RHIC energy
of 200 GeV and at two LHC collision energies.

computed. These contributions are included in all our cal-
culations with the exception of those shown as the dashed
lines in Fig. 11, where we include only the hadrons produced
directly at freeze-out, leaving out those produced later as
resonances decay. We see that the feed-down contribution
from resonance decays does not significantly dilute the effects
we are interested in. To the contrary, the magnitudes of the
�vn for protons are slightly increased by feed-down effects, in
particular the significant contribution to the final proton yield
coming from the decay of the �++ [45]. Because the �++
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FIG. 11. The solid curves include the contributions to the elec-
tromagnetically induced charge-dependent flow observables of pions
and protons produced after freeze-out by resonance decay, often
referred to as resonance feed-down contributions. In the dashed
curves, pions and protons produced from resonance feed-down are
left out.
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resonance carries two units of the charge, its electromagneti-
cally induced drift velocity is larger than those of protons.

This concludes the presentation of our central results. In
the remainder of this section, in two subsections we shall
present a qualitative argument for why �v1 is as small as it
is, and then take a brief look at how our results depend on
the value of two important material properties of the plasma,
namely the drag coefficient and the electrical conductivity.

A. A qualitative argument for the smallness of �v1

As we have seen, the net effect on �v1 of the various
contributions to the electric field turns out to be rather small
in magnitude. This is because even though the contributions
�EC + �EF and �EL with opposite sign, shown separately in
Fig. 4, are each relatively large in magnitude they cancel
each other almost precisely. This leaves only a small net
contribution that generates the charge-odd contributions to the
odd flow harmonics that we have computed, �v1 and �v3.
We see in Fig. 4 that this cancellation becomes more and
more complete at larger ηs . In this subsection we provide
a qualitative argument for this near cancellation and explain
why the cancellation becomes more complete at larger ηs .

One can find an expression for the total Faraday +
Coulomb electric field �EF+C ≡ �EF + �EC by solving the
Maxwell equations sourced by the spectator (and participant3)
charges. In general this determines both the electric and the
magnetic fields in terms of the sources. However, we only
need to express �EF+C in terms of �B for the argument. In
particular, we are interested in the x component of this field
as shown in Fig. 1. This is given by solving Faraday’s law
∇ × �EF+C = −∂ �B/∂t to obtain EF+C,x = By coth(Y0 − ηs ),
where Y0 is the rapidity of the beam and ηs is the space-time
rapidity. Since for both RHIC and LHC we have Y0 � ηs , one
can safely ignore the ηs dependence everywhere in the plasma,
finding EF+C,x ≈ By coth(Y0). For the same reason, as Y0 �
1, one can further approximate EF+C,x ≈ By everywhere in
the plasma. The effect of this electric field on the drift velocity
of the plasma charges is found by solving the null-force
equation (9) by boosting it to the local fluid rest frame in
a given unit cell in the plasma. This gives the contribution
E lrf

F+C,x ≈ γ (u)By where γ (u) is the Lorentz gamma factor
of the plasma moving with velocity u. On the other hand,
the x component of the Lorentz contribution to the force in
the local fluid rest frame is to a very good approximation
given by E lrf

L,x = −γ (u)uzBy , where uz = tanh ηs is the z
component of the background flow velocity. As is clear from
Fig. 1, the directed flow coefficient v1 receives its largest
contribution from sufficiently large ηs where uz ≈ 1. We now
see that in the regime 2 � ηs  Y0 there is an almost perfect
cancellation between E lrf

L,x and E lrf
F+C,x , with E lrf

L,x slightly
smaller on account of the fact that uz is slightly smaller than
1. This means that the main contribution to �v1 should come
from the midrapidity region where the cancellation is only

3To a very good approximation, one can in fact ignore the partici-
pant contribution [1].
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FIG. 12. The dependence of the electromagnetically induced
differences between the flow of protons and antiprotons on the choice
of the drag coefficient μm defined in Eq. (10). Elsewhere in this
paper, we fix μm by choosing the t’Hooft coupling in Eq. (10) to
be 6π . Here we explore the consequences of varying this parameter
by factors of 2 and 1/2, thus varying μm by factors of

√
2 and 1/

√
2.

partial as illustrated in Fig. 4, meaning that �v1 is bound to
be small in magnitude.

B. Parameter dependence of the results

Throughout this paper, we have chosen fixed values for
the two important material parameters that govern the mag-
nitude of the electromagnetically induced contributions to
flow observables, namely the drag coefficient μm defined in
Eq. (10) and the electrical conductivity σ . Here we explore
the consequences of choosing different values for these two
parameters.

In Fig. 12, we study the effect of varying the drag coeffi-
cient μm on the magnitude of the electromagnetically induced
differences between the flow of protons and antiprotons.
We change the value of the drag coefficient in Eq. (10) by
choosing different values of the t’Hooft coupling λ. (The
consequences of varying μm for the differences between
the flow of π+ and π− are similar, although the magnitude
of the �vn’s is less for pions than for protons.) We see
in Fig. 12 that all of the charge-dependent contributions to
the flow that are induced by electromagnetic fields become
larger when the drag coefficient μm becomes smaller, as at
weaker coupling. This is because the induced drift velocity
v lrf

drift in Eq. (9) is larger when the drag coefficient μm is
smaller. Since throughout the paper we have used a value of
μm that is motivated by analyses of drag forces in strongly
coupled plasma, meaning that we may have overestimated
μm, it is possible that in so doing we have underestimated
the magnitude of the charge-odd electromagnetically induced
contributions to flow observables.

In Fig. 13, we study the effect of varying the electrical
conductivity σ on the magnitude of the electromagnetically
induced differences between the flow of protons and antipro-
tons. Note that, throughout, we are treating μm and σ as
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FIG. 13. The dependence of the electromagnetically induced
differences between the flow of protons and antiprotons on the choice
of the electrical conductivity σ in the Maxwell equations (7) and (8).

constants, neglecting their temperature dependence. This is
appropriate for μm, since what matters in our analysis is the
value of μm at the freeze-out temperature. However, σ matters
throughout our analysis since it governs how fast the magnetic
fields sourced initially by the spectator nucleons decay away.
The value of σ that we have used throughout the rest of this
paper is reasonable for quark-gluon plasma with a temperature
T ∼ 250 MeV, as we discussed in Sec. II. In a more complete
analysis, σ should depend on the plasma temperature and
hence should vary in space and time. We leave a full-fledged
magnetohydrodynamic study like this to the future. Here, in
order to get a sense of the sensitivity of our results to the
choice that we have made for σ we explore the consequences
for our results of doubling σ , and of setting σ = 0.

The electromagnetically induced charge-odd contributions
to the flow observables �〈pT 〉 and �v2 increase in magnitude
if the value of σ is increased. This is because the magnetic
fields in the plasma decay more slowly when σ is large [1].
And, a larger electromagnetic field in the local fluid rest
frame at the freeze-out surfaces induces a larger drift velocity
which drives the opposite contribution to proton and antipro-
ton flow observables. We see, however, that the increase in
the charge-odd, rapidity-odd, odd �vn’s with increasing σ
is very small, suggesting a robustness in our calculation of
their magnitudes. This would need to be confirmed via a
full magnetohydrodynamical calculation in the future. Since
�〈pT 〉 and the even �vn’s are to a significant degree driven
by Coulomb fields, it makes sense that they are closer to
proportional to σ : increasing σ means that a given Coulomb
field pushes a larger current, and it is the current in the plasma
that leads to the charge-odd contributions to flow observables.
Although not physically relevant, it is also interesting to
check the consequences of setting σ = 0. What remains are
small but nonzero contributions to �〈pT 〉 and the �vn. With
σ = 0 the electric fields do not have any effects during the
Maxwell evolution; the small remnant fields at freeze-out are
responsible for these effects.

V. DISCUSSION AND OUTLOOK

We have described the effects of electric and magnetic
fields on the flow of charged hadrons in noncentral heavy-ion
collisions by using a realistic hydrodynamic evolution within
the iEBE-VISHNU framework. The electromagnetic fields are
generated mostly by the spectator ions. These fields induce a
rapidity-odd contribution to �v1 and �v3 of charged particles,
namely the difference between v1 (and v3) for positively
and negatively charged particles. Three different effects con-
tribute: the Coulomb field of the spectator ions, the Lorentz
force due to the magnetic field sourced by the spectator
ions, and the electromotive force induced by Faraday’s law
as that magnetic field decreases. The �v1 and �v3 in sum
arise from a competition between the Faraday and Coulomb
effects, which point in the same direction, and the Lorentz
force, which points in the opposite direction. These effects
also induce a rapidity-even contribution to �〈pT 〉 and �v2,
as does the Coulomb field sourced by the charge within the
plasma itself, deposited therein by the participant ions. We
have estimated the magnitude of all of these effects for pions
and protons produced in heavy-ion collisions with varying
centrality at RHIC and LHC energies. Our results motivate
the experimental measurement of these quantities with the
goal of seeing observable consequences of the strong early
time magnetic and electric fields expected in ultrarelativistic
heavy-ion collisions.

In our calculations, we have treated the electrodynamics
of the charged matter in the plasma in a perturbative fashion,
added on top of the background flow, rather than attempt-
ing a full-fledged magnetohydrodynamical calculation. The
smallness of the effects that we find supports this approach.
However, we caution that we have made various important
assumptions that simplify our calculations: (i) we treat the
two key properties of the medium that enter our calculation,
the electrical conductivity σ and the drag coefficient μm, as
if they are both constants even though we know that both
are temperature dependent and hence in reality must vary in
both space and time within the droplet of plasma produced
in a heavy-ion collision; (ii) we neglect event-by-event fluc-
tuations in the shape of the collision zone; (iii) rather than
full-fledged magnetohydrodynamics, we follow a perturbative
calculation where we neglect backreaction of various types,
including the rearrangement of the net charge in response
to the electromagnetic fields; (iv) we assume that the force-
balance equation (9) holds at any time and at any point on the
plasma, meaning that we assume that the plasma equilibrates
immediately by balancing the electromagnetic forces against
drag. As we shall discuss in turn, relaxing these assumptions
could have interesting consequences, and is worthy of future
investigation. But, relaxing any of these assumptions would
result in a substantially more challenging calculation.

Relaxing (i) necessitates solving the Maxwell equations on
a medium with time- and space-dependent parameters, which
would result in a more complicated profile for the electromag-
netic fields. We expect that this would modify our results in a
quantitative manner without altering main qualitative findings.
We have tried to choose a value for σ corresponding roughly
to a time average over the lifetime of the plasma and a value
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of μm corresponding roughly to its value at freeze-out, which
is where it is relevant to our analysis. The values of each
could be revisited, of course, but our investigation in Sec. IV B
indicates that this would not affect any qualitative results.

Relaxing (ii), which is to say adding event-by-event fluctu-
ations in the initial conditions for the hydrodynamic evolution
of the matter produced in the collision zone, as well as for the
distribution of spectator charges, would have quite significant
effects on the values of the charge-averaged 〈pT 〉 and vn’s, for
example introducing nonzero v1 and v3. Solving the Maxwell
equations on such a medium would of course be much more
complicated. Furthermore we expect that consequences would
appear in all four of the electromagnetic effects that we have
analyzed (the Faraday �EF , the Lorentz �EL, the Coulomb field
of the spectators �EC , and the Coulomb field of the plasma
�EP ) resulting in each contributing at some level to each of the
four observables that we have analyzed (�〈pT 〉, �v1, �v2,
and �v3). However, we expect that the electromagnetically
induced contributions that we have found using a smooth
hydrodynamic background without fluctuations, and whose
magnitudes we have estimated, will remain the largest con-
tributions.

Relaxing assumption (iii) may bring new effects and, as
we shall explain, could potentially flip the sign of the odd
flow coefficients �v1 and �v3. One particular physical effect
that we neglect is the shorting, or partial shorting, of the
Coulomb electric fields in the plasma, both the �EC sourced
by the spectators and the �EP sourced by the plasma itself.
These Coulomb fields will push charges in the plasma to
rearrange in a way that reduces the electric field within the
conducting plasma. We have neglected this, and all, back re-
action in our calculation. However, although it would require
a fully dynamical calculation of the currents and electric and
magnetic fields to estimate its extent, some degree of shorting
must occur. There may, in fact, be experimental evidence of
this effect: �v2 for pions has been measured in RHIC colli-
sions with 30–40% centrality and collision energy

√
s = 200

A GeV by the STAR Collaboration [46], and although it turns
out to be negative as our calculations predict it is substantially
smaller in magnitude than what we find. Because there are
other effects (unrelated to Coulomb fields) that can contribute
to �v2 and that are known to contribute significantly to �v2

in lower energy collisions [38–44], it would take substantially
more analysis than we have done to use the experimentally
measured results for �v2 to constrain the magnitude of �EC

and �EP quantitatively. However, it does seem likely that, due
to back reaction, they have been at least partially shorted,
making them weaker in reality than in our calculation.

The likely reduction in the magnitude of �EC , in turn, has
implications for the odd �vn’s. Recall that they arise from
the sum of three effects, in which there is a near cancellation
between �EF + �EC and �EL, which point in opposite directions.
The sign of the rapidity-odd �v1 and �v3 that we have
found in our calculation corresponds to | �EF + �EC | being
slightly greater than | �EL|. If | �EC | is in reality smaller than
in our calculation, this could easily flip the sign of �v1 and
�v3. In this context, it is quite interesting that a preliminary
analysis of ALICE data [29] indicates a measured value of
�v1 for charged particles in LHC heavy-ion collisions with

5–40% centrality and collision energy
√

s = 5.02 A TeV that
is indeed rapidity odd and is comparable in magnitude to the
pion �v1 for collisions with this energy that we have found in
Fig. 10, but is opposite in sign.

Finally, let us consider relaxing our assumption (iv). This
corresponds to considering a more general version of (9)
with a nonvanishing acceleration on the right-hand side. The
drift velocity that would be obtained in such a calculation
would decay to the one that we have found by solving the
force-balance equation (9) exponentially, with an exponent
controlled by the drag coefficient μ. Thus, for very large μ
we do not expect any significant deviation from our results.
However, at a conceptual level relaxing assumption (iv) would
change our calculation significantly, since it is only by making
assumption (iv) that we are able to do a calculation in which
μ enters only through the value of μm at freeze-out. If we
relax assumption (iv), the actual drift velocity would always
be lagging behind the value obtained by solving (9), and de-
termining the drift velocity at freeze-out would, in principle,
retain a memory of the history of the time evolution of μ.
If we use the estimate (10) for μ and focus only on light
quarks, and hence pions and protons, as we have done, we
do not expect that relaxing assumption (iv) would have a
qualitative effect on our results. However, μ may in reality
not be as large as that in (10) at freeze-out. And, furthermore,
it is also very interesting to extend our considerations to
consider heavy charm quarks, as in Ref. [47]. The charm
quarks receive a substantial initial kick from the strong early
time magnetic [47] and electric fields, and because they are
heavy μ may not be large enough to slow them down and
bring them into alignment with the small drift velocity that
(9) predicts for heavy quarks. Hence, consideration of heavy
quarks requires relaxing our assumption (iv) in a way that
alters our conclusions significantly, and indeed the authors of
Ref. [47] find a substantially larger �v1 for mesons containing
charm quarks than the �v1 that we find for pions and protons.
These considerations motivate the (challenging) experimental
measurement of �v1 for D mesons.
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