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Abstract

Social scientists are commonly advised to deduce and test all observable implications
of their theories. We describe a principled framework for testing such “elaborate”
theories: nonparametric combination. NPC assesses the joint probability of observing
the theoretically predicted pattern of results under the sharp null of no effects. NPC
accounts for the dependence among the component tests without relying on modeling
assumptions or asymptotic approximations. Multiple-testing corrections are also eas-
ily implemented with NPC. As we demonstrate with four applications, NPC leverages
theoretical knowledge into greater statistical power, which is particularly valuable for
studies with strong research designs but small sample sizes. We implement these meth-
ods in a new R package, NPC.

Keywords: permutation test, randomization test, global hypothesis, multiple test-
ing, causal inference, statistical power



1 Introduction

“Make your theories elaborate.”

R. A. Fisher

Social scientists are often advised to test all the observable implications of a given theory,

on the logic that doing so provides more opportunities to distinguish rival theories (Cochran

1965; King, Keohane, and Verba 1994; Shadish, Cook, and Campbell 2002; Rosenbaum

2010). This advice is particularly relevant to studies where the research design provides

a strong basis for causal inference, but a small sample size limits statistical power. These

conditions are especially common in field experiments, where the expense of adding exper-

imental units is often prohibitive, and in natural experiments, where a naturally occurring

“as if random” treatment process may affect only a few units. Intuition suggests that re-

searchers should be able to leverage a detailed theory into stronger inferences, but social-

science methodologists have provided little statistical guidance on how exactly to do so. As a

result, applied researchers have tended either to combine multiple test informally—which can

be highly misleading if the tests are correlated, as they usually are—or, more likely, to leave

otherwise excellent studies in a file drawer for want of “statistical significance” (Rosenthal

1979).

In this paper, we propose a remedy to this methodological gap based on nonparametric

combination (NPC), a simple and generally applicable framework for drawing an overall

inference from multiple hypothesis tests.1 NPC combines the results of multiple hypoth-

esis tests into a single global p-value that takes into account the dependence among the

component tests. Being based on permutation inference, NPC does not require modeling

assumptions or asymptotic justifications, only that observations be exchangeable (e.g., ran-

domly assigned) under the global null hypothesis that treatment has no effect. Because the

1. Nonparametric combination was first developed by the statistician Fortunato Pesarin (2001). For recent
theoretical and applied work on NPC, see Salmaso and Solari (2005), Pesarin and Salmaso (2010, 2012),
Brombin, Midena, and Salmaso (2013), Corain and Salmaso (2015), Pesarin et al. (2015), and Salmaso
(2015).
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relationships among dependent variables need not be modeled, the component tests may

be based on different statistical families and thus easily customized to fit different aspects

of a theory. Finally, NPC provides a natural framework for implementing multiple-testing

corrections, allowing researchers to assess the component hypotheses along with the global

one while controlling the familywise error rate (FWER; Finos, Pesarin, and Salmaso 2003).

This paper makes several contributions. Conceptually, it clarifies the problem of testing a

global hypothesis derived from an elaborate theory and its relationship to the so-called “mul-

tiple testing problem.” Methodologically, it shows how NPC, in conjunction with other recent

advances in nonparametric statistics, provides a broadly applicable and highly customizable

framework for testing global hypotheses. It also sheds light on the often-misunderstood issue

of interpreting tests of the “sharp” null hypothesis of no effects. Practically, it demonstrates

the advantages of NPC and makes them accessible to applied researchers via the R package

NPC (Caughey 2015).

We begin with a discussion of the value of elaborate theories and a survey of existing

practice. Next, we provide a general review of permutation inference and then a detailed

description of the theory and implementation of NPC. The penultimate section applies NPC

to four examples drawn from political science: a randomized experiment, two matched ob-

servational studies, and a regression-discontinuity design. The final section concludes.

2 Testing Elaborate Theories: Theory and Practice

Theory testing is one of the central concerns of science (Popper 1962). Unlike theories in the

physical sciences, however, social-scientific theories typically do not make point predictions

but rather directional ones, which are rarely precise enough to rule out other plausible

theories (Meehl 1967). Methodologists have thus long advised social scientists to “make

[their] theories elaborate”—that is, to “search for additional implications of a hypothesis” so

as to test for a precise pattern of theoretical predictions across multiple variables (Cochran
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1965, 252; King, Keohane, and Verba 1994, 29). “The more specific, the more numerous,

and the more varied are the causal implications of a treatment,” the more credible are

claims to causal inference, especially in observational studies (Shadish, Cook, and Campbell

2002, 485–6; see also Rosenbaum 1994). In different fields, this advice goes by the name of

“pattern matching” (Campbell 1966, 1975; Trochim 1985), “process tracing” (Gerring 2004;

George and Bennett 2005), and testing “coherent predictions” (Rosenbaum 1997). Elaborate

theories take many forms, but in this paper we focus on those that predict “many effects of

the same cause” (King, Keohane, and Verba 1994, 223–4), which include effects on multiple

outcomes, on alternative measures of the same concept, on outcomes measured at different

points in time, and on mediators of the main outcome of interest.

In the abstract, the analytical leverage derived from testing elaborate theories is clear,

but complications quickly arise when it comes to actually testing multiple predictions. Ob-

viously, the evidence for an elaborate theory is strongest when all of its implications are

confirmed. Unless statistical power is close to 1, however, it is unlikely that every false null

hypothesis will be rejected. If βj is the false-negative rate for test j ∈ {1, . . . , J} under a

given alternative, the probability of rejecting all of J independent tests is ΠJ
j (1− βj), which

approaches 0 as J increases. Because each additional test increases the probability that one

of the tests will fail to reject, such a strict standard has the perverse effect of punishing theo-

ries that are more explicit about all of their implications, relative to less explicit ones. When

power is particularly low, all predicted effects may be correctly signed but statistically in-

significant. Under conventional standards, the null hypotheses would remain standing, even

though common sense suggests that such a consistent pattern of results matching a theory’s

predictions should provide some corroboration for that theory (Westfall 2005).

The foregoing considerations suggest that, especially in low-power situations, we may

wish to combine the evidence from multiple tests into an overall conclusion about the theory

that generated them. In doing so, however, it is crucial to take into account the dependence

among the respective tests (Salmaso 2015). Two closely related variables provide little
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information beyond either alone; if one variable happens by chance to be higher in the

treatment group, the other is likely to be so as well. By contrast, joint tests of predictions

that run “against the grain” of the covariance in the data can be much more powerful than

either alone because observing both predicted effects is much less likely to occur by chance.

In fact, it is possible for the total evidence for the theory to be quite strong even if neither

hypothesis test on its own is statistically significant.

There is thus broad agreement that scholars should elaborate and test all the observ-

able implications of their theories because multiple predictions offer more opportunities to

discriminate between theories. To determine the frequency with which social scientists ac-

tually test elaborate theories, we surveyed quantitative articles published in the leading

political science journals. For each article, we coded the number of distinct hypotheses,

all derived from the same theory, that involved the same independent variable in the same

sample of data. We found that a substantial minority of articles (nearly 40%) tested at

least two predictions. Further, testing multiple predictions has become more prevalent over

time: the average number of hypotheses increased from 1.4 predictions in 1960–1989 to 2.2

in 1990–2010. We also found, however, that political scientists—and presumably other so-

cial scientists as well—almost never combine multiple inferences using a formal procedure.

Rather, their overwhelmingly dominant approach is to first evaluate each hypothesis sepa-

rately and then combine them using an informal evaluation of the overall evidence for the

theory. Because the strength of the joint evidence hinges on the degree of dependence among

the tests, informal combination can be highly misleading.

Drawing a global conclusion regarding a theory requires combining multiple pieces of evi-

dence into a single summary measure of support for the theory. This can be done formally in

many ways, including creating an index of multiple measures, modeling dependent variables

as indicators of a single latent construct, or conducting an F -test or other omnibus test.

But the most versatile and general metric on which to combine multiple hypotheses is the

p-values of the corresponding tests.
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Social-science methodologists have rightly warned against overreliance on significance

testing (for an overview, see Harlow, Mulaik, and Steiger 1997). We agree with such critiques

insofar as they advocate examination of other statistical quantities alongside p-values, such

as point and interval estimates. But we believe that p-values will continue to have a central

place in statistical analyses because they summarize an important quantity: how strongly

the data deviate from the null in the direction of the alternative hypothesis (Lehmann and

Romano 2005, 63–4). Given that social-scientific theories rarely yield precise point predic-

tions, directional tests are often the most appropriate way for social scientists to corroborate

theories.

An important advantage of combining inferences on the metric of the p-values is that it

allows analysts to tailor a test to each component hypothesis—Fisher’s exact test for one,

Wilcoxon’s rank-sum for another—without having to worry about standardizing variables,

creating comparable test statistics, or stretching a method to accommodate outcomes with

different levels of measurement. In contrast to many off-the-shelf methods, several of which

cannot even accommodate one-sided predictions, combining p-values provides a straightfor-

ward way to optimize a global test for either a very general or a highly specific pattern of

anticipated results (cf. Rosenthal and Rosnow 1985). Within this range, specificity leads to

tests that discriminate more clearly among rival theories and to greater statistical power.

It is possible to combine p-values parametrically, typically under the assumption that the

component tests are independent, but nonparametric combination provides a much more

general approach that is valid under arbitrary dependence structures.

3 Nonparametric Combination

NPC involves three basic steps:

1. Determine which observations are exchangeable under the null hypothesis.

2. Test each theoretical implication using a test statistic that is sensitive to the corre-
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sponding empirical prediction.

3. Combine the p-values of the component tests into a single global p-value.

Each of these steps corresponds to an analytic decision that applied researchers can generally

make on the basis of their theoretical and empirical knowledge. Thus, although the theory

and implementation of NPC (detailed below) are quite technical, the method makes realistic

demands of the typical user.

Determining which responses are exchangeable requires knowledge of the treatment as-

signment mechanism. Typically, this means identifying sets of units within which treatment

was (as-if) randomly assigned with equal probability. To be sure, exchangeability is typi-

cally a strong assumption outside of experimental settings (see, e.g., Sekhon 2009), but most

other methods for estimating causal effects and hypothesis tests rely on similarly strong as-

sumptions of unconfounded, ignorable, or exogenous treatment assignment (Freedman 2010,

§3.6; Imbens and Rubin 2015, §3). As long as exchangeability is correctly determined, the

resulting permutation test will have correct size under the null hypothesis. No additional

assumptions are required.

While only Step 1 is required for valid hypothesis test, Step 2 affects the statistical power

of the test—its probability of rejecting false nulls. Unlike its size, the power of a permutation

test depends on the distribution of the data under the alternative, so the test statistic in

Step 2 should be tailored to the specific predictions of the theory in question. Step 3, the

choice of function to combine the p-values, also affects the power (but not the size) of the

joint test. Section 3.2 discusses which combining functions are most appropriate for NPC.

3.1 Permutation Tests

Since NPC is implemented within a permutation framework, we first review the theory

and practice of permutation tests before describing NPC itself. Historically, permutation

methods have been little-used in political science compared to parametric methods. However,
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as recent articles such as Keele, McConnaughy, and White (2012), Bowers, Fredrickson,

and Panagopoulos (2013), and Glynn and Ichino (2014) indicate, the discipline’s interest

in permutation inference has been growing, due in part to the increased availability of the

computer resources needed to enumerate permutation distributions and in part to increased

interest in experiments.

In permutation inference, the decision of whether to reject a null hypothesis is based on

a comparison between the observed value of a test statistic (e.g., the difference of means)

and its permutation distribution under the null. In some cases, the null distribution can

be calculated analytically, but in general it can be simulated with arbitrary accuracy by

shuffling the group labels (e.g., “treated” and “control”) of units many times and calculat-

ing the value of the test statistic in each permutation. Permutations are only permitted

among units that are exchangeable under the null hypothesis (see below for a discussion of

exchangeability). Assuming without loss of generality that test statistics are expected to be

large in the alternative, the permutation p-value is the probability across permutations of

observing a value of the test statistic at least as extreme as the one actually observed. A

distinguishing characteristic of permutation tests is that they are exact—that is, their prob-

ability of rejecting a true null hypothesis is no greater than the p-value indicates—regardless

of the probability distribution that generated the data.

3.1.1 The Assumption of Exchangeability

As noted above, the key assumption of permutation inference is that the responses of units

in different groups are exchangeable under the null hypothesis. A set of observations is said

to be exchangeable if their joint distribution is invariant under permutation of the order of

the observations.2 Independent and identical distribution is a sufficient but not a necessary

condition for exchangeability (Greenland and Draper 2011).

In the context of permutation tests, exchangeability is typically justified under either a

2. We will sometimes say that certain units are exchangeable, by which we mean that the random variables
associated with these units, such as their responses, are exchangeable.
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“population model” or a “randomization model” (Lehmann 2006, 64–5). Under the pop-

ulation model, observations are considered random samples from one or more populations.

Under the null hypothesis that the (unknown) population distributions are equal, observa-

tions in different groups are exchangeable, and thus permutation tests may be used to test

null hypotheses of distributional equality between groups (Pitman 1937).

Permutation tests are more commonly motivated under a randomization model, in which

exchangeability is justified by random assignment of treatment rather than random sampling

(Fisher 1935; Rosenbaum 2002, 27–40).3 The randomization model is most obviously appli-

cable to randomized controlled experiments (see Keele, McConnaughy, and White 2012). But

it also encompasses “natural experiments” in which the randomization is not controlled by

the researcher, as well as observational studies in which treatment can be considered “as if”

randomly assigned (e.g., Ho and Imai 2006; see also Dunning 2012). In many observational

studies, stratification or matching can also be used to create subsets of exchangeable observa-

tions. To respect the restricted nature of the putative randomization, permutation inference

for these studies, as well as for their experimental counterparts (e.g., block-randomized ex-

periments), must be based on permutations within exchangeable subsets (on matching and

permutation inference, see Rosenbaum 2002).

3.1.2 Strong Null Hypotheses

Under both the population model and the randomization model, permutation tests are typ-

ically conducted under the null hypothesis that the probability distributions of (possibly

multivariate) responses Y are identical across the G groups being compared:

H0 : Yg
d
=Yh, ∀ g, h ∈ {1, . . . , G}. (1)

3. The association between permutation tests and randomization is so close that they are often referred
to as randomization tests. We prefer the term permutation tests because random treatment assignment is
not a necessary condition for the use of permutation tests.
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In the context of causal inference, where groups correspond to G = 2 levels of treatment,

Equation 1 is often referred to as Fisher’s “sharp” null hypothesis of no effects. In the

notation of potential outcomes (Rubin 1974), where Yi(0) and Yi(1) respectively indicate

unit i’s hypothetical responses under control and treatment, the sharp null is written as

H0 : Yi(1) = Yi(0), ∀ i ∈ {1, . . . , N}. (2)

We use the term strong null to refer to null hypotheses under which the responses Y

can be transformed so as to satisfy Equation 1. Any null hypothesis that meets this re-

quirement can be tested exactly using permutation inference. A simple example is the null

of a constant additive treatment effect, which can be transformed into the sharp null by

subtracting the stipulated effect from the responses of the treated units. More theoretically

sophisticated null hypotheses, including spillover effects, multiplicative effects, and a variety

of non-constant effect models, can be transformed into Equation 1 via similar procedures

(Bowers, Fredrickson, and Panagopoulos 2013; Rosenbaum 2003; Rosenbaum 2010, 40–56).

By contrast, most non-permutation tests are conducted under a so-called weak null hy-

pothesis. A weak null states that some aspect of the probability distributions that generated

the data is equal across treatment groups (e.g., E[Y1] = E[Y2]), whereas a strong null states

that the distributions of the possibly transformed responses are equal in all respects (Y1
d
=Y2).

Like null hypothesis testing generally, the strong and weak nulls have been the subject of

considerable debate. To some, strong nulls are superior because they yield exact tests with-

out relying on often-dubious parametric assumptions or large-sample approximations (e.g.,

Fisher 1935; Rosenbaum 2010). Others find strong nulls so restrictive as to be trivially false

and thus almost useless for scientific inference (Neyman 1935; Gelman 2013).

Our position accords most closely with that of Imbens and Rubin (2015, ch. 5–6), who

argue that the strong and weak nulls have different strengths and serve different inferential

purposes, and that it often makes sense to use both frameworks to analyze the same study.
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The weak null is most appropriate when the relevant scientific question is best answered by

estimating a specific parameter, such as the population average treatment effect, and when

parametric assumptions or asymptotic approximations are tolerably accurate. By contrast,

tests of the strong null are exact and “distribution-free,” but these virtues come at the cost of

a more restrictive null hypothesis, the rejection of which is often but not always scientifically

interesting.

3.1.3 Test Statistics, Alternative Hypotheses, and Statistical Power

The substantive meaning of rejecting a strong null hypothesis hinges on the test statistic used

in the corresponding permutation test. Some test statistics, such as the Kolmogorov-Smirnov

statistic, are sensitive to generic distributional differences, and thus rejecting a strong null

with this statistic says little about how responses differ across groups. By contrast, the

difference-of-means statistic is most sensitive to differences in location (i.e., the center of the

distribution). Difference-of-means permutation tests also have the useful property that if the

strong null Yi(1)− Yi(0) = δ ∀i can be rejected, so can any null under which Yi(1)− Yi(0) ≤

δ ∀i (Caughey, Dafoe, and Miratix 2015).4 In other words, if the observed data provide clear

evidence against a given strong null, then they provide even clearer evidence against null

hypotheses farther from the alternative hypothesis. This property is particularly useful for

testing competing theories that predict effects in opposite directions.

A limitation of the difference-of-means permutation test is that it may reject the strong

null even if the weak (average) null is true—for example, if the variances differ (Romano

1990). This limitation can be mitigated, however, by using Student’s t as the permutation

test statistic, which provides an asymptotically valid test of the weak null as well as an exact

test of the sharp null. The same property holds for a wide variety of other test statistics (e.g.,

4. This property, which is shared by the rank-sum test and a large class of other test statistics, follows
from the fact that the rejection probability of the difference-of-means permutation test is non-decreasing in
the unit-level treatment effects. Thus, the rejection probability under the sharp null (i.e., the size of the
test, α) is always at least as great as under any null that stipulates non-positive effects (or non-negative, if
negative effects are expected).
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the difference of medians) once they have been “studentized” using a consistent estimate of

their standard error (Janssen 1997; Chung and Romano 2013). Permutation tests with

studentized test statistics are thus especially appealing because they can be simultaneously

interpreted as approximations of the corresponding parametric test. On the other hand, since

studentized statistics are not weakly increasing in δi = Yi(1)−Yi(0), studentized permutation

tests (like parametric tests) cannot be interpreted as tests of every null for which δi ≤ δ ∀i.

In short, while any permutation test provides an exact test of the sharp null, the choice

of test statistic is still consequential, substantively as well as statistically. A good rule of

thumb is to choose a statistic that is highly sensitive to (i.e., powerful under) the expected

alternative while remaining robust to deviations from the hypothesized model (Lehmann

2009). The difference of means is a good default choice that is optimal for light-tailed

symmetric distributions, but rank tests such as the Wilcoxon rank-sum can be much more

powerful when the responses contain outliers. It may also be wise to select a specialized test

statistic for such problems as skewed distributions, covariate-adjusted responses, censored

data, large-but-rare effects, and stratified and/or clustered designs (Hogg, Fisher, and Ran-

dles 1975; Hothorn et al. 2006; Hansen and Bowers 2008; Small, Ten Have, and Rosenbaum

2008; Rosenbaum 2010). Moreover, if it is a priority to reject only when the mean (or other

parameter) differs across groups, use a studentized statistic.

3.2 NPC in Theory

The basic insight underlying NPC is that since p-values are functions of the observed data,

any scalar function of multiple p-values is a valid test statistic (compare Imbens and Rubin

2015, 70). The joint evidence provided by multiple tests can thus be evaluated by comparing

the observed value of the combined statistic with its distribution under the null hypothesis.

Combining p-values can be done analytically when tests are independent, but determining

the joint distribution of dependent p-values generally requires resampling methods, such as

permutation tests (Westfall 2005).
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Nonparametric combination is a general permutation-based framework for decomposing

a complex hypothesis, testing its constituent sub-hypotheses, and combining the resulting p-

values in a way that accounts for the dependence among the tests. In the NPC framework, the

global null hypothesis consists of the intersection of J > 1 partial sub-hypotheses:
⋂J
j=1H0j,

where each H0j is a strong null amenable to permutation inference. In essence, the global null

states that all of its constituent sub-hypotheses are true. The global alternative hypothesis

is the union of J sub-alternatives,
⋃J
j=1H1j, so the global null is false if any sub-alternative

is true. As long as every partial test is exact, the global test will be exact as well.

3.2.1 Combining Functions

Although any NPC global test will be exact, its power will depend both on the power of

the partial tests and on the function used to combine their p-values. As a default choice

of combining function, we recommend the product function (also known as Fisher’s chi-

square combination). The product function is appealing because it is relatively powerful

when all sub-alternatives are true, but it does not over-punish weak evidence for single sub-

alternative. To limit the risk of “p-hacking,” we recommend that if researchers use a different

combining function, they offer a principled justification for doing so and also report results

using the product function. Below, we discuss alternative combining functions and describe

their relative advantages and disadvantages.

One desirable property in a combining function is that it leads to a global test that is

consistent, which means that the probability of rejecting a false global null approaches 1 as

the sample size goes to infinity. The value of consistency is illustrated by the intuitively

appealing, but generally undesirable, combining function of the average of the p-values.

Because it is not consistent, the average combining function may not reject if one p-value is

above a certain threshold, regardless of how large the sample size is or how small the other p-

values are (Loughin 2004, 470). For example, in the case of two independent test, the average

will not reject at level α unless both p-values are less than
√

2α. This is because the average
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gives insufficient weight to partial tests that are extremely significant. For instance, the

average combining function treats the p-value pair p1 = (0.0000001, 0.3) as providing weaker

evidence against the global null than the pair p2 = (0.1, 0.2), which seems inappropriate

given that under the null a p-value smaller than 0.0000001 is one-millionth as likely as one

smaller than 0.1.

Pesarin and Salmaso (2010, 128–35) identify a class of consistent combining functions (i.e.,

functions that lead to consistent global tests).5 The first function we consider is Liptak’s

normal combining function,

ψΦ = −
J∑
j=1

Φ−1(pj), (3)

which is equivalent to converting p-values to z-scores and taking their average. Among the

consistent functions that we consider, the normal has the greatest relative power when all

sub-alternatives are true. Conversely, the normal combination is relatively unlikely to reject

when the evidence is imbalanced across partial tests. Consider, for example, the normal

combination of three independent tests (see Westfall 2005). If all three p-values are 0.10—

that is, if there is moderate evidence for all three alternative hypotheses—the global p-value

will be 0.01. If, by contrast, one of the p-values is 0.10 but two are 0.50 (the expected value

under the null hypothesis), the p-value of the global test will be 0.23. In order to reject the

global null at 0.01, the evidence for the first hypothesis would have to be extremely powerful,

with a p-value less than 0.00003. Due to this behavior, the normal combining function should

be used only when researchers are confident that their theory strongly implies every one of

the alternative hypotheses being tested.

A second consistent function is the minimum combining function,

ψmin = −min1≤j≤J(pj), (4)

5. We have modified the notation and names of the following combining functions, but our modified
versions are permutationally equivalent to the original sources. To avoid infinite combined statistics, we
recommend that p-values be mapped to the open (0, 1) interval using the transformation p(0,1) = (p +
(2B)−1)/(1 +B−1), where B is the number of samples from the permutation space.
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Figure 1: Comparison of the rejection regions (lower-left) of the minimum, product, and
normal combining functions in the special case of two independent tests. Any pair of p-
values left of and below a given curve will be rejected at α = 0.05 by the corresponding
combining function. Note that the plot region does not cover the entire (0, 1) p-value space.
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which because it ignores all but the smallest p-value has greatest relative power when only a

single sub-alternative is true. While useful in some contexts, this property is generally a poor

fit for testing elaborate theories. The main advantage of the minimum is that it allows for

computationally efficient corrections for multiple tests, which can be valuable when testing

many hypotheses (see Section 3.4 for further discussion).

Finally, our recommended choice of Fisher’s product function,

ψΠ = −2
J∑
j=1

log(pj), (5)

is a compromise between the minimum and normal combining functions. (We label it the

“product” function because it is permutationally equivalent to −ΠJ
j=1pj.) Unlike the mini-

mum, the product function rewards a test for finding support for multiple predictions. And

unlike the normal, it avoids over-punishing the test if evidence for one prediction is weak.

Figure 1 compares the rejection behavior of the minimum, product, and normal combining

functions in the special case of two independent tests (also see Loughin 2004). In our ex-

perience, we have found that under most circumstances the product and normal combining

functions yield very similar results.

3.3 NPC in Practice

Since NPC works on the metric of the p-value, it requires calculating J p-values for the

observed data as well as J “pseudo p-values” for each of the B permutations. Roughly

speaking, this means that each permutation is ranked on each sub-hypothesis according to

its support for the corresponding sub-alternative. Then, the p-values in each permutation

are combined across tests using a suitable function, producing a global test statistic for each

permutation. The global p-value is the proportion of permutations with global test statistics

at least as large as the one observed. Note that all variables associated with a given unit are

permuted together, so NPC automatically accounts for the dependence across tests.
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NPC can be carried out using the following algorithm (adapted from Pesarin and Salmaso

2010, 125–7):

1. Calculate the vector Tobs = (T obs
1 , . . . T obs

j , . . . T obs
J ) of observed test statistics corre-

sponding to the J partial tests. For example, if the test statistic is the difference of

means and the groups are treated and control, calculate T obs
j = Ȳ T

j − Ȳ C
j for each

response variable j.

2. Repeat the following B times:

(a) Randomly permute the group labels of units that are exchangeable under the

global null hypothesis (e.g., within blocks in the case of block-randomized exper-

iment).

(b) In each permutation b ∈ {1, . . . , B}, calculate the vector T∗b = (T ∗1b, . . . T
∗
jb, . . . T

∗
Jb)

of J test statistics.

3. Presuming that the partial test statistics are expected to be large in the alternative,

let L̂j(t) = B−1
∑B

m=1 I(T ∗jm ≥ t) be the estimated significance level for any test

statistic value t ∈ R1 corresponding to partial test j. Calculate the vector of estimated

significance levels for the observed data: p̂ = (p̂1, . . . p̂j, . . . p̂J), where p̂j = L̂j(T
obs
j ).

Like any p-value, p̂j indicates the probability under the null hypothesis of a test statistic

at least as extreme as the one observed. Then, for each permutation b, calculate the

vector of pseudo p-values L̂∗b = (L̂∗1b, . . . L̂
∗
jb, . . . L̂

∗
Jb), where L̂∗jb = L̂j(T

∗
jb).

4. Using combining function ψ, combine the vector of J estimated significance levels into

a global test statistic T ′′obs = ψ(p̂), which captures the observed divergence from the

null across all partial tests. Then calculate the analogous statistic T ′′∗b = ψ(L̂∗b) for

each permutation b.
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5. Estimate the combined significance level (p-value) of the global test as

p̂′′ψ = B−1

B∑
b=1

I(T ′′∗b ≥ T ′′obs). (6)

If all permutations are enumerated, the global significance level p̂′′ψ in (6) is exact, as

are the significance levels p̂ of the partial tests. In practice, permutation significance levels

can be estimated to an arbitrary degree of accuracy by randomly sampling a large number

of permutations from the permutation space. Since the global p-value is calculated directly

from the permutation distribution of partial p-values, this algorithm is not computationally

demanding. For example, it takes about 5 seconds to run the algorithm on a 100-observation

dataset with 10 response variables, using B = 10,000 permutations and the mean difference

as the test statistic.6

3.4 NPC and the Multiple Testing Problem

Before demonstrating how NPC can be applied to real examples, we first clarify the subtle

relationship between global tests of complex hypotheses and the “multiple testing problem.”

The multiple testing problem describes the inflation in false-positive error rates that occurs

when multiple hypotheses are tested in the same study. Most multiple-testing procedures

aim to control the familywise error rate: the probability of rejecting at least one true null

hypothesis in a “family” of tests. Thus in contrast to NPC’s focus on the global test, multiple-

testing adjustments are concerned with the validity of the partial tests. In fact, if only the

global p-value is considered in an NPC analysis, the multiple testing problem does not arise.

Nevertheless, NPC and multiplicity control have an important point of connection in that

methods of FWER adjustment typically involve testing intersection hypotheses. Marcus,

Peritz, and Gabriel (1976) show that it is possible to control the FWER for a set of elemental

hypotheses by testing all possible intersections of the hypotheses and rejecting a hypothesis

6. This example was run on a 2014 MacBook Air with a 1.7 GHz Intel Core i7 processor and 8GB of
RAM.
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only if all intersection hypotheses that include it are statistically significant. If they account

for the dependence among tests, such “closed testing” procedures are generally much more

powerful than simple methods such as the Bonferroni correction. As Pesarin and Salmaso

(2010, 177–96) note, NPC provides a natural method for conducting the intersection tests

required by closed-testing procedures. FWER control can thus be achieved by applying

any NPC combining function to every intersection hypothesis and adjusting the elemental

p-values up to the maximum of all intersection tests that include it. While appealing,

closed testing is computationally demanding because the number of intersection hypotheses

increases exponentially in the number of elemental tests. If the minimum combining function

is used, however, it is possible to use a short-cut procedure described by Westfall and Young

(1993, 66–7), “step-down MinP,” for which computation time increases only linearly. The

R package NPC implements both step-down MinP and general closed testing adjustment,

using the latter only if there are fewer than 15 elemental hypotheses. As we illustrate in

several examples, it is often useful to apply two rounds of NPC: first to test the global null,

and second to adjust the partial p-values so that they can be individually assessed without

inflating the FWER.

4 Applications

NPC is applicable whenever one has an elaborate theory (a theory that makes multiple

predictions against a strong null) and exchangeable treatment assignment. We group the

many possible applications into six classes, which we describe briefly below. We then discuss

four specific applications.

1. Multiple experiments or subgroups. Hypothesis tests of predictions for multi-

ple experiments or subgroups of the same experiment can be combined with NPC by

pooling the data, permuting treatment in accord with the original treatment assign-

ment process, and calculating the partial test statistics and p-values on data from the
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corresponding experiment/subgroup of interest.

2. Multiple Treatment Levels and Dose Response. Treatment often has multiple

levels (different “dosages”), and theories typically posit specific responses to dosage

(e.g., increasing effects, or an “umbrella” pattern). Such patterns can be tested by

decomposing the hypothesized pattern into a series of comparisons between treatment

levels, and combining the tests with NPC. We illustrate a simple example in Section

4.1 (see also Pesarin and Salmaso 2010, §6.5).

3. Causal Mechanisms. Many social scientific theories posit causal mechanisms linking

causal factors to outcomes. Thus, like process tracing in qualitative case studies, tests

of treatment effects on hypothesized mediators of the causal process offer additional

opportunities to corroborate such theories. These tests can then be combined using

NPC. Doing so can be an appropriate first step in mediation analysis, for it tests a

necessary but insufficient condition of causal mediation—that treatment has an effect

on each mediator—under less stringent assumptions than full mediation analysis (cf.

Green, Ha, and Bullock 2010; Imai et al. 2011).

4. Multiple Outcomes. Whether or not we are able to observe mediators of the causal

process, we are often able to deduce multiple consequences of the theorized causal

process. These outcomes may each be of inherent substantive interest, or some may be

side effects of a motivating main relationship; the inferential logic is the same in either

setup. Section 4.2 provides an example, which was what motivated our initial interest

in NPC. Multiple outcomes is the canonical application of NPC.

5. Multiple Outcome Measures or Time-Periods. Two specific kinds of multiple

outcomes arises when researchers have (a) several noisy measures of an imperfectly ob-

served outcome or (b) repeated measures over time of the outcome. Typical solutions

are to use just one measure, or to combine the measures into an index by, for exam-

ple, taking the average or by extracting the first factor/component. NPC provides
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a nonparametric solution to this problem, which we illustrate with an application to

repeated measures in Section 4.3.

6. Placebo Tests. Experimental and natural experimental designs imply a large number

of known zero associations. Testing for these is a good practice for evaluating the

credibility of one’s identifying assumptions: that treatment is truly (as if) random.

NPC provides a principled and flexible way of combining many placebo tests into a

single hypothesis test, as we illustrate in Section 4.4.

4.1 Cluster-Randomized Experiment with Dose Response

We begin with a simple re-analysis of Wantchekon’s (2003) well-known field experiment

on clientelistic campaign appeals. Wantchekon convinced presidential candidates in Benin

to randomly vary their campaign appeals across 24 villages stratified by electoral district.

Villages were assigned to one of three “doses” of clientelism: a purely clientelistic cam-

paign, a mix of clientelistic and policy-based appeals, or a purely policy-based campaign.

Wantchekon’s main finding is that vote share increased with the dose of clientelism: can-

didates’ average vote share was lowest in villages where they ran a policy-based campaign

(69%), better where they ran a mixed campaign (74%), and best where they made exclu-

sively clientelistic appeals (84%). Wantchekon reports that the increase at each dosage level

is highly statistically significant, but Green and Vavreck (2008, 139–40) suggest that their

significance may be “grossly exaggerated” because Wantchekon did not “account for the fact

that [voters] were embedded in village-level clusters.”

With this critique in mind, we re-analyze Wantchekon’s data at the level of the village

(n = 8 per treatment condition), the unit at which treatment was assigned. To operationalize

Wantchekon’s dose-response hypothesis, we decompose it into two sub-hypotheses:

H1: E(Vote Share | Campaign = Policy) < E(Vote Share | Campaign = Mixed)

H2: E(Vote Share | Campaign = Mixed) < E(Vote Share | Campaign = Clientelism)
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As a baseline for comparison, we follow standard econometric practice and regress vote share

on dummies for treatment categories, basing inference on the larger of conventional and

robust standard errors (in this case, conventional).7 Consistent with Green and Vavreck’s

skepticism, both H1 and H2 fall short of statistical significance, even with one-sided tests

(pH1 = 0.23, pH2 = 0.11), as does an F -test of the global null that both differences are zero

(pF = 0.15).

An analysis using difference-of-means permutation tests suggests slightly stronger sup-

port for the sub-hypotheses (pH1 = 0.22 and pH2 = 0.03). The real advantage of permutation

inference, however, comes from combining the tests with NPC, which allows us to test a more

focused alternative than the non-directional F -test. Following Finos, Salmaso, and Solari

(2007), we do so by conducting one-sided tests of the mean difference at each treatment

threshold and combining them using Fisher’s product function, which yields pNPC < 0.01.8

The NPC analysis thus decisively rejects the global null in favor of Wantchekon’s original hy-

pothesis that clientelistic campaigns are more effective. Crucially, it does so while respecting

the clustered nature of the experimental randomization and without relying on parametric

assumptions or asymptotic approximations.

4.2 Cluster-Matched Observational Study with Multiple Outcomes

Our second example application is the one that originally motivated our interest in NPC:

a matched observational study of conflict differences between Southern and non-Southern

U.S. presidents (Dafoe and Caughey 2016). We hypothesize that because Southern presidents

were raised in a “culture of honor,” they were socialized to display intense concern of their

7. Angrist and Pischke (2009, 302–04) recommend this strategy as “the best of both worlds” in terms of
the trade-off between bias and variance. They further note that in balanced experiments like Wantchekon’s,
in which sample sizes across treatment conditions are equal, conventional and robust variance estimators
differ very little. In this application, however, the standard error estimates are quite sensitive to which
heteroskedasticity-consistent formula is used to calculate them, suggesting that they may be unreliable in
this small sample.

8. The normal combining function produces identical results. The minimum function yields a slightly
higher p-value (0.02), as one would expect given that its under the alternative that both H1 and H2 are true
is lower than the other combining functions. The results for Student’s t are also extremely similar.
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reputation for resolve, leading in turn to systematically different behavior in militarized

interstate disputes (MIDs). With the aid of the formal model of conflict escalation, we

derived three observable implications of our theory. MID that occurred while a Southerner

was president should be:

H1: More likely to involve the use of force by the United States (dichotomous)

H2: Longer in duration (measured in days, censored at the end of presidential terms)

H3: Resolved more favorably for the United States (defeat = −1, draw = 0, victory = +1).

We test these three sub-hypotheses on a dataset of 11 matched pairs of Southern and

non-Southern presidents. As with Wantchekon’s cluster-randomized experiment, the analysis

must respect the fact that treatment was assigned to presidents rather than MID. The

conventional way to do so would be to estimate the average treatment effect on the treated

(ATT) using OLS with standard errors clustered by president. According to this method,

none of the ATT estimates is significant at the 5% level (one-sided). Given that there are

only 22 clusters, however, the standard error estimates are of uncertain reliability.

Table 4.2 reports the results for an analysis using permutation tests and NPC with Lip-

tak’s normal combining function. In the first row, the variable-specific p-values correspond to

permutation tests using ATT estimates listed above them as the permutation test statistic.

The second row highlights the flexibility and generality of NPC by reporting the results of

using a different test statistic for each sub-hypothesis:

H1: Weighted mean of the pair-specific mean differences (Hansen and Bowers 2008)

H2: Log-rank statistic for hazard-rate differences in censored duration data

H3: Kolmogorov-Smirnov statistic for stochastic dominance

The dependence among these three tests would be difficult if not impossible to derive analyti-

cally, but is trivial to account for using NPC. The partial p-values differ somewhat depending
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Table 1: Permutation p-values of differences in conflict behavior between Southern and non-
Southern presidents.

Use of Force Duration Outcome
NPC

ATT = +0.17 ATT = +46 ATT = +0.18
Difference of Means 0.10 0.02 0.04 0.01

Wtd. Mean, Log-Rank, K-S 0.07 0.10 0.05 0.01

on which test statistic is used, but both NPC p-values indicate strong evidence against the

global null. This analysis thus illustrates both NPC’s flexibility and the potential gain in

statistical power that it can bring when used to test an elaborate theory.

4.3 Matched Panel Analysis with Multiple Endpoints

In this example, we apply NPC to panel data, a special case of multiple dependent variables

where the responses for each unit are measured at multiple points in time. Specifically, we use

a matched panel design (Heckman, Ichimura, and Todd 1997) to estimate the political effects

of a major policy intervention, the Tennessee Valley Authority (TVA).9 We use this example

to compare the performance of mean-based and rank-based studentized test statistics, as

well as to illustrate how testing and estimation can serve complementary purposes in the

same study.

Historians have argued that the TVA, which originated in 1933 as part of President

Franklin Roosevelt’s New Deal, fostered support for New Deal liberalism in the areas of

the South it affected (e.g., Schulman 1994). We test this theory by comparing the esti-

mated conservatism of U.S. House members from matched TVA and non-TVA districts in

five consecutive congresses. Twenty matched pairs of districts were created, based on pre-

intervention demographic and political covariates. The ATT estimates plotted in Figure 2

suggested that TVA representatives were less conservative in years after 1952, but note that

all of the 95% confidence intervals cover zero.

Table 2 presents analogous results for two sets of permutation tests, one using the studen-

9. An earlier analysis of these data appeared in Caughey (2012).

23



Figure 2: Year-specific estimated average effects of the TVA on representatives’ conservatism
(with two-sided 90% and 95% confidence intervals). Standard errors were calculated following
Abadie and Imbens (2006) and compared to t distribution with 19 degrees of freedom (one
fewer than the number of pairs).
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tized difference of means and the other the studentized Wilcoxon rank-sum statistic.10 The

first and third rows contain the raw p-values of the partial tests. Below them, in parentheses,

are closed testing–adjusted p-values, treating each set of five tests as a family. The mean-

based p-values are insignificant in every year except 1954, which too becomes insignificant

once adjusted for multiplicity. Given the presence of several outliers in the data, however,

rank-based tests may be more powerful. Consistent with this supposition, the rank-based

partial p-values are uniformly smaller, and the global p-value is about half as large as the

mean-based one.

This example illustrates how Neyman-style estimation and NPC-based testing can serve

complementary purposes in the same analysis. The ATT estimates in Figure 2 provide a

sense of the magnitude of the average effect in each year and its associated uncertainty.

As one would expect given their asymptotic equivalence, the confidence intervals and the

10. The studentized Wilcoxon statistic is asymptotically valid as a test of H0 : Pr(Y1 < Y2) = Pr(Y1 > Y2)
against the alternative that observations tend to be larger in one group (Chung and Romano 2013, 492).
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1952 1954 1956 1958 1960 NPC

Mean:
0.15 0.03 0.06 0.06 0.06

0.06
(0.15) (0.07) (0.09) (0.09) (0.09)

Rank:
0.03 0.02 0.06 0.05 0.03

0.03
(0.04) (0.04) (0.06) (0.06) (0.05)

Table 2: One-sided permutation p-values of the null hypothesis that the TVA had no effects
on representatives’ conservatism, based on studentized difference-of-means and rank-sum
statistics. Parenthesis-enclosed p-values have been adjusted for multiple tests using closed
testing. The product combining function was used to combine the partial tests.

unadjusted p-values for the studentized mean differences correspond very closely, whereas

the rank-based results are somewhat stronger due to their resistance to outliers. The added

value of NPC in this analysis comes from the multiplicity-adjusted p-values, which control the

FWER, and especially from the global p-values, which provide a convenient and principled

summary of the overall evidence. Even though the null of zero average effect cannot be

rejected for any year without inflating the type-I error rate, the totality of the evidence

indicates solid support for the theory that the TVA had a liberalizing effect on congressional

representation.

4.4 Covariate Balance in a Regression-Discontinuity Design

Our final example illustrates the application of NPC to the problem of testing covariate

balance in a natural experiment, a purpose for which it is particularly well suited. In an

influential article, Lee (2008) argues that very close elections can be considered natural

experiments that randomly assign one candidate into office, and that regression-discontinuity

(RD) designs can thus be used to identify the causal effects of elections. Caughey and

Sekhon (2011) critique Lee’s application of RD to postwar U.S. House elections, claiming

that important pretreatment covariates are not balanced between close Democratic and

Republican victories. One potential criticism of Caughey and Sekhon’s conclusions, however,

is that given how many covariates they evaluate, some degree of covariate imbalance could

easily have arisen by chance (for related concerns, see de la Cuesta and Imai 2016, 387–9).
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NPC provides a natural way to adjudicate this debate because an implication of as-if

randomized treatment assignment is equality of the multivariate distribution of all pretreat-

ment covariates (Hansen and Bowers 2008). In this spirit, we use the replication data from

Caughey and Sekhon (2011) to reanalyze their Figure 2 (p. 394), which reports balance

statistics for 25 covariates in 85 House elections decided by less than 0.5%. To deal with the

fact that many of the covariates contain missing data, we use specialized test statistics of

the form

T = Sg

√
νh/νg − Sh

√
νg/νh, (7)

where g and h index treatment groups, Sg and Sh are the sum of the (possibly transformed)

observed responses in each group, and νg and νh are the number of non-missing responses in

each group. Under the assumption that the data are missing completely at random, these

statistics provide nearly exact tests of the null that the observed data are equal in distribution

(the test is “nearly” exact because only the mean and variance of the test statistic are invari-

ant under permutation; Pesarin and Salmaso 2010, 234–44). For consistency with Caughey

and Sekhon (2011), we use S =
∑
yi for dichotomous covariates and S =

∑
rank(yi) for

all others, with all 25 tests made two-sided by taking the absolute value of the statistic.

We combine the tests with the product function and adjust for multiplicity with step-down

MinP.

Even after correcting for multiple testing, nearly half of the 25 covariates in Figure 3

are significantly imbalanced at the 10% level, and seven of the adjusted p-values can be

rejected at the 5% level as well. Most importantly, the global p-value is 0.0002, indicating

dramatic departure from the null of distributional equality. The advantages of NPC in this

application are obvious. NPC directly answers the question of interest—Is the null of as-if

random assignment plausible in close House elections?—with a clear No. It does so without

parametric assumptions or asymptotic approximations, all while controlling the FWER on

the partial tests in a way that maximizes statistical power.
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Figure 3: Covariate balance in close U.S. House elections. Hollow points represent p-values
that have been adjusted using permutation step-down MinP. All p-values are two-sided.
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5 Conclusion

Fisher’s advice to elaborate and test all of a theory’s empirical implications often goes un-

heeded. This need not be the case. In this paper, we have described a principled, transparent,

and easily tailored method for testing elaborate theories: nonparametric combination. NPC

can be used in any context where observations are exchangeable under the null hypothesis

and an elaborate pattern of outcome differences is anticipated. As we have demonstrated,

such contexts include both observational and experimental designs, as well as stratified or

clustered treatment assignments, dose-response relationships, missing data, and multiplicity

control.

Although NPC is a powerful framework that can be applied in many contexts, it is only

one tool among many, and whether NPC should be used in a given study depends on the

goals of the analysis. Obviously, NPC is not useful for testing only a single prediction, or for

testing multiple predictions derived from contradictory theories. If the dependence across

multiple tests can plausibly be modeled, then a parametric approach may be superior to one

based on permutation inference. In addition, since NPC is designed for hypothesis testing,

other methods should typically be employed when estimation is the primary goal, especially

if treatment effects are thought to be heterogeneous.

Nevertheless, NPC and other approaches should not be considered mutually exclusive.

In most applications, it makes sense to evaluate the partial tests individually as well as the

overall evidence provided by the NPC global test. It is also often profitable to use permu-

tation hypothesis tests and NPC in conjunction with estimation, for the two approaches

convey different kinds of information and require different assumptions. What matters most

is not which specific methods researchers use, but that they routinely elaborate and test, in

a principled way, all the implications of their theories.

28



Acknowledgements

For comments and input, we would like to thank Jake Bowers, Bear Braumoeller, Thad

Dunning, Danny Hidalgo, Adrienne Hosek, Scott Gates, Sara Newland, Kristopher Ramsay,
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