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by
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Abstract

Two principles at the forefront of modern machine learning and statistics are sparse
modeling and robustness. Sparse modeling enables the construction of simpler statis-
tical models, with examples including the Lasso and matrix completion. At the same
time, statistical models need to be robust—they should perform well when data is
noisy—in order to make reliable decisions.

While sparsity and robustness are often closely related, the exact relationship and
subsequent trade-offs are not always transparent. For example, convex penalties like
the Lasso are often motivated by sparsity considerations, yet the success of these
methods is also driven by their robustness. In this thesis, we develop new statistical
methods for sparse and robust modeling and clarify the relationship between these
two principles.

The first portion of the thesis focuses on a new methodological approach to the
old multivariate statistical problem of Factor Analysis : finding a low-dimensional
description of covariance structure among a set of random variables. Here we pro-
pose and analyze a practically tractable family of estimators for this problem. Our
approach allows us to exploit bilinearities and eigenvalue structure and thereby show
that convex heuristics obtain optimal estimators in many instances.

In the latter portion of the thesis, we focus on developing a unified perspective
on various penalty methods employed throughout statistical learning. In doing so,
we provide a precise characterization of the relationship between robust optimization
and a more traditional penalization approach. Further, we show how the threads of
optimization under uncertainty and sparse modeling come together by focusing on the
trimmed Lasso, a penalization approach to the best subset selection problem. We also
contextualize the trimmed Lasso within the broader penalty methods literature by
characterizing the relationship with usual separable penalty approaches; as a result,
we show that this estimation scheme leads to a richer class of models.

Thesis Supervisor: Dimitris J. Bertsimas
Title: Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center
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Chapter 1

Introduction

The ever-increasing availability of complex data has been a substantial force driving

modern machine learning and statistics. Two principles at the forefront are sparse

modeling and robustness. Sparse modeling enables the construction of simpler statis-

tical models; examples of such techniques include the Lasso and matrix completion.

At the same time, statistical models need to be robust—they should perform well

when data is noisy—in order to make reliable decisions.

While sparsity and robustness are often closely related, the exact relationship and

subsequent trade-offs are not always transparent. For example, convex penalties like

the Lasso are often motivated by sparsity considerations, yet the success of these

methods is also driven by their robustness. In this thesis, we develop new statistical

methods for sparse and robust modeling and clarify the relationship between these

two principles.

The structure of the thesis mirrors these contributions. In particular, the first

portion of the thesis focuses on a new methodological approach to an old multivariate

statistical problem; then, in the latter portion of the thesis, we focus on developing

a unified perspective on various penalty methods employed in statistical learning.

Throughout we emphasize the underlying structure of the various optimization prob-

lems that arise.

In what follows, we broadly describe the context for the contributions made.
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Factor analysis

One classical problem in sparse modeling is finding a low-dimensional representation

of the covariance structure among a set of random variables in terms of a smaller

number of hidden factors. One widely used approach is factor analysis (“FA”), which

approximately decomposes the covariance matrix as the sum of two components: a

low-rank matrix corresponding to the variances common to all of the random vari-

ables; and a diagonal matrix corresponding to the individual variances unique to each

random variable.

Despite the ubiquity of factor models, most approaches to FA lack any optimality

guarantees or rely on restrictive assumptions about the underlying data which are

impossible to verify in practice. Moreover, these approaches can lead to nonsensical

estimates such as negative variances.

A modern optimization-based proposal

In Chapter 2, we propose a new family of estimators for FA that uses nonlinear

semidefinite optimization, handles problems with thousands of variables, and aids in

statistical interpretability by ensuring that the covariance decomposition yields valid

positive-semidefinite estimates of variance. A critical component of our approach as

compared to others is that we do not rely on assumptions that cannot be verified

in practice. Instead, the method produces optimal estimators by leveraging tech-

niques like conditional gradient descent to quickly find high-quality solutions which

are subsequently used in a branch-and-bound algorithm for global optimization. In

particular, our approach exploits the underlying eigenvalue structure of the FA esti-

mation problem, thereby allowing us to synthesize advances in matrix analysis and

in global optimization to create a tailored approach.

This chapter appears in large part in the published paper [27].

New perspectives on penalty methods

Penalty methods form the principal focus of the latter portion of the thesis. These

methods, such as the Lasso and matrix completion, have seen widespread success in
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practice; however, these techniques often have multiple aims and the trade-off between

these objectives is not always clear.

Robust optimization: an adversarial perspective

There has been a variety of work in robust optimization (“RO”) to show that popular

penalty methods correspond exactly to an RO approach, offering a new interpretation

of the robustness of such methods. At its core, RO replaces probabilistic primitives

with a deterministic uncertainty set that restricts allowed deviations from a nomi-

nal model; at the same time, the RO approach considers a worst-case, pessimistic

objective over the uncertainty set.

In Chapter 3, we fully characterize the relationship between RO and the usual

penalty-based approach as taken in problems like linear regression and matrix com-

pletion. By precisely connecting the RO and penalization problems we show that

there is a fine line between the two—indeed, they are often different. This suggests

that RO is not merely another view of penalty methods; instead, the RO problem

can itself serve as a modeling primitive, giving new avenues for designing estimation

schemes. This crucial distinction opens the way for a variety of possible research di-

rections, from the data-driven construction of uncertainty sets to a more fine-grained

analysis of the relative merits of the two approaches.

This chapter appears in the published paper [26].

Connecting robustness to sparsity

The RO perspective is also critical in creating a more precise understanding of the

relationship between sparsity and robustness. In Chapter 4, we synthesize different

views on robustness to show that, in a precise sense, sparse models arise under an

optimistic model of robustness, in direct contrast with the pessimistic RO viewpoint.

Central to the analysis is a family of nonconvex penalty functions that we call the

trimmed Lasso and which bridges the gap between a convex method like the Lasso

and nonconvex approaches like best subset selection, which attempts to find the best

linear model (in terms of least squares loss) using a specified number of the possible

features. We show that the trimmed Lasso and variants thereof lead to a richer

17



class of estimators than many popularly used nonconvex penalty methods while still

being amenable to state-of-the-art techniques in convex and discrete optimization.

One immediate practical implication is that because the trimmed Lasso leads to a

larger class of estimators, there is potential for such estimators (e.g. as selected via

cross-validation) to display superior out-of-sample performance.

This chapter appears in large part in the submitted paper [28].

18



Chapter 2

Low Rank Factor Analysis

2.1 Introduction

Factor Analysis (“FA”) [6, 14, 108], a widely employed methodology in classical and

modern multivariate statistics, is used as a tool to obtain a parsimonious representa-

tion of the correlation structure among a set of variables in terms of a smaller number

of common hidden factors. A basic FA model is of the form x = Lf +𝜖, where x ∈ R𝑝

is the observed random vector, f ∈ R𝑟1 (with 𝑟1 ≤ 𝑝, though we do not necessar-

ily restrict 𝑟1 to be small) is a random vector of common factor variables or scores,

L ∈ R𝑝×𝑟1 is a matrix of factor loadings and 𝜖 ∈ R𝑝 is a vector of uncorrelated random

variables. We assume that the variables are mean-centered, f and 𝜖 are uncorrelated,

and without loss of generality, the covariance of f is the identity matrix. We will

denote Cov(𝜖) = Φ = diag(Φ1, . . . ,Φ𝑝). It follows that

Σ = Σ𝑐 + Φ, (2.1)

where Σ is the covariance matrix of x and Σ𝑐 := LL′ is the covariance matrix corre-

sponding to the common factors. Decomposition (2.1) suggests that Σ can be written

as the sum of a positive semidefinite (“PSD”) matrix Σ𝑐 of rank 𝑟1 and a nonnegative

diagonal matrix (Φ) corresponding to the errors. In particular, the variance of the

𝑖th coordinate of x := (𝑥1, . . . , 𝑥𝑝), i.e., var(𝑥𝑖) =
∑︀

𝑘 𝐿
2
𝑖𝑘 + Φ𝑖, 𝑖 = 1, . . . , 𝑝, splits into
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two parts. The first part (
∑︀

𝑘 𝐿
2
𝑖𝑘) is known as the communality estimate (since this

is the variance of the factors common to all the 𝑥𝑖’s) and the remaining part Φ𝑖 is the

variance specific to the 𝑖th variable (Φ𝑖’s are also referred to as the unique variances

or simply uniquenesses).

Formulation of the estimator: In decomposition (2.1), the assumption that the

rank (𝑟1) of Σ𝑐 is small compared to 𝑝 is fairly stringent—see [74, 138, 149] for a his-

torical overview of the concept. In a classical paper of [74], the author argued based

on psychometric evidence that Σ𝑐 is often found to have high algebraic rank. In psy-

chometric case studies it is rather rare that the covariance structure can be completely

explained by a few common factors corresponding to mental abilities—in fact, there

is evidence of at least hundreds of common factors being present with the number

growing without an upper bound. Formally, this means that instead of assuming that

Σ𝑐 has exactly low-rank it is practical to assume that it can be well-approximated

by a low-rank matrix, namely, L1L
′
1 with L1 ∈ R𝑝×𝑟. More precisely, L1L

′
1 is the

best rank-𝑟 approximation to Σ𝑐 in the matrix 𝑞-norm (also known as the Schatten

norm), as defined in (2.5), and (Σ𝑐 − L1L
′
1) is the residual component. Following

psychometric terminology, L1 corresponds to the 𝑟 most significant factors represen-

tative of mental abilities and the residual Σ𝑐 − L1L
′
1 corresponds to the remaining

psychometric factors unexplained by L1L
′
1. Thus we can rewrite decomposition (2.1)

as

Σ = L1L
′
1⏟  ⏞  

=:Θ

+ (Σ𝑐 − L1L
′
1)⏟  ⏞  

=:𝒩

+Φ, (2.2)

where we use the notation Θ = L1L
′
1 and 𝒩 = (Σ𝑐 − L1L

′
1) with Θ + 𝒩 = Σ𝑐 =

Σ − Φ. Note that Θ denotes the best rank-𝑟 approximation to (Σ − Φ), with the

residual component being 𝒩 = Σ − Φ −Θ. Note that the entries in Φ need to be

nonnegative1 and Σ−Φ < 0. In fact, in the words of [149, p. 326],

“. . .However, when Σ−Φ the covariance matrix for the common parts of

1Negative estimates of the diagonals of Φ are unwanted since they correspond to variances, but
some FA estimation procedures often lead to negative estimates of Φ—these are popularly known in
the literature as Heywood cases and have invited a significant amount of discussion in the community.
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the variables, would appear to be indefinite, that would be no less embar-

rassing than having a negative unique variance in Φ. . . ”

We further refer the reader to [108] for a discussion of the importance of Σ −

Φ being PSD.2 We thus have the following natural structural constraints on the

parameters:

Θ < 0, Φ = diag(Φ, . . . ,Φ𝑝) < 0, and Σ−Φ < 0. (2.3)

Motivated by the above considerations, we present the following rank-constrained

estimation problem for FA:

min
Θ,Φ

‖Σ− (Θ + Φ)‖𝑞𝑞

s. t. rank(Θ) ≤ 𝑟

Θ < 0

Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0,

(2.4)

where Θ ∈ R𝑝×𝑝,Φ ∈ R𝑝×𝑝 are the optimization variables, and for a real symmetric

matrix A ∈ R𝑝×𝑝, its matrix 𝑞-norm, also known as the Schatten norm (or Schatten-

von-Neumann norm), is defined as

‖A‖𝑞 :=

(︃
𝑝∑︁

𝑖=1

|𝜆𝑖(A)|𝑞
)︃1/𝑞

, (2.5)

where 𝜆𝑖(A), 𝑖 = 1, . . . , 𝑝, are the (real) eigenvalues of A.

Interpreting the estimator: The estimation criterion (2.4) seeks to jointly ob-

tain the (low-rank) common factors and uniquenesses that best explain Σ in terms

of minimizing the matrix 𝑞-norm of the error Σ − (Θ + Φ) under the PSD con-

straints (2.3). Note that criterion (2.4) does not necessarily assume that Σ exactly

2However, the estimation method described in [108] does not guarantee that Σ−Φ < 0.
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decomposes into a low-rank PSD matrix and a nonnegative diagonal matrix. Prob-

lem (2.4) enjoys curious similarities with Principal Component Analysis (“PCA”). In

PCA, given a PSD matrix Σ the leading 𝑟 principal component directions of Σ are

obtained by minimizing ‖Σ−Θ‖𝑞 subject to Θ < 0 and rank(Θ) ≤ 𝑟. If the optimal

solution Φ to Problem (2.4) is given, Problem (2.4) is analogous to a rank-𝑟 PCA

on the residual matrix Σ − Φ—thus it is naturally desirable to have Σ − Φ < 0.

In PCA one is interested in understanding the proportion of variance explained by

the top-𝑟 principal component directions:
∑︀𝑟

𝑖=1 𝜆𝑖(Σ)/
∑︀𝑝

𝑖=1 𝜆𝑖(Σ). The denominator∑︀𝑝
𝑖=1 𝜆𝑖(Σ) = Tr(Σ) accounts for the total variance explained by the covariance ma-

trix Σ. Analogously, the proportion of variance explained by ̂︀Θ𝑟 (which denotes the

best rank 𝑟 approximation to Σ−Φ) is given by
∑︀𝑟

𝑖=1 𝜆𝑖(Σ−Φ)/
∑︀𝑝

𝑖=1 𝜆𝑖(Σ−Φ)—

for this quantity to be interpretable it is imperative that Σ − Φ < 0. In the above

argument, of course, we assumed that Φ is given. In general, Φ needs to be es-

timated: Problem (2.4) achieves this goal by jointly learning Φ and Θ. We note

that certain popular approaches of FA (see Sections 2.1.1 and 2.1.2) do not impose

the PSD constraint Σ−Φ as a part of the estimation scheme—leading to indefinite

Σ−Φ—thereby rendering statistical interpretations troublesome. Our numerical evi-

dence suggests that the quality of estimates of Θ and Φ obtained from Problem (2.4)

outperform those obtained by other competing procedures which do not incorporate

the PSD constraints into their estimation criteria.

Choice of 𝑟: In exploratory FA, it is standard to consider several choices of 𝑟

and study the manner in which the proportion of variance explained by the common

factors saturates with increasing 𝑟. We refer the reader to popularly used methods

described in [6, 14, 108] and more modern techniques [10, see also references therein]

for the choice of 𝑟.

Estimate of Covariance Matrix: In the finite sample setting, we set Σ to be the

sample covariance matrix. A consequence of solving Problem (2.4) is that we get an

estimate for the covariance matrix given by Θ̂+ Φ̂—in this sense, criterion (2.4) can
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be viewed as a regularization scheme: the rank constraint on Θ encourages parsimony

and the PSD constraints encourage interpretability, as discussed above.

In this chapter, we propose a general computational framework to solve Problem

(2.4) for any 𝑞 ≥ 1. The well-known Schatten 𝑞-norm appearing in the loss function

is chosen for flexibility—it underlines the fact that our approach can be applied for

any 𝑞 ≥ 1. Note that the estimation criterion (2.4) (even for the case 𝑞 = 1) does

not seem to appear in prior work on approximate minimum rank Factor Analysis

(MRFA) [150, 139]. However, we show in Proposition 1 that Problem (2.4) for the

special case 𝑞 = 1 turns out to be equivalent to MRFA. For 𝑞 = 2, the loss function

is the familiar squared Frobenius norm also used in MINRES, though the latter

formulation is not equivalent to Problem (2.4), as explained in Section 2.1.1. We

place more emphasis on studying the computational properties for the more common

norms 𝑞 ∈ {1, 2}.

The presence of the rank constraint in Problem (2.4) makes the optimization prob-

lem nonconvex. Globally optimizing Problem (2.4), or for that matter obtaining a

good stationary point, is quite challenging. We propose a new equivalent smooth

formulation to Problem (2.4) which does not contain the combinatorial rank con-

straint. We employ simple and tractable sequential convex relaxation techniques

with guaranteed convergence properties and excellent computational properties to

obtain a stationary point for Problem (2.4). An important novelty of this chapter is

to present certifiable lower bounds on Problem (2.4) without resorting to structural

assumptions, thus making it possible to solve Problem (2.4) to provable optimality.

Towards this end we propose new methods and ideas that incorporate state-of-the-art

developments in nonlinear and global optimization.3

3The class of optimization problems studied here involve global minimization of nonconvex, con-
tinuous semidefinite optimization problems. Computational methods for this class of problems are
in a nascent stage; further, such methods are significantly less developed when compared to those
for mixed integer linear optimization problems, thus posing a major challenge in this work.
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2.1.1 A selective overview of related FA estimators

FA has a long and influential history which dates back more than a hundred years.

The notion of FA possibly first appeared in [143] for the one factor model, which was

then generalized to the multiple factors model by various authors (see, for example,

[155]). Significant contributions related to computational methods for FA have been

nicely documented in [10, 76, 87, 88, 97, 99, 125, 138, 150], among others.

We will briefly describe some widely used approaches for FA that are closely

related to the approach pursued herein and also point out their connections.

Constrained Minimum Trace Factor Analysis (MTFA): This approach [152,

128] seeks to decompose Σ exactly into the sum of a diagonal matrix and a low-rank

component, which are estimated via the following convex optimization problem:

min
Θ,Φ

Tr(Θ)

s. t. Θ < 0

Σ = Θ + Φ

Φ = diag(Φ1, . . . ,Φ𝑝) < 0

(2.6)

Because Θ is PSD, Tr(Θ) =
∑︀𝑝

𝑖=1 𝜆𝑖(Θ) is a convex surrogate [61] for the rank of

Θ. As such, Problem (2.6) may thus be viewed as a convexification of the rank

minimization problem

min
Θ,Φ

rank(Θ)

s. t. Θ < 0

Σ = Θ + Φ

Φ = diag(Φ1, . . . ,Φ𝑝) < 0.

(2.7)

In general, Problems (2.6) and (2.7) are not equivalent. See [128, 135, 138] and

references therein for further connections between the minimizers of (2.6) and (2.7).

A main difference between formulations (2.4) and (2.7) is that the former allows

an error in the residual (Σ−Θ−Φ) by constraining Θ to have low-rank, unlike (2.7)
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which imposes a hard constraint Σ = Θ + Φ. As noted earlier, this can be quite

restrictive in various applications. Even if one views Problem (2.6) as imposing a

less stringent requirement than that of Problem (2.7), we see two distinct advantages

of Problem (2.4) over Problem (2.6): it offers the modeling flexibility of controlling

the complexity, viz. rank, of solutions via the choice of 𝑟; and it provides smaller of

estimates of rank for a comparable amount of explained variance, as substantiated by

experimental findings presented in Section 2.5.

Approximate Minimum Rank Factor Analysis (MRFA): This method [150,

139] considers the following optimization problem:

min
Φ

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ−Φ)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0.

(2.8)

Proposition 1 presented below establishes that Problem (2.8) is equivalent to the

rank-constrained FA formulation (2.4) for the case 𝑞 = 1. This connection does not

appear to be formally established in [150]. We believe that criterion (2.4) for 𝑞 = 1

is easier to interpret as an estimation criterion for FA models over (2.8). [152, 150]

describe a method4 for numerically optimizing (2.8)—as documented in the code for

MRFA [151], their implementation can handle problems of size 𝑝 ≤ 20.

Principal Component (PC) Factor Analysis: Principal Component factor anal-

ysis (“PC”) [50, 10] implicitly assumes that Φ is a nonnegative scalar multiple of the

identity and performs a low-rank PCA on Σ. It is not clear how to estimate Φ via

this method such that Φ𝑖 ≥ 0 and Σ − Φ < 0. Following [108], the Φ’s may be

estimated after estimating ̂︀Θ via the update rule ̂︀Φ = diag(Σ − ̂︀Θ)—the estimates

thus obtained, however, need not be nonnegative. Furthermore, it is not guaranteed

that the condition Σ−Φ < 0 is met.

4The method is similar to Algorithm 1 presented herein for the case of 𝑞 = 1; however, [152, 150]
rely on a heuristic procedure, as described in [20], for the subproblem with respect to Φ.
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Minimum Residual Factor Analysis (MINRES): This approach [76, 139] con-

siders the problem

min
L∈R𝑝×𝑟

∑︁
1≤𝑖 ̸=𝑗≤𝑝

(Σ𝑖𝑗 − (LL′)𝑖𝑗)
2
, (2.9)

where the sum in the objective is taken over all the off-diagonal entries. Formula-

tion (2.9) is equivalent to the nonconvex optimization problem

min
Θ,Φ

‖Σ− (Θ + Φ)‖22

s. t. rank(Θ) ≤ 𝑟

Θ < 0

Φ = diag(Φ1, . . . ,Φ𝑝).

(2.10)

Note that the variables Φ𝑖, 𝑖 = 1, . . . , 𝑝, are unconstrained. If ̂︀Θ is a minimizer of

Problem (2.10), then any ̂︀L satisfying ̂︀L̂︀L′ = ̂︀Θ minimizes (2.9) and vice versa.

Various heuristic approaches are used to for Problem (2.9). For example, the R

package psych uses a black box gradient-based tool optim to minimize the nonconvex

Problem (2.9) with respect to L. Once ̂︀L is estimated, the diagonal entries of Φ are

estimated as ̂︀Φ𝑖 = Σ𝑖𝑖 − (̂︀L̂︀L′)𝑖𝑖 for 𝑖 ≥ 1. Note that ̂︀Φ𝑖 obtained in this fashion may

be negative5 and the condition Σ−Φ < 0 may be violated.

Generalized Least Squares, Principal Axis and variants: The Ordinary Least

Squares (OLS) method for FA [14] considers formulation (2.10) with the additional

constraint that Φ𝑖 ≥ 0 ∀𝑖. The Weighted Least Squares (WLS) or the generalized least

squares method (see for example, [14]) considers a weighted least squares objective:

‖W (Σ− (Θ + Φ))‖22 .

As in the ordinary least squares case, here too we assume that Φ𝑖 ≥ 0. Various choices

of W are possible depending upon the application, with W ∈ {Σ−1,Φ−1} being a

couple of popular choices.

5If ̂︀Φ𝑖 < 0, some ad-hoc procedure is used to threshold it to a nonnegative quantity.
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The Principal Axis (PA) FA method [14, 127] is popularly used to estimate factor

model parameters based on criterion (2.10) along with the constraints Φ𝑖 ≥ 0 ∀𝑖. This

method starts with a nonnegative estimate ̂︀Φ and performs a rank 𝑟 eigendecompo-

sition on Σ− ̂︀Φ to obtain ̂︀Θ. The matrix ̂︀Φ is then updated to match the diagonal

entries of Σ − ̂︀Θ, and the above steps are repeated until the estimate ̂︀Φ stabilizes.6

Note that in this procedure the estimate ̂︀Θ may fail to be PSD and the entries of̂︀Φ𝑖 may be negative as well. Heuristic restarts and various initializations are often

carried out to arrive at a reasonable solution (see for example discussions in [14]).

In summary, the least squares stylized methods described above may lead to esti-

mates that violate one or more of the constraints: Σ−Φ < 0, Θ < 0, and Φ < 0.

Maximum Likelihood for Factor Analysis: This approach [9, 87, 108, 132, 133]

is another widely used method in FA and typically assumes that the data follows a

multivariate Gaussian distribution. This procedure maximizes a likelihood function

and is quite different from the loss functions pursued herein and discussed above. The

estimator need not exist for any Σ—see, e.g., [129].

Most of the methods described in Section 2.1.1 are widely used and their imple-

mentations are available in statistical packages psych [127], nFactors [124], GPArotation

[21], and others and are publicly available from CRAN.7

2.1.2 Broad categories of factor analysis estimators

A careful investigation of the methods described above suggests that they can be

divided into two broad categories. Some of the above estimators explicitly incorporate

a PSD structural assumption on the residual covariance matrix Σ−Φ in addition to

requiring Θ < 0 and Φ < 0 while the others do not. As already pointed out, these

constraints are important for statistical interpretability. We propose to distinguish

between the following two broad categories of FA algorithms:

6However, we are not aware of a proof showing the convergence of this procedure.
7http://cran.us.r-project.org
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(A) This category is comprised of FA estimation procedures cast as nonlinear Semidef-

inite Optimization (SDO) problems—estimation takes place in the presence of

constraints of the form Σ−Φ < 0, along with Θ < 0 and Φ < 0. Members of

this category are MRFA, MTFA and more generally Problem (2.4).

Existing approaches for these problems are typically not scalable: for example,

we are not aware of any algorithm (prior to this work) for Problem (2.8) (MRFA)

that scales to covariance matrices with 𝑝 larger than thirty. Indeed, while

theoretical guarantees of optimality exist in certain cases [135], the conditions

required for such results to hold are generally difficult to verify in practice.

(B) This category includes classical FA methods which are not based on nonlinear

SDO based formulations (as in Category (A)). MINRES, OLS, WLS, GLS, PC

and PA based FA estimation procedures (as described in Section 2.1.1) belong

to this category. These methods are generally scalable to problem sizes where

𝑝 is of the order of a few thousand—significantly larger than most procedures

belonging to Category (A)—and are implemented in open-source R-packages.

Contributions: Our contributions in this chapter may be summarized as follows:

1. We consider a flexible family of FA estimators which can be obtained as solutions

to rank-constrained nonlinear SDO problems. In particular, our framework

provides a unifying perspective on several existing FA estimation approaches.

2. We propose a novel exact reformulation of the rank-constrained FA problem (2.4)

as a smooth optimization problem with convex compact constraints. We also

develop a unified algorithmic framework utilizing modern optimization tech-

niques to obtain high quality solutions to Problem (2.4). Our algorithms, at

every iteration, simply require computing a low-rank eigendecomposition of a

𝑝 × 𝑝 matrix and a structured scalable convex SDO. Our proposal is capable

of solving FA problems involving covariance matrices having dimensions up to

a few thousand, thereby making it on par with the most scalable FA methods
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used currently.8

3. Our SDO formulation enables us to estimate the underlying factors and unique

variances under the restriction that the residual covariance matrix is PSD—a

characteristic that is absent in several popularly used FA methods. This aids

statistical interpretability, especially in drawing parallels with PCA and under-

standing the proportion of variance explained by a given number of factors.

Methods proposed herein produce superior quality estimates, in terms of var-

ious performance metrics, when compared to existing FA approaches. To our

knowledge, this is the first work demonstrating that certifiably optimal solu-

tions to a rank-constrained problem can be found for problems of realistic sizes,

without making any assumptions on the underlying data.

4. Using techniques from discrete and global optimization, we develop a branch-

and-bound algorithm which proves that the low-rank solutions found are often

optimal in seconds for problems on the order of 𝑝 = 10 variables, in minutes for

problems on the order of 𝑝 = 100, and in days for some problems on the order

of 𝑝 = 4000. As the selected rank increases, so too does the computational

burden of proving optimality. It is particularly crucial to note that the optimal

solutions for all problems we consider are found very quickly, and that vast

majority of computational time is then spent on proving optimality. Hence, for

a practitioner who is not particularly concerned with certifying optimality, our

techniques for finding feasible solutions provide high-quality estimates quickly.

5. We provide computational evidence demonstrating the favorable performance of

our proposed method. Finally, to the best of our knowledge this is the first work

that views various FA methods in a unified fashion via a modern optimization

lens and attempts to compare a wide range of FA techniques in large scale.

Structure of the chapter: The chapter is organized as follows. In Section 2.1

we propose a flexible family of optimization Problems (2.4) for the task of statistical

8An implementation of our approach is available in Appendix D.
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estimation in FA models. Section 2.2 presents an exact reformulation of Problem (2.4)

as a nonlinear SDO without the rank constraint. Section 2.3 describes the use of

nonlinear optimization techniques such as the Conditional Gradient (CG) method [23]

adapted to provide feasible solutions (upper bounds) to our formulation. First order

methods employed to compute the convex SDO subproblems are also described in

the same section. In Section 2.4, we describe our method for certifying optimality

of the solutions from Section 2.3 in the case when 𝑞 = 1. In Section 2.5, we present

computational results demonstrating the effectiveness of our proposed method in

terms of (a) modeling flexibility in the choice of the number of factors 𝑟 and the

parameter 𝑞, (b) scalability, and (c) the quality of solutions obtained in a wide array

of real and synthetic datasets—comparisons with several existing methods for FA are

considered. Section 2.6 contains our conclusions.

2.2 Reformulations of Problem (2.4)

Let 𝜆(A) denote the vector of eigenvalues of A ∈ R𝑝×𝑝, arranged in decreasing order,

i.e.,

𝜆1(A) ≥ 𝜆2(A) ≥ . . . ≥ 𝜆𝑝(A). (2.11)

The following proposition presents the first reformulation of Problem (2.4) as a

continuous eigenvalue optimization problem with convex compact constraints. Proofs

of all results can be found in Appendix A.1.

Proposition 1. (a) For any 𝑞 ≥ 1, Problem (2.4) is equivalent to

min
Φ

𝑓𝑞(Φ;Σ) :=

𝑝∑︁
𝑖=𝑟+1

𝜆𝑞
𝑖 (Σ−Φ)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0.

(CFA𝑞)
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(b) Suppose Φ* is a minimizer of Problem (CFA𝑞), and let

Θ* = U diag
(︀
𝜆1(Σ−Φ*), . . . , 𝜆𝑟(Σ−Φ*), 0, . . . , 0⏟  ⏞  

𝑝−𝑟 times

)︀
U′,

where U ∈ R𝑝×𝑝 is the matrix of eigenvectors of Σ − Φ*. Then (Θ*,Φ*) is a

solution to Problem (2.4).

Problem (CFA𝑞) is a nonlinear SDO in Φ, unlike the original formulation (2.4)

that estimates Θ and Φ jointly. Note that the rank constraint does not appear in

Problem (CFA𝑞) and the constraint set of Problem (CFA𝑞) is convex and compact.

However, Problem (CFA𝑞) is nonconvex due to the nonconvex objective function∑︀𝑝
𝑖=𝑟+1 𝜆

𝑞
𝑖 (Σ − Φ). For 𝑞 = 1 the function appearing in the objective of (CFA𝑞) is

concave and for 𝑞 > 1, it is neither convex nor concave.

Proposition 2. The estimation Problem (2.4) is equivalent to

min
Θ,Φ

‖Σ− (Θ + Φ)‖𝑞𝑞

s. t. rank(Θ) ≤ 𝑟

Θ < 0

Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0

Σ−Θ < 0.

(2.12)

Note that Problem (2.12) has an additional PSD constraint Σ − Θ < 0 which

does not explicitly appear in Problem (2.4). It is interesting to note that the two

problems are equivalent. By virtue of Proposition 2, Problem (2.12) can as well be

used as the estimation criterion for rank constrained FA. However, we will work with

formulation (2.4) because it is easier to interpret from a statistical perspecitve.

Special instances of (CFA𝑞): We show that some well-known FA estimation prob-

lems can be viewed as special cases of our general framework.
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For 𝑞 = 1, Problem (CFA𝑞) reduces to MRFA, as described in (2.8). For 𝑞 = 1

and 𝑟 = 0, Problem (CFA𝑞) reduces to MTFA (2.6). When 𝑞 = 2, we get a variant

of (2.10), i.e., a PSD constrained analogue of MINRES

min
Φ

𝑝∑︀
𝑖=𝑟+1

𝜆2
𝑖 (Σ−Φ)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0.

(2.13)

Note that unlike Problem (2.10), Problem (2.13) explicitly imposes PSD constraints

on Φ and Σ −Φ. The objective function in (CFA𝑞) is continuous but non-smooth.

The function is differentiable at Φ if and only if the 𝑟 and (𝑟 + 1)th eigenvalues of

Σ−Φ are distinct [100, 139], i.e., 𝜆𝑟+1(Σ−Φ) < 𝜆𝑟(Σ−Φ). The non-smoothness of

the objective function in Problem (CFA𝑞) makes the use of standard gradient based

methods problematic [23]. Theorem 1 presents a reformulation of Problem (CFA𝑞)

in which the objective function is continuously differentiable.

Theorem 1. (a) The estimation criterion given by Problem (2.4) is equivalent to9

min
Φ,W

𝑔𝑞(W,Φ) := Tr(W(Σ−Φ)𝑞)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0

I < W < 0

Tr(W) = 𝑝− 𝑟.

(2.14)

(b) The solution ̂︀Θ of Problem (2.4) can be recovered from the solution ̂︁W, ̂︀Φ of

Problem (2.14) via

̂︀Θ := ̂︀U diag(̂︀𝜆1, . . . , ̂︀𝜆𝑟, 0, . . . , 0⏟  ⏞  
𝑝−𝑟 times

)̂︀U′, (2.15)

where ̂︀U is the matrix formed by the 𝑝 eigenvectors corresponding to the eigen-
9For any PSD matrix A, with eigendecomposition A = U𝐴 diag(𝜆1, . . . , 𝜆𝑝)U

′
𝐴, we define A𝑞 :=

U𝐴 diag(𝜆𝑞
1, . . . , 𝜆

𝑞
𝑝)U

′
𝐴, for any 𝑞 ≥ 1.
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values ̂︀𝜆1, . . . , ̂︀𝜆𝑝 (arranged in decreasing order) of the matrix Σ − ̂︀Φ. Given ̂︀Φ,

any solution ̂︀Θ (given by (2.15)) is independent of 𝑞.

In Problem (2.14), if we partially minimize the function 𝑔𝑞(W,Φ) over Φ (with

fixed W), the resulting function is concave in W. This observation leads to the

following proposition.

Proposition 3. The function 𝐺𝑞(W) obtained upon (partially) minimizing 𝑔𝑞(W,Φ)

over Φ (with W fixed) in Problem (2.14), given by

𝐺𝑞(W) := min
Φ

𝑔𝑞(W,Φ)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Σ−Φ < 0,

(2.16)

is concave in W. The subgradients of the function 𝐺𝑞(W) exist and are given by

∇𝐺𝑞(W) = (Σ− ̂︀Φ(W))𝑞, (2.17)

where ̂︀Φ(W) is a minimizer of the convex optimization Problem (2.16).

In light of Proposition 3, we present another reformulation of Problem (2.4) as

the following concave minimization problem:

min
W

𝐺𝑞(W)

s. t. I < W < 0

Tr(W) = 𝑝− 𝑟,

(2.18)

where the function 𝐺𝑞(W) is differentiable if and only if ̂︀Φ(W) is unique.

Note that by virtue of Proposition 1, Problems (CFA𝑞) and (2.18) are equivalent.

Therefore, it is natural to ask whether one formulation might be favored over the

other from a computational perspective. Towards this end, note that both Prob-

lems (CFA𝑞) and (2.18) involve the minimization of a non-smooth objective function,

over convex compact constraints. However, the objective function of Problem (CFA𝑞)
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is nonconvex (for 𝑞 > 1) whereas the one in Problem (2.18) is concave (for all 𝑞 ≥ 1).

We will see in Section 2.3 that CG-based algorithms can be applied to a concave min-

imization problem (even if the objective function is not differentiable); however, CG

applied to general non-smooth objective functions has limited convergence guarantees.

Thus, formulation (2.18) is readily amenable to CG-based optimization algorithms,

unlike formulation (CFA𝑞). This seems to make Problem (2.18) computationally

more appealing than Problem (CFA𝑞).

2.3 Finding upper bounds

This section presents a unified computational framework for the class of problems

(CFA𝑞). Problem (2.14) is a nonconvex smooth optimization problem and obtain-

ing a stationary point is quite challenging. We propose iterative schemes based on

the Conditional Gradient (CG) algorithm [23]—a generalization of the Frank-Wolfe

algorithm [66]—to obtain a stationary point of the problem. The appealing aspect

of our framework is that every iteration of the algorithm requires solving a convex

SDO problem which is computationally tractable. While off-the-shelf interior point

algorithms—for example SDPT3 [158], Yalmip [107], and MOSEK [5]—can be used to

solve the convex SDO problems, they typically do not scale well for large problems

due to intensive memory requirements. In this vein, first order algorithms have re-

ceived a lot of attention [116, 117, 118] in convex optimization of late, due to their

low cost per iteration, low-memory requirements, and ability to deliver solutions of

moderate accuracy for large problems within a modest time limit. We use first order

methods to solve the convex SDO problems. We present one primary scheme based

on the CG algorithm:

Algorithm 1: This scheme, described in Section 2.3.1, applies CG on the

optimization Problem (2.18), where the function 𝐺𝑞(W) defined in (2.16)

is concave (and possibly non-smooth).

In addition, in Appendix A.2 we present an alternative approach that applies CG to

Problem (2.14), where the objective function 𝑔𝑞(W,Φ) is smooth.
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To make notation simpler, we will use the following shorthand:

𝒲𝑝−𝑟 = {W ∈ R𝑝×𝑝 : I < W < 0, Tr(W) = 𝑝− 𝑟}

ℱΣ = {Φ : Σ−Φ < 0, Φ = diag(Φ1, . . . ,Φ𝑝) < 0}.

2.3.1 A CG-based algorithm for (2.18)

The CG method for Problem (2.18) requires solving a linearization of the concave

objective function. At iteration 𝑘, if W(𝑘) is the current estimate of W, the new

estimate W(𝑘+1) is obtained by

W(𝑘+1) ∈ arg min
W∈𝒲𝑝−𝑟

⟨︀
∇𝐺𝑞(W

(𝑘)),W
⟩︀

= arg min
W∈𝒲𝑝−𝑟

Tr(W(Σ−Φ(𝑘))𝑞), (2.19)

where by Proposition 3, (Σ − Φ(𝑘))𝑞 is a subgradient of 𝐺𝑞(W) at W(𝑘) with Φ(𝑘)

given by

Φ(𝑘) ∈ arg min
Φ∈ℱΣ

Tr(W(𝑘)(Σ−Φ)𝑞) (2.20)

No explicit line search is necessary here because the minimum will always be at the

new point, i.e., Φ(𝑘), due to the concavity of the objective function. The sequence

W(𝑘) is recursively computed via (2.19) until the convergence criterion

𝐺𝑞(W
(𝑘))−𝐺𝑞(W

(𝑘+1)) ≤ TOL ·𝐺𝑞(W
(𝑘)), (2.21)

is met for some user-defined tolerance TOL > 0. A short description of the procedure

appears in Algorithm 1.

Algorithm 1 A CG based algorithm for formulation (2.18)

1. Initialize with W(1) (𝑘 = 1), feasible for Problem (2.18) and repeat, for 𝑘 ≥ 2,
Steps 2-3 until convergence criterion (2.21) is satisfied.

2. Update Φ (with W fixed) by solving (2.20).

3. Update W (with Φ fixed) by solving (2.19), to get W(𝑘+1).
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Before we present the convergence rate of Algorithm 1, we will need to introduce

some notation. For any point W belonging to the feasible set of Problem (2.18) let

us define ∆(W) as follows:

∆(W) := min
W∈𝒲𝑝−𝑟

⟨∇𝐺𝑞(W),W −W⟩. (2.22)

Further, W* satisfies the first order stationary condition for Problem (2.18) if W* is

feasible for the problem and ∆(W*) ≥ 0.

We now present Theorem 2 establishing the rate of convergence and associated

convergence properties of Algorithm 1. The proof (along with all other omitted

proofs) is contained in Appendix A.1.

Theorem 2. If W(𝑘) is a sequence produced by Algorithm 1, then 𝐺𝑞(W
(𝑘)) is a

monotone decreasing sequence and every limit point W(∞) of the sequence W(𝑘) is a

stationary point of Problem (2.18). Furthermore, Algorithm 1 has a convergence rate

of 𝑂(1/𝐾) (with 𝐾 denoting the iteration index) to a first order stationary point of

Problem (2.18), i.e.,

min
𝑖=1,...,𝐾

{︀
−∆(W(𝑖))

}︀
≤ 𝐺𝑞(W

(1))−𝐺𝑞(W
(∞))

𝐾
. (2.23)

2.3.2 Solving the convex SDO problems

Algorithm 1 requires sequentially solving convex SDO problems in W and Φ. We

describe herein how these subproblems can be solved efficiently.

Solving the SDO problem with respect to W

A generic SDO problem associated with Problem (2.19) requires updating W as

̂︁W ∈ arg min
W∈𝒲𝑝−𝑟

⟨W,̃︁W⟩, (2.24)

for some fixed symmetric ̃︁W ∈ R𝑝×𝑝, depending upon the algorithm and the choice

of 𝑞. For Algorithm 1 the update in W at iteration 𝑘 for Problem (2.19), corresponds
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to ̃︁W = (Σ−Φ(𝑘+1))𝑞.

A solution to Problem (2.24) is given by ̂︁W =
∑︀𝑝

𝑖=𝑟+1 u𝑖u
′
𝑖, where u1, . . . ,u𝑝 are

the eigenvectors of the matrix ̃︁W, corresponding to the eigenvalues 𝜆1(̃︁W), . . . , 𝜆𝑝(̃︁W).

Solving the SDO problem with respect to Φ

The SDO problem arising from the update of Φ is not as straightforward as the

update with respect to W. Before presenting the general case, it helps to consider a

few special cases of (CFA𝑞). For 𝑞 = 1 the objective function of Problem (2.14)

𝑔1(W,Φ) = ⟨W,Σ⟩ −
𝑝∑︁

𝑖=1

𝑤𝑖𝑖Φ𝑖 (2.25)

is linear in Φ (for fixed W). For 𝑞 = 2, the objective function of Problem (2.14)

𝑔2(W,Φ) = Tr(WΣ2) +

𝑝∑︁
𝑖=1

(𝑤𝑖𝑖Φ
2
𝑖 − 2⟨w𝑖,𝜎𝑖⟩Φ𝑖) (2.26)

is a convex quadratic in Φ (for fixed W).

For Algorithm 1, the partial minimizations with respect to Φ, for 𝑞 = 1 and 𝑞 = 2,

require minimizing Problems (2.25) and (2.26), respectively.

Various instances of optimization problems with respect to Φ such as those ap-

pearing in Algorithm 1 can be viewed as special cases of the following family of SDO

problems:

min
Φ∈ℱΣ

𝑝∑︀
𝑖=1

(𝑐𝑖Φ
2
𝑖 + 𝑑𝑖Φ𝑖) (2.27)

where 𝑐𝑖 ≥ 0 and 𝑑𝑖 for 𝑖 = 1, . . . , 𝑝 are problem parameters that depend upon the

choice of algorithm and 𝑞. We now present a first order convex optimization scheme

for solving (2.27).

A first order scheme for (2.27)

With the intention of providing a simple and scalable algorithm for the convex SDO

problem, we use the Alternating Direction Method of Multipliers [23, 37] (ADMM).
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We introduce a splitting variable Λ = Σ − Φ and rewrite Problem (2.27) in the

following equivalent form:

min
Φ,Λ

𝑝∑︁
𝑖=1

(𝑐𝑖Φ
2
𝑖 + 𝑑𝑖Φ𝑖)

s. t. Φ = diag(Φ1, . . . ,Φ𝑝) < 0

Λ < 0

Λ = Σ−Φ.

(2.28)

The Augmented Lagrangian for the above problem is:

ℒ𝜌(Φ,Λ,𝜈) :=

𝑝∑︁
𝑖=1

(𝑐𝑖Φ
2
𝑖 + 𝑑𝑖Φ𝑖) + ⟨𝜈,Λ− (Σ−Φ)⟩+

𝜌

2
‖Λ− (Σ−Φ)‖22, (2.29)

where 𝜌 > 0 is a scalar and ⟨·, ·⟩ denotes the standard trace inner product. ADMM

involves the following three updates:

Φ(𝑘+1) ∈ arg min
Φ=diag(Φ1,...,Φ𝑝)<0

ℒ𝜌(Φ,Λ(𝑘),𝜈(𝑘)), (2.30)

Λ(𝑘+1) ∈ arg min
Λ<0

ℒ𝜌(Φ
(𝑘+1),Λ,𝜈(𝑘)), (2.31)

𝜈(𝑘+1) = 𝜈(𝑘) + 𝜌(Λ(𝑘+1) − (Σ−Φ(𝑘+1))), (2.32)

and produces a sequence {(Φ(𝑘),𝜆(𝑘),𝜈(𝑘))}𝑘≥1; the convergence properties of the

algorithm are quite well-known [37].

Problem (2.30) can be solved in closed form as

Φ
(𝑘+1)
𝑖 =

𝜌

𝜌 + 2𝑐𝑖
max

{︃
(𝜎𝑖𝑖 − 𝜆

(𝑘)
𝑖𝑖 )− (𝑑𝑖 + 𝜈

(𝑘)
𝑖𝑖 )

𝜌
, 0

}︃
, 𝑖 = 1, . . . , 𝑝. (2.33)

38



The update with respect to Λ in (2.31) requires an eigendecomposition:

Λ(𝑘+1) = arg min
Λ<0

⃦⃦⃦⃦
Λ− (Σ−Φ(𝑘+1) − 1

𝜌
𝜈(𝑘))

⃦⃦⃦⃦2
2

=𝒫𝑆+
𝑝

(︂
Σ−Φ(𝑘+1) − 1

𝜌
𝜈(𝑘)

)︂
,

(2.34)

where the operator 𝒫𝑆+
𝑝

(A) denotes the projection of a symmetric matrix A onto the

cone of PSD matrices of dimension 𝑝× 𝑝:

𝒫𝑆+
𝑝

(A) = U𝐴 diag (max {𝜆1, 0} , . . . ,max {𝜆𝑝, 0})U′
𝐴,

where A = U𝐴 diag(𝜆1, . . . , 𝜆𝑝)U
′
𝐴 is the eigendecomposition of A.

Stopping criterion: The ADMM iterations (2.30)—(2.32) are continued till the

values of ‖Λ(𝑘+1) − (Σ − Φ(𝑘+1))‖2 and the relative change in the objective values

of Problem (2.27) become smaller than a certain threshold, say, TOL × 𝛼, where

𝛼 ∈ {10−1, . . . , 10−3}—this is typically taken to be smaller than the convergence

threshold for the CG iterations (TOL).

Computational cost of Problem (2.27): The most intensive computational stage

in the ADMM procedure is in performing the projection operation (2.34); this requires

𝑂(𝑝3) operations due to the associated eigendecomposition. This needs to be done

for as many ADMM steps, until convergence.

Since Problem (2.27) is embedded inside iterative procedures like Algorithm 1, the

estimates of (Φ,Λ,𝜈) obtained by solving Problem (2.27) for a iteration index (of the

CG algorithm) provides a good warm-start for the Problem (2.27) in the subsequent

CG iteration. This is often found to decrease the number of iterations required by

the ADMM algorithm to converge to a prescribed level of accuracy.10

10The utility of warm starts is another compelling reason to apply a first-order-based approach
instead of interior point methods. Indeed, warm starts are well-known to perform quite poorly when
incorporated into interior point methods—often they can perform worse than cold starts [163, 86].
Given the need to repeatedly solve similarly structured SDOs for both upper bounds (as presented
in this section) as well as lower bounds (as presented in Section 2.4), the ability to effectively
incorporate warm start information is crucial.
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2.3.3 Computational cost of Algorithm 1

For Algorithm 1 and other CG-based algorithms for factor analysis (see Appendix

A.2), the computational bottleneck is in performing the eigendecomposition of a 𝑝×𝑝

matrix: the W update requires performing a low-rank eigendecomposition of a 𝑝× 𝑝

matrix and the Φ update requires solving a problem of the form (2.27), which also

costs 𝑂(𝑝3). Since eigendecompositions can easily be done for 𝑝 of the order of a few

thousands, the proposed algorithms can be applied to that scale.

Note that most existing popular algorithms for FA belonging to Category (B) (see

Section 2.1.2) also perform an eigendecomposition with cost 𝑂(𝑝3). Thus it appears

that Category (B) and the algorithms proposed herein have the same computational

complexity and hence these two estimation approaches are equally scalable.

2.4 Certificates of optimality via lower bounds

In this section, we outline our approach to computing lower bounds to (CFA𝑞) via

techniques from global optimization and matrix analysis. In particular, we focus

on the case when 𝑞 = 1.11 We begin with an overview of the method. We then

discuss initialization parameters for the method as well as branching rules and other

refinements employed in our approach.

2.4.1 Overview of method

Our primary problem of interest is to provide lower bounds to (CFA1), i.e.,

min
Φ∈ℱΣ

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ−Φ), (2.35)

11The general case for 𝑞 > 1 can be addressed using similar (although more complicated) tech-
niques as applied to Problem (2.14), again applying principles developed in global optimization.
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or equivalently via Theorem 1,

min
W∈𝒲𝑝−𝑟

Φ∈ℱΣ

⟨W,Σ−Φ⟩. (2.36)

One possible approach is to consider convex lower bounds to (2.36).

Definition 1. For a function 𝑓 : Γ ⊆ R𝑛 → R we define its convex envelope on Γ,

denoted convenvΓ(𝑓), to be the largest convex function 𝑔 with 𝑔 ≤ 𝑓 . In symbols,

𝑔 = sup{ℎ : Γ→ R | ℎ convex on Γ and ℎ ≤ 𝑓}.

The convex envelope acts as the best possible convex lower bound for a given

function. Further, its precise form is well-known for certain classes of functions; one

such function of principle interest here is described in the following theorem. This is

in some contexts referred to as a McCormick hull and is widely used throughout the

nonconvex optimization literature [64, 148].

Theorem 3 ([2]). If 𝑓 : Γ = [0, 1]× [ℓ, 𝑢]→ R is defined by 𝑓(𝑥, 𝑦) = −𝑥𝑦, then the

convex envelope of 𝑓 on Γ is precisely

convenvΓ(𝑓)(𝑥, 𝑦) = max{−𝑢𝑥, ℓ− ℓ𝑥− 𝑦}.

Further, |𝑓(𝑥, 𝑦)− convenvΓ(𝑓)(𝑥, 𝑦)| ≤ (𝑢− ℓ)/4. In particular, if |𝑢− ℓ| → 0, then

convenvΓ(𝑓)→ 𝑓 .

Using this result we proceed to describe our approach for computing lower bounds

to (CFA1) as in (2.36). First observe that if Φ𝑖 ∈ [ℓ𝑖, 𝑢𝑖] and 𝑊𝑖𝑖 ∈ [0, 1], then

convenv(−𝑊𝑖𝑖Φ𝑖)(𝑊𝑖𝑖,Φ𝑖) = max{−𝑢𝑖𝑊𝑖𝑖, ℓ𝑖 − ℓ𝑖𝑊𝑖𝑖 − Φ𝑖}

= −min{𝑢𝑖𝑊𝑖𝑖,Φ𝑖 + ℓ𝑖𝑊𝑖𝑖 − ℓ𝑖}.

Hence, the best possible convex lower bound to the objective in Problem (2.36),
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namely ⟨W,Σ−Φ⟩ = ⟨W,Σ⟩ −
∑︀

𝑖 𝑊𝑖𝑖Φ𝑖, for ℓ ≤ diag(Φ) ≤ u and I < W < 0 is

⟨W,Σ⟩ −
𝑝∑︁

𝑖=1

min{𝑢𝑖𝑊𝑖𝑖,Φ𝑖 + ℓ𝑖𝑊𝑖𝑖 − ℓ𝑖}.

By introducing auxiliary variables e ∈ R𝑝 to represent these convex envelopes, we

obtain the following linear SDO that is a lower bound to (2.36):

min
W,Φ,e

⟨W,Σ⟩ −
𝑝∑︁

𝑖=1

𝑒𝑖

s. t. Φ ∈ ℱΣ

W ∈ 𝒲𝑝−𝑟

ℓ𝑖 ≤ Φ𝑖 ≤ 𝑢𝑖

𝑒𝑖 ≤ Φ𝑖 + ℓ𝑖𝑊𝑖𝑖 − ℓ𝑖

𝑒𝑖 ≤ 𝑢𝑖𝑊𝑖𝑖

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∀ 𝑖
(LSℓ,u)

The approach now lies in iteratively refining the lower and upper bounds on the

diagonal entries of Φ, denoted ℓ and u, respectively, in order to improve the quality

of the approximations obtained via convex envelopes (cf. Theorem 3). This classical

scheme is known as spatial branch and bound and is shown in pseudocode in Algorithm

2 as it applies to solving (2.36) by way of using (LSℓ,u).

In words, Algorithm 2 involves treating a given “node” n = [ℓ,u], which represents

bounds on Φ, namely, ℓ ≤ diag(Φ) ≤ u. Here we solve (LSℓ,u) with the lower

and upper bounds ℓ and u, respectively, and see whether the resulting new feasible

solution is better (lower in objective value) than the best known incumbent solution

encountered thus far. We then see if the the bound for this node as obtained via

(LSℓ,u) is better than the currently known best feasible solution; if it is not at least

the current best feasible solution’s objective value (up to some numerical tolerance),

then we must further branch on this node, generating two new nodes n1 and n2 which

partition the existing node n. Throughout, we keep track of the worst lower bound

encountered, thereby allowing the algorithm to be terminated early while still having

a provable suboptimality guarantee on the best feasible solution Φ𝑓 ∈ ℱΣ found thus
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far.

In light of Theorem 3, we have as a corollary the following theorem.

Theorem 4. Given numerical tolerance TOL > 0, Algorithm 2 (with an appropriate

branching rule)12 terminates in finitely many iterations and solves (CFA1) to within

an additive optimality gap of at most TOL. Further, if Algorithm 2 is terminated early

(i.e., before Nodes = ∅), then the best feasible solution Φ𝑓 at termination is guaranteed

to be within an additive optimality gap of 𝑧𝑓 − 𝑧lb.

The algorithm we have considered here omits some important details. After dis-

cussing properties of (LSℓ,u) in Section 2.4.2, we will discuss various aspects of Al-

gorithm 2. In Section 2.4.3, we detail how to choose input u0. We then turn our

attention to branching (line 5) in Section 2.4.4. In Section 2.4.5, we use results from

matrix analysis coupled with ideas from the modern practice of discrete optimization

to make tailored refinements to Algorithm 2. Finally, in Section 2.4.6 we include a

discussion of node selection strategies.

Global optimization—State of the art: We close this section by discussing

similarities between the branch-and-bound approach we develop here and existing

methods in nonconvex optimization. Our approach is very similar in spirit to ap-

proaches to global optimization [64], and in particular for (nonconvex) quadratic

optimization problems, quadratically-constrained convex optimization problems, and

bilinear optimization problems [75, 13, 147, 146, 51, 8, 113]. The primary similarity is

that we work within a branch and bound framework using successively better convex

lower bounds. However, while global optimization software for a variety of nonconvex

problems with underlying vector variables is generally well-developed (as evidenced

by solvers like BARON, see [134]), this is not the case for problems with underlying

matrix variables and semidefinite constraints.

The presence of semidefinite structure presents several substantial computational

challenges. First and foremost, algorithmic implementations for solving linear SDOs
12A branching rule that is sufficient for convergence is selecting 𝑖 ∈ argmax𝑖(𝑢

𝑐
𝑖 − ℓ𝑐𝑖 ) and 𝛼 =

(𝑢𝑐
𝑖 + ℓ𝑐𝑖 )/2.
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Algorithm 2 Spatial branch and bound scheme to solve (2.36). The inputs are as
follows: (a) upper bounds u0 such that for any 𝑖 and any Φ ∈ ℱ , we have Φ𝑖 ≤ 𝑢0

𝑖 (see
Section 2.4.3); (b) optimality tolerance TOL; and (c) initial feasible solution Φ𝑓 ∈ ℱ .

1. Initialize 𝑧𝑓 ←
∑︀

𝑖>𝑟 𝜆𝑖(Σ−Φ𝑓 ); Nodes← {([0,u0],−∞)}; and 𝑧lb ← −∞.

2. While Nodes ̸= ∅, remove some node ([ℓ𝑐,u𝑐], 𝑧𝑐) ∈ Nodes.

3. Solve (LSℓ𝑐,u𝑐). Let Φ be an optimal solution with 𝑧 the optimal objective
value; set 𝑧𝑢 ←

∑︀
𝑖>𝑟 𝜆𝑖(Σ−Φ).

4. If 𝑧𝑢 < 𝑧𝑓 (i.e., a better feasible solution is found), update the best feasible
solution found thus far (Φ𝑓 ) to be Φ and update the corresponding value (𝑧𝑓 )
to 𝑧𝑢.

5. If 𝑧 < 𝑧𝑓 − TOL (i.e., a TOL–optimal solution has not yet been found), then pick
some 𝑖 ∈ {1, . . . , 𝑝} and some 𝛼 ∈ (ℓ𝑐𝑖 , 𝑢

𝑐
𝑖). Then add two new nodes to Nodes:(︃∏︁

𝑗<𝑖

[ℓ𝑐𝑗, 𝑢
𝑐
𝑗]× [ℓ𝑐𝑖 , 𝛼]×

∏︁
𝑗>𝑖

[ℓ𝑐𝑗, 𝑢
𝑐
𝑗], 𝑧

)︃
and

(︃∏︁
𝑗<𝑖

[ℓ𝑐𝑗, 𝑢
𝑐
𝑗]× [𝛼, 𝑢𝑐

𝑖 ]×
∏︁
𝑗>𝑖

[ℓ𝑐𝑗, 𝑢
𝑐
𝑗], 𝑧

)︃
.

6. Update the best lower bound 𝑧lb ← min
([ℓ,u],𝑧)∈Nodes

𝑧 and return to Step 2.

are not nearly as advanced as those which exist for linear optimization problems.

Therefore, each subproblem, which is itself a linear SDO, carries a larger computa-

tional cost than the usual corresponding linear program which typically arises in other

global optimization problems with vector variables. Secondly, a critical component of

the success of global optimization software is the ability to quickly resolve multiple

instances of subproblems which have similar structure. Corresponding methods for

SDOs, as solved via interior point methods, are generally not well-developed. Finally,

semidefinite structure complicates the traditional process of computing convex en-

velopes. Such computations are critical to the success of modern global optimization

solvers like BARON.

There are a variety of other possible approaches to computing lower bounds to

(CFA𝑞). One possibility is to utilize techniques for mixed semidefinite optimization,

an approach that we detail in Appendix A.3. Another such approach is the method

of moments [96]. However, for problems of the size we are considering, such an
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approach is likely not computationally feasible, so we do not make a direct comparison

here. There is also recent work in complementarity constraints literature [11] which

connects rank-constrained optimization problems to copositive optimization [43]. In

short, such an approach turns (2.35) into an equivalent convex problem; despite the

transformation, the new problem is not particularly amenable to computation at this

time. For this reason, we do not consider the copositive optimization approach.

2.4.2 Properties of (LSℓ,u)

We now examine properties of (LSℓ,u), the main subproblem of interest. Observe

that it is a linear SDO problem, and therefore we can consider its dual, namely

max
𝑞,f𝑢,fℓ,𝜅,
𝜎,m,n,p

(𝑝− 𝑟)𝑞 − u′f𝑢 − Tr(n)− ⟨p,Σ− diag(ℓ)⟩

s. t. 𝜅 + 𝜎 = 1

diag(p) + f𝑢 − fℓ − 𝜅 = 0

Σ− diag(u) + m + n + diag(diag(u− ℓ)𝜅)− 𝑞I = 0

f𝑢, fℓ,𝜅,𝜎 ≥ 0

m,n,p < 0.

(DSℓ,u)

Observation 1. We now include some remarks about structural properties of (LSℓ,u)

and its dual (DSℓ,u).

1. If rank(Σ) = 𝑝 then the Slater condition [38] holds and hence there is strong

duality, so we can work with (DSℓ,u) instead of (LSℓ,u) as an exact reformula-

tion.

2. There exists an optimal solution to the dual with f𝑢 = 0. This is a variable

reduction which is not immediately obvious. Note that f𝑢 appears as the multi-

plier for the constraints in the primal of the form diag(Φ) ≤ u. To claim that

we can set f𝑢 = 0 it suffices to show that the corresponding constraints in the

primal can be ignored. Namely, if (W*,Φ*) solves (LSℓ,u) with the constraints

Φ𝑖 ≤ 𝑢𝑖 ∀𝑖 omitted, then the pair (W*, ̃︀Φ) is feasible and optimal to (LSℓ,u)
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with all the constraints included, where ̃︀Φ is defined by

̃︀Φ𝑖 = min{Φ*
𝑖 , 𝑢𝑖}.

Hereinafter we set f𝑢 = 0 and omit the constraint diag(Φ) ≤ u (with the caveat

that, upon solving a problem and identifying some Φ*, we must instead work

with min{Φ*, diag(u)}, taken entrywise).

Solving subproblems: We briefly detail how to solve (LSℓ,u). In light of the

discussion in Section 2.3.2, we choose to apply a first-order method. Observe that

we cannot solve the primal form (LSℓ,u) within the branch-and-bound framework

unless we solve it to optimality. Therefore, we instead choose to work with its dual

(DSℓ,u). We apply an off-the-shelf solver SCS [119] to solve (DSℓ,u) and find reasonably

accurate, feasible solutions for this dual problem, which guarantees that we have a

lower bound to (LSℓ,u).13 In this way, we maintain the provable optimality properties

of Algorithm 2 without needing to solve nodes in the branch-and-bound tree to full

optimality.

2.4.3 Input parameters

In solving the root node of Algorithm 2, we must begin with some choice of u0 = u.

An obvious first choice for 𝑢𝑖 is 𝑢𝑖 = Σ𝑖𝑖, but one can do better. Let us optimally set

𝑢𝑖, defining it as

𝑢𝑖 :=
max
𝜂∈R

𝜂

s. t. Σ− 𝜂E(𝑖) < 0,
(2.37)

where E(𝑖) ∈ R𝑝×𝑝 is a matrix with all zeros except E(𝑖)
𝑖𝑖 = 1. These bounds are useful

because if Φ ∈ ℱΣ, then Φ𝑖 ≤ 𝑢𝑖. Note that problem (2.37) is a linear SDO for which
13One notable feature of the ADMM-based approach is that we can extract an approximately

feasible primal solution Φ, which is useful for branching. Note that in Algorithm 2, we can replace the
best incumbent solution if we find a new Φ which has better objective value

∑︀
𝑖>𝑟 𝜎𝑖(Σ−Φ). Because

Φ may not be feasible (i.e., Φ /∈ ℱ), we take care here. Namely, compute 𝑡 =
∑︀

𝑖>𝑟 𝜆𝑖(Σ − Φ),
where 𝜆1(Σ−Φ) ≥ · · · ≥ 𝜆𝑝(Σ−Φ) are the sorted eigenvalues of Σ−Φ. If 𝑡 < 𝑧𝑓 , then we perform
an iteration of CG scheme for finding feasible solutions (outlined in Section 2.3) to find a feasible
Φ̄ ∈ ℱ . We then use this as a possible candidate for replacing the incumbent.
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strong duality holds. Its dual is precisely

𝑢𝑖 =

min
M∈R𝑝×𝑝

⟨M,Σ⟩

s. t. 𝑀𝑖𝑖 = 1

M < 0,

(2.38)

a linear SDO in standard form with a single equality constraint. By a result of

[15, 122], there exists a rank one solution to (2.38). This implies that (2.38) can

actually be solved as a convex quadratic program:

𝑢𝑖 =
min
m∈R𝑝

m′Σm

s. t. 𝑚2
𝑖 = 1.

=
min
m

m′Σm

s. t. 𝑚𝑖 = 1.
(2.39)

This formulation given in (2.39) is computationally inexpensive to solve (given a

large number of specialized convex quadratic problem solvers), in contrast to both

formulations (2.37) and (2.38).

Exact formula when Σ ≻ 0: In the case when Σ ≻ 0, it is not necessary to

use quadratic optimization problems to compute u. In this case one can apply a

straightforward Schur complement argument [38] to show that u can be computed by

solving for inverse of 𝑝 different (𝑝− 1)× (𝑝− 1) matrices (or equivalently, by finding

the diagonal of the precision matrix Σ−1). In particular,

𝑢𝑖 = 1/
(︀
Σ−1

)︀
𝑖𝑖

= 1/⟨Σ−1,E(𝑖)⟩,

where
(︀
Σ−1

)︀
𝑖𝑖

denotes the 𝑖th diagonal entry of Σ−1.

Alternative approach using eigenvalue decomposition

Using techniques from matrix analysis, it is actually unnecessary to solve quadratic

optimization problems of the form (2.39) to compute u0, even when Σ is rank-deficient

(i.e., rank(Σ) < 𝑝). In particular, the following proposition entirely eliminates the

need for solving 𝑝 convex quadratic optimization problems, instead relying solely on

47



a standard eigenvalue decomposition.

Proposition 1. Given eigenvalue decomposition Σ = UΛU′ for Σ < 0 (where

UU′ = U′U = I and Λ is diagonal with Λ11 ≥ Λ22 ≥ · · · ≥ Λ𝑝𝑝) and 𝜌 := rank(Σ),

one has

max
𝜂∈R

𝜂

s. t. Σ− 𝜂E(𝑖) < 0
=

⎧⎨⎩ 0,
∑︀

𝑗>𝜌 𝑈
2
𝑖𝑗 > 0

1/
(︁∑︀𝜌

𝑗=1 𝑈
2
𝑖𝑗/Λ𝑗𝑗

)︁
,
∑︀

𝑗>𝜌 𝑈
2
𝑖𝑗 = 0.

Proof. Fix 𝑖 throughout. Our principal focus is on the minimum eigenvalue of Σ −

𝜂E(𝑖) for 𝜂 ≥ 0. Let 𝑁 = 𝑝 − 𝜌 denote the nullity of Σ, i.e., the dimension of the

nullspace of Σ. We assume throughout that 𝑁 > 0. (The case when 𝑁 = 0 follows

in a similar manner, so long as we interpret the sum
∑︀

𝑗∈∅ 𝑈
2
𝑖𝑗 = 0.) For simplicity,

let 𝜆𝑗 := Λ𝑗𝑗 ∀𝑗. By definition, 𝜆𝜌 > 0 and 𝜆𝑗 = 0 ∀ 𝑗 > 𝜌.

Fix 𝜂 > 0. Studying the eigenvalues of Σ − 𝜂E(𝑖) is equivalent to studying the

eigenvalues of Λ− 𝜂vv′, where v is the 𝑖th row of U (eigenvalues are invariant under

unitary conjugacy). Consider the characteristic polynomial 𝜋 of Λ− 𝜂vv′ in variable

𝜆. As per [68, §5], this can be written as

𝜋(𝜆) =
∏︁
𝑗

(𝜆𝑗 − 𝜆)− 𝜂
∑︁
𝑗

𝑣2𝑗
∏︁
𝑘 ̸=𝑗

(𝜆𝑘 − 𝜆).

Therefore, if for 𝜖 ≥ 0 we define 𝜆𝜖 =
∏︀𝜌

𝑗=1(𝜆𝑗 + 𝜖), then

𝜋(−𝜖) =
∏︁
𝑗

(𝜆𝑗 + 𝜖)− 𝜂
∑︁
𝑗

𝑣2𝑗
∏︁
𝑘 ̸=𝑗

(𝜆𝑘 + 𝜖)

= 𝜆𝜖𝜖
𝑁−1

(︃(︃
1− 𝜂

𝜌∑︁
𝑗=1

𝑣2𝑗/(𝜆𝑗 + 𝜖)

)︃
𝜖− 𝜂

∑︁
𝑗>𝜌

𝑣2𝑗

)︃
.

Note that 𝜆𝜖 > 0 whenever 𝜖 ≥ 0.

We will consider two scenarios. First suppose that
∑︀

𝑗>𝜌 𝑣
2
𝑗 > 0. Then for 𝜖 > 0

sufficiently small, 𝜋(−𝜖) < 0. Combined with the fact that lim𝜆→−∞ 𝜋(𝜆) = ∞ and

the intermediate value theorem, this implies that 𝜋 has a strictly negative root. As

the choice of 𝜂 > 0 was arbitrary, this implies that we must have that 𝜂 = 0 to ensure
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that Σ− 𝜂E(𝑖) < 0.

Now let us consider the case when
∑︀

𝑗>𝜌 𝑣
2
𝑗 = 0. We focus on two possibilities:

(a) Suppose that 1/𝜂 <
∑︀𝜌

𝑗=1 𝑣
2
𝑗/𝜆𝑗. In this case, just like before we have 𝜋(−𝜖) < 0

for 𝜖 > 0 sufficiently small; another application of the intermediate value theorem

shows that 𝜋 has a strictly negative root. It follows that Σ− 𝜂E(𝑖) ̸< 0.

(b) Now suppose that 1/𝜂 >
∑︀𝜌

𝑗=1 𝑣
2
𝑗/𝜆𝑖. (Note that it is impossible for the right-

hand side to equal zero, based on the fact that
∑︀

𝑗>𝜌 𝑣
2
𝑗 = 0 and that v ̸= 0.)

This implies that 𝜋(−𝜖) > 0 for 𝜖 > 0 sufficiently small. We claim that 𝜋 does

not have a strictly negative root. For contradiction, suppose that 𝜋 does have a

strictly negative root, say 𝜆*. By the interlacing inequality [80, §4.3], we know

that this root must have multiplicity one (i.e., it cannot have larger multiplicity).

Yet, 𝜋(−𝜖) > 0 for 𝜖 > 0 small, 𝜋(𝜆*) = 0, and lim𝜆→−∞ 𝜋(𝜆) =∞. Clearly this

implies, via continuity of 𝜋′, that 𝜋′(𝜆*) = 0.14 Yet this necessarily implies that

𝜆* has multiplicity strictly greater than one, yielding a contradiction. Therefore,

we conclude that in this case 𝜋 does not have a strictly negative root.

Combining the above scenarios with the fact that 𝑣𝑗 = 𝑈𝑖𝑗, we conclude that the

largest 𝜂 ≥ 0 so that Σ− 𝜂E(𝑖) < 0 is precisely as claimed:

max
𝜂:

Σ−𝜂E(𝑖)<0

𝜂 =

⎧⎨⎩ 0,
∑︀

𝑗>𝜌 𝑈
2
𝑖𝑗 > 0

1/
(︁∑︀𝜌

𝑗=1 𝑈
2
𝑖𝑗/Λ𝑗𝑗

)︁
,
∑︀

𝑗>𝜌 𝑈
2
𝑖𝑗 = 0.

2.4.4 Branching

Here we detail two methods for branching (line 5 in Algorithm 2). The problem

of branching is as follows: having solved (LSℓ,u) for some particular n = [ℓ,u], we

must choose some 𝑖 ∈ {1, . . . , 𝑝} and split the interval [ℓ𝑖, 𝑢𝑖] to create two new

subproblems. We begin with a simple branching rule. Given a solution (W*,Φ*, e*)

14This observation implicitly uses the fact that, again by the interlacing inequality, 𝜋 can have at
most one strictly negative root.

49



to (LSℓ,u), compute 𝑖 ∈ argmax𝑖 |𝑒*𝑖 −𝑊 *
𝑖𝑖Φ

*
𝑖 | and branch on variable Φ𝑖, generating

two new subproblems with the intervals

∏︁
𝑗<𝑖

[ℓ𝑗, 𝑢𝑗]× [ℓ𝑖,Φ
*
𝑖 ]×

∏︁
𝑗>𝑖

[ℓ𝑗, 𝑢𝑗] and
∏︁
𝑗<𝑖

[ℓ𝑗, 𝑢𝑗]× [Φ*
𝑖 , 𝑢𝑖]×

∏︁
𝑗>𝑖

[ℓ𝑗, 𝑢𝑗].

Observe that, so long as max𝑖 |𝑒*𝑖 − 𝑊 *
𝑖𝑖Φ

*
𝑖 | > 0, the solution (W*,Φ*, e*) is not

optimal for either of the subproblems created.

We now briefly describe an alternative rule which we employ instead. We again

pick the branching index 𝑖 as before, but now the two new nodes we generate are

∏︁
𝑗<𝑖

[ℓ𝑗, 𝑢𝑗]× [ℓ𝑖, (1− 𝜖)Φ*
𝑖 + 𝜖ℓ𝑖]×

∏︁
𝑗>𝑖

[ℓ𝑗, 𝑢𝑗] and

∏︁
𝑗<𝑖

[ℓ𝑗, 𝑢𝑗]× [(1− 𝜖)Φ*
𝑖 + 𝜖ℓ𝑖, 𝑢𝑖]×

∏︁
𝑗>𝑖

[ℓ𝑗, 𝑢𝑗],

where 𝜖 ∈ [0, 1) is some parameter. For the computational experiments, we set 𝜖 = 0.4.

Such an approach, which lowers the location of the branch in the 𝑖th interval [ℓ𝑖, 𝑢𝑖]

from Φ*
𝑖 , serves to improve the objective value from the first node, while hurting the

objective value from the second node (here by objective value, we mean the objective

value of the optimal solution to the two new subproblems). In this way, it spreads out

the distance between the two, and so it is more likely that the first node may have an

objective value that is higher than 𝑧𝑓 − TOL than before, and hence, this would mean

there are fewer nodes necessary to consider to solve for an additive gap of TOL. While

this heuristic explanation is only partially satisfying, we have observed throughout a

variety of numerical experiments that this rule, even though simple, performs better

across a variety of example classes than the basic branching rule outlined. At the

same time, recent work on the theory of branching rules supports such a heuristic

rule [98]. In Section 2.5.4, we give evidence on the impact of the use of the modified

branching rule.
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2.4.5 Weyl’s Method—Pruning and bound tightening

In this subsection, we develop another method for lower bounds for the factor analysis

problem. While we use it to supplement our approach detailed throughout Section

2.4, it is of interest as a standalone method, particularly for its computational speed

and simplicity. In Section 2.5.3, we discuss the performance of this approach in both

contexts.

The central problem of interest in factor analysis involves the spectrum of a sym-

metric matrix (Σ − Φ) which is the difference of two other symmetric matrices (Σ

and Φ). From a linear algebraic perspective, the spectrum of the sum of real sym-

metric matrices is an extensively studied problem [80, 32].Therefore, it is natural to

inquire how such results carry over to our setting. We discuss the implications of a

well-known result from this literature, namely Weyl’s inequality (see, e.g., [32]):15

Theorem 5 (Weyl’s Inequality). For symmetric matrices A,B ∈ R𝑝×𝑝 with sorted

eigenvalues

𝜆1(A) ≥ 𝜆2(A) ≥ · · · ≥ 𝜆𝑝(A) and 𝜆1(B) ≥ 𝜆2(B) ≥ · · · ≥ 𝜆𝑝(B)

one has for any 𝑘 ∈ {1, . . . , 𝑝} that

𝜆𝑘(A + B) ≥ 𝜆𝑘+𝑗(A) + 𝜆𝑝−𝑗(B) ∀𝑗 = 0, . . . , 𝑝− 𝑘. (2.40)

For any vector x ∈ R𝑝 we let {𝑥(𝑖)}𝑝𝑖=1 denote sorted {𝑥𝑖}𝑝𝑖=1 with 𝑥(1) ≥ 𝑥(2) ≥ · · · ≥

𝑥(𝑝). Using this notation, we arrive at the following theorem.

Theorem 6. For any diagonal matrix Φ̄ one has that

min
Φ∈ℱ

∑︁
𝑖>𝑟

𝜆𝑖(Σ−Φ) ≥ min
Φ∈ℱ

(︃∑︁
𝑖>𝑟

max
𝑗=0,...,𝑝−𝑖

{︁
𝜆𝑖+𝑗(Σ− Φ̄) + diag

(︀
Φ̄−Φ

)︀
(𝑝−𝑗)

, 0
}︁)︃

.

15There are numerous eigenvalue inequalities. To show the variety of techniques and their impli-
cations for factor analysis, we include in Appendix A.3 a full discussion of how to incorporate them
with mixed integer semidefinite optimization techniques.
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Proof. Apply Weyl’s inequality with A = Σ− diag(Φ̄) and B = Φ̄−Φ, and use the

fact that Φ ∈ ℱ so Σ−Φ < 0.

Weyl’s Method: The new lower bound introduced in Theorem 6 is a nonconvex

problem in general. We begin by discussing one situation in which Theorem 6 provides

computationally tractable (and fast) lower bounds; we deem this Weyl’s method,

detailed as follows:

1. Compute bounds 𝑢𝑖 as in (2.37), so that for all Φ ∈ ℱΣ, one has Φ𝑖 ≤ 𝑢𝑖 ∀𝑖.

2. For each 𝑟 ∈ {1, . . . , 𝑝}, one can compute a lower bound to (CFA1) (for a given

𝑟) of ∑︁
𝑖>𝑟

max{𝜆𝑖(Σ− diag(u)), 0}, (2.41)

by taking Theorem 6 with Φ̄ = diag(u).

As per the above remarks, computing u in Step 1 of Weyl’s method can be carried

out efficiently. Step 2 only relies on computing the eigenvalues of Σ−diag(u). There-

fore, this lower bounding procedure is quite simple to carry out. What is perhaps

surprising is that this simple lower bounding procedure is effective as a standalone

method. We describe such results in Section 2.5.3. We now turn our attention to

how Weyl’s method can be utilized within the branch and bound tree as described in

Algorithm 2.

Pruning: We begin by considering how Weyl’s method can be used for pruning.

The notion of pruning for branch and bound trees is grounded in the theory and

practice of discrete optimization. In short, pruning in the elimination of nodes from

the tree without actually solving them. We make this precise in our context.

Consider some point in the branch and bound process in Algorithm 2, where

we have some collection of nodes, ([ℓ𝑐,u𝑐], 𝑧𝑐) ∈ Nodes. Recall that 𝑧𝑐 is the optimal

objective value of the parent node of n. Per Weyl’s method, we know a priori, without
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solving (LSℓ𝑐,u𝑐), that

min
Φ∈ℱΣ

ℓ𝑐≤diag(Φ)≤u𝑐

∑︁
𝑖>𝑟

𝜆𝑖(Σ−Φ) ≥
∑︁
𝑖>𝑟

max{𝜆𝑖(Σ− diag(u𝑐)), 0}.

Hence, if 𝑧𝑓 − TOL <
∑︀

𝑖>𝑟 max{𝜆𝑖(Σ − diag(u𝑐)), 0}, where 𝑧𝑓 is as in Algorithm 2,

then node n can be discarded, i.e., there is no need to actually compute (LSℓ𝑐,u𝑐) or

further consider this branch. This is because if we were to solve (LSℓ𝑐,u𝑐), and then

branch again, solving further down this branch to optimality, then the final lower

bound obtained would necessarily be at least as large as the best feasible objective

already found (within tolerance TOL).

In this way, because Weyl’s method is relatively fast, this provides a simple method

for pruning. In the computational results detailed in Section 2.5.3, we always use

Weyl’s method to discard nodes which are not fruitful to consider.

Bound tightening: We now turn our attention to another way in which Weyl’s

method can be used to improve the performance of Algorithm 2—bound tightening.

In short, bound tightening is the use of implicit constraints to strengthen bounds

obtained for a given node. We detail this with the same node notation as above.

Namely, consider a given node n = [ℓ𝑐,u𝑐]. Fix some 𝑗 ∈ {1, . . . , 𝑝} and let 𝛼 ∈

(ℓ𝑐𝑗, 𝑢
𝑐
𝑗). If we have that

𝑧𝑓 − TOL <
∑︁
𝑖>𝑟

max{𝜆𝑖(Σ− diag(ũ)), 0},

where ũ is u𝑐 with the 𝑗th entry replaced by 𝛼, then we can replace the node n with

the “tightened” node ñ = [ℓ̃,u𝑐], where ℓ̃ is ℓ𝑐 with the 𝑗th entry replaced by 𝛼.

We consider why this is valid. Suppose that one were to solve (LSℓ𝑐,u𝑐) and choose

to branch on index 𝑗 at 𝛼. Then one would create two new nodes: [ℓ𝑐, ũ] and [ℓ̃,u𝑐].

We would necessarily then prune away the node [ℓ𝑐, ũ] as just described; hence, we

can replace [ℓ𝑐,u𝑐] without loss of generality with [ℓ̃,u𝑐]. Note that here 𝛼 ∈ (ℓ𝑐𝑗, 𝑢
𝑐
𝑗)

and 𝑗 ∈ {1, . . . , 𝑝} were arbitrary. Hence, for each 𝑗, one can choose the largest such
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𝛼𝑗 ∈ (ℓ𝑐𝑗, 𝑢
𝑐
𝑗) (if one exists) so that 𝑧𝑓 − TOL <

∑︀
𝑖>𝑘 max{𝜆𝑖(Σ − diag(ũ)), 0}, and

then replace ℓ𝑐 by ℓ̃.16

Such a procedure is somewhat expensive (because of its use of repeated eigenvalue

calculations), but can be thought of as “optimal” pruning via Weyl’s method. In our

experience the benefit of bound tightening does not warrant its computational cost

when used at every node in the branch-and-bound tree except in a small number

of problems. For this reason, in the computational results in Section 2.5.3 we only

employ bound tightening at the root node n = [0,u0].

2.4.6 Node selection

In this section, we briefly describe our method of node selection. The problem of

node selection has been considered extensively in discrete optimization and is still an

active area of research. Here we describe a simple node selection strategy.

To be precise, consider some point in Algorithm 2 were we have a certain collection

of nodes, ([ℓ𝑐,u𝑐], 𝑧𝑐) ∈ Nodes. The most obvious node selection strategy is to pick the

node n for which 𝑧𝑐 is smallest among all nodes in Nodes. In this way, the algorithm

is likely to improve the gap 𝑧𝑓−𝑧lb at every iteration. Such greedy selection strategies

tend to not perform particularly well in general global optimization problems (see,

e.g., [148]).

For these reasons, we employ a slightly modified greedy selection strategy which

utilizes Weyl’s method. For a given node n, we also consider its corresponding

lower bound 𝑤𝑐 obtained from Weyl’s method, namely, 𝑤𝑐 :=
∑︀

𝑖>𝑟 max{𝜆𝑖(Σ −

diag(u𝑐)), 0}. For each node, we now consider max{𝑧𝑐, 𝑤𝑐}. There are two cases to

consider:

1. With probability 𝛽, we select the node with smallest value of max{𝑧𝑐, 𝑤𝑐}.

2. In the remaining scenarios (occurring with probability 1 − 𝛽), we choose ran-

domly between selecting the node with smallest value of 𝑧𝑐 and the node with

16An obvious choice to find such an 𝛼 is a grid-search-based bisection method. For simplicity we
use a linear search on a grid instead of resorting to the bisection method.
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smallest value of 𝑤𝑐. To be precise, let 𝑍 be the minimum of 𝑧𝑐 over all nodes

and likewise let 𝑊 be the minimum of 𝑤𝑐 over all nodes. Then with (inde-

pendent) probability 𝛽, we choose the node with worst 𝑧𝑐 or 𝑤𝑐 (i.e., with

min{𝑧𝑐, 𝑤𝑐} = min{𝑍,𝑊}); with probability 1− 𝛽, if 𝑍 < 𝑊 we choose a node

with 𝑤𝑐 = 𝑊 , and if 𝑍 > 𝑊 we choose a node with 𝑧𝑐 = 𝑍.

In this way, we allow for the algorithm to switch between trying to make progress

towards improving the convex envelope bounds and making progress towards im-

proving the best of the two bounds (the convex envelope bounds along with the Weyl

bounds). We set 𝛽 = 0.9 for all computational experiments. It is possible that a more

dynamic branching strategy could perform substantially better; however, the method

here has a desirable level of simplicity.

We close by noting that while this node selection strategy appears naïve, it is not

necessarily so simple. Improved node selection strategies from discrete optimization

often take into account some sort of duality theory. Weyl’s inequality is at its core a

result from duality theory (principally Wielandt’s minimax principle; see [32]), and

therefore our strategy is not as unsophisticated as it might appear on first inspection.

2.5 Computational experiments

In this section, we perform various computational experiments to study the properties

of our different algorithmic proposals for (CFA𝑞), for 𝑞 ∈ {1, 2}. Using a variety of

statistical measures, we compare our methods with existing popular approaches for

FA, as implemented in standard R statistical packages psych [127], nFactors [124],

and GPArotation [21]. We then turn our attention to certificates of optimality as

described in Section 2.4 for (CFA1).

2.5.1 Synthetic examples

For our synthetic experiments, we considered distinctly different groups of examples.

Classes 𝐴1 and 𝐴2 have subspaces of the low-rank common factors which are random
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and the values of Φ𝑖 are taken to be equally spaced. The underlying matrix corre-

sponding to the common factors in type 𝐴1 is exactly low-rank, while this is not the

case in type 𝐴2.

Class 𝐴1(𝑅/𝑝). We generated a matrix L ∈ R𝑝×𝑅 (with 𝑅 < 𝑝) with 𝐿𝑖𝑗
iid∼ 𝑁(0, 1).

The unique variances Φ1, . . . ,Φ𝑝, are taken to be proportional to 𝑝 equi-spaced values

on the interval [𝜆𝑅(L′L), 𝜆1(L
′L)] such that

Φ𝑖 = 𝜑 ·
(︂
𝜆1(L

′L) + (𝜆𝑅(L′L)− 𝜆1(L
′L))

𝑖− 1

𝑝

)︂
for 1 ≤ 𝑖 ≤ 𝑝.

Here 𝜑, which controls the ratio of the variances between the uniquenesses and the

common latent factors, is chosen such that
∑︀𝑝

𝑖=1 Φ𝑖 = Tr(LL′), i.e., the contribution

to the total variance from the common factors matches that from the uniqueness

factors. The covariance matrix is thus given by: Σ = LL′ + Φ.

Class 𝐴2(𝑝). Here L ∈ R𝑝×𝑝 is generated as 𝐿𝑖𝑗
iid∼ 𝑁(0, 1). We did a full sin-

gular value decomposition on L—let U𝐿 denote the set of 𝑝 (left) singular vec-

tors. We created a positive definite matrix with exponentially decaying eigenval-

ues as follows: ̃︀L̃︀L′ = U𝐿 diag(𝜆1, . . . , 𝜆𝑝)U
′
𝐿, where the eigenvalues were chosen as

𝜆𝑖 = 0.8𝑖/2, 𝑖 = 1, . . . , 𝑝. We chose the diagonal entries of Φ (like data type 𝐴1), as a

scalar multiple (𝜑) of a uniformly spaced grid in [𝜆𝑝, 𝜆1] and 𝜑 was chosen such that∑︀
𝑖 Φ𝑖 = Tr(̃︀L̃︀L′).

In contrast, classes 𝐵1, 𝐵2, and 𝐵3 are qualitatively different from the aforemen-

tioned ones—the subspaces corresponding to the common factors are more structured,

and hence different from the coherence-like assumptions on the eigenvectors which are

necessary for nuclear-norm-based methods [135] to work well.

Class 𝐵1(𝑅/𝑝). We set Θ = LL′, where L ∈ R𝑝×𝑅 is given by

𝐿𝑖𝑗 =

⎧⎨⎩ 1, 𝑖 ≤ 𝑗

0, 𝑖 > 𝑗.
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Class 𝐵2(𝑟/𝑅/𝑝). Here we set Θ = LL′, where L ∈ R𝑝×𝑅 is such that

𝐿𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑖, 𝑗 = 1, . . . , 𝑟
iid∼ 𝑁(0, 1), 𝑖 > 𝑟, 𝑗 = 1, . . . , 𝑅

0, 𝑖 = 1, . . . , 𝑟, 𝑗 > 𝑟.

Class 𝐵3(𝑟/𝑅/𝑝). Here we define Θ = LL′, where L ∈ R𝑝×𝑅 is such that

𝐿𝑖𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑗 = 1, . . . , 𝑟, 𝑖 ≤ 𝑗
iid∼ 𝑁(0, 1), 𝑗 > 𝑟, 𝑖 = 1, . . . , 𝑅

0, 𝑖 > 𝑗, 𝑗 = 1, . . . , 𝑟.

In all the 𝐵 classes, we generated Φ𝑖
iid∼ abs(𝑁(0, 1)) and the covariance matrix Σ

was taken to be Σ = Θ + 𝛼Φ, where 𝛼 is so that Tr(Θ) = 𝛼Tr(Φ).

Comparisons with other FA methods

We performed a suite of experiments using Algorithm 1 for the cases 𝑞 ∈ {1, 2}. We

compared our proposed algorithm with the following popular FA estimation proce-

dures as described in Section 2.1.1:

1. MINRES: minimum residual factor analysis

2. WLS: weighted least squares method with weights being the uniquenesses

3. PA: this is the principal axis factor analysis method

4. MTFA: constrained minimum trace factor analysis—formulation (2.6)

5. PC: The method of principal component factor analysis

6. MLE: this is the maximum likelihood estimator (MLE)

7. GLS: the generalized least squares method

For MINRES, WLS, GLS, and PA, we used the implementations available in the

R package psych [127] available from CRAN. For MLE we investigated the methods

factanal from R package stats and the fa function from R package psych. The
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estimates obtained by the different MLE implementations were similar in our exper-

iments; therefore, we report the results obtained from factanal.

For MTFA, we used our own implementation by adapting the ADMM algorithm

(Section 2.3.2) to solve Problem (2.6). For the experiments in Section 2.5.1, we took

the convergence thresholds for Algorithm 1 as TOL = 10−5 and ADMM as TOL ×

𝛼 = 10−9. For the PC method we followed the description in [10] (as described in

Section 2.1.1)—the Φ estimates were thresholded at zero if they became negative.

Note that all the methods considered in the experiments, apart from MTFA, allow

the user to specify the desired number of factors in the problem. Since standard

implementations of MINRES, WLS and PA require Σ to be a correlation matrix, we

standardized all covariance matrices to correlation matrices at the outset.

Performance measures

We consider the following measures of “goodness of fit” (see [14] and references therein)

to assess the performances of the different FA estimation procedures.

Estimation error in Φ: We use the following measure to assess the quality of an

estimator for Φ:

Error(Φ) :=

𝑝∑︁
𝑖=1

(̂︀Φ𝑖 − Φ𝑖)
2. (2.42)

The estimation of Φ plays an important role in FA—given a good estimate ̂︀Φ, the

𝑟-common factors can be obtained by a rank-𝑟 eigendecomposition on the residual

covariance matrix Σ− ̂︀Φ.

Proportion of variance explained and semi-definiteness of (Σ−Φ): A fun-

damental objective in FA lies in understanding how well the 𝑟-common factors explain

the residual covariance, i.e., (Σ− ̂︀Φ)—a direct analogue of what is done in PCA, as

explained in Section 2.1. For a given 𝑟, the proportion of variance explained by the
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𝑟 common factors is given by

Explained Variance =
𝑟∑︁

𝑖=1

𝜆𝑖(̂︀Θ)/

𝑝∑︁
𝑖=1

𝜆𝑖(Σ− ̂︀Φ). (2.43)

As 𝑟 increases, the explained variance increases to one. This trade-off between 𝑟 and

“Explained Variance" plays an important role in exploratory FA and in particular

the choice of 𝑟. For the expression (2.43) to be meaningful, it is desirable to have

Σ − ̂︀Φ < 0. Note that our framework (CFA𝑞), and in particular MTFA, estimates

Φ under a PSD constraint on Σ − Φ. However, as seen in our experiments (̂︀Φ, ̂︀Θ)

estimated by the remaining methods MINRES, PA, WLS, GLS, MLE and others

often violate the PSD condition on Σ − ̂︀Φ for some choices of 𝑟, thereby rendering

the interpretation of “Explained Variance” troublesome.

For the MTFA method with estimator ̂︀Θ, the measure (2.43) applies only for the

value of 𝑟 = rank(̂︀Θ) and the explained variance is one.

For the methods we have included in our comparisons, we report the values of

“Explained Variance” as delivered by the R-package implementations.

Proximity between ̂︀Θ and Θ: A relevant measure of the proximity between Θ

and its estimate (̂︀Θ) is given by

Error(Θ) := ‖̂︀Θ−Θ𝑟‖22/‖Θ𝑟‖22, (2.44)

where Θ𝑟 is the best rank-𝑟 approximation to Θ and can be viewed as the natural

“oracle” counterpart of ̂︀Θ. Note that MTFA does not incorporate any constraint on

rank(̂︀Θ) in its formulation. Since the estimates obtained by this procedure satisfŷ︀Θ = Σ− ̂︀Φ, rank(̂︀Θ) may be quite different from 𝑟.

Discussion of experimental results. We next discuss our findings from the nu-

merical experiments for the synthetic datasets.

Table 2.1 shows the performances of the various methods for different choices

of 𝑝 and 𝑅 for class 𝐴1. For the problems (CFA𝑞), 𝑞 ∈ {1, 2}, we present the
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results of Algorithm 1. (Results obtained by the approach in Appendix A.2 were

similar.) In all the examples, with the exception of MTFA, we set the number of

factors to be 𝑟 = (𝑅 − 1), one less than the rank of the covariance matrix for the

common underlying factors; in other words, the “remaining” rank-one component can

be considered as noise. For MTFA, the rank of ̂︀Θ was computed as the number of

eigenvalues of ̂︀Θ larger than 10−5. MTFA and (CFA𝑞), 𝑞 ∈ {1, 2}, estimate Φ with

zero error—significantly better than competing methods. While MTFA and (CFA𝑞),

𝑞 ∈ {1, 2}, result in estimates such that Σ− ̂︀Φ is PSD, other methods, however, fail

to do so; indeed, the discrepancy can often be quite large. MTFA performs poorly

in terms of estimating Θ since the estimated Θ has rank different than 𝑟. In terms

of the proportion of variance explained (CFA𝑞) performs significantly better than all

other methods. The notion of “Explained Variance” by MTFA for 𝑟 = (𝑅− 1) is not

applicable since the rank of the estimated Θ is larger than 𝑟.

Performance Method Used Problem
measure (CFA1) (CFA2) MTFA MINRES WLS PA PC MLE size (𝑅/𝑝)
Error(Φ) 0.0 0.0 0.0 39.85 39.18 39.28 2.47 40.04

10/200Expl Var 0.937 0.937 - 0.445 0.445 0.445 0.469 0.445
𝜆𝑝(Σ− ̂︀Φ) 0.0 0.0 0.0 -0.204 -0.229 -0.233 -0.206 -0.204
Error(Θ) 0.0 0.0 35.94 0.053 0.040 0.042 2.47 0.056
Error(Φ) 0.0 0.0 0.0 301.94 301.08 301.04 160.29 302.1

10/500Expl Var 0.929 0.929 - 0.444 0.444 0.444 0.454 0.444
𝜆𝑝(Σ− ̂︀Φ) 0.0 0.0 0.0 -0.329 -0.328 -0.328 -0.321 -0.330
Error(Θ) 0.0 0.0 291.44 0.051 0.042 0.041 2.395 0.052
Error(Φ) 0.0 0.0 0.0 1682 1681 1681 1311 1682

10/1000Expl Var 0.915 0.915 - 0.436 0.436 0.436 0.441 0.436
𝜆𝑝(Σ− ̂︀Φ) 0.0 0.0 0.0 -0.264 -0.268 -0.268 -0.263 -0.264
Error(Θ) 0.0 0.0 1654.3 0.067 0.057 0.057 2.420 0.067

Table 2.1: Comparative performances of the various FA methods for data of type 𝐴1, for
different choices of 𝑅 and 𝑝. “Expl Var” denotes explained variance. In all the above methods
(apart from MTFA), 𝑟 was taken to be (𝑅 − 1). In all of the cases, rank( ̂︀Θ) obtained by
MTFA is seen to be 𝑅. The “-” symbol implies that the notion of explained variance is not
meaningful for MTFA for 𝑟 = 𝑅 − 1. No method in Category (B) satisfies Σ − Φ < 0.
Methods proposed herein seem to significantly outperform their competitors, as seen across
the different performance measures.

Figure 2-1 displays results for type 𝐴2. Here we present the results for (CFA𝑞),

𝑞 ∈ {1, 2}, using Algorithm 1. For all the methods (with the exception of MTFA) we

computed estimates of Θ and Φ for a range of values of 𝑟. MTFA and (CFA1) do a
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perfect job in estimating Φ and both deliver PSD matrices Σ− ̂︀Φ. MTFA computes

solutions (̂︀Θ) with a higher numerical rank and with large errors in estimating Θ (for

smaller values of 𝑟). Among the four performance measures corresponding to MTFA,

Error(Θ) is the only one that varies with different 𝑟 values. Each of the other three

measures deliver a single value corresponding to 𝑟 = rank(̂︀Θ). Overall, it appears

that (CFA𝑞) is significantly better than all other methods.

Figure 2-2 shows the results for classes 𝐵1, 𝐵2, and 𝐵3. We present the results for

(CFA𝑞) for 𝑞 ∈ {1, 2} using Algorithm 1 as before. Figure 2-2 shows the performance

of the different methods in terms of four different metrics: error in Φ estimation,

proportion of variance explained, violation of the PSD constraint on Σ − Φ, and

error in Θ estimation. For the case of 𝐵1, we see that the proportion of explained

variance for (CFA𝑞) reaches one at a rank smaller than that of MTFA—this shows

that the nonconvex criterion (CFA𝑞) provides smaller estimates of the rank than its

convex relaxation MTFA when one seeks a model that explains the full proportion of

residual variance. This result is qualitatively different from the behavior seen for 𝐴1

and 𝐴2 where the benefit of (CFA𝑞) over MTFA was mainly due to its flexibility to

control the rank of Θ. Algorithms in Category (A) do an excellent job in estimating

Φ. All other competing methods perform poorly in estimating Φ for small/moderate

values of 𝑟. We observe that none of the methods apart from (CFA𝑞) and MTFA lead

to PSD estimates of Σ − ̂︀Φ (unless 𝑟 becomes sufficiently large which corresponds

to a model with a saturated fit). In terms of the proportion of variance explained,

our proposal performs much better than the competing methods. We see that the

error in Θ estimation incurred by (CFA𝑞), increases marginally as soon as the rank 𝑟

becomes larger than a certain value for 𝐵1. Note that around the same values of 𝑟, the

proportion of explained variance reaches one in both these cases, thereby suggesting

that this is possibly not a region of statistical interest. In summary, Figure 2-2

suggests that (CFA𝑞) performs very well compared to all its competitors.

Summary: All methods of Category (B) (see Section 2.1.2) used in the experimen-

tal comparisons perform worse than Category (A) in terms of measures Error(Φ),
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Figure 2-1: Performance of various FA methods for class 𝐴2(200) as a function of the
number of factors. The vertical label “Minimum Eigenvalue” refers to 𝜆𝑝(Σ − ̂︀Φ). We
present the results of (CFA1), as obtained via Algorithm 1—the results of (CFA2) were
similar, and hence omitted from the plot. Our methods seems to perform better than all
the other competitors. For large values of 𝑟, as the fits saturate, the methods become
similar. The methods (as available from the R package implementations) that experienced
convergence difficulties do not appear in the plot.

Error(Θ) and Explained Variance for small/moderate values of 𝑟. They also lead

to indefinite estimates of Σ − ̂︀Φ. MTFA performs well in estimating Φ but fails in

estimating Θ mainly due to the lack in flexibility of imposing a rank constraint; in

some cases the trace heuristic falls short of doing a good job in approximating the

rank function when compared to its nonconvex counterpart (CFA𝑞). The estimation

methods proposed herein have a significant edge over existing methods in producing

high quality solutions across various performance metrics.

2.5.2 Real data examples

This section describes the performance of different FA methods on some real-world

benchmark datasets popularly used in the context of FA. These datasets can be found
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Figure 2-2: Performance of different methods for instances of 𝐵1(30/100), 𝐵2(5/10/100),
and 𝐵3(5/10/100). We see that (CFA1) exhibits very good performance across all instances,
significantly outperforming the competing methods (the results of (CFA2) were similar).
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Figure 2-3: Proportion of variance explained by different methods for real-data examples.
We see that in terms of the proportion of explained variance, (CFA1) delivers the largest
values for different values of 𝑟, which is indeed desirable. (CFA1)also shows nice flexibility
in delivering different models with varying 𝑟, in contrast to MTFA which delivers one model
with proportion of variance explained equal to one. The results of (CFA2) were found to be
similar to (CFA1).

in the R libraries datasets [123], psych [127], and FactoMineR [84] and are as follows:

• The bfi data set has 2800 observations on 28 variables (25 personality self-

reported items and 3 demographic variables).

• The neo data set has 1000 measurements for 𝑝 = 30 dimensions.

• The Harman data set is a correlation matrix of 24 psychological tests given to

145 seventh- and eighth-grade children.

• The geomorphology data set is a collection of geomorphological data collected

across 𝑝 = 10 variables and 75 observations. (The geomorphology data set

originally has 𝑝 = 11, but we remove the one categorical feature, leaving 𝑝 = 10.)

We present the results in Figure 2-3. We also experimented with other methods—

such as WLS and GLS—but the results were similar to MINRES and hence have not

been shown in the figure. For the real examples, most of the performance measures

described in Section 2.5.1 do not apply;17 however, the notion of explained vari-
17Understanding performance of FA methods on real data is difficult because it is an unsupervised

problem. However, we can understand the performances of different methods by drawing parallels
with PCA in terms of the proportion of variance explained of the matrix Σ−Φ—see our discussion
in Section 2.1.
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ance (2.43) does apply. We used this metric to compare the performance of different

competing estimation procedures. We observe that solutions delivered by Category

(B) explain the maximum amount of residual variance for a given rank 𝑟, which

is indeed desirable, especially in the light of its analogy with PCA on the residual

covariance matrix Σ−Φ.

2.5.3 Certificates of optimality via Algorithm 2

We now turn our attention to certificates of optimality using Algorithm 2. Computa-

tional results of Algorithm 2 for a variety of problem sizes across all six classes can be

found in Tables 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10. In general, we provide

results for 𝑝 ranging between 10 and 4000. Parametric choices are outlined in depth

in Table 2.2.18 We always initialize Algorithm 2 with an initial feasible solution as

found via Algorithm 1 so that we can understand if the estimators found via the

CG-based approach are indeed optimal. In particular, if the best feasible objective

value does not change throughout the branch-and-bound algorithm, then the initial

estimator was indeed optimal (within the numerical tolerance).

Root node gap: Let us first consider the gap at the root node. In classes 𝐴1, 𝐵1,

𝐵2, and 𝐵3, we see that the Weyl bound at the root node often provides a better

bound than the one given by using convex envelopes. Indeed, the bound provided by

Weyl’s method can in many instances certify optimality (up to numerical tolerance)

at the root node. For example, this is the case in many instances of classes 𝐴1 and

half of the instances in 𝐵3. Given that Weyl’s method is computationally inexpensive

(only requiring two eigenvalue decompositions), this suggests that Weyl’s inequality

as used within the context of factor analysis is particularly fruitful.

In contrast, in class 𝐴2 and the real examples, we see that the convex envelope

18All computational experiments are performed in a shared cluster computing environment with
highly variable demand, and therefore runtimes are not necessarily a reliable measure of problem
complexity; hence, the number of nodes considered is always displayed. Further, Algorithm 2 is
highly parallelizable, like many branch-and-bound algorithms; however, our implementation is serial.
Therefore, with improvements in code design, it is very likely that runtimes can be substantially
improved beyond those shown here.
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Root node Terminal node
Problem Upper CE Weyl Upper Lower Nodes Time (s)size (𝑅/𝑝) bound LB LB bound bound

2/10 1.54 1.44 1.43 1.54 1.44 1 0.14
3/10 0.88 0.49 0.70 0.88 0.78 78 4.08
5/10 0.43 −0.90 0.10 0.43 0.33 28163 19432.70
2/20 3.99 3.91 3.94 3.99 3.94 1 0.19
3/20 2.33 2.06 2.24 2.33 2.33 1 0.21
5/20 0.61 −0.07 0.49 0.61 0.51 626 75.98

Table 2.2: Computational results for Algorithm 2 for class 𝐴1(𝑅/𝑝). All computations are
performed in julia using SDO solvers MOSEK (for primal feasible solutions) and SCS (for
dual feasible solutions within tolerance 10−3) via the JuMP interface [56]. Computation time
does not include preprocessing (such as computation of u as in (2.37) and finding an initial
incumbent feasible solution Φ𝑓 as computed via the conditional gradient algorithm in Section
2.3). We always use default tolerance TOL = 0.1 for algorithm termination. Parameters for
branching, pruning, node selection, etc., are detailed throughout Section 2.4. Upper bounds
denote 𝑧𝑓 , which is the best feasible solution found thus far (either at the root node or at
algorithm termination). At the root node, we display two lower bounds: the lower bound
arising from convex envelopes (denoted “CE LB”) and the one arising from the Weyl bound
(denoted “Weyl LB”). Note that for lower bound at the termination node, we mean the worst
bound max{𝑧𝑐, 𝑤𝑐} (see Section 2.4.6; 𝑧𝑐 is from the convex envelope approach, while 𝑤𝑐

comes from Weyl’s method). “Nodes” indicates the number of nodes considered in the course
of execution, while “Time (s)” denotes the runtime (in seconds). We set 𝑟*, the rank used
within Algorithm 2, to 𝑟* = 𝑅 − 1, where 𝑅 is the generative rank displayed. All results
displayed to two decimals. Computations run on high-demand, shared cluster computing
environment with variable architectures. Runtime is capped at 400000s (approximately 5
days), and any instance which is still running at that time is marked with an asterisk next
to its runtime.
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Root node Terminal node
Problem Upper CE Weyl Upper Lower Nodes Time (s)size (𝑅/𝑝) bound LB LB bound bound

3/50 7.16 7.09 7.14 7.16 7.14 1 18.66
5/50 3.04 2.86 3.01 3.04 3.01 1 19.13
10/50 0.88 −0.15 0.81 0.88 0.81 1 6.22
3/100 13.72 13.69 13.72 13.72 13.72 1 125.17
5/100 8.54 8.46 8.53 8.54 8.53 1 117.71
10/100 2.62 2.10 2.58 2.62 2.58 1 36.91

Table 2.3: Computational results for larger examples from class 𝐴1(𝑅/𝑝). Same parameters
as in Table 2.2. Again we set 𝑟* = 𝑅− 1.

Root node Terminal node
Problem 𝑟* Upper CE Weyl Upper Lower Nodes Time (s)size (𝑝) used bound LB LB bound bound

10 2 0.98 −0.29 0.26 0.96 0.86 1955 91.99
3 0.53 −0.43 0.13 0.53 0.43 3822 409.68

20 2 5.13 4.14 2.13 5.13 5.03 29724 36857.46
3 4.26 2.68 1.55 4.26 4.05 86687 400002.3*

100 3 38.65 37.50 33.08 38.65 38.18 20282 400015.2*
5 30.98 29.05 25.69 30.98 29.91 16653 400005.6*

Table 2.4: Computational results for class 𝐴2(𝑝). All parameters as per Table 2.2. Here
we show the behavior across a variety of choices of the parameter 𝑟*.

Root node Terminal node
Problem 𝑟* Upper CE Weyl Upper Lower Nodes Time (s)size (𝑟/𝑝) chosen bound LB LB bound bound

4/10 1 0.25 0.06 0.11 0.25 0.20 24 0.66
6/10 2 0.09 −0.27 0.00 0.09 0.04 77 0.62
4/20 1 0.26 0.10 0.13 0.26 0.21 21 0.17
6/20 2 0.10 −0.24 0.01 0.10 0.05 73 1.47
6/50 2 0.11 −0.15 0.04 0.11 0.06 50 0.66
10/50 3 0.17 −0.35 0.03 0.17 0.12 2283 333.62
6/100 2 0.12 −0.07 0.05 0.12 0.05 1 0.71
10/100 3 0.19 −0.22 0.06 0.19 0.14 1535 237.19

Table 2.5: Computational results for class 𝐵1(𝑅/𝑝). We choose 𝑟* during computation as
the largest 𝑟 such that Algorithm 1 yields a feasible solution with strictly positive objective
value (up to additive tolerance 0.05; we use a smaller value here because the objective
values are smaller across this class). For this class, examples can be preprocessed because
Σ ∼ 𝐵1(𝑅/𝑝) has a block of size 𝑅 × 𝑅 in the upper left, with all other entries set to zero
except the diagonal. Hence, it suffices to perform factor analysis with the truncated matrix
Σ1:𝑅,1:𝑅.
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Root node Terminal node
Problem 𝑟* Upper CE Weyl Upper Lower Nodes Time (s)size (𝑟/𝑅/𝑝) chosen bound LB LB bound bound
2/5/20 4 1.15 0.4 1.03 1.15 1.05 517 146.72
3/5/20 4 1.24 0.46 1.11 1.24 1.14 933 232.74
3/5/100 4 8.40 8.32 8.39 8.40 8.39 1 135.73
3/10/100 9 3.23 2.80 3.20 3.23 3.20 1 50.63

Table 2.6: Computational results for class 𝐵2(𝑟/𝑅/𝑝). Parameters as set in Table 2.2.
Here 𝑟* is chosen during computation as the largest 𝑟′ such that Algorithm 1 procedures a
feasible solution with strictly positive objective (up to 0.1). Here 𝑟* = 𝑅− 1 ends up being
an appropriate choice.

Root node Terminal node
Problem 𝑟* Upper CE Weyl Upper Lower Nodes Time (s)size (𝑟/𝑅/𝑝) chosen bound LB LB bound bound
2/5/20 3 0.30 −0.30 0.13 0.30 0.20 777 219.75
3/5/20 2 1.00 0.62 0.82 1.00 0.90 217 48.43
2/5/100 3 0.55 0.24 0.40 0.55 0.45 7099 47651.57
3/5/100 2 1.03 0.70 0.81 1.03 0.93 4906 34514.69
2/10/100 8 0.12 −0.58 0.05 0.12 0.05 1 77.38
3/10/100 6 0.33 −0.73 0.20 0.33 0.22 27770 400000.0*

Table 2.7: Computational results for class 𝐵3(𝑟/𝑅/𝑝). Parameters as set in Table 2.2. As
in Tables 2.5 and 2.6, here 𝑟* is chosen during computation as largest 𝑟′ such that Algorithm
1 produces a feasible solution with strictly positive objective (up to 0.1).

bound tends to perform better. Because of the structure of Weyl’s inequality, Weyl’s

method is well-suited for matrices Σ with very quickly decaying eigenvalues. Exam-

ples in these two classes do not have such a spectrum, and indeed Weyl’s method

does not provide the best root node bound.19 Because neither Weyl’s method nor

the convex envelope bound strictly dominate one another at the root node across all

examples, our approach incorporating both can leverage the advantages of each.

Observe that the root node gap (either in terms of the absolute difference between

the initial feasible solution found and the better of the convex envelope bound and

the Weyl bound) tends to be smaller when 𝑟* is much smaller than 𝑝. This suggests

that the approach we take is well-suited to certify optimality of particularly low-rank

19However, it is worth remarking that Weyl’s method still provides lower bounds on the rank of
solutions to the noiseless factor analysis problem. Hence, even in settings where Weyl’s method is
not necessarily well-suited for proving optimality for the noisy factor analysis problem, it can still
be applied successfully to lower bound rank for noiseless factor analysis.
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Root node Terminal node
𝑟* Upper CE Weyl Upper Lower Nodes Time (s)used bound LB LB bound bound
1 4.06 3.78 2.53 4.06 3.96 44 0.64
2 2.64 2.04 1.42 2.64 2.54 1885 142.06
3 1.56 0.62 0.61 1.56 1.46 11056 2458.23
4 0.88 −0.33 0.28 0.88 0.78 66877 60612.61
5 0.36 −0.88 0.0 0.36 0.25 155759 400012.4*

Table 2.8: Computational results for the geomorphology example (𝑝 = 10). Parameters as
set in Table 2.2. Here we display results for the choices of 𝑟* ∈ {1, 2, 3, 4, 5} (for 𝑟* > 5, the
upper bound is below the numerical tolerance, so we do not include those).

Root node Terminal node
𝑟* Upper CE Weyl Upper Lower Nodes Time (s)used bound LB LB bound bound
1 9.88 9.64 5.89 9.88 9.78 158 30.13
2 7.98 7.54 4.22 7.98 7.88 31710 49837.17
3 6.53 5.85 3.01 6.53 6.35 81935 400003.8*

Table 2.9: Computational results for the Harman example (𝑝 = 24). Parameters as set in
Table 2.2. Here we display results for the choices of 𝑟* ∈ {1, 2, 3}.

Example 𝑟*
Upper Lower
bound bound

𝐴1(100/1000)
10 460.35 457.46
50 198.70 197.13
90 28.65 28.34

𝐴2(1000)
10 184.22 183.18
30 20.25 19.50
50 2.17 1.71

𝐵2(20/90/1000)
20 378.37 376.64
40 235.16 233.94
80 34.33 34.09

𝐵3(20/150/1000)
20 426.31 422.13
70 174.00 171.70
120 20.30 19.80

Example 𝑟*
Upper Lower
bound bound

𝐴1(360/4000)
100 1334.40 1327.60
200 693.02 688.87
350 30.75 30.50

𝐴2(4000)
10 733.41 733.09
50 8.57 8.39
70 0.90 0.79

𝐵2(80/360/4000)
100 1360.1 1354.04
200 703.78 700.21
350 31.02 30.91

𝐵3(120/360/4000)
100 1081.20 1078.74
200 253.50 252.50
240 7.89 7.46

Table 2.10: Computational results across several classes for larger scale instances with
𝑝 ∈ {1000, 4000}. Results are displayed across a variety of choices of rank 𝑟*. The “Upper
bound” denotes the upper bound found by the conditional gradient method, while “Lower
bound” denotes the Weyl bound at the root node (no convex envelope bounds via Algorithm 2
are shown here because of the large nature of the SDO-based convex envelope lower bounds).
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decompositions in noisy factor analysis settings. We see that this phenomenon is

true across all classes. The numerical results suggest that corresponding theoretical

guarantees for Weyl’s method are potentially of interest in their own right and warrant

further consideration.

Finally, we remark that if the true convex envelope of the objective over the set of

semidefinite constraints was taken, then the convex envelope objective would always

be nonnegative. However, because we have taken the convex envelope of the objective

over the polyhedral constraints only, this is not the case.

Performance at termination: It is particularly encouraging that the initial fea-

sible solutions provided via Algorithm 1 remain the best feasible solution throughout

the execution of Algorithm 2 for all but a few instances. (Of course, this need not

be universally true.) This is an important observation to make because without a

provable optimality scheme such as the one we consider here, it is difficult to quantify

the performance of heuristic upper bound methods. As we demonstrate here, despite

the only local guarantees of solutions obtained via a conditional gradient scheme,

they tend to perform quite well in the setting of factor analysis. Indeed, even in the

instances where the best feasible solution is improved, the improved solution is found

very early in the branching process.

Across the different example classes, we see that in general the gap tends to

decrease more when 𝑟* is small relative to 𝑝 and 𝑝 is smaller. To appropriately

contextualize and appreciate the number of nodes solved for a problem with 𝑝 =

100 on the timescale of 100s, with state-of-the-art implementations of interior point

methods, solving a single node in the branch and bound tree can take on the order

of 40s (for the specifically structured problems of interest and on the same machine).

In other words, if one were to naïvely use interior point methods, it would only be

possible to solve approximately three nodes during a 100s time limit. In contrast,

by using a first-order method approach which facilitates warm starts, we are able to

solve hundreds of nodes in the same amount of time.

We see that Algorithm 2 performs particularly well for classes 𝐴1 (Tables 2.2
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and 2.3) and 𝐵1 (Table 2.5), for problems of reasonable size with relatively small

underlying ranks. This is highly encouraging. Class 𝐴1 forms a set of prototypical

examples for which theoretical recovery guarantees perform well; in stark contrast,

problems such as those in 𝐵1 which have highly structured underlying factors tend

to not satisfy the requirements of such recovery guarantees. Indeed, if Σ ∼ 𝐵1(𝑅/𝑝),

then there generally appears to be a rank 𝑅/2 matrix Θ < 0 so that Σ − Θ is

positive semidefinite and diagonal. In such a problem, for 𝑟* on the order of 𝑅/2− 1,

we provide nearly optimal solutions within a reasonable time frame.

Further, we note that similar results to those obtained for classes 𝐴1 and 𝐵1 are

obtained for the other classes and are detailed in Tables 2.4 (class 𝐴2), 2.6 (class 𝐵2),

2.7 (class 𝐵3), and 2.8 and 2.9. In a class such as 𝐴2, which is generated as a high

rank matrix (with decaying spectrum) with added individual variances, theoretical

recovery guarantees do not generally apply, so again it is encouraging to see that

our approach still makes significant progress towards proving optimality. Further, as

shown in Table 2.10, for a variety of problems with 𝑝 on the order of 1000 or 4000,

solutions can be found in seconds and optimality can be certified within minutes via

Weyl bounds, with no need for convex envelope bounds as computed via Algorithm

2, so long as the rank 𝑟* is sufficiently small (for classes 𝐴1, 𝐵2, and 𝐵3 on the order

of hundreds, and for 𝐴2 on the order of tens). This strongly supports the value of

such an eigenvalue-based approach. When computing lower bounds solely via Weyl’s

method, the only necessary computations are two eigenvalue decompositions. As

Table 2.10 suggests, for sufficiently small rank, one can still quickly find certifiably

optimal solutions even for very large-scale factor analysis problems.

Finally, we note that all synthetic examples we have considered have equal propor-

tions of common and individual variances (although, of course, this is not exploited

by our approach as this information is not a priori possible to specify without addi-

tional contextual information). If one modifies the classes so that the proportion of

the common variances is higher than the proportion of individual variances (in the

generative example), then Algorithm 2 is able to deliver better bounds on a smaller

time scale. (Results are not included here.) This is not particularly surprising be-
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cause the branch-and-bound approach we take essentially hinges on how well the

products 𝑊𝑖𝑖Φ𝑖 can be approximated. When there is underlying factor structure with

a lower proportion of individual variances, the scale of 𝑊𝑖𝑖Φ𝑖 is smaller and hence

these products are easier to approximate well.

2.5.4 Additional considerations

We now turn our attention to assessing the benefits of various algorithmic modifica-

tions as presented in Section 2.4. We illustrate the impact of these by focusing on four

representative examples from across the classes: 𝐴1(3/10), 𝐵1(6/50), 𝐵3(3/5/20), and

G := geomorphology. All relevant results can be found in Table 2.11.

Performance of branching strategy: We begin by considering the impact of our

branching strategy as developed in Section 2.4.4. The results across the four examples

are shown in Table 2.11a. Recall that 𝜖 ∈ [0, 1) controls the extent of deviation from

the canonical branching location, with 𝜖 = 0 corresponding to no deviation. Across

all examples, we see that the number of nodes considered to prove optimality is

approximately convex in 𝜖 ∈ [0, 0.5]. In particular, for all examples, the “optimal”

choice of 𝜖 is not the canonical choice of 𝜖 = 0. This contrast is stark for the examples

𝐵3(3/5/20) and G. Indeed, for these two examples, the number of nodes considered

when 𝜖 = 0 is over five times larger than for any 𝜖 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

In other words, the alternative branching strategy can have a substantial impact

on the number of nodes considered in the branch-and-bound tree. As a direct con-

sequence, this strategy can drastically reduce the computation time needed to prove

optimality. As the examples suggest, it is likely that 𝜖 should be chosen dynamically

during algorithm execution, as the particular choice depends on a given problem’s

structure. However, we set 𝜖 = 0.4 for all other computational experiments because

this appears to offer a distinct benefit over the naïve strategy of setting 𝜖 = 0.

Performance of node selection strategy: We now turn our attention to the node

selection strategy as detailed in Section 2.4.6. Recall that node selection considers

72



Example 𝑟*
Nodes considered for 𝜖 =

0.0 0.1 0.2 0.3 0.4 0.5
𝐴1(3/10) 2 103 72 59 62 78 101
𝐵1(6/50) 2 39 33 29 40 50 53
𝐵3(3/5/20) 2 8245 762 278 189 217 203

G 1 937 162 59 46 44 52
(a) Effect of branching strategy

Example 𝑟*
Nodes considered for

Naïve strategy Modified strategy
𝐴1(3/10) 2 99 78
𝐵1(6/50) 2 135 50

𝐵3(3/5/20) 2 375 217
G 1 43 44

(b) Effect of node selection strategy

Example 𝑟*
Nodes considered for TOL =
0.10 0.05 0.025

𝐴1(3/10) 2 78 287 726
𝐵1(6/50) 2 1 50 262
𝐵3(3/5/20) 2 217 1396 5132

G 1 44 217 978
(c) Effect of numerical tolerance

Example 𝑟*
Upper CE LB CE LB
Bound with tightening without tightening

𝐴1(3/10) 2 0.88 0.70 0.39
𝐵1(6/50) 2 0.11 −0.15 −0.17
𝐵3(3/5/20) 2 1.00 0.62 0.51

G 1 4.06 3.78 3.78
(d) Effect of root node bound tightening

Table 2.11: Computational results for effects of algorithmic modifications. Unless explicitly
stated, all other parameters are as in Table 2.2. We consider how the number of nodes needed
to prove optimality changes across different choices of the following: (a) 𝜖 as in Section 2.4.4;
(b) node selection strategy (either naïve and modified) as described in Section 2.4.6; and (c)
numerical tolerance TOL for algorithm termination. Finally, in (d) we show how the convex
envelope lower bound (denoted “CE LB”) compares with and without bound tightening at
the root node (see Section 2.4.5). “Upper bound” is included for scale (i.e., to compare the
relative impact of tightening).
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how to pick which node to consider next in the current branch-and-bound tree at any

iteration of Algorithm 2. We compare two strategies: the naïve strategy which selects

the node with worst convex envelope bound (as explicitly written in Algorithm 2) and

the modified strategy which employs randomness and Weyl bounds to consider nodes

which might not be advantageous to fathom when only convex envelope bounds are

considered.

The comparison is shown in Table 2.11b. We see that this strategy is advanta-

geous overall (with only example G showing a negligible decrease in performance).

The benefit is particularly strong for examples from the 𝐵 classes which have highly

structured underlying factors. For such examples, there is a large difference between

the convex envelope bounds and the Weyl bounds at the root node (see e.g. Ta-

ble 2.5). Hence, an alternative branching strategy which incorporates the eigenvalue

information provided by Weyl bounds has potential to improve beyond the naïve

strategy. Indeed, this appears to be the case across all examples where such behavior

occurs.

Influence of optimality tolerance: Now let us consider the influence of the addi-

tive optimality tolerance for termination, TOL. In particular, we study how the number

of nodes to prove optimality changes as a function of additive gap necessary for ter-

mination. The corresponding results across the four examples are shown in Table

2.11c. Not surprisingly, as the gap necessary for termination is progressively halved,

the corresponding number of nodes considered increases substantially. However, it

is important to note that even though the gap at termination is smaller as this tol-

erance decreases (by design), for these examples the best feasible solution remains

unchanged. In other words, the increase in the number of nodes appears to be the

price for more accurately proving optimality and not for finding better feasible solu-

tions. Indeed, as noted earlier, the solutions found via conditional gradient methods

at the outset are of remarkably high quality.
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Performance of bound tightening: We close this section by considering bound

tightening. All computational results employ bound tightening as developed in Sec-

tion 2.4.5, but only at the root node. Bound tightening, which requires repeated

eigenvalue computations, is a computationally expensive process. For this reason, we

have chosen not to employ bound tightening at every node in the branch-and-bound

tree. From a variety of computational experiments, we observed that the most im-

portant node for bound tightening is the root node, and therefore it is a reasonable

choice to only employ bound tightening there. Consequently, we employ pruning via

Weyl’s method (detailed in Section 2.4.5 as well) at all nodes in the branch-and-bound

tree. (Recall that bound tightening can be thought of as optimal pruning via Weyl’s

method.)

In Table 2.11d we show the impact of bound tightening at the root node in terms

of the improvement in the lower bounds provided by convex envelopes. The results

for the class 𝐴1 are particularly distinctive. Indeed, for this class bound tightening

has a substantial impact on the quality of the convex envelope bound (for the example

𝐴1(3/10) given, the improvement is from a relative gap at the root node of 56% to a

gap of 20%). For the examples shown, bound tightening offers the least improvement

in the real example G. In light of Table 2.8 this is not too surprising, as Weyl’s method

(at the root node) is not particular effective for this example. As Weyl’s inequality is

central to bound tightening, problems for which Weyl’s inequality is not particularly

effective tend to experience less benefit from bound tightening at the root node.

2.6 Conclusions

In this chapter, we analyzed the classical rank-constrained FA problem from a com-

putational perspective. We proposed a general, flexible family of rank-constrained,

nonlinear SDO-based formulations for the task of approximating an observed covari-

ance matrix Σ as the sum of a PSD low-rank component Θ and a diagonal matrix

Φ (with nonnegative entries) subject to Σ − Φ being PSD. Our framework enables

us to estimate the underlying factors and unique variances under the restriction that
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the residual covariance matrix is semidefinite—this is important for statistical in-

terpretability and understanding the proportion of variance explained by a given

number of factors. This constraint, however, seems to ignored by most other widely

used methods in FA.

We introduce a novel exact reformulation of the rank-constrained FA problem

as a smooth optimization problem with convex, compact constraints. We present a

unified algorithmic framework, utilizing modern techniques in nonlinear optimization

and first order methods in convex optimization to obtain high-quality solutions for

the FA problem. At the same time, we use techniques from discrete and global

optimization to demonstrate that these solutions are often provably optimal. We

provide computational evidence demonstrating that the methods proposed herein

provide high quality estimates with improved accuracy when compared to existing,

popularly-used methods in FA.

In this work we have demonstrated that a previously intractable rank optimization

problem can be solved to provable optimality. We envision that ideas similar to those

used here can be used to address an even larger class of estimation problems with

underlying matrix structure. In this way, we anticipate significant progress on such

problems in the next decade, particularly in light of myriad advances throughout

distinct areas of modern optimization.
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Chapter 3

Equivalence of Robustification and

Regularization

3.1 Introduction

The development of predictive methods that perform well in the face of uncertainty

is at the core of modern machine learning and statistical practice. Indeed, the notion

of regularization—loosely speaking, a means of controlling the ability of a statistical

model to generalize to new settings by trading off with the model’s complexity—is

at the very heart of such work [77]. Corresponding regularized statistical methods,

such as the Lasso for linear regression [156] and nuclear-norm-based approaches to

matrix completion [126, 44], are now ubiquitous and have seen widespread success in

practice.

In parallel to the development of such regularization methods, it has been shown

in the field of robust optimization that under certain conditions these regularized

problems result from the need to immunize the statistical problem against adversar-

ial perturbations in the data [58, 162, 19, 47]. Such a robustification offers a different

perspective on regularization methods by identifying which adversarial perturbations

the model is protected against. Conversely, this can help to inform statistical model-

ing decisions by identifying potential choices of regularizers. Further, this connection

between regularization and robustification offers the potential to use sophisticated
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data-driven methods in robust optimization [29, 160] to design regularizers in a prin-

cipled fashion.

With the continuing growth of the adversarial viewpoint in machine learning (e.g.

the advent of new deep learning methodologies such as generative adversarial net-

works [70, 71, 137]), it is becoming increasingly important to better understand the

connection between robustification and regularization. Our goal in this chapter is

to shed new light on this relationship by focusing in particular on linear and matrix

regression problems. Specifically, our contributions include:

1. In the context of linear regression, we demonstrate that in general such a robus-

tification procedure is not equivalent to regularization (via penalization). We

characterize precisely under which conditions on the model of uncertainty used

and on the loss function penalties one has that robustification is equivalent to

regularization.

2. We consider problems in the matrix setting, such as matrix completion and Prin-

cipal Component Analysis (PCA). We show that the nuclear norm, a popular

penalty function used throughout this setting, arises directly through robusti-

fication. As with the case of vector regression, we characterize under which

conditions on the model of uncertainty there is equivalence of robustification

and regularization in the matrix setting.

The structure of the chapter is as follows. In Section 3.2, we review background

on norms and consider robustification and regularization in the context of linear

regression, focusing both on their equivalence and non-equivalence. In Section 3.3,

we turn our attention to regression with underlying matrix variables, considering in

depth both matrix completion and PCA. In Section 3.4, we include some concluding

remarks.
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3.2 A robust perspective of linear regression

We begin by briefly introducing the necessary notation and background on norms

which we will use to address the equivalence of robustification and regularization in

the context of linear regression.

3.2.1 Norms and their duals

Given a vector space 𝑉 ⊆ R𝑛 we say that ‖ · ‖ : 𝑉 → R is a norm if for all v,w ∈ 𝑉

and 𝛼 ∈ R

1. If ‖v‖ = 0, then v = 0,

2. ‖𝛼v‖ = |𝛼|‖v‖ (absolute homogeneity), and

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality).

If ‖ · ‖ satisfies conditions 2 and 3, but not 1, we call it a seminorm. For a norm ‖ · ‖

on R𝑛 we define its dual, denoted ‖ · ‖*, to be

‖𝛽‖* := max
x∈R𝑛

x′𝛽

‖x‖
.

For example, the ℓ𝑝 norms ‖𝛽‖𝑝 := (
∑︀

𝑖 |𝛽𝑖|𝑝)1/𝑝 for 𝑝 ∈ [1,∞) and ‖𝛽‖∞ := max𝑖 |𝛽𝑖|

satisfy a well-known duality relation: ℓ𝑝* is dual to ℓ𝑝, where 𝑝* ∈ [1,∞] with 1/𝑝 +

1/𝑝* = 1. We call 𝑝* the conjugate of 𝑝. More generally for matrix norms1 ‖ · ‖ on

R𝑚×𝑛 the dual is defined analogously:

‖Δ‖* := max
A∈R𝑚×𝑛

⟨A,Δ⟩
‖A‖

,

where Δ ∈ R𝑚×𝑛 and ⟨·, ·⟩ denotes the trace inner product.We note that the dual of

the dual norm is the original norm [38].

1We treat a matrix norm as any norm on R𝑚×𝑛 which satisfies the three conditions of a usual
vector norm, although some authors reserve the term “matrix norm” for a norm on R𝑚×𝑛 which also
satisfies a submultiplicativity condition (see [80, p. 341]).
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Three widely used choices for matrix norms (see [80]) are Frobenius, spectral, and

induced norms. The definitions for these norms are given below for Δ ∈ R𝑚×𝑛 and

summarized in Table 3.1 for convenient reference.

1. The 𝑝-Frobenius norm, denoted ‖ · ‖𝐹𝑝 , is the entrywise ℓ𝑝 norm on the entries

of Δ:

‖Δ‖𝐹𝑝 :=

(︃∑︁
𝑖𝑗

|∆𝑖𝑗|𝑝
)︃1/𝑝

.

Analogous to before, 𝐹𝑝* is dual to 𝐹𝑝, where 1/𝑝 + 1/𝑝* = 1.

2. The 𝑝-spectral (Schatten) norm, denoted ‖ · ‖𝜎𝑝 , is the ℓ𝑝 norm on the singular

values of the matrix Δ:

‖Δ‖𝜎𝑝 := ‖𝜎(Δ)‖𝑝,

where 𝜎(Δ) denotes the vector containing the singular values of Δ. Again, 𝜎𝑝*

is dual to 𝜎𝑝.

3. Finally we consider the class of induced norms. If 𝑔 : R𝑚 → R and ℎ : R𝑛 → R

are norms, then we define the induced norm ‖ · ‖(ℎ,𝑔) as

‖Δ‖(ℎ,𝑔) := max
𝛽∈R𝑛

𝑔(Δ𝛽)

ℎ(𝛽)
.

An important special case occurs when 𝑔 = ℓ𝑝 and ℎ = ℓ𝑞. When such norms

are used, (𝑞, 𝑝) is used as shorthand to denote (ℓ𝑞, ℓ𝑝). Induced norms are

sometimes referred to as operator norms. We reserve the term operator norm

for the induced norm (ℓ2, ℓ2) = (2, 2) = 𝜎∞, which measures the largest singular

value.
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Name Notation Definition Description

𝑝-Frobenius 𝐹𝑝

(︃∑︁
𝑖𝑗

|∆𝑖𝑗|𝑝
)︃1/𝑝

entrywise ℓ𝑝 norm

𝑝-spectral (Schatten) 𝜎𝑝 ‖𝜎(Δ)‖𝑝 ℓ𝑝 norm on the singular values

Induced (ℎ, 𝑔) max
𝛽

𝑔(Δ𝛽)

ℎ(𝛽)
induced by norms 𝑔, ℎ

Table 3.1: Matrix norms on Δ ∈ R𝑚×𝑛.

3.2.2 Uncertain regression

We now turn our attention to uncertain linear regression problems and regularization.

The starting point for our discussion is the standard problem

min
𝛽∈R𝑛

𝑔(y −X𝛽),

where y ∈ R𝑚 and X ∈ R𝑚×𝑛 are data and 𝑔 is some convex function, typically a

norm. For example, 𝑔 = ℓ2 is least squares, while 𝑔 = ℓ1 is known as least absolute

deviation (LAD). In favor of models which mitigate the effects of overfitting these are

often replaced by the regularization problem

min
𝛽

𝑔(y −X𝛽) + ℎ(𝛽),

where ℎ : R𝑛 → R is some penalty function, typically taken to be convex. This

approach often aims to address overfitting by penalizing the complexity of the model,

measured as ℎ(𝛽). (For a more formal treatment using Hilbert space theory, see

[36, 16].) For example, taking 𝑔 = ℓ22 and ℎ = ℓ22, we recover the so-called regularized

least squares (RLS), also known as ridge regression [77]. The choice of 𝑔 = ℓ22 and

ℎ = ℓ1 leads to Lasso, or least absolute shrinkage and selection operator, introduced

in [156]. Lasso is often employed in scenarios where the solution 𝛽 is desired to be

sparse, i.e., 𝛽 has very few nonzero entries. Broadly speaking, regularization can take

much more general forms; for our purposes, we restrict our attention to regularization

that appears in the penalized form above.

In contrast to this approach, one may alternatively wish to re-examine the nominal
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regression problem min𝛽 𝑔(y − X𝛽) and instead attempt to solve this taking into

account adversarial noise in the data matrix X. As in [58, 101, 102, 19, 162], this

approach may take the form

min
𝛽

max
Δ∈𝒰

𝑔(y − (X + Δ)𝛽), (3.1)

where the set 𝒰 ⊆ R𝑚×𝑛 characterizes the user’s belief about uncertainty on the data

matrix X. This set 𝒰 is known in the language of robust optimization [19, 25] as an

uncertainty set and the inner maximization problem maxΔ∈𝒰 𝑔(y− (X+Δ)𝛽) takes

into account the worst-case error (measured via 𝑔) over 𝒰 . We call such a procedure

robustification because it attempts to immunize or robustify the regression problem

from structural uncertainty in the data. Such an adversarial or “worst-case” procedure

is one of the key tenets of the area of robust optimization [19, 25].

As noted in the introduction, the adversarial perspective offers several attractive

features. Let us first focus on settings when robustification coincides with a regular-

ization problem. In such a case, the robustification identifies the adversarial perturba-

tions the model is protected against, which can in turn provide additional insight into

the behavior of different regularizers. Further, technical machinery developed for the

construction of data-driven uncertainty sets in robust optimization [29, 160] enables

the potential for a principled framework for the design of regularization schemes, in

turn addressing a complex modeling decision encountered in practice.

Moreover, the adversarial approach is of interest in its own right, even if robustifi-

cation does not correspond directly to a regularization problem. This is evidenced in

part by the burgeoning success of generative adversarial networks and other method-

ologies in deep learning [70, 71, 137]. Further, the worst-case approach often leads to

a more straightforward analysis of properties of estimators [162] as well as algorithms

for finding estimators [18].

Let us now return to the robustification problem. A natural choice of an uncer-

tainty set which gives rise to interpretability is the set 𝒰 = {Δ ∈ R𝑚×𝑛 : ‖Δ‖ ≤ 𝜆},

where ‖ ·‖ is some matrix norm and 𝜆 > 0. One can then write max
Δ∈𝒰

𝑔(y− (X+Δ)𝛽)
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as
max̃︀X 𝑔(y − ̃︀X𝛽)

s. t. ‖X− ̃︀X‖ ≤ 𝜆,

or the worst case error taken over all ̃︀X sufficiently close to the data matrix X. In

what follows, if ‖ · ‖ is a norm or seminorm, then we let 𝒰‖·‖ denote the ball of radius

𝜆 in ‖ · ‖:

𝒰‖·‖ = {Δ : ‖Δ‖ ≤ 𝜆}.

For example, 𝒰𝐹𝑝 , 𝒰𝜎𝑝 , and 𝒰(ℎ,𝑔) denote uncertainty sets under the norms 𝐹𝑝, 𝜎𝑝, and

(ℎ, 𝑔), respectively. We assume 𝜆 > 0 fixed for the remainder of the chapter.

We briefly mention addressing uncertainty in y. Suppose that we have a set

𝒱 ⊆ R𝑚 which captures some belief about the uncertainty in y. If again we have an

uncertainty set 𝒰 ⊆ R𝑚×𝑛, we may attempt to solve a problem of the form

min
𝛽

max
𝛿∈𝒱
Δ∈𝒰

𝑔(y + 𝛿 − (X + Δ)𝛽).

We can instead work with a new loss function 𝑔 defined as

𝑔(v) := max
𝛿∈𝒱

𝑔(v + 𝛿).

If 𝑔 is convex, then so is 𝑔. In this way, we can work with the problem in the form

min
𝛽

max
Δ∈𝒰

𝑔(y − (X + Δ)𝛽),

where there is only uncertainty in X. Throughout the remainder of this chapter we

will only consider such uncertainty.

Relation to robust statistics: As noted in [19], the connection between robust

optimization and robust statistics is not entirely clear. We will return in more depth

to the relationship in Chapter 4.
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3.2.3 Equivalence of robustification and regularization

A natural question is when do the procedures of regularization and robustification

coincide. This problem was first studied in [58] in the context of uncertain least

squares problems and has been extended to more general settings in [162, 47] and

most comprehensively in [19]. In this subsection, we present settings in which robus-

tification is equivalent to regularization. When such an equivalence holds, tools from

robust optimization can be used to analyze properties of the regularization problem

(cf. [162, 47]).

We begin with a general result on robustification under induced seminorm uncer-

tainty sets.

Theorem 7. If 𝑔 : R𝑚 → R is a seminorm which is not identically zero and ℎ :

R𝑛 → R is a norm, then for any z ∈ R𝑚 and 𝛽 ∈ R𝑛

max
Δ∈𝒰(ℎ,𝑔)

𝑔(z + Δ𝛽) = 𝑔(z) + 𝜆ℎ(𝛽),

where 𝒰(ℎ,𝑔) = {Δ : ‖Δ‖(ℎ,𝑔) ≤ 𝜆}.

Proof. From the triangle inequality 𝑔(z + Δ𝛽) ≤ 𝑔(z) + 𝑔(Δ𝛽) ≤ 𝑔(z) + 𝜆ℎ(𝛽)

for any Δ ∈ 𝒰 := 𝒰(ℎ,𝑔). We next show that there exists some Δ ∈ 𝒰 so that

𝑔(z + Δ𝛽) = 𝑔(z) + 𝜆ℎ(𝛽). Let v ∈ R𝑛 so that v ∈ argmaxℎ*(v)=1 v
′𝛽, where ℎ* is

the dual norm of ℎ. Note in particular that v′𝛽 = ℎ(𝛽) by the definition of the dual

norm ℎ*. For now suppose that 𝑔(z) ̸= 0. Define the rank one matrix ̂︀Δ = 𝜆
𝑔(z)

zv′.

Observe that

𝑔(z + ̂︀Δ𝛽) = 𝑔

(︂
z +

𝜆ℎ(𝛽)

𝑔(z)
z

)︂
=

𝑔(z) + 𝜆ℎ(𝛽)

𝑔(z)
𝑔(z) = 𝑔(z) + 𝜆ℎ(𝛽).

We next show that ̂︀Δ ∈ 𝒰 . Observe that for any x ∈ R𝑛 that

𝑔( ̂︀Δx) = 𝑔

(︂
𝜆v′x

𝑔(z)
z

)︂
= 𝜆|v′x| ≤ 𝜆ℎ(x)ℎ*(v) = 𝜆ℎ(x),

where the final inequality follows by definition of the dual norm. Hence ̂︀Δ ∈ 𝒰 , as
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desired.

We now consider the case when 𝑔(z) = 0. Let u ∈ R𝑚 so that 𝑔(u) = 1 (because

𝑔 is not identically zero there exists some u so that 𝑔(u) > 0, and so by homogeneity

of 𝑔 we can take u so that 𝑔(u) = 1). Let v be as before. Now define ̂︀Δ = 𝜆uv′. We

observe that

𝑔(z + ̂︀Δ𝛽) = 𝑔(z + 𝜆uv′𝛽) ≤ 𝑔(z) + 𝜆|v′𝛽|𝑔(u) = 𝜆ℎ(𝛽).

Now, by the reverse triangle inequality,

𝑔(z + ̂︀Δ𝛽) ≥ 𝑔( ̂︀Δ𝛽)− 𝑔(z) = 𝑔( ̂︀Δ𝛽) = 𝜆ℎ(𝛽),

and therefore 𝑔(z+ ̂︀Δ𝛽) = 𝜆ℎ(𝛽) = 𝑔(z) +𝜆ℎ(𝛽). The proof that ̂︀Δ ∈ 𝒰 is identical

to the case when 𝑔(z) ̸= 0. This completes the proof.

This result implies as a corollary known results on the connection between robus-

tification and regularization as found in [162, 19, 47] and references therein.

Corollary 1 ([162, 19, 47]). If 𝑝, 𝑞 ∈ [1,∞] then

min
𝛽

max
Δ∈𝒰(𝑞,𝑝)

‖y − (X + Δ)𝛽‖𝑝 = min
𝛽
‖y −X𝛽‖𝑝 + 𝜆‖𝛽‖𝑞.

In particular, for 𝑝 = 𝑞 = 2 we recover regularized least squares as a robustification;

likewise, for 𝑝 = 2 and 𝑞 = 1 we recover the Lasso.2

Theorem 8 ([162, 19, 47]). One has the following for any 𝑝, 𝑞 ∈ [1,∞]:

min
𝛽

max
Δ∈𝒰𝐹𝑝

‖y − (X + Δ)𝛽‖𝑝 = min
𝛽
‖y −X𝛽‖𝑝 + 𝜆‖𝛽‖𝑝* ,

2Strictly speaking, we recover equivalent problems to regularized least squares and Lasso, respec-
tively. We take the usual convention and overlook this technicality (see [19] for a discussion). For
completeness, we note that one can work directly with the true ℓ22 loss function, although at the cost
of requiring more complicated uncertainty sets to recover equivalence results.
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where 𝑝* is the conjugate of 𝑝. Similarly,

min
𝛽

max
Δ∈𝒰𝜎𝑞

‖y − (X + Δ)𝛽‖2 = min
𝛽
‖y −X𝛽‖2 + 𝜆‖𝛽‖2.

Observe that regularized least squares arises again under all uncertainty sets de-

fined by the spectral norms 𝜎𝑞 when the loss function is 𝑔 = ℓ2. Now we continue

with a remark on how Lasso arises through regularization. See [162] for comprehen-

sive work on the robustness and sparsity implications of Lasso as interpreted through

such a robustification considered here.

Remark 1. As per Corollary 1 it is known that Lasso arises as uncertain ℓ2 regression

with uncertainty set 𝒰 := 𝒰(1,2) [162]. As with Theorem 7, one might argue that the

ℓ1 penalizer arises as an artifact of the model of uncertainty. We remark that one

can derive the set 𝒰 as an induced uncertainty set defined using the “true” nonconvex

penalty ℓ0, where ‖𝛽‖0 := |{𝑖 : 𝛽𝑖 ̸= 0}|. To be precise, for any 𝑝 ∈ [1,∞] and for

Γ = {𝛽 ∈ R𝑛 : ‖𝛽‖𝑝 ≤ 1} we claim that

𝒰 ′ :=

{︂
Δ : max

𝛽∈Γ

‖Δ𝛽‖2
‖𝛽‖0

≤ 𝜆

}︂

satisfies 𝒰 = 𝒰 ′. This is summarized, with an additional representation 𝒰 ′′ as used

in [162], in the following proposition.

Proposition 2. If 𝒰 = 𝒰(1,2), 𝒰 ′ = {Δ : ‖Δ𝛽‖2 ≤ 𝜆‖𝛽‖0 ∀‖𝛽‖𝑝 ≤ 1} for an

arbitrary 𝑝 ∈ [1,∞], and 𝒰 ′′ = {Δ : ‖Δ𝑖‖2 ≤ 𝜆 ∀𝑖}, where Δ𝑖 is the 𝑖th column of

Δ, then 𝒰 = 𝒰 ′ = 𝒰 ′′.

Proof. We first show that 𝒰 = 𝒰 ′. Because ‖𝛽‖1 ≤ ‖𝛽‖0 for all 𝛽 ∈ R𝑛 with

‖𝛽‖𝑝 ≤ 1, we have that 𝒰 ⊆ 𝒰 ′. Now suppose that Δ ∈ 𝒰 ′. Then for any 𝛽 ∈ R𝑛,

we have that

‖Δ𝛽‖2 =

⃦⃦⃦⃦
⃦∑︁

𝑖

𝛽𝑖Δe𝑖

⃦⃦⃦⃦
⃦
2

≤
∑︁
𝑖

|𝛽𝑖| ‖Δe𝑖‖2 ≤
∑︁
𝑖

|𝛽𝑖|𝜆 = 𝜆‖𝛽‖1,

where {e𝑖}𝑛𝑖=1 is the standard orthonormal basis for R𝑛. Hence, Δ ∈ 𝒰 and therefore
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𝒰 ′ ⊆ 𝒰 . Combining with the previous direction gives 𝒰 = 𝒰 ′.

We now prove that 𝒰 = 𝒰 ′′. That 𝒰 ′′ ⊆ 𝒰 is essentially obvious; 𝒰 ⊆ 𝒰 ′′ follows

by considering 𝛽 ∈ {e𝑖}𝑛𝑖=1. This completes the proof.

This proposition implies that ℓ1 arises from the robustification setting without directly

appealing to standard convexity arguments for why ℓ1 should be used to replace ℓ0

(which use the fact that ℓ1 is the convex envelope of ℓ0 on [−1, 1]𝑛, see e.g. [38]).

In light of the above discussion, it is not difficult to show that other Lasso-like

methods can also be expressed as an adversarial robustification, supporting the flex-

ibility and versatility of such an approach. One such example is the elastic net

[167, 53, 115], a hybridized version of ridge regression and the Lasso. An equivalent

representation of the elastic net is as follows:

min
𝛽
‖y −X𝛽‖2 + 𝜆‖𝛽‖1 + 𝜇‖𝛽‖2.

As per Theorem 8, this can be written exactly as

min
𝛽

max
Δ,Δ′:

‖Δ‖𝐹∞≤𝜆
‖Δ′‖𝐹2

≤𝜇

‖y − (X + Δ + Δ′)𝛽‖2.

Under this interpretation, we see that 𝜆 and 𝜇 directly control the tradeoff between

two different types of perturbations: “feature-wise” perturbations Δ (controlled via 𝜆

and the 𝐹∞ norm) and “global” perturbations Δ′ (controlled via 𝜇 and the 𝐹2 norm).

We conclude this subsection with another example of when robustification is equiv-

alent to regularization for the case of LAD (ℓ1) and maximum absolute deviation (ℓ∞)

regression under row-wise uncertainty.

Theorem 9 ([162]). Fix 𝑞 ∈ [1,∞] and let 𝒰 = {Δ : ‖𝛿𝑖‖𝑞 ≤ 𝜆 ∀𝑖}, where 𝛿𝑖 is the

𝑖th row of Δ ∈ R𝑚×𝑛. Then

min
𝛽

max
Δ∈𝒰
‖y − (X + Δ)𝛽‖1 = min

𝛽
‖y −X𝛽‖1 + 𝑚𝜆‖𝛽‖𝑞*
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and

min
𝛽

max
Δ∈𝒰
‖y − (X + Δ)𝛽‖∞ = min

𝛽
‖y −X𝛽‖∞ + 𝜆‖𝛽‖𝑞* .

For completeness, we note that the uncertainty set 𝒰 = {Δ : ‖𝛿𝑖‖𝑞 ≤ 𝜆 ∀𝑖} considered

in Theorem 9 is actually an induced uncertainty set, namely, 𝒰 = 𝒰(𝑞*,∞).

3.2.4 Non-equivalence of robustification and regularization

In contrast to previous work studying robustification for regression, which primarily

addresses tractability of solving the new uncertain problem [19] or the implications

for Lasso [162], we instead focus our attention on characterization of the equivalence

between robustification and regularization. We begin with a regularization upper

bound on robustification problems.

Proposition 3. Let 𝒰 ⊆ R𝑚×𝑛 be any non-empty, compact set and 𝑔 : R𝑚 → R a

seminorm. Then there exists some seminorm ℎ : R𝑛 → R so that for any z ∈ R𝑚,

𝛽 ∈ R𝑛,

max
Δ∈𝒰

𝑔(z + Δ𝛽) ≤ 𝑔(z) + ℎ(𝛽),

with equality when z = 0.

Proof. Let ℎ : R𝑛 → R be defined as

ℎ(𝛽) := max
Δ∈𝒰

𝑔(Δ𝛽).

To show that ℎ is a seminorm we must show it satisfies absolute homogeneity and

the triangle inequality. For any 𝛽 ∈ R𝑛 and 𝛼 ∈ R,

ℎ(𝛼𝛽) = max
Δ∈𝒰

𝑔(Δ(𝛼𝛽)) = max
Δ∈𝒰
|𝛼|𝑔(Δ𝛽) = |𝛼|

(︂
max
Δ∈𝒰

𝑔(Δ𝛽)

)︂
= |𝛼|ℎ(𝛽),
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so absolute homogeneity is satisfied. Similarly, if 𝛽,𝛾 ∈ R𝑛,

ℎ(𝛽 + 𝛾) = max
Δ∈𝒰

𝑔(Δ(𝛽 + 𝛾)) ≤ max
Δ∈𝒰

[𝑔(Δ𝛽) + 𝑔(Δ𝛾)]

≤
(︂

max
Δ∈𝒰

𝑔(Δ𝛽)

)︂
+

(︂
max
Δ∈𝒰

𝑔(Δ𝛾)

)︂
,

and hence the triangle inequality is satisfied. Therefore, ℎ is a seminorm which

satisfies the desired properties, completing the proof.

When equality is attained for all pairs (z,𝛽) ∈ R𝑚 × R𝑛, we are in the regime

of the previous subsection, and we say that robustification under 𝒰 is equivalent

to regularization under ℎ. We now discuss a variety of explicit settings in which

regularization only provides upper and lower bounds to the true robustified problem.

Fix 𝑝, 𝑞 ∈ [1,∞]. Consider the robust ℓ𝑝 regression problem

min
𝛽

max
Δ∈𝒰𝐹𝑞

‖y − (X + Δ)𝛽‖𝑝,

where 𝒰𝐹𝑞 = {Δ ∈ R𝑚×𝑛 : ‖Δ‖𝐹𝑞 ≤ 𝜆}. In the case when 𝑝 = 𝑞 we saw earlier

(Theorem 8) that one exactly recovers ℓ𝑝 regression with an ℓ𝑝* penalty:

min
𝛽

max
Δ∈𝒰𝐹𝑝

‖y − (X + Δ)𝛽‖𝑝 = min
𝛽
‖y −X𝛽‖𝑝 + 𝜆‖𝛽‖𝑝* .

Let us now consider the case when 𝑝 ̸= 𝑞. We claim that regularization (with ℎ)

is no longer equivalent to robustification (with 𝒰𝐹𝑞) unless 𝑝 ∈ {1,∞}. Applying

Proposition 3, one has for any z ∈ R𝑚 that

max
Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝 ≤ ‖z‖𝑝 + ℎ(𝛽),

where ℎ = maxΔ∈𝒰𝐹𝑞
‖Δ𝛽‖𝑝 is a norm (when 𝑝 = 𝑞, this is precisely the ℓ𝑝* norm,

multiplied by 𝜆). Here we can compute ℎ. To do this we first define a discrepancy

function as follows:
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Definition 2. For 𝑎, 𝑏 ∈ [1,∞] define the discrepancy function 𝛿𝑚(𝑎, 𝑏) as

𝛿𝑚(𝑎, 𝑏) := max{‖u‖𝑎 : u ∈ R𝑚, ‖u‖𝑏 = 1}.

This discrepancy function is computable and well-known (see e.g. [80]):

𝛿𝑚(𝑎, 𝑏) =

⎧⎨⎩ 𝑚1/𝑎−1/𝑏, if 𝑎 ≤ 𝑏

1, if 𝑎 > 𝑏.

It satisfies 1 ≤ 𝛿𝑚(𝑎, 𝑏) ≤ 𝑚 and 𝛿𝑚(𝑎, 𝑏) is continuous in 𝑎 and 𝑏. One has that

𝛿𝑚(𝑎, 𝑏) = 𝛿𝑚(𝑏, 𝑎) = 1 if and only if 𝑎 = 𝑏 (so long as 𝑚 ≥ 2). Using this, we now

proceed with the theorem. The proof applies basic tools from real analysis and is

contained in Appendix B.

Theorem 10. (a) For any z ∈ R𝑚 and 𝛽 ∈ R𝑛,

max
Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝 ≤ ‖z‖𝑝 + 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* . (3.2)

(b) When 𝑝 ∈ {1,∞}, there is equality in (3.2) for all (z,𝛽).

(c) When 𝑝 ∈ (1,∞) and 𝑝 ̸= 𝑞, for any 𝛽 ̸= 0 the set of z ∈ R𝑚 for which the

inequality (3.2) holds at equality is a finite union of one-dimensional subspaces

(so long as 𝑚 ≥ 2). Hence, for any 𝛽 ̸= 0 the inequality in (3.2) is strict for

almost all z.

(d) For 𝑝 ∈ (1,∞), one has for all z ∈ R𝑚 and 𝛽 ∈ R𝑛 that

‖z‖𝑝 +
𝜆

𝛿𝑚(𝑞, 𝑝)
‖𝛽‖𝑞* ≤ max

Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝. (3.3)

(e) For 𝑝 ∈ (1,∞), the lower bound in (3.3) is best possible in the sense that the gap

can be arbitrarily small, i.e., for any 𝛽 ∈ R𝑛,

inf
z

(︂
max
Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝 − ‖z‖𝑝 −
𝜆

𝛿𝑚(𝑞, 𝑝)
‖𝛽‖𝑞*

)︂
= 0.
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Theorem 10 characterizes precisely when robustification under 𝒰𝐹𝑞 is equivalent to

regularization for the case of ℓ𝑝 regression. In particular, when 𝑝 ̸= 𝑞 and 𝑝 ∈ (1,∞),

the two are not equivalent, and one only has that

min
𝛽
‖y −X𝛽‖𝑝 +

𝜆

𝛿𝑚(𝑞, 𝑝)
‖𝛽‖𝑞* ≤ min

𝛽
max
Δ∈𝒰𝐹𝑞

‖y − (X + Δ)𝛽‖𝑝

≤ min
𝛽
‖y −X𝛽‖𝑝 + 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* .

Further, we have shown that these upper and lower bounds are the best possible (The-

orem 10, parts (c) and (e)). While ℓ𝑝 regression with uncertainty set 𝒰𝐹𝑞 for 𝑝 ̸= 𝑞 and

𝑝 ∈ (1,∞) still has both upper and lower bounds which correspond to regularization

(with different regularization parameters 𝜆′ ∈ [𝜆/𝛿𝑚(𝑞, 𝑝), 𝜆𝛿𝑚(𝑝, 𝑞)]), we emphasize

that in this case there is no longer the direct connection between the parameter gar-

nering the magnitude of uncertainty (𝜆) and the parameter for regularization (𝜆′).

Example 1. As a concrete example, consider the implications of Theorem 10 when

𝑝 = 2 and 𝑞 =∞. We have that

min
𝛽
‖y −X𝛽‖2 + 𝜆‖𝛽‖1 ≤ min

𝛽
max

Δ∈𝒰𝐹∞
‖y − (X + Δ)𝛽‖𝑝

≤ min
𝛽
‖y −X𝛽‖2 +

√
𝑚𝜆‖𝛽‖1.

In this case, robustification is not equivalent to regularization. In particular, in the

regime where there are many data points (i.e. 𝑚 is large), the gap appearing between

the different problems can be quite large.

Before proceeding with other choices of uncertainty sets, it is important to make

a further distinction about the general non-equivalence of robustification and regular-

ization as presented in Theorem 10. In particular, it is simple to construct examples

which imply the following strong existential result (see Appendix B.2):

Theorem 11. In a setting when robustification and regularization are not equivalent,
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it is possible for the two problems to have different optimal solutions. In particular,

𝛽* ∈ argmin
𝛽

max
Δ∈𝒰

𝑔(y − (X + Δ)𝛽)

is not necessarily a solution of

min
𝛽

𝑔(y −X𝛽) + ̃︀𝜆ℎ(𝛽)

for any ̃︀𝜆 > 0, and vice versa.

As a result, when robustification and regularization do not coincide, they can

induce structurally distinct solutions. In particular, the regularization path (as ̃︀𝜆 ∈
(0,∞) varies) and the robustification path (as the radius 𝜆 ∈ (0,∞) of 𝒰 varies) can

be different.

We now proceed to analyze another setting in which robustification is not equiv-

alent to regularization. The setting, in line with Theorem 8, is ℓ𝑝 regression under

spectral uncertainty sets 𝒰𝜎𝑞 . As per Theorem 8, one has that

min
𝛽

max
Δ∈𝒰𝜎𝑞

‖y − (X + Δ)𝛽‖2 = min
𝛽
‖y −X𝛽‖2 + 𝜆‖𝛽‖2

for any 𝑞 ∈ [1,∞]. This result on the “universality” of RLS under a variety of

uncertainty sets relies on the fact that the ℓ2 norm underlies spectral decompositions;

namely, one can write any matrix X as
∑︀

𝑖 𝜇𝑖u𝑖v
′
𝑖, where {𝜇𝑖}𝑖 are the singular values

of X, {u𝑖}𝑖 and {v𝑖}𝑖 are the left and right singular vectors of X, respectively, and

‖u𝑖‖2 = ‖v𝑖‖2 = 1 for all 𝑖.

A natural question is what happens when the loss function ℓ2, a modeling choice,

is replaced by ℓ𝑝, where 𝑝 ∈ [1,∞]. We claim that for 𝑝 /∈ {1, 2,∞}, robustification

under 𝒰𝜎𝑞 is no longer equivalent to regularization. In light of Theorem 10, this is not

difficult to prove. We find that the choice of 𝑞 ∈ [1,∞], as before, is inconsequential.

We summarize this in the following proposition:
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Proposition 4. For any z ∈ R𝑚 and 𝛽 ∈ R𝑛,

max
Δ∈𝒰𝜎𝑞

‖z + Δ𝛽‖𝑝 ≤ ‖z‖𝑝 + 𝜆𝛿𝑚(𝑝, 2)‖𝛽‖2. (3.4)

In particular, if 𝑝 ∈ {1, 2,∞}, there is equality in (3.4) for all (z,𝛽). If 𝑝 /∈ {1, 2,∞},

then for any 𝛽 ̸= 0 the inequality in (3.4) is strict for almost all z (when 𝑚 ≥ 2).

Further, for 𝑝 /∈ {1, 2,∞} one has the lower bound

‖z‖𝑝 +
𝜆

𝛿𝑚(2, 𝑝)
‖𝛽‖2 ≤ max

Δ∈𝒰𝜎𝑞

‖z + Δ𝛽‖𝑝,

whose gap is arbitrarily small for all 𝛽.

Proof. This result is Theorem 10 in disguise. This follows by noting that

max
Δ∈𝒰𝜎𝑞

‖z + Δ𝛽‖𝑝 = max
Δ∈𝒰𝐹2

‖z + Δ𝛽‖𝑝

and directly applying the preceding results.

We now consider a third setting for ℓ𝑝 regression, this time subject to uncertainty

𝒰(𝑞,𝑟); this is a generalized version of the problems considered in Theorems 7 and 9.

From Theorem 7 we know that if 𝑝 = 𝑟, then

min
𝛽

max
Δ∈𝒰(𝑞,𝑝)

‖y − (X + Δ)𝛽‖𝑝 = min
𝛽
‖y −X𝛽‖𝑝 + 𝜆‖𝛽‖𝑞.

Similarly, as per Theorem 9, when 𝑟 =∞ and 𝑝 ∈ {1,∞},

min
𝛽

max
Δ∈𝒰(𝑞,∞)

‖y − (X + Δ)𝛽‖𝑝 = min
𝛽
‖y −X𝛽‖𝑝 + 𝜆𝛿𝑚(𝑝,∞)‖𝛽‖𝑞.

Given these results, it is natural to inquire what happens for more general choices of

induced uncertainty set 𝒰(𝑞,𝑟). As before with Theorem 10, we have a complete char-

acterization of the equivalence of robustification and regularization for ℓ𝑝 regression

with uncertainty set 𝒰(𝑞,𝑟):
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Proposition 5. For any z ∈ R𝑚 and 𝛽 ∈ R𝑛,

max
Δ∈𝒰(𝑞,𝑟)

‖z + Δ𝛽‖𝑝 ≤ ‖z‖𝑝 + 𝜆𝛿𝑚(𝑝, 𝑟)‖𝛽‖𝑞. (3.5)

In particular, if 𝑝 ∈ {1, 𝑟,∞}, there is equality in (3.4) for all (z,𝛽). If 𝑝 ∈ (1,∞)

and 𝑝 ̸= 𝑟, then for any 𝛽 ̸= 0 the inequality in (3.5) is strict for almost all z (when

𝑚 ≥ 2). Further, for 𝑝 ∈ (1,∞) with 𝑝 ̸= 𝑟 one has the lower bound

‖z‖𝑝 +
𝜆

𝛿𝑚(𝑟, 𝑝)
‖𝛽‖𝑞 ≤ max

Δ∈𝒰(𝑞,𝑟)

‖z + Δ𝛽‖𝑝,

whose gap is arbitrarily small for all 𝛽.

Proof. The proof follows the argument given in the proof of Theorem 10. Here we

simply note that now one uses the fact that

max
Δ∈𝒰(𝑞,𝑟)

‖z + Δ𝛽‖𝑝 = max
‖u‖𝑟≤𝜆‖𝛽‖𝑞

‖z + u‖𝑝.

We summarize all of the results on linear regression in Table 3.2.

Loss function Uncertainty set 𝒰 ℎ(𝛽) Equivalence if and only if
seminorm 𝑔 𝒰(ℎ,𝑔) (ℎ norm) 𝜆ℎ(𝛽) always

ℓ𝑝 𝒰𝜎𝑞 𝜆𝛿𝑚(𝑝, 2)‖𝛽‖2 𝑝 ∈ {1, 2,∞}
ℓ𝑝 𝒰𝐹𝑞 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* 𝑝 ∈ {1, 𝑞,∞}
ℓ𝑝 𝒰(𝑞,𝑟) 𝜆𝛿𝑚(𝑝, 𝑟)‖𝛽‖𝑞 𝑝 ∈ {1, 𝑟,∞}
ℓ𝑝 {Δ : ‖𝛿𝑖‖𝑞 ≤ 𝜆 ∀𝑖} 𝜆𝑚1/𝑝‖𝛽‖𝑞* 𝑝 ∈ {1,∞}

Table 3.2: Summary of equivalencies for robustification with uncertainty set 𝒰 and
regularization with penalty ℎ, where ℎ is as given in Proposition 3. Here by equiv-
alence we mean that for all z ∈ R𝑚 and 𝛽 ∈ R𝑛, maxΔ∈𝒰 𝑔(z + 𝛽) = 𝑔(z) + ℎ(𝛽),
where 𝑔 is the loss function, i.e., the upper bound ℎ is also a lower bound. Here 𝛿𝑚
is as in Theorem 10. Throughout 𝑝, 𝑞 ∈ [1,∞] and 𝑚 ≥ 2. Here 𝛿𝑖 denotes the 𝑖th
row of Δ.
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3.3 On the equivalence of robustification and regu-

larization in matrix estimation problems

A substantial body of problems at the core of modern developments in statistical

estimation involves underlying matrix variables. Two prominent examples that we

consider here are matrix completion and Principal Component Analysis (PCA). In

both cases we show that a common choice of the regularization problem corresponds

exactly to a robustification of the nominal problem subject to uncertainty. In doing

so we expand the existing knowledge of robustification for vector regression to a

novel and substantial domain. We begin by reviewing these two problem classes

before introducing a simple model of uncertainty analogous to the vector model of

uncertainty.

3.3.1 Problem classes

In matrix completion problems one is given data 𝑌𝑖𝑗 ∈ R for (𝑖, 𝑗) ∈ 𝐸 ⊆ {1, . . . ,𝑚}×

{1, . . . , 𝑛}. One problem of interest is rank-constrained matrix completion

min
X
‖Y −X‖𝑃 (𝐹2)

s. t. rank(X) ≤ 𝑘,
(3.6)

where ‖ · ‖𝑃 (𝐹2) denotes the projected 2−Frobenius seminorm, namely,

‖Z‖𝑃 (𝐹2) =

⎛⎝ ∑︁
(𝑖,𝑗)∈𝐸

𝑍2
𝑖𝑗

⎞⎠1/2

.

Matrix completion problems appear in a wide variety of areas. One well-known

application is in the Netflix challenge [142], where one wishes to predict user movie

preferences based on a very limited subset of given user ratings. Here rank-constrained

models are important in order to obtain parsimonious descriptions of user preferences

in terms of a limited number of significant latent factors. The rank-constrained prob-

lem (3.6) is typically converted to a regularized form with rank replaced by the nuclear
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norm 𝜎1 (the sum of singular values) to obtain the convex problem

min
X
‖Y −X‖𝑃 (𝐹2) + 𝜆‖X‖𝜎1 .

In what follows we show that this regularized problem can be written as an uncertain

version of a nominal problem minX ‖Y −X‖𝑃 (𝐹2).

Similarly to matrix completion, PCA typically takes the form

min
X
‖Y −X‖

s. t. rank(X) ≤ 𝑘,
(3.7)

where ‖ · ‖ is either the usual Frobenius norm 𝐹2 = 𝜎2 or the operator norm 𝜎∞, and

Y ∈ R𝑚×𝑛. PCA arises naturally by assuming that Y is observed as some low-rank

matrix X plus noise: Y = X+E. The solution to (3.7) is well-known to be a truncated

singular value decomposition which retains the 𝑘 largest singular values [57]. PCA is

popular for a variety of applications where dimension reduction is desired.

A variant of PCA known as robust PCA [46] operates under the assumption that

some entries of Y may be grossly corrupted. Robust PCA assumes that Y = X+E,

where X is low rank and E is sparse (few nonzero entries). Under this model robust

PCA takes the form

min
X
‖Y −X‖𝐹1 + 𝜆‖X‖𝜎1 . (3.8)

Here again we can interpret ‖X‖𝜎1 as a surrogate penalty for rank. In the spirit

of results from compressed sensing on exact ℓ1 recovery, it is shown in [46] that

(3.8) can exactly recover the true X0 and E0 assuming that the rank of X0 is small,

E0 is sufficiently sparse, and the eigenvectors of X0 are well-behaved (see technical

conditions contained therein). Below we derive explicit expressions for PCA subject to

certain types of uncertainty; in doing so we show that robust PCA does not correspond

to an adversarially robust version of minX ‖Y − X‖𝜎∞ or minX ‖Y − X‖𝐹2 for any

model of additive linear uncertainty.

Finally let us note that the results we consider here on robust PCA are distinct
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from considerations in the robust statistics community on robust approaches to PCA.

For results and commentary on such methods, see [52, 83, 82].

3.3.2 Models of uncertainty

For these two problem classes we now detail a model of uncertainty. Our underlying

problem is of the form minX ‖Y − X‖, where Y is given data (possibly with some

unknown entries). As with the vector case, we do not concern ourselves with un-

certainty in the observed Y because modeling uncertainty in Y simply leads to a

different choice of loss function. To be precise, if 𝒱 ⊆ R𝑚×𝑛 and 𝑔 is convex loss

function then

𝑔(Y −X) := max
Δ∈𝒱

𝑔((Y + Δ)−X)

is a new convex loss function 𝑔 of Y −X.

As in the vector case we assume a linear model of uncertainty in the measurement

of X:

𝑌𝑖𝑗 = 𝑋𝑖𝑗 +

(︃∑︁
ℓ𝑘

∆
(𝑖𝑗)
ℓ𝑘 𝑋ℓ𝑘

)︃
+ 𝜖𝑖𝑗,

where Δ(𝑖𝑗) ∈ R𝑚×𝑛; alternatively, in inner product notation, 𝑌𝑖𝑗 = 𝑋𝑖𝑗 + ⟨Δ(𝑖𝑗),X⟩+

𝜖𝑖𝑗. This linear model is in direct analogy with the model for vector regression taken

earlier; now 𝛽 is replaced by X, and again we consider linear perturbations of the

unknown regression variable.

This linear model of uncertainty captures a variety of possible forms of uncertainty

and accounts for possible interactions among different entries of the matrix X. Note

that in matrix notation, the nominal problem becomes, subject to linear uncertainty

in X,

min
X

max
Δ∈𝒰
‖Y −X−Δ(X)‖,

where here 𝒰 is some collection of linear maps and Δ ∈ 𝒰 is defined as [Δ(X)]𝑖𝑗 =

⟨Δ(𝑖𝑗),X⟩, where again Δ(𝑖𝑗) ∈ R𝑚×𝑛 (all linear maps can be written in such a form).

Note here the direct analogy to the vector case, with the notation Δ(X) chosen for

simplicity. (For clarity, note that Δ is not itself a matrix, although one could interpret
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it as a matrix in Δ𝑚𝑛×𝑚𝑛, albeit at a notational cost; we avoid this here.)

We now outline some particular choices for uncertainty sets. As with the vector

case, one natural set is an induced uncertainty set. Precisely, if 𝑔, ℎ : R𝑚×𝑛 → R are

functions, then we define an induced uncertainty set

𝒰(ℎ,𝑔) :=
{︀
Δ : R𝑚×𝑛 → R𝑚×𝑛 |Δ linear, 𝑔(Δ(X)) ≤ 𝜆ℎ(X) ∀X ∈ R𝑚×𝑛

}︀
.

As before, when 𝑔 and ℎ are both norms, 𝒰(ℎ,𝑔) is precisely a ball of radius 𝜆 in the

induced norm

‖Δ‖(ℎ,𝑔) = max
X

𝑔(Δ(X))

ℎ(X)
.

There are also many other possible choices of uncertainty sets. These include the

spectral uncertainty sets

𝒰𝜎𝑝 = {Δ : R𝑚×𝑛 → R𝑚×𝑛|Δ linear, ‖Δ‖𝜎𝑝 ≤ 𝜆},

where we interpret ‖Δ‖𝜎𝑝 as the 𝜎𝑝 norm of Δ in any, and hence all, of its matrix

representations. Other uncertainty sets are those such as 𝒰 = {Δ : Δ(𝑖𝑗) ∈ 𝒰 (𝑖𝑗)},

where 𝒰 (𝑖𝑗) ⊆ R𝑚×𝑛 are themselves uncertainty sets. These last two models we will

not examine in depth here because they are often subsumed by the vector results

(note that these two uncertainty sets do not truly involve the matrix structure of X,

and can therefore be “vectorized”, reducing directly to vector results).

3.3.3 Basic results on equivalence

We now continue with some underlying theorems for our models of uncertainty. As a

first step, we provide a proposition on the spectral uncertainty sets. As noted above,

this result is exactly Theorem 8, and therefore we will not consider such uncertainty

sets for the remainder of the chapter.
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Proposition 6. For any 𝑞 ∈ [1,∞] and any Y ∈ R𝑚×𝑛,

min
X

max
Δ∈𝒰𝜎𝑞

‖Y −X−Δ(X)‖𝐹2 = min
X
‖Y −X‖𝐹2 + 𝜆‖X‖𝐹2 .

For what follows, we restrict our attention to induced uncertainty sets. We begin

with an analogous result to Theorem 7. Throughout we always assume without loss

of generality that if 𝑌𝑖𝑗 is not known then 𝑌𝑖𝑗 = 0 (i.e., we set it to some arbitrary

value).

Theorem 12. If 𝑔 : R𝑚×𝑛 → R is a seminorm which is not indentically zero and

ℎ : R𝑚×𝑛 → R is a norm, then

min
X

max
Δ∈𝒰(ℎ,𝑔)

𝑔 (Y −X−Δ(X)) = min
X

𝑔 (Y −X) + 𝜆ℎ (X) .

This theorem leads to an immediate corollary:

Corollary 2. For any norm ‖ · ‖ : R𝑚×𝑛 → R and any 𝑝 ∈ [1,∞]

min
X

max
Δ∈𝒰(𝜎𝑝,‖·‖)

‖Y −X−Δ(X)‖ = min
X
‖Y −X‖+ 𝜆‖X‖𝜎𝑝 .

In the two subsections which follow we study the implications of Theorem 12 for

matrix completion and PCA.

3.3.4 Robust matrix completion

We now proceed to apply Theorem 12 for the case of matrix completion. Note that

the projected Frobenius “norm” 𝑃 (𝐹2) is a seminorm. Therefore, we arrive at the

following corollary:

Corollary 3. For any 𝑝 ∈ [1,∞] one has that

min
X

max
Δ∈𝒰(𝜎𝑝,𝑃 (𝐹2))

‖Y −X−Δ(X)‖𝑃 (𝐹2) = min
X
‖Y −X‖𝑃 (𝐹2) + 𝜆‖X‖𝜎𝑝 .
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In particular, for 𝑝 = 1 one exactly recovers so-called nuclear norm penalized matrix

completion:

min
X
‖Y −X‖𝑃 (𝐹2) + 𝜆‖X‖𝜎1 .

It is not difficult to show by modifying the proof of Theorem 12 that even though

𝒰(𝜎𝑝,𝐹2) ( 𝒰(𝜎𝑝,𝑃 (𝐹2)), the following holds:

Proposition 7. For any 𝑝 ∈ [1,∞] one has that

min
X

max
Δ∈𝒰(𝜎𝑝,𝐹2)

‖Y −X−Δ(X)‖𝑃 (𝐹2) = min
X
‖Y −X‖𝑃 (𝐹2) + 𝜆‖X‖𝜎𝑝 .

In particular, for 𝑝 = 1 one exactly recovers nuclear norm penalized matrix comple-

tion.

Let us briefly comment on the appearance of the nuclear norm in Corollary 3 and

Proposition 7. In light of Remark 1, it is not surprising that such a penalty can

be derived by working directly with the rank function (nuclear norm is the convex

envelope of the rank function on the ball {X : ‖X‖𝜎∞ ≤ 1}, which is why the nuclear

norm is typically used to replace rank [61, 126]). We detail this argument as before.

For any 𝑝 ∈ [1,∞] and Γ = {X ∈ R𝑚×𝑛 : ‖X‖𝜎𝑝 ≤ 1}, one can show that

𝒰(𝜎1,𝑃 (𝐹2)) =

{︂
Δ linear : max

X∈Γ

‖Δ(X)‖𝑃 (𝐹2)

rank(X)
≤ 𝜆

}︂
. (3.9)

Therefore, similar to the vector case with an underlying ℓ0 penalty which becomes

a Lasso ℓ1 penalty, rank leads to the nuclear norm from the robustification setting

without directly invoking convexity.

3.3.5 Robust PCA

We now turn our attention to the implications of Theorem 12 for PCA. We begin

by noting robust analogues of minX ‖Y − X‖ under the 𝐹2 and 𝜎∞ norms. This is

distinct from the considerations in [47] on robustness of PCA with respect to training

and testing sets.
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Corollary 4. For any 𝑝 ∈ [1,∞] one has that

min
X

max
Δ∈𝒰(𝜎𝑝,𝐹2)

‖Y −X−Δ(X)‖𝐹2 = min
X
‖Y −X‖𝐹2 + 𝜆‖X‖𝜎𝑝

and

min
X

max
Δ∈𝒰(𝜎𝑝,𝜎∞)

‖Y −X−Δ(X)‖𝜎∞ = min
X
‖Y −X‖𝜎∞ + 𝜆‖X‖𝜎𝑝 .

We continue by considering robust PCA as presented in [46]. Suppose that 𝒰 is

some collection of linear maps Δ : R𝑚×𝑛 → R𝑚×𝑛 and ‖ · ‖ is some norm so that for

any Y,X ∈ R𝑚×𝑛

max
Δ∈𝒰
‖Y −X−Δ(X)‖ = ‖Y −X‖𝐹1 + 𝜆‖X‖𝜎1 .

It is easy to see that this implies ‖ · ‖ = ‖ · ‖𝐹1 . These observations, combined with

Theorem 12, imply the following:

Proposition 8. The problem (3.8) can be written as an uncertain version of minX ‖Y−

X‖ subject to additive, linear uncertainty in X if and only if ‖ · ‖ is the 1-Frobenius

norm 𝐹1. In particular, (3.8) does not arise as uncertain versions of PCA (using 𝐹2

or 𝜎∞) under such a model of uncertainty.

This result is not entirely surprising. This is because robust PCA attempts to

solve, based on its model of Y = X + E where X is low-rank and E is sparse, a

problem of the form

min
X
‖Y −X‖𝐹0 + 𝜆 rank(X),

where ‖A‖𝐹0 is the number of nonzero entries of A. In the usual way, 𝐹0 and rank are

replaced with surrogates 𝐹1 and 𝜎1, respectively. Hence, (3.8) appears as a convex,

regularized form of the problem

min
X
‖Y −X‖𝐹1

s. t. rank(X) ≤ 𝑘.

Again, as with matrix completion, it is possible to show that (3.8) and uncertain
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forms of PCA with a nuclear norm penalty (as appearing in Corollary 4) can be

derived using the true choice of penalizer, rank, instead of imposing an a priori

assumption of a nuclear norm penalty. We summarize this, without proof, as follows:

Proposition 9. For any 𝑝 ∈ [1,∞] and any norm ‖ · ‖,

min
X∈Γ

max
Δ∈𝒰Γ(rank,‖·‖)

‖Y −X−Δ(X)‖ = min
X∈Γ
‖Y −X‖+ 𝜆‖X‖𝜎1 ,

where Γ = {X ∈ R𝑚×𝑛 : ‖X‖𝜎𝑝 ≤ 1} and

𝒰Γ(rank,‖·‖) =

{︂
Δ linear : max

X∈Γ

‖Δ(X)‖
rank(X)

≤ 𝜆

}︂
.

3.3.6 Non-equivalence of robustification and regularization

As with vector regression it is not always the case that robustification is equivalent to

regularization in matrix estimation problems. For completeness we provide analogues

here of the linear regression results. We begin by stating results which follow over

with essentially identical proofs from the vector case; proofs are not included here.

Then we characterize precisely when another plausible model of uncertainty leads to

equivalence.

We begin with the analogue of Proposition 3.

Proposition 10. Let 𝒰 ⊆ {linear maps Δ : R𝑚×𝑛 → R𝑚×𝑛} be any non-empty,

compact set and 𝑔 : R𝑚×𝑛 → R a seminorm. Then there exists some seminorm

ℎ : R𝑚×𝑛 → R so that for any Z,X ∈ R𝑚×𝑛,

max
Δ∈𝒰

𝑔(Z + Δ(X)) ≤ 𝑔(Z) + ℎ(X),

with equality when Z = 0.

As before with Theorem 10 and Propositions 4 and 5, one can now compute ℎ for

a variety of problems.
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Proposition 11. For any Z,X ∈ R𝑚×𝑛,

‖Z‖𝐹𝑝 +
𝜆

𝛿𝑚𝑛(𝑞, 𝑝)
‖X‖𝐹𝑞* ≤ max

Δ∈𝒰𝐹𝑞

‖Z + Δ(X)‖𝐹𝑝 (3.10)

≤ ‖Z‖𝐹𝑝 + 𝜆𝛿𝑚𝑛(𝑝, 𝑞)‖X‖𝐹𝑞* (3.11)

where ‖Δ‖𝐹𝑞 is interpreted as the 𝐹𝑞 norm on the matrix representation of Δ in the

standard basis. In particular, if 𝑝 ̸= 𝑞 and 𝑝 ∈ (1,∞), then for any X ̸= 0 the upper

bound in (3.11) is strict for almost all Z (so long as 𝑚𝑛 ≥ 2). Further, when 𝑝 ̸= 𝑞

and 𝑝 ∈ (1,∞), the gap in the lower bound in (3.10) is arbitrarily small for all X.

Proposition 12. For any Z,X ∈ R𝑚×𝑛,

‖Z‖𝑝 +
𝜆

𝛿𝑚𝑛(2, 𝑝)
‖X‖𝐹2 ≤ max

Δ∈𝒰𝜎𝑞

‖Z + Δ(X)‖𝐹𝑝 (3.12)

≤ ‖Z‖𝐹𝑝 + 𝜆𝛿𝑚𝑛(𝑝, 2)‖X‖𝐹2 . (3.13)

In particular, if 𝑝 /∈ {1, 2,∞}, then for all X ̸= 0 the upper bound in (3.13) is strict

for almost all Z (so long as 𝑚𝑛 ≥ 2). Further, if 𝑝 /∈ {1, 2,∞}, the gap in the lower

bound in (3.12) is arbitrarily small for all X.

We now turn our attention to non-equivalencies which may arise under different

models of uncertainty instead of the general matrix model of linear uncertainty which

we have included here, where

[Δ(X)]𝑖𝑗 =
∑︁
ℓ𝑘

∆
(𝑖𝑗)
ℓ𝑘 𝑋ℓ𝑘 = ⟨Δ(𝑖𝑗),X⟩,

with Δ(𝑖𝑗) ∈ R𝑚×𝑛. Another plausible model of uncertainty is one for which the 𝑗th

column of Δ(X) only depends on X𝑗, the 𝑗th column of X (or, for example, with

columns replaced by rows). We now examine such a model. In this setup, we now

have 𝑛 matrices Δ(𝑗) ∈ R𝑚×𝑚 and we define the linear map Δ so that the 𝑗th column

of Δ(X) ∈ R𝑚×𝑛, denoted [Δ(X)]𝑗, is [Δ(X)]𝑗 := Δ(𝑗)X𝑗, which is simply matrix
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vector multiplication. Therefore,

Δ(X) =
[︁
Δ(1)X1 · · · Δ(𝑛)X𝑛

]︁
. (3.14)

For an example of where such a model of uncertainty may arise, we consider

matrix completion in the context of the Netflix problem. If one treats X𝑗 as user 𝑗’s

true ratings, then such a model addresses uncertainty within a given user’s ratings,

while not allowing uncertainty to have cross-user effects. This model of uncertainty

does not rely on true matrix structure and therefore reduces to earlier results on

non-equivalence in vector regression. As an example of such a reduction, we state the

following proposition characterizing equivalence. Again, this is a direct modification

of Theorem 10 and the proof we do not include here.

Proposition 13. For the model of uncertainty in (3.14) with Δ(𝑗) ∈ 𝒰𝐹𝑞𝑗
for 𝑗 =

1, . . . , 𝑛, where 𝑞𝑗 ∈ [1,∞], one has for the problem min
X

max
Δ∈𝒰
‖Y−X−Δ(X)‖𝐹𝑝 that

ℎ is defined as

ℎ(X) = 𝜆

(︃∑︁
𝑗

𝛿𝑝𝑚(𝑝, 𝑞𝑗)‖X𝑗‖𝑝𝑞*𝑗

)︃1/𝑝

. (3.15)

Further, under such a model of uncertainty, robustification is equivalent to regular-

ization with ℎ if and only if 𝑝 ∈ {1,∞} or 𝑝 = 𝑞𝑗 for all 𝑗 = 1, . . . , 𝑛.

While the case of matrix regression offers a large variety of possible models of

uncertainty, we see again that, as with vector regression, this variety inevitably leads

to scenarios in which robustification is no longer directly equivalent to regularization.

We summarize the conclusions of this section in Table 3.3.

3.4 Conclusion

In this chapter, we have considered the robustification of a variety of problems from

classical and modern statistical regression as subject to data uncertainty. We have

taken care to emphasize that there is a fine line between this process of robustification

and the usual process of regularization, and that the two are not always directly
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Loss function Uncertainty set ℎ(X) Equivalence if and only if
seminorm 𝑔 𝒰(ℎ,𝑔) (ℎ norm) 𝜆ℎ(X) always

𝐹𝑝 𝒰𝜎𝑞 𝜆𝛿𝑚𝑛(𝑝, 2)‖X‖𝐹2 𝑝 ∈ {1, 2,∞}
𝐹𝑝 𝒰𝐹𝑞 𝜆𝛿𝑚𝑛(𝑝, 𝑞)‖X‖𝐹𝑞* 𝑝 ∈ {1, 𝑞,∞}

𝐹𝑝
𝒰 in (3.14) (3.15) (𝑝 = 𝑞𝑗 ∀𝑗) or

with Δ(𝑗) ∈ 𝒰𝐹𝑞𝑗
𝑝 ∈ {1,∞}

Table 3.3: Summary of equivalencies for robustification with uncertainty set 𝒰 and
regularization with penalty ℎ, where ℎ is as given in Proposition 10. Here by equiva-
lence we mean that for all Z,X ∈ R𝑚×𝑛, maxΔ∈𝒰 𝑔(Z + X) = 𝑔(Z) + ℎ(X), where 𝑔
is the loss function, i.e., the upper bound ℎ is also a lower bound. Here 𝛿𝑚𝑛 is as in
Theorem 10. Throughout 𝑝, 𝑞 ∈ [1,∞] and 𝑚𝑛 ≥ 2.

equivalent. While deepening this understanding we have also extended this connection

to new domains, such as in matrix completion and PCA. In doing so, we have shown

that the usual regularization approaches to modern statistical regression do not always

coincide with an adversarial approach motivated by robust optimization.
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Chapter 4

The Trimmed Lasso

4.1 Introduction

Sparse modeling in linear regression has been a topic of fervent interest in recent years

[77, 41]. This interest has taken several forms, from substantial developments in the

theory of the Lasso to advances in algorithms for convex optimization. Throughout

there has been a strong emphasis on the increasingly high-dimensional nature of

linear regression problems; in such problems, where the number of variables 𝑝 can

vastly exceed the number of observations 𝑛, sparse modeling techniques are critical

for performing inference.

Context

One of the fundamental approaches to sparse modeling in the usual linear regression

model of y = X𝛽 + 𝜖, with y ∈ R𝑛 and X ∈ R𝑛×𝑝, is the best subset selection [112]

problem:

min
‖𝛽‖0≤𝑘

1

2
‖y −X𝛽‖22, (4.1)

which seeks to find the best choice of 𝑘 from among 𝑝 features that best explain the

response in terms of the least squares loss function. The problem (4.1) has received

extensive attention from a variety of statistical and optimization perspectives—see

for example [30] and references therein. One can also consider the Lagrangian, or
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penalized, form of (4.1), namely,

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜇‖𝛽‖0, (4.2)

for a regularization parameter 𝜇 > 0. One of the advantages of (4.1) over (4.2)

is that it offers direct control over estimators’ sparsity via the discrete parameter

𝑘, as opposed to the Lagrangian form (4.2) for which the correspondence between

the continuous parameter 𝜇 and the resulting sparsity of estimators obtained is not

entirely clear. For further discussion, see [141].

Another class of problems that have received considerable attention in the statis-

tics and machine learning literature is the following:

min
𝛽

1

2
‖y −X𝛽‖22 + 𝑅(𝛽), (4.3)

where 𝑅(𝛽) is a choice of regularizer which encourages sparsity in 𝛽. For example,

the popularly used Lasso [156] takes the form of problem (4.3) with 𝑅(𝛽) = 𝜇‖𝛽‖1,

where ‖ ·‖1 is the ℓ1 norm; in doing so, the Lasso simultaneously selects variables and

also performs shrinkage. The Lasso has seen widespread success across a variety of

applications.

In contrast to the convex approach of the Lasso, there also has been been grow-

ing interest in considering richer classes of regularizers 𝑅 which include nonconvex

functions. Examples of such penalties include the 𝐿𝑞-penalty1 (for 𝑞 ∈ [0, 1]), min-

imax concave penalty (MCP) [164], and the smoothly clipped absolute deviation

(SCAD) [60], among others. Many of the nonconvex penalty functions considered are

coordinate-wise separable; in other words, 𝑅 can be decomposed as

𝑅(𝛽) =

𝑝∑︁
𝑖=1

𝜌(|𝛽𝑖|),

where 𝜌(·) is a real-valued function [165]. There has been a variety of evidence sug-

1We use 𝐿𝑞 instead of ℓ𝑞 throughout this chapter to avoid confusion with an index term ℓ that
appears later.
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gesting the promise of such nonconvex approaches in overcoming certain shortcomings

of Lasso-like approaches.

One of the central ideas of nonconvex penalty methods used in sparse modeling

is that of creating a continuum of estimation problems which bridge the gap between

convex methods for sparse estimation (such as Lasso) and subset selection in the form

(4.2). However, as noted above, such a connection does not necessarily offer direct

control over the desired level of sparsity of estimators.

The trimmed Lasso

In contrast with coordinate-wise separable penalties as considered above, we consider

a family of penalties that are not separable across coordinates. One such penalty

which forms a principal object of our study herein is

𝑇𝑘 (𝛽) := min
‖𝜑‖0≤𝑘

‖𝜑− 𝛽‖1.

The penalty 𝑇𝑘 is a measure of the distance from the set of 𝑘-sparse estimators as

measured via the 𝐿1 norm. In other words, when used in problem (4.3), the penalty

𝑅 = 𝑇𝑘 controls the amount of shrinkage towards sparse models.

The penalty 𝑇𝑘 can equivalently be written as

𝑇𝑘 (𝛽) =

𝑝∑︁
𝑖=𝑘+1

|𝛽(𝑖)|,

where |𝛽(1)| ≥ |𝛽(2)| ≥ · · · ≥ |𝛽(𝑝)| are the sorted entries of 𝛽. In words, 𝑇𝑘 (𝛽) is the

sum of the absolute values of the 𝑝− 𝑘 smallest magnitude entries of 𝛽. The penalty

was first introduced in [154, 78, 72, 159]. We refer to this family of penalty functions

(over choices of 𝑘) as the trimmed Lasso.2 The case of 𝑘 = 0 recovers the usual Lasso,

as one would suspect. The distinction, of course, is that for general 𝑘, 𝑇𝑘 no longer

shrinks, or biases towards zero, the 𝑘 largest entries of 𝛽.

Let us consider the least squares loss regularized via the trimmed lasso penalty—

2The choice of name is our own and is motivated by the least trimmed squares estimator (4.5).
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this leads to the following optimization criterion:

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘 (𝛽) , (4.4)

where 𝜆 > 0 is the regularization parameter. The penalty term shrinks the smallest

𝑝 − 𝑘 entries of 𝛽 and does not impose any penalty on the largest 𝑘 entries of 𝛽. If

𝜆 becomes larger, the smallest 𝑝 − 𝑘 entries of 𝛽 are shrunk further; after a certain

threshold—as soon as 𝜆 ≥ 𝜆0 for some finite 𝜆0—the smallest 𝑝 − 𝑘 entries are set

to zero. The existence of a finite 𝜆0 (as stated above) is an attractive feature of

the trimmed Lasso and is known as its exactness property, namely, for 𝜆 sufficiently

large, the problem (4.4) exactly solves constrained best subset selection as in problem

(4.1) (see [72]). Note here the contrast with the separable penalty functions which

correspond instead with problem (4.2); as such, the trimmed Lasso is distinctive in

that it offers precise control over the desired level of sparsity via the discrete parameter

𝑘. Further, it is also notable that many algorithms developed for separable-penalty

estimation problems can be directly adapted for the trimmed Lasso.

Our objective in studying the trimmed Lasso is distinctive from previous ap-

proaches. In particular, while previous work on the penalty 𝑇𝑘 has focused primarily

on its use as a tool for reformulating sparse optimization problems [154, 78] and on

how such reformulations can be solved computationally [72, 159], we instead aim to

explore the trimmed Lasso’s structural properties and its relation to existing sparse

modeling techniques.

In particular, a natural question we seek to explore is, what is the connection of

the trimmed Lasso penalty with existing separable penalties commonly used in sparse

statistical learning? For example, the trimmed Lasso bears a close resemblance to the

clipped (or capped) Lasso penalty [166], namely,
∑︀𝑝

𝑖=1 𝜇min{𝛾|𝛽𝑖|, 1}, where 𝜇, 𝛾 > 0

are parameters (when 𝛾 is large, the clipped Lasso approximates 𝜇‖𝛽‖0).

110



Robustness: robust statistics and robust optimization

A significant thread woven throughout the consideration of penalty methods for sparse

modeling is the notion of robustness—in short, the ability of a method to perform

in the face of noise. Not surprisingly, the notion of robustness has myriad distinct

meanings depending on the context. Indeed, as Huber, a pioneer in the area of robust

statistics, aptly noted:

“The word ‘robust’ is loaded with many—sometimes inconsistent—connotations.”

[81, p. 2]

For this reason, we consider robustness from several perspectives—both the robust

statistics [81] and robust optimization [19] viewpoints.

A common premise of the various approaches is as follows: that a robust model

should perform well even under small deviations from its underlying assumptions;

and that to achieve such behavior, some efficiency under the assumed model should

be sacrificed. Not surprisingly in light of Huber’s prescient observation, the exact

manifestation of this idea can take many different forms, even if the initial premise is

ostensibly the same.

Robust statistics and the “min-min” approach

One such approach is in the field of robust statistics [81, 131, 114]. In this context,

the primary assumptions are often probabilistic, i.e. distributional, in nature, and

the deviations to be “protected against” include possibly gross, or arbitrarily bad,

errors. Put simply, robust statistics is primary focused on analyzing and mitigating

the influence of outliers on estimation methods.

There have been a variety of proposals of different estimators to achieve this. One

that is particularly relevant for our purposes is that of least trimmed squares (“LTS”)

[131]. For fixed 𝑗 ∈ {1, . . . , 𝑛}, the LTS problem is defined as

min
𝛽

𝑛∑︁
𝑖=𝑗+1

|𝑟(𝑖)(𝛽)|2, (4.5)
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where 𝑟𝑖(𝛽) = 𝑦𝑖 − x′
𝑖𝛽 are the residuals and 𝑟(𝑖)(𝛽) are the sorted residuals given

𝛽 with |𝑟(1)(𝛽)| ≥ |𝑟(2)(𝛽)| ≥ · · · ≥ |𝑟(𝑛)(𝛽)|. In words, the LTS estimator performs

ordinary least squares on the 𝑛−𝑗 smallest residuals (discarding the 𝑗 largest or worst

residuals).

Furthermore, it is particularly instructive to express (4.5) in the equivalent form

(cf. [31])

min
𝛽

min
𝐼⊆{1,...,𝑛}:
|𝐼|=𝑛−𝑗

∑︁
𝑖∈𝐼

|𝑟𝑖(𝛽)|2. (4.6)

In light of this representation, we refer to LTS as a form of “min-min” robustness. One

could also interpret this min-min robustness as optimistic in the sense the estimation

problems (4.6) and, a fortiori, (4.5) allow the modeler to also choose observations to

discard.

Other min-min models of robustness

Another approach to robustness which also takes a min-min form like LTS is the clas-

sical technique known as total least squares [69, 109]. For our purposes, we consider

total least squares in the form

min
𝛽

min
Δ

1

2
‖y − (X + Δ)𝛽‖22 + 𝜂‖Δ‖22, (4.7)

where ‖Δ‖2 is the usual Frobenius norm of the matrix Δ and 𝜂 > 0 is a scalar

parameter. In this framework, one again has an optimistic view on error: find the

best possible “correction” of the data matrix X as X+Δ* and perform least squares

using this corrected data (with 𝜂 controlling the flexibility in choice of Δ).

In contrast with the penalized form of (4.7), one could also consider the problem

in a constrained form such as

min
𝛽

min
Δ∈𝒱

1

2
‖y − (X + Δ)𝛽‖22, (4.8)

where 𝒱 ⊆ R𝑛×𝑝 is defined as 𝒱 = {Δ : ‖Δ‖2 ≤ 𝜂′} for some 𝜂′ > 0. This problem

again has the min-min form, although now with perturbations Δ as restricted to 𝒱 .
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Robust optimization and the “min-max” approach

We now turn our attention to a different approach to the notion of robustness known

as robust optimization [19, 25], as seen in Chapter 3. In contrast with robust statis-

tics, robust optimization typically replaces distributional assumptions with a new

primitive, namely, the deterministic notion of an uncertainty set. Further, in robust

optimization one considers a worst-case or pessimistic perspective and the focus is on

perturbations from the nominal model (as opposed to possible gross corruptions as

in robust statistics).

To be precise, one possible robust optimization model for linear regression takes

form

min
𝛽

max
Δ∈𝒰

1

2
‖y − (X + Δ)𝛽‖22, (4.9)

where 𝒰 ⊆ R𝑛×𝑝 is a (deterministic) uncertainty set that captures the possible devi-

ations of the model (from the nominal data X), cf. Chapter 3. Note the immediate

contrast with the robust models considered earlier (LTS and total least squares in (4.5)

and (4.7), respectively) that take the min-min form; instead, robust optimization fo-

cuses on “min-max” robustness. For a related discussion contrasting the min-min

approach with min-max, see [17, 91, 40] and references therein.

As seen in Chapter 3, one of the attractive features of the min-max formulation

is that it gives a re-interpretation of several statistical regularization methods. For

example, the usual Lasso (problem (4.3) with 𝑅 = 𝜇ℓ1) can be expressed in the form

(4.9) for a specific choice of uncertainty set:

Proposition 14 ([162]). Problem (4.9) with uncertainty set 𝒰 = {Δ : ‖Δ𝑖‖2 ≤ 𝜇 ∀𝑖}

is equivalent to the Lasso, i.e., problem (4.3) with 𝑅(𝛽) = 𝜇‖𝛽‖1, where Δ𝑖 denotes

the 𝑖th column of Δ.

Other min-max models of robustness

We close our discussion of robustness by considering another example of min-max

robustness that is of particular relevance to the trimmed Lasso. In particular, we
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consider problem (4.3) with the SLOPE (or OWL) penalty [34, 63], namely,

𝑅SLOPE(w)(𝛽) =

𝑝∑︁
𝑖=1

𝑤𝑖|𝛽(𝑖)|,

where w is a (fixed) vector of weights with 𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑝 ≥ 0 and 𝑤1 > 0. In

its simplest form, the SLOPE penalty has weight vector w̃, where 𝑤̃1 = · · · = 𝑤̃𝑘 = 1,

𝑤̃𝑘+1 = · · · = 𝑤̃𝑝 = 0, in which case we have the identity

𝑅SLOPE(w̃)(𝛽) = ‖𝛽‖1 − 𝑇𝑘(𝛽).

There are some apparent similarities but also subtle differences between the SLOPE

penalty and the trimmed Lasso. From a high level, while the trimmed Lasso focuses

on the smallest magnitude entries of 𝛽, the SLOPE penalty in its simplest form fo-

cuses on the largest magnitude entries of 𝛽. As such, the trimmed Lasso is generally

nonconvex, while the SLOPE penalty is always convex; consequently, the techniques

for solving the related estimation problems will necessarily be different.

Finally, we note that the SLOPE penalty can be considered as a min-max model

of robustness for a particular choice of uncertainty set:

Proposition 15. Problem (4.9) with uncertainty set

𝒰 =

⎧⎨⎩Δ :
Δ has at most 𝑘 nonzero

columns and ‖Δ𝑖‖2 ≤ 𝜇 ∀𝑖

⎫⎬⎭
is equivalent to problem (4.3) with 𝑅(𝛽) = 𝜇𝑅SLOPE(w̃)(𝛽), where 𝑤̃1 = · · · = 𝑤̃𝑘 = 1

and 𝑤̃𝑘+1 = · · · = 𝑤̃𝑝 = 0.

We return to this particular choice of uncertainty set later. (For completeness, we

include a more general min-max representation of SLOPE in Appendix C.1.)
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Computation and Algorithms

Broadly speaking, there are numerous distinct approaches to algorithms for solving

problems of the form (4.1)–(4.3) for various choices of 𝑅. We do not attempt to

provide a comprehensive list of such approaches for general 𝑅, but we will discuss

existing approaches for the trimmed Lasso and closely related problems. Approaches

typically take one of two forms: heuristic or exact.

Heuristic techniques

Heuristic approaches to solving problems (4.1)–(4.3) often use techniques from convex

optimization [38], such as proximal gradient descent or coordinate descent (see [60,

110]). Typically these techniques are coupled with an analysis of local or global

behavior of the algorithm. For example, global behavior is often considered under

additional restrictive assumptions on the underlying data; unfortunately, verifying

such assumptions can be as difficult as solving the original nonconvex problem. (For

example, consider the analogy with compressed sensing [45, 55, 59] and the hardness

of verifying whether underlying assumptions hold [157, 12]).

There is also extensive work studying the local behavior (e.g. stationarity) of

heuristic approaches to these problems. For the specific problems (4.1) and (4.2), the

behavior of augmented Lagrangian methods [7, 153] and complementarity constraint

techniques [39, 42, 62, 54] have been considered. For other local approaches, see [105].

Exact techniques

One of the primary drawbacks of heuristic techniques is that it can often be difficult

to verify the degree of suboptimality of the estimators obtained. For this reason,

there has been an increasing interest in studying the behavior of exact algorithms for

providing certifiably optimal solutions to problems of the form (4.1)–(4.3) [30, 31, 104,

111]. Often these approaches make use of techniques from mixed integer optimization

[35] which are implemented in a variety of software, e.g. Gurobi [73]. The tradeoff

with such approaches is that they typically carry a heavier computational burden than

115



convex approaches. For a discussion of the application of mixed integer optimization

in statistics, see [30, 31, 104, 111].

What this chapter is about

In this chapter, we focus on a detailed analysis of the trimmed Lasso, especially

with regard to its properties and its relation to existing methods. In particular, we

explore the trimmed Lasso from two perspectives: that of sparsity as well as that of

robustness. We summarize our contributions as follows:

1. We study the robustness of the trimmed Lasso penalty. In particular, we provide

several min-min robustness representations of it. We first show that the same

choice of uncertainty set that leads to the SLOPE penalty in the min-max

robust model (4.9) gives rise to the trimmed Lasso in the corresponding min-

min robust problem (4.8) (with an additional regularization term). This gives

an interpretation of the SLOPE and trimmed Lasso as a complementary pair

of penalties, one under a pessimistic (min-max) model and the other under an

optimistic (min-min) model.

Moreover, we show another min-min robustness interpretation of the trimmed

Lasso by comparison with the ordinary Lasso. In doing so, we further highlight

the nature of the trimmed Lasso and its relation to the LTS problem (4.5).

2. We provide a detailed analysis on the connection between estimation approaches

using the trimmed Lasso and separable penalty functions. In doing so, we show

directly how penalties such as the trimmed Lasso can be viewed as a generaliza-

tion of such existing approaches in certain cases. In particular, a trimmed-Lasso-

like approach always subsumes its separable analogue, and the containment is

strict in general. We also focus on the specific case of the clipped (or capped)

Lasso [166]; for this we precisely characterize the relationship and provide a

necessary and sufficient condition for the two approaches to be equivalent. In

doing so, we highlight some of the limitations of an approach using a separable

penalty function.
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3. Finally, we describe a variety of algorithms, both existing and new, for trimmed

Lasso estimation problems. We contrast two heuristic approaches for finding

locally optimal solutions with exact techniques from mixed integer optimization

that can be used to produce certificates of optimality for solutions found via

the convex approaches. We also show that the convex envelope [130] of the

trimmed Lasso takes the form

(‖𝛽‖1 − 𝑘)+ ,

where (𝑎)+ := max{0, 𝑎}, a “soft-thresholded” variant of the ordinary Lasso.

Throughout this section, we emphasize how techniques from convex optimiza-

tion can be used to find high-quality solutions to the trimmed Lasso estimation

problem. An implementation of the various algorithms presented herein can be

found in Appendix D.

Chapter structure

The structure of the chapter is as follows. In Section 4.2, we study several properties

of the trimmed Lasso, provide a few distinct interpretations, and highlight possible

generalizations. In Section 4.3, we explore the trimmed Lasso in the context of ro-

bustness. Then, in Section 4.4, we study the relationship between the trimmed Lasso

and other nonconvex penalties. In Section 4.5, we study the algorithmic implications

of the trimmed Lasso. Finally, in Section 4.6 we share our concluding thoughts and

highlight future directions.

4.2 Structural properties and interpretations

In this section, we provide further background on the trimmed Lasso: its motiva-

tions, interpretations, and generalizations. Our remarks in this section are broadly

grouped as follows: in Section 4.2.1 we summarize the trimmed Lasso’s basic proper-

ties as detailed in [154, 78, 72, 159]; we then turn our attention to an interpretation
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of the trimmed Lasso as a relaxation of complementarity constraints problems from

optimization (Section 4.2.2) and as a variable decomposition method (Section 4.2.3);

finally, in Sections 4.2.4 and 4.2.5 we highlight the key structural features of the

trimmed Lasso by identifying possible generalizations of its definition and its applica-

tion. These results augment the existing literature by giving a deeper understanding

of the trimmed Lasso and provide a basis for further results in Sections 4.3 and 4.4.

4.2.1 Basic observations

We begin with a summary of some of the basic properties of the trimmed Lasso as

studied in [154, 78, 72]. First of all, let us also include another representation of 𝑇𝑘:

Lemma 1. For any 𝛽,

𝑇𝑘 (𝛽) = min
𝐼⊆{1,...,𝑝}:
|𝐼|=𝑝−𝑘

∑︁
𝑖∈𝐼

|𝛽𝑖| = min
z
⟨z, |𝛽|⟩

s. t.
∑︁
𝑖

𝑧𝑖 = 𝑝− 𝑘

z ∈ {0, 1}𝑝,

where |𝛽| denotes the vector whose entries are the absolute values of the entries of 𝛽.

In other words, the trimmed Lasso can be represented using auxiliary binary variables.

Now let us consider the problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘 (𝛽) , (TL𝜆,𝑘)

where 𝜆 > 0 and 𝑘 ∈ {0, 1, . . . , 𝑝} are parameters. Based on the definition of 𝑇𝑘, we

have the following:
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Lemma 2. The problem (TL𝜆,𝑘) can be rewritten exactly in several equivalent forms:

(TL𝜆,𝑘) = min
𝛽,𝜑:

‖𝜑‖0≤𝑘

1

2
‖y −X𝛽‖2 + 𝜆‖𝛽 − 𝜑‖1

= min
𝛽,𝜑,𝜖:
𝛽=𝜑+𝜖
‖𝜑‖0≤𝑘

1

2
‖y −X𝛽‖2 + 𝜆‖𝜖‖1

= min
𝜑,𝜖:

‖𝜑‖0≤𝑘

1

2
‖y −X(𝜑 + 𝜖)‖2 + 𝜆‖𝜖‖1

Exact penalization

Based on the definition of 𝑇𝑘, it follows that 𝑇𝑘(𝛽) = 0 if and only if ‖𝛽‖0 ≤ 𝑘.

Therefore, one can rewrite problem (4.1) as

min
𝑇𝑘(𝛽)=0

1

2
‖y −X𝛽‖22.

In Lagrangian form, this would suggest an approximation for (4.1) of the form

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘(𝛽),

where 𝜆 > 0. As noted in the introduction, this approximation is in fact exact (in the

sense of [22, 24]), summarized in the following theorem; for completeness, we include

a full proof that is distinct from that in [72].3

Theorem 13 (cf. [72]). For any fixed 𝑘 ∈ {0, 1, 2, . . . , 𝑝}, 𝜂 > 0, and problem data

y and X, there exists some 𝜆 = 𝜆(y,X) > 0 so that for all 𝜆 > 𝜆, the problems

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘 (𝛽) + 𝜂‖𝛽‖1

and
min
𝛽

1
2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1

s. t. ‖𝛽‖0 ≤ 𝑘

3The presence of the additional regularizer 𝜂‖𝛽‖1 can be interpreted in many ways. For our
purposes, it serves to make the problems well-posed.
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have the same optimal objective value and the same set of optimal solutions.

Proof. Let 𝜆 = ‖y‖2 · (max𝑗 ‖x𝑗‖2), where x𝑗 denotes the 𝑗th row of X. We fix 𝜆 > 𝜆,

𝑘, and 𝜂 > 0 throughout the entire proof. We begin by observing that it suffices to

show that any solution 𝛽 to

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘 (𝛽) + 𝜂‖𝛽‖1 (4.10)

satisfies 𝑇𝑘 (𝛽) = 0, or equivalently, ‖𝛽‖0 ≤ 𝑘. As per Lemma 1, problem (4.10) can

be rewritten exactly as

min
𝛽,z

1
2
‖y −X𝛽‖22 + 𝜆⟨z, |𝛽|⟩+ 𝜂‖𝛽‖1

s. t.
∑︁
𝑖

𝑧𝑖 = 𝑝− 𝑘

z ∈ {0, 1}𝑝.

(4.11)

Let (𝛽*, z*) be any solution to (4.11). Observe that necessarily 𝛽* is also a solution

to the problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆⟨z*, |𝛽|⟩+ 𝜂‖𝛽‖1. (4.12)

Note that, unlike (4.10), the problem in (4.12) is readily amenable to an analysis

using the theory of proximal gradient methods [49, 16]. In particular, we must have

for any 𝛾 > 0 that

𝛽* = prox𝛾𝑅 (𝛽* − 𝛾(X′X𝛽* −X′y)) , (4.13)

where 𝑅(𝛽) = 𝜂‖𝛽‖1 +𝜆
∑︁

𝑖 : 𝑧*𝑖 =1

|𝛽𝑖|. Suppose that 𝑇𝑘 (𝛽*) > 0. In particular, for some

𝑗 ∈ {1, . . . , 𝑝}, we have 𝛽*
𝑗 ̸= 0 and 𝑧*𝑗 = 1. Yet, as per (4.13),4

⃒⃒
𝛽*
𝑗 − 𝛾⟨x𝑗,X𝛽* − y⟩

⃒⃒
> 𝛾(𝜂 + 𝜆) for all 𝛾 > 0,

4This is valid for the following reason: since 𝛽*
𝑗 ̸= 0 and 𝛽*

𝑗 satisfies (4.13), it must be the case
that

⃒⃒
𝛽*
𝑗 − 𝛾x′

𝑗(X𝛽* − y)
⃒⃒
> 𝛾(𝜂+ 𝜆), for otherwise the soft-thresholding operator at level 𝛾(𝜂+ 𝜆)

would set this quantity to zero.

120



where x𝑗 denotes the 𝑗th row of X. This implies that

|⟨x𝑗,X𝛽* − y⟩| ≥ 𝜂 + 𝜆.

Now, using the definition of 𝜆, observe that

𝜂 + 𝜆 ≤ |⟨x𝑗,X𝛽* − y⟩| ≤ ‖x𝑗‖2‖X𝛽* − y‖2

≤ ‖x𝑗‖2‖y‖ ≤ 𝜆 < 𝜆,

which is a contradiction since 𝜂 > 0. Hence, 𝑇𝑘 (𝛽*) = 0, completing the proof.

The direct implication is that trimmed Lasso leads to a continuum (over 𝜆) of

relaxations to the best subset selection problem starting from ordinary least squares

estimation; further, best subset selection lies on this continuum for 𝜆 sufficiently large.

4.2.2 A complementary constraints viewpoint

We now turn our attention to a new perspective on the trimmed Lasso as consid-

ered via mathematical programming with complementarity constraints (“MPCCs”)

[136, 103, 89, 79, 90, 42], sometimes also referred to as mathematical programs

with equilibrium constraints [48]. By studying this connection, we will show that

a penalized form of a common relaxation scheme for MPCCs leads directly to the

trimmed Lasso penalty. This gives a distinctly different optimization perspective on

the trimmed Lasso penalty.

As detailed in [39, 42, 62], the problem (4.1) can be exactly rewritten as

min
𝛽,z

1

2
‖y −X𝛽‖22

s. t.
∑︀

𝑖 𝑧𝑖 = 𝑝− 𝑘

z ∈ [0, 1]𝑝

𝑧𝑖𝛽𝑖 = 0.

(4.14)

by the inclusion of auxiliary variables z ∈ [0, 1]𝑝. In essence, the auxiliary variables

121



replace the combinatorial constraint ‖𝛽‖0 ≤ 𝑘 with complementarity constraints of

the form 𝑧𝑖𝛽𝑖 = 0. Of course, the problem as represented in (4.14) is still not directly

amenable to convex optimization techniques.

As such, relaxation schemes can be applied to (4.14). One popular method from

the MPCC literature is the Scholtes-type relaxation [79]; applied to (4.14) as in

[42, 62], this takes the form

min
𝛽,z

1

2
‖y −X𝛽‖22

s. t.
∑︀

𝑖 𝑧𝑖 = 𝑝− 𝑘

z ∈ [0, 1]𝑝

|𝑧𝑖𝛽𝑖| ≤ 𝑡,

(4.15)

where 𝑡 > 0 is some fixed numerical parameter which controls the strength of the

relaxation, with 𝑡 = 0 exactly recovering (4.14). In the traditional MPCC context, it

is standard to study local optimality and stationarity behavior of solutions to (4.15)

as they relate to the original problem (4.1), cf. [62].

Instead, let us consider a different approach. In particular, consider a penalized,

or Lagrangian, form of the Scholtes relaxation (4.15), namely,

min
𝛽,z

1

2
‖y −X𝛽‖22 + 𝜆

∑︁
𝑖

(|𝑧𝑖𝛽𝑖| − 𝑡)

s. t.
∑︀

𝑖 𝑧𝑖 = 𝑝− 𝑘

z ∈ [0, 1]𝑝

(4.16)

for some fixed 𝜆 ≥ 0.5 Observe that we can minimize (4.16) with respect to z to

obtain the equivalent problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘(𝛽)− 𝑝𝜆𝑡,

which is precisely problem (TL𝜆,𝑘) (up to the fixed additive constant). In other words,

5To be precise, this is a weaker relaxation than if we had separate dual variables 𝜆𝑖 for each
constraint |𝑧𝑖𝛽𝑖| ≤ 𝑡, at least in theory.
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the trimmed Lasso can also be viewed as arising directly from a penalized form of

the MPCC relaxation, with auxiliary variables eliminated. This gives another view

on Lemma 1 which gave a representation of 𝑇𝑘 using auxiliary binary variables.

4.2.3 Variable decomposition

To better understand the relation of the trimmed Lasso to existing methods, it is also

useful to consider alternative representations. Here we focus on representations which

connect it to variable decomposition methods. Our discussion here is an extended

form of related discussions in [78, 72, 159].

To begin, we return to the final representation of the trimmed Lasso problem as

shown in Lemma 2, viz.,

(TL𝜆,𝑘) = min
𝜑,𝜖:

‖𝜑‖0≤𝑘

1

2
‖y −X(𝜑 + 𝜖)‖2 + 𝜆‖𝜖‖1. (4.17)

We will refer to (TL𝜆,𝑘) in the form (4.17) as the split or decomposed representation

of the problem. This is because in this form it is clear that we can think about

estimators 𝛽 found via (TL𝜆,𝑘) as being decomposed into two different estimators: a

sparse component 𝜑 and another component 𝜖 with small ℓ1 norm (as controlled via

𝜆).

Several remarks are in order. First, the decomposition of 𝛽 into 𝛽 = 𝜑 + 𝜖 is

truly a decomposition in that if 𝛽* is an optimal solution to (TL𝜆,𝑘) with (𝜑*, 𝜖*) a

corresponding optimal solution to the split representation of the problem (4.17), then

one must have that 𝜑*
𝑖 𝜖

*
𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑝}. In other words, the supports of 𝜑

and 𝜖 do not overlap; therefore, 𝛽* = 𝜑* + 𝜖* is a genuine decomposition.

Secondly, the variable decomposition (4.17) suggests that the problem of finding

the 𝑘 largest entries of 𝛽 (i.e., finding 𝜑) can be solved as a best subset selection

problem with a (possibly different) convex loss function (without 𝜖). To see this,
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observe that the problem of finding 𝜑 in (4.17) can be written as the problem

min
‖𝜑‖0≤𝑘

̃︀𝐿(𝜑),

where ̃︀𝐿(𝜑) = min
𝜖

1

2
‖y −X(𝜑 + 𝜖)‖22 + 𝜆‖𝜖‖1.

Using theory on duality for the Lasso problem [120], one can argue that ̃︀𝐿 is itself

a convex loss function. Hence, the variable decomposition gives some insight into

how the largest 𝑘 loadings for the trimmed Lasso relates to solving a related sparse

estimation problem.

A view towards matrix estimation

Finally, we contend that the variable decomposition of 𝛽 as a sparse component

𝜑 plus a “noise” component 𝜖 with small norm is a natural and useful analogue of

corresponding decompositions in the matrix estimation literature, such as in factor

analysis and robust Principal Component Analysis [46]. For the purposes of the

present work, we will focus on the analogy with factor analysis.

To describe the connection, we briefly review the setup as given in Chapter

2. Given a covariance matrix Σ ∈ R𝑝×𝑝, one is interested in describing it as the

sum of two distinct components: a low-rank component Θ (corresponding to a low-

dimensional covariance structure common across the variables) and a diagonal compo-

nent Φ (corresponding to individual variances unique to each variable)—in symbols,

Σ = Θ + Φ.

In reality, this noiseless decomposition is often too restrictive, and therefore it

is often better to focus on finding a decomposition Σ = Θ + Φ + 𝒩 , where 𝒩 is

a noise component with small norm. Accordingly, as in Chapter 2, a corresponding
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estimation procedure can take the form

min
Θ,Φ

‖Σ− (Θ + Φ)‖

s. t. rank(Θ) ≤ 𝑘

Φ is diagonal

Θ,Φ < 0,

(4.18)

where the constraint A < 0 denotes that A is symmetric, positive semidefinite,

and ‖ · ‖ is some norm. One of the attractive features of the estimation criterion

(4.18) is that for common choices of ‖ · ‖, it is possible to completely eliminate the

combinatorial rank constraint and the variable Θ to yield a smooth (nonconvex)

optimization problem with compact, convex constraints.

This exact same argument can be used to motivate the appearance of the trimmed

Lasso penalty. Indeed, instead of considering estimators 𝛽 which are exactly 𝑘-sparse

(i.e., ‖𝛽‖0 ≤ 𝑘), we instead consider estimators which are approximately 𝑘-sparse,

i.e., 𝛽 = 𝜑 + 𝜖, where ‖𝜑‖0 ≤ 𝑘 and 𝜖 has small norm. Given fixed 𝛽, such a

procedure is precisely

min
‖𝜑‖0≤𝑘

‖𝛽 − 𝜑‖.

Just as the rank constraint is eliminated from (4.18), the sparsity constraint can be

eliminated from this to yield a continuous penalty which precisely captures the quality

of the approximation 𝛽 ≈ 𝜑. The trimmed Lasso uses the choice ‖ · ‖ = 𝐿1, although

other choices are possible; see Section 4.2.4.

This analogy with factor analysis is also useful in highlighting additional benefits

of the trimmed Lasso. One of particular note is that it enables the direct application

of existing convex optimization techniques to find high-quality solutions to (TL𝜆,𝑘).

4.2.4 Generalizations

We close this section by considering some generalizations of the trimmed Lasso. These

are particularly useful for connecting the trimmed Lasso to other penalties, as we will

see later in Section 4.4.
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As noted earlier, the trimmed Lasso measures the distance (in ℓ1 norm) from

the set of 𝑘-sparse vectors; therefore, it is natural to inquire what properties other

measures of distance might carry. In light of this, we begin with a definition:

Definition 3. Let 𝑘 ∈ {0, 1, . . . , 𝑝} and 𝑔 : R+ → R+ be any unbounded, continuous,

and strictly increasing function with 𝑔(0) = 0. Define the corresponding 𝑘th projected

penalty function, denoted 𝜋𝑔
𝑘, as

𝜋𝑔
𝑘(𝛽) = min

‖𝜑‖0≤𝑘

∑︁
𝑖

𝑔(|𝜑𝑖 − 𝛽𝑖|).

It is not difficult to argue that 𝜋𝑔
𝑘 has as an equivalent definition

𝜋𝑔
𝑘(𝛽) =

∑︁
𝑖>𝑘

𝑔(|𝛽(𝑖)|).

As an example, 𝜋𝑔
𝑘 is the trimmed Lasso penalty when 𝑔 is the absolute value, viz.

𝑔(𝑥) = |𝑥|, and so it is a special case of the projected penalties. Alternatively, suppose

𝑔(𝑥) = 𝑥2/2. In this case, we get a trimmed version of the ridge regression penalty:∑︀
𝑖>𝑘 |𝛽(𝑖)|2/2.

This class of penalty functions has one notable feature, summarized in the follow-

ing results:

Proposition 16. If 𝑔 : R+ → R+ is an unbounded, continuous, and strictly increasing

function with 𝑔(0) = 0, then for any 𝛽, 𝜋𝑔
𝑘(𝛽) = 0 if and only if ‖𝛽‖0 ≤ 𝑘. Hence, the

problem min
𝛽

1

2
‖y−X𝛽‖22 +𝜆𝜋𝑔

𝑘(𝛽) converges in objective value to min
‖𝛽‖0≤𝑘

1

2
‖y−X𝛽‖22

as 𝜆→∞.

Let us set a standard notion: we say that 𝛽 is 𝜖-optimal (for 𝜖 > 0) to an opti-

mization problem (P) if the optimal objective value of (P) is within 𝜖 of the objective

value of 𝛽.

Proposition 17 (Extended form of Proposition 16). Let 𝑔 : R+ → R+ be an un-

bounded, continuous, and strictly increasing function with 𝑔(0) = 0. Consider the
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problems

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝜋𝑔

𝑘(𝛽) + 𝜂‖𝛽‖1 (4.19)

and

min
‖𝛽‖0≤𝑘

1

2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1. (4.20)

For every 𝜖 > 0, there exists some 𝜆 = 𝜆(𝜖) > 0 so that for all 𝜆 > 𝜆,

1. For every optimal 𝛽* to (4.19), there is some ̂︀𝛽 so that ‖𝛽* − ̂︀𝛽‖2 ≤ 𝜖, ̂︀𝛽 is

feasible to (4.20), and ̂︀𝛽 is 𝜖-optimal to (4.20).

2. Every optimal 𝛽* to (4.20) is 𝜖-optimal to (4.19).

Proof. The proof follows a basic continuity argument that is simpler than the one

presented below in Theorem 15. For that reason, we do not include a full proof.

Observe that the assumptions on 𝑔 imply that 𝑔−1 is well-defined on, say, 𝑔([0, 1]). If

we let 𝜖 > 0 and suppose that 𝛽* is optimal to (4.19), where 𝜆 > 𝜆 := ‖y‖22/(2𝑔(𝜖/𝑝)),

and if we define ̂︀𝛽 to be 𝛽* with all but the 𝑘 largest magnitude entries truncated to

zero (ties broken arbitrarily), then 𝜋𝑔
𝑘(𝛽*) ≤ ‖y‖22/(2𝜆) and 𝜋𝑔

𝑘(𝛽*) =
∑︀𝑝

𝑖=1 𝑔(|𝛽*
𝑖−̂︀𝛽𝑖|)

so that |𝛽*
𝑖 − ̂︀𝛽𝑖| ≤ 𝑔−1(‖y‖22/(2𝜆)) ≤ 𝜖/𝑝 by definition of 𝜆. Hence, ‖𝛽* − ̂︀𝛽‖1 ≤ 𝜖,

and all the other claims essentially follow from this.

Therefore, any projected penalty 𝜋𝑔
𝑘 results in the best subset selection problem

(4.1) asymptotically. While the choice of 𝑔 as the absolute value gives the trimmed

Lasso penalty and leads to exact sparsity in the non-asymptotic regime (Theorem 13),

Proposition 16 suggests that the projected penalty functions have potential utility in

attaining approximately sparse estimators. We will return to the penalties 𝜋𝑔
𝑘 again

in Section 4.4 to connect the trimmed Lasso to nonconvex penalty methods.

Before concluding this section, we briefly consider a projected penalty function

that is different than the trimmed Lasso. As noted above, if 𝑔(𝑥) = 𝑥2/2, then

the corresponding penalty function is the trimmed ridge penalty
∑︀

𝑖>𝑘 |𝛽(𝑖)|2/2. The

estimation procedure is then

min
𝛽

1

2
‖y −X𝛽‖22 +

𝜆

2

∑︁
𝑖>𝑘

|𝛽(𝑖)|2,
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or equivalently in decomposed form (cf. Section 4.2.3),6

min
𝜑,𝜖:

‖𝜑‖0≤𝑘

1

2
‖y −X(𝜑 + 𝜖)‖22 +

𝜆

2
‖𝜖‖22.

It is not difficult to see that the variable 𝜖 can be eliminated to yield

min
‖𝜑‖0≤𝑘

1

2
‖A(y −X𝜑)‖22 , (4.21)

where A = (I−X(X′X+𝜆I)−1X′)1/2. It follows that the largest 𝑘 loadings are found

via a modified best subset selection problem under a different loss function—precisely

a variant of the ℓ2 norm. This is in the same spirit of observations made in Section

4.2.3.

Observation 1. An obvious question is whether the norm in (4.21) is genuinely

different. Observe that this loss function is the same as the usual ℓ22 loss if and only

if A′A is a nonnegative multiple of the identity matrix. It is not difficult to see that

this is true iff X′X is a nonnegative multiple of the identity. In other words, the loss

function in (4.21) is the same as the usual ridge regression loss if and only if X is (a

scalar multiple of) an orthogonal design matrix.

4.2.5 Other applications of the trimmed Lasso: the (Discrete)

Dantzig Selector

The above discussion which pertains to the least squares loss data-fidelity term can

be generalized to other loss functions as well. For example, let us consider a data-

fidelity term given by the maximal absolute inner product between the features and

residuals, given by ‖X′(y − X𝛽)‖∞. An 𝐿1-penalized version of this data-fidelity

term, popularly known as the Dantzig Selector [33, 85], is given by the following

6Interestingly, if one considers this trimmed ridge regression problem and uses convex enve-
lope techniques [130, 38] to relax the constraint ‖𝜑‖0 ≤ 𝑘, the resulting problem takes the form
min𝜑,𝜖 ‖y −X(𝜑 + 𝜖)‖22/2 + 𝜆‖𝜖‖22 + 𝜏‖𝜑‖1, a sort of “split” variant of the usual elastic net [167],
another popular convex method for sparse modeling.
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linear optimization problem:

min
𝛽
‖X′(y −X𝛽)‖∞ + 𝜇‖𝛽‖1. (4.22)

Estimators found via (4.22) have statistical properties similar to the Lasso. Fur-

ther, problem (4.22) may be interpreted as an 𝐿1-approximation to the cardinality

constrained version:

min
‖𝛽‖0≤𝑘

‖X′(y −X𝛽)‖∞, (4.23)

that is, the Discrete Dantzig Selector, recently proposed and studied in [111]. The

statistical properties of (4.23) are similar to the best-subset selection problem (4.1),

but may be more attractive from a computational viewpoint as it relies on mixed

integer linear optimization as opposed to mixed integer conic optimization (see [111]).

The trimmed Lasso penalty can also be applied to the data-fidelity term ‖X′(y−

X𝛽)‖∞, leading to the following estimator:

min
𝛽
‖X′(y −X𝛽)‖∞ + 𝜆𝑇𝑘 (𝛽) + 𝜇‖𝛽‖1.

Similar to the case of the least squares loss function, the above estimator yields 𝑘-

sparse solutions for any 𝜇 > 0 and for 𝜆 > 0 sufficiently large.7 While this claim

follows a fortiori by appealing to properties of the Dantzig selector, it nevertheless

highlights how any exact penalty method with a separable penalty function can be

turned into a trimmed-style problem which offers direct control over the sparsity level.

4.3 A perspective on robustness

We now turn our attention to a deeper exploration of the robustness properties of

the trimmed Lasso. We begin by studying the min-min robust analogue of the min-

max robust SLOPE penalty; in doing so, we show under which circumstances this

7For the same reason, but instead with the usual Lasso objective, the proof of Theorem 13 could
be entirely omitted; yet, it is instructive to see in the proof there that the trimmed Lasso truly does
set the smallest entries to zero, and not simply all entries (when 𝜆 is large) like the Lasso.
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analogue is the trimmed Lasso problem. Indeed, in such a regime, the trimmed Lasso

can be viewed as an optimistic counterpart to the robust optimization view of the

SLOPE penalty. Finally, we turn our attention to an additional min-min robust

interpretation of the trimmed Lasso in direct correspondence with the least trimmed

squares estimator shown in (4.5), using the ordinary Lasso as our starting point.

4.3.1 The trimmed Lasso as a min-min robust analogue of

SLOPE

We begin by reconsidering the uncertainty set that gave rise to the SLOPE penalty

via the min-max view of robustness as considered in robust optimization:

𝒰𝜆
𝑘 :=

⎧⎨⎩Δ :
Δ has at most 𝑘 nonzero

columns and ‖Δ𝑖‖2 ≤ 𝜆 ∀𝑖

⎫⎬⎭ .

As per Proposition 15, the min-max problem (4.9), viz.,

min
𝛽

max
Δ∈𝒰𝜆

𝑘

1

2
‖y − (X + Δ)𝛽‖22

is equivalent to the SLOPE-penalized problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑅SLOPE(w̃)(𝛽). (4.24)

for the specific choice of w̃ with 𝑤̃1 = · · · = 𝑤̃𝑘 = 1 and 𝑤̃𝑘+1 = · · · = 𝑤̃𝑝 = 0.

Let us now consider the form of the min-min robust analogue of the the problem

(4.9) for this specific choice of uncertainty set. As per the discussion in Section 4.1,

the min-min analogue takes the form of problem (4.8), i.e., a variant of total least

squares:

min
𝛽

min
Δ∈𝒰𝜆

𝑘

1

2
‖y − (X + Δ)𝛽‖22,

130



or equivalently as the linearly homogenous problem8

min
𝛽

min
Δ∈𝒰𝜆

𝑘

‖y − (X + Δ)𝛽‖2. (4.25)

It is useful to consider problem (4.25) with an explicit penalization (or regularization)

on 𝛽:

min
𝛽

min
Δ∈𝒰𝜆

𝑘

‖y − (X + Δ)𝛽‖2 + 𝑟(𝛽), (4.26)

where 𝑟(·) is, say, a norm (the use of lowercase is to distinguish from the function 𝑅

in Section 4.1).

As described in the following theorem, this min-min robustness problem (4.26) is

equivalent to the trimmed Lasso problem for specific choices of 𝑟.

Theorem 14. For any 𝑘, 𝜆 > 0, and norm 𝑟, the problem (4.26) can be rewritten

exactly as

min
𝛽
‖y −X𝛽‖2 + 𝑟(𝛽)− 𝜆

𝑘∑︁
𝑖=1

|𝛽(𝑖)|

s. t. 𝜆
𝑘∑︁

𝑖=1

|𝛽(𝑖)| ≤ ‖y −X𝛽‖2.

Proof. We begin by showing that for any 𝛽,

min
Δ∈𝒰𝜆

𝑘

‖y − (X + Δ)𝛽‖2 =

(︃
‖y −X𝛽‖2 − 𝜆

𝑘∑︁
𝑖=1

|𝛽(𝑖)|

)︃
+

,

where (𝑎)+ := max{0, 𝑎}. Fix 𝛽 and set r = y − X𝛽. We assume without loss of

generality that r ̸= 0 and that 𝛽 ̸= 0. For any Δ, note that ‖r −Δ𝛽‖2 ≥ 0 and

‖r−Δ𝛽‖2 ≥ ‖r‖2 − ‖Δ𝛽‖2 by the reverse triangle inequality. Now observe that for

Δ ∈ 𝒰𝜆
𝑘 ,

‖Δ𝛽‖2 ≤
∑︁
𝑖

|𝛽𝑖|‖Δ𝑖‖2 ≤
𝑘∑︁

𝑖=1

𝜆|𝛽(𝑖)|.

Therefore, ‖r −Δ𝛽‖2 ≥
(︁
‖r‖2 − 𝜆

∑︀𝑘
𝑖=1 |𝛽(𝑖)|

)︁
+
. Let 𝐼 ⊆ {1, . . . , 𝑝} be a set of 𝑘

8In what follows, the linear homogeneity is useful primarily for simplicity of analysis, cf. [19, ch.
12]. Indeed, the conversion to linear homogeneous functions is often hidden in equivalence results
like Proposition 15.
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indices which correspond to the 𝑘 largest entries of 𝛽 (if |𝛽(𝑘)| = |𝛽(𝑘+1)|, break ties

arbitrarily). Define Δ ∈ 𝒰𝜆
𝑘 as the matrix whose 𝑖th column is⎧⎨⎩ 𝜆 sgn(𝛽𝑖)r/‖r‖2, 𝑖 ∈ 𝐼

0, 𝑖 /∈ 𝐼,

where 𝜆 = min
{︁
𝜆, ‖r‖2/

(︁∑︀𝑘
𝑖=1 |𝛽(𝑖)|

)︁}︁
. It is easy to verify that Δ ∈ 𝒰𝜆

𝑘 and ‖r −

Δ𝛽‖2 =
(︁
‖r‖2 − 𝜆

∑︀𝑘
𝑖=1 |𝛽(𝑖)|

)︁
+
. Combined with the lower bound, we have

min
Δ∈𝒰𝜆

𝑘

‖y − (X + Δ)𝛽‖2 =

(︃
‖y −X𝛽‖2 − 𝜆

𝑘∑︁
𝑖=1

|𝛽(𝑖)|

)︃
+

,

which completes the first claim.

It follows that the problem (4.26) can be rewritten exactly as

min
𝛽

(︃
‖y −X𝛽‖2 − 𝜆

𝑘∑︁
𝑖=1

|𝛽(𝑖)|

)︃
+

+ 𝑟(𝛽). (4.27)

To finish the proof of the theorem, it suffices to show that if 𝛽* is a solution to

(4.27), then

‖y −X𝛽*‖2 − 𝜆
𝑘∑︁

𝑖=1

|𝛽*
(𝑖)| ≥ 0.

If this is not true, then ‖y−X𝛽*‖2 − 𝜆
∑︀𝑘

𝑖=1 |𝛽*
(𝑖)| < 0 and so 𝛽* ̸= 0. However, this

implies that for 1 > 𝜖 > 0 sufficiently small, 𝛽𝜖 := (1 − 𝜖)𝛽* satisfies ‖y −X𝛽𝜖‖2 −

𝜆
∑︀𝑘

𝑖=1 |(𝛽𝜖)(𝑖)| < 0. This in turn implies that

(︁
‖y −X𝛽𝜖‖2 − 𝜆

∑︀𝑘
𝑖=1 |(𝛽𝜖)(𝑖)|

)︁
+

+ 𝑟(𝛽𝜖)

<
(︁
‖y −X𝛽*‖2 − 𝜆

∑︀𝑘
𝑖=1 |𝛽*

(𝑖)|
)︁
+

+ 𝑟(𝛽*),

which contradicts the optimality of 𝛽*. (We have used the absolute homogeneity of

the norm 𝑟 and that 𝛽* ̸= 0.) Hence, any optimal 𝛽* to (4.27) necessarily satisfies

‖y −X𝛽*‖2 − 𝜆
∑︀𝑘

𝑖=1 |𝛽*
(𝑖)| ≥ 0 and so the desired results follows.
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N.B. The assumption that 𝑟 is a norm can be relaxed somewhat (as is clear in the

proof), although the full generality is not necessary for our purposes.

This leads in part to the following:

Theorem 15. For the choice of 𝑟(𝛽) = 𝜏‖𝛽‖1, where 𝜏 > 𝜆, the problem (4.26) is

min
𝛽
‖y −X𝛽‖2 + (𝜏 − 𝜆)‖𝛽‖1 + 𝜆𝑇𝑘 (𝛽)

s. t. 𝜆
𝑘∑︁

𝑖=1

|𝛽(𝑖)| ≤ ‖y −X𝛽‖2.
(4.28)

In particular, when 𝜆 > 0 is small, it is approximately equal (in a precise sense) to

the trimmed Lasso problem

min
𝛽
‖y −X𝛽‖2 + (𝜏 − 𝜆)‖𝛽‖1 + 𝜆𝑇𝑘 (𝛽) . (4.29)

Namely, for all 𝜖 > 0, there exists some 𝜆 = 𝜆(𝜖) > 0 so that whenever 𝜆 ∈ (0, 𝜆),

1. Every optimal 𝛽* to (4.28) is 𝜖-optimal to (4.29).

2. For every optimal 𝛽* to (4.29), there is some ̂︀𝛽 so that ‖𝛽* − ̂︀𝛽‖2 ≤ 𝜖, ̂︀𝛽 is

feasible to (4.28), and ̂︀𝛽 is 𝜖-optimal to (4.28).

Proof. Fix 𝜏 > 0 throughout. We assume without loss of generality that y ̸= 0, as

otherwise the claim is obvious. We will prove the second claim first, as it essentially

implies the first.

Let us consider two situations. In particular, we consider whether there exists a

nonzero optimal solution to

min
𝛽
‖y −X𝛽‖2 + 𝜏‖𝛽‖1. (4.30)

Case 1—existence of nonzero optimal solution to (4.30):

We first consider the case when there exists a nonzero solution to problem (4.30). We

show a few lemmata:
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1. We first show that the norm of solutions to (4.29) are uniformly bounded away

from zero, independent of 𝜆. To proceed, let ̂︀𝛽 be any nonzero optimal solution

to (4.30). Observe that if 𝛽* is optimal to (4.29), then

‖y −X𝛽*‖2 + (𝜏 − 𝜆)‖𝛽*‖1 + 𝜆𝑇𝑘(𝛽*)

≤ ‖y −X̂︀𝛽‖2 + (𝜏 − 𝜆)‖̂︀𝛽‖1 + 𝜆𝑇𝑘(̂︀𝛽)

≤ ‖y −X𝛽*‖2 + 𝜏‖𝛽*‖1 − 𝜆‖̂︀𝛽‖1 + 𝜆𝑇𝑘(̂︀𝛽),

implying that ‖̂︀𝛽‖1 − 𝑇𝑘(̂︀𝛽) ≤ ‖𝛽*‖1 − 𝑇𝑘(𝛽*). In other words,
∑︀𝑘

𝑖=1 |̂︀𝛽(𝑖)| ≤∑︀𝑘
𝑖=1 |𝛽*

(𝑖)| ≤ ‖𝛽
*‖1. Using the fact that ̂︀𝛽 ̸= 0, we have that any solution 𝛽*

to (4.29) has strictly positive norm:

‖𝛽*‖1 ≥ 𝐶 > 0,

where 𝐶 :=
∑︀𝑘

𝑖=1 |̂︀𝛽(𝑖)| is a universal constant depending only on 𝜏 (and not 𝜆).

2. We now upper bound the norm of solutions to (4.29). In particular, if 𝛽* is

optimal to (4.29), then

‖y −X𝛽*‖2 + (𝜏 − 𝜆)‖𝛽*‖1 + 𝜆𝑇𝑘(𝛽*) ≤ ‖y‖2 + 0 + 0 = ‖y‖2,

and so ‖𝛽*‖1 ≤ ‖y‖2/(𝜏−𝜆). (This bound is not uniform in 𝜆, but if we restrict

our attention to, say 𝜆 ≤ 𝜏/2, it is.)

3. We now lower bound the loss for scaled version of optimal solutions. In par-

ticular, if 𝜎 ∈ [0, 1] and 𝛽* is optimal to (4.29), then by optimality we have

that

‖y−X𝛽*‖2+(𝜏−𝜆)‖𝛽*‖1+𝜆𝑇𝑘(𝛽*) ≤ ‖y−𝜎X𝛽*‖2+(𝜏−𝜆)𝜎‖𝛽*‖1+𝜆𝜎𝑇𝑘(𝛽*),
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which in turn implies that

‖y − 𝜎X𝛽*‖2 ≥ ‖y −X𝛽*‖2 + (𝜏 − 𝜆)(1− 𝜎)‖𝛽*‖1 + 𝜆(1− 𝜎)𝑇𝑘(𝛽*)

≥ ‖y −X𝛽*‖2 + (𝜏 − 𝜆)(1− 𝜎)𝐶 ≥ (𝜏 − 𝜆)(1− 𝜎)𝐶

by combining with the first observation.

Using these, we are now ready to proceed. Let 𝜖 > 0; we assume without loss of

generality that 𝜖 < 2‖y‖2/𝜏 . Let

𝜆 := min

{︂
𝜖𝜏 3𝐶

4‖y‖2(2‖y‖2 − 𝜖𝜏)
,
𝜏

2

}︂
.

Fix 𝜆 ∈ (0, 𝜆) and let 𝛽* be any optimal solution to (4.29). Define

𝜎 :=

(︂
1− 𝜖𝜏

2‖y‖2

)︂
and ̂︀𝛽 := 𝜎𝛽*.

We claim that ̂︀𝛽 satisfies the desired requirements of the theorem:

1. We first argue that ‖𝛽* − ̂︀𝛽‖2 ≤ 𝜖. Observe that

‖𝛽*−̂︀𝛽‖2 = 𝜖𝜏‖𝛽*‖2/(2‖y‖2) ≤ 𝜖𝜏‖𝛽*‖1/(2‖y‖2) ≤ 𝜖𝜏‖y‖2/(2‖y‖2(𝜏−𝜆)) ≤ 𝜖.

2. We now show that ̂︀𝛽 is feasible to (4.28). This requires us to argue that

𝜆
∑︀𝑘

𝑖=1 |̂︀𝛽(𝑖)| ≤ ‖y −X̂︀𝛽‖2. Yet,

𝜆

𝑘∑︁
𝑖=1

|̂︀𝛽(𝑖)| ≤ 𝜆‖̂︀𝛽‖1 = 𝜆𝜎‖𝛽*‖1 ≤ 2𝜆𝜎‖y‖2/𝜏 ≤
𝜏

2
(1− 𝜎)𝐶

≤ (𝜏 − 𝜆)(1− 𝜎)𝐶 ≤ ‖y − 𝜎X𝛽*‖2 = ‖y −X̂︀𝛽‖2,
as desired. The only non-obvious step is the inequality 2𝜆𝜎‖y‖2/𝜏 ≤ 𝜏(1 −

𝜎)𝐶/2, which follows from algebraic manipulations using the definitions of 𝜎

and 𝜆.
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3. Finally, we show that ̂︀𝛽 is (𝜖‖X‖2)-optimal to (4.28). Indeed, because 𝛽* is

optimal to (4.29) which necessarily lowers bound problem (4.28), we have that

the objective value gap between ̂︀𝛽 and an optimal solution to (4.28) is at most

‖y − 𝜎X𝛽*‖2 − ‖y −X𝛽*‖2 + (𝜏 − 𝜆)(𝜎 − 1)‖𝛽*‖1 + 𝜆(𝜎 − 1)𝑇𝑘(𝛽*)

≤ (1− 𝜎)‖X𝛽*‖2 + 0 + 0 ≤ (1− 𝜎)‖X‖2‖𝛽*‖2 ≤ 2(1− 𝜎)‖X‖2‖y‖2/𝜏

= 2𝜖𝜏/(2‖y‖2)‖X‖2‖y‖2/𝜏 = 𝜖‖X‖2.

As the choice of 𝜖 > 0 was arbitrary, this completes the proof of claim 2 in the theorem

in the case when 0 is not a solution to (4.30).

Case 2—no nonzero optimal solution to (4.30):

In the case when there is no nonzero optimal solution to (4.30), 0 is optimal and it is

the only optimal point. Our analysis will be similar to the previous approach, with

the key difference being in how we lower bound the quantity ‖y− 𝜎X𝛽*‖2 where 𝛽*

is optimal to (4.29). Again, we have several lemmata:

1. As before, if 𝛽* is optimal to (4.29), then ‖𝛽*‖1 ≤ ‖y‖2/(𝜏 − 𝜆).

2. We now lower bound the quantity ‖y− 𝜎X𝛽*‖2, where 𝛽* is optimal to (4.29)

and 𝜎 ∈ [0, 1]. As such, consider the function

𝑓(𝜎) := ‖y − 𝜎X𝛽*‖2 + 𝜎𝜏‖𝛽*‖1.

Because 𝑓 is convex in 𝜎 and the unique optimal solution to (4.30) is 0, we have

that

𝑓(𝜎) ≥ 𝑓(0) + 𝜎𝑓 ′(0) ∀𝜎 ∈ [0, 1] and 𝑓 ′(0) ≥ 0.

(It is not difficult to argue that 𝑓 is differentiable at 0.) An elementary compu-

tation shows that 𝑓 ′(0) = 𝜏‖𝛽*‖1 − ⟨y,X𝛽*⟩/‖y‖2. Therefore, we have that

‖y − 𝜎X𝛽*‖2 + 𝜎𝜏‖𝛽*‖1 ≥ ‖y‖2 + 𝜎 (𝜏‖𝛽*‖1 − ⟨y,X𝛽*⟩/‖y‖2) ,
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implying that

‖y−𝜎X𝛽*‖2 ≥ ‖y‖2−𝜎⟨y,X𝛽*⟩/‖y‖2 ≥ ‖y‖2−𝜎𝜏‖𝛽*‖1 ≥ ‖y‖2−𝜎𝜏‖y‖2/(𝜏−𝜆),

with the final step following by an application of the previous lemma.

We are now ready to proceed. Let 𝜖 > 0; we assume without loss of generality

that 𝜖 < 2‖y‖2/𝜏 . Let

𝜆 := min

{︂
𝜖𝜏 2

4‖y‖2 − 𝜖𝜏
,
𝜏

2

}︂
.

Fix 𝜆 ∈ (0, 𝜆) and let 𝛽* be any optimal solution to (4.29). Define

𝜎 :=

(︂
1− 𝜖𝜏

2‖y‖2

)︂
and ̂︀𝛽 := 𝜎𝛽*.

We claim that ̂︀𝛽 satisfies the desired requirements:

1. The proof of the claim that ‖𝛽* − ̂︀𝛽‖2 ≤ 𝜖 is exactly as before.

2. We now show that ̂︀𝛽 is feasible to (4.28), which requires a different proof. Again

this requires us to argue that 𝜆
∑︀𝑘

𝑖=1 |̂︀𝛽(𝑖)| ≤ ‖y −X̂︀𝛽‖2. Yet,

𝜆
𝑘∑︁

𝑖=1

|̂︀𝛽(𝑖)| ≤ 𝜆‖̂︀𝛽‖1 = 𝜆𝜎‖𝛽*‖1 ≤ 𝜆𝜎‖y‖2/(𝜏 − 𝜆) ≤ ‖y‖2 − 𝜎𝜏‖y‖2/(𝜏 − 𝜆)

≤ ‖y − 𝜎X𝛽*‖2 = ‖y −X̂︀𝛽‖2,
as desired. The only non-obvious step is the inequality 𝜆𝜎‖y‖2/(𝜏 − 𝜆) ≤

‖y‖2 − 𝜎𝜏‖y‖2/(𝜏 − 𝜆), which follows from algebraic manipulations using the

definitions of 𝜎 and 𝜆.

3. Finally, the proof that ̂︀𝛽 is (𝜖‖X‖2)-optimal to (4.28) follows in the same way

as before.

Therefore, we conclude that in the case when 0 is the unique optimal solution to

(4.30), then again we have that the claim 2 of the theorem holds.
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Finally, we show that claim 1 holds: any solution 𝛽* to (4.28) is 𝜖-optimal to

(4.29). This follows by letting 𝛽 be any optimal solution to (4.29). By applying the

entire argument above, we know that the objective value of some ̂︀𝛽, feasible to (4.28)

and close to 𝛽, is within 𝜖 of the optimal objective value of (4.28), i.e., the objective

value of 𝛽*, and within 𝜖 of the objective value of (4.29), i.e., the objective value of

𝛽. This completes the proof.

In short, the key complication is that the quantity ‖y − X𝛽*‖2 does not need

to be uniformly bounded away from zero for solutions 𝛽* to problem (4.29). This

is part of the complication of working with the homogeneous form of the trimmed

Lasso problem. For a concrete example, if one considers the homogeneous Lasso

problem with 𝑝 = 𝑛 = 1, y = (1), and X = (1), then the homogeneous Lasso problem

min𝛽 ‖y −X𝛽‖2 + 𝜂‖𝛽‖1 is

min
𝛽
|1− 𝛽|+ 𝜂|𝛽|.

For 𝜂 ∈ [0, 1], 𝛽* = 1 is an optimal solution to this problem with corresponding error

‖y −X𝛽*‖ = 0. If we make an assumption about the behavior of ‖y −X𝛽*‖, then

we do not need the setup as shown above.

Interpreting Theorem 15

In words, the min-min problem (4.26) (with an 𝐿1 regularization on 𝛽) can be written

as a variant of a trimmed Lasso problem, subject to an additional constraint. It is

instructive to consider both the objective and the constraint of problem (4.28). To

begin, the objective has a combined penalty on 𝛽 of (𝜏 −𝜆)‖𝛽‖1 +𝜆𝑇𝑘 (𝛽). This can

be thought of as the more general form of the penalty 𝑇𝑘. Namely, one can consider

the penalty 𝑇x (with 0 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑝 fixed) defined as

𝑇x(𝛽) :=

𝑝∑︁
𝑖=1

𝑥𝑖|𝛽(𝑖)|.
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In this notation, the objective of (4.28) can be rewritten as ‖y−X𝛽‖2 +𝑇x(𝛽), with

x = (𝜏 − 𝜆, . . . , 𝜏 − 𝜆⏟  ⏞  
𝑘 times

, 𝜏, . . . , 𝜏⏟  ⏞  
𝑝−𝑘 times

).

In terms of the constraint of problem (4.28), note that it takes the form of a model-

fitting constraint: namely, 𝜆 controls a trade-off between model fit ‖y − X𝛽‖2 and

model complexity measured via the SLOPE norm
∑︀𝑘

𝑖=1 |𝛽(𝑖)|.

Having described the structure of problem (4.28), a few remarks are in order.

First of all, the trimmed Lasso problem (with an additional 𝐿1 penalty on 𝛽) can be

interpreted as (a close approximation to) a min-min robust problem, at least in the

regime when 𝜆 is small; this provides an interesting contrast to the sparse-modeling

regime when 𝜆 is large (cf. Theorem 13). Moreover, the trimmed Lasso is a min-min

robust problem in a way that is the optimistic analogue of its min-max counterpart,

namely, the SLOPE-penalized problem (4.24). Finally, Theorem 14 gives a natural

representation of the trimmed Lasso problem in a way that directly suggests why

methods from difference-of-convex optimization [4] are relevant (see Section 4.5).

The general SLOPE penalty

Let us briefly remark upon SLOPE in its most general form (with general w); again

we will see that this leads to a more general trimmed Lasso as its (approximate)

min-min counterpart. In its most general form, the SLOPE-penalized problem (4.24)

can be written as the min-max robust problem (4.9) with choice of uncertainty set

𝒰𝜆
w =

{︃
Δ : ‖Δ𝜑‖2 ≤ 𝜆

∑︁
𝑖

𝑤𝑖|𝜑(𝑖)| ∀𝜑

}︃

(see Appendix C.1). In this case, the penalized, homogenized min-min robust coun-

terpart, analogous to problem (4.26), can be written as follows:

Proposition 18. For any 𝑘, 𝜆 > 0, and norm 𝑟, the problem

min
𝛽

min
Δ∈𝒰𝜆

w

‖y − (X + Δ)𝛽‖2 + 𝑟(𝛽) (4.31)
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can be rewritten exactly as

min
𝛽
‖y −X𝛽‖2 + 𝑟(𝛽)− 𝜆𝑅SLOPE(w)(𝛽)

s. t. 𝜆𝑅SLOPE(w)(𝛽) ≤ ‖y −X𝛽‖2.

For the choice of 𝑟(𝛽) = 𝜏‖𝛽‖1, where 𝜏 > 𝜆𝑤1, the problem (4.31) is

min
𝛽
‖y −X𝛽‖2 + 𝑇𝜏1−𝜆w(𝛽)

s. t. 𝜆𝑅SLOPE(w)(𝛽) ≤ ‖y −X𝛽‖2.

In particular, when 𝜆 > 0 is sufficiently small, problem (4.31) is approximately equal

to the generalized trimmed Lasso problem

min
𝛽
‖y −X𝛽‖2 + 𝑇𝜏1−𝜆w(𝛽).

Proof. The proof is entirely analogous to that of Theorems 14 and 15 and is omitted.

Put plainly, the general form of the SLOPE penalty leads to a generalized form

of the trimmed Lasso, precisely as was true for the simplified version considered in

Theorem 14.

4.3.2 Another min-min interpretation

We close our discussion of robustness by considering another min-min representation

of the trimmed Lasso. We use the ordinary Lasso problem as our starting point and

show how a modification in the same spirit as the min-min robust least trimmed

squares estimator in (4.5) leads directly to the trimmed Lasso.

To proceed, we begin with the usual Lasso problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆‖𝛽‖1. (4.32)

As per Proposition 14, this problem is equivalent to the min-max robust problem
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(4.9) with uncertainty set 𝒰 = ℒ𝜆 = {Δ : ‖Δ𝑖‖2 ≤ 𝜆 ∀𝑖}:

min
𝛽

max
Δ∈ℒ𝜆

1

2
‖y − (X + Δ)𝛽‖22. (4.33)

In this view, the usual Lasso (4.32) can be thought of as a least squares method

which takes into account certain feature-wise adversarial perturbations of the matrix

X. The net result is that the adversarial approach penalizes all loadings equally (with

coefficient 𝜆).

Using this setup and Theorem 13, we can re-express the trimmed Lasso problem

(TL𝜆,𝑘) in the equivalent min-min form

min
𝛽

min
𝐼⊆{1,...,𝑝}:
|𝐼|=𝑝−𝑘

max
Δ∈ℒ𝜆

𝐼

1

2
‖y − (X + Δ)𝛽‖22, (4.34)

where ℒ𝜆
𝐼 ⊆ ℒ𝜆 requires that the columns of Δ ∈ ℒ𝜆

𝐼 are supported on 𝐼:

ℒ𝜆
𝐼 = {Δ : ‖Δ𝑖‖2 ≤ 𝜆 ∀𝑖, Δ𝑖 = 0 ∀𝑖 /∈ 𝐼}.

While the adversarial min-max approach in problem (4.33) would attempt to “corrupt”

all 𝑝 columns of X, in estimating 𝛽 we have the power to optimally discard 𝑘 out of

the 𝑝 corruptions to the columns (corresponding to 𝐼𝑐). In this sense, the trimmed

Lasso in the min-min robust form (4.34) acts in a similar spirit to the min-min,

robust-statistical least trimmed squares estimator shown in problem (4.6).

4.4 Connection to nonconvex penalty methods

In this section, we explore the connection between the trimmed Lasso and exist-

ing, popular nonconvex (component-wise separable) penalty functions used for sparse

modeling. We begin in Section 4.4.1 with a brief overview of existing approaches.

In Section 4.4.2 we then highlight how these relate to the trimmed Lasso, making

the connection more concrete with examples in Section 4.4.3. Then in Section 4.4.4

we exactly characterize the connection between the trimmed Lasso and the clipped
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Lasso [166]. In doing so, we show that the trimmed Lasso subsumes the clipped Lasso;

further, we provide a necessary and sufficient condition for when the containment is

strict. Finally, in Section 4.4.5 we comment on the special case of unbounded penalty

functions.

4.4.1 Setup and Overview

Our focus throughout will be the penalized 𝑀 -estimation problem of the form

min
𝛽

𝐿(𝛽) +

𝑝∑︁
𝑖=1

𝜌(|𝛽𝑖|;𝜇, 𝛾), (4.35)

where 𝜇 represents a (continuous) parameter controlling the desired level of sparsity

of 𝛽 and 𝛾 is a parameter controlling the quality of the approximation of the indicator

function 𝐼{|𝛽| > 0}. A variety of nonconvex penalty functions and their description

in this format is shown in Table 4.1 (for a general discussion, see [165]). In particular,

for each of these functions we observe that

lim
𝛾→∞

𝜌(|𝛽|;𝜇, 𝛾) = 𝜇 · 𝐼{|𝛽| > 0}.

It is particularly important to note the separable nature of the penalty functions

appearing in (4.35)—namely, each coordinate 𝛽𝑖 is penalized (via 𝜌) independently of

the other coordinates.

Our primary focus will be on the bounded penalty functions (clipped Lasso, MCP,

and SCAD), all of which take the form

𝜌(|𝛽|;𝜇, 𝛾) = 𝜇min{𝑔(|𝛽|;𝜇, 𝛾), 1}, (4.36)

where 𝑔 is an increasing function of |𝛽|. We will show that in this case, the problem

(4.35) can be rewritten exactly as an estimation problem with a (non-separable)
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trimmed penalty function:

min
𝛽

𝐿(𝛽) + 𝜇

𝑝∑︁
𝑖=ℓ+1

𝑔(|𝛽(𝑖)|) (4.37)

for some ℓ ∈ {0, 1, . . . , 𝑝} (note the appearance of the projected penalties 𝜋𝑔
𝑘 as

considered in Section 4.2.4). In the process of doing so, we will also show that, in

general, (4.37) cannot be solved via the separable-penalty estimation approach of

(4.35), and so the trimmed estimation problem leads to a richer class of models.

Throughout we will often refer to (4.37) (taken generically over all choices of ℓ) as

the trimmed counterpart of the separable estimation problem (4.35).

4.4.2 Reformulating the problem (4.35)

Let us begin by considering penalty functions 𝜌 of the form (4.36) with 𝑔 a nonnega-

tive, increasing function of |𝛽|. Observe that for any 𝛽 we can rewrite
∑︀𝑝

𝑖=1 min{𝑔(|𝛽𝑖|), 1}

as

min

{︃
𝑝∑︁

𝑖=1

𝑔(|𝛽(𝑖)|), 1 +

𝑝∑︁
𝑖=2

𝑔(|𝛽(𝑖)|), . . . , 𝑝− 1 + 𝑔(|𝛽(𝑝)|), 𝑝

}︃

= min
ℓ∈{0,...,𝑝}

{︃
ℓ +

∑︁
𝑖>ℓ

𝑔(|𝛽(𝑖)|)

}︃
.

It follows that (4.35) can be rewritten exactly as

min
𝛽,

ℓ∈{0,...,𝑝}

(︃
𝐿(𝛽) + 𝜇

∑︁
𝑖>ℓ

𝑔(|𝛽(𝑖)|) + 𝜇ℓ

)︃
(4.38)

An immediate consequence is the following theorem:

Theorem 16. If 𝛽* is an optimal solution to (4.35), where 𝜌(|𝛽|;𝜇, 𝛾) = 𝜇min{𝑔(|𝛽|;𝜇, 𝛾), 1},

then there exists some ℓ* ∈ {0, . . . , 𝑝} so that 𝛽* is optimal to its trimmed counterpart

min
𝛽

𝐿(𝛽) + 𝜇
∑︁
𝑖>ℓ*

𝑔(|𝛽(𝑖)|).
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Name Definition
Clipped Lasso

𝜇min{𝛾|𝛽|, 1}[166]
MCP

𝜇min{𝑔1(|𝛽|), 1}[164]
SCAD

𝜇min{𝑔2(|𝛽|), 1}[60]
𝐿𝑞 (0 < 𝑞 < 1)

𝜇|𝛽|1/𝛾[65, 67]
Log

𝜇log(𝛾|𝛽|+ 1)/log(𝛾 + 1)[67]
(a) Penalty functions

Function Value Conditional on

𝑔1(|𝛽|)
2𝛾|𝛽| − 𝛾2𝛽2 |𝛽| ≤ 1/𝛾

1 |𝛽| > 1/𝛾

𝑔2(|𝛽|)

|𝛽|/(𝛾𝜇) |𝛽| ≤ 1/𝛾

𝛽2 + (2/𝛾 − 4𝜇𝛾)|𝛽|+ 1/𝛾2

4𝜇− 4𝜇2𝛾2
1/𝛾 < |𝛽| ≤ 2𝜇𝛾 − 1/𝛾

1 |𝛽| > 2𝜇𝛾 − 1/𝛾

(b) Auxiliary functions

Table 4.1: Nonconvex penalty functions 𝜌(|𝛽|;𝜇, 𝛾) represented as in (4.35). The
precise parametric representation is different than their original presentation but they
are equivalent. We have taken care to normalize the different penalty functions so that
𝜇 is the sparsity parameter and 𝛾 corresponds to the approximation of the indicator
𝐼{|𝛽| > 0}. For SCAD, it is usually recommended to set 2𝜇 > 3/𝛾2. For 𝐿𝑞, 𝑞 = 1/𝛾.
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In particular, the choice of ℓ* = |{𝑖 : 𝑔(|𝛽*
𝑖 |) ≥ 1}| suffices. Conversely, if 𝛽* is an

optimal solution to (4.38), then 𝛽* in an optimal solution to (4.35).

It follows that the estimation problem (4.35), which decouples each loading 𝛽𝑖 in

the penalty function, can be solved using “trimmed” estimation problems of the form

(4.37) with a trimmed penalty function that couples the loadings and only penalizes

the 𝑝 − ℓ* smallest. Because the trimmed penalty function is generally nonconvex

by nature, we will focus on comparing it with other nonconvex penalties for the

remainder of the section.

4.4.3 Trimmed reformulation examples

We now consider the structure of the estimation problem (4.35) and the corresponding

trimmed estimation problem for the clipped Lasso and MCP penalties. We use the

least squares loss throughout.

Clipped Lasso

The clipped (or capped, or truncated) Lasso penalty [166, 140] takes the component-

wise form

𝜌(|𝛽|;𝜇, 𝛾) = 𝜇min{𝛾|𝛽|, 1}.

Therefore, in our notation, 𝑔 is a multiple of the absolute value function. A plot of 𝜌

is shown in Figure 4-1a. In this case, the estimation problem with ℓ22 loss is

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜇

∑︁
𝑖

min{𝛾|𝛽𝑖|, 1}. (4.39)

It follows that the corresponding trimmed estimation problem (cf. Theorem 16) is

exactly the trimmed Lasso problem studied earlier, namely,

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜇𝛾𝑇𝑘 (𝛽) . (4.40)
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A distinct advantage of the trimmed Lasso formulation (4.40) over the traditional

clipped Lasso formulation (4.39) is that it offers direct control over the desired level

of sparsity vis-à-vis the discrete parameter 𝑘. We perform a deeper analysis of the

two problems in Section 4.4.4.

MCP

The MCP penalty takes the component-wise form

𝜌(|𝛽|;𝜇, 𝛾) = 𝜇min{𝑔(|𝛽|), 1}

where 𝑔 is any function with 𝑔(|𝛽|) = 2𝛾|𝛽|−𝛾2𝛽2 whenever |𝛽| ≤ 1/𝛾 and 𝑔(|𝛽|) ≥ 1

whenever |𝛽| > 1/𝛾. An example of one such 𝑔 is shown in Table 4.1. A plot of 𝜌 is

shown in Figure 4-1a. Another valid choice of 𝑔 is 𝑔(|𝛽|) = max{2𝛾|𝛽| − 𝛾2𝛽2, 𝛾|𝛽|}.

In this case, the trimmed counterpart is

min
𝛽

1

2
‖y −X𝛽‖2 + 𝜇𝛾

∑︁
𝑖>ℓ

max
{︀

2|𝛽(𝑖)| − 𝛾𝛽2
(𝑖), |𝛽(𝑖)|

}︀
.

Note that this problem is amenable to the same class of techniques as applied

to the trimmed Lasso problem in the form (4.40) because of the increasing nature

of 𝑔, although the subproblems with respect to 𝛽 are no longer convex (although

it is a usual MCP estimation problem which is well-suited to convex optimization

approaches; see [110]). Also observe that we can separate the penalty function into a

trimmed Lasso component and another component:

∑︁
𝑖>ℓ

|𝛽(𝑖)| and
∑︁
𝑖>ℓ

(︀
|𝛽(𝑖)| − 𝛾𝛽2

(𝑖)

)︀
+
.

Observe that the second component is uniformly bounded above by (𝑝− ℓ)/(4𝛾), and

so as 𝛾 →∞, the trimmed Lasso penalty dominates.
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0 1/𝛾

𝜇

|𝛽|

𝜌CL
𝜌MCP

(a) Clipped Lasso and MCP

0 1

𝜇

|𝛽|

𝜌log
𝜌𝐿𝑞

(b) Log and 𝐿𝑞

Figure 4-1: Plots of 𝜌(|𝛽|;𝜇, 𝛾) for some of the penalty functions in Table 4.1.

4.4.4 The generality of trimmed estimation

We now turn our focus to more closely studying the relationship between the separable-

penalty estimation problem (4.35) and its trimmed estimation counterpart. The cen-

tral problems of interest are the clipped Lasso and its trimmed counterpart, viz., the

trimmed Lasso:9

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜇

∑︁
𝑖

min{𝛾|𝛽𝑖|, 1} (CL𝜇,𝛾)

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇ℓ (𝛽) . (TL𝜆,ℓ)

As per Theorem 16, if 𝛽* is an optimal solution to (CL𝜇,𝛾), then 𝛽* is an optimal

solution to (TL𝜆,ℓ), where 𝜆 = 𝜇𝛾 and ℓ = |{𝑖 : |𝛽*
𝑖 | ≥ 1/𝛾}|. We now consider

the converse: given some 𝜆 > 0 and ℓ ∈ {0, 1, . . . , 𝑝} and a solution 𝛽* to (TL𝜆,ℓ),

when does there exist some 𝜇, 𝛾 > 0 so that 𝛽* is an optimal solution to (CL𝜇,𝛾)?

As the following theorem suggests, the existence of such a 𝛾 is closely connected to

9One may be concerned about the well-definedness of such problems (e.g. as guaranteed vis-à-vis
coercivity of the objective, cf. [130]). In all the results of Section 4.4.4, it is possible to add a
regularizer 𝜂‖𝛽‖1 for some fixed 𝜂 > 0 to both (CL𝜇,𝛾) and (TL𝜆,ℓ) and the results remain valid,
mutatis mutandis. The addition of this regularizer implies coercivity of the objective functions and,
consequently, that the minimum is indeed well-defined. For completeness, we note a technical reason
for a choice of 𝜂‖𝛽‖1 is its positive homogeneity; thus, the proof technique of Lemma 3 easily adapts
to this modification.
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an underlying discrete form of “convexity” of the sequence of problems (TL𝜆,𝑘) for

𝑘 ∈ {0, 1, . . . , 𝑝}. We will focus on the case when 𝜆 = 𝜇𝛾, as this is the natural

correspondence of parameters in light of Theorem 16.

Theorem 17. If 𝜆 > 0, ℓ ∈ {0, . . . , 𝑝}, and 𝛽* is an optimal solution to (TL𝜆,ℓ),

then there exist 𝜇, 𝛾 > 0 with 𝜇𝛾 = 𝜆 and so that 𝛽* is an optimal solution to (CL𝜇,𝛾)

if and only if

𝑍(TL𝜆,ℓ𝑒) <
𝑗 − ℓ𝑒
𝑗 − 𝑖

𝑍(TL𝜆,𝑖) +
ℓ𝑒 − 𝑖

𝑗 − 𝑖
𝑍(TL𝜆,𝑗) (4.41)

for all 0 ≤ 𝑖 < ℓ𝑒 < 𝑗 ≤ 𝑝, where 𝑍(P) denotes the optimal objective value to

optimization problem (P) and ℓ𝑒 = min{ℓ, ‖𝛽*‖0}.

Let us note why we refer to the condition in (4.41) as a discrete analogue of

convexity of the sequence {𝑧𝑘 := 𝑍(TL𝜆,𝑘), 𝑘 = 0, . . . , 𝑝}. In particular, observe that

this sequence satisfies the condition of Theorem 17 if and only if the function defined

as the linear interpolation between the points (0, 𝑧0), (1, 𝑧1), . . . , and (𝑝, 𝑧𝑝) is strictly

convex about the point (ℓ, 𝑧ℓ).10

Before proceeding with the proof of the theorem, we state and prove a technical

lemma about the structure of (TL𝜆,ℓ).

Lemma 3. Fix 𝜆 > 0 and suppose that 𝛽* is optimal to (TL𝜆,ℓ).

(a) The optimal objective value of (TL𝜆,ℓ) is 𝑍(TL𝜆,ℓ) = (‖y‖22 − ‖X𝛽*‖22)/2.

(b) If 𝛽* is also optimal to (TL𝜆,ℓ′), where ℓ < ℓ′, then ‖𝛽*‖0 ≤ ℓ and 𝛽* is optimal

to (TL𝜆,𝑗) for all integral 𝑗 with ℓ < 𝑗 < ℓ′.

(c) If 𝜅 := ‖𝛽*‖0 < ℓ, then 𝛽* is also optimal to (TL𝜆,𝜅), (TL𝜆,𝜅+1), . . . , and

(TL𝜆,ℓ−1). Further, 𝛽* is not optimal to (TL𝜆,0), (TL𝜆,1), . . . , nor (TL𝜆,𝜅−1).

Proof. Suppose 𝛽* is optimal to (TL𝜆,ℓ). Define

𝑎(𝜖) := ‖y − 𝜖X𝛽*‖22/2 + 𝜖𝜆𝑇ℓ (𝛽*) .

10To be precise, we mean that the real-valued function that is a linear interpolation of the points
has a subdifferential at the point (ℓ, 𝑧ℓ) which is an interval of strictly positive width.
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By the optimality of 𝛽*, 𝑎(𝜖) ≥ 𝑎(1) for all 𝜖 ≥ 0. As 𝑎 is a polynomial with degree

at most two, one must have that 𝑎′(1) = 0. This implies that

𝑎′(1) = −⟨y,X𝛽*⟩+ ‖X𝛽*‖22 + 𝜆𝑇ℓ (𝛽*) = 0.

Adding (‖y‖22 − ‖X𝛽*‖22)/2 to both sides, the desired result of part (a) follows.

Now suppose that 𝛽* is also optimal to (TL𝜆,ℓ′), where ℓ′ > ℓ. By part (a), one

must necessarily have that 𝑍(TL𝜆,ℓ) = 𝑍(TL𝜆,ℓ′) = (‖y‖22 − ‖X𝛽*‖22)/2. Inspecting

𝑍(TL𝜆,ℓ)− 𝑍(TL𝜆,ℓ′), we see that

0 = 𝑍(TL𝜆,ℓ)− 𝑍(TL𝜆,ℓ′) = 𝜆
ℓ′∑︁

𝑖=ℓ+1

|𝛽*
(𝑖)|.

Hence, |𝛽*
(ℓ+1)| = 0 and therefore ‖𝛽*‖0 ≤ ℓ.

Finally, for any integral 𝑗 with ℓ ≤ 𝑗 ≤ ℓ′, one always has that 𝑍(TL𝜆,ℓ) ≥

𝑍(TL𝜆,𝑗) ≥ 𝑍(TL𝜆,ℓ′). As per the preceding argument, 𝑍(TL𝜆,ℓ) = 𝑍(TL𝜆,ℓ) and so

𝑍(TL𝜆,ℓ) = 𝑍(TL𝜆,𝑗), and therefore 𝛽* must also be optimal to (TL𝜆,𝑗) by applying

part (a). This completes part (b).

Part (c) follows from a straightforward inspection of objective functions and using

the fact that 𝑍(TL𝜆,𝑗) ≥ 𝑍(TL𝜆,ℓ) whenever 𝑗 ≤ ℓ.

Using this lemma, we can now proceed with the proof of the theorem.

Proof of Theorem 17. Let 𝑧𝑘 = 𝑍(TL𝜆,𝑘) for 𝑘 ∈ {0, 1, . . . , 𝑝}. Suppose that 𝜇, 𝛾 > 0

is so that 𝜆 = 𝜇𝛾 and 𝛽* is an optimal solution to (CL𝜇,𝛾). Let ℓ𝑒 = min{ℓ, ‖𝛽*‖0}.

Per equation (4.38), 𝛽* must be optimal to

min
𝛽

min
𝑘∈{0,...,𝑝}

1

2
‖y −X𝛽‖22 + 𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽) . (4.42)

Observe that this implies that if 𝑘 is such that 𝑘 is a minimizer of min𝑘𝜇𝑘+𝜇𝛾𝑇𝑘 (𝛽*),

then 𝛽* must be optimal to (TL𝜆,𝑘).
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We claim that this observation, combined with Lemma 3, implies that

ℓ𝑒 = arg min
𝑘∈{0,...,𝑝}

𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*) .

This can be shown as follows:

(a) Suppose ℓ ≤ ‖𝛽*‖0 and so ℓ𝑒 = min{ℓ, ‖𝛽*‖0} = ℓ. Therefore, by Lemma 3(b),

𝛽* is not optimal to (TL𝜆,𝑗) for any 𝑗 < ℓ, and thus

min
𝑘∈{0,...,𝑝}

𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*) = min
𝑘∈{ℓ,...,𝑝}

𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*) .

If 𝑘 > ℓ is such that 𝑘 is a minimizer of min𝑘𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*), then 𝛽* must be

optimal to (TL𝜆,𝑘) (using the observation), and hence by Lemma 3(b), ‖𝛽*‖0 ≤ ℓ.

Combined with ℓ ≤ ‖𝛽*‖0, this implies that ‖𝛽*‖0 = ℓ. Yet then, 𝜇ℓ = 𝜇ℓ +

𝜇𝛾𝑇ℓ (𝛽*) < 𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*), contradicting the optimality of 𝑘. Therefore, we

conclude that ℓ𝑒 = ℓ is the only minimizer of min𝑘 𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*).

(b) Now instead suppose that ℓ𝑒 = ‖𝛽*‖0 < ℓ. Lemma 3(c) implies that any optimal

solution 𝑘 to min𝑘 𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*) must satisfy 𝑘 ≥ ‖𝛽*‖0 (by the second part

combined with the observation). As before, if 𝑘 > ‖𝛽*‖0 = ℓ𝑒, then 𝜇𝑘 > 𝜇ℓ𝑒,

and so 𝑘 cannot be optimal. As a result, 𝑘 = ℓ𝑒 = ‖𝛽*‖0 is the unique minimum.

In either case, we have that ℓ𝑒 is the unique minimizer to min𝑘 𝜇𝑘 + 𝜇𝛾𝑇𝑘 (𝛽*).

It then follows that 𝑍(problem (4.42)) = 𝑧ℓ𝑒 + 𝜇ℓ𝑒. Further, by optimality of 𝛽*,

𝑧ℓ𝑒 + 𝜇ℓ𝑒 < 𝑧𝑖 + 𝜇𝑖 for all 0 ≤ 𝑖 ≤ 𝑝 with 𝑖 ̸= ℓ𝑒. For 0 ≤ 𝑖 < ℓ𝑒, this implies

𝜇 < (𝑧𝑖 − 𝑧ℓ𝑒)/(ℓ𝑒 − 𝑖) and for 𝑗 > ℓ𝑒, 𝜇 > (𝑧ℓ𝑒 − 𝑧𝑗)/(𝑗 − ℓ𝑒). In other words, for

0 ≤ 𝑖 < ℓ𝑒 < 𝑗 ≤ 𝑝,

𝑧ℓ𝑒 − 𝑧𝑗
𝑗 − ℓ𝑒

<
𝑧𝑖 − 𝑧ℓ𝑒
ℓ𝑒 − 𝑖

, i.e., 𝑧ℓ𝑒 <
𝑗 − ℓ𝑒
𝑗 − 𝑖

𝑧𝑖 +
ℓ𝑒 − 𝑖

𝑗 − 𝑖
𝑧𝑗.

This completes the forward direction. The reverse follows in the same way by taking

any 𝜇 with

𝜇 ∈
(︂

max
𝑗>ℓ𝑒

𝑧ℓ𝑒 − 𝑧𝑗
𝑗 − ℓ𝑒

,min
𝑖<ℓ𝑒

𝑧𝑖 − 𝑧ℓ𝑒
ℓ𝑒 − 𝑖

)︂
.
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We briefly remark upon one implication of the proof of Theorem 17. In particular,

if 𝛽* is a solution to (TL𝜆,ℓ) and ℓ < ‖𝛽*‖0, then 𝛽* is not the solution to (TL𝜆,𝑘)

for any 𝑘 ̸= ℓ.

An immediate question is whether the convexity condition (4.41) of Theorem

17 always holds. While the sequence {𝑍(TL𝜆,𝑘) : 𝑘 = 0, 1, . . . , 𝑝} is always non-

increasing, the following example shows that the convexity condition need not hold

in general; as a result, there exist instances of the trimmed Lasso problem whose

solutions cannot be found by solving a clipped Lasso problem.

Example 2. Consider the case when 𝑝 = 𝑛 = 2 with

y =

⎛⎝1

1

⎞⎠ and X =

⎛⎝ 1 −1

−1 2

⎞⎠ .

Let 𝜆 = 1/2 and ℓ = 1, and consider min𝛽 ‖y−X𝛽‖22/2 + |𝛽(2)|/2 = min𝛽1,𝛽2(1−𝛽1 +

𝛽2)
2/2 + (1 + 𝛽1 − 2𝛽2)

2/2 + |𝛽(2)|/2. This has unique optimal solution 𝛽* = (3/2, 1)

with corresponding objective value 𝑧1 = 3/4. One can also compute 𝑧0 = 𝑍(TL1/2,0) =

39/40 and 𝑧2 = 𝑍(TL1/2,2) = 0. Note that 𝑧1 = 3/4 > (39/40)/2+(0)/2 = 𝑧0/2+𝑧2/2,

and so there do not exist any 𝜇, 𝛾 > 0 with 𝜇𝛾 = 1/2 so that 𝛽* is an optimal solution

to (CL𝜇,𝛾) by Theorem 17. Further, it is possible to show that 𝛽* is not an optimal

solution to (CL𝜇,𝛾) for any choice of 𝜇, 𝛾 ≥ 0.

Proof of validity of Example 2. Set

min
𝛽
‖y −X𝛽‖22 + |𝛽(2)| = min

𝛽1,𝛽2

(1− 𝛽1 + 𝛽2)
2 + (1 + 𝛽1 − 2𝛽2)

2 + |𝛽(2)|. (4.43)

We have omitted the factor of 1/2 in order to avoid unnecessary complications.

Solving problem (4.43) and its related counterparts (for ℓ ∈ {0, 2}) can rely on

convex analysis because we can simply enumerate all possible scenarios. In particular,
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the solution to (4.43) is 𝛽* = (3/2, 1) based on an analysis of two related problems:

min
𝛽1,𝛽2

(1− 𝛽1 + 𝛽2)
2 + (1 + 𝛽1 − 2𝛽2)

2 + |𝛽1|.

min
𝛽1,𝛽2

(1− 𝛽1 + 𝛽2)
2 + (1 + 𝛽1 − 2𝛽2)

2 + |𝛽2|.

(We should be careful to impose the additional constraints |𝛽1| ≤ |𝛽2| and |𝛽1| ≥ |𝛽2|,

respectively, although a simple argument shows that these constraints are not required

in this example.) Standard convex analysis using the Lasso (e.g. by directly using

subdifferentials) shows that the problems have respective solutions (1/2, 1/2) and

(3/2, 1), with the latter having the better objective value in (4.43). As such, 𝛽* is

indeed optimal. The solution in the cases of ℓ ∈ {0, 2} follows a similarly standard

analysis.

It is perhaps more interesting to study the general case where 𝜇, 𝛾 ≥ 0. In

particular, we will show that 𝛽* = (3/2, 1) is not an optimal solution to the clipped

Lasso problem

min
𝛽1,𝛽2

(1− 𝛽1 + 𝛽2)
2 + (1 + 𝛽1 − 2𝛽2)

2 + 𝜇min{𝛾|𝛽1|, 1}+ 𝜇min{𝛾|𝛽2|, 1} (4.44)

for any choices of 𝜇 and 𝛾. While in general such a problem may be difficult to fully

analyze, we can again rely on localized analysis using convex analysis. To proceed,

let

𝑓(𝛽1, 𝛽2) = (1− 𝛽1 + 𝛽2)
2 + (1 + 𝛽1 − 2𝛽2)

2 + 𝜇min{𝛾|𝛽1|, 1}+ 𝜇min{𝛾|𝛽2|, 1},

with the parameters 𝜇 and 𝛾 implicit. We consider the following exhaustive cases:

1. 𝛾 > 1 : In this case, 𝑓 is convex and differentiable in a neighborhood of 𝛽*. Its

gradient at 𝛽* is ∇𝑓(𝛽*) = (0,−1), and therefore 𝛽* is neither locally optimal

nor globally optimal to problem (4.44).

2. 𝛾 < 2/3 : In this case, 𝑓 is again convex and differentiable in a neighborhood

of 𝛽*. Its gradient at 𝛽* is ∇𝑓(𝛽*) = (𝜇𝛾, 𝜇𝛾 − 1). Again, this cannot equal
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(0, 0) and therefore 𝛽* is neither locally nor globally optimal to problem (4.44).

3. 2/3 < 𝛾 < 1 : In this case, 𝑓 is again convex and differentiable in a neighbor-

hood of 𝛽*. Its gradient at 𝛽* is ∇𝑓(𝛽*) = (0, 𝜇𝛾−1). As a necessary condition

for local optimality, we must have that 𝜇𝛾 = 1, implying that 𝜇 > 1. Further,

if 𝛽* is optimal to (4.44), then 𝑓(𝛽*) ≤ 𝑓(0, 0). Yet,

𝑓(𝛽*) = 1/2 + 𝜇 + 𝜇𝛾 = 3/2 + 𝜇

𝑓(0, 0) = 2,

implying that 𝜇 ≤ 1/2, in contradiction of 𝜇 > 1. Hence, 𝛽* cannot be optimal

to (4.44).

4. 𝛾 = 2/3 : In this case, we make two comparisons, using the points 𝛽*, (0, 0),

and (3, 2):

𝑓(𝛽*) = 1/2 + 𝜇 + 2𝜇/3 = 1/2 + 5𝜇/3

𝑓(0, 0) = 2

𝑓(3, 2) = 2𝜇.

Assuming optimality of 𝛽*, we have that 𝑓(𝛽*) ≤ 𝑓(0, 0), i.e., 𝜇 ≤ 9/10;

similarly, 𝑓(𝛽*) ≤ 𝑓(3, 2), i.e., 𝜇 ≥ 3/2. Clearly both cannot hold, and so

therefore 𝛽* cannot be optimal.

5. 𝛾 = 1 : Finally, we see that 𝑓(𝛽*) ≤ 𝑓(3, 2) would imply that 1/2 + 2𝜇 ≤ 2𝜇,

which is impossible; hence, 𝛽* is not optimal to (4.44). (This argument can

clearly also be used in the case when 𝛾 > 1, although it is instructive to see the

argument given above in that case.)

In any case, we have that 𝛽* cannot be a solution to the clipped Lasso problem (4.44).

This completes the proof of validity of Example 2.

An immediate corollary of this example, combined with Theorem 16, is that the
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Clipped Lasso
Trimmed Lasso

Figure 4-2: Stylized relation of clipped Lasso and trimmed Lasso models. Every
clipped Lasso model can be written as a trimmed Lasso model, but the reverse does
not hold in general.

class of trimmed Lasso models contains the class of clipped Lasso models as a proper

subset, regardless of whether we restrict our attention to 𝜆 = 𝜇𝛾. In this sense, the

trimmed Lasso models comprise a richer set of models. The relationship is depicted

in stylized form in Figure 4-2.

Limit analysis

It is important to contextualize the results of this section as 𝜆→∞. This corresponds

to 𝛾 → ∞ for the clipped Lasso problem, in which case (CL𝜇,𝛾) converges to the

penalized form of subset selection:

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜇‖𝛽‖0. (CL𝜇,∞)

Note that penalized problems for all of the penalties listed in Table 4.1 have this as

their limit as 𝛾 → ∞. On the other hand, (TL𝜆,ℓ) converges to constrained best

subset selection:

min
‖𝛽‖0≤ℓ

1

2
‖y −X𝛽‖22. (TL∞,𝑘)

Indeed, from this comparison it now becomes clear why a convexity condition of the

form in Theorem 17 appears in describing when the clipped Lasso solves the trimmed

Lasso problem. In particular, the conditions under (CL𝜇,∞) solves the constrained

best subset selection problem (TL∞,𝑘) are precisely those in Theorem 17.
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4.4.5 Unbounded penalty functions

We close this section by now considering nonconvex penalty functions which are

unbounded and therefore do not take the form 𝜇min{𝑔(|𝛽|), 1}. Two such examples

are the 𝐿𝑞 penalty (0 < 𝑞 < 1) and the log family of penalties as shown in Table 4.1

and depicted in Figure 4-1. Estimation problems with these penalties can be cast in

the form

min
𝜑

1

2
‖y −X𝜑‖22 + 𝜇

𝑝∑︁
𝑖=1

𝑔(|𝜑𝑖|; 𝛾) (4.45)

where 𝜇, 𝛾 > 0 are parameters, 𝑔 is an unbounded and strictly increasing function,

and 𝑔(|𝜑𝑖|; 𝛾)
𝛾→∞−−−→ 𝐼{|𝜑𝑖| > 0}. The change of variables in (4.45) is intentional and

its purpose will become clear shortly.

Observe that because 𝑔 is now unbounded, there exists some 𝜆 = 𝜆(y,X, 𝜇, 𝛾) > 0

so that for all 𝜆 > 𝜆 any optimal solution (𝜑*, 𝜖*) to the problem

min
𝜑,𝜖

1

2
‖y −X(𝜑 + 𝜖)‖22 + 𝜆‖𝜖‖1 + 𝜇

𝑝∑︁
𝑖=1

𝑔(|𝜑𝑖|; 𝛾) (4.46)

has 𝜖* = 0.11 Therefore, (4.45) is a special case of (4.46). We claim that in the

limit as 𝛾 → ∞ (all else fixed), that (4.46) can be written exactly as a trimmed

Lasso problem (TL𝜆,𝑘) for some choice of 𝑘 and with the identification of variables

𝛽 = 𝜑 + 𝜖.

We summarize this as follows:

Proposition 19. As 𝛾 → ∞, the penalized estimation problem (4.45) is a special

case of the trimmed Lasso problem.

Proof. This can be shown in a straightforward manner: namely, as 𝛾 → ∞, (4.46)

becomes

min
𝜑,𝜖

1

2
‖y −X(𝜑 + 𝜖)‖22 + 𝜆‖𝜖‖1 + 𝜇‖𝜑‖0

11The proof involves a straightforward modification of an argument along the lines of that given
in Theorem 13. Also note that we can choose 𝜆 so that it is decreasing in 𝛾, ceteris paribus.
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which can be in turn written as

min
𝜑,𝜖:

‖𝜑‖0≤𝑘

1

2
‖y −X(𝜑 + 𝜖)‖22 + 𝜆‖𝜖‖1

for some 𝑘 ∈ {0, 1, . . . , 𝑝}. But as per the observations of Section 4.2.3, this is exactly

(TL𝜆,𝑘) using a change of variables 𝛽 = 𝜑+𝜖. In the case when 𝜆 is sufficiently large,

we necessarily have 𝛽 = 𝜑 at optimality.

While this result is not surprising (given that as 𝛾 → ∞ the problem is (4.45) is

precisely penalized best subset selection), it is useful for illustrating the connection

between (4.45) and the trimmed Lasso problem even when the trimmed Lasso param-

eter 𝜆 is not necessarily large: in particular, (TL𝜆,𝑘) can be viewed as estimating 𝛽 as

the sum of two components—a sparse component 𝜑 and small-norm (“noise”) compo-

nent 𝜖. Indeed, in this setup, 𝜆 precisely controls the desirable level of allowed “noise”

in 𝛽. From this intuitive perspective, it becomes clearer why the trimmed Lasso type

approach represents a continuous connection between best subset selection (𝜆 large)

and ordinary least squares (𝜆 small).

We close this section by making the following observation regarding problem

(4.46). In particular, observe that regardless of 𝜆, we can rewrite this as

min
𝛽

1

2
‖y −X𝛽‖22 +

𝑝∑︁
𝑖=1

̃︀𝜌(|𝛽𝑖|)

where ̃︀𝜌(|𝛽𝑖|) is the new penalty function defined as

̃︀𝜌(|𝛽𝑖|) = min
𝜑+𝜖=𝛽𝑖

𝜆|𝜖|+ 𝜇𝑔(|𝜑|; 𝛾).

For the unbounded and concave penalty functions shown in Table 4.1, this new penalty

function is quasi-concave and can be rewritten easily in closed form. For example, for

the 𝐿𝑞 penalty 𝜌(|𝛽𝑖|) = 𝜇|𝛽𝑖|1/𝛾 (where 𝛾 > 1), the new penalty function is

̃︀𝜌(|𝛽𝑖|) = min{𝜇|𝛽𝑖|1/𝛾, 𝜆|𝛽𝑖|}.
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4.5 Algorithmic Approaches

We now turn our attention to algorithms for estimation with the trimmed Lasso

penalty. Our principle focus throughout will be the same problem considered in

Theorem 13, namely

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜆𝑇𝑘 (𝛽) + 𝜂‖𝛽‖1 (4.47)

We present three possible approaches to finding potential solutions to (4.47): a first-

order-based alternating minimization scheme that has accompanying local optimality

guarantees and was first studied in [72, 159]; an augmented Lagrangian approach that

appears to perform noticeably better, despite lacking optimality guarantees; and a

convex envelope approach. We contrast these methods with approaches for certifying

global optimality of solutions to (4.47) (described in [154]) and include an illustrative

computational example. Implementations of the various algorithms presented can be

found in Appendix D.

4.5.1 Upper bounds via convex methods

We start by focusing on the application of convex optimization methods to finding

to finding potential solutions to (4.47). Technical details are contained in Appendix

C.2.

Alternating minimization scheme

We begin with a first-order-based approach for obtaining a locally optimal solution

of (4.47) as described in [72, 159]. The key tool in this approach is the theory of

difference of convex optimization (“DCO”) [3, 145, 4]. Set the following notation:

𝑓(𝛽) = ‖y −X𝛽‖22/2 + 𝜆𝑇𝑘 (𝛽) + 𝜂‖𝛽‖1,

𝑓1(𝛽) = ‖y −X𝛽‖22/2 + (𝜂 + 𝜆)‖𝛽‖1,

𝑓2(𝛽) = 𝜆
∑︀𝑘

𝑖=1 |𝛽(𝑖)|.
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Let us make a few simple observations:

(a) Problem (4.47) can be written as min
𝛽

𝑓(𝛽).

(b) For all 𝛽, 𝑓(𝛽) = 𝑓1(𝛽)− 𝑓2(𝛽).

(c) The functions 𝑓1 and 𝑓2 are convex.

While simple, these observations enable one to apply the theory of DCO, which

focuses precisely on problems of the form

min
𝛽

𝑓1(𝛽)− 𝑓2(𝛽),

where 𝑓1 and 𝑓2 are convex. In particular, the optimality conditions for such a

problem have been studied extensively [4]. Let us note that while it may appear that

the representation of the objective 𝑓 as 𝑓1− 𝑓2 might otherwise seem like an artificial

algebraic manipulation, the min-min representation in Theorem 14 shows how such

a difference-of-convex representation can arise naturally.

We now discuss an associated alternating minimization scheme (or equivalently,

a sequential linearization scheme), shown in Algorithm 3, for finding local optima of

(4.47). The convergence properties of Algorithm 3 can be summarized as follows:12

Theorem 18 (cf. [72], Convergence of Algorithm 3). (a) The sequence {𝑓(𝛽ℓ) : ℓ =

0, 1, . . .}, where 𝛽ℓ are as found in Algorithm 3, is non-increasing.

(b) The set {𝛾ℓ : ℓ = 0, 1, . . .} is finite and eventually periodic.

(c) Algorithm 3 converges in a finite number of iterations to local minimum of (4.47).

(d) The rate of convergence of 𝑓(𝛽ℓ) is linear.

Observation 2. Let us return to a remark that preceded Algorithm 3. In particular,

we noted that Algorithm 3 can also be viewed as a sequential linearization approach
12To be entirely correct, this result holds for Algorithm 3 with a minor technical modification—see

details in Appendix C.2.
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Algorithm 3 An alternating scheme for computing a local optimum to (4.47)

1. Initialize with any 𝛽0 ∈ R𝑝 (ℓ = 0); for ℓ ≥ 0, repeat Steps 2-3 until 𝑓(𝛽ℓ) =
𝑓(𝛽ℓ+1).

2. Compute 𝛾ℓ as

𝛾ℓ ∈

argmax
𝛾

⟨𝛾,𝛽ℓ⟩

s. t.
∑︁
𝑖

|𝛾𝑖| ≤ 𝜆𝑘

|𝛾𝑖| ≤ 𝜆 ∀𝑖.

(4.48)

3. Compute 𝛽ℓ+1 as

𝛽ℓ+1 ∈ argmin
𝛽

1

2
‖y −X𝛽‖22 + (𝜂 + 𝜆)‖𝛽‖1 − ⟨𝛽,𝛾ℓ⟩. (4.49)

to solving (4.47). Namely, this corresponds to sequentially performing a linearization

of 𝑓2 (and leaving 𝑓1 as is), and then solving the new convex linearized problem.

Further, let us note why we refer to Algorithm 3 as an alternating minimization

scheme. In particular, in light of the reformulation (4.11) of (4.47), we can rewrite

(4.47) exactly as

(4.47) =

min
𝛽,𝛾

𝑓1(𝛽)− ⟨𝛾,𝛽⟩

s. t.
∑︁
𝑖

|𝛾𝑖| ≤ 𝜆𝑘

|𝛾𝑖| ≤ 𝜆 ∀𝑖.

In this sense, if one takes care in performing alternating minimization in 𝛽 (with 𝛾

fixed) and in 𝛾 (with 𝛽 fixed) (as in Algorithm 3), then a locally optimal solution is

guaranteed.

We now turn to how to actually apply Algorithm 3. Observe that the algorithm

is quite simple; in particular, it only requires solving two types of well-structured

convex optimization problems. The first such problem, for a fixed 𝛽, is shown in

(4.48). This can be solved in closed form by simply sorting the entries of |𝛽|, i.e.,

by finding |𝛽(1)|, . . . , |𝛽(𝑝)|. The second subproblem, shown in (4.49) for a fixed 𝛾, is

precisely the usual Lasso problem and is amenable to any of the possible algorithms

for the Lasso.
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Augmented Lagrangian approach

We briefly mention another technique for finding potential solutions to (4.47) using

an Alternating Directions Method of Multiplers (ADMM) [37] approach. To our

knowledge, the application of ADMM to the trimmed Lasso problem is novel, although

it appears closely related to [153]. We begin by observing that (4.47) can be written

exactly as
min
𝛽,𝛾

1
2
‖y −X𝛽‖22 + 𝜂 ‖𝛽‖1 + 𝜆𝑇𝑘 (𝛾)

s. t. 𝛽 = 𝛾,

which makes use of the canonical variable splitting. Introducing dual variable q ∈ R𝑝

and parameter 𝜎 > 0, this becomes in augmented Lagrangian form

min
𝛽,𝛾

max
q

1

2
‖y −X𝛽‖22 + 𝜂 ‖𝛽‖1 + 𝜆𝑇𝑘 (𝛾) +

⟨q,𝛽 − 𝛾⟩+
𝜎

2
‖𝛽 − 𝛾‖22 . (4.50)

The utility of such a reformulation is that it is directly amenable to ADMM, as

detailed in Algorithm 4. While the problem is nonconvex and therefore the ADMM

is not guaranteed to converge, numerical experiments suggest that this approach has

superior performance to the DCO-inspired method considered in Algorithm 3.

We close by commenting on the subproblems that must be solved in Algorithm 4.

Step 2 can be carried out using “hot” starts. Step 3 is the solution of the trimmed

Lasso in the orthogonal design case and can be solved by performed by sorting 𝑝

numbers; see Appendix C.2.3.

Convexification approach

We briefly consider the convex relaxation of the problem (4.47). We begin by com-

puting the convex envelope [130, 38] of 𝑇𝑘 on [−1, 1]𝑝 (here the choice of [−1, 1]𝑝

is standard, such as in the convexification of 𝐿0 over this set which leads to 𝐿1).

The proof follows standard techniques (e.g. computing the biconjugate [130]) and is

omitted.
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Algorithm 4 ADMM algorithm for (4.50)

1. Initialize with any 𝛽0,𝛾0,q0 ∈ R𝑝 and 𝜎 > 0. Repeat, for ℓ ≥ 0, Steps 2, 3,
and 4 until a desired numerical convergence tolerance is satisfied.

2. Set

𝛽ℓ+1 ∈ argmin
𝛽

1

2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1 +

⟨qℓ,𝛽⟩+
𝜎

2
‖𝛽 − 𝛾ℓ‖22.

3. Set
𝛾ℓ+1 ∈ argmin

𝛾
𝜆𝑇𝑘 (𝛾) +

𝜎

2
‖𝛽ℓ+1 − 𝛾‖22 − ⟨qℓ,𝛾⟩.

4. Set qℓ+1 = qℓ + 𝜎
(︀
𝛽ℓ+1 − 𝛾ℓ+1

)︀
.

Lemma 4. The convex envelope of 𝑇𝑘 on [−1, 1]𝑝 is the function 𝑇 𝑘 defined as

𝑇 𝑘(𝛽) = (‖𝛽‖1 − 𝑘)+ .

In words, the convex envelope of 𝑇𝑘 is a “soft thresholded” version of the Lasso

penalty (thresholded at level 𝑘). This can be thought of as an alternative way of

interpreting the name “trimmed Lasso.”

As a result of Lemma 4, it follows that the convex analogue of (4.47), as taken

over [−1, 1]𝑝, is precisely

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1 + 𝜆 (‖𝛽‖1 − 𝑘)+ . (4.51)

Problem (4.51) is amenable to a variety of convex optimization techniques such as

subgradient descent [38].

4.5.2 Certificates of optimality for (4.47)

We close our discussion of the algorithmic implications of the trimmed Lasso by

discussing techniques for finding certifiably optimal solutions to (4.47). All approaches
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presented in the preceding section find potential candidates for solutions to (4.47),

but none is necessarily globally optimal. Let us return to a representation of (4.47)

that makes use Lemma 1:

min
𝛽,z

1
2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1 + 𝜆⟨z, |𝛽|⟩

s. t.
∑︁
𝑖

𝑧𝑖 = 𝑝− 𝑘

z ∈ {0, 1}𝑝.

As noted in [72], this representation of (4.47) is amenable to mixed integer optimiza-

tion (“MIO”) methods [35] for finding globally optimal solutions to (4.47), in the same

spirit as other MIO-based approaches to statistical problems [31, 30].

One approach, as described in [154], uses the notion of “big 𝑀 .” In particular,

for 𝑀 > 0 sufficiently large, problem (4.47) can be written exactly as the following

linear MIO problem:

min
𝛽,z,a

1

2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1 + 𝜆

∑︁
𝑖

𝑎𝑖

s. t.
∑︁
𝑖

𝑧𝑖 = 𝑝− 𝑘

z ∈ {0, 1}𝑝

a ≥ 𝛽 + 𝑀z−𝑀1

a ≥ −𝛽 + 𝑀z−𝑀1

a ≥ 0.

(4.52)

This representation as a linear MIO problem enables the direct application of nu-

merous existing MIO algorithms (such as [73]).13 Also, let us note that the linear

relaxation of (4.52), i.e., problem (4.52) with the constraint z ∈ {0, 1}𝑝 replaced with

13There are certainly other possible representations of (4.11), such as using special ordered set
(SOS) constraints, see e.g. [30]. Without more sophisticated tuning of 𝑀 as in [30], the SOS
formulations appear to be vastly superior in terms of time required to prove optimality. The precise
formulation essentially takes the form of problem (4.14). An SOS-based implementation is provided
in the supplementary code as the default method of certifying optimality.
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z ∈ [0, 1]𝑝, is the problem

min
𝛽

1

2
‖y −X𝛽‖22 + 𝜂‖𝛽‖1 + 𝜆 (‖𝛽‖1 −𝑀𝑘)+ ,

where we see the convex envelope penalty appear directly. As such, when 𝑀 is large,

the linear relaxation of (4.52) is the ordinary Lasso problem min𝛽
1
2
‖y−X𝛽‖22+𝜂‖𝛽‖1.

4.5.3 Computational example

Because a rigorous computational comparison is not the primary focus of this chapter,

we provide a limited demonstration that describes the behavior of solutions to (4.47)

as computed via the different approaches. Precise computational details are contained

in Appendix C.2.4. We will focus on two different aspects: sparsity and approximation

quality.

Sparsity properties: As the motivation for the trimmed Lasso is ostensibly sparse

modeling, its sparsity properties are of particular interest. We consider a problem

instance with 𝑝 = 20, 𝑛 = 100, 𝑘 = 2, and signal-to-noise ratio 10 (the sparsity of

the ground truth model 𝛽true is 10). The relevant coefficient profiles as a function of

𝜆 are shown in Figure 4-3. In this example none of the convex approaches finds the

optimal two variable solution computed using mixed integer optimization. Further,

as one would expect a priori, the optimal coefficient profiles (as well as the ADMM

profiles) are not continuous in 𝜆. Finally, note that by design of the algorithms,

the alternating minimization and ADMM approaches yield solutions with sparsity at

most 𝑘 for 𝜆 sufficiently large.

Optimality gap: Another critical question is the degree of suboptimality of so-

lutions found via the convex approaches. We average optimality gaps across 100

problem instances with 𝑝 = 20, 𝑛 = 100, and 𝑘 = 2; the relevant results are shown

in Figure 4-4. The results are entirely as one might expect. When 𝜆 is small and

the problem is convex or nearly convex, the heuristics perform well. However, this
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breaks down as 𝜆 increases and the sparsity-inducing nature of the trimmed Lasso

penalty comes into play. Further, we see that the convex envelope approach tends to

perform the worst, with the ADMM performing the best of the three heuristics. This

is perhaps not surprising, as any solution found via the ADMM can be guaranteed to

be locally optimal by subsequently applying the alternating minimization scheme of

Algorithm 3 to any solution found via Algorithm 4.

Computational burden: Loosely speaking, the heuristic approaches all carry a

similar cost per iteration, namely, solving a Lasso-like problem. In contrast, the

MIO approach can take significantly more computational resources. However, by

design, the MIO approach maintains a suboptimality gap throughout computation

and can therefore be terminated, before optimality is certified, with a certificate of

suboptimality. We do not consider any empirical analysis of runtime here.

Other considerations: There are other additional computational considerations

that are potentially of interest as well, but they are primarily beyond the scope of

the present work. For example, instead of considering optimality purely in terms of
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objective values in (4.47), there are other critical notions from a statistical perspective

(e.g. ability to recover true sparse models and performance on out-of-sample data)

that would also be necessary to consider across the multiple approaches.

4.6 Conclusions

In this chapter, we have studied the trimmed Lasso, a nonconvex adaptation of Lasso

that acts as an exact penalty method for best subset selection. Unlike some other

approaches to exact penalization which use coordinate-wise separable functions, the

trimmed Lasso offers direct control of the desired sparsity 𝑘. Further, we emphasized

the interpretation of the trimmed Lasso from the perspective of robustness. In do-

ing so, we provided contrasts with the SLOPE penalty as well as comparisons with

estimators from the robust statistics and total least squares literature.

We have also taken care to contextualize the trimmed Lasso within the litera-

ture on nonconvex penalized estimation approaches to sparse modeling, showing that

penalties like the trimmed Lasso can be viewed as a generalization of such approaches

in the case when the penalty function is bounded. In doing so, we also highlighted

how precisely the problems were related, with a complete characterization given in

the case of the clipped Lasso.

Finally, we have shown how modern developments in optimization can be brought

to bear for the trimmed Lasso to create convex optimization optimization algorithms

that can take advantage of the significant developments in algorithms for Lasso-like

problems in recent years.

Our work here raises many interesting questions about further properties of the

trimmed Lasso and the application of similar ideas in other settings. We see two

particularly noteworthy directions of focus: algorithms and statistical properties. For

the former, we anticipate that an approach like trimmed Lasso, which leads to rela-

tively straightforward algorithms that use close analogues from convex optimization,

is simple to interpret and to implement. At the same time, the heuristic approaches

to the trimmed Lasso presented herein carry no more of a computational burden than
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solving convex, Lasso-like problems. On the latter front, we anticipate that a deeper

analysis of the statistical properties of estimators attained using the trimmed Lasso

would help to illuminate it in its own right while also further connecting it to existing

approaches in the statistical estimation literature.
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Appendix A

Supplement for Chapter 2

A.1 Proofs

This appendix contains all omitted proofs for results presented in Chapter 2.

Proof of Proposition 1: (a) We start by observing that for any two real symmetric

matrices A,B ∈ R𝑝×𝑝 and the matrix 𝑞-norm, a result (due to Mirsky and some-

times known as the 𝑞-Wielandt-Hoffman inequality [144, p. 205]) states that

‖A−B‖𝑞 ≥ ‖𝜆(A)− 𝜆(B)‖𝑞, (A.1)

where 𝜆(A) and 𝜆(B) denote the vector of eigenvalues of A and B, respectively,

arranged in decreasing order, i.e., 𝜆1(A) ≥ 𝜆2(A) ≥ . . . ≥ 𝜆𝑝(A) and 𝜆1(B) ≥

𝜆2(B) ≥ . . . ≥ 𝜆𝑝(B). Using this result for Problem (2.4), it is easy to see that

for fixed Φ one has

{Θ : Θ < 0, rank(Θ) ≤ 𝑟} = {Θ : 𝜆(Θ) ≥ 0, ‖𝜆(Θ)‖0 ≤ 𝑟} , (A.2)

where ‖𝜆(Θ)‖0 counts the number of nonzero elements of 𝜆(Θ). If we partially

minimize the objective function in Problem (2.4), with respect to Θ (with Φ
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fixed), and use (A.1) along with (A.2), we have the following inequality:

inf
Θ

‖(Σ−Φ)−Θ‖𝑞𝑞 s. t. Θ < 0, rank(Θ) ≤ 𝑟

≥ inf
𝜆(Θ)

‖𝜆(Σ−Φ)− 𝜆(Θ)‖𝑞𝑞 s. t. 𝜆(Θ) ≥ 0, ‖𝜆(Θ)‖0 ≤ 𝑟.
(A.3)

Since Σ−Φ < 0, it follows that the minimum objective value of the right hand

side of (A.3) is given by
∑︀𝑝

𝑖=𝑟+1 𝜆
𝑞
𝑖 (Σ−Φ) and is achieved for 𝜆𝑖(Θ) = 𝜆𝑖(Σ−Φ)

for 𝑖 = 1, . . . , 𝑟. This leads to the inequality

inf
Θ:Θ<0,

rank(Θ)≤𝑟

‖(Σ−Φ)−Θ‖𝑞𝑞 ≥
𝑝∑︁

𝑖=𝑟+1

𝜆𝑞
𝑖 (Σ−Φ). (A.4)

Furthermore, if U ∈ R𝑝×𝑝 denotes the matrix of 𝑝 eigenvectors of Σ − Φ, then

the following choice of

Θ* := U diag
(︀
𝜆1(Σ−Φ), . . . , 𝜆𝑟(Σ−Φ), 0, . . . , 0⏟  ⏞  

𝑝−𝑟 times

)︀
U′ (A.5)

gives equality in (A.4). This leads to the following result:

inf
Θ:Θ<0,

rank(Θ)≤𝑟

‖Σ− (Θ + Φ)‖𝑞𝑞 = ‖Σ− (Θ* + Φ)‖𝑞𝑞 (A.6)

=

𝑝∑︁
𝑖=𝑟+1

𝜆𝑞
𝑖 (Σ−Φ).

(b) The minimizer Θ* of (A.6) is given by (A.5). In particular, if Φ* solves Prob-

lem (CFA𝑞) and we compute Θ* via (A.5) (with Φ = Φ*), then the tuple (Φ*,Θ*)

solves Problem (2.4). This completes the proof of the proposition.

Proof of Proposition 2: We build upon the proof of Proposition 1. Note that any Φ

that is feasible for Problems (2.12) and (2.4) is PSD. Observe that Θ* (appearing in
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the proof of Proposition 1) as given by (A.5) satisfies:

Σ−Φ−Θ* < 0 =⇒ Σ−Θ* < 0, (A.7)

where the right hand side of (A.7) follows because Φ < 0. We have thus established

that the solution Θ* to the following problem

min
Θ

‖(Σ−Φ)−Θ‖𝑞𝑞

s. t. Θ < 0

rank(Θ) ≤ 𝑟

(A.8)

is feasible for the following optimization problem:

min
Θ

‖(Σ−Φ)−Θ‖𝑞𝑞

s. t. Θ < 0

rank(Θ) ≤ 𝑟

Σ−Θ < 0.

(A.9)

Since Problem (A.9) involves minimization over a subset of the feasible set of Prob-

lem (A.8), it follows that Θ* is also a minimizer for Problem (A.9). This completes

the proof of the equivalence.

Proof of Theorem 1: (a) The proof is based on ideas appearing in [121], where it was

shown that the sum of the top 𝑟 eigenvalues of a real symmetric matrix can be

written as the solution to a linear SDO problem.

By an elegant classical result due to Fan [144], the smallest (𝑝− 𝑟) eigenvalues of

a real symmetric matrix A can be written as

𝑝∑︀
𝑖=𝑟+1

𝜆𝑖(A) = inf
V∈R𝑝×(𝑝−𝑟)

Tr (V′AV)

s. t. V′V = I.

(A.10)

We will show that the solution to the above nonconvex problem can be obtained
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via the following linear (convex) SDO problem:

min
W

Tr (WA)

s. t. I < W < 0

Tr(W) = 𝑝− 𝑟.

(A.11)

Clearly, Problem (A.11) is a convex relaxation of Problem (A.10)—hence its

minimum value is at least smaller than
∑︀𝑝

𝑖=𝑟+1 𝜆𝑖(A). By standard results in

convex analysis [130], it follows that the minimum of the above linear SDO prob-

lem (A.11) is attained at the extreme points of the feasible set of (A.11). The

extreme points [121, 161] of this set are given by the set of orthonormal matrices

of rank 𝑝− 𝑟: {︀
VV′ : V ∈ R𝑝×(𝑝−𝑟) : V′V = I

}︀
.

It thus follows that the (global) minima of Problems (A.11) and (A.10) are the

same. Applying this result to the PSD matrix A = (Σ − Φ)𝑞 appearing in the

objective of (CFA𝑞), we arrive at (2.14). This completes the proof of part (a).

(b) The statement follows from (A.5).

Proof of Proposition 3: Observe that, for every fixed Φ, the function 𝑔𝑞(W,Φ) is

concave (in fact, it is linear). Since 𝐺𝑞(W) is obtained by taking a point-wise infimum

with respect to Φ of the concave function 𝑔𝑞(W,Φ), the resulting function 𝐺𝑞(W)

is concave [38]. Finally, the expression of the subgradient (2.17) is an immediate

consequence of Danskin’s Theorem [23, 130].

Proof of Theorem 2. Using the concavity of the function 𝐺𝑞(W) we have:

𝐺𝑞(W
(𝑖+1)) ≤ 𝐺𝑞(W

(𝑖)) + ⟨∇𝐺𝑞(W
(𝑖)),W(𝑖+1) −W(𝑖)⟩

= 𝐺𝑞(W
(𝑖)) + ∆(W(𝑖)).

(A.12)

Note that ∆(W(𝑖)) ≤ 0 and 𝐺𝑞(W
(𝑖+1)) ≤ 𝐺𝑞(W

(𝑖)) for all 𝑖 ≤ 𝑘. Consequently, the

(decreasing) sequence of objective values converge to some 𝐺𝑞(W
(∞)) and ∆(W(∞)) ≥
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0. Adding up the terms in (A.12) from 𝑖 = 1, . . . , 𝑘 we have:

𝐺𝑞(W
(∞))−𝐺𝑞(W

(1)) ≤ 𝐺𝑞(W
(𝑘+1))−𝐺𝑞(W

(1))

≤ −𝑘 min
𝑖=1,...,𝑘

{︀
−∆(W(𝑖))

}︀
from which (2.23) follows.

Proof of Theorem 4. By construction,

max
[ℓ,u]∈Nodes

‖u− ℓ‖1

decreases monotonically to zero as the iterative scheme proceeds. Therefore, to show

convergence it suffices to show that the additive error at a node n = [ℓ,u] ∈ Nodes is

𝑂(‖u−ℓ‖1). Fix an arbitrary node n = [ℓ,u] ∈ Nodes. Without loss of generality, we

may assume that (CFA1) as restricted to diag(Φ) ∈ [ℓ,u] has a feasible solution; as

such, let Φ* be an optimal solution. Likewise, let Φ† be an optimal solution (LSℓ,u).

First note that
∑︀𝑝

𝑖=𝑟+1 𝜆𝑖(Σ −Φ*) ≤
∑︀𝑝

𝑖=𝑟+1 𝜆𝑖(Σ −Φ†). Now, by two applications

of the bound in Theorem 3 and the fact that Φ† is optimal to (LSℓ,u), we have that∑︀𝑝
𝑖=𝑟+1 𝜆𝑖(Σ − Φ†) ≤

∑︀𝑝
𝑖=𝑟+1 𝜆𝑖(Σ − Φ*) + ‖u − ℓ‖1/2. Hence, the additive error

satisfies ⃒⃒⃒⃒
⃒

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ−Φ†)−
𝑝∑︁

𝑖=𝑟+1

𝜆𝑖(Σ−Φ*)

⃒⃒⃒⃒
⃒ ≤ ‖u− ℓ‖1/2,

as was to be shown.

A.2 Alternative conditional gradient approach

This section contains an alternative conditional gradient method for finding feasi-

ble solutions. Since Problem (2.14) involves the minimization of a smooth function

over a compact convex set, the CG method requires iteratively solving the convex
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optimization problem

min
W,Φ

⟨
∇𝑔𝑝(W(𝑘),Φ(𝑘)), (W,Φ)

⟩
s. t. W ∈ 𝒲𝑝−𝑟

Φ ∈ ℱΣ,

(A.13)

where ∇𝑔𝑝(W(𝑘),Φ(𝑘)) is the gradient of 𝑔𝑝(W(𝑘),Φ(𝑘)) at the current iterate (W(𝑘),

Φ(𝑘)). Note that due to the separability of the constraints in W and Φ, Prob-

lem (A.13) splits into two independent optimization problems with respect to W and

Φ. The overall procedure is outlined in Algorithm 5.

Algorithm 5 A CG based algorithm for Problem (2.14)
1 Initialize with (W(1),Φ(1)), feasible for Problem (2.14) and repeat the following

Steps 2-3 until the convergence criterion described in (A.18) is met.

2 Solve the linearized Problem (A.13), which requires solving two separate (con-
vex) SDO problems over W and Φ:

W
(𝑘+1) ∈ arg min

W∈𝒲𝑝−𝑟

⟨W,∇W𝑔𝑝(W
(𝑘),Φ(𝑘))⟩ (A.14)

Φ
(𝑘+1) ∈ arg min

Φ∈ℱΣ

⟨Φ,∇Φ𝑔𝑝(W
(𝑘),Φ(𝑘))⟩ (A.15)

where ∇W𝑔𝑝(W,Φ) (and ∇Φ𝑔𝑝(W,Φ)) is the partial derivative with respect
to W (respectively, Φ).

3 Obtain the new iterates:

W(𝑘+1) = W(𝑘) + 𝜂𝑘(W
(𝑘+1) −W(𝑘)),

Φ(𝑘+1) = Φ(𝑘) + 𝜂𝑘(Φ
(𝑘+1) −Φ(𝑘)).

with 𝜂𝑘 ∈ [0, 1] chosen via an Armijo-type line-search rule [23].

Since ∇W𝑔𝑝(W
(𝑘),Φ(𝑘)) = (Σ − Φ(𝑘))𝑞, the update for W appearing in (A.14)

requires solving

min
W∈𝒲𝑝−𝑟

⟨W, (Σ−Φ(𝑘))𝑞⟩. (A.16)
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Similarly, the update for Φ appearing in (A.15) requires solving:

min
Φ∈ℱΣ

𝑝∑︁
𝑖=1

Φ𝑖ℓ𝑖, (A.17)

where the vector (ℓ1, . . . , ℓ𝑝) is given by diag(ℓ1, . . . , ℓ𝑝) = −𝑞 diag
(︀
W(𝑘)(Σ−Φ)𝑞−1

)︀
,

where diag(A) is a diagonal matrix having the same diagonal entries as A. The

sequence (W(𝑘),Φ(𝑘)) is recursively computed via Algorithm 5 until a convergence

criterion is met:

𝑔𝑝(W
(𝑘),Φ(𝑘))− 𝑔𝑝(W

(𝑘+1),Φ(𝑘+1)) ≤ TOL · 𝑔𝑝(W(𝑘),Φ(𝑘)) (A.18)

for some user-defined tolerance TOL > 0.

A tuple (W*,Φ*) satisfies the first order stationarity conditions [23] for Prob-

lem (2.14), if the following condition is satisfied:

min
W,Φ

⟨∇𝑔𝑝(W*,Φ*), (W −W*,Φ−Φ*)⟩ ≥ 0

s. t. W ∈ 𝒲𝑝−𝑟

Φ ∈ ℱΣ.

Note that Φ* defined above also satisfies the first order stationarity conditions for

problem (CFA𝑞).

The following theorem presents a global convergence guarantee for Algorithm 5:

Theorem 19 (cf. [23]). Every limit point of a sequence (W(𝑘), Φ(𝑘)) produced by

Algorithm 5 is a first order stationary point of the optimization Problem (2.14).

Numerical experiments (in line with those from Section 2.5) suggest that Algo-

rithm 5 performs similarly to Algorithm 1, and therefore we only present the results for

Algorithm 1 in the main text. Algorithm 1 has the advantage that it does not require

a line search, unlike Algorithm 5. Finally, we note that for Algorithm 5 the update

for W at iteration 𝑘 for solving Problem (A.16) corresponds to ̃︁W = (Σ−Φ(𝑘))𝑞.
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A.3 Alternative spectral inequality methods

In this section, we briefly study the landscape of eigenvalue inequalities and how they

can be adapted to produce lower bounds similar to Weyl’s method as detailed in

Section 2.4.5. In particular, we consider computing lower bounds to

min
Φ∈ℱΣ

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ−Φ) (A.19)

using eigenvalue inequalities in conjunction with mixed integer semidefinite optimiza-

tion (“MISDO”) modeling techniques. We will conclude this section by relating this

approach to that taken in Chapter 2. Throughout what follows, we abuse the notation

Φ ∈ ℱΣ: for a vector 𝜑 ∈ R𝑝, we let 𝜑 ∈ ℱΣ denote that diag(𝜑) ∈ ℱΣ.

A.3.1 Ky Fan and mixed integer optimization

We begin by recalling the Ky Fan inequality [80, p. 250]: for any 𝜑,𝛾 ∈ R𝑝,

∑︁
𝑖>𝑟

𝜆𝑖(Σ− diag(𝜑)) ≥
∑︁
𝑖>𝑟

[︀
𝜆𝑖(Σ− diag(𝛾)) + (𝛾 − 𝜑)(𝑖)

]︀
. (KF)

Further, note that

∑︁
𝑖>𝑟

𝜆𝑖(Σ− diag(𝜑)) = sup
𝛾∈R𝑝

∑︁
𝑖>𝑟

[︀
𝜆𝑖(Σ− diag(𝛾)) + (𝛾 − 𝜑)(𝑖)

]︀
. (A.20)

Observe that for a fixed 𝛾, the lower bound in (KF) can be written using auxiliary

binary variables:

∑︁
𝑖>𝑟

[︀
𝜆𝑖(Σ− diag(𝛾)) + (𝛾 − 𝜑)(𝑖)

]︀
=

min
a,z

∑︁
𝑖>𝑟

𝜆𝑖(Σ− diag(𝛾)) + z′𝛾 −
∑︁
𝑖

𝑎𝑖

s. t. a ≤ 𝜑

a ≤ diag(u)z∑︀
𝑖 𝑧𝑖 = 𝑝− 𝑟

z ∈ {0, 1}𝑝.
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Here u ∈ R𝑝 is as defined in (2.37). As a result, we have the following:

Proposition 20. For any 𝛾 ∈ R𝑝, problem (A.19) is lower bounded by the MISDO

problem
min
𝜑,a,z

∑︁
𝑖>𝑟

𝜆𝑖(Σ− diag(𝛾)) + z′𝛾 −
∑︁
𝑖

𝑎𝑖

s. t. diag(𝜑) ∈ ℱΣ

a ≤ 𝜑

a ≤ diag(u)z∑︀
𝑖 𝑧𝑖 = 𝑝− 𝑟

z ∈ {0, 1}𝑝.

(A.21)

In words, (A.19) can be lower bounded by solving an auxiliary mixed integer opti-

mization problem that is convex (except for the binary constraints). In what follows,

we describe the quality of the lower bounds and how to obtain these bounds compu-

tationally.

Solving Problem (A.21): We briefly discuss how one might solve a MISDO prob-

lem such as (A.21). Unfortunately, there is little in terms of state-of-the-art MISDO

solvers. To our knowledge, the only such available implementation is provided in an

add-on to the software SCIP [1]; this implementation involves a rudimentary branch-

and-bound scheme built on top of interior point methods. There are no commercial

codes which solve MISDOs.

For this reason, we choose to instead leverage the striking power of modern linear

mixed integer optimization (“MIO”) solvers (such as Gurobi [73]) by solving the MIS-

DOs using linear MIO problems with a cutting plane subroutine. In particular, we

take the canonical reformulation of semidefinite constraints as a set of semi-infinite

linear inequality constraints [92, 93, 95, 94]. The only nonlinear constraint present in

(A.21) is Σ− diag(𝜑) < 0. This can be equivalently written as

v′(Σ− diag(𝜑))v ≥ 0 ∀v ∈ R𝑝.

It follows that problem (A.21) can be solved as a linear MIO problem with callbacks
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Problem 𝑟
Gap (%)

Ky Fan Weyl
(A.21) (2.41)

𝐴1(2/10) 1 6.08 7.66
𝐴1(3/10) 2 22.44 17.19
𝐴1(2/20) 1 1.26 1.89
𝐴1(3/20) 2 4.36 4.09
𝐴1(5/20) 4 47.69 21.53

𝐴2(10)
2 41.48 67.39
3 62.75 74.21

𝐴2(20)
2 10.75 59.20
3 17.88 63.25
5 38.56 74.35

Table A.1: Computational results for Ky Fan approach in (A.21) with the choice of
𝛾 = u0 as in (2.37). Problems are solved using Gurobi in julia via JuMP. Gap listed
is in percentage relative to an incumbent found via Algorithm 1. “Weyl” refers to
Weyl’s method (Section 2.4.5).

[106]; this approach is easily implemented in the julia language using JuMP modeling

tools [56].1

Quality of bounds: In Table A.1, we briefly show how the Ky Fan approach in

(A.21) does as compared to Weyl’s method for a particular choice of 𝛾 using such a

cutting plane approach. If there exists an underlying very low rank solution, then it

seems that the Ky Fan approach works reasonably well, although the quality of (A.21)

degrades relative to Weyl’s method as 𝑟 increases. Of course, at the same time, the

Ky Fan approach is computationally intensive, in contrast to Weyl’s method. Finally,

let us note that the Ky Fan bounds are highly sensitive to the choice of 𝛾, which is

not surprising. Indeed, this raises the question of finding the best lower bound by

solving over all possible 𝛾. We turn our attention to precisely this problem in the

next section.

1Practically speaking, we terminate the callback procedure when 𝜆𝑝(Σ − diag(𝜑cur)) ≥ −TOL,
where 𝜑cur is the current (otherwise feasible) incumbent and TOL is a small numerical tolerance, e.g.,
TOL = 10−4.
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A.3.2 Optimal Ky Fan bounds

As seen above, the Ky Fan bounds (Proposition 20) can perform well, but depend on

the choice of 𝛾. This raises the obvious question: what is the best possible choice of

𝛾, viz.,

sup
𝛾

min
𝜑∈ℱΣ

∑︁
𝑖>𝑟

[︀
𝜆𝑖(Σ− diag(𝛾)) + (𝛾 − 𝜑)(𝑖)

]︀
. (A.22)

We call this the optimal Ky Fan lower bound.

Numerical results suggest the marked strength of this approach. To proceed, we

will first detail how one can solve a problem of the form (A.22), and then discuss a

variety of numerical results.

Solving Problem (A.22): As per (A.20), the optimal Ky Fan lower bound (A.22)

is a (weak) dual of (A.19). There are a variety of possible approaches to solving

(A.22). In particular, observe that it is a concave maximization in 𝛾. For the present

purposes, we consider a cutting plane approach, in a similar spirit to the one used

above to solve (A.21) using linear semidefinite and MIO solvers instead of dedicated

MISDO solvers. In particular, we proceed as follows: consider the reformulation of

(A.22) as

(A.22) = max
𝛾,M,𝑡,𝜅

−Tr(M) + (𝑝− 𝑟)𝑡 + 𝜅

s. t. M < 0

Σ− diag(𝛾) + M− I𝑡 < 0

𝜅 ≤
∑︁
𝑖>𝑟

(𝛾 − 𝜑)(𝑖) ∀ 𝜑 ∈ ℱΣ

= max
𝛾,M,𝑡,𝜅

−Tr(M) + (𝑝− 𝑟)𝑡 + 𝜅

s. t. M < 0

Σ− diag(𝛾) + M− I𝑡 < 0

𝜅 ≤ z′(𝛾 − 𝜑) ∀ 𝜑 ∈ ℱΣ, z ∈ 𝒵𝑝−𝑟,
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where 𝒵𝑝−𝑟 = {z ∈ {0, 1}𝑝 :
∑︀

𝑖 𝑧𝑖 = 𝑝− 𝑟}. Problem (A.22) is directly amenable to

solution via cutting planes. In particular, the cut problem is precisely

min
𝜑∈ℱΣ

∑︁
𝑖>𝑟

(𝛾 − 𝜑)(𝑖) = min
𝜑∈ℱΣ,
z∈𝒵𝑝−𝑟

z′(𝛾 − 𝜑),

which can be solved using linear MIO solvers (again itself using cutting planes, as

described in the preceding section).

In our numerical results that follow, we apply this cutting plane procedure, with

the problem (A.22) formulated as

max
𝛾,M,𝑡,𝜅

− Tr(M) + (𝑝− 𝑟)𝑡 + 𝜅

s. t. v′Mv ≥ 0 ∀ v ∈ R𝑝 (A.23a)

v′ (Σ− diag(𝛾) + M− I𝑡)v ≥ 0 ∀ v ∈ R𝑝 (A.23b)

𝜅 ≤ z′(𝛾 − 𝜑) ∀ 𝜑 ∈ ℱΣ, z ∈ 𝒵𝑝−𝑟. (A.23c)

This problem can be solving using linear optimization for the outer problem, with the

three cut problems requiring eigenvalue decompositions (cuts A.23a and A.23b) and

the solution to an MISDO (cut A.23c). Again, the third cut is itself solved computed

using a linear MIO solver and cutting planes.2

Computational performance for optimal Ky Fan bounds: In Table A.1, we

show how the optimal Ky Fan approach in (A.22) compares to the others. This

small set of examples suggests that it performs exceptionally well as a lower bound-

ing technique in some instances. Again, the key complication is that the method

is computationally intensive, and therefore it is likely necessary to develop a more

sophisticated, scalable algorithmic approach to solving (A.22).

2As a minor implementation detail, these cuts are not added in the relaxation of the problem,
and therefore the relaxation will be unbounded from above. Therefore, we also include a tautological
upper bound on the objective of the best feasible objective value found for (A.19) from some heuristic
such as the CG-based methods in Chapter 2. As an even simpler approach, one could use −Tr(M)+
(𝑝− 𝑟)𝑡+ 𝜅 ≤

∑︀
𝑖>𝑟 𝜆𝑖(Σ) (the objective value in (A.19) with zero uniquenesses).
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Problem 𝑟
Gap (%)

OptKF Ky Fan Weyl
(A.22) (A.21) (2.41)

𝐴1(2/10) 1 0.02 6.08 7.66
𝐴1(3/10) 2 0.32 22.44 17.19
𝐴1(2/20) 1 0.02 1.26 1.89
𝐴1(3/20) 2 0.01 4.36 4.09

𝐴2(10)
2 14.80 41.48 67.39
3 35.37 62.75 74.21

Table A.2: Computational results for optimal Ky Fan approach in (A.22). Problems
are solved using Gurobi in julia via JuMP. Gap listed is in percentage relative to
an incumbent found via Algorithm 1. “OptKF” denotes the optimal Ky Fan method
(A.22); “Ky Fan” denotes (A.21) with the choice of 𝛾 = u0 as in (2.37); “Weyl” refers
to Weyl’s method (Section 2.4.5).

A.3.3 Iterative spectral methods and bilinear optimization

We close our discussion of alternative spectral approaches to lower bounds by con-

sidering an iterative approach to the Ky Fan lower bounds. In doing so, we show

that this technique, appropriately modified, coincides with a bilinear optimization

problem, precisely the sort of problem under consideration in Section 2.4.

To proceed, recall that the preceding results rely on a single fixed 𝛾 ∈ R𝑝 for

which Proposition 20 can be applied. One could instead consider an iterative process:

fix some initial choice of 𝛾 = diag(Φ(0)), and then for 𝑛 = 1, 2, . . . , define

Φ(𝑛) ∈ arg min
Φ∈ℱΣ

max
0≤ℓ<𝑛

∑︁
𝑖>𝑟

[︁
𝜆𝑖(Σ−Φ(ℓ)) + (diag(Φ(ℓ) −Φ))(𝑖)

]︁
.

It is not difficult to argue that
∑︀

𝑖>𝑟 𝜆𝑖(Σ−Φ(𝑛)) converges to the optimal objective

value of (A.19). The 𝑛th iteration requires the solution of a MISDO with 𝑛𝑝 binary

variables, and thus the problems become prohibitively large rather quickly. At the

same time, the number of iterations necessary to produce an 𝜖-optimal solution to

(A.19) can also be exorbitant. (We neglect to include numerical results here.)

Finally, we conclude this section by observing that this iterative method can

actually be strengthened further by exploiting concavity properties. In doing so,

we see that a MISDO method such as the Ky Fan approach is substantively the same

181



as solving a bilinear optimization problem—precisely the approach taken to lower

bounds in Chapter 2. The proof follows standard duality techniques and is omitted.

Proposition 21. If Φ,Φ(0), . . . ,Φ(𝑛−1) ∈ ℱΣ, then

∑︁
𝑖>𝑟

𝜆𝑖(Σ−Φ) ≥ min
b∈R𝑝

0≤b≤1∑︀
𝑖 𝑏𝑖=𝑝−𝑘

max
0≤ℓ<𝑛

{︁
b′ diag(Φ(ℓ)) + 𝑡ℓ

}︁
− b′ diag(Φ)

≥ max
0≤ℓ<𝑛

∑︁
𝑖>𝑟

[︁
𝜆𝑖(Σ−Φ(ℓ)) + (diag(Φ(ℓ) −Φ))(𝑖)

]︁
,

where 𝑡ℓ =
∑︀

𝑖>𝑟 𝜆𝑖(Σ−Φ(ℓ)) for ℓ = 0, . . . , 𝑛− 1.

Of course, this should not be too surprising because the bilinear problem

min
b,Φ:

Φ∈ℱΣ,
b∈conv(𝒵𝑝−𝑟)

max
0≤ℓ<𝑛

{︃
b′ diag(Φ(ℓ)) +

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ−Φ(ℓ))

}︃
− b′ diag(Φ)

is a (cutting-plane-based) relaxation of

min
b,Φ:

Φ∈ℱΣ,
b∈conv(𝒵𝑝−𝑟)

sup
𝛾∈R𝑝

{︃
b′𝛾 +

𝑝∑︁
𝑖=𝑟+1

𝜆𝑖(Σ− diag(𝛾))

}︃
− b′ diag(Φ),

which itself equals min
Φ∈ℱΣ,

W∈𝒲𝑝−𝑟

⟨W,Σ−Φ⟩—precisely Problem (A.19).
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Appendix B

Supplement for Chapter 3

This appendix contains proofs and additional technical results for the vector regression

setting. We prove our results in the vector setting, from which the results on matrices

follow as a direct corollary.

B.1 Proof of Theorem 10

Proof of Theorem 10. (a) We begin by proving the upper bound. Here we proceed

by showing that ℎ is precisely ℎ(𝛽) = 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* . Now observe that for any

Δ ∈ 𝒰𝐹𝑞 ,

‖Δ𝛽‖𝑝 ≤ 𝛿𝑚(𝑝, 𝑞)‖Δ𝛽‖𝑞 ≤ 𝛿𝑚(𝑝, 𝑞)‖Δ‖𝐹𝑞‖𝛽‖𝑞* ≤ 𝛿𝑚(𝑝, 𝑞)𝜆‖𝛽‖𝑞* . (B.1)

The first inequality follows by the definition of the discrepancy function 𝛿𝑚.

The second inequality follows from a well-known matrix inequality: ‖Δ𝛽‖𝑞 ≤

‖Δ‖𝐹𝑞‖𝛽‖𝑞* (this follows from a simple application of Hölder’s inequality). Now

observe that in the chain of inequalities in (B.1), if one takes any u ∈ arg max 𝛿𝑚(𝑝, 𝑞)

and any v ∈ arg max‖v‖𝑞=1 v
′𝛽, then ̂︀Δ := 𝜆uv′ ∈ 𝒰𝐹𝑞 and ‖ ̂︀Δ𝛽‖𝑝 = 𝛿𝑚(𝑝, 𝑞)𝜆‖𝛽‖𝑞* .

Hence, ℎ(𝛽) = 𝛿𝑚(𝑝, 𝑞)𝜆‖𝛽‖𝑞* . This proves the upper bound.

(b) We now prove that for 𝑝 ∈ {1,∞} that one has equality for all (z,𝛽) ∈ R𝑚×R𝑛.

First consider the case when 𝑝 = 1. Fix z ∈ R𝑚. Again let u ∈ arg max 𝛿𝑚(1, 𝑞)
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and v ∈ arg max‖v‖𝑞=1 v
′𝛽. Without loss of generality we may assume that

sgn(𝑧𝑖) = sgn(𝑢𝑖) for 𝑖 = 1, . . . ,𝑚 (one may change the sign of entries of u and it

is still in arg max 𝛿𝑚(1, 𝑞)). Then again we have ̂︀Δ := 𝜆uv′ ∈ 𝒰𝐹𝑞 and

‖z + ̂︀Δ𝛽‖1 = ‖z + 𝜆uv′𝛽‖1 = ‖z + 𝜆‖𝛽‖𝑞*u‖1

= ‖z‖1 + 𝜆‖𝛽‖𝑞*‖u‖1 = ‖z‖1 + 𝜆‖𝛽‖𝑞*𝛿𝑚(1, 𝑞).

Hence, one has equality in the upper bound for 𝑝 = 1, as claimed.

We now turn our attention to the case 𝑝 = ∞. Note that 𝛿𝑚(∞, 𝑞) = 1 because

‖z‖∞ ≤ ‖z‖𝑞 for all z ∈ R𝑚. Fix z ∈ R𝑚, and again let v ∈ arg max‖v‖𝑞=1 v
′𝛽.

Let ℓ ∈ {1, . . . ,𝑚} so that |𝑧ℓ| = ‖z‖∞. Define u = sgn(𝑧ℓ)eℓ ∈ R𝑚, where eℓ is

the vector whose only nonzero entry is a 1 in the ℓth position. Now observe that̂︀Δ := 𝜆uv′ ∈ 𝒰𝐹𝑞 and

‖z + ̂︀Δ𝛽‖∞ = ‖z + sgn(𝑧ℓ)𝜆‖𝛽‖𝑞*eℓ‖∞

= ‖z‖∞ + 𝜆‖𝛽‖𝑞*‖eℓ‖∞ = ‖z‖∞ + 𝜆‖𝛽‖𝑞* ,

which proves equality in (3.2), as was to be shown.

(c) To proceed, we examine the case where 𝑝 ∈ (1,∞) and consider for which (z,𝛽)

the inequality in (3.2) is strict. Fix 𝛽 ̸= 0. For 𝑝 ∈ (1,∞) and y, z ∈ R𝑚,

one has by Minkowski’s inequality that ‖y + z‖𝑝 = ‖y‖𝑝 + ‖z‖𝑝 if and only if

one of y or z is a nonnegative scalar multiple of the other. To have equality

in (3.2), it must be that there exists some Δ ∈ arg maxΔ∈𝒰𝐹𝑞
‖Δ𝛽‖𝑝 for which

‖z + Δ𝛽‖𝑝 = ‖z‖𝑝 + ‖Δ𝛽‖𝑝. For any z ̸= 0 this observation, combined with

Minkowski’s inequality, implies that

‖Δ‖𝐹𝑞 = 𝜆, Δ𝛽 = 𝜇z for some 𝜇 ≥ 0, and ‖Δ𝛽‖𝑝 = 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* .

The first and last equalities imply that Δ𝛽 ∈ 𝜆‖𝛽‖𝑞* arg max 𝛿𝑚(𝑝, 𝑞). Note

that arg max 𝛿𝑚(𝑝, 𝑞) is finite whenever 𝑝 ̸= 𝑞 and 𝑚 ≥ 2, a geometric property
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of ℓ𝑝 balls. Hence, taking any z which is not a scalar multiple of a point in

arg max 𝛿𝑚(𝑝, 𝑞) implies by Minkowski’s inequality that

max
Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝 < ‖z‖𝑝 + 𝜆𝛿𝑚(𝑝, 𝑞)‖𝛽‖𝑞* .

Hence, for any 𝛽 ̸= 0, the inequality in (3.2) is strict for all z not in a finite union

of one-dimensional subspaces, so long as 𝑝 ∈ (1,∞), 𝑝 ̸= 𝑞, and 𝑚 ≥ 2.

(d) We now prove the lower bound in (3.3). If z = 0 then there is nothing to show,

and therefore we assume z ̸= 0. Let v ∈ R𝑛 so that

v ∈ arg max
‖v‖𝑞=1

v′𝛽.

Hence v′𝛽 = ‖𝛽‖𝑞* by the definition of the dual norm. Define ̂︀Δ = 𝜆
‖z‖𝑞 zv

′.

Observe that ̂︀Δ ∈ 𝒰𝐹𝑞 . Further, note that ‖z‖𝑞 ≤ 𝛿𝑚(𝑞, 𝑝)‖z‖𝑝 by definition of

𝛿𝑚 and therefore 1/𝛿𝑚(𝑞, 𝑝) ≤ ‖z‖𝑝/‖z‖𝑞. Putting things together,

‖z‖𝑝 +
𝜆‖𝛽‖𝑞*
𝛿𝑚(𝑞, 𝑝)

≤ ‖z‖𝑝 +
𝜆‖z‖𝑝‖𝛽‖𝑞*
‖z‖𝑞

= ‖z‖𝑝
(︂

1 +
𝜆‖𝛽‖𝑞*
‖z‖𝑞

)︂
= ‖z + ̂︀Δ𝛽‖𝑝

≤ max
Δ∈𝒰𝐹𝑞

‖z + Δ𝛽‖𝑝.

This completes the proof of the lower bound.

(e) To conclude we prove that the gap in (3.3) can be made arbitrarily small for

𝑝 ∈ (1,∞). We proceed in several steps. We first prove that for any z ̸= 0 that

lim
𝛼→∞

(︂
max
Δ∈𝒰𝐹𝑞

‖𝛼z + Δ𝛽‖𝑝 − ‖𝛼z‖𝑝
)︂

=
𝜆‖𝛽‖𝑞*‖z𝑝−1‖𝑞*
‖z‖𝑝−1

𝑝

, (B.2)

where we use the shorthand z𝑝−1 to denote the vector in R𝑚 whose 𝑖th entry is
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|𝑧𝑖|𝑝−1. Observe that

max
Δ∈𝒰𝐹𝑞

‖𝛼z + Δ𝛽‖𝑝 = max
‖u‖𝑞≤𝜆‖𝛽‖𝑞*

‖𝛼z + u‖𝑝.

It is easy to argue that we may assume without any loss of generality that u ∈

arg max‖u‖𝑞≤𝜆‖𝛽‖𝑞* ‖𝛼z + u‖𝑝 has sgn(𝑢𝑖) = sgn(𝛼𝑧𝑖), where

sgn(𝑎) =

⎧⎨⎩ 1, 𝑎 ≥ 0

−1, 𝑎 < 0.

Therefore, we restrict our attention to z ≥ 0, z ̸= 0, and u ≥ 0. For any u such

that ‖u‖𝑞 ≤ 𝜆‖𝛽‖𝑞* and u ≥ 0, note that

lim
𝛼→∞

‖𝛼z + u‖𝑝 − ‖𝛼z‖𝑝 = lim
𝛼→∞

‖z + u/𝛼‖𝑝 − ‖z‖𝑝
1/𝛼

= lim
𝛼̄→0+

‖z + 𝛼̄u‖𝑝 − ‖z‖𝑝
𝛼̄

=
𝑑

𝑑𝛼̄

⃒⃒⃒⃒
𝛼̄=0

‖z + 𝛼̄u‖𝑝

=
u′z𝑝−1

‖z‖𝑝−1
𝑝

.

We can now proceed to finish the claim in (B.2) (still restricting attention to

z ≥ 0 without loss of generality). By the above arguments, for any u ≥ 0 and

any 𝜖 > 0 there exists some 𝛼̂ = 𝛼̂(u) > 0 sufficiently large so that for all 𝛼 > 𝛼̂,⃒⃒⃒⃒
‖𝛼z + u‖𝑝 − ‖𝛼z‖𝑝 −

u′z𝑝−1

‖z‖𝑝−1
𝑝

⃒⃒⃒⃒
≤ 𝜖.

It remains to be shown that for any 𝜖 > 0 there exists some 𝛼̂ so that for all

𝛼 > 𝛼̂, ⃒⃒⃒⃒(︂
max

‖u‖𝑞≤𝜆‖𝛽‖𝑞*
‖𝛼z + u‖𝑝 − ‖𝛼z‖𝑝

)︂
−
(︂

max
‖u‖𝑞≤𝜆‖𝛽‖𝑞*

u′z𝑝−1

‖z‖𝑝−1
𝑝

)︂⃒⃒⃒⃒
≤ 𝜖.

We prove this as follows. Let 𝜖 > 0. Choose points {u1, . . . ,u𝑀} ⊆ R𝑚 with
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‖u𝑗‖𝑞 = 𝜆‖𝛽‖𝑞* ∀𝑗 so that for any u ∈ R𝑚 with ‖u‖𝑞 = 𝜆‖𝛽‖𝑞* , there exists

some 𝑗 so that ‖u − u𝑗‖𝑝 ≤ 𝜖/3 (note that our choice of ℓ𝑝 here is intentional).

Now observe that for any 𝛼,

max
𝑗
‖𝛼z + u𝑗‖𝑝 ≤ max

‖u‖𝑞≤𝜆‖𝛽‖𝑞*
‖𝛼z + u‖𝑝

≤ max
𝑗

(︂
max

‖u−u𝑗‖𝑝≤𝜖/3
‖𝛼z + u‖𝑝

)︂
= max

𝑗

(︂
max

‖ū‖𝑝≤𝜖/3
‖𝛼z + u𝑗 + ū‖𝑝

)︂
≤ max

𝑗

(︂
max

‖ū‖𝑝≤𝜖/3
‖𝛼z + u𝑗‖𝑝 + ‖ū‖𝑝

)︂
= 𝜖/3 + max

𝑗
‖𝛼z + u𝑗‖𝑝.

Similarly, one has for z̄ = z𝑝−1/‖z‖𝑝−1
𝑝 that

⃒⃒
max𝑗 u

′
𝑗 z̄−max‖u‖𝑞≤𝜆‖𝛽‖𝑞* u

′z̄
⃒⃒
≤

𝜖/3. (This uses the fact that ‖z̄‖𝑝* = 1.) Now for each 𝑗 choose 𝛼̂𝑗 so that for all

𝛼 > 𝛼̂𝑗, ⃒⃒
‖𝛼z + u𝑗‖𝑝 − ‖𝛼z‖𝑝 − u′

𝑗 z̄
⃒⃒
≤ 𝜖/3.

Define 𝛼̂ = max𝑗 𝛼̂𝑗. Now observe that by combining the above two observations,

one has for any 𝛼 > 𝛼̂ that⃒⃒⃒⃒(︂
max

‖u‖𝑞≤𝜆‖𝛽‖𝑞*
‖𝛼z + u‖𝑝 − ‖𝛼z‖𝑝

)︂
−
(︂

max
‖u‖𝑞≤𝜆‖𝛽‖𝑞*

u′z̄

)︂⃒⃒⃒⃒
≤

≤ 2𝜖/3 +

⃒⃒⃒⃒(︂
max

𝑗
‖𝛼z + u𝑗‖𝑝 − ‖𝛼z‖𝑝

)︂
−
(︁

max
ℓ

u′
ℓz̄
)︁⃒⃒⃒⃒

≤ 2𝜖/3 + max
𝑗

⃒⃒
‖𝛼z + u𝑗‖𝑝 − ‖𝛼z‖𝑝 − u′

𝑗 z̄
⃒⃒

≤ 2𝜖/3 + 𝜖/3 = 𝜖.

Noting that max‖u‖𝑞≤𝜆‖𝛽‖𝑞* u
′z̄ = 𝜆‖𝛽‖𝑞*‖z̄‖𝑞* concludes the proof of (B.2). We

now claim that

min
z

‖z𝑝−1‖𝑞*
‖z‖𝑝−1

𝑝

=
1

𝛿𝑚(𝑞, 𝑝)
. (B.3)
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First note that

min
z

‖z𝑝−1‖𝑞*
‖z‖𝑝−1

𝑝

= min
z̃

‖z̃‖𝑞*
‖z̃‖𝑝*

. (B.4)

We prove this as follows: given z, let z̃ = z𝑝−1. Then one can show that

‖z̃‖𝑝*/‖z‖𝑝−1
𝑝 = 1, and so ‖z̃‖𝑝*/‖z̃‖𝑞* = ‖z‖𝑝−1

𝑝 /‖z𝑝−1‖𝑞* . The converse is similar,

proving (B.4). Finally, note that

min
z̃

‖z̃‖𝑞*
‖z̃‖𝑝*

=
1

𝛿𝑚(𝑝*, 𝑞*)

which follows from an elementary analysis using the definition of 𝛿𝑚. Com-

bined with the observation that 𝛿𝑚(𝑝*, 𝑞*) = 𝛿𝑚(𝑞, 𝑝), which follows by a sim-

ply duality argument (or by inspecting the formula), we have that (B.3) is

proven. To finish the argument, pick any z ∈ arg min
z
‖z𝑝−1‖𝑞*/‖z‖𝑝−1

𝑝 . Per (B.3),

‖z𝑝−1‖𝑞*/‖z‖𝑝−1
𝑝 = 1/𝛿𝑚(𝑞, 𝑝). Hence, now applying (B.2), given any 𝜖 > 0, there

exists some 𝛼 > 0 large enough so that⃒⃒⃒⃒(︂
max
Δ∈𝒰𝐹𝑞

‖𝛼z + Δ𝛽‖𝑝
)︂
−
(︂
‖𝛼z‖𝑝 +

𝜆

𝛿𝑚(𝑞, 𝑝)
‖𝛽‖𝑞*

)︂⃒⃒⃒⃒
≤ 𝜖.

Therefore, the gap in the lower bound in (3.3) can be made arbitrarily small for

any 𝛽 ∈ R𝑛. This concludes the proof.

B.2 Counterexample

This section includes an example of choice of loss function and uncertainty set under

which (a) regularization is not equivalent to robustification in general and (b) there

exist problem instances for which the regularization path and robustification path are

different.

To proceed, let 𝑚 = 2 and 𝑛 = 2, and consider 𝒰 = 𝒰(1,1) and loss function ℓ2,
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with y =

⎛⎝1

2

⎞⎠ and X =

⎛⎝1 −1

0 1

⎞⎠. In symbols, the problem of interest is

min
𝛽

max
Δ∈𝒰(1,1)

‖y − (X + Δ)𝛽‖2. (B.5)

For fixed 𝛽, the objective can be rewritten exactly as

max
Δ∈𝒰(1,1)

‖y − (X + Δ)𝛽‖2

= max
u:

‖u‖1≤𝜆‖𝛽‖1

‖y −X𝛽 + u‖2

= max

⎧⎨⎩
⃦⃦⃦⃦
⃦⃦y −X𝛽 ±

⎛⎝𝜆‖𝛽‖1
0

⎞⎠⃦⃦⃦⃦⃦⃦
2

,

⃦⃦⃦⃦
⃦⃦y −X𝛽 ±

⎛⎝ 0

𝜆‖𝛽‖1

⎞⎠⃦⃦⃦⃦⃦⃦
2

⎫⎬⎭
= max

⎧⎨⎩
⃦⃦⃦⃦
⃦⃦y −

⎛⎝X +

⎛⎝±𝜆 ±𝜆

0 0

⎞⎠⎞⎠𝛽

⃦⃦⃦⃦
⃦⃦
2

,

⃦⃦⃦⃦
⃦⃦y −

⎛⎝X +

⎛⎝ 0 0

±𝜆 ±𝜆

⎞⎠⎞⎠𝛽

⃦⃦⃦⃦
⃦⃦
2

⎫⎬⎭
= max

S∈𝒮
‖y − (X + S)𝛽‖2,

where 𝒮 is the set of eight matrices

⎧⎨⎩
⎛⎝±𝜆 ±𝜆

0 0

⎞⎠ ,

⎛⎝ 0 0

±𝜆 ±𝜆

⎞⎠⎫⎬⎭ . The first step

follows by inspecting the definition of 𝒰(1,1); the second step follows from the convexity

of ‖y−X𝛽+u‖2 (in particular, the maximum of the convex function is attained at an

extreme point of {u : ‖u‖1 ≤ 𝜆‖𝛽‖1}); and the third step follows from the definition

of the ℓ1 norm. Hence, the objective is the maximum of eight modified ℓ2 losses.

Let us consider 𝜆 = 1/2. We claim that 𝛽* = (1, 1) is an optimal solution to

(B.5) with objective value
√

5. We will argue that 𝛽* is optimal by exhibiting a dual

feasible solution with the same objective value. It is easy to see that the dual (lower

bounding) problem is

max
𝜇∈R𝒮 :∑︀
S 𝜇S=1
𝜇≥0

min
𝛽

∑︁
S

𝜇S‖y − (X + S)𝛽‖2,

where there are eight variables {𝜇S : S ∈ 𝒮}, one for each S ∈ 𝒮. Note that weak
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duality of the two problems is immediate. Let 𝜇* be the dual feasible point with

𝜇S = 0 for S ∈ 𝒮 ∖ {S1}, where S1 =

⎛⎝ 0 0

−1/2 −1/2

⎞⎠, and 𝜇S1 = 1. Hence, a lower

bound to (B.5) is

min
𝛽

∑︁
S

𝜇*
S‖y − (X + S)𝛽‖2 = min

𝛽
‖y − (X + S1)𝛽‖2 =

√
5.

The final step follows by calculus, using that X + S1 =

⎛⎝ 1 −1

−1/2 1/2

⎞⎠. It follows

that 𝛽* = (1, 1) (with objective value
√

5) must be optimal to (B.5), as claimed.

We now turn our attention to the central point of interest in this Appendix,

namely, that 𝛽* = (1, 1) is not a solution to the corresponding regularization problem,

viz.

min
𝛽
‖y −X𝛽‖2 + 𝜌‖𝛽‖1, (B.6)

for any 𝜌 ∈ (0,∞) (cf. Proposition 5). The solution path of (B.6) ranging over 𝜌 is

immediate from the proximal (soft-thresholding) analysis of the Lasso. In particular,

it is the set of points {(3𝛼, 2𝛼) : 𝛼 ∈ [0, 1]}. This set does not contain 𝛽* = (1, 1),

and hence the regularization problem does not solve the robustification problem (B.5)

with 𝜆 = 1/2 for any corresponding choice of 𝜌. (If one does not wish to rely on

such an indirect analysis, note that one can solve the equivalent problem to (B.6) of

min𝛽 ‖y − X𝛽‖22 + 𝜇‖𝛽‖1, ranging over 𝜇 ∈ (0,∞). The objective is differentiable

at the point 𝛽* = (1, 1), and the gradient is (−2 + 𝜇, 0 + 𝜇). As this is never (0, 0),

𝛽* can never be optimal to this problem, and consequently can never be optimal to

(B.6). Despite the more direct analysis, the conclusion is the same.)

To show the converse, we can use the same example. In particular, consider the

solution (3/2, 1) to (B.6) (the choice of 𝜌 for which this is optimal is irrelevant for

our purposes). We must show that (3/2, 1) is never a solution to (B.5) for any choice

of 𝜆. Let us first inspect the objective of (B.5) for 𝛽* = (3/2, 1). It can be computed

to be
√︀

1/4 + (1 + 5𝜆/2)2. We make two observations:

(1) For any 0 ≤ 𝜆 < (
√

19 + 2)/15, the point (3, 2) has strictly smaller objective
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(namely, 5𝜆) than 𝛽*, and so 𝛽* is not optimal to (B.5) whenever 𝜆 < (
√

19 +

2)/15 ≈ 0.424.

(2) Similarly, for any 𝜆 > (
√

31− 2)/9, the point (1, 1) has strictly smaller objective

(namely,
√

4𝜆2 + 4𝜆 + 2) than 𝛽*, and so 𝛽* is not optimal to (B.5) whenever

𝜆 > (
√

31− 2)/9 ≈ 0.396.

Because the intervals [(
√

19 + 2)/15,∞) and [0, (
√

31 − 2)/9] have no overlap, the

point 𝛽* = (3/2, 1) cannot be a solution to (B.5) for any choice of 𝜆.

Thus, the robustification and regularization solutions for the problems connected

via Theorem 10 do not need to coincide. The statement of Theorem 11 follows as

desired.
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Appendix C

Supplement for Chapter 4

C.1 General min-max representation of SLOPE

For completeness, in this appendix we include the more general representation of the

SLOPE penalty 𝑅SLOPE(w) in the same spirit of Proposition 15. Here we work with

SLOPE in its most general form, namely,

𝑅SLOPE(w)(𝛽) =

𝑝∑︁
𝑖=1

𝑤𝑖|𝛽(𝑖)|,

where w is a (fixed) vector of weights with 𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑝 ≥ 0 and 𝑤1 > 0.

To describe the general min-max representation, we first set some notation. For

a matrix Δ ∈ R𝑛×𝑝, we let 𝜈(Δ) ∈ R𝑝 be the vector (‖Δ1‖2, . . . , ‖Δ𝑝‖2) with entries

sorted so that 𝜈1 ≥ 𝜈2 ≥ · · · ≥ 𝜈𝑝. As usual, for two vectors x and y, we use x ≤ y

to denote that coordinate-wise inequality holds. With this notation, we have the

following:

Proposition 22. Problem (4.9) with uncertainty set

𝒰w = {Δ : 𝜈(Δ) ≤ w}

is equivalent to problem (4.3) with 𝑅(𝛽) = 𝑅SLOPE(w)(𝛽). Further, problem (4.9)
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with uncertainty set

𝒰w =
{︀
Δ : ‖Δ𝜑‖2 ≤ 𝑅SLOPE(w)(𝜑) ∀𝜑

}︀
is equivalent to problem (4.3) with 𝑅(𝛽) = 𝑅SLOPE(w)(𝛽).

The proof, like the proof of Proposition 15, follows basic techniques and is omitted.

C.2 Supplementary details for algorithms

This section contains further details on algorithms as discussed in Section 4.5. The

presentation here is primarily self-contained. Note that the alternating minimization

scheme based on difference-of-convex optimization can be found in [72].

C.2.1 Alternating minimization scheme

Let us set the following notation:

𝑓(𝛽) = ‖y −X𝛽‖22/2 + 𝜆𝑇𝑘 (𝛽) + 𝜂‖𝛽‖1,

𝑓1(𝛽) = ‖y −X𝛽‖22/2 + (𝜂 + 𝜆)‖𝛽‖1,

𝑓2(𝛽) = 𝜆
∑︀𝑘

𝑖=1 |𝛽(𝑖)|.

Definition 4. For any function 𝐹 : R𝑝 → R and 𝜖 ≥ 0, we define the 𝜖-subdifferential

of 𝐹 at 𝛽0 ∈ R𝑝 to be the set 𝜕𝜖𝐹 (𝛽0) defined as

{𝛾 ∈ R𝑝 : 𝐹 (𝛽)− 𝐹 (𝛽0) ≥ ⟨𝛾,𝛽 − 𝛽0⟩ − 𝜖 ∀ 𝛽 ∈ R𝑝} .

In particular, when 𝜖 = 0, we refer to 𝜕0𝐹 (𝛽0) as the subdifferential of 𝐹 at 𝛽0, and

we will denote this as 𝜕𝐹 (𝛽0).

Using this definition, we have the following result precisely characterizing local

and global optima of (4.47).

Theorem 20. (a) A point 𝛽* is a local minimum of 𝑓 if and only if 𝜕𝑓2(𝛽
*) ⊆

𝜕𝑓1(𝛽
*).
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(b) A point 𝛽* is a global minimum of 𝑓 if and only if 𝜕𝜖𝑓2(𝛽*) ⊆ 𝜕𝜖𝑓1(𝛽
*) for all

𝜖 ≥ 0.

Proof. This is a direct application of results in [145, Thm. 1]. Part (b) is immediate.

The forward implication of part (a) is immediate as well; the converse implication

follows by observing that 𝑓2 is a polyhedral convex function [4, Thm. 1(ii)] (see

definition therein).

Let us note that 𝜕𝑓1 and 𝜕𝑓2 are both easily computable, and hence, local opti-

mality can be verified given some candidate 𝛽* per Theorem 20.1 We now discuss

the associated alternating minimization scheme (or equivalently, as a sequential lin-

earization scheme), shown in Algorithm 3 for finding local optima of (4.47) by making

use of Theorem 20. Through what follows, we make use of the standard notion of a

conjugate function, defined as follows:

Definition 5. For any function 𝐹 : R𝑝 → R, we define its conjugate function 𝐹 * :

R𝑝 → R to be the function

𝐹 *(𝛾) = sup
𝛽
⟨𝛾,𝛽⟩ − 𝐹 (𝛽).

We will make the following minor technical assumption: in step 2) of Algorithm 3,

we assume without loss of generality that the 𝛾ℓ so computed satisfies the additional

criteria:

1. it is an extreme point of the relevant feasible region,

2. and that if 𝜕𝑓2(𝛽
ℓ) ̸⊆ 𝜕𝑓1(𝛽

ℓ), then 𝛾ℓ is chosen such that 𝛾ℓ ∈ 𝜕𝑓2(𝛽
ℓ) ∖

𝜕𝑓1(𝛽
ℓ).

Solving (4.48) with these additional assumptions can nearly be solved in closed form

by simply sorting the entries of |𝛽|, i.e., by finding |𝛽(1)|, . . . , |𝛽(𝑝)|.We must take some

1For the specific functions of interest, verifying local optimality of a candidate 𝛽* can be per-
formed in 𝑂(𝑝min{𝑛, 𝑝} + 𝑝 log 𝑝) operations; the first component relates to the computation of
X′X𝛽*, while the second captures the sorting of the entries of 𝛽*. See Appendix C.2.2 for details.
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care to ensure that the second without loss of generality condition on 𝛾 is satisfied.

This is straightforward but tedious; the details are shown in Appendix C.2.2.

Using this modification, the convergence properties of Algorithm 3 can be proven

as follows:

Proof of Theorem 18. This is an application of [145, Thms. 3-5]. The only modifi-

cation is in requiring that 𝛾ℓ is chosen so that 𝛾ℓ ∈ 𝜕𝑓2(𝛽
*) ∖ 𝜕𝑓1(𝛽*) if 𝛽ℓ is not

a local minimum of 𝑓—see [145, §3.3] for a motivation and justification for such a

modification. Finally, the correspondence between 𝛾ℓ ∈ 𝜕𝑓2(𝛽
ℓ) and (4.48), and be-

tween 𝛽ℓ+1 ∈ 𝜕𝑓 *
1 (𝛾ℓ) and (4.49), is clear from an elementary argument applied to

subdifferentials of variational formulations of functions.

C.2.2 Algorithm 3, Step 2

Here we present the details of solving (4.48) in Algorithm 3 in a way that ensures that

the associated without loss of generality claims hold. In doing so, we also implicitly

study how to verify the conditions for local optimality (Theorem 20). Throughout,

we use the sgn function defined as

sgn(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑥 > 0

−1, 𝑥 < 0

0, 𝑥 = 0.

For fixed 𝛽, the problem of interest is

max
𝛾
⟨𝛽,𝛾⟩

s. t.
∑︁
𝑖

|𝛾𝑖| ≤ 𝜆𝑘

|𝛾𝑖| ≤ 𝜆 ∀𝑖.

We wish to find a maximizer 𝛾 for which the following hold:

1. 𝛾 is an extreme point of the relevant feasible region,

2. and that if 𝜕𝑓2(𝛽) ̸⊆ 𝜕𝑓1(𝛽), then 𝛾 is such that 𝛾 ∈ 𝜕𝑓2(𝛽) ∖ 𝜕𝑓1(𝛽).
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As the problem on its own can be solved by sorting the entries of 𝛽, the crux of the

problem is ensuring that 2) holds.

Given the highly structured nature of 𝑓1 and 𝑓2 in our setup, it is simple, albeit

tedious, to ensure that such a condition is satisfied. Let 𝐼 = {𝑖 : |𝛽𝑖| = |𝛽(𝑘)|}. If

|𝐼| = 1, the optimal solution is unique, and there is nothing to show. Therefore, we

will assume that |𝐼| ≥ 2. We will construct an optimal solution 𝛾 which satisfies the

desired conditions. First observe that we necessarily must have that 1) 𝛾𝑖 = 𝜆 sgn(𝛽𝑖)

if |𝛽𝑖| > |𝛽(𝑘)| and 2) 𝛾𝑖 = 0 if |𝛽𝑖| < |𝛽(𝑘)|. We now proceed to define the rest of the

entries of 𝛾. We consider two cases:

1. First consider the case when |𝛽(𝑘)| > 0. We claim that 𝜕𝑓2(𝛽) ̸⊆ 𝜕𝑓1(𝛽).

To do so, we will inspect the 𝑖th entries of 𝜕𝑓1(𝛽) for 𝑖 ∈ 𝐼; as such, let

𝑃 𝑗
𝑖 = {𝛿𝑖 : 𝛿 ∈ 𝜕𝑓𝑗(𝛽)} for 𝑗 ∈ {1, 2} and 𝑖 ∈ 𝐼 (a projection). For each 𝑖 ∈ 𝐼,

we have using basic convex analysis that 𝑃 1
𝑖 is a singelton: 𝑃 1

𝑖 = {⟨X𝑖,X𝛽 −

y⟩ + (𝜂 + 𝜆) sgn(𝛽𝑖)}, where X𝑖 is the 𝑖th column of X. In contrast, because

|𝐼| ≥ 2, the set 𝑃 2
𝑖 is an interval with strictly positive length for each 𝑖 ∈ 𝐼 (it

is either [−𝜆, 0] or [0, 𝜆], depending on whether 𝛽𝑖 < 0 or 𝛽𝑖 > 0, respectively).

Therefore, 𝜕𝑓2(𝛽) ̸⊆ 𝜕𝑓1(𝛽), as claimed.

Fix an arbitrary 𝑗 ∈ 𝐼. Per the above argument, we must have that ⟨X𝑗,X𝛽−

y⟩ + (𝜂 + 𝜆) sgn(𝛽𝑗) ̸= 0 or ⟨X𝑗,X𝛽 − y⟩ + (𝜂 + 𝜆) sgn(𝛽𝑗) ̸= 𝜆 sgn(𝛽𝑗). In

the former case, set 𝛾𝑖 = 0, while in the latter case we define 𝛾𝑖 = 𝜆 sgn(𝛽𝑖)

(if both are true, either choice suffices). It is clear that it is possible to fill in

the remaining entries of 𝛾𝑖 for 𝑖 ∈ 𝐼 ∖ {𝑗} in a straightforward manner so that

𝛾 ∈ 𝜕𝑓2(𝛽). Further, by construction, 𝛾 /∈ 𝜕𝑓1(𝛽), as desired.

2. Now consider the case when |𝛽(𝑘)| = 0. Using the preceding argument, we

see that 𝑃 1
𝑖 is the interval [⟨X𝑖,X𝛽 − y⟩ − (𝜂 + 𝜆), ⟨X𝑖,X𝛽 − y⟩ + 𝜂 + 𝜆] for

𝑖 ∈ 𝐼. In contrast, 𝑃 2
𝑖 is the interval [−𝜆, 𝜆] for 𝑖 ∈ 𝐼. If for all 𝑖 ∈ 𝐼 one has

that 𝑃 2
𝑖 ⊆ 𝑃 1

𝑖 , then the choice of 𝛾𝑖 for 𝑖 ∈ 𝐼 is obvious: any optimal extreme

point 𝛾 of the problem will suffice. (Note here that it may or may not be that

𝜕𝑓2(𝛽) ⊆ 𝜕𝑓1(𝛽). This entirely depends on 𝛽𝑖 for 𝑖 /∈ 𝐼.)
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Therefore, we may assume that there exists some 𝑗 ∈ 𝐼 so that 𝑃 2
𝑗 ̸⊆ 𝑃 1

𝑗 . (It

follows immediately that 𝜕𝑓2(𝛽) ̸⊆ 𝜕𝑓1(𝛽).) We must have that ⟨X𝑗,X𝛽−y⟩−

(𝜂 + 𝜆) > −𝜆 or ⟨X𝑗,X𝛽 − y⟩+ (𝜂 + 𝜆) < 𝜆. In the former case, set 𝛾𝑖 = −𝜆,

while in the latter case we define 𝛾𝑖 = 𝜆 (if both are true, either choice suffices).

It is clear that it is possible to fill in the remaining entries of 𝛾𝑖 for 𝑖 ∈ 𝐼 ∖ {𝑗}

in a straightforward manner so that 𝛾 ∈ 𝜕𝑓2(𝛽). By construction, 𝛾 /∈ 𝜕𝑓1(𝛽),

as desired.

In either case, we have that one can choose 𝛾 ∈ 𝜕𝑓2(𝛽) so that 1) 𝛾 is an extreme

point of the feasible region {𝛾 :
∑︀

𝑖 |𝛾𝑖| ≤ 𝜆𝑘, |𝛾𝑖| ≤ 𝜆 ∀𝑖} and that 2) 𝛾 ∈ 𝜕𝑓2(𝛽) ∖

𝜕𝑓1(𝛽) whenever 𝜕𝑓2(𝛽) ̸⊆ 𝜕𝑓1(𝛽). This concludes the analysis; thus, we have shown

the validity (and computational feasibility) of the without loss of generality claim

present in Algorithm 3. Indeed, per our analysis, Step 2 in Algorithm 3 can be

solved in 𝑂(𝑝min{𝑛, 𝑝} + 𝑝 log 𝑝) operations (sorting of 𝛽 in 𝑂(𝑝 log 𝑝) followed by

𝑂(𝑝) conditionals and gradient evaluation in 𝑂(𝑛𝑝)). In reality, if we keep track of

gradients in Step 3, there is no need to recompute gradients in Step 2, and therefore

in practice Step 2 is of the same complexity of sorting a list of 𝑝 numbers. (We assume

that X′y has been computed offline and store throughout for simplicity.)

C.2.3 Algorithm 4, Step 3

Here we show how to solve Step 3 in Algorithm 4, namely, solving the orthogonal

design trimmed Lasso problem

min
𝛾

𝜆𝑇𝑘 (𝛾) +
𝜎

2
‖𝛽 − 𝛾‖22 − ⟨q,𝛾⟩, (C.1)
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where 𝛽 and q are fixed. This is solvable in closed form. Let 𝛼 = 𝛽 + q/𝜎. First

observe that we can rewrite (C.1), up to an irrelevant additive constant, as

(C.1) ≡ min
𝛾

𝜆𝑇𝑘 (𝛾) + 𝜎‖𝛾 −𝛼‖22/2

= min
𝛾,z:∑︀

𝑖 𝑧𝑖=𝑝−𝑘
z∈{0,1}𝑝

𝜆⟨z, |𝛾|⟩+ 𝜎‖𝛾 −𝛼‖22/2

= min
𝛾,z:∑︀

𝑖 𝑧𝑖=𝑝−𝑘
z∈{0,1}𝑝

∑︁
𝑖

(︀
𝜆𝑧𝑖|𝛾|+ 𝜎(𝛾𝑖 − 𝛼𝑖)

2/2
)︀
.

The penultimate step follows via Lemma 1. Per this final representation, the solution

becomes clear. In particular, let 𝐼 be a set of 𝑘 indices of 𝛼 corresponding to 𝛼(1),

𝛼(2), . . . , 𝛼(𝑘). (If |𝛼(𝑘)| = |𝛼(𝑘+1)|, we break ties arbitrarily.) Then a solution 𝛾* to

(C.1) is

𝛾*
𝑖 =

⎧⎨⎩ 𝛼𝑖, 𝑖 ∈ 𝐼

soft𝜆/𝜎(𝛼𝑖), 𝑖 /∈ 𝐼,

where soft𝜆/𝜎(𝛼𝑖) = sgn(𝛼𝑖) |𝛼𝑖 − 𝜆/𝜎|.

C.2.4 Computational details

For completeness and reproducibility, we also include all computational details. For

Figure 4-3, the following parameters were used to generate the test instance: 𝑛 = 100,

𝑝 = 20, SNR = 10, julia seed = 1, 𝜂 = 0.01, 𝑘 = 2. The example was generated

from the following true model:

1. 𝛽true is a vector with ten entries equal to 1 and all others equal to zero. (So

‖𝛽true‖0 = 10.)

2. covariance matrix Σ is generated with Σ𝑖𝑗 = .8|𝑖−𝑗|.

3. X ∼ 𝑁(0,Σ).

4. 𝜖𝑖
i.i.d.∼ 𝑁(0,𝛽′

0Σ𝛽0/SNR)

5. y is then defined as X𝛽0 + 𝜖
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The 100 examples generated for Figure 4-4 were using the following parameters:

𝑛 = 100, 𝑝 = 20, SNR = 10, julia seed ∈ {1, . . . , 100}, 𝜂 = 0.01, 𝑘 = 2, bigM = 20.

MIO using Gurobi solver. Max iterations: alternating minimization—1000; ADMM

(inner)—2000; ADMM (outer)—10000. ADMM parameters: 𝜎 = 1, 𝜏 = 0.9. The

examples themselves had the same structure as the previous example. The optimal

gaps shown are relative to the objective in (4.47). The averages are computed as geo-

metric means (relative to optimal 100%) across the 100 instances, and then displayed

relative to the optimal 100%.
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Appendix D

Supplemental Code

This appendix contains sample code for several of the algorithms described herein.

At the time of writing, this code is also available at

github.com/copenhaver/⋆,

where ⋆ ∈ {factoranalysis, trimmedlasso}. For archival purposes, that code is

included here as well. The code is as follows:

1. For Chapter 2, there are two files: funcs.R contains necessary functions, while

demo.R carries out a basic demonstration of the code functionality.

2. For Chapter 4, there are three files: funcs.jl contains necessary functions,

demo.jl carries out a basic demonstration of the code functionality, and

example-creator.jl generates example instances for testing.

D.1 Factor Analysis

funcs.R
# An R implementation of Algorithm 1 from Chapter 2

FA <- function(S, factors, maxiter.inner = 1000, maxiter.outer = 1000, rho = .01,
tol.inner = 1e-9, tol.outer = 1e-5){→˓

# Input: a covariance matrix S and the desired number of factors to perform
factor analysis.→˓

# Other parameters: optimal algorithmic parameters with defaults
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# Output: decomposition S = T + P + N, where T is positive-semidefinite (PSD)
with rank <= factors,→˓

# P is diagonal and PSD, and N is PSD (N is the "noise" component)

### algorithmic parameters:
# maxiter.* : maximum number of * iterations
# rho : scaling parameter in ADMM
# tol.* : * optimality tolerance

# verify that S is indeed a matrix

if (!(is.matrix(S))) {
stop(simpleError("Inputted covariance matrix is not in matrix format. Convert

using as.matrix( )."));→˓

}

# verify that S is square

if (dim(S)[1] != dim(S)[2]) {
stop(simpleError("Inputted covariance matrix is not square."));

}

# verify (approximate symmetry of S)

if (norm(S-t(S), type="F") > 1e-10) {
stop(simpleError("Inputted covariance matrix is not symmetric."));

}

# problem parameters
p = dim(S)[1];

# verify that number of factors is valid (between 0 and p, inclusive)

if (!(as.integer(factors) == factors | factors < 0 | factors > p)) {
stop(simpleError("Number of factors is not valid."));

}

# key variables
phi = matrix(0, nrow = p, ncol = 1);
W = matrix(1, nrow = p, ncol = p);

# useful constants
zp = matrix(0, nrow = p, ncol = 1); #matrix of zeros
dS = diag(S); # diagonal of S
weig = diag(c(rep(0,factors),rep(1,p-factors))); #weighting used on

eigenvalues→˓

# "inner" phi, Lambda, and Nu (for inner iterations)
lphi = rep(0, p);
lLambda = matrix(0, nrow = p, ncol = p);
lNu = matrix(0, nrow = p, ncol = p);

bobj = Inf; # best objective
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oerr = Inf; # "outer" error for problem wrt W
opobj = Inf; # previous (outer) objective
ocobj = 0; # current (outer) objective

ocount = 0; # outer counter
while ( (oerr > tol.outer) & (ocount < maxiter.outer) ) {

### solve wrt phi

ierr = Inf; # "inner" error for problem wrt Phi (which requires an ADMM)
pobj = Inf; # previous objective
cobj = 0; # current objective

dW = diag(W);
dWs = dW/rho;

count = 0;
while ( (ierr > tol.inner) & (count < maxiter.inner) ) {

## first: update lphi -- closed form

lphi = pmax(zp,dS - diag(lLambda) + dWs - diag(lNu)/rho);

## now: update lLambda -- eigendecomposition (projection on PSD)

e = eigen(S - diag(lphi) - lNu/rho,T); # "T" for symmetric argument

lLambda = e$vectors %*% diag(as.vector(pmax(zp,as.vector(e$values)))) %*%
t(e$vectors) # would normally need inverse, but can just do tranpose
since unitary.

→˓

→˓

## then: update lNu -- closed form (gradient update)

lNu = lNu + rho * (lLambda - S + diag(as.vector(lphi)));

## finally: update ierr (error) = norm of (lLambda - (S-lph))

pobj = cobj;
cobj = sum(dW*lphi);
relimp = abs(cobj-pobj)/(abs(pobj)+.01)*100;
ierr = max( norm( lLambda - S + diag(as.vector(lphi)) , type = "F") ,

relimp );→˓

# print(c(ierr,count));
count = count + 1;

}

# update phi to be lphi

phi = lphi;

### solve wrt W --- requires eigendecomp of S - diag(phi)

e = eigen(S - diag(as.vector(phi)), T );
W = e$vectors %*% weig %*% t(e$vectors); # would normally need inverse, but

can just do tranpose since hermitian (real unitary)→˓
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bobj = min(bobj, sum(W*(S-diag(as.vector(phi)))) ); # second term is the
inner product of W and S-Phi→˓

opobj = ocobj;
ocobj = sum(W*(S-diag(as.vector(phi))));

oerr = abs(ocobj-opobj)/(abs(opobj)+.01)*100;
ocount = ocount + 1;

print(c(ocount,bobj));
}

e = eigen(S - diag(as.vector(phi)), T );
Theta = e$vectors %*% diag(c(e$values[1:factors],rep(0,p-factors))) %*%

t(e$vectors); # would normally need inverse, but can just do tranpose since
hermitian (real unitary)

→˓

→˓

return(list(Theta=Theta,Phi=as.vector(phi))); # return matrix Theta (T) and Phi
(P)→˓

}

demo.R
# A demo of R implementation of Algorithm 1 from Chapter 2

######################

# generate random Theta and Phi (class A_1 in BCM17)

p = 20
r = 2

# create matrices THETA and PHI

L = matrix(rnorm(p*r), ncol = r)
THETA = L %*% t(L)
PHI = runif(p)
PHI = (sum(diag(THETA))/sum(PHI))*PHI # normalized so that equal proportion of

common and individual variances→˓

# covariance matrix S is sum of THETA and PHI

S = THETA + diag(PHI)

#### Now perform factor analysis

res = FA(S,2) # FA function from code.R

# See if you recover true Theta and true Phi

norm(THETA - res$Theta, type="F") # in Frobenius norm
norm(PHI - as.matrix(res$Phi), type="F")
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D.2 Trimmed Lasso

funcs.jl

# A julia implementation of various algorithms from Chapter 4

##########################
## Import packages ##
##########################

using JuMP

##################################
## Auxiliary functions ##
##################################

function aux_lassobeta(n::Int,p::Int,k::Int,mu::Float64,lambda::Float64,
XX::Array{Float64,2},loc_b_c::Array{Float64,1},
grad_rest::Array{Float64,1},max_iters=10000,tol=1e-3)

# solve subproblem wrt beta, with (outer) beta as starting point

MAX_ITERS = max_iters;
TOL = tol;

lbc = copy(loc_b_c);
lbp = loc_b_c - ones(p);
tcur = 1./norm(XX);
iterl = 0;

while (iterl < MAX_ITERS) && ( norm(lbc - lbp) > TOL )

lbp = lbc;

gg = lbc - tcur*(XX*lbc + grad_rest);

lbc = sign(gg).*max(abs(gg)-tcur*(mu+lambda)*ones(p),zeros(p));

#tcur = TAU*tcur;

iterl = iterl + 1;

end

return(lbc);
end

function aux_admmwrtbeta(n::Int,p::Int,k::Int,mu::Float64,lambda::Float64,
XX::Array{Float64,2},loc_b_c::Array{Float64,1},
grad_rest::Array{Float64,1},sigma,max_iters=10000,tol=1e-3)

# solve subproblem wrt beta, with (outer) beta as starting point

MAX_ITERS = max_iters;
TOL = tol;
SIGMA = sigma;
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lbc = copy(loc_b_c);
lbp = loc_b_c - ones(p);
tcur = 1./norm(XX+SIGMA*eye(p));
iterl = 0;

while (iterl < MAX_ITERS) && ( norm(lbc - lbp) > TOL )

lbp = lbc;

gg = lbc - tcur*((XX+SIGMA*eye(p))*lbc + grad_rest);

lbc = sign(gg).*max(abs(gg)-tcur*mu*ones(p),zeros(p));

#tcur = TAU*tcur;

iterl = iterl + 1;

end

return(lbc);
end

##################################
## Exact methods (MIO-based) ##
##################################

### SOS-1 formulation

function tl_exact(p,k,y,X,mu,lambda,solver)
#####
# Inputs (required arguments):
# data matrix `X` and response `y`
# `p` is the number of columns of X (i.e., the number of features).
# `k` is the sparsity parameter on the trimmed Lasso
# `mu` is the multipler on the usual Lasso penalty: mu*sum_i |beta_i|
# `lambda` is the multipler on the trimmed Lasso penalty: lambda*sum_{i>k}

|beta_{(i)}|→˓

# `solver` is the desired mixed integer optimization solver. This should
have SOS-1 capabilities (will return error otherwise).→˓

# `bigM` is an upper bound on the largest magnitude entry of beta. if the
constraint |beta_i|<= bigM is binding at optimality, an error will be
thrown, as this could mean that the value of `bigM` given may have been too
small.

→˓

→˓

→˓

# Output: estimator beta that is optimal to the problem
# minimize_beta 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +

lambda*T_k(beta)→˓

# Method: exact approach using SOS-1 constraints and mixed integer optimization
(e.g. using commercial solver Gurobi)→˓

#####

if ( p != size(X)[2] )
println("Specified p is not equal to row dimension of X. Halting

execution.");→˓
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return;
end

m = Model(solver = solver);

@variable(m, gamma[1:p] >= 0);
@variable(m, beta[1:p] );
@variable(m, z[1:p], Bin);
@variable(m, pi[1:p] >= 0);

@constraint(m, gamma[i=1:p] .>= beta[i] );
@constraint(m, gamma[i=1:p] .>= -beta[i] );
@constraint(m, sum(z) == p - k );
@constraint(m, pi .<= gamma );

# add SOS-1 constraints to the model; if the solver supplied does not support
SOS-1 constraints, JuMP will throw an error; we do not catch that here so
it will raise to the user

→˓

→˓

for i=1:p
addSOS1(m, [z[i],pi[i]]);

end

# add quadratic objective; again, if the solver cannot handle such an
objective, an error will be raised→˓

@objective(m, Min, dot(beta,.5*X'*X*beta) - dot(y,X*beta)+dot(y,y)/2
+ (mu+lambda)*sum(gamma)-lambda*sum(pi) )

solve(m);

return getvalue(beta);

end

### big-M formulation

function tl_exact_bigM(p,k,y,X,mu,lambda,solver,bigM,throwbinding=true)
#####
# Inputs (required arguments):
# data matrix `X` and response `y`
# `p` is the number of columns of X (i.e., the number of features).
# `k` is the sparsity parameter on the trimmed Lasso
# `mu` is the multipler on the usual Lasso penalty: mu*sum_i |beta_i|
# `lambda` is the multipler on the trimmed Lasso penalty: lambda*sum_{i>k}

|beta_{(i)}|→˓

# `solver` is the desired mixed integer optimization solver. This should
have SOS-1 capabilities (will return error otherwise).→˓

# `bigM` is an upper bound on the largest magnitude entry of beta. if the
constraint |beta_i|<= bigM is binding at optimality, an error will be
thrown, as this could mean that the value of `bigM` given may have been too
small.

→˓

→˓

→˓

# Optional arguments:
# `throwbinding`---default value of `true`. To disable the built-in error

functionality that occurs when the `bigM` value is potentially too small,
set `throwbinding=false`.

→˓

→˓
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# Output: estimator beta that is optimal to the problem
# minimize_beta 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +

lambda*T_k(beta)→˓

# Method: exact approach using bigM constraints and mixed integer optimization
(e.g. using commercial solver Gurobi)→˓

# Because bigM formulations are more easily used by solvers, this approach is
much easier to use if you have a specific preference on which solver you
use. However, note that the performance of this approach, much like the
performance of solvers for any big-M-based optimization problem, is highly
dependent upon tuning of the value of M. Therefore, if you do not have a
good sense of what value to set for M and you have access to a solver that
handles SOS-1 constraints, we recommend using the SOS-1-based approach
(given in function tl_exact )

→˓

→˓

→˓

→˓

→˓

→˓

→˓

#####

if ( p != size(X)[2] )
println("Specified p is not equal to row dimension of X. Halting

execution.");→˓

return;
end

if !( bigM >= 0 && bigM < Inf )
println("Invalid big-M value supplied. Halting execution.");

end

m = Model(solver = solver);

@variable(m, gamma[1:p] >= 0);
@variable(m, a[1:p] >= 0);
@variable(m, beta[1:p] );
@variable(m, z[1:p], Bin);

@constraint(m, gamma[i=1:p] .>= beta[i] );
@constraint(m, gamma[i=1:p] .>= -beta[i] );
@constraint(m, a[i=1:p] .>= bigM*z[i] + gamma[i] - bigM );
@constraint(m, beta[1:p] .<= bigM );
@constraint(m, beta[1:p] .>= -bigM );
@constraint(m, sum(z[i] for i=1:p) == p - k );

@objective(m, Min, dot(beta,.5*X'*X*beta) - dot(y,X*beta)+dot(y,y)/2
+ sum{mu*gamma[i]+lambda*a[i], i=1:p})

solve(m);

binding = false;

for i=1:p
if abs(getvalue(beta[i])) >= bigM - 1e-3

binding = true
end

end

if (binding && throwbinding)
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println("\t\tWarning: big-M constraint is binding -- you should increase
big-M and resolve. Otherwise, re-use same big-M and set optional argument
`throwbinding=false`.");;

→˓

→˓

else
return getvalue(beta);

end
end

##################################
## Heuristic (convex) methods ##
##################################

### alternating minimization

function tl_apx_altmin(p,k,y,X,mu,lambda,lassosolver=aux_lassobeta,
max_iter=10000,rel_tol=1e-6,print_every=200)

#####
# Inputs:
# data matrix `X` and response `y`
# `p` is the number of columns of X (i.e., the number of features).
# `mu` is the multipler on the usual Lasso penalty: mu*sum_i |beta_i|
# `lambda` is the multipler on the trimmed Lasso penalty: lambda*sum_{i>k}

|beta_{(i)}|→˓

# Optional arguments:
# `lassosolver`---default value of `aux_lassobeta`, which is a simple Lasso

problem solver whose implementation is included above as an auxiliary
function. If you would like to solve the Lasso subproblems using your own
Lasso solver, you should change this argument. Note that the `lassosolver`
values expect as function which has the following characteristics:

→˓

→˓

→˓

→˓

## Input arguments will be as follows:
## `n` - dimension of row size of `X`;
## `p` - as in outer problem;
## `k` - as in outer problem;
## `mu` - as in outer problem;
## `lambda` - as in outer problem;
## `XX` - value of transpose(X)*X (can be precomputed and stored

offline);→˓

## `loc_b_c` - initial value of beta from which to initial the
algorithm;→˓

## `grad_rest` - the remaining part of the gradient term (-X'*y-
gamma).→˓

## Output: solution beta to the Lasso problem
## minimize_beta norm(y-X*beta)^2 +(mu+lambda)*sum_i |beta_i| +

dot(beta,gamma) (gamma is the solution from the alternating problem, as
supplied in the additional gradient information).

→˓

→˓

# `max_iter`---default value of 10000. Maximum number of alternating
iterations for the algorithm.→˓

# `rel_tol`---default value of 1e-6. The algorithm concludes when the
relative improvement
(current_objective-previous_objective)/(previous_objective + .01) is less
than `rel_tol`. The additional `0.01` in the denominator ensures no
numerical issues.

→˓

→˓

→˓

→˓

# `print_every`---default value of 200. Controls amount of amount output.
Set `print_every=Inf` to suppress output.→˓
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# Output: estimator beta that is a *possible* solution for the problem
# minimize_beta 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +

lambda*T_k(beta)→˓

# Method: alternating minimization approach which finds heuristic solutions to
the trimmed Lasso problem. See details in Algorithm 3 (Chapter 4)→˓

#####

AM_ITER = max_iter;
REL_TOL = rel_tol;
PRINT_EVERY = print_every; # AM will print output on every (PRINT_EVERY)th

iteration→˓

beta = randn(p);
gamma = zeros(p);

XpX = X'*X; # can separate computation if desired

prev_norm = 0;
prev_obj = 0;

for I=0:AM_ITER

# solve wrt gamma (by sorting beta)

II = zeros(p);
sto = 0; # number set to "one" (really += lambda)

bk = sort(abs(beta))[p-k+1];

for i=1:p
if (abs(beta[i]) > bk)

gamma[i] = lambda*sign(beta[i]);
sto = sto + 1;

else
if (abs(beta[i]) < bk)

gamma[i] = 0;
else

II[i] = 1;
end

end
end

if sum(II) == 0
println("ERROR!");

else
if sum(II) == 1

gamma[indmax(II)] = lambda*sign(beta[indmax(II)]);
sto = sto + 1;

else # |II| >= 2, so need to use special cases as detailed in Appendix C
if bk > 0

j = indmax(II); # arbitrary one from II ---> should probably choose
randomly amongst them→˓

if dot(X[:,j],X*beta-y) + (mu+lambda)*sign(beta[j]) != 0
gamma[j] = 0;
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else
gamma[j] = lambda*sign(beta[j]);
sto = sto + 1;

end
# assign rest of gamma
for i=randperm(p)

if (sto < k) && (II[i] > 0.5)
gamma[i] = sign(randn())*lambda;
sto = sto + 1;

end
end

else # so bk == 0
# need to check interval containment over indices in II
notcontained = false;
corrindex = -1;
corrdot = Inf;
for i=randperm(p)

if II[i] > 0.5 # i.e. == 1
dp = dot(X[:,i],X*beta - y);
if (abs(dp) > mu)

notcontained = true;
corrindex = i;
corrdot = dp;
break;

end
end

end

if notcontained
j = corrindex;
if corrdot > mu

gamma[j] = -lambda;
sto = sto + 1;

else
gamma[j] = lambda;
sto = sto + 1;

end
# fill in rest of gamma
for i=randperm(p)

if (sto < k) && (II[i] > 0.5) && (i != j)
gamma[i] = sign(randn())*lambda;
sto = sto + 1;

end
end

else # any extreme point will do
for i=randperm(p)

if (sto < k) && (II[i] > 0.5)
gamma[i] = sign(randn())*lambda;
sto = sto + 1;

end
end

end
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end
end

end

# ensure that sto == k

if sto != k
println("ERROR. EXTREME POINT NOT FOUND. ABORTING.");
II(1)

end

# solve wrt beta

beta = lassosolver(n,p,k,mu,lambda,XpX,beta,-X'*y- gamma);

# perform updates as necessary

cur_obj = .5*norm(y-X*beta)^2 + mu*norm(beta,1)
+lambda*sum(sort(abs(beta))[1:p-k]);→˓

if abs(cur_obj-prev_obj)/(prev_obj+.01) < REL_TOL # .01 in denominator is for
numerical tolerance with zero→˓

println(I);
break; # end AM loops

end

prev_obj = cur_obj;

end

return copy(beta);

end

### ADMM

function tl_apx_admm(p,k,y,X,mu,lambda,
max_iter=2000,rel_tol=1e-6,sigma=1.,print_every=200)

#####
# Inputs:
# data matrix `X` and response `y`
# `p` is the number of columns of X (i.e., the number of features).
# `mu` is the multipler on the usual Lasso penalty: mu*sum_i |beta_i|
# `lambda` is the multipler on the trimmed Lasso penalty: lambda*sum_{i>k}

|beta_{(i)}|→˓

# Optional arguments:
# `max_iter`---default value of 2000. Maximum number of (outer) ADMM

iterations for the algorithm.→˓

# `rel_tol`---default value of 1e-6. The algorithm concludes when the
relative improvement
(current_objective-previous_objective)/(previous_objective + .01) is less
than `rel_tol`. The additional `0.01` in the denominator ensures no
numerical issues.

→˓

→˓

→˓

→˓
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# `sigma`---default value of 1.0. This is the augmented Lagranian penalty as
shown in Algorithm 4.→˓

# `print_every`---default value of 200. Controls amount of amount output.
Set `print_every=Inf` to suppress output.→˓

# Output: estimator beta that is a *possible* solution for the problem
# minimize_beta 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +

lambda*T_k(beta)→˓

# Method: ADMM approach which finds heuristic solutions to the trimmed Lasso
problem. See details in Algorithm 4 (Chapter 4)→˓

#####

ADMM_ITER = max_iter;
REL_TOL = rel_tol;
# TAU = tau; ---> Could add the scaling parameter tau, but we will neglect to

include that in our implementation→˓

SIGMA = sigma;
PRINT_EVERY = print_every; # AM will print output on every (PRINT_EVERY)th

iteration→˓

XpX = X'*X; # can separate computation if desired

# ADMM vars
beta = zeros(p);
gamma = zeros(p);
q = zeros(p);

# <solve ADMM>

prev_norm = 0;
prev_obj = 0;

for I=0:ADMM_ITER

beta = aux_admmwrtbeta(n,p,k,mu,lambda,XpX,beta,q-X'*y- SIGMA*gamma,SIGMA);;

### solve wrt gamma

aux_sb = min(SIGMA/2*(beta.^2) + q.*beta+(1/2/SIGMA)*(q.^2) ,
(lambda^2)/(2*SIGMA)*ones(p) +
lambda*abs(beta+q/SIGMA+lambda/SIGMA*ones(p)),

→˓

→˓

(lambda^2)/(2*SIGMA)*ones(p) +
lambda*abs(beta+q/SIGMA-lambda/SIGMA*ones(p)));→˓

sb = sort([(aux_sb[i],i) for i=1:p]);
zz = zeros(p);
for i=1:(p-k)

zz[sb[i][2]] = 1;
end

for i=1:p
if zz[i] == 0

gamma[i] = copy(beta[i]) + copy(q[i])/SIGMA;
else # zz[i] = 1

aar = [(SIGMA/2*(beta[i]^2) + q[i]*beta[i]+(1/2/SIGMA)*(q[i]^2) , 0 ),
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((lambda^2)/(2*SIGMA) + lambda*abs(beta[i]+q[i]/SIGMA+lambda/SIGMA),
beta[i] + q[i]/SIGMA + lambda/SIGMA),→˓

((lambda^2)/(2*SIGMA) + lambda*abs(beta[i]+q[i]/SIGMA-lambda/SIGMA),
beta[i] + q[i]/SIGMA - lambda/SIGMA)];→˓

gamma[i] = sort(aar)[1][2];
end

end

q = copy(q) + SIGMA*(beta-gamma);

cur_norm = norm(beta-gamma);
cur_obj = .5*norm(y-X*beta)^2 + mu*norm(beta,1)

+lambda*sum(sort(abs(beta))[1:p-k]);→˓

if abs(cur_norm-prev_norm)/(prev_norm+.01) +
abs(cur_obj-prev_obj)/(prev_obj+.01) < REL_TOL # .01 in denominator is
for numerical tolerance with zero

→˓

→˓

break; # end ADMM loops
end

prev_norm = cur_norm;
prev_obj = cur_obj;

end

# </ end ADMM>

return copy(gamma);

end

### convex envelope

function tl_apx_envelope(p,k,y,X,mu,lambda,solver)
#####
# Inputs:
# data matrix `X` and response `y`
# `p` is the number of columns of X (i.e., the number of features).
# `mu` is the multipler on the usual Lasso penalty: mu*sum_i |beta_i|
# `lambda` is the multipler on the trimmed Lasso penalty: lambda*sum_{i>k}

|beta_{(i)}|→˓

# `solver` is the desired linear optimization solver.
# Optional arguments: none
# Output: estimator beta that is a *possible* solution for the problem
# minimize_beta 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +

lambda*T_k(beta)→˓

# beta is found by solving (to optimality) the following linear optimization
problem:→˓

# minimize_{e,beta} 0.5*norm(y-X*beta)^2 + mu*sum_i |beta_i| +
beta*e→˓

# subject to e >= 0;
# e >= sum_i |beta_i| - k;
# As discussed in Chapter 4, this is the convex relaxation of the first problem

when using convex envelopes.→˓
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# Method: convexification approach which finds heuristic solutions to the
trimmed Lasso problem. See details in Chapter 4.→˓

#####

m = Model(solver = solver);

@defVar(m, tau >= 0);
@defVar(m, gamma[1:p] >= 0);
@defVar(m, beta[1:p] );
@defVar(m, envelope >= 0);

@addConstraint(m, gamma[i=1:p] .>= beta[i] );
@addConstraint(m, gamma[i=1:p] .>= -beta[i] );
@addConstraint(m, envelope >= sum{lambda*gamma[i], i=1:p} - lambda*k); #convex

envelope!→˓

#@addConstraint(m, norm2{y[i] - sum{X[i,j]*beta[j], j=1:p} , i=1:n} <= tau);
@addConstraint(m, dot(beta,.5*X'*X*beta) - dot(y,X*beta)+dot(y,y)/2 <= tau);

@setObjective(m, Min, tau + sum{mu*gamma[i], i=1:p} + envelope)

solve(m);

return getvalue(beta);

end

example-creator.jl

# Instance creator for use in demo.jl.

##########################
## Import packages ##
##########################

using Distributions

function instance_creator(n,p,k,SNR,egclass,seed=1)

srand(seed)

SS = eye(p,p);
beta0 = zeros(p);

if egclass == 1
rho = 0.8;
ir = round(p/k);
for i=1:p

if i%ir == 1 # then beta0[i] = 1
beta0[i] = 1;

end
for j = 1:p

SS[i,j] = rho^abs(i-j);
end
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end

end
if egclass == 2

for i=1:5
beta0[i] = 1;

end
end
if egclass == 3

for i=1:10
beta0[i] = 1/2 + 10/9*.95*(i-1);

end
end
if egclass == 4

for i=1:6
beta0[i] = -14 + 4*i;

end

end
if egclass == 5

for i=1:6
beta0[i] = 1/2 + 10/9*.95*(i-1)^5;

end
beta0 = beta0/norm(beta0);

end

### for all, define y = Xb+eps

sig = sqrt(beta0'*SS*beta0/SNR)[1,1];
eps = rand(Normal(0,sig),n);
X = rand(MvNormal(SS),n)';

# normalize columns of X to have ell2 norm of 1

for i=1:p
X[:,i] = X[:,i]/norm(X[:,i]);

end

y = X*beta0 + eps;

return y, X, beta0;
end

demo.jl

# A demo of julia implementation of algorithms contained in code.jl

##############################
## Import packages and code ##
##############################

include("code.jl");
include("example-creator.jl");
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########################
## Example Parameters ##
########################

n = 100;
p = 20;
k = 10;
SNR = 10.;
seed = 1;
egclass = 1;
mu = .01;
lambda = .01;
EPS = 1e-3;

### if you have the Gurobi solver use the following:

using Gurobi
SOLVER = GurobiSolver(OutputFlag=1); # possible options of interest:

OutputFlag=1,TimeLimit=100000,Heuristics=.05→˓

#### otherwise, use the free open-source solver Couenne (uncomment following two
lines):→˓

# using CoinOptServices
# SOLVER = OsilBonminSolver();

##################################
## Create example ##
##################################

# set seed for reproducibility

srand(1);

y, X, beta0 = instance_creator(n,p,k,SNR,egclass);

######################################
## Solve exact and heuristic models ##
######################################

beta_hat_exact = tl_exact(p,k,y,X,mu,lambda,SOLVER);

# if solver you are using cannot handle SOS-1 constraints, you may need to use
the big-M formulation: tl_exact_bigM→˓

beta_hat_altmin = tl_apx_altmin(p,k,y,X,mu,lambda);

beta_hat_admm = tl_apx_admm(p,k,y,X,mu,lambda);

beta_hat_envelope = tl_apx_envelope(p,k,y,X,mu,lambda,SOLVER);
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