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Deterministic-like model reduction for a class of
multi-scale stochastic differential equations with

application to biomolecular systems
Narmada Herath, Student Member, IEEE, Domitilla Del Vecchio, Senior Member, IEEE

Abstract—We consider a class of singularly perturbed stochas-
tic differential equations with linear drift terms, and present
a reduced-order model that approximates both slow and fast
variable dynamics when the time-scale separation is large. We
show that, on a finite time interval, moments of all orders of the
slow variables for the original system become closer to those of
the reduced-order model as time-scale separation is increased.
A similar result holds for the first and second moments of the
fast variable approximation. Biomolecular systems with linear
propensity functions, modeled by the chemical Langevin equation
fit the class of systems considered in this work. Thus, as an
application example, we analyze the trade-offs between noise and
information transmission in a typical gene regulatory network
motif, for which both slow and fast variables are required. 1

I. INTRODUCTION

Many physical systems evolve on multiple time-scales.
Examples include climate systems, electrical systems, and
biological systems. The dynamics of such systems can be de-
scribed using a set of ordinary differential equations (ODE) or
stochastic differential equations (SDE) in the standard singular
perturbation form, where the system variables are separated
into ‘slow’ and ‘fast’ categories and a small parameter ε is used
to represent the separation in time-scales [4]. The analysis of
such systems can be simplified by obtaining a reduced-order
model that approximates the dynamics of the original system.

In the deterministic setting, the derivation of a reduced-order
system is mainly accomplished using the singular perturba-
tion method, formalized by Tikhonov’s theorem, where the
reduced-order model is obtained by setting ε to zero in the
original system dynamics [5], [4]. This yields an algebraic
equation that approximates the fast variable, which is in turn
substituted into the slow variables’ differential equation to
obtain a reduced-order model for the slow variables’ dynamics.
Another method that can be used to obtain a reduced-order
model is the averaging principle, which eliminates the fast
dynamics via integration of system functions to give an
approximation for the slow variables’ dynamics [6].

In addition to deterministic systems, stochastic models also
arise in many areas such as finance, population biology, and
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chemical kinetics. For example, biomolecular systems are
intrinsically stochastic due to the randomness in chemical
reactions and the chemical Langevin equation (CLE) has been
widely used to model the stochastic nature of these systems
in the form of an SDE [7].

Several works have extended singular perturbation methods
to SDEs [8], [9], [5], [10]. However, these methods cannot be
used when the diffusion terms of the fast variable are state-
dependent and are of the order

√
ε, which is the case in the

chemical Langevin equation. Aside from singular perturbation
based approaches, averaging methods have also been extended
for SDEs. These methods consider diffusion terms of the order√
ε [6], [11], and have recently been applied in approximating

the slow variables of CLEs [12]. However, averaging methods
require the integration of the system’s vector field, which may
be undesirable for systems of high dimension. Furthermore,
averaging only provides an approximation for the slow vari-
ables, and does not approximate the fast variables.

In many applications, it is necessary to approximate both
slow and fast variables in order to utilize the reduced-order
model for analysis. Particularly, in biomolecular systems,
chemical species often participate in both slow and fast reac-
tions and hence the corresponding concentrations are neither
slow nor fast variables, but instead are mixed variables. In
these systems, a coordinate transformation can be employed
to take the system to standard singular perturbation form [13],
in which fast and slow variables may not directly correspond
to the physical variables of interest. We illustrate this point in
the application example of this paper.

In this work, we consider a class of stochastic differential
equations with linear drift and nonlinear diffusion terms, in-
cluding the case where the diffusion term of the fast variable is
of the order

√
ε. This class of systems is particularly common

in biomolecular processes. We present a reduced-order SDE
and an algebraic equation that approximate both slow and
fast dynamics, respectively, following a similar approach to
deterministic singular perturbation theory. We show that the
error between the moments of the original and the reduced-
order systems are of O(ε), for moments of all orders for
the slow variable and for first and second order moments
for the fast variable. We then demonstrate the application of
the results on a gene regulatory network motif, where species
dynamics typically consist of both slow and fast components.
For this system, we derive the reduced-order model and
illustrate how both slow and fast variable approximations can
be used concurrently in analyzing trade-offs between noise and
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information transmission.

II. SYSTEM MODEL

We consider the singularly perturbed stochastic differential
equations

ẋ = fx(x, z, t) + σx(x, z, t)Γx, x(0) = x0, (1)

εż = fz(x, z, t, ε) +
√
εσz(x, z, t, ε)Γz, z(0) = z0, (2)

where x ∈ Dx ⊂ Rn is the slow variable and z ∈ Dz ⊂ Rm is
the fast variable. Γx is a dx-dimensional white noise process.
Let Γf be a df -dimensional white noise process, while Γz is
a (dx + df )-dimensional white noise process. We assume that
the system (1)–(2) satisfies the following assumptions.

Assumption 1. The functions fx(x, z, t) and fz(x, z, t, ε)
are affine functions of the state variables x and z, i.e.,
we can write fx(x, z, t) = A1x + A2z + A3(t), where
A1 ∈ Rn×n, A2 ∈ Rn×m and A3(t) ∈ Rn, fz(x, z, t, ε) =
B1x + B2z + B3(t) + α(ε)(B4x + B5z + B6(t)), where
B1, B4 ∈ Rm×n, B2, B5 ∈ Rm×m, B3(t), B6(t) ∈ Rm,
A3(t) and B3(t) are continuously differentiable functions, and
α(ε) is a continuously differentiable function with α(0) = 0.

Assumption 2. Let Φ(x, z, t) = σx(x, z, t)σx(x, z, t)T ,
Λ(x, z, t, ε) = σz(x, z, t, ε)σz(x, z, t, ε)

T , and
Θ(x, z, t, ε) = σz(x, z, t, ε)[ σx(x, z, t) 0 ]T . Then, we
assume that Φ(x, z, t), Λ(x, z, t, ε), and Θ(x, z, t, ε) are affine
functions of x and z, and that limε→0 Λ(x, z, t, ε) <∞ and
limε→0 Θ(x, z, t, ε) < ∞ for all x, z and t. Furthermore,
we assume that the functions Φ(x, z, t), Λ(x, z, t, ε), and
Θ(x, z, t, ε) are continuously differentiable in t and ε.

Assumption 3. Matrix B2 is Hurwitz.

We also assume that the system (1)–(2) admits a unique
well-defined solution on a finite time interval. Sufficient
conditions for the existence and uniqueness of solutions of
SDEs are given by the Lipschitz continuity and bounded
growth of system functions [14]. However, the class of systems
considered in this work includes systems of the form where the
diffusion term is a square-root function of the state variables,
as Assumption 2 requires the squared diffusion terms to be
linear functions of the state variables. Therefore, such systems
may not guarantee the Lipschitz continuity conditions for
the diffusion coefficient. For this type of systems, a set of
sufficient conditions that guarantee the existence of solutions
can be found in [15].

In the next section, we introduce the reduced-order system
and present the results on the error quantification between the
original and reduced-order systems.

III. RESULTS

A. Reduced-order model

We introduce a reduced-order model by setting ε = 0 in the
original system (1)–(2), as in the case of deterministic singular
perturbation theory. Under Assumption 2, ε = 0 leads to the
algebraic equation fz(x, z, t, 0) = B1x + B2z + B3(t) = 0,

for which, Assumption 3 guarantees the existence of a unique
global solution z = γ(x, t), given by

γ(x, t) = −B−1
2 (B1x+B3(t)). (3)

Upon substitution of z = γ(x, t) into (1), we obtain the
reduced slow system

˙̄x = fx(x̄, γ(x̄, t), t) + σx(x̄, γ(x̄, t), t)Γx, x̄(0) = x0, (4)

which only depends on x̄.
We assume that system (4) has a unique well-defined

solution on a finite time interval [0, t1].
Next, we define a candidate approximation for the fast

variable dynamics in the form

z̄(t) = γ(x̄(t), t) + g(x̄(t), t)N, (5)

where N ∈ Rd is a random vector whose components are
independent standard normal random variables, and g(x̄(t), t) :
Rn × R → Rm×d is a function that satisfies the Lyapunov
equation

g(x̄(t), t)g(x̄(t), t)TBT2 +B2g(x̄(t), t)g(x̄(t), t)T

= −Λ(x̄, γ(x̄(t), t), t, 0). (6)

We call equation (5) the reduced fast system.
We now present the results on the error quantification be-

tween the original and reduced-order systems. To this end, we
first introduce the notation (adapted from [16]) used to denote
the moment dynamics. Consider the vectors x = [x1, . . . , xn]T

and k = (k1, . . . , kn) where xi, ki ∈ R for i = 1, . . . , n.
Let x(k) = xk11 x

k2
2 . . . xknn . Then E[x(k)] denotes the moment

(expected value) of x corresponding to the vector k, where the
order of the moment is

∑n
i=1 ki. In order to denote the P th

order moments for all non-negative integers P ∈ Z≥0, we
define the set GPr = {(c1, . . . , cr) ∈ Zr≥0|

∑r
i=1 ci ≤ P},

where Zr>0 denotes the sets of vectors of length r with
nonnegative integer elements. Then, we have the following
main result.

Theorem 1. Consider the original system in (1) - (2) and the
reduced system in (4) - (5). Under Assumptions 1 - 3 there
exist ε∗ > 0, t1, tb > 0 with t1 > tb such that for ε < ε∗

‖E[x̄(k)]− E[x(k)]‖ = O(ε), ∀k ∈ GNn , N ∈ Z>0, t ∈ [0, t1],
(7)

‖E[z̄(l)]− E[z(l)]‖ = O(ε), ∀l ∈ G2
m, t ∈ [tb, t1], (8)

where Z>0 denotes the set of positive integers.

The proof of Theorem 1 is based on applying Tikhonov’s
theorem to the moment dynamics of the original and reduced-
order system, and is similar to the results in our conference
papers [2] and [3]. We provide an outline of the proof
strategy here, while a complete proof is provided in [17]. The
outline of the proof is as follows. First, we show that the
moment dynamics of the original system are in the standard
singular perturbation form, and that setting ε = 0 in the
original moment dynamics yields the moment dynamics of the
reduced-order system. This holds for moments of all orders for
the slow variables and up to second order moments for the fast
variables. As the moment dynamics are deterministic, we then
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apply Tikhonov’s theorem to demonstrate the convergence of
the moments of the original system to the moments of the
reduced-order system, as ε decreases. The stability condi-
tions of the slow manifold of the original moment dynamics
required for the application of the Tikhonov’s theorem are
guaranteed by Assumption 3.

From the reduced-order approximations given in equations
(4)–(5), we note the similarity with the reduced-order model
obtained by singular perturbation theory for deterministic
systems [4]. In particular, the slow variable’s dynamics are
well approximated by substituting the expression of the slow
manifold given by z = γ(x, t) in equation (3) into the slow
variable’s dynamics given in equation (1). This implies that for
this class of systems, the slow variable approximation can be
obtained in the same manner as in the deterministic singular
perturbation method [4].

By contrast, from expression (5) we note that the fast
variable approximation contains the term g(x̄, t)N , which is
in addition to the slow manifold expression γ(x̄, t) that would
be obtained with direct application of deterministic singular
perturbation theory. This additional term is required in order
to account for the noise of the fast variables given by the
diffusion terms σz(x, z, t, ε). In fact, considering the system
in the fast time-scale τ = t/ε, we see that the SDE of the fast
variable is given by

dz

dτ
= fz(x, z, t, ε) + σz(x, z, t, ε)Γ̃z, (9)

where Γ̃z represents Γz in the fast-time scale, i.e, Γ̃z(τ) =√
ε Γz(t) as shown in [18, p.173]. For the case where the

diffusion term is of the order
√
ε, the term σz(x, z, t, ε) is

independent of ε and thus σz(x, z, t, 0) 6= 0. This shows that
the fast variable is subject to noise, given by the diffusion
term σz(x, z, t, ε), and thus the expression γ(x̄, t) dose not
provide an adequate approximation for the noise on z. The
noise in the fast variable can be “neglected” in the slow
variable approximation because the slow subsystem “filters
out” the noise from the fast variable. This noise must instead
be considered in approximating the noise properties of the fast
variable, as we illustrate in the following example. Consider
the system

ẋ = −a1x+ a2z + v1Γ1, εż = −z + v2

√
εΓ2, (10)

where a1, a2 > 0. Setting ε = 0, we obtain the system:

˙̄x = −a1x̄+ v1Γ1, z = γ(x̄, t) = 0. (11)

To analyze the error of this approximation, we can directly
calculate the steady state moments for both the original and
reduced-order systems using their linearity. This yields

E[x2] =
a2

2v
2
2

2a1

ε

(1 + a1ε)
+

v2
1

2a1
, E[z2] =

v2
2

2
,

E[x̄2] =
v2

1

2a1
, E[γ(x̄, t)2] = 0.

It is seen that E
[
x2
]

converges to E
[
x̄2
]

as ε approaches
zero, however, E

[
z2
]

remains constant as ε goes to zero.
That is, the system (11) obtained by setting ε = 0 provides
a good approximation for the slow variable in terms of the

second moment, but it is not a good approximation for the
fast variable. This is due to the fact that the x-subsystem is
not affected by the noise Γ2 as ε tends to zero, which can
be explained by considering the power spectra and frequency
response of the x and z subsystems.

Using the frequency response from input Γ2 to the output
z, given by HzΓ(jω) = 1

jω+1/ε we can calculate the power

spectrum of z as Szz(ω) = (v2/
√
ε)2

(ω2+(1/ε)2) , which is illustrated in
Fig. 1. It can be seen that as ε approaches zero, the magnitude
of Szz(ω) decreases at low frequencies but increases at high
frequencies, in a way that the variance of z remains constant.
However, considering the frequency response from z to x,
given by Hxz(jω) = a2

jω+a1
, we see that the x-subsystem

is a low-pass filter with a cut-off frequency of a1 that is
independent of ε (Fig. 1). Therefore, x only selects the low
frequency components of signal z, which decrease with ε,
leading to a decrease in the variance of signal x as ε decreases.
Thus, the reduced-order system (11) obtained by setting ε = 0
is a good approximation for the slow variable dynamics, but it
does not provide a good approximation for the fast variable.

Fig. 1: Power spectrum of z (top). Frequency response from z to
x (centre). Power spectrum of x (bottom). The parameters used are
a1 = 10, a2 = 2 and v1 = 1, v2 = 10.

In the next two sections, we consider the application of this
theory to an academic example first (Section IV) and then to
a biomolecular system (Section V).

IV. ACADEMIC EXAMPLE

We consider the following system, which takes a similar
form to the SDEs that appear in affine term structure models
in finance [15]:

ẋ = −2x+ z + 10 +
√

2z + 1 Γ1, (12)

εż = −z + 15 +
√
ε(2z + 1) Γ2. (13)

This system satisfies the Assumptions 1 - 3, and using the
results of [15] it can be verified that there exists a unique
solution where the arguments of the square-root diffusion
terms remain positive at all times.

Setting ε = 0, we obtain the slow manifold z = 15. This
yields the following reduced-order model for the slow variable:

˙̄x = −2x̄+ 25 +
√

31 Γ1. (14)
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Fig. 2: Moments of the original and reduced systems. Sample means were calculated using 500,000 realizations. (a) Second moments of
the slow variable. (b) Third moments of the slow variable. (c) Second moments of the fast variable.

Based on (5), the fast variable approximation for this system
is of the form z = 15 + g(x)N where g(x)g(x)T (−1) +
(−1)g(x)g(x)T = 31 and N is a standard normal random
variable. After solving for g(x), the fast variable approxima-
tion is given by

z̄ = 15 +
√

15.5N. (15)

Simulations of the original and the reduced-order systems
were performed using the Euler-Maruyama method [19] for
SDEs and were used to calculate the second and third order
moments of the slow variable and second order moments of
the fast variable, as illustrated in Fig. 2. It can be seen that
as ε decreases the moments of the original system tend to the
moments of the reduced-order system.

By virtue of Theorem 1, the reduced-order model (14)
provides a good approximation of the higher moments for the
slow variable, as illustrated in Fig. 2. For the fast variable,
only the first and second moments are well approximated,
while there is no guarantee that the higher order moments
are also approximated well. We illustrate this by analyzing
the third order moments of the fast variable in (13). To
calculate the third order moments, we first represent the
fast variable dynamics of the system (12)–(13) in the form
εż = c1z + c2 +

√
ε(d1z + d2) Γ2.

Then, computing the third order moment dynamics and
setting ε = 0, we obtain

E[z] = −c2/c1, E[z2] = (2c22 + d1c2 − d2c1)/(2c21) (16)

E[z3] = (3c1c2d2 + c1d1d2 − 2c2
3 − 3c2

2d1 − c2d12)/(2c1
3).
(17)

The reduced fast system is given by z̄ = γ(x̄, t) +
g(x̄, t)N(0, 1), where γ(x̄, t) = −c2/c1 and g(x̄, t) =
(d1γ(x̄, t) + d2)/(−2c1). Calculating the moment dynamics
for the reduced fast system we obtain

E[z̄] = γ(E[x̄], t) = −c2/c1, (18)

E[z̄2] = E[γ(x̄, t)2] + E[g(x̄, t)2]

= (2c22 + d1c2 − d2c1)/(2c21), (19)

E[z̄3] = E[γ(x̄, t)3] + 3E[γ(x̄, t)g(x̄, t)2]

= c2
(
3c1d2 − 2c22 − 3c2d1

)
/(2c31). (20)

Considering the equations for the slow manifold in (16) -
(17) and the moments of the reduced fast system (18)–(20), we
have that ‖E[z]− E[z̄]‖ = 0, ‖E[z2]− E

[
z̄3
]
‖ = 0, however,

‖E[z3]−E
[
z̄3
]
‖ = d1(c1d2−c2d1)

2c31
, which is different from zero.

Therefore, it follows that setting ε = 0 in the third moments
of the fast variable does not yield the third moment of the
reduced fast system.

From the general form of the moments in (18)–(20) it
follows that the terms γ(x, t) and g(x, t) are not sufficient
to approximate the third moment. This suggests that approx-
imation of higher order moments of the fast variable would
require additional terms in the reduced fast system. However,
in many applications, particularly biomolecular systems, the
commom measures of noise are coefficient of variation and
signal-to-noise ratio, which are functions of only the mean and
the variance. Therefore, the first and second moments provide
sufficient information for analysis of these systems.

V. APPLICATION EXAMPLE

In this section, we demonstrate how the results obtained
above can be used to characterize stochastic properties of
biological systems. The time-scale separation property has
been widely used for model order reduction in the analysis
and design of biomolecular systems. More recently, deter-
ministic singular perturbation techniques have been used to
quantify impedance-like effects that arise in the design of
biomolecular systems. These effects, termed retroactivity, arise
at the interconnection of biomolecular components and cause
a perturbation in the output signal of the upstream component,
similar to loading effects in electrical circuits [20], [21].
Another source of signal perturbation in biological systems is
the intrinsic noise due to the randomness in chemical reactions
[22], [23]. Therefore, it is important to also account for
stochastic effects in the analysis and design of biomolecular
systems.

In this example, we consider the interconnection of tran-
scriptional components, typically found in gene regulatory
networks appearing both in natural and synthetic biological
systems [24]. We model the system dynamics using the
chemical Langevin equation and obtain a reduced-order model
using the technique developed in this work. The reduced-order
model is then used to quantify the errors in the system due
to retroactivity and stochasticity. We investigate the interplay
between each of these errors and identify trade-offs that arise
in signal transmission in biomolecular systems.

A. System Model
We consider the interconnection of two transcriptional com-

ponents shown in Fig. 3. Each transcriptional component [25]
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can be viewed as a system that takes as input a transcription
factor, that is, a protein that can activate or repress a target
gene, and gives as output the target gene’s protein product.

The interconnection of Fig. 3, in which transcription factor
Y activates the expression of a fluorescent protein G, is
ubiquitous in synthetic genetic circuits as an indirect way
of measuring the concentration of a transcription factor of
interest, Y in this case. In fact, it is reasonable to think that
the concentration of the fluorescent protein G should follow
that of Y, possibly with some lag due to the process of gene
expression encapsulated by the measuring device. Here, we
study how well the concentration of G tracks that of Y in the
presence of noise.

X

Y G

Measuring DeviceTranscriptional Component

pp0

Fig. 3: Protein X acts as an input to the upstream transcriptional
component, which produces the output protein Y. The downstream
transcriptional component takes protein Y as an input and produces
protein G.

The chemical reactions for the system in Fig. 3, can be
written as follows: X + p0

α1−⇀↽−
α2

C0,C0
β1−→ Y + C0,Y

δ1−→ φ,

Y + p
α3−⇀↽−
α4

C,C
β2−→ G + C,G

δ2−→ φ [24], [25]. Protein X

binds to promoter p0 and produces complex C0 where α1

and α2 are the association and dissociation rate constants. β1

is the total production rate constant of protein Y considering
both transcription and translation rates. δ1 is the decay rate
constant of protein Y, which includes both degradation and
dilution of the protein. Similarly, α3 and α4 are the association
and dissociation rate constants for protein Y and the promoter
p0, β2 is the total production rate constant of protein G and δ2
is the decay rate constant of protein G. Since DNA does not
dilute cell growth, the total amount of promoter in the system
is conserved giving pT0 = p0 + C0 and pT = p + C [24].
Denoting the system volume by Ω, the chemical Langevin
equations for the system are given by

dC0

dt
= α1X(pT0 − C0)− α2C0 +

√
α1X(pT0 − C0)

Ω
Γ1

−
√
α2C0

Ω
Γ2,

dY

dt
= β1C0 − δ1Y +

√
β1C0

Ω
Γ3 −

√
δ1Y

Ω
Γ4

−α3Y (pT − C) + α4C −
√
α3Y (pT − C)

Ω
Γ5 +

√
α4C

Ω
Γ6 ,

Ċ = α3Y (pT − C)− α4C +

√
α3Y (pT − C)

Ω
Γ5 −

√
α4C

Ω
Γ6,

dG

dt
= β2C − δ2G+

√
β2C

Ω
Γ7 −

√
δ2G

Ω
Γ8,

(21)
where Γi for i = 1, ..., 8 are independent Gaussian white
noise processes. The binding of a transcription factor to
downstream promoter sites introduces an additional rate of
change in the dynamics of the transcription factor, which

is represented by the boxed terms in equation (21) for the
transcription factor Y. This additional rate of change, known
as ‘retroactivity’, causes a change in the dynamics of the
transcription factor’s concentration with respect to the isolated
case, that is, when the transcription factor is not binding
[20], [25]. It was also shown, both theoretically [20] and
experimentally [21], that increasing the number of downstream
binding sites pT increases the effect of retroactivity.

The nominal and perturbed trajectories for Y and G for
different amounts of pT can be seen in Fig. 4(a) and Fig.
4(b). The nominal system dynamics, without perturbation due
to retroactivity or noise, are obtained by simulating the ODE
model obtained when Γi = 0 for i = 1, ..., 8 and the boxed
terms are zero in the system (21). The perturbed trajectories
are obtained using Gillespie’s direct method [26]. For lower
values of pT the signal G closely follows the nominal signal,
but the signal is highly perturbed by noise. As pT increases the
noise in the signal G decreases, however, the signal is highly
attenuated due to retroactivity. This observation is consistent
with the fact that using a high gene copy number (large pT ) is
seen as a way of reducing noise in gene expression and protein
production [22], [23]. However, the downside of this is that
increasing pT alters the dynamics of the input transcription
factor (i.e. protein Y), due to retroactivity, as previously
discussed. For signal Y , by contrast, both retroactivity and
noise increase as pT is increased, which is consistent with
prior observations in [27].

GRYR
X

r

GNYNX Upstream
Component

GYX
r

ΓY ΓG

System 1:

System 2:

System 3:

Retroactivity
Error

Noise
Error

Upstream
Component

Upstream
Component

Downstream
Component

Downstream
Component

Downstream
Component

Fig. 5: The signal ‘r’ denotes the retroactivity to the upstream
system. ΓY encapsulates the noise in the upstream component given
by Γi for i = 1, ..., 4 and ΓG encapsulates the noise in the
downstream component given by Γi for i = 5, ..., 8.

In the sequel, we mathematically quantify the above trade-
offs between retroactivity and noise for proteins Y and G.
To this end, we formally introduce System 1 as the nominal
system where the perturbations due to retroactive and noise
are absent, System 2 as an intermediate system perturbed
only with retroactivity, and System 3 as the perturbed system
including both retroactivity and noise, given in Fig. 5. Next,
we derive the dynamics for each of these systems. The system
(21) exhibits time-scale separation as the binding/unbinding
reactions between transcription factors and promoter sites are
much faster than protein production/decay [24]. Thus, we can
represent the system dynamics in the standard singular pertur-
bation form by defining the small parameter ε = δ1/α2 � 1.
Representing the system variables by the non-dimensional
quantities c0 = C0/pT0, y = Y/(β1pT0/δ1), c = C/pT ,
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Fig. 4: (a) Nominal and perturbed trajectories for G. (b) Nominal and perturbed trajectories for Y . (c) Trade-off between retroactivity
and noise in signal G for pT in the range 1:1000 nM (obtained using the equations (31) and (32)). The parameter values are X =
2 + 1.5sin(ωt)nM, α1 = 1nM−1s−1, α2 = 20s−1, α3 = 1nM−1s−1, α4 = 100s−1, β1 = 0.01s−1, β2 = 0.1s−1, δ1 = δ2 = 0.01s−1,
pT0 = 100nM and ω = 0.002 rad/s.

g = G/(β2pT /δ2), and t̄ = tδ1, and defining the dissociation
constants kd1 = α2/α1 and kd2 = α4/α3 with a = α4/α2,
we can take the system to the standard singular perturbation
form using the change of variable v = y + pT δ1

β1pT0
c, which

yields

ε
dc0
dt̄

=
X

kd1
− c0 +

√
ε

X

kd1pT0Ω
Γ̃1 −

√
ε
c0

pT0Ω
Γ̃2,

dv

dt̄
= c0 − v +

pT δ1
β1pT0

c+

√
δ1c0

β1pT0Ω
Γ̃3 −

√
δ1(v − pT δ1

β1pT0
c)

β1pT0Ω
Γ̃4,

ε
dc

dt̄
=
aβ1pT0(v − pT δ1

β1pT0
c)

kd2δ1
− ac

+

√
ε
aβ1pT0(v − pT δ1

β1pT0
c)

kd2δ1pTΩ
Γ̃5 −

√
ε
ac

pTΩ
Γ̃6,

dg

dt̄
=
δ2
δ1
c− δ2

δ1
g +

√
δ22

δ1β2pTΩ
cΓ̃7 −

√
δ22

δ1β2pTΩ
gΓ̃8,

(22)
where we have assumed that the binding between the proteins
and promoter sites are weak, giving C0 � pT0 and C � pT ,
and Γ̃i for i = 1, ..., 8 represent white noise processes in the
time-scale t̄.

It follows that the system (22) fits the structure of the
original system in (1)–(2) with v and g as the slow variables
and c0 and c as the fast variables. We have that the drift
terms and the squared diffusion terms are linear in the state
variables, satisfying Assumptions 1 - 2. The matrix B2 defined

in Assumption 2 is given by
[
−1 0
0 −apTkd2

− a

]
, where we

have that all the parameter constants are positive. Thus, the
matrix B2 is Hurwitz, satisfying Assumption 3. Therefore, the
assumptions of Theorem 1 are satisfied.

We note that the system (22) does not satisfy the sufficient
conditions for existence and uniqueness of solution given in
[15], and that the existence of a solution for CLEs where the
arguments of the square-root diffusion terms remain positive is
an ongoing research question [28], [29]. However, the validity
of the CLE representation for chemical kinetics is based on
the assumption that the molecular counts are sufficiently large
[7]. In line with this, the work in [30] considers several one-
dimensional models and show that the probability of molec-
ular counts reaching zero decreases as the initial condition
increases. Considering higher dimensional models, in [31], we

show that the minimum time for the molecular counts to reach
a lower bound starting from a given set of initial conditions
increases as the initial conditions become appropriately large
(as defined in [31]), thereby keeping the argument of the
square-root positive for a longer time interval.

Next, setting ε = 0, we obtain the reduced-order system

dv

dt̄
=

X

kd1
− (1−R)v +

√
δ1

X
kd1

β1pT0Ω
Γ̃3 −

√
δ1(1−R)v

β1pT0Ω
Γ̃4, (23)

dg

dt̄
=

δ2β1pT0v

δ21(pT + kd2)
− δ2
δ1
g +

√
δ22β1pT0v

δ21β2pT (pT + kd2)Ω
Γ̃7

−

√
δ22

δ1β2pTΩ
gΓ̃8, (24)

c0 =
X

kd1
+

√
X

pT0kd1Ω
N1, (25)

c =
vβ1pT0

δ1(pT + kd2)
+

√
vβ1pT0kd2

δ1pTΩ(pT + kd2)2
N2, (26)

where R = pT
pT +kd2

, N1 and N2 are standard normal ran-
dom variables. This system describes the dynamics for the
perturbed system denoted by System 3 in Fig. 5 where
the dimensionless concentration for protein Y is given by
y = v − pT δ1

β1pT0
c. Next, the dynamics for System 2, which

only includes the error due to retroactivity can be found by
taking Γi = 0 for i = 1, . . . , 8 in (23)–(26), which yields
dvR
dt̄

=
X

kd1
− (1−R)vR,

dgR
dt̄

=
δ2β1pT0vR
δ21(pT + kd2)

− δ2
δ1
gR, (27)

cR0 =
X

kd1
, cR =

vRβ1pT0

δ1(pT + kd2)
. (28)

Then, we can use the fast variable approximation for cR given
in (28) to rewrite the system dynamics in the original variable
yR = vR − cR, to obtain

System 2 : ẏR = (1−R)

(
X

kd1
− yR

)
,

ġR =
δ2β1pT0yR
δ21kd2

− δ2
δ1
gR.

(29)

Similarly, the reduced-order dynamics for the nominal sys-
tem (i.e without the boxed terms that represent retroactivity
effects and with Γi = 0 for i = 1, . . . , 8) can be written as

System 1 : ẏN =
X

kd1
− yN ,

ġN =
δ2β1pT0yN
δ21kd2

− δ2
δ1
gN ,

(30)
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Next, using the system definitions in Fig. 5, we define the
error due to retroactivity in Y and G as |∆yR||yN | = |yR−yN |

|yN |
and |∆gR||gN | = |gR−gN |

gN
, respectively. Similarly, the error due to

noise in the signals Y and G are can be defined as |∆yS ||yR| =
|y−yR|
|yR| and |∆gS |

|gR| = |g−gR|
|gR| , respectively. We consider the

input X to be of the form X = k1 + k2sin(ω̄t̄) with k1 > k2

to mimic a typical periodic signal from a clock [25]. As we are
interested in the error in the temporal dynamics, we analyze
each of the errors arising due to the time-varying component
of the input X̃ = k2sin(ω̄t̄).

To quantify the error due to retroactivity, we take the ratio
of amplitude of the signals ∆yR and ∆gR to the amplitude of
the nominal signals ∆yN and ∆gN , respectively. Therefore,
the error in y and g due to retroactivity is given by |∆yR(jω̄)|

|yN (jω̄)|
and |∆gR(jω̄)|

|gN (jω̄)| , respectively.
To quantify the error due to noise we consider the coefficient

of variation, which is a standard measure of noise, defined as
the ratio of standard deviation to the mean value of a signal.
Due to the linearity of drift terms in system (23)–(24), the
mean signals of y and g are given by yR and gR, respectively.
Therefore, the terms E

[
(∆yS)2

]
and E

[
(∆gS)2

]
give the vari-

ances of signals y and g. Then, to quantify the noise error in

Y we take
√
|E[(∆yS)2](jω̄)|
|yR(jω̄)|

√
k2

, where |E
[
(∆yS)2

]
(jω̄)|k2 gives

the amplitude of the signal E
[
(∆yS)2

]
and |yR(jω̄)|k2 gives

the amplitude of the signal yR for the input X̃ = k2sin(ω̄t̄).
Similarly, the noise error in G can be quantified by the

expression
√
|E[(∆gS)2](jω̄)|
|gR(jω̄)|

√
k2

.

B. Retroactivity Error

In order to find the retroactivity error, we consider the
System 1 and System 2 in Fig. 5, for which the dynamics
are given by (30) and (29). Using the linearity of the systems
(30) and (29) to directly evaluate the frequency response with
a periodic input of the form X̃ = k2sin(ω̄t̄), we calculate the
error in Y and G as

|∆yR(jω̄)|
|yN (jω̄)| =

|∆gR(jω̄)|
|gN (jω̄)| =

Rω̄√
ω̄2 + (1−R)2

. (31)

Since R = pT
pT +kd1

monotonically increases with pT , it follows
that the error due to retroactivity in both Y and G increases
as pT increases.

C. Noise Error

Next, we quantify the noise error in Y by considering the
dynamics for System 2 and System 3 in Fig. 5. As the drift
coefficients of the system (23)–(26) are linear, we have that
E[y] = E[v] − E[c] = yR. Therefore, the error E

[
(∆yS)2

]
is

equivalent to the variance of y given by E
[
(y − E[y])2

]
. Here,

we note that y is a mixed variable whose dynamics consist
of both slow and fast components. Therefore, we require
both slow and fast variable approximations to represent the
dynamics of y using the reduced-order model. Thus, we use
the fast variable approximation for c given in (26) to derive
the first and second moment dynamics for the variable y (see
[17] for details) to obtain

dE[y]

dt̄
= (1−R)(X/kd1 − E[y]),

dE[y2]

dt̄
= (1−R)

(
2X

kd1
E[y]− 2E

[
y2
]

+
δ1X

kd1β1pT0Ω
+

δ1E[y]

β1pT0Ω

)
.

Then, using the first and second moment dynamics we de-
rive the dynamics for the variance of y given by E

[
(∆yS)2

]
=

E
[
(y − E[y])2

]
= E

[
y2
]
−E[y]

2 (see [17] for details). As the
moment dynamics are linear, we then directly evaluate the fre-
quency response of E

[
(∆yS)2

]
with the input X̃ = k2sin(ω̄t̄).

Next, by normalizing the magnitude of the frequency response
by the average signal |yR(jω̄)|k2 = (1−R)k2

kd1
√

(ω̄2+(1−R)2)
, we

obtain √
|E[∆y2S ](jω̄)|
|yR(jω̄)|

√
k2

=

√
kd1δ1(ω̄2 + (1−R)2)(1/4)√

(1−R)β1pT0Ωk2

Since the function R monotonically increases with pT ,
the noise error in Y increases as pT increases. Therefore,
decreasing the downstream copy number pT minimizes both
retroactivity and noise errors in Y .

Next, we quantify the noise error in G by considering the
dynamics for System 2 and System 3 in Fig. 5. Due to the
linearity of the drift terms, the expression E

[
(∆gS)2

]
gives

the variance of the signal g. Thus, we use the dynamics of the
variances of signals v and g to quantify the noise error in G.
Then, using the moment dynamics of the system (23) to derive
the the variance dynamics for v and g (see [17] for details)
and evaluating their frequency response we can quantify the
noise error in G as√

|E[∆g2S ](jω̄)|
|gR(jω̄)|

√
k2

=

√
δ22δ

2
1 + δ41ω̄

2

k2 Ω
4
√
A(pT , ω̄) (32)

where the function A(pT , ω̄) decreases with increasing pT for
sufficiently small ω̄, as shown in the Appendix. Therefore, as
we consider an input of the form X̃ = k2sin(ωt), where ω =
ω̄δ1, the noise error in G decreases as pT increases when the
input frequency ω is sufficiently smaller than the bandwidth of
the nominal system given by δ1. Thus, as previously observed
in literature [22], [23], a higher value of pT should be used
to decrease the noise in G.

Since the noise error in Y increases with pT in contrast to
that of G, and Y is an input to the downstream component
that produces G, we consider how the noise in Y propagates
downstream to the signal noise in G. To this end, we observe
from Fig. 4(b) that increasing pT causes an increase in the
high frequency noise of signal Y . However, the downstream
component with the output signal G acts as a low-pass filter,
which suggests that increasing high frequency noise content
in Y will have a minimal effect on the noise of G.

Comparing the results for the noise error in G given by
equation (32) with the retroactivity error in G given by
equation (31) demonstrates a trade-off between the stochastic
and deterministic perturbations in the signal G. Fig. 4(c)
illustrates this trade-off for pT in the range 1:1000 nM.
Similarly, the expressions for the retroactivity error in (31)
and the noise error in (32) can be used to quantify this trade-
off for different parameter values and find an optimal value
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of pT that would minimize the combined perturbation when
designing biological circuits.

VI. CONCLUSION

In this technical note, we have considered the problem of
model order reduction for a class of SDEs in singular perturba-
tion form, as found in biomolecular systems modeled by CLEs.
We presented a reduced-order model that approximates both
the slow and fast variables of the original system, which can be
obtained by simply solving two algebraic equations. We then
illustrated the application of our results with several examples.
In particular, we considered a biomolecular system application,
in which we quantified a trade-off between deterministic
and stochastic signal transmission properties. Through this
example, we demonstrate how both fast and slow variable
approximations are required to quantify the noise properties
of physical variables, which typically are mixed, i.e., neither
slow nor fast. In future work, we will extend these results
to systems with non-linear drift terms, which will allow us to
consider biomolecular systems with multi-molecular reactions.

APPENDIX

Deriving the dynamics for the means E[v], E[g] and vari-
ances E

[
(∆v)2

]
, E[∆vg], E

[
(∆gS)2

]
(see [17] for details),

and evaluating the magnitude of the frequency response,
we find that the noise error is given by equation (32)
where the function A(pT , ω̄) is in the form A(pT , ω̄) =
((1−R)2+ω̄2)(N1+N2+N3+N4)

(β1pT0/kd1)2β2
2δ

2
1p

2
TD1D2

, with

N1 =− 2δ31(R− 1)ω̄2(kd2 + pT )(2β2pT + δ2(kd2 + pT )),

N2 =δ21
(
4β2

2p
2
T ω̄

2 + 8β2δ2pT ω̄
2(kd2 + pT )

)
+ δ21

(
δ22(kd2 + pT )2

(
4R2 − 8R+ 5ω̄2 + 4

))
,

N3 =− 8δ1δ
2
2(R− 1)(kd2 + pT )(β2pT + δ2(kd2 + pT )),

N4 =4δ22(β2pT + δ2(kd2 + pT ))2

+ δ41ω̄
2(kd2 + pT )2((1−R)2 + ω̄2),

D1 =(δ41ω̄
4 + 5δ21δ

2
2ω̄

2 + 4δ42),

D2 =b
(
δ21
(
R2 − 2R+ ω̄2 + 1

)
− 2δ1δ2(R− 1) + δ22

)
.

To identify the change in A(pT , ω̄) with pT , we con-
sider the derivative of A(pT , ω̄) with respect to pT . Eval-

uating the derivative at ω̄ = 0, yields ∂A(pT ,ω̄)
∂pT

∣∣∣∣
ω̄=0

=

− 2k2d2(Nd1+Nd2+Nd3+δ31k
3
d2)

(β1pT0/kd1)2β2
2δ

2
1δ

2
2p

3
T (δ1kd2+δ2(kd2+pT ))3

, where

Nd1 = δ2
(
β2
2p

3
T + β2δ2pT

(
k2d2 + 3kd2pT + 2p2T

)
+ δ22(kd2 + pT )3

)
,

Nd2 = δ21k
2
d2(β2pT + 3δ2(kd2 + pT )),

Nd3 = δ1δ2kd2
(
β2pT (2kd2 + 3pT ) + 3δ2(kd2 + pT )2

)
.

It follows that the derivative is negative for all parameter
conditions. The function A(pT , ω̄) is a rational polynomial
function in pT and is continuous with respect to ω̄. Thus,
we ∂A(pT ,ω̄)

∂pT
is continuous with respect to ω̄ and will remain

negative in a neighborhood of ω̄ = 0. Therefore, the function
A(pT , ω̄) is decreasing with pT for sufficiently small ω̄.
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