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INVARIANCE TO REPRESENTATION OF INFORMATION

MUHAMET YILDIZ

Abstract. Under weak assumptions on the solution concept, I construct an invariant se-

lection across all finite type spaces, in which the types with identical information play the

same action. Along the way, I establish an interesting lattice structure for finite type spaces

and construct an equilibrium on the space of all finite types.

Keywords: invariant selection, invariance, equilibrium, universal type space

JEL Numbers: C72, C73.

1. Introduction

In Game Theory, incomplete information is modeled using a type in a Bayesian game a

la Harsanyi (1967). Unfortunately, the representation is not unique: a given piece of infor-

mation can be modeled using many distinct types, coming from distinct Bayesian games. It

is desirable that the solution be invariant to alternative representations of the same infor-

mation, in the sense that the types that represent the same information all take the same

action according to the solutions to the games they come from. In this note, I explore the

implications of such an invariance condition.

To be more precise, consider a researcher. Given any type ti of any player i in any Bayesian

game G, she thinks that the relevant information of ti is hi(ti, G). If there is another type

t′i from a game G′ with hi(ti, G) = hi(t
′
i, G

′), then she considers (ti, G) and (t′i, G
′) as two

alternative representations of the same relevant information. Hence, she requires that types

ti and t′i play the same action according to the solutions to games G and G
′, respectively. If

she selects a solution to each game satisfying her requirement, then she obtains an invariant

selection from her solution concept. Such a selection is needed to study the solutions that

are invariant to alternative representations of the same relevant information. Can she find

such a selection? Can she ensure that her solutions to the games of her interest are part
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2 MUHAMET YILDIZ

of an invariant selection without analyzing other hypothetical situations? I answer these

questions affi rmatively.

In the baseline model, I take h as the infinite hierarchy of beliefs about some parameters

that are deemed relevant. I note that the same piece of information can be modeled by an

uncountably many types, coming from Bayesian games with complicated interconnections

that are diffi cult to foresee. Hence, invariance is a strong restriction on the selections of

the solutions, requiring that the actions of all these types to be equal. Moreover, given the

complicated interconnections between these games, constructing an invariant selection is a

diffi cult task, which involves equalizing the actions of all these types and doing this for all

games at the same time.

I consider all solution concepts with the following two basic properties. Given any game

G, construct a new game Gh by representing each type ti in G by its relevant information

hi(ti, G). The first property is that for every solution σ of Gh, the strategy profile σ ◦ h,
in which each ti plays σi (hi(ti, G)), is a solution to G. The second property is that given

any finite type space T and any invariant selection for its proper subspaces, there exists a

solution on T that yields the selection when we restrict the solution to the proper subspaces

of T . Both properties are exhibited by canonical solution concepts, such as Bayesian Nash

equilibrium and rationalizability.1

Given the generality above, invariance may put non-obvious restrictions on the selection

of solutions across games that may appear to be unrelated. Nonetheless, I show that when

finite type spaces are embedded in a universal type space using the mapping h, they exhibit

an interesting and useful lattice structure. Using this structure, I construct an invariant

selection in a straightforward manner. I further show that any invariant selection within a

class of games can be extended to the set of all games with finite type spaces, maintaining the

invariance condition throughout. Conceptually, this shows that the invariance requirement

does not impose any additional restrictions on the solutions to individual games or on the

selections for subfamilies. On a practical level, it ensures that if a researcher is only interested

in behavior in a class of games, she can focus on constructing an invariant selection for

that class without worrying about the invariance across all games. In particular, if she is

interested only in a specific game, she can analyze the game in isolation without analyzing

the other possible strategic situations. All she needs to do is to make sure that the types

with identical relevant information play the same action in the specific game. In contrast,

if she is interested in behavior across a family of games (as in the analysis of comparative

1By rationalizability, I mean interim correlated rationalizability and interim independent rationalizability.
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statics), then she needs to analyze invariant selections for the family, and invariance imposes

many more conditions on such selections than on the solutions to individual games.

There is a one-to-one correspondence between the invariant equilibrium selections on a

given class of games and the equilibria on the subspace of the universal type space in which

these games are embedded. The above results on invariance selections then lead to equi-

librium existence results on the universal type space. First, since there is an invariant

equilibrium selection for all games with finite type spaces, there exists an equilibrium on the

space of all finite types, which consists of the images of all types from all finite type spaces.

This fills an important gap in the literature, in which very little is known on the existence

of equilibria in prominent subspaces of the universal type space. Second, any equilibrium

within a subspace can be extended to the space of all finite types. This result is quite useful

in equilibrium analysis on such spaces. In such an analysis, one is often interested in the

behavior of types within a small class. This result ensures that one can simply focus on the

class without worrying about the construction of equilibrium on the entire space, which is

often the main diffi culty. Third, as a special case of the second result, an equilibrium of

a game can be extended to the space of all finite types as long as the types with identical

information play the same action in the equilibrium. This result is important for robustness

analysis. In such an analysis, one considers an equilibrium in the universal type space and

explores its sensitivity to information (see for example Weinstein and Yildiz, 2007, 2011).

This result shows that such an analysis is not vacuous and the robustness of any equilibrium

as above can be analyzed within this methodology. Börgers and Smith (2014) provide an

important application of invariance in robust mechanism design.

I study invariance of solutions with respect to the alternative representations of incom-

plete information. More broadly, one wants the solution to be invariant to any alternative

representation of the strategic situation. Within this larger context, a number of authors,

such as Kohlberg and Mertens (1986) and Govindan and Wilson (2006, 2009, 2012), have

studied other invariance conditions, such as invariance with respect to the introduction of

mixed strategies as pure strategies and the “small worlds” condition, which requires that

embedding a game into a larger game with additional players does not affect the solutions

induced on the original game. The invariance condition here differs from the above condi-

tions in two ways. First, it focuses on incomplete information. Second, it is a condition on

how the solution changes across games rather than being a condition on the solution sets.

Indeed, it does not at all restrict the set of solutions to any given game with no "redundant"

types (i.e. multiple types with identical relevant information).
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A solution concept and the notion of relevant information are inherently related. If a

researcher strongly believes in a solution concept, she can use the solution concept to deter-

mine which information is strategically relevant. This is especially true when she does not

have strong knowledge of players’concerns. For example, using equilibrium or rationalizabil-

ity, one can discover that whether a seller has private information can be quite relevant in

trade and that higher-order beliefs do matter in strategic situations. Unfortunately, solution

concepts are often introduced as working hypotheses, using analogy and extrapolation from

toy examples or existing theories.2 The researcher may then have a better understanding

of players’concerns and the relevance of a piece of information. In that case, she may use

her knowledge of the situation to modify or refine the solution concept. In general, one

expects a researcher to strike a balance between the solution concept and her knowledge of

the situation. No matter where she strikes the balance, invariance helps the researcher in

refining the set of selections from the solution concepts she considers and provides a better

understanding of how players’behavior changes from one situation to another. To the ex-

tent that she uses her own knowledge of the situation, invariance helps further in refining

her solutions to individual games.

It is known that some prominent solution concepts, such as Bayesian Nash equilibrium,

may depend on the specific type space through which a belief hierarchy is modeled. For

example, when there are redundant types, there may be additional equilibria in which distinct

types with identical hierarchies play distinct actions. Many researchers proposed alternative

ways to address this issue. For example, Ely and Peski (2006) proposed a broader class of

belief hierarchies under which interim independent rationalizability is not affected by the

presence of redundant types. Dekel, Fudenberg, and Morris (2007) introduced a weaker

solution concept (namely, interim correlated rationalizability) that is immune to the above

problem. In a way, the former authors take the solution concept as given and explore the

information relevant for the solution concept, while the latter authors expand the set of

solutions in order to account for some relevant information that may have been overlooked

(Liu, 2009). Finally, noting that some equilibria may fail to extend to a larger type space,

Friedenberg and Meier (2007) proposed that we should embrace the dependence of solutions

on the type space: we should use the type space in order to model the context in which

2In contrast, rationalizability in complete information games and interim correlated rationalizability in

Bayesian games are introduced as characterizations of a set of rationality assumptions. Recently, Battigalli

et al (2011) argued that one must use a solution concept that can be expressible as such assumptions– about

players’beliefs, information and actions. Once the researcher settles on such a solution concept, she will be

in the previous case above.
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the game is played.3 Such a dependence of the solution set on the type space is not a

main concern in my paper, and my invariance condition is consistent with all of the above

approaches, which offer alternative solution concepts and notions of relevant information.

Of course, once a researcher settles on a particular notion of relevant information and a

solution concept, invariance refines the solution concept and more importantly puts strong

restrictions on how the solution varies from one game to another.

In the next section, I introduce invariance formally and explain its implications and my

construction on a simple example. In Section 3, I demonstrate that finite type spaces exhibit

a useful lattice structure when they are represented as subspaces of a universal type space.

I study invariant selections in Section 4, invariant equilibrium selections in Section 5, and

the equilibria on the universal type space in Section 6. I present two extensions in Section

7, one to countable type spaces and one to broader notions of relevant information. Section

8 concludes. The omitted proofs are in the Appendix.

2. Invariance– Definition and Examples

Fix a setN = {1, 2, . . . , n} of players i, a setA = A1×· · ·×An of action profiles a,4 and a set
Θ∗ of payoffparameters θ. For each i ∈ N , fix also a utility function ui : Θ∗×A→ R. A finite
type space is a triplet (Θ, T, κ) where Θ ⊆ Θ∗ is a finite set of parameters, T = T1×· · ·×Tn
is a finite set of type profiles t, and κti is a probability distribution on Θ× T−i, representing
the belief of ti, for each type ti ∈ Ti. A Bayesian game is a list G = (N,A, u,Θ, T, κ). The

set of all Bayesian games with varying finite type spaces is denoted by G. Throughout G,
(N,A, u) is fixed for clarity.

For any game G = (N,A, u,Θ, T, κ) ∈ G and any player i, a strategy of i for G is a

mapping σi : Ti → ∆ (Ai), and a strategy profile for G is a list (σ1, . . . , σn) of strategies. A

solution concept is any correspondence Σ : G ⇒
⊔
T

∏
i ∆ (Ai)

Ti that picks a set Σ (G) of

strategy profiles for G at each game G ∈ G, where
⊔
T

∏
i ∆ (Ai)

Ti is the set of all strategy

profiles available within G. Given any solution concept Σ and any G ′ ⊆ G, I write Σ|G′ for

the restriction of Σ to G ′. By a selection from Σ for G ′, I mean a selection from Σ|G′ , i.e., a

3Friedenberg and Meier also study the relation between the equilibrium sets of two type spaces when one

is embedded in the other, showing that Bayesian Nash equilibrium satisfies the basic properties I assume for

the solution concepts here.
4Notation: For any list X1, . . . , Xn of sets, X denotes X1×· · ·×Xn and X−i denotes

∏
j 6=iXj . For any

x1, . . . , xn, write x = (x1, . . . , xn) ∈ X, x−i = (xj)j 6=i ∈ X−i, and (x′i, x−i) = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

For any family of functions fj : Xj → Yj , write f (x) = (fj (xj))j∈N and f−i (x−i) = (fj (xj))j 6=i. In general,

drop a subscript to denote the entire mapping that varies with that subscript; e.g., write κti for the belief of

type ti and κ for the belief function. The set of all probability distributions on a set X is denoted by ∆ (X).
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function that picks a solution σG ∈ Σ (G) for each G ∈ G ′:

G ′ 3 G 7→ σG ∈ Σ (G) .

A selection for G is simply called a selection.

2.1. Invariance. For every game G ∈ G and every type ti of a player i in G, let hi (ti, G)

be the relevant information of ti (according to a researcher). Given that all the relevant

information is contained in hi (ti, G), if hi (ti, G) = hi (t
′
i, G

′) for some types ti and t′i from

games G and G′, respectively, then (ti, G) and (t′i, G
′) are just alternative representations of

the same information. One may then desire the solution to be independent of the represen-

tation, requiring that ti and t′i play the same action according to the solutions at G and G
′,

respectively. The next definition formalizes this idea.

Definition 1. Fix a solution concept Σ, a map h from domain G to some abstract codomain
and a set G ′ ⊆ G of games. A selection G 7→ σG for G ′ is said to be h-invariant if

(C) hi (ti, G) = hi (t
′
i, G

′) =⇒ σGi (ti) = σG
′

i (t′i)

for all games G,G′ ∈ G ′ and for all types ti and t′i in G and G′, respectively. Likewise, for

any G ∈ G, a strategy profile σ in G is said to be h-invariant if for all types ti and t′i in G,

(C’) hi (ti, G) = hi (t
′
i, G) =⇒ σi (ti) = σi (t

′
i) .

Invariance of selections is a condition on how the solution varies across games, rather

than restricting the set of solutions at a given game. On the other hand, invariance of

a strategy profile is a condition on the solution of a game, requiring that the types with

identical relevant information play the same action. Of course, the latter is a special case of

invariance of a selection for G ′ = {G}.

For concreteness, in the baseline model, I consider the following notion of relevance (see

Section 7 for more general notions). I take

Θ∗ = Θ∗R ×Θ∗NR,

so that the underlying parameters are of the form

θ = (θR, θNR) .

Here, θR is a vector of parameters that are deemed relevant while θNR is a vector of para-

meters that are deemed irrelevant. The relevant information of a type ti in a game G is the

hierarchy of beliefs about θR:

hi (ti, G) =
(
h1
i (ti, G) , h2

i (ti, G) , . . .
)
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T 0 T 1 T 2

θ0 t02 θ1 t02

t01 1 t01 0

θ0 t12 θ1 t12

t11 0 t11 1

θ0 t12 θ1 t12

t11 1/2 t11 1/2

T 3 T 6

θ0 t3,12 t3,22

t3,11 1/2 0

t3,21 0 0

θ1 t3,12 t3,22

t3,11 0 0

t3,21 0 1/2

θ0 t6,12 t6,22

t6,11 1/6 1/12

t6,21 1/12 1/6

θ1 t6,12 t6,22

t6,11 1/12 1/6

t6,21 1/6 1/12

T 4 T 5

θ0 t4,12 t4,22

t4,11 1, 1 0, 0

t4,21 0, 0 1/2, 1/2

t4,31 1/2, 0 0, 0

θ1 t4,12 t4,22

t4,11 0, 0 0, 0

t4,21 0, 0 1/2, 1/2

t4,31 0, 0 1/2, 0

θ0 t5,12 t5,22

t5,11 1, 1 0, 0

t5,21 0, 0 0, 0

t5,31 ε, 0 ε2, 0

θ1 t5,12 t5,22

t5,11 0, 0 0, 0

t5,21 0, 0 1, 1

t5,31 0, 0 1− ε− ε2, 0

Table 1. The type spaces T 0, . . . , T 6. In T 0, T 1, T 2, T 3 and T 6, the number

in a cell (θ, t) indicates the ex-ante probability of (θ, t). In T 4 and T 5, the first

and the second entries in a cell (θ, t) are the interim beliefs of types t1 and t2,

respectively; e.g., t4,11 assigns probability 1 on (θ0, t
4,1
2 ).

where h1
i (ti, G) is the first-order belief of type ti about θR, h2

i (ti, G) is the second-order belief

of type ti about
(
θR, h

1
−i (t−i, G)

)
, and so on.

The set of all such belief hierarchies forms an infinite type space, called Θ∗R-based universal

type space (Mertens and Zamir, 1985, and Brandenburger and Dekel, 1993). The finite type

spaces are mapped to a subspace (Θ∗, T u, κu) of this universal type space. The uncountable

set T u = T u1 × · · · × T un is called the space of finite types. Note that

(2.1) T ui = {hi (ti, G) |ti ∈ Ti for some G = (N,A,Θ, T, κ, u) ∈ G}

for each i ∈ N . Note also that the beliefs are preserved by the embedding:

(2.2) κuhi(ti,G) (θ, h−i (t−i, G)) =
∑

t′−i∈T−i∩h
−1
−i (h−i(t−i,G),G)

κti
(
θ, t′−i

)
for all i, all G = (N,A,Θ, T, κ, u) ∈ G, and all (θ, ti, t−i) ∈ Θ× T .

An important special case arises when |Θ∗NR| = 1 so that all the parameters are deemed

relevant. Even in this case, type spaces may contain some distributed information that is not

contained in the hierarchies, and some Bayesian Nash equilibria may use such information

(see Section 2.3 below). According to the notion considered in the baseline model, such

information is deemed irrelevant, and the equilibria that use such information are discarded.
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2.2. Examples. In the rest of this section, I illustrate the implications of invariance on a

simple example, using the Bayesian Nash equilibrium as the solution concept. I fix N =

{1, 2}, A = {a, b} × {c, d}, Θ∗ = Θ∗R = {θ0, θ1}, and fix the utility functions as:

θ0 c d

a 5, 1 0, 0

b 3,0 3,1

θ1 c d

a 0, 1 5, 0

b 3,0 3,1

I analyze the games G0, . . . , G6 with type spaces T 0, . . . , T 6, respectively, depicted in Table

1. The games G0 and G1 are complete information games in which it is common knowledge

that θ = θ0 and θ = θ1, respectively. Their type spaces T 0 and T 1 are embedded in T 3,

rather trivially. In T 3, the true state is common knowledge at the interim stage, but they

are equally likely ex ante. The hierarchies of t3,1 and t3,2 are identical to those of t0 and

t1, respectively. On the other hand, G2 is also a complete information game, in which the

players find the states equally likely. Although the type space T 6 looks quite different, it

also expresses the information that it is common knowledge that the players find the states

equally likely. One can see this by observing that each type in T 6 assigns probability 1/2 on

each state. Hence, t2, t6,1 and t6,2 all have the same relevant information.

The relationship between type spaces can be even more complex when there is no common

prior. To see this, consider T 4 and T 5. In T 4, the relevant information of t4,1 is identical to

that of t0 in T 0: it is common knowledge that θ = θ0. Likewise, the relevant information of

t4,2 is identical to that of t2 in T 2: it is common knowledge that the states are equally likely.

Finally, according to type t4,31 , either θ = θ0 and player 2 thinks that this fact is common

knowledge, or θ = θ1 and player 2 thinks that it is common knowledge that the states are

equally likely. In T 5, type t5,31 is almost certain that θ = θ1 and that player 2 believes that

this is common knowledge, but the details of the beliefs refer to the hierarchies of t0 and t1.

The Bayesian Nash equilibria of games in set G1 = {G0, G1, G2, G3, G4, G5} are as follows.
GameG0 has three equilibria: s0,1 = (a, c), s0,2 = (b, d), and s0,3, which is in mixed-strategies;

G1 has a unique (mixed) equilibrium σ1, and G2 has a unique equilibrium s2 = (b, d).

Accordingly each game Gm with m ∈ {3, 4, 5} has three equilibria sm,1, sm,2, and sm,3, where

sm,k
(
tm,1
)

= s0,k,(2.3)

s3,k
(
t3,2
)

= s5,k
(
t5,2
)

= σ1 and s4,k
(
t4,2
)

= (b, d) ,

s4,1
1

(
t4,31

)
= s5,1

1

(
t5,31

)
= s4,3

1

(
t4,31

)
= a and s4,2

1

(
t4,31

)
= s5,2

1

(
t5,31

)
= s5,3

1

(
t5,31

)
= b(2.4)

for each k ∈ {1, 2, 3}. There are 81 possible selections for G1, as one can mix and match the

equilibria of the individual games arbitrarily.
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Invariance puts strong restrictions on selections, however. Since t0, t3,1, t4,1, and t5,1

all have identical relevant information, invariance requires that one must select the same

outcome in games G0, G3, G4, and G5 for these type profiles. Hence, by (2.3), if one selects

s0,k in game G0, then he must also select the equilibria s3,k, s4,k, and s5,k in games G3, G4,

and G5, respectively. Therefore, only 3 selections are invariant:

G0 G1 G2 G3 G4 G5

Selection 1 s0,1 σ1 s2 s3,1 s4,1 s5,1

Selection 2 s0,2 σ1 s2 s3,2 s4,2 s5,2

Selection 3 s0,3 σ1 s2 s3,3 s4,3 s5,3

Some of the restrictions imposed by invariance may be unforeseen. For example, by (2.4),

under an invariant selection, t4,31 must play a whenever type t5,31 does so, despite the apparent

lack of connection between the hierarchies. Despite this, invariance does not restrict the

solution set of a given game: every equilibrium of every game is selected by some invariant

selection. The latter observation turns out to be true in general, as long as the games do

not have redundant types, i.e., multiple types with identical belief hierarchies.

When there are redundant types, there may be non-invariant Bayesian Nash equilibria,

expanding the equilibrium set. This well-known fact is illustrated by games G2 and G6.

Recall that according to all types in games G2 and G6, it is common knowledge that the

states are equally likely, all having the same relevant information. Therefore, G6 has an

equilibrium s6,1 in which all types play according to the unique equilibrium of G2, yielding

(b, c) as the outcome. Nevertheless, G6 has also another equilibrium s6,2:

s6,2
1

(
t6,11

)
= a; s6,2

1

(
t6,21

)
= b; s6,2

2

(
t6,12

)
= c; s6,2

2

(
t6,22

)
= d.

Note that s6,2 prescribes different actions for type t6,1i and t6,2i although they have identical

relevant information. Therefore, equilibrium s6,2 is not invariant.

Although redundant types are not my main concern here, conceptually my approach to

redundant types is closest to that of Liu (2009). He shows that any type space with redundant

types can be represented as a type space without redundant types by introducing additional

underlying parameters (i.e., by adding new dimensions to θ and obtaining a Θ∗R larger than

original Θ∗). Moreover, the set of Bayesian Nash equilibria are identical in the two type

spaces. He then interprets redundant types as a consequence of the researcher’s ignoring

some of the parameters that are deemed relevant by the players.
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2.3. Construction. To illustrate my construction, I include a new game G7 with type space

T 7:

θ0 t7,12 t7,22

t7,11 1/2 0

t7,21 0 1/4

θ1 t7,12 t7,22

t7,11 0 0

t7,21 0 1/4

The set of equilibria for G7 is {s7,1, s7,2, s7,3} where s7,k (t7,1) = s0,k and s7,k (t7,2) = s2 for

each k.

In my construction, I first embed the Bayesian games into the Θ∗R-based universal type

space, using h. In the ongoing example, this leads to a new set of gamesGh
0 , . . . , G

h
7 , with type

spaces h (T 0, G0),. . . , h (T 7, G7), respectively. After constructing an invariant selection for

Gh
0 , . . . , G

h
7 , I select equilibria of games G0, . . . , G7 by transforming the selected equilibrium

sm in each game Gh
m to an equilibrium of Gm by sm ◦ h−1.

The embedding for G6 maps many types to one, yielding Gh
6 = Gh

2 , and changing the

solution set. For all the other games, the embedding mappings are isomorphisms, which

rename the types without changing the solution in each game. Note however, that some types

from distinct type spaces are mapped to the same hierarchy, yielding non-empty intersections

of type spaces h
(
T k, Gk

)
and h

(
T l, Gl

)
for some k and l. These non-empty intersections

make the construction non-trivial.

The following structure makes a straightforward construction possible: with the inclusion

of the empty set, the set of all resulting type spaces from the embedding is a lattice under

the set inclusion, and it is closed under an arbitrary number of intersections. For example,

h (T 4, G4) and h (T 5, G5) have a non-empty intersection due to the identical hierarchies for

t4,1 and t5,1, but

h
(
T 4, G4

)
∩ h

(
T 5, G5

)
= h

(
T 0, G0

)
is also a type space for another finite game, namely G0. The lattice structure is depicted by

the graph in Figure 1, where a link between two games indicates that the type space of the

game above contains the type space of the game below.

This structure allows one to rank finite type spaces according to the length of the longest

chain of its subspaces under the strict set inclusion. For example, the games Gh
0 , G

h
1 , and

Gh
2 do not contain any proper subspace, and all have rank 1. The games G

h
3 and G

h
7 contain

proper subspaces, as depicted in Figure 1, but they contain only games of rank 1. These

games then have rank 2. Finally, games Gh
4 and G

h
5 have rank 3, containing proper sub-

spaces that have at most rank 2. The structure also implies that, for each type, there is

a unique minimal type space that contains the type. For example, the minimal type space
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G5
h

G7
h

G4
h

G1
h G0

h G2
h, G6

h

G3
h

Figure 1. The lattice structure of the type spaces in the example.

for the hierarchy h1

(
t4,11 , G4

)
is h (T 0, G0), while the minimal type space for h1

(
t4,31 , G4

)
is

h (T 4, G4).

The above structure leads to the following straightforward construction of an invariant

selection from the embedded games, which leads to a selection across all games. I first

consider the type spaces of the first rank. These type spaces do not have any subspace.

In particular, they are disjoint because the intersection would be a subspace by the lattice

structure. I select a solution for each of these type spaces. Since they are disjoint, the

selection is invariant. For example, games Gh
0 , G

h
1 and G

h
2 are of rank 1, and I first select an

arbitrary equilibrium for each of these games, e.g., selecting s0,1 for Gh
0 , σ

1 for Gh
1 and s

2 for

Gh
2 . Next, I consider the type spaces of the second rank, e.g., the games G

h
3 and G

h
7 in the

ongoing example. These type spaces contain only subspaces of the first rank, for which the

solution has been selected already. Each of them has a solution that extends the existing

selection for the proper subspaces to the type space itself. For example, Gh
3 has equilibrium

s3,1 that extends s0,1 and s2 to Gh
3 , and G

h
7 has equilibrium s7,1 that extends s0,1 and σ1 to

Gh
7 . This property of Bayesian Nash equilibrium is assumed in the class of solution concepts

considered here. I select such a solution from each of these type spaces, e.g., selecting s3,1

and s7,1 for Gh
3 and G

h
7 , respectively. Since these type spaces intersect each other, this could

have led to a violation of invariance. That is, a type in the intersection could have played

different actions according to the solutions of the distinct type spaces. This is not the case.

Any such intersection is of the first rank, for which actions have been determined in the

previous round. Hence, all of the selected solutions prescribe the same action for any type in

the intersection. For example, the actions of types h1

(
t3,11 , G3

)
and h1

(
t7,11 , G7

)
are selected

as a in round 1. Iterating this argument, I select a solution for every type space of third

rank, fourth rank, and so on. For example, at round 3, I select equilibria s4,1 and s5,1 for

games Gh
4 and G

h
5 , respectively, the equilibria that extend s

3,1 and s7,1 to games Gh
4 and G

h
5 ,
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respectively. Since each type space has a finite rank, this leads to a selection for every type

space.

The construction here addresses two inherent diffi culties. First, there are typically un-

countably many type spaces by which the same piece of information can be modeled. Hence,

in any construction, at some stage, one needs to select the solutions for uncountably many

such type spaces simultaneously without violating the invariance condition. For example, the

hierarchy h1

(
t4,11 , G4

)
is contained in a continuum of games in which the beliefs of type t4,31

vary, and one must select equilibria of all of these games simultaneously, making sure that

the types with hierarchy h1

(
t4,11 , G4

)
all play the same action. In the above construction,

this is accomplished by fixing the action of any type ti in any game G at the earliest round

at which hi(ti, G) is available, relying on the fact that the minimal type space for hi(ti, G) is

the only type space that contains hi(ti, G) at that round. When the solution to G is selected

at a later round, one may need to select solutions to uncountably many type spaces that

contain hi(ti, G), but the solutions will all assign the same fixed action to hi(ti, G). For

example, the actions of the types with hierarchy h1

(
t4,11 , G4

)
are all selected as a at round 1

when s0,1 is selected for Gh
0 .

The second diffi culty is that the space of all finite types cannot be partitioned into smaller

subspaces: for any two types tj and t′j, one can construct a type ti that puts positive

probabilities on tj and t′j, in which case the types tj and t
′
j must be in the same subspace–

along with ti– in any partition. For example, because of type t
5,1
1 , one cannot separate

h (t0, G0) and h (t1, G1). This prevents one from using more straightforward techniques or

the existing existence results. For example, if the space could be partitioned into countable

subspaces, one could obtain an invariant selection in each subspace, by simply selecting a

solution from each of the type spaces one-by-one in the order given by counting the type

spaces within the subspace. This would lead to an invariant selection in the entire space.

If that were the case, one could also use the existence result of Simon (2003) for finitely

generated type spaces.

3. Models in Universal Type Space and the Lattice Structure

In this section, I embed every type space in T u as a subspace and show that the resulting

set of subspaces exhibit a very useful lattice structure.

Models. A subset T = T1 × · · · × Tn ⊂ T u is said to be a belief-closed subspace if (Θ, T, κu)

is a type space for some Θ ⊆ Θ∗. That is, for each ti ∈ Ti, κuti (Θ× T−i) = 1. A belief-closed

subspace T is said to be finite if Θ and T above are finite. Finite belief-closed subspaces are
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simply called models. I will include the empty set to the set of models and write

M = {T ⊂ T u| T is a finite belief-closed subspace} ∪ {∅} .

Given any two models T, T ′ ∈ M , define the collage of T and T ′ as T ∨ T ′ ≡ (T1 ∪ T ′1) ×
· · · × (Tn ∪ T ′n), which is clearly also a model.

Note that, by (2.2), the image h(T,G) of any game G is a model:

(3.1) h (T,G) ∈M (∀G = (N,A, u,Θ, T, κ) ∈ G) .

By definition, T u is simply the collage of the images of games with finite type spaces, and it

can be written as the collage of all models in T u.

Lattice Structure of Models. I now show that models form a lattice under the set inclu-

sion, exhibiting many useful properties. In particular, one can rank the models depending

on how far they are removed from the empty set.

Proposition 1. (M,⊇) is a lattice with T ∨ T ′ ∈ M and T ∧ T ′ ≡ T ∩ T ′ ∈ M for

all T, T ′ ∈ M . Moreover, (M,⊇) is a complete meet-semilattice, i.e., for any M ′ ⊆ M ,

∩T∈M ′T ∈M .

Proof. That T ∨T ′ ∈M is immediate. Fixing any M ′ ⊆M , I will show that T̄ ≡ ∩T∈M ′T ∈
M . If T̄ = ∅, T̄ ∈ M by definition. Assume that T̄ 6= ∅. By definition, for each T ∈ M ′,

there exists a finite set ΘT , such that κuti
(
ΘT × T−i

)
= 1 for each ti ∈ Ti. Define Θ̄ =

∩T∈M ′ΘT . In order to show that T̄ is a finite belief-closed subspace, it suffi ces to show that

κuti
(
Θ̄× T̄−i

)
= 1 for every i ∈ N and ti ∈ T̄i. To this end, take any ti ∈ T̄i and (θ, t−i)

with κuti (θ, t−i) > 0. Then, (θ, t−i) ∈ ΘT × T−i for each T ∈M ′, as ti ∈ Ti. Hence, (θ, t−i) ∈
∩T∈M ′

(
ΘT × T−i

)
= Θ̄× T̄−i. This shows that κuti

(
θ′, t′−i

)
= 0 for every

(
θ′, t′−i

)
6∈ Θ̄× T̄−i.

Since κuti has a finite support, this further shows that κ
u
ti

(
Θ̄× T̄−i

)
= 1. �

Proposition 1 shows that M is a lattice under the set inclusion, with join ∨ and meet
∧ defined as above. Moreover, it is a complete meet-semilattice, as it is closed under all
intersections. It is not a complete lattice because infinite collages of finite models are not

necessarily finite. In particular, T u 6∈M .

By (3.1), each type ti ∈ T ui is in a model T ∈M , but usually there are uncountably many
such models. Proposition 1 implies that there is a unique minimal model T ti ∈ M that is

included in all models that contain ti. Here,

(3.2) T ti =
⋂

T∈M,ti∈Ti

T.
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T ti is the minimal type space in which ti can be expressed. Note that T ti 6= ∅ because

(ti, t−i) ∈ T ti for each (θ, t−i) ∈ suppκuti .

I will next rank the models according to how far they are removed from the empty set.

Define R0 = {∅}. Define R1 as the set of models T ∈ M\R0 for which there is no model

T ′ ∈ M\R0 with T ′ $ T . That is, T does not have any proper belief-closed subspace other

than the empty set. Note that every finite model is either in R1 or contains a subspace that

is in R1. Proceeding in the same fashion, one can inductively define the sets Rk, k = 1, 2, . . .,

by defining Rk as the set of models T ∈M such that (i) T 6∈ Rk′ for any k′ < k, and (ii) for

any model T ′ $ T , T ′ ∈ Rk′ for some k′ < k. I will say that a model T ∈ M has rank k if

T ∈ Rk. The next lemma establishes some useful facts about the ranks of the models.

Lemma 1. The following are true.

(1) For every T ∈ M , T ∈ Rk iff k is the largest integer for which there exist models

T 0, . . . , T k ∈M with ∅ = T 0 $ · · · $ T k = T .

(2) Every T ∈M has a rank kT ≤ |T |.
(3) For any T, T ′ ∈M with T $ T ′, kT < kT ′.

(4) For any M ′ ⊆ M , T̄ ≡ ∩T∈M ′T has rank kT̄ such that kT̄ ≤ kT for each T ∈ M ′,

with strict inequality whenever T 6= T̄ .

The first three properties above are shared by any lattice formed by a family of finite sets

under inclusion. The last property also relies on the fact that the meet is the same as the

intersection operator and the lattice is closed under arbitrary intersections. The second and

the fourth properties are the most crucial properties for this paper. The second property

states that every model has a rank, and the fourth property states that the rank of an

intersection is lower than the ranks of the intersecting models.

4. Invariant Selections

In this section, I show that there exists an invariant selection from any solution concept

that satisfies two basic properties. I further show that any invariant selection in a subfamily

can be extended to a larger family. In particular, invariance of a selection has only one

implication for the solutions of a given game: the solution is invariant.

In order to state the properties suffi cient for invariance, I introduce two auxiliary games.

For any T ∈M , I write GT = (N,A,Θ, T, κu, u) ∈ G for the Bayesian game with type space
T . For any game G = (N,A,Θ, T, κ, u) ∈ G, I write Gh = (N,A,Θ, h (T,G) , κu, u) for the

image of G in the universal type space under h. The first property is that the solution set

Σ (G) of G includes all of the solutions to the image Gh of G in universal type space:
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Assumption 1. For all G ∈ G, Σ (G) ⊇ Σh (G) ≡
{
σ ◦ h (·, G) |σ ∈ Σ

(
Gh
)}
.

This assumption corresponds to a well-known property of Bayesian Nash equilibrium: any

Bayesian Nash equilibrium in a terminal space, such as the universal type space, induces

a Bayesian Nash equilibrium in every game embedded in that space.5 Assumption 1 also

holds for other canonical solution concepts, such as rationalizability. In general, it holds for

any expressible solution concept (Battigalli et. al., 2011) if one requires the characterizing

assumptions to be expressible with respect to the relevant information (by designating hi as

the information mapping χi in Battigalli et. al. (2011), and obtaining Σ = Σh).6

On the other hand, since the set of Bayesian Nash equilibria is affected by the existence of

redundant types, Assumption 1 may not hold for equilibrium refinements based on external

criteria such as effi ciency and fairness. For example, in game G6 of Section 2, equilibrium

s6,2 Pareto-dominates s6,1, which corresponds to the unique equilibrium of Gh
6 . Hence, As-

sumption 1 does not hold for the Pareto-dominant Bayesian Nash equilibrium, which selects

s6,2 in G6 and s6,1 in Gh
6 . Incidentally, since s

6,2 is not invariant, this also shows that there

does not exist an invariant selection from the Pareto-dominant Bayesian Nash equilibrium

solution concept.

Note that the solutions of the form σ ◦ h (·, G) do not use any irrelevant information, in

the sense that each type ti plays σi (hi (ti, G)). If an invariant selection selects σ ∈ Σ
(
Gh
)

at Gh, it must also select σ ◦ h (·, G) at G. Hence, it is necessary for invariant selection

that some solution that does not use any irrelevant information is available at Σ (G), i.e.,

Σ (G) ∩ Σh (G) 6= ∅. Assumption 1 strengthens this necessary condition by requiring that
all such solutions are available at Σ (G). The necessary condition is not enough because

invariance imposes many similar conditions, such as ∩Ĝh=GhΣ(Ĝ) 6= ∅. Assumption 1 ensures
that all such conditions are satisfied.

The second property is a basic extension (and existence) property.

Assumption 2. For any T ∈ M and any invariant selection GT ′ 7→ σT
′
from Σ for games

GT ′ with T ′ ∈ 2T ∩ M\ {T}, there exists σ ∈ Σ
(
GT
)
such that for every t ∈ T ′ ⊂ T ,

σ (t) = σT
′
(t).

That is, given a finite type space, invariant solutions for its subspaces can be extended to

the type space. When there is only one proper subspace T
′
, this reduces to the well-known

extension property of Bayesian Nash equilibrium: any equilibrium of T ′ can be extended

5This is of course vacuously true when there is no equilibrium on the universal type space. Assumption

1 also vacuously holds when Σ
(
Gh
)
is empty.

6See also Heifetz and Samet (1998) for the concept of an expressible assumption.
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to T . Once again, canonical solution concepts, such as Bayesian Nash equilibrium and

rationalizability, have this property. It is necessary for invariant selection that some invariant

selections for the subspaces are extendable to T . Assumption 2 strengthens this necessary

condition by requiring that all such selections are extendable to T .

Within the context of Bayesian Nash equilibrium, Friedenberg and Meier (2007) provide a

thorough analysis of both properties above. They show that while the "pull-back" property

in Assumption 1 holds generally, the extension property in Assumption 2 may fail in infinite

type spaces (see Sections 5 and 6 for more on the literature).

Toward constructing an invariant selection, I rank the games in G as follows. Recall that
for any game G ∈ G with type space T , h (T,G) ∈M by (3.1). Hence, by Lemma 1, h (T,G)

has some finite rank k, i.e., h (T,G) ∈ Rk for some finite k ≥ 1. A game G is said to be of

rank k if h (T,G) is of rank k; G and Gh are of the same rank. Write Gk for the set of all
games G ∈ G of rank k, and write Ĝk = ∪l≤kGl. We are now ready to state and prove the
main result:

Proposition 2. Under Assumptions 1 and 2, there exists an h-invariant selection from Σ.

Proof. Using induction on the rank k, the proof constructs an invariant selection G 7→ σG

from Σ for G, rank by rank. Take k = 1. For every model T ∈ R1 (with rank k = 1), pick

an arbitrary σG
T ∈ Σ

(
GT
)
. Here, Σ

(
GT
)
6= ∅ by Assumption 2. For any other G ∈ G1,

pick σG = σG
h ◦ h. Note that, since σGh ∈ Σ

(
Gh
)
, by Assumption 1, σG ∈ Σ (G). Note also

that this constructs a selection G 7→ σG from Σ for G1. The selection is invariant because

the games in G1 have disjoint images under h by the last part of Lemma 1.

Now consider any k > 1, and assume that an invariant selection G 7→ σG from Σ for Ĝk−1

has been constructed. Consider any model T ∈ Rk (with rank k). By Part 3 of Lemma 1,

each proper subspace T ′ of T is of rank k−1 or lower. Hence, by the inductive hypothesis, an

invariant selection GT ′ 7→ σG
T ′
from Σ for the class of games GT ′ with T ′ ∈ 2T ∩M\ {T,∅}

has been constructed already. Then, by Assumption 2, there exists σG
T ∈ Σ

(
GT
)
such that

σG
T

(t) = σG
T ′

(t) for all t ∈ T ′ ∈ 2T ∩M\ {T,∅}. Pick σGT as the solution at GT , and

repeat this for every T ∈ Rk. For all other games G ∈ Gk with rank k, pick σG = σG
h ◦ h,

where σG ∈ Σ (G) by Assumption 1. (Note that Gh = GT for some T ∈ Rk.) This constructs

a selection from Σ for Ĝk.

In order to complete the inductive construction, check that the selection G 7→ σG from Σ

for Ĝk is indeed invariant. To this end, take any distinct (ti, G) and (t′i, G
′) with hi (ti, G) =

hi (t
′
i, G

′) where G = (N,A,Θ, T, κ, u) , G′ = (N,A,Θ, T ′, κ, u) ∈ Ĝk, ti ∈ Ti and t′i ∈ T ′i .

Note that, since the rank of Gh ≡ Gh(T,G) is at most k, by construction, σG
T ′′

i (t′′i ) = σG
h

i (t′′i )
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for any t′′i ∈ T ′′i with T ′′ ⊆ h (T,G). But, by definition, hi (ti, G) ∈ T hi(ti,G) and T hi(ti,G) ⊆
h (T,G), where T hi(ti,G) is the unique minimal model that contains hi (ti, G). Therefore,

(4.1) σG
T
hi(ti,G)

i (hi (ti, G)) = σG
h

i (hi (ti, G)) .

Likewise, σG
T
hi(t
′
i,G
′)

i (hi (t
′
i, G

′)) = σG
′h

i (hi (t
′
i, G

′)). Therefore,

σGi (ti) = σG
h

i (hi (ti, G))

= σG
T
hi(ti,G)

i (hi (ti, G))

= σG
T
hi(t
′
i,G
′)

i (hi (t
′
i, G

′))

= σG
′h

i (hi (t
′
i, G

′)) = σG
′

i (t′i) ,

where the first and the last equalities are by construction, the second equality is by (4.1),

and the third equality holds simply because hi (ti, G) = hi (t
′
i, G

′) and T hi(ti,G) is unique.

Since each game has a finite rank (i.e., G = ∪kGk), this construction picks a solution
σG ∈ Σ (G) for each G ∈ G at some round k. In order to check that the selection G 7→ σG

for G is invariant, note that for any G,G′ ∈ G, since G,G′ ∈ Ĝk for some k, σGi (ti) = σG
′

i (t′i)

whenever hi (ti, G) = hi (t
′
i, G

′), as established in the previous paragraph. �

Under Assumptions 1 and 2, Proposition 2 establishes that there exists an h-invariant

selection from Σ, and its proof explicitly constructs such a selection. As discussed above,

Assumptions 1 and 2 are strengthenings of basic necessary conditions for invariant selec-

tion. These are weak assumptions in that they hold for canonical solution concepts, such as

Bayesian Nash equilibrium and rationalizability.

The straightforwardness of the construction in the proof of Proposition 2 may be mislead-

ing, as it finesses the following inherent diffi culty. The same piece of relevant information

can be modeled by types in uncountably many games. In order to construct an invariant

selection, one then needs to select the solutions for uncountably many such games simulta-

neously and maintain invariance. In the construction such a diffi cult task is made possible

by the lattice structure established in the previous section, as follows.

Recall from the previous section that for any type ti in any game G ∈ G, there exists a
unique minimal type space T hi(ti,G) ∈ M in which the relevant information hi (ti, G) of ti
can be modeled. This type space has the lowest rank k

Thi(ti,G) among the type spaces that

can model hi (ti, G). The action of all types t′i from games G′ with hi (t′i, G
′) = hi (ti, G) is

selected at round k
Thi(ti,G) , which is the first time it is possible to express hi (ti, G), using a

solution for the minimal type space T hi(ti,G), which is the only model that contains hi (ti, G)

at that rank. Of course, many of these games have higher ranks than k
Thi(ti,G) , and the
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solutions to these games are selected in later rounds. In the construction, these selections

respect the specification of the action for hi (ti, G) that had been made at round k
Thi(ti,G) .

I will next explore the restrictions imposed by the invariance requirement. I will first

establish that any invariant selection in a subfamily can be extended to all games. Concep-

tually, this establishes that the invariance requirement on a larger family of games does not

impose any extra restriction on the subfamilies. Practically, it ensures that if one is only

interested in the behavior in a class of games (e.g. in the solution of a particular game), she

can focus on constructing an invariant selection for that class without worrying about the

invariance across all games.

Proposition 3. Under Assumptions 1 and 2, for any G ′ ⊆ G and any h-invariant selection
G 7→ σG from Σ for G ′, there exists an h-invariant selection G 7→ σ̂G from Σ for G such that
σ̂G = σG for every G ∈ G ′.

Proof. I will construct a refinement Σ′ of Σ that satisfies Assumptions 1 and 2 and such that

Σ′ (G) =
{
σG
}
for all G ∈ G ′. Then, by Proposition 2, there exists an invariant selection

G 7→ σ̂G from Σ′ for G as in the proposition. Since Σ′ is a refinement of Σ, G 7→ σ̂G is also

a selection from Σ.

To define Σ′, note that, since G 7→ σG is h-invariant, σG = σG
h ◦ h for some solution

σG
h ∈ Σ

(
Gh
)
for each G ∈ G ′. Write Ḡ ′ = G ′ ∪

{
Gh|G ∈ G ′

}
and set

Σ′ (G) =


{σG} if G ∈ Ḡ ′,
{σGT |T ′} if G = GT ′ , T ′ ⊂ T , GT ∈ Ḡ ′,
Σ (G) otherwise,

where σG
T |T ′ is the restriction of σG

T
to T ′. Since G 7→ σG is invariant, Σ′ is well-defined.

To check Assumption 1, note that the equality Σ′ (G) =
{
σ ◦ h (·, G) |σ ∈ Σ′

(
Gh
)}
holds

for G ∈ G ′ by construction and holds for G ∈
{
GT |T ∈M

}
by definition. For any G 6∈

G ′ ∪
{
GT |T ∈M

}
,

Σ′ (G) = Σ (G) ⊇
{
σ ◦ h (·, G) |σ ∈ Σ

(
Gh
)}
⊇
{
σ ◦ h (·, G) |σ ∈ Σ′

(
Gh
)}
,

where the first equality is by construction of Σ′, the next inclusion is by Assumption 1 for

Σ, and the last inclusion is due to the fact that Σ′ is a refinement of Σ.

To check Assumption 2, note first that when GT ∈ Ḡ ′, Assumption 2 holds for T and

Σ′ by construction. Now consider any T ∈ M with GT 6∈ Ḡ ′ and any invariant selection
GT ′ 7→ σT

′
from Σ′ for the class of games GT ′ with T ′ ∈ 2T ∩ M\ {T}. This is also an

invariant selection from Σ, and Σ
(
GT
)

= Σ′
(
GT
)
. Hence, by Assumption 2 for Σ, there



INVARIANCE 19

exists σ ∈ Σ
(
GT
)

= Σ′
(
GT
)
such that for every t ∈ T ′ ⊂ T , σ (t) = σT

′
(t). Therefore,

Assumption 2 holds for Σ′. �

I will next characterize the implications of invariance to the solutions of a given game.

As discussed before, invariance of a selection trivially implies that the solution is invariant,

i.e., the types with identical relevant information play the same action. The next corollary

establishes that this is the only implication of invariance of selections to the set of solutions

of a given game. In the following, given a game G∗, a solution σ ∈ Σ (G∗) is said to be

selected by G 7→ σG if σG
∗

= σ.

Corollary 1. Under Assumptions 1 and 2, for any G ∈ G and σ ∈ Σ (G), σ is selected by

an h-invariant selection from Σ if and only if σ is h-invariant.

Proof. Necessity immediately follows from the definition of invariance (applied to the types

in G). To prove suffi ciency, take G ′ = {G} in Proposition 3 and note that σ is an invariant
selection for {G}. �

Under Assumptions 1 and 2, the above results establish that there is always an invariant

selection and that invariance does not impose any additional restriction on the solutions for

the subfamilies of games. In particular, a solution to a game is selected by an invariant selec-

tion if and only if types with identical relevant information play the same action according to

the solution. Hence, if one is interested only in behavior in a game G, then she can analyze

G in isolation by focusing on h-invariant solutions to G.

5. Invariant Equilibrium Selection

In this section, under the usual regularity conditions, I show that Bayesian Nash equilib-

rium satisfies the suffi cient conditions for invariant selection, and hence the conclusions of

the previous results are true for Bayesian Nash equilibrium: there exists an invariant equi-

librium selection and an equilibrium is selected by an invariant equilibrium selection if and

only if the equilibrium is invariant.

Given any game G = (N,A, u,Θ, T, κ), by a Bayesian Nash equilibrium of G, I mean any

strategy profile σ∗ = (σ∗1, . . . , σ
∗
n) such that σ∗i (ti) ∈ BRti

(
σ∗−i|G

)
for each ti ∈ Ti, where

BRti

(
σ∗−i|G

)
denotes the set of all mixed best replies of type ti to σ∗−i in game G. I write

BNE (G) for the set of Bayesian Nash equilibria of G. By an equilibrium selection, I mean

a selection from BNE. I will consider the following regularity condition.

Assumption 3. The set Θ∗ is compact. For each i ∈ N , action set Ai is a compact metric
space, and each ui is continuous in a, measurable in θ, and does not depend on θNR.
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Note that Assumption 3 holds in most games considered in Game Theory and its ap-

plications, including finite games. It is made to ensure that Nash equilibrium exists when

types are considered as players. Under this weak assumption, the next result establishes

that Bayesian Nash equilibrium satisfies the suffi cient conditions for invariant selection.

Lemma 2. Under Assumption 3, Assumptions 1 and 2 hold for BNE.

Proof. The fact that Assumption 1 holds for BNE is well known (see Friedenberg and Meier

(2007) for a general proof). To see that Assumption 2 also holds for BNE, observe that any

invariant equilibrium selection GT ′ 7→ σT
′
for games GT ′ with T ′ ∈ 2T ∩M\ {T} induces a

Bayesian Nash equilibrium σ on the subspace T̂ ≡
∨
T ′∈2T∩M\{T} T

′ (see Lemma 3 below).

It is known that σ can be extended to T .7 �

Hence, the conclusions of the previous section apply to equilibrium selection:

Proposition 4. Under Assumption 3, the following are true.

(1) For any G ′ ⊆ G and any h-invariant equilibrium selection G 7→ σG for G ′, there
exists an h-invariant equilibrium selection G 7→ σ̂G for G such that σ̂G = σG for

every G ∈ G ′.
(2) For any G ∈ G and any σ ∈ BNE (G), σ is selected by an h-invariant equilibrium

selection if and only if σ is h-invariant.

(3) There exists an h-invariant equilibrium selection.

Proof. Note that Part 1 implies both Part 2 (for G ′ = {G}) and Part 3 (for G ′ = ∅). Part 1
immediately follows from Lemma 2 and Proposition 3. �

Under the usual regularity conditions, Proposition 4 establishes that any invariant equi-

librium selection for a subset of games can be extended to all games with finite type spaces.

In particular, there is an invariant equilibrium selection for all such games. It also implies

that, beyond the basic restriction on the actions of types with identical information, invari-

ance does not lead to any equilibrium refinement; it only restricts the way the solutions vary

across games.

7One extension result is known as the Basic Lemma in the robustness literature (Kajii and Morris, 1997)

and dates back to Monderer and Samet (1989). A version of the Basic Lemma states that if one embeds T̂

in T as a p-evident event, then any equilibrium σ on T̂ can be extended to T as (1− p)-equilibrium (when

the payoffs are restricted to be within [0, 1]); another version for complete information games states that

any p-dominant equilibrium of T̂ can be extended to T . Here, I take p = 1. Friedenberg and Meier (2007)

provides an extension result for p = 1 that holds under Assumption 3.
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6. Equilibrium on T u

There is a one-to-one correspondence between the invariant equilibrium selections and the

equilibria on T u, the universal space of finite types. In this section, using this correspondence

and the results of the previous section, I will show that there exists an equilibrium on T u,

and indeed, every equilibrium on its belief-closed subspaces can be extended to T u.

For any player i, by strategy, I mean any function σi : T ui → ∆ (Ai). By a Bayesian

Nash equilibrium on T u, I mean any strategy profile σ∗ = (σ∗1, . . . , σ
∗
n) such that σ∗i (ti) ∈

BRti

(
σ∗−i
)
for each ti ∈ T ui where BRti

(
σ∗−i
)
is the set of best replies for ti against σ∗−i.

The strategies and equilibria on subspaces are defined similarly. It is crucial here that I

do not impose any measurability conditions on the strategies. Since strategies condition on

players’types already, measurability is not needed for players’knowing their own actions. It

is not needed for expectations either because the types’beliefs have finite supports, yielding

well-defined beliefs on Θ∗ × A−i for each ti and each σ−i. Consequently, BRti

(
σ∗−i
)
is well-

defined.

There is a one-to-one correspondence between invariant selections and the strategy profiles

on T u. Any h-invariant selection G 7→ σG for G ′ yields a well-defined strategy profile σ∗ on
T G
′ ≡

∨
G=(N,A,Θ,T,κ,u)∈G′ h (T,G), defined by

(6.1) σ∗i (hi (ti, G)) = σGi (ti) (∀G = (N,A,Θ, T, κ, u) ∈ G ′, i ∈ N, ti ∈ Ti) .

Conversely, for any strategy profile σ∗ on T G
′
, (6.1) yields an h-invariant selection G 7→ σG

for G ′. The following lemma establishes a similar one-to-one correspondence between the
invariant equilibrium selections and the equilibria on the subspaces of T u.

Lemma 3. For any G ′ ⊆ G, an equilibrium selection G 7→ σG for G ′ is h-invariant if and
only if there exists a Bayesian Nash equilibrium σ∗ on T G

′
such that

(6.2) σ∗i (hi (ti, G)) = σGi (ti) (∀G = (N,A,Θ, T, κ, u) ∈ G ′, i ∈ N, ti ∈ Ti) .

That is, invariant selections on G ′ are precisely the selections obtained by restricting the
equilibria on T G

′
to its subspaces. Due to this correspondence, the previous results on in-

variant equilibrium selection immediately yield the following existence result for equilibrium

on the space of all finite types. (See the appendix for a detailed proof.)

Proposition 5. Under Assumption 3, the following are true.

(1) For any G ′ ⊆ G and any h-invariant equilibrium selection G 7→ σG for G ′, there
exists a Bayesian Nash equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) = σGi (ti) for

every G ∈ G ′ and every type ti in G.
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(2) For any M ′ ⊆ M and any Bayesian Nash equilibrium σ on TM
′
, there exists a

Bayesian Nash equilibrium σ∗ on T u such that σ∗ = σ on TM
′
.

(3) For any G ∈ G and any h-invariant σ ∈ BNE (G), there exists a Bayesian Nash

equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) = σGi (ti) for all ti in G.

(4) There exists a Bayesian Nash equilibrium on T u.

Part 2 states that any equilibrium defined on any subspace can be extended to T u, the

space of all finite types. By Lemma 3, this is equivalent to stating that for any invariant

selection for any family of games, there is an equilibrium on T u that specifies the actions

of the types in the family according to the selection– Part 1. This result is very useful

in equilibrium analysis on T u. In such an analysis, one often needs to specify a partial

strategy for a given set of types and have an equilibrium on T u in which the given types

play according to the specification. For a suitably selected set of types, it is relatively easy

to verify that the specified behavior of the given types is part of an equilibrium of the games

that the types come from and that these equilibria form an invariant selection. On the other

hand, specifying a nontrivial equilibrium on T u is a prohibitively diffi cult task because of the

complex interconnections between the types in T u and between their best responses. The

result stated in Parts 1 and 2 frees the researcher from the latter daunting task. Thanks

to this result, she can focus on specifying the equilibrium behavior on the relevant games

without worrying about whether the specified behavior is part of an equilibrium on T u. (See

Weinstein and Yildiz (2011) for such an application.)

As a special case (for G ′ = {G}), this result implies that any invariant equilibrium of any

game G can be extended to the space of all finite types, as in Part 3. That is, one can focus

on the equilibria on T u without ruling out any equilibria of games in which distinct types

have distinct relevant information. For example, in robustness analysis for equilibria of these

games, it suffi ces to analyze the sensitivity of equilibria on T u to perturbations in T u.

Finally, as another special case (for G ′ = ∅), the result establishes existence of an equi-
librium on the space of finite types. This fills an important gap in the literature, in which

very little is known on the existence of equilibrium on the universal type space and on its

prominent subspaces, such as T u. Simon (2003) shows existence of equilibrium on spaces

that can be partitioned into countable subspaces and in which the types have finite support.

Unfortunately, one cannot partition T u because given any two types in T u, there is another

type in T u that puts positive probabilities on both of the given types. (This property is

exhibited by most prominent subspaces of the universal type space, such as the spaces of

all finite types with common prior and all countable types, and one cannot partition them

either.)
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The crucial modeling assumption here is that I do not require that the strategies are mea-

surable, which is not necessary here. In a larger type space with types that have uncountable

supports, one needs to impose a measurability restriction on the strategies. In that case,

the above results may not be true. For example, in a particular class in which his existence

result applies, Simon (2003) shows that all equilibria must be in non-measurable strategies

(cf. Part 4). Under the measurability restriction, Friedenberg and Meier (2007) show that

some equilibria of a given game may not be extendable to a larger space even if there is an

equilibrium in the larger space (cf. Part 3).

Finally, note that if A is convex and ui is concave in own action, the above results also

apply to equilibria in pure strategies.

7. Extensions

The baseline model focuses on finite type spaces and assumes a specific class of hmappings.

This section presents extensions to countable type spaces and to more general h mappings.

7.1. Countable Type Spaces. The analysis of countable type spaces is similar to that of

finite type spaces. The only diffi culty is that a countable type space may have an infinite

rank; the results and the proofs extend to the case of countable type spaces with finite rank

verbatim. With type spaces of infinite rank, one needs to consider countable ordinals and

use transfinite induction for the construction, but the results are the same.

Let G̃ be the set of games with countable type spaces, T̃ u be the space of countable type
profiles h (t, G) with G ∈ G̃, and M̃ be the set of countable models within T̃ u; M̃ consists of

the images of games G̃ ∈ G̃ along with the empty set. Extend Assumptions 1 and 2 to G̃, by
replacing (G, T u,M) with

(
G̃, T̃ u, M̃

)
. One can use the existing analysis to show that M̃ is

a lattice under inclusion and complete under all intersections (cf. Proposition 1). One can

then extend the existing results to countable type spaces as follows:

Proposition 6. Under the extensions of Assumptions 1 and 2 to G̃, for any G̃ ′ ⊆ G̃ and any
h-invariant selection G 7→ σG from Σ for G̃ ′, there exists an h-invariant selection G 7→ σ̂G

from Σ for G̃ such that σ̂G = σG for every G ∈ G̃ ′. Under Assumption 3 (alone), the following
are also true.

(1) For any G̃ ′ ⊆ G̃ and any h-invariant equilibrium selection G 7→ σG for G̃ ′, there
exists a Bayesian Nash equilibrium σ∗ on T̃ u such that σ∗i (hi (ti, G)) = σGi (ti) for

every G ∈ G̃ ′ and every type ti in G̃.
(2) For any M̃ ′ ⊆ M̃ and any Bayesian Nash equilibrium σ on T M̃

′
, there exists a

Bayesian Nash equilibrium σ∗ on T̃ u such that σ∗ = σ on T M̃
′
.
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(3) For any G ∈ G̃ and any h-invariant σ ∈ BNE (G), there exists a Bayesian Nash

equilibrium σ∗ on T̃ u such that σ∗i (hi (ti, G)) = σGi (ti) for all ti in G.

(4) There exists a Bayesian Nash equilibrium on T̃ u.

7.2. General Notions of Relevance. The baseline model assumes that h is the ΘR-based

hierarchy of beliefs for some ΘR with Θ = ΘR×ΘNR. Such a functional form is not needed.

Indeed, the working paper shows that all of the results here are true so long as h embeds all

games to a general type space (Θ∗, T ∗, κ∗) while preserving beliefs. For example, h can be

an X-based hierarchy of beliefs for any set X.8 In particular, h can be taken as the hierar-

chy of beliefs obtained by Ely and Peski (2006) and Sadzik (2008) for interim independent

rationalizability and Bayesian Nash equilibrium, respectively. For another example, h can

be the identity mapping.

Some important notions of relevant information do not lead to a belief-preserving embed-

ding, however. For example, a prominent notion of relevant information is the first k orders

of beliefs for some finite k, denoted by ĥk hereafter.9 One cannot have a belief function for

ĥk (T,G) that preserves the beliefs in the original type spaces. Indeed, since ĥki (ti, G) is the

kth-order belief of type ti, the belief of type ĥki (ti, G) on
(
θ, ĥk−i (t−i, G)

)
is the (k + 1)st-

order belief of type ti, which can vary as one varies (ti, G) while fixing the kth-order belief

ĥki (ti, G). Note that one can define a type space for each type set ĥk (T,G) by assigning

some beliefs, but one cannot preserve the beliefs as in (2.2).

Without a belief-preserving embedding, one cannot obtain the results regarding Nash

equilibrium. Nevertheless, one can still construct an invariant selection for other solution

concepts as follows. Let h map each (t, G) to some set T ∗ = T ∗1 × · · · × T ∗1 .10 Let also M
be the set of all images h (T,G) with G ∈ G in T ∗ along with the empty set. Assume that
a solution concept Σ is defined on M as well as G, and in Assumptions 1 and 2 replace Gh

with h (T,G) and GT with T .

Proposition 7. There exists an h-invariant selection from Σ whenever (i) M is a lattice

that is closed under arbitrary intersections, and (ii) Assumptions 1 and 2 hold.

8Afterall, one can transform a Θ-based type space to a X-based type space, by computing the interim

beliefs about X × T−i for each type ti. For the results about the Bayesian Nash equilibrium, one needs to
include everything that is necessarly for computing the best responses in X.

9See for example, Rubinstein (1989), Weinstein and Yildiz (2007), Strzalecki (2014), Kets (2012). Cian-

ciaruso and Germano (2011) provide a thorogh analysis of quotient type spaces for a fixed k.
10Canonically, one can specify T ∗ by listing all true propositions from a set P of relevant propositions as

in Aumann (1999). The key distinction is that P is restricted to a subset of propositions that are deemed

relevant. For example, P consists of the propositions that does not refer to θNR in the baseline model, while

P consists of the propositions that does not refer to higher-order beliefs in ĥk.
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Proof. The proof is identical to the proof of Proposition 2. �

For example, consider ĥk. Assumption (i) holds because M is obtained by projecting the

models in the universal type space to the space of lower-order beliefs. Although rational-

izability and Bayesian Nash equilibrium are not well-defined on M (Weinstein and Yildiz

(2007)), the kth-order iterated dominance is well-defined on M and satisfies Assumptions 1

and 2 (Dekel, Fudenberg, and Morris (2007)). Level-k thinking is also well-defined on M .

8. Concluding Remarks

A piece of relevant information can be modeled through multiple types coming from various

Bayesian games. In order to avoid solutions that depend on the choice of modeling the

information, one may want to require that all of these types take the same action according to

the solutions to these games. That is, the solutions to the Bayesian games form an invariant

selection. In this paper, I construct an invariant selection for the space of all games with finite

type spaces from arbitrary solution concepts that satisfy two basic conditions. I further show

that any invariant selection within a subfamily can be extended to the family of all games

with finite type spaces. Constructing such a selection is a diffi cult task because one needs

to equalize the actions of uncountably many types from various games with complicated

interconnections that are diffi cult to foresee. In order to construct such a selection, I first

establish an interesting lattice structure for the finite type spaces within the universal type

space, a structure that is clearly useful beyond the scope of this paper. It is this structure

that enables me to construct an invariant selection in a straightforward manner without

making any significant assumptions.

There is a one-to-one correspondence between the invariant equilibrium selections and the

equilibria on the space of all finite types. Using this correspondence, I show that there exists

an equilibrium in that space, filling an important gap in the literature, and show that indeed

any equilibrium in any type space can be extended to entire space, which is a quite useful

result in equilibrium analysis on the space of all finite types.

Appendix A. Omitted Proofs

Proof of Lemma 1. Part 1 immediately follows from the definition of Rk, and Part 3 immediately

follows from Parts 1 and 2.

(Part 2) Take any T ∈M and integer K such that T 6∈ Rk for any k ≤ K. Then, by Part 1, there
exist models T 1, . . . , TK ∈ M\ {∅} with T 1 $ · · · $ TK $ T . In particular, |T | > K. Therefore,

for any T ∈M , T ∈ RkT for some kT ≤ |T |.
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(Part 4) By Proposition 1, T̄ ∈ M . Hence, by Part 2, it has a rank kT̄ . For any T ∈ M ′, since
T̄ ⊆ T , by Part 3, kT̄ ≤ kT , with strict inequality whenever T 6= T̄ . �

Proof of Lemma 3. A strategy profile σ∗ on T G
′
is well-defined by (6.2) iff the family σG is h-

invariant. Moreover, one can show that, for anyG ∈ G′ and ti inG, BRti
(
σG−i|G

)
= BRhi(ti,G)

(
σ∗−i
)
.

Hence, by (6.2), σGi (ti) ∈ BRti
(
σG−i
)
iff σ∗i (hi (ti, G)) ∈ BRhi(ti,G)

(
σ∗−i
)
. Therefore, σG is an equi-

librium of G for every G ∈ G′ iff σ∗ is a Bayesian Nash equilibrium on T G
′
. �

Proof of Proposition 5. (Part 1) By Proposition 4, there exists an h-invariant equilibrium selection

G 7→ σ̂G for G such that σ̂G = σG for every G ∈ G′. Then, by Lemma 3, there exists a Bayesian
Nash equilibrium σ∗ on T u such that σ∗i (hi (ti, G)) = σ̂Gi (ti) for every G ∈ G and every type ti in
G. When G ∈ G′, σ∗i (hi (ti, G)) = σ̂Gi (ti) = σGi (ti).

(Part 2) Take G′ =
{
GT |T ∈M ′

}
. For each T ∈ M ′, set σG

T
= σ|T ∈ BNE

(
GT
)
, where

σ|T is the restriction of σ to T . Then, by Lemma 3, GT 7→ σG
T
is an h-invariant equilibrium

selection for G′. Hence, by Part 1, there exists a Bayesian Nash equilibrium σ∗ on T u such that

σ∗i (ti) = σ∗i
(
hi
(
ti, G

T
))

= σG
T

i (ti) = σi (ti) for all ti ∈ Ti and T ∈M , where hi
(
ti, G

T
)

= ti.

Finally, Part 1 implies both Part 3 (for G′ = {G}) and Part 4 (for G′ = ∅). �

Proof of Proposition 6. Since M̃ is a meet-complete lattice, one can rank countable models T ∈ M̃
using countable ordinals as follows. For any T ∈ M̃ , say that T is of finite rank k if there exists
the largest integer k for which there exist models T 0, . . . , T k ∈ M̃ with ∅ = T 0 $ · · · $ T k = T (as

in the baseline model). If the length of such chains are unbounded, then T is of infinite rank. If all

proper subspaces of T are of finite rank but there does not exist a bound k as above, then T is of

rank ω. Define orders ω + 1, ω + 2,. . . , 2ω, 2ω + 1, . . . similarly: T ∈ M̃ is of rank mω + k if its

highest ranked proper subspace is of rank mω+ k− 1; it is of rank (m+ 1)ω if it has subspaces of

rank mω+ k for an unbounded set of integers k and all of its proper subspaces are of rank m′ω+ k

for some m′ ≤ m and k.

The construction of an invariant selection is as in the baseline model. Constructing a solution to

the type spaces of rank mω+k mimics the construction for finite-ranked type spaces. Construction

of solutions to the type spaces of rank mω is as follows. Suppose that there exists an invariant

selection σ for the class Gm of all games with rank m′ω + k for all m′ < m. Now, for each

T ∈ T̃ u, by Assumption 2, there exists σG
T ∈ Σ

(
GT
)
such that σG

T
(t) = σG

T ′
(t) for all t ∈

T ′ ∈ 2T ∩M\ {T,∅}, where T ′ is necessarily of rank m′ω + k for some m′ < m and k and hence

GT
′ ∈ Gm. Pick σGT as the solution at GT . As in the proof for finite ranks, since the intersections

of disjoint type spaces are always of a lower rank, the solutions constructed this way yields an

invariant selection for games with rank up to mω. �
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