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Uplift Modeling with Multiple Treatments and General Response Types

Yan Zhao∗ Xiao Fang† David Simchi-Levi‡

Abstract

Randomized experiments have been used to assist decision-

making in many areas. They help people select the optimal

treatment for the test population with certain statistical

guarantee. However, subjects can show significant hetero-

geneity in response to treatments. The problem of customiz-

ing treatment assignment based on subject characteristics is

known as uplift modeling, differential response analysis, or

personalized treatment learning in literature. A key feature

for uplift modeling is that the data is unlabeled. It is impos-

sible to know whether the chosen treatment is optimal for an

individual subject because response under alternative treat-

ments is unobserved. This presents a challenge to both the

training and the evaluation of uplift models. In this paper we

describe how to obtain an unbiased estimate of the key per-

formance metric of an uplift model, the expected response.

We present a new uplift algorithm which creates a forest of

randomized trees. The trees are built with a splitting crite-

rion designed to directly optimize their uplift performance

based on the proposed evaluation method. Both the evalua-

tion method and the algorithm apply to arbitrary number of

treatments and general response types. Experimental results

on synthetic data and industry-provided data show that our

algorithm leads to significant performance improvement over

other applicable methods.

1 Introduction

We often face the situation where we need to identify
from a set of alternatives the candidate that leads to
the most desirable outcome. For example, doctors want
to know which treatment plan is the most effective for
a certain disease. In an email marketing campaign, a
company needs to select the message that yields the
highest click through rate. Randomized experiments
are frequently conducted to answer these questions. In
such an experiment, subjects are randomly assigned to
a treatment and their responses are recorded. Then
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by some statistical criteria, one treatment is selected as
the best. While randomized experiments (also known
as A/B testing in online settings) have been helpful in
many areas, it has one major shortcoming - disregard
for subject heterogeneity. A medical treatment that is
the most effective over the entire patient population
may be ineffective or even detrimental for patients
with certain conditions. An email message that leads
to the highest click-though-rate overall might tend to
put off customers in some subpopulation. Therefore,
it is of great interest to develop models that can
correctly predict the optimal treatment based on given
subject characteristics. This has been referred to as
the personalized treatment selection problem or Uplift
Modeling in the literature.

While appearing similar to classification problem at
the first sight, uplift modeling poses unique challenges.
In a randomized experiment, it is impossible to know
whether the chosen treatment is optimal for any indi-
vidual subject because response under alternative treat-
ments is unobserved. As a result, data collected from
a randomized experiment is unlabeled in the classifica-
tion perspective because the true value of the quantity
that we are trying to predict (the optimal treatment) is
unknown even on the training data.

Perhaps the most obvious approach to Uplift Mod-
eling is what we call the Separate Model Approach
(SMA). We first create one predictive model for each
treatment. Given a new data, we can obtain the pre-
dicted response under each treatment with the corre-
sponding model, and then select the treatment with the
best predicted response. The main advantage of this
approach is that it does not require development of new
algorithms and software. Any conventional classifica-
tion/regression method can be employed to serve the
purpose. Applications of SMA include direct marketing
[1] and customer retention [2]. However, the Separate
Model Approach, while simple and correct in princi-
ple, does not always perform well in real-world situa-
tion [3][4]. One reason for this is the mismatch between
the objective used for training the models and the ac-
tual purpose of the models. When the uplift (difference
in response between treatments) follows a distinct pat-
tern from the response, SMA will focus on predicting
the response rather than the uplift signal. See [4] for



an illustrative example. The situation is exacerbated
when data is noisy and insufficient or when the uplift
is much weaker than the response. Unfortunately, these
are usually the cases for practical uplift applications.

Seeing the shortcomings of the Separate Model Ap-
proach, researchers have proposed a number of algo-
rithms that aim at directly modeling the uplift effect.
However, almost all of them are designed for the sit-
uation with a single treatment. A logistic regression
formulation is proposed which explicitly includes inter-
action terms between features and the treatment [3].
Support Vector Machine is adapted for uplift model-
ing to predict whether a subject will be positively, neu-
trally, or negatively affected by the treatment [5]. The
adaption of K-Nearest Neighbors for uplift modeling is
briefly mentioned in both [6] and [7]. A new subject
is simply assigned to the empirically best treatment as
measured on the K training data that are closest to it.
Several tree-based algorithms have been proposed for
uplift modeling, each with a different splitting criterion
[8] [1] [9] [4] [10]. In [8], the authors modify the stan-
dard decision tree construction procedure [11] by forcing
a split on the treatment at each leaf node. In [1] a split-
ting criterion is employed that maximizes the difference
between the difference between the treatment and con-
trol probabilities in the left and right child nodes. In
[9], splitting points are chosen that maximize the dis-
tributional difference between two child nodes as mea-
sured by a weighted Kullback-Leibler divergence and a
weighted squared Euclidean distance. In [4], a linear
model is fitted to each candidate split and the signif-
icance of the interaction term is used as the measure
of the split quality. In [10], the variable that has the
smallest p-value in the hypothesis test on the interac-
tion between the response and itself is selected as the
splitting variable. Then the splitting point is chosen to
maximize the interaction effect. It is demonstrated ex-
perimentally that the use of Bagging or Random Forest
on uplift trees often results in significant improvement
in performance [12].

Despite its wide application, literature on the more
general multi-treatment uplift problem is limited. Rare
exceptions include [13] and [14]. In [13], the tree-based
algorithm described in [9] is extended to multiple treat-
ment cases by using a weighted sum of pairwise distri-
butional divergence as the splitting criterion. In [14],
a multinomial logit formulation is proposed in which
treatments are incorporated as binary features. They
also explicitly include the interaction terms between
treatments and features. Moreover, finite sample con-
vergence guarantees are established for model param-
eters and out-of-sample performance guarantee. Both
methods can handle binary as well as discrete response

type. It is worth mentioning that the causal K-nearest
neighbors originally intended for single treatment can
be naturally generalized to multiple treatments [6] [7].
This algorithm is implemented in a R package called
uplift by Leo Guelman [15].

One of challenges facing uplift modeling is how to
accurately evaluate model performance off-line using
the randomized experiment data. For single treatment
cases, qini curves and uplift curves have been used to
serve the purpose [16] [9]. The problem with them
as performance metrics is that them do not measure
the key quantity of interest - the expected response.
What they measure is some surrogate quantity which
is hopefully close to the increase in expected response
relative to only applying the control. In [9], the authors
explained that they use uplift curves because there does
not seem to be a better option at the time.

We now describe the contribution of our paper. In
Section 2, we discuss how to obtain an unbiased estimate
of the expected response under an uplift model. The
method applies to arbitrary number of treatments and
general response types (binary, discrete, continuous).
It works even when the treatments and the control
are not evenly distributed which is often the case
in practice. The method also allows us to compute
the confidence interval of an estimate of the expected
response. Furthermore, we introduce the modified uplift
curve which plots the expected response as a function
of the percentage of population subject to treatments.
As we discuss more in section 4.2, the modified uplift
curve provides a fair way to compare uplift models.

Based on the new evaluation method, we propose
a tree-construction procedure with a splitting crite-
rion that explicitly optimizes the performance of the
tree as measured on the training data. This idea is
in line with the machine learning philosophy of loss
minimization on the training set. We use an ensem-
ble of trees to mitigate the overfitting problem that
commonly happens with a single tree. We refer to
our algorithm as the CTS algorithm where the name
stands for Contextual Treatment Selection. The per-
formance of CTS is tested on three benchmark data
sets. The first is a 50-dimensional synthetic data set.
The latter two are randomized experiment data pro-
vided by our industry collaborators. On all of the data
sets, CTS demonstrates superior performance compared
to other applicable methods which include Separate
Model Approach with Random Forest/Support Vector
Regression/K-Nearest Neighbors/AdaBoost, and Uplift
Random Forest (upliftRF) as implemented in the R up-
lift package [15].

The remainder of the paper is organized as follows.
In Section 2, we first introduce the formulation of the



multi-treatment uplift modeling and then present the
unbiased estimate of the expected response for an uplift
model. Section 3 describes the CTS algorithm in detail.
In Section 4 we present the setup and the results of the
experimental evaluation. The modified uplift curve is
also introduced in this Section. Section 5 ends the paper
with a brief summary and ideas for future research.

2 Evaluation of Uplift Models

Before introducing the evaluation method, we first de-
scribe the mathematical formulation of uplift problems
and the notation used throughout this paper.

2.1 Problem Formulation and Notation We use
upper case letters to denote random variables and lower
case letters their realizations. We use boldface for
vectors and normal typeface for scalers.

• X represents the feature vector and x its realiza-
tion. Subscripts are used to indicate specific fea-
tures. For example, Xj is the jth feature in the
vector and xj its realization. Let Xd denote the
d-dimensional feature space.

• T represents the treatment. We assume there are
K different treatments encoded as {1, . . . ,K}. The
control group is indicated by T = 0.

• Let Y denote the response and y its realization.
Throughout this paper we assume the larger the
value of Y , the more desirable the outcome.

In the email marketing campaign example where the
company wants to customize the messages to maximize
the click through rate, X would be the charactering
information of customers such as the browsing history,
the purchase pattern, demographics, etc.. T would be
the different versions of the email message. And the
response Y would be the 1/0 variable indicating whether
a customer click the message or not.

Suppose we have a data set of size N containing the
joint realization of (X, T, Y ) collected from a random-
ized experiment. We use superscript (i) to index the
samples as below.

sN =
{ (

x(i), t(i), y(i)
)
, i = 1, . . . , N

}
.

An uplift model h is a mapping from the feature
space to the space of treatments, or h(·) : Xd →
{0, 1, . . . ,K}. The key performance metric of an uplift
model is the expected value of the response if the model
is used to assign the treatment,

E[Y |T = h(X) ].(2.1)

As is with classification and regression problems,
the optimal expected response achievable in an uplift
problem is determined by the underlying data genera-
tion process. The optimal expected response is achieved
by a model h∗ that satisfies the point-wise optimal con-
dition, i.e., ∀x ∈ Xd,

(2.2) h∗(x) ∈ arg max
t=0,1,...,K

E[Y |X = x, T = t].

2.2 Model Evaluation One way of looking at an
uplift model is that it partitions the entire feature space
into disjoint subspaces and assigns each subspace to one
treatment. With data from a randomized experiment, it
is possible to estimate the probability of a sample falling
into any subspace as well as the expected response
in that subspace under the assigned treatment. Then
by the law of total expectation we can estimate the
expected response in the entire feature space.

In a randomized experiment, treatments are as-
signed randomly and independently from the features.
However, treatments are not necessarily evenly dis-
tributed. Let pt denote the probability that a treatment
is equal to t. In any meaningful situation we will have
pt > 0 for t = 0, ...,K.

Lemma 2.1. Given an uplift model h, define a new
random variable

(2.3) Z =

K∑
t=0

1

pt
Y I{h(X) = t}I{T = t}

where I{·} is the 0/1 indicator function. Then

E[Z] = E[Y |T = h(X)].

Proof. The proof is straightforward using the law of
total expectation.

E
[
Z
]

=

K∑
t=0

1

pt
E
[
Y I{h

(
X
)

= t }
∣∣T = t

]
P{T = t}

=

K∑
t=0

E
[
Y
∣∣h(X) = t, T = t

]
P{h(X) = t}

= E
[
Y |h(X) = T

]
Given a set of randomized experiment data sN ={ (

x(i), t(i), y(i)
)
, i = 1, . . . , N

}
, computing the value

of z(i) is simple. If for the ith sample the predicted
treatment matches the actual treatment, then z(i) is
equal to y(i)/pt, the actual response scaled by the
reverse of the treatment probability. Otherwise, z(i)

equals zero. It is well known that the sample average is
an unbiased estimate of the expected value. Therefore
we have the following theorem.



Theorem 2.1. The sample average

(2.4) z̄ =
1

N

N∑
i=1

z(i)

is an unbiased estimate of E[Y |T = h(X)].

Moreover, we can compute the confidence interval of
z̄ which also helps to estimate the possible range of
E[Y |T = h(X)].

3 The CTS Algorithm

Tree-based methods are time-tested tools in Machine
Learning [11]. When combined into ensembles, they
prove to be among the most powerful algorithms for
general classification and regression problems [17]. Even
for the relatively new uplift modeling problem, there
have been some reports on the excellent performance of
tree ensembles [12].

The algorithm we present in this section also gen-
erates a tree ensemble. We refer to it as the CTS algo-
rithm which stands for Contextual Treatment Selection.
What is unique about CTS is its splitting criterion that
directly maximizes the expected response from the tree
as measured on the training set.

3.1 Splitting Criterion We take the recursive bi-
nary splitting approach. Each split creates two new
branches further down the tree. Let φ be the feature
space associated with a leaf node. The best we can do
for subjects falling into φ is to assign the subspace-wise
optimal treatment. Suppose s is a candidate split that
divides φ into the left child-subspace φl and the right
child-subspace φr. Because the two child subspaces can
have different treatments, the added flexibility leads to
increased expected response for subjects in φ overall.
The increase is denoted as ∆µ(s) as below.

∆µ(s)(3.5)

= P{X ∈ φl|X ∈ φ} max
tl=0,...,K

E[Y |X ∈ φl, T = tl]

+P{X ∈ φr|X ∈ φ} max
tr=0,...,K

E[Y |X ∈ φr, T = tr]

− max
t=0,...,K

E[Y |X ∈ φ, T = t].

So the idea is straightforward. At each step in the
tree-building process, we want to perform the split that
brings about the greatest increase in expected response
∆µ. The question is how to estimate ∆µ with training
data. Let φ′ stand for one of the child subspace φl or φr.
We use p̂(φ′|φ) to denote the estimate for the conditional
probability of a subject in φ′ given that it is in φ , and
ŷt(φ

′) the estimate for the conditional expected response
in subspace φ′ under treatment t.

For the conditional probability, we will simply use
the sample fraction

p̂(φ′|φ) =

∑N
i=1 I{x(i) ∈ φ′}∑N
i=1 I{x(i) ∈ φ}

.(3.6)

Estimating the conditional expectation requires
more effort. First, the estimation is performed by
treatments, therefore less data is available. Second,
treatments may not be evenly distributed. It is common
to have only a small percentage of population subject
to treatments in a randomized experiment. Let nt(φ

′)
be the number of samples in φ′ with treatment equal
to t. With two user-defined parameters min split

and n reg, the conditional expectation is estimated as
follows.

If nt(φ
′) < min split,

(3.7) ŷt(φ
′) = ŷt(φ),

otherwise,
(3.8)

ŷt(φ
′) =

∑N
i=1 y

(i)I{x(i) ∈ φ′}I{t(i) = t}+ ŷt(φ) · n reg∑N
i=1 I{x(i) ∈ φ′}I{t(i) = t}+ n reg

Note that ŷt(φ
′) is defined recursively - the value

of ŷt(φ
′) depends on the corresponding estimate for

the parent node ŷt(φ). To initialize the definition,
the estimated expectation for the root node ŷt(Xd) is
set to the sample average. We assume there are at
least enough samples to estimate expected response
accurately in the root node, otherwise customizing
treatment selection is impractical. The rational behind
the estimation formula is twofold. First, if there are not
enough samples for some treatment, we simply inherit
the estimation from the parent node. This mechanism,
combined with the termination rules in Section 3.2,
allows the trees to grow to a full extent while ensuring
reliable estimate of the expected response. Second, to
avoid being misled by outliers, we add a regularity term
to the sample average calculation. The larger the value
of n reg, the more samples it takes to shift the estimate
from the parent-estimate ŷt(φ) to the actual sample
average. Based on our experiments, it is usually helpful
to set n reg to a small positive integer.

To summarize, we estimate the increase in the
expected response from a candidate split s as below,

∆̂µ(s) = p̂(φl|φ)× max
t=0,...,K

ŷt(φl)

+ p̂(φr|φ)× max
t=0,...,K

ŷt(φr)− max
t=0,...,K

ŷt(φ).(3.9)

At each step of the tree-growing process, the split that
leads to the highest estimated increase in expectation is
performed.



3.2 Termination Rules Another important compo-
nent of a tree-based algorithm is the termination rules.
In CTS, a node is a terminal node if any of the fol-
lowing conditions is satisfied. The tree growing process
terminates when no more splits can be made.

1. The number of samples is less than the user-defined
parameter min split for all treatments

2. There does not exist a split that leads to non-
negative gain in the estimated expected response.

3. All the samples in the node have the same response
value.

The first condition allows us to split a node as long
as there is at least one treatment containing enough
samples. The second condition states that a split
should not be executed if it damages the performance
of the current tree. We allow a split with zero gain
to be performed because a nonprofitable split for the
current step may lead to profitable splits in future steps.
The third condition is to avoid the split of pure node.
Without condition 3), a split will be selected randomly
when all samples have the same response value because
all possible splits lead to zero gain.

3.3 The Algorithm To mitigate the overfitting
problem commonly associated with a single tree, we for-
mulate CTS in a form similar to Random Forest [18]. A
group of trees are constructed based on the splitting cri-
terion and termination rules described previously. Each
tree is built on a different bootstrapped training data
set. At each step of the learning process, only a random
subset of features are considered for splitting. A termi-
nal node of a tree contains the estimation of expected
response under each treatment for that node. Given a
point in the feature space and a treatment, the predicted
expected response from the forest is the average of the
predictions from all the trees. The CTS algorithm is
outlined in Algorithm 1.

4 Experimental Evaluation

In this section, we present an experimental compari-
son between the proposed CTS algorithm and other
applicable uplift modeling methods on several bench-
mark datasets. The first dataset is generated from
a 50-dimensional artificial data model. Knowing the
true data model allows us to compare methods with-
out worrying about model evaluation accuracy1. Next,
we compare the methods on two large-scale industry

1Exact values of data model parameters and datasets can

be found at this Dropbox link https://www.dropbox.com/sh/

sf7nu2uw8tcwreu/AAAhqQnaUpR5vCfxSsYsM4Tda?dl=0

Algorithm 1 CTS - Contextual Treatment Selection

Input: training data sN , number of samples in each
tree B (B ≤ N), number of trees ntree, num-
ber of variables to be considered for a split mtry

(1 ≤ mtry ≤ d), the minimum number of samples
required for a split min split, the regularity factor
n reg

Training:
For n = 1 : ntree

1. Draw B samples from sN with replacement to
create snB . Samples are drawn proportionally
from each treatment.

2. Build a tree from snB . At each node, we draw
mtry coordinates at random, then find the split
with the largest increase in expected response
among the mtry coordinates as measured by
the splitting criterion defined in Eq. (3.9).

3. The output of each tree is a partition of the
feature space as represented by the terminal
nodes, and for each terminal node, the esti-
mation of the expected response under each
treatment.

Prediction: Given a new point in the feature space,
the predicted expected response under a treatment
is the average of the predictions from all the trees.
The optimal treatment is the one with the largest
predicted expected response.

provided datasets. One is a single-treatment binary-
response dataset on the purchase of priority boarding
for flights. The other dataset is about the purchase of
reserved seats on flights which has multi treatments and
continuous response. On the latter two datasets we in-
troduce the modified uplift curve which is a convenient
way of understanding the trade-off between the risk of
exposing subjects to treatments and the gain from cus-
tomizing treatment assignment.

4.1 Synthetic Data The feature space is the fifty-
dimensional hyper-cube of length 10, or X50 = [0, 10]50.
Features are uniformly distributed in the feature space,
i.e., Xd ∼ U[ 0, 10 ], for d = 1, ..., 50. There are four
different treatments, T = 1, 2, 3, 4. The response under
each treatment is defined as below.

(4.10) Y =


f(X) + U[0, αX1] + ε if T = 1,
f(X) + U[0, αX2] + ε if T = 2,
f(X) + U[0, αX3] + ε if T = 3,
f(X) + U[0, αX4] + ε if T = 4.

The response is the sum of three components.

https://www.dropbox.com/sh/sf7nu2uw8tcwreu/AAAhqQnaUpR5vCfxSsYsM4Tda?dl=0
https://www.dropbox.com/sh/sf7nu2uw8tcwreu/AAAhqQnaUpR5vCfxSsYsM4Tda?dl=0


• The first term f(X) defines the systematic depen-
dence of the response on the features and is iden-
tical for all treatments. Specifically, f is chosen to
be a mixture of 50 exponential functions so that it
is complex enough to reflect real-world scenarios.

f(x1, ..., x50)

(4.11)

=

50∑
i=1

ai · exp{−bi1|x1 − ci1| − · · · − bi50|x50 − ci50|},

where ai, bij and cij are chosen randomly.

• The second term U[0, αXt] is the treatment effect
and is unique for each treatment t. In many
applications we would expect the treatment effect
to be of a lower order of magnitude of the main
effect, so we set α to be 0.4 which is roughly 5% of
E[|f(X)|].

• The third term ε is the zero-mean Gaussian noise,
i.e. ε ∼ N(0, σ2). Note that the standard deviation
σ of the noise term is identical for all treatment.
σ is set to 0.8 which is twice the amplitude of the
treatment effect α.

Under this particular data model, the expected response
is the same for all treatments, i.e., E[Y |T = t] = 5.18 for
t = 1, 2, 3, 4. The expected response under the optimal
treatment rule E[Y |T = h∗(X)] is 5.79.

We compare the performance of 5 different meth-
ods that are applicable to multi-treatment uplift prob-
lems with continuous response. They are CTS, Sepa-
rate Model Approach with Random Forest (SMA-RF),
K-Nearest Neighbor (SMA-KNN), Support Vector Re-
gressor with Radial Basis Kernel (SMA-SVR), and Ad-
aBoost (SMA-Ada). CTS is implemented in R by the
authors. For other algorithms, we use the implementa-
tion in scikit-learn, a popular machine learning library
in Python. These algorithms are tested under increas-
ing training data size, specifically 500, 2000, 4000, 8000,
16000, and 32000 samples per treatment. For each size,
10 training data sets are generated so that we can com-
pute the margin of error of the results. The performance
of a model is evaluated using Monte Carlo simulation
and the true data model. All models are tuned care-
fully with validation or cross-validation. Detail of the
parameter selection procedure specific to each algorithm
can be found in the Appendix.

The performance of the 5 methods are plotted in
Fig. 1. For reference, we also plot the single treatment
expected response (short dash line without markers)
and the optimal expected response (long dash line
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Figure 1: Averaged expected response of different algo-
rithms on the synthetic data. The 95% margin of error is
computed with results from 10 different training datasets.
For each data size, all algorithms are tested on the same 10
datasets.

without markers). The vertical bars are the 95%
margin of error computed with results from 10 training
datasets. To ensure consistency in comparison, for each
data size, all the methods are tested with the same
10 datasets. From the figure we can see that CTS
surpasses the separate model approach when data size
is 2000, and the advantage continues to grow as the
training size increases. At 32000 sample per treatment,
the performance of CTS is very close to the oracle
performance. Among the algorithms for the separate
model approach, support vector regressor with radial
basis kernel performs the best. This is not surprising
considering the true data model is basically a mixture
of exponentials. If the model for each treatment is
accurate enough, the separate model approach can also
create uplift. It is worth emphasizing the performance
difference between CTS and Random Forest. The only
essential difference between the two algorithms is the
splitting criterion, and yet their performance is far from
similar. Even with the largest training size, SMA-
RF (dash line with triangle markers) does only slightly
better than assigning a fixed treatment. This example
again, shows the importance of developing specialized
algorithms for uplift modeling.

4.2 Priority Boarding Data One application for
randomized experiment is the online pricing problem
where a treatment is a candidate price of the product.
Customers are randomly assigned to different prices and
the one that leads to the highest profit per customer is
selected. A major European airline applied this method



to select the price for the priority boarding of flights.
The control is the default price e 5 and the treatment
is e 7 . Interestingly, these two prices lead to the same
revenue per passenger overall - e 0.42.

With the help of our industry collaborators, we
are able to access the randomized experiment data.
After initial analysis, we confirm that the purchasing
behavior of passengers varies significantly and it can be
beneficial to customize price offering based on certain
characteristics. A total of 9 features are derived based
on the information of flight and of the reservation.
These are the origin station, the origin-destination pair,
the departure weekday, the arrival weekday, the number
of days between flight booking and departure, flight fare,
flight fare per passenger, flight fare per passenger per
mile, and the group size.

The data is randomly split into the training set
(225,000 samples per treatment) and the test set (75,000
samples per treatment). Six methods are tested. They
are the separate model approach with Random Forest
(SMA-RF), Support Vector Machine (SMA-SVM), Ad-
aboost (SMA-Ada), K-Nearest Neighbors (SMA-KNN),
as well as the uplift Random Forest method imple-
mented in [15], and CTS. For the first 5 methods, cus-
tomer decision is modeled as binary response, 1 for pur-
chase and 0 for non-purchase. Expected revenue is then
calculated as the product of the purchase probability
and the corresponding price. With CTS, we directly
model the revenue as the (discrete) response. All the al-
gorithms are carefully tuned with cross-validation. Dur-
ing cross-validation, the performance of a model is es-
timated on the hold-out set as measured by Eq. (2.4).
See Appendix for detail on parameter tuning.

In many applications, exposing subjects to treat-
ments involves a certain level of risk, such as disruption
to customer experience, unexpected side effects, etc. As
a result, we may want to limit the percentage of pop-
ulation exposed to treatment while still obtaining as
much benefit from customization as possible. To mea-
sure the performance of an uplift model in this respect,
we introduce the modified uplift curve, in which the
horizontal axis is the percentage of population subject
to treatments and the vertical axis is the expected re-
sponse. Given an uplift model, we can compute, for
each test subject, the difference in expected response
under the predicted optimal treatment and the control.
Then we rank the test subjects by the difference from
high to low. For a given percentage p, we assign the
top p percent of the test subjects to their corresponding
optimal treatment as predicted by the model, and the
rest to the control. The expected response under this
assignment is then estimated with Eq. (2.4).

Fig. 2 shows the modified uplift curves for the 6

methods under comparison on the priority boarding
data. CTS performs the best at all population percent-
age. The upliftRF algorithm ranks the second and out-
performs the separate model approach. The SMA-RF
is very accurate in terms of identifying subpopulation
for which the treatment is highly beneficial (the sharp
rise at the beginning of the curve) or extremely harmful
(the sharp decline at the end). Yet it fails to predict the
treatment effect for the vast majority which is demon-
strated by the (almost) straight line for the middle part.
SMA-SVM and SMA-KNN perform poorly on this data
set which we think partly due to their limitations in
handling categorical variables.
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Figure 2: Modified uplift curves of different algorithms for
the priority boarding data.
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Figure 3: Expected revenue per passenger from priority
boarding based on different models.

Fig. 3 plots the expected revenue per passenger if



all the test subjects are assigned the predicted optimal
treatment. As can be seen from the figure, customized
pricing models can significantly increase the revenue.
The increase in the revenue per passenger from e0.42
to e0.52 could lead to a remarkable gain in profit for
an airline with tens of millions of scheduled passengers
per year. This test case demonstrates the benefit of
designing and applying specialized algorithms for uplift
modeling.

4.3 Seat Reservation Data Another airline exper-
iments with seat reservation price. Treatments are price
levels - low (L), medium low (ML), medium high (MH)
and high (H). The response is the revenue from each
transaction. Because the same price level may corre-
spond to different prices on different routes and one
transaction may include the purchase of multiple seats,
we need to model the response as a continuous vari-
able. The features we use include the booking hour,
the booking weekday, the travel hour, the travel week-
day, the number of days between the last login and the
next flight, the fare class, the zone code (all flight routes
are divided into 3 zones, and prices are set for different
zones), whether the passenger returns to the website af-
ter flight ticket purchase, the journey travel time, the
segment travel time, the number of passengers, and the
quantity available.

The number of samples for the four treatments are
213,488, 176,637, 160,576, 214,515. We use 50% for
training, 30% for validation, and 20% for test. We
compare the performance of CTS and SMA-RF in this
test. We choose SMA-RF because it is the best among
the Separate Model Approach on the priority boarding
data. UpliftRF is not included because it can not be
applied to continuous response models.

The average revenue per customer with different
pricing models is shown in Fig. 4. The optimal single
price level is H with an expected revenue of $1.87 per
passenger. By personalizing treatment assignment, we
can achieve $2.37 with SMA-RF and $3.35 with CTS.
Fig. 5 shows the modified uplift curves of SMA-RF
and CTS. We can see that CTS outperforms SMA-
RF at every population percentage. By employing a
specialized algorithm for uplift modeling the airline can
significantly improve its profit margin.

5 Conclusion

Uplift modeling initially gathered attention with its
successful application in marketing and insurance. But
it does not need to be restricted to these domains.
Any situation where personalized treatment selection is
desired and randomized experiment is possible can be a
potential use case for uplift modeling. As an example,

1.42 
1.64 1.70 

1.87 

2.37 

3.35 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

L ML MH H SMA-RF CTS

Ex
p

ec
te

d
 R

es
p

o
n

se
 (

R
ev

en
u

e 
Pe

r 
Pa

ss
en

ge
r)

 

Figure 4: Expected revenue per passenger from seat
reservation when applying different pricing models.
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Figure 5: Modified uplift curves of SMA-RF and CTS on
the seat reservation data.

we described in Section 4 how to apply it to customized
pricing.

The contribution of this paper to Uplift Modeling is
threefold. First, we present a way to obtain an unbiased
estimate of the expected response under an uplift model
which has not been available in the literature. Second,
we design a tree ensemble algorithm with a splitting cri-
terion based on the new estimation method. Both the
unbiased estimate and the algorithm apply naturally to
multiple treatments and continuous response, which sig-
nificantly extends the current focus of uplift algorithms
on single-treatment binary-response cases. Lastly, we
showed that our algorithm lead to 15% - 40% more rev-
enue than non-uplift algorithms with the priority board-
ing and seat reservation data, which demonstrated the



impact of uplift modeling on customized pricing.
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Appendix

Synthetic Data Here we describe the details of pa-
rameter tuning in Section 4.1.

CTS: Fixed parameters are ntree=100, mtry=25

and n reg=3. The value of min split is se-
lected among [25, 50, 100, 200, 400, 800, 1600,

3200, 6400] (Large values are omitted when they ex-
ceeds dataset size). min split is selected by 5-fold
cross-validation when training data size below 8000
sample-per-treatment, otherwise by validation (half
training/half test) on one data set and kept the same
for other nine data sets.

RF: Fixed parameters are n estimators=100 and
max features=25. Parameter nodesize is tuned with
5-fold cross-validation among [1,5,10,20].

KNN: Parameter n neighbors is tuned with 5-fold
cross-validation among [5,10,20,40].

SVR: The regularization parameter C and the
value of the insensitive-zone ε are determined analyt-
ically using the method proposed in [20]. The spread
parameter of the radial basis kernel γ is selected among
[10−4, 10−3, 10−2, 10−1] using 5-fold cross-validation.

Ada: Square loss with n estimators=100.

Priority Boarding/Seat Reservation Data Models
are tuned similarly as with synthetic data except the
following. 1. For CTS, upliftRF, and SMA-RF, mtry=3.
2. For CTS, min split is selected among [25, 50,

100, 200]. For upliftRF, min split is selected among
[5, 10, 20, 40]. Parameter selection is conducted by
validation because of the time constraint.
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