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Abstract

Recent advances in machine learning and optimization hold much promise for in-
fluencing real-world decision making, especially in areas such as health care where
abundant data are increasingly being collected. However, imperfections in the data
pose a major challenge to realizing their full potential: missing values, noisy obser-
vations, and unobserved counterfactuals all impact the performance of data-driven
methods.

In this thesis, with a fresh perspective from optimization, I revisit some of the
well-known problems in statistics and machine learning, and develop new methods for
prescriptive analytics. I show examples of how common machine learning tasks, such
as missing data imputation in Chapter 2 and classification in Chapter 3, can benefit
from the added edge of rigorous optimization formulations and solution techniques.
In particular, the proposed opt.impute algorithm improves imputation quality by
13.7% over state-of-the-art methods, as averaged over 95 real data sets, which leads
to further performance gains in downstream tasks. The power of prescriptive analytics
is shown in Chapter 4 by our approach to personalized diabetes management, which
identifies response patterns using machine learning and individualizes treatments via
optimization.

These newly developed machine learning algorithms not only demonstrate im-
proved performance in large-scale experiments, but are also applied to solve the prob-
lems in health care that motivated them. Our simulated trial for diabetic patients
in Chapter 4 demonstrates a clinically relevant reduction in average hemoglobin A1c
levels compared to current practice. Finally, when predicting mortality for cancer
patients in Chapter 5, applying opt.impute on missing data along with the cutting-
edge algorithm Optimal Classification Tree on a rich data set prepared from electronic
medical records, we are able to accurately risk stratify patients, providing physicians
with interpretable insights and valuable risk estimates at time of treatment decisions
and end-of-life planning.
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Chapter 1

Introduction

1.1 Background

Despite advances in many areas of medicine, patient treatment has still largely been

one-size-fits-all. This is in part due to the lack of large-scale evidence based studies

that compare treatment effects on the individual level. In fact, historically almost all

clinical trials were designed to test the average treatment effects, rather than indi-

vidual effects [83]. However, mounting clinical evidence shows that patients exhibit

differential responses to drugs. In oncology, for example, recent research has sug-

gested that patients with specific genetic mutations have much higher response rates

to certain targeted therapies [41, 62], which leads to the development of a generation

of new therapies, and a national push toward more precision-based cancer medicine.

In response to the need for better individual-level evidence and regulatory require-

ments, large-scale patient data are increasingly being collected and digitized. It is

often believed that the vast amount of data, if used appropriately, can streamline

care delivery for providers, improve health outcomes for patients, and reduce costs to

the system for payers [79]. Combined with the right analytic tools, promising results

have been observed in academic research in fields such as machine learning and oper-

ations research [16]. Nevertheless, clinical adoption has been low, especially in areas

of personalized treatment recommendations.

Health data are becoming increasingly complex as they rapidly evolve. The
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widespread use of electronic health records (EHR), high-dimensional genomic testing

results, raw imagining, physician notes, and even personal health tracker data, brings

new challenges in utilizing the data effectively. Because many of these data sets are

not carefully curated by humans, as in the cases of traditional clinical trial data,

new issues such as large-scale missingness, outliers, and errors in the entries appear

throughout health data. In addition, the nature of retrospective observational data

inevitably invites issues in confounding variables and the lack of counterfactual out-

comes when one tries to compare effectiveness and draw inference. As a result, to

obtain clinically relevant insights in the presence of these challenges, new machine

learning algorithms must be designed to be robust in such scenarios.

With the overarching goal of advancing data-driven personalized medicine, my

focus in the areas of machine learning algorithms has largely been influenced by the

challenges that medical data analytics have been facing. In particular, as missing

data is prevalent across disease registry, EHR, and genomic data sources, in Chapter

2 I develop a novel missing data imputation method that produces highly accurate

imputations, which lead to superior performance in downstream machine learning

tasks. In Chapter 3, the data uncertainties in both the training features and labels

in classification tasks (for example, mortality prediction) are addressed via robust

formulations of common classifiers with demonstrated improvement in prediction ac-

curacy.

The next two chapters work directly with medical data. Chapter 4 explores the

personalization of type 2 diabetes based on a rich EHR data set, using a novel prescrip-

tive k-nearest neighbors approach that estimates counterfactual outcomes and pre-

scribes optimal treatments. This method demonstrated improved clinical outcomes

under our estimation. Finally in Chapter 5, I present a highly accurate mortality

prediction model among cancer patients based on EHR data from a large national

cancer center, using the imputation method developed in Chapter 2 and a novel

machine learning method Optimal Classification Trees.

12



1.2 Main Contributions

The major contributions in this thesis can be summarized as follows, listed by chapter.

Chapter 2. From Predictive Methods to Missing Data Imputation

• New formulations under a general framework

We pose the missing data problem under a general optimization framework

using a predictive model-based cost function, with examples derived from K-

nearest neighbors, support vector machines, and optimal decision tree models.

This optimization perspective provides fresh insight into the classical missing

data problem and leads to new algorithms for more accurate data imputation.

• Fast and scalable first-order methods

For each imputation model, we derive first-order methods to find high-quality

solutions to the missing data problem following a general imputation algorithm

opt.impute. These methods easily scale to large data sets with convergence

within a few iterations. In addition, the first-order methods are robust and

reliable for arbitrary missing patterns and mixed data types.

• Superior imputation accuracy

We evaluate the methods in computational experiments using 95 real-world data

sets taken from the UCI Machine Learning Repository. Benchmarked against

multiple state-of-the-art imputation methods, opt.impute produces the best

overall imputation in more than 74.9% of all data sets averaged over all missing

data scenarios considered.

• Improved performance in downstream tasks

We demonstrate that the data imputations generated by opt.impute give rise

to substantial improvement in the performance on downstream classification

and regression tasks.

Chapter 3. Robust Classification

13



• Principled framework for robust classification

We present a framework to robustify existing classifiers in a unified and prin-

cipled way, with an aim to build classifiers that model data uncertainties in

features, labels, as well as both features and labels simultaneously. This leads

to tractable problems with relatively small overhead compared to the original

methods. In particular, we use this framework to derive counterparts to SVM,

logistic regression, and CART that are robust to variations in features and labels

in the data.

• Better hyperplane recovery in synthetic experiments

We demonstrate the advantage of robust formulations over regularized and nom-

inal methods through synthetic data experiments with two classes divided by

a separating hyperplane. Compared to nominal and regularized methods, the

robust SVM and logistic regression methods recover the separating hyperplane

classifiers closer to the truth, leading to gains in out-of-sample accuracy espe-

cially in the worst case analysis.

• Improved out-of-sample performance in real-world data sets

We demonstrate that robust classification improves out-of-sample accuracy in

large-scale computational experiments across a sample of 75 data sets from the

UCI Machine Learning Repository. Furthermore, we identify characteristics of

classification problems for which robust methods lead to significant accuracy

gains compared to non-robust methods. Specifically, in problems with high

dimensional data and difficult separability, the value of robustness is even more

prominent.

• Empirical rule for when to use robust classifiers

We provide a simple, empirically-derived decision rule for machine learning prac-

titioners that predicts with high accuracy when robust methods can offer signif-

icant improvement over the nominal methods, with an average improvement in

out-of-sample accuracy of 5.3% for SVM, 4.0% for logistic regression, and 1.3%

for CART. Compared to regularized SVM or logistic regression, the average

14



out-of-sample accuracy improvement of our principled approach to robustness

is 2.1% over regularized SVM and 1.2% over regularized logistic regression when

this rule is satisfied.

Chapter 4. Personalized Diabetes Management Using Electronic Medical

Records

• First of its kind: Personalized treatment recommender for diabetes

Our study is the first of its kind to use machine learning to develop an al-

gorithm for personalized treatment recommendations using electronic medical

records. The algorithm can be integrated into existing EMR systems to dynam-

ically suggest personalized treatment paths for each patient based on historical

records.

• Improved HbA1c level relative to current practice

Based on simulations with data from Boston Medical Center, we estimate that

the use of our algorithm could improve outcomes for patients with type 2 dia-

betes by reducing post-treatment glycated hemoglobin levels significantly rela-

tive to current practice.

• Interactive dashboard with intuitive rationale behind recommenda-

tions

We prototype an intuitive, interactive dashboard that summarizes the evidence

for each recommendation, including the expected distribution of outcomes un-

der alternative treatments. We believe this integrated, interactive approach has

the potential to reshape medical practice across the disease spectrum.

Chapter 5. An Actionable Tool for Mortality Predictions in Cancer Pa-

tients

• Personalized and specific

The tool takes as inputs the EHR of a particular patient, the cancer type and an
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envisioned cancer treatment and outputs the mortality risk adjusted for these

patient characteristics.

• Interpretable and clinically meaningful

A physician can easily understand the reasoning behind the algorithm, illus-

trated as an interpretable decision tree. The model also identifies key predictors

of mortality such as change in weight.

• Evidence-based and data-driven

The tool was informed by EHRs of more than 23,000 patients at a large national

cancer hospital. We included 401 predictors including demographics, medical

and treatment history, laboratory tests, and genomic results.

• Actionable

The clinician can compare different envisioned treatments for a particular pa-

tient with respect to the range of mortality risk and make decisions informed

by these estimates.

• Validated and accurate

We compare the accuracy and the area under the curve (AUC) in unseen patient

data from 2012-2014, with very encouraging results compared to competing

approaches.

• Based on novel development in modern machine learning

The methodology of this study is based on two novel algorithms: a) the predic-

tive tree developed using optimization ideas, [7] and b) the statistical method

for missing data imputation introduced in Chapter 2 [18].
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Chapter 2

From Predictive Methods to

Missing Data Imputation:

An Optimization Approach

This work, co-authored with Dimitris Bertsimas and Colin Pawlowski, is accepted to

the Journal of Machine Learning Research [18].

Missing data is a common problem in real-world settings and for this reason has

attracted significant attention in the statistical literature. We propose a flexible

framework based on formal optimization to impute missing data with mixed con-

tinuous and categorical variables. This framework can readily incorporate various

predictive models including K-nearest neighbors, support vector machines, and de-

cision tree based methods, and can be adapted for multiple imputation. We derive

fast first-order methods that obtain high quality solutions in seconds following a gen-

eral imputation algorithm opt.impute presented here. We demonstrate that our

proposed method improves out-of-sample accuracy in large-scale computational ex-

periments across a sample of 95 data sets taken from the UCI Machine Learning

Repository. In all scenarios (missing completely at random or not, under various

missing percentages), opt.impute produces the best overall imputation in most data

sets benchmarked against five other methods: mean impute, K-nearest neighbors, it-
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erative knn, Bayesian PCA, and predictive-mean matching, with an average reduction

in mean absolute error of 13.7% from the second best method. Moreover, opt.impute

leads to improved out-of-sample performance of learning algorithms trained using the

imputed data, demonstrated by computational experiments on 10 downstream tasks.

For models trained using opt.impute single imputations with 50% data missing, the

average out-of-sample R2 is 0.356 in the regression tasks and the average out-of-

sample accuracy is 86.6% in the classification tasks, compared to 0.312 and 85.2% for

the best benchmark single imputation methods. In the multiple imputation setting,

regression models trained using opt.impute outperform models trained using mul-

tivariate imputation by chained equations (mice) in 84% of missing data scenarios

considered.

2.1 Introduction

The missing data problem is arguably the most common issue encountered by machine

learning practitioners when analyzing real-world data. In many applications ranging

from gene expression in computational biology to survey responses in social sciences,

missing data is present to various degrees. As many statistical models and machine

learning algorithms rely on complete data sets, it is key to handle the missing data

appropriately.

In some cases, simple approaches may suffice to handle missing data. For example,

complete-case analysis uses only the data that is fully known and omits all observa-

tions with missing values to conduct statistical analysis. This works well if only a

few observations contain missing values, and when the data is missing completely at

random, complete-case analysis does not lead to biased results [69]. Alternately, some

machine learning algorithms naturally account for missing data, and there is no need

for preprocessing. For instance, CART and K-means have been adapted for problems

with missing data [29, 95].

In many other situations, missing values need to be imputed prior to running

statistical analyses on the complete data set. The benefit of the latter approach is

18



Table 2.1: List of Imputation Methods

Method Name Category Software Reference
Mean impute (mean) Mean [69]
Expectation-Maximization (EM) EM [40]
EM with Mixture of Gaussians and Multinomials EM [50]
EM with Bootstrapping EM Amelia II [56]
K-Nearest Neighbors (knn) K-NN impute [92]
Sequential K-Nearest Neighbors K-NN [65]
Iterative K-Nearest Neighbors K-NN [34, 27]
Support Vector Regression SVR [96]
Predictive-Mean Matching (pmm) LS MICE [32]
Least Squares LS [26]
Sequential Regression Multivariate Imputation LS [78]
Local-Least Squares LS [64]
Sequential Local-Least Squares LS [101]
Iterative Local-Least Squares LS [33]
Sequential Regression Trees Tree MICE [31]
Sequential Random Forest Tree missForest [85]
Singular Value Decomposition SVD [92]
Bayesian Principal Component Analysis SVD pcaMethods [76, 73]
Factor Analysis Model for Mixed Data FA [63]

that once a set (or multiple sets) of complete data has been generated, practitioners

can easily apply their own learning algorithms to the imputed data set. We focus on

methods for missing data imputation in this work.

Concretely, assume that we are given data X = {x1, . . . ,xn} with missing entries

xid, (i, d) ∈ M. The objective is to impute the values of the missing data that

resemble the underlying complete data as closely as possible. This way, when one

conducts statistical inference or pattern recognition using machine learning methods

on the imputed data, the results should be similar to those obtained if full data were

given. We outline some of the state-of-the-art methods for imputation in Table 2.1

and describe them briefly below. Part of the list is adapted from a review paper by

Liew et al. [67].

The simplest method is mean impute, in which each missing value xid is imputed

as the mean of all observed values in dimension d. Mean impute underestimates the

variance, ignores the correlation between the features, and thus often leads to poor

imputation [69].

Joint modeling asserts some joint distribution on the entire data set. It assumes

a parametric density function (e.g., multivariate normal) on the data given model
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parameters. In practice, model parameters are typically estimated using an Expecta-

tion-Maximization (EM) approach. It finds a solution (often non-optimal) of missing

values and model parameters to maximize the likelihood function. Many software

tools such as the R package Amelia 2 implement the EM method with bootstrapping,

assuming that the data is drawn from a multivariate normal distribution [56]. Joint

modeling provides useful theoretical properties but lacks the flexibility for processing

data types seen in many real applications [93]. For example, when the data includes

continuous and categorical variable types, standard multivariate density functions

often fail at modeling the complexity of mixed data types. However, under the as-

sumption that the categorical variables are independent, we can use mixture models

of Gaussians and Multinomials for imputation [50].

In contrast to joint modeling, fully conditional specification is a more flexible al-

ternative where one specifies the conditional model for each variable; it is especially

useful in mixed data types [93]. To generalize to multivariate settings, a chained

equation process – initializing using random sampling and conducting univariate im-

putations sequentially until convergence – is typically used [32]. Each iteration is a

Gibbs sampler that draws from the conditional distribution on the imputed values.

A simple example of conditional specification is based on regression. Least-Squares

(LS) imputation constructs single univariate regressions, regressing features with

missing values on all of the other dimensions in the data. Each missing value xid

is then imputed as the weighted average of these regression predictions [26, 78]. Al-

ternatively, in the Predictive-Mean Matching method (pmm), imputations are random

samples drawn from a set of observed values close to regression predictions [32]. Im-

putation methods that use Support Vector Regression in place of LS for the regression

step have also been explored [96].

When there is non-linear relationship between the variables, linear regression

based imputation may perform poorly. [31] propose using Classification and Regres-

sion Trees (CART) as the conditional model for imputation. Extensions to random

forests have also shown promising results [85]. These decision tree based imputa-

tion methods are non-parametric approaches that do not rely upon distributional
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assumptions on the data.

One of the most commonly used non-parametric approaches is K-Nearest Neigh-

bors (K-NN) based imputation. This method imputes each missing entry xid as the

mean of the dth dimension of the K-nearest neighbors that have observed values in

dimension d [92]. Some extensions of K-NN include sequential K-NN, which starts by

imputing missing values from observations with the fewest missing dimensions and

continues imputing the next unknown entries reusing the previously imputed val-

ues [65]. Iterative K-NN uses an iterative process to refine the estimates and choose

the nearest neighbors based on the estimates from the previous iteration [34, 27].

The Local-Least Squares method combines ideas from K-NN and LS, imputing each

missing value xid using regression models trained on the K-nearest neighbors of the

point xi [64]. Sequential and iterative variations of Local-Least Squares resemble

their K-NN imputation counterparts [101, 33].

Low dimensional representation-based imputation assumes that the data repre-

sents a noisy observation of a linear combination of a small set of principal compo-

nents or factor variables. In the basic method, singular value decomposition (SVD)

is used on the entire data set to determine the principal eigenvectors. The missing

values are imputed as a linear combination of these eigenvectors. This process is

iteratively repeated until convergence [92, 72]. Bayesian Principal Component Anal-

ysis is similar to SVD imputation but extends the method to incorporate information

from a prior distribution on the model parameters [76, 73]. Some recent development

of a variant of the EM algorithm for factor analysis also provides a missing data

imputation method for mixed data [63].

Thus far, we have only discussed methods for single imputation which generate

one set of completed data that will be used for further statistical analyses. Multiple

imputation, on the other hand, imputes multiple times (each set is possibly different),

runs the statistical analyses on each, and pools the results [69]. Such method is able

to capture the variability in the missing data and therefore generate potentially more

accurate estimates to the larger statistical problem. However, multiple imputation

methods are slower and require pooling results, which may not be appropriate for
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certain applications.

Within the multiple imputation framework, the procedure for generating multi-

ple estimates of missing values varies. Multivariate imputation by chained equations

(mice), a popular multiple imputation method, generates estimates using: predictive

mean matching, Bayesian linear regression, logistic regression, and others [32]. In all

cases, the method initializes using random sampling and conducts univariate impu-

tations sequentially until convergence. Each iteration is a Gibbs sampler that draws

from the conditional distribution on the imputed values.

Because of its importance, missing data imputation remains an active research

area. Although there are numerous methods, many of them have serious shortcom-

ings. Joint modeling methods are not as effective when data sets violate normality

assumptions, and a näıve implementation often crashes during the computation of

a singular covariance matrix [56]. Some conditional specification methods such as

pmm are practically reliable, but lack theoretical foundation and have no explicit for-

mulation as an optimization problem. This stands in stark contrast to other areas

of machine learning, where statistical models and optimization problems are deeply

intertwined.

Evidence from recent literature suggests that recent advances in optimization have

driven significant progress in machine learning. Integer and convex optimization

have been applied successfully to median and sparse regression problems [21, 15].

Recent work on Optimal Decision Trees for classification leverages integer and robust

optimization [7, 9]. In this work, we reconsider the missing data problem from this

perspective, in order to develop optimization-based methods for imputation with

improved out-of-sample performance.

Contributions We summarize our contributions below:

1. We pose the missing data problem under a general optimization framework. The

framework produces an optimization problem with a predictive model-based

cost function that explicitly handles both continuous and categorical variables

and can be used to generate multiple imputations. We present three cost func-
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tions derived from K-nearest neighbors, support vector machines, and optimal

decision tree models. This optimization perspective provides fresh insight into

the classical missing data problem and leads to new algorithms for more accu-

rate data imputation.

2. For each imputation model, we derive first-order methods to find high-quality

solutions to the missing data problem following a general imputation algorithm

opt.impute presented here. These methods easily scale to data sets with n in

the 100,000s and p in the 1,000s on a standard desktop computer and converge

within a few iterations. In addition, the first-order methods are robust and

reliable for arbitrary missing patterns and mixed data types.

3. We evaluate the methods in computational experiments using 95 real-world

data sets taken from the UCI Machine Learning Repository. Benchmarked

against existing imputation methods including mean impute, K-nearest neigh-

bors, iterative knn, Bayesian PCA, and predictive-mean matching, opt.impute

produces the best overall imputation in more than 75.8% of all data sets, and

results in an average reduction in mean absolute error of 8.3% against the best

cross-validated benchmark method.

4. We demonstrate that the improved data imputations generated by opt.impute

give rise to improved performance on 10 downstream classification and regres-

sion tasks. With 50% of missing data, classification models trained on data

imputed via opt.impute have an average testing accuracy of 86.1% compared

to 84.4% for the best cross-validated benchmark method. In addition, regression

models trained on data imputed via opt.impute have an average out-of-sample

R2 value of 0.339 compared to 0.315 for the best cross-validated benchmark

method. Finally, downstream models trained on multiple imputations produced

by opt.impute significantly outperform multiple imputations produced by mice

in 3/5 missing data scenarios for classification and 5/5 scenarios for regression.

The structure of the chapter is as follows. In Section 2.2, we formulate the missing

data imputation problem as an optimization problem, present a general first-order
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method opt.impute that can be used to find high-quality solutions, and derive the

algorithms for each model: K-NN, SVM, and trees. We also discuss a cross-validation

procedure and extensions of opt.impute to multiple imputation. In Section 2.3, we

compare the imputation quality and performance on downstream tasks of opt.impute

to benchmark imputation methods on a wide range of real data sets. In Section 2.4,

we discuss the benefits from adopting such framework and suggest areas for future

work. We conclude in Section 2.5.

2.2 Methods for Optimal Imputation

In this section, we pose the missing data problem as an optimization problem in which

we optimize the missing values in all data points and dimensions simultaneously. We

introduce a general imputation framework on mixed data (continuous and categorical)

based upon first-order methods applied to this problem. Within this framework, we

use K-nearest neighbors, SVM, and decision tree based imputation as examples to

define three specific optimization problems. For each problem, we present two first-

order methods used to find high-quality solutions: block coordinate descent (BCD)

and coordinate descent (CD).

Let X = {xi}ni=1 be the dataset given with p variables. Without loss of gen-

erality, we assume each data vector xi contains continuous variables indexed by

d ∈ {1, 2, . . . , p0} and categorical variables indexed by d ∈ {p0 + 1, . . . , p0 + p1}

with p0 + p1 = p. As a pre-processing step, we transform all continuous variables

to have unit standard deviation. We leave all categorical variables unchanged, and

assume the dth categorical variable d ∈ {p0 + 1, . . . , p0 + p1} takes values among kd

classes. Note that if all data is continuous p0 = 0, while if all data is categorical
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p1 = 0. The missing and known values are specified by the following sets:

M0 = {(i, d) : entry xid is missing, 1 ≤ d ≤ p0},

N0 = {(i, d) : entry xid is known, 1 ≤ d ≤ p0},

M1 = {(i, d) : entry xid is missing, p0 + 1 ≤ d ≤ p0 + p1},

N1 = {(i, d) : entry xid is known, p0 + 1 ≤ d ≤ p0 + p1}.

We also refer to the full missing pattern as M := M0 ∪ M1. Let W ∈ Rn×p0

be the matrix of imputed continuous values, where wid is the imputed value for

entry xid, d ∈ {1, . . . , p0}. Similarly, let V ∈ {1, . . . , k1} × . . . × {1, . . . , kp1} be the

matrix of imputed categorical values, where vid is the imputed value for entry xid,

d ∈ {p0 +1, . . . , p0 +p1}. We refer to the full imputation for observation xi as (wi,vi)

in the following sections.

2.2.1 General Problem Formulation

As the task is to impute the missing values, for each model the key decision variables

are the imputed values {wid : (i, d) ∈M0} and {vid : (i, d) ∈M1}. We also introduce

auxiliary decision variables as well; denote these as U. For instance, in a K-NN based

approach, indicator variables zij, 1 ≤ i, j ≤ n are introduced to identify the neighbor

assignment for each pair of points xi, xj. For a given set of imputed values and a

given model, there is a cost function c(·) associated with it. Our goal is to solve the

following optimization problem:

min c(U,W,V; X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(U,W,V) ∈ U ,

(2.1)

where U is the set of all feasible combinations (U,W,V) of auxiliary vectors and

imputations. For example, in a K-NN based approach, this includes the constraints
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that each point has exactly K neighbors and the assignment variables are binary. We

list the auxiliary variables and cost functions corresponding to each of the imputa-

tion models K-NN, SVM, and trees in Table 2.2. Note that the cost function can

be different for continuous and categorical variables. We can introduce a parameter

that controls the relative contribution to the cost between the continuous and cat-

egorical variables, or scale continuous variables appropriately. For the remainder of

the chapter the latter is assumed for simplicity of notation.

Table 2.2: Variables and cost functions for each imputation model. Variables for
K-NN, SVM, and trees are defined in Sections 2.2.3, 2.2.4, and 2.2.5 respectively.

Model U c(U,W,V; X)

K-NN Z
∑
i∈I

n∑
j=1

zij

[ p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}

]
SVM [β,θ,γ,γ∗, ξ] 1

2
(‖β‖2

H + ‖θ‖2
H) + C

n∑
i=1

(
p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid

)

Trees T
n∑
i=1

n∑
j=1

[ p0∑
d=1

tdij(wid − wjd)2 +

p0+p1∑
d=p0+1

tdij1{vid 6=vjd}

]

This problem is non-convex for K-NN, SVM, and tree models. To obtain a cer-

tifiable optimal solution, one can reformulate the problem with integer variables and

solve it using a mixed integer solver. We ran computational experiments and found

that solving such mixed integer problems requires a long time to reach a certifiably

optimal solution. As a result, we present a general imputation algorithm opt.impute

which approximates the solution to Problem (2.1) very fast using first-order methods.

2.2.2 First-Order Method for the General Problem

To obtain high-quality solutions to problem (2.1), we can use first-order methods with

random warm starts. In particular, we will focus on block coordinate descent (BCD)

and coordinate descent (CD) [4]. Algorithm 1, which we refer to as opt.impute,

implements BCD or CD for Problem (2.1). The variables U,W,V, and X as well as

the cost function c(·) are summarized in Table 2.2 for K-NN, SVM, and trees. The

detailed solution methods for problems (2.2), (2.3), (2.4), and (2.5) for K-NN, SVM,
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and tree imputation models are described in Sections 2.2.3-2.2.5, respectively.

By construction, the objective function value strictly decreases by at least δ0 until

termination. It follows that the number of steps needed for the algorithm to terminate

is d 1
δ0
c(U0,W0,V0; X)e, where W0,V0 are the initialization values, X is data, and

U0 is the argmin in Equation (2.2). However, the algorithm is not guaranteed to find

a global minimum for Problem (2.1) [98].

In the next sections, we discuss three example models and the optimization prob-

lem formulations. For each model and each first-order method, we derive the specific

updates for U,W,V that we use in our optimization-based imputation procedure.

After, we describe a cross-validation procedure to select the specific model and pa-

rameters for the imputation.

2.2.3 K-NN Based Imputation

We first define a distance metric between rows (wi,vi) and (wj,vj) as

dij :=

p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}. (2.6)

Next, we introduce the binary variables:

zij =


1, if (wj,vj) is among the K-nearest neighbors of (wi,vi)

with respect to distance metric (2.6),

0, otherwise.

(2.7)
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Algorithm 1 opt.impute

Input: X ∈ Rn×p0 × {1, . . . , k1} × . . .× {1, . . . , kp1},
a data matrix with some missing entries M = {(i, d) : xid is missing},
δ0 > 0, and warm start W0 ∈ Rn×p0 , V0 ∈ {1, . . . , k1} × . . .× {1, . . . , kp1}.

Output: Ximp a full matrix with imputed values.
Procedure:

Initialize δ ←∞, Wold ←W0, Vold ← V0.
while δ > δ0 do

1 Update U∗ using model dependent information:

U∗ ← arg min
U

c(U,Wold,Vold; X)

s.t. (U,Wold,Vold) ∈ U .
(2.2)

2 Update the imputation W∗, V∗, following either:

2a block coordinate descent (BCD):

W∗,V∗ ← arg min
W,V

c(U∗,W,V; X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(U∗,W,V) ∈ U ,

(2.3)

or

2b coordinate descent (CD):

w∗jr ← arg min
wjr

c(U∗,W,V; X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

wid = w∗id (i, d) ∈M0\(j, r),
vid = v∗id (i, d) ∈M1,

(U∗,W,V) ∈ U ,

(2.4)

v∗jr ← arg min
vjr

c(U∗,W,V; X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

wid = w∗id (i, d) ∈M0,

vid = v∗id (i, d) ∈M1\(j, r),
(U∗,W,V) ∈ U .

(2.5)

3 δ ← c(U∗,W∗,V∗; X)− c(Uold,Wold,Vold; X).
4 (Uold,Wold,Vold)← (U∗,W∗,V∗).

end while
Ximp ← [W∗; V∗]
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We further define the set of indices I := {i : xi has at least one missing coordinate}.

The optimization problem for the K-NN based imputation model is:

min c(Z,W,V; X) :=
∑
i∈I

n∑
j=1

zij

[ p0∑
d=1

(wid − wjd)2 +

p0+p1∑
d=p0+1

1{vid 6=vjd}

]
s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0, i ∈ I,
n∑
j=1

zij = K, i ∈ I,

Z ∈ {0, 1}|I|×n·
(2.8)

By optimality, it follows that zij = 1 if and only if (wj,vj) is among the K-nearest

neighbors of (wi,vi). Therefore, solving problem (2.8) produces the missing value

imputation which minimizes the sum of distances from each point (wi,vi), i ∈ I to

its K-nearest neighbors. Note that the relation 1{vid 6=vjd} can be modeled with binary

variables. Problem (2.8) is a nonconvex optimization problem with both continuous

and binary variables. Correspondingly, it is difficult to solve to provable optimality,

even if the data set contains continuous variables only.

Next, we describe the updates in Algorithm 1 for K-NN based imputation. We

refer to this specific imputation method as opt.knn.

In step 1 , to update the auxiliary variables Z, first fix all imputed values W, V.

Problem (2.2) decomposes by i ∈ I into the assignment problems:

min
zi

n∑
j=1

zijdij

s.t. zii = 0

n∑
j=1

zij = K

zi ∈ {0, 1}n·

(2.9)
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The optimal solution to Problem (2.9) can be found using a simple sorting procedure

on the distances {dij}nj=1. For each i ∈ I, we find the K-nearest neighbors of (wi,vi)

and set zij = 1 for these neighbors, zij = 0, otherwise.

Next, we fix Z and update the imputed values W,V using either BCD or CD.

In step 2a , the BCD update, Problem (2.3) decomposes by dimension d = 1, . . . , p.

For each continuous dimension d = 1, . . . , p0, we consider the following quadratic

optimization problem:

min
wd

∑
i∈I

n∑
j=1

zij(wid − wjd)2

s.t. wid = xid, (i, d) ∈ N0,

(2.10)

where wd ∈ Rn are the imputed values in the dth dimension. Taking partial derivative

of the objective function with respect to wid for some missing entry (i, d) ∈ M0 and

setting it to zero, we obtain after some simplifications:

(K +
∑
j∈I

zji)wid −
∑

(j,d)∈M0

(zij + zji)wjd −
∑

(j,d)∈N0

(zij + 1{j∈I}zji)xjd = 0. (2.11)

For each continuous dimension d, we have a system of equations of the form (2.11)

which we can solve to determine the optimal imputed values wid, (i, d) ∈M0. To sim-

plify notation, suppose that the missing values for dimension d are w̃ := (w̃1d, . . . , w̃ad)

and the known values are x̃ := (x̃(a+1)d, . . . , x̃nd). Then, the set of optimal imputed

missing values w̃ is the solution to the linear system Qw̃ = Rx̃, where

Q =



K +
∑
j∈I

zj1 − 2z11 −z12 − z21 . . . −z1a − za1

−z21 − z12 K +
∑
j∈I

zj2 − 2z22 . . . −z2a − za2

...
. . .

...

−za1 − z1a −za2 − z2a . . . K +
∑
j∈I

zja − 2zaa


,
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R =


z1(a+1) + 1{(a+1)∈I}z(a+1)1 . . . z1n + 1{n∈I}zn1

...
...

za(a+1) + 1{(a+1)∈I}z(a+1)a . . . zan + 1{n∈I}zna

 .

Note that when K is sufficiently large, the matrix Q is positive semidefinite and

therefore invertible. If Q is singular, then we may add a small positive perturbation

to the diagonal of Q so that the matrix becomes positive semidefinite. Therefore,

without loss of generality there is a closed-form solution w̃ = Q−1Rx̃ to this system

of equations for each continuous dimension d.

In order to update V, we solve the following integer linear optimization problem

for each categorical dimension d = (p0 + 1), . . . , p:

min
vd

∑
i∈I

n∑
j=1

zijyij

s.t. vid = xid (i, d) ∈ N1,

vid − vjd ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

vjd − vid ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

yij ∈ {0, 1}n×n,

(2.12)

where vd ∈ {1, . . . , kd}n are the imputed values for the dth dimension. Here, the

indicator variables yij take values equal to 1{vjd 6=vjd} in the optimal solution.

In step 2b , following the CD method, we update the missing imputed values one

at a time. Each wid, (i, d) ∈M0 is imputed as the minimizer of the following:

min
wid

n∑
j=1

zij(wid − wjd)2 +
∑
j∈I

zji(wjd − wid)2. (2.13)

Solving the above gives

wid =

∑n
j=1 zijwjd +

∑
j∈I zjiwjd

K +
∑

j∈I zji
. (2.14)
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We can interpret the missing value imputation (2.14) as a weighted average of the

K nearest neighbors of xi, along with all points xj which include xi as a neighbor.

Similarly, each categorical variable vid, (i, d) ∈M1 is imputed as the minimizer of the

following:

min
vid

n∑
j=1

zij1{vid 6=vjd} +
∑
j∈I

zji1{vjd 6=vjd}. (2.15)

The solution is

vid = mode
({
{vjd : zij = 1}, {vjd : zji = 1}

})
. (2.16)

Here, we set vid to be the highest frequency category among the K nearest neighbors

of xi, along with all points xj which include xi as a nearest neighbor. In practice, we

use this update for vid, (i, d) ∈M1 in place of the update for V in BCD because it is

much faster computationally.

2.2.4 Mixed SVM Based Imputation

In this section, we consider a second model for imputation, based upon SVM regres-

sion for imputing continuous features and SVM classification for imputing categorical

features. First, define ṽi ∈ {−1, 1}p2 to be a dummy encoded representation of vi,

where p2 =
∑p0+p1

d=p0+1 kd − p1. Let ṽfixedid , (i, d) ∈ N2 be the known dummy encoded

values. For each continuous feature d ∈ {1, . . . , p0}, let (βd, βd0) ∈ Rp0+p2+1 be the

coefficients for an SVM regression model regressing feature d on the other features

with the dummy encoding. Let (θd, θd0) ∈ Rp0+p2+1 be the coefficients for an SVM

classification model predicting dummy feature d based upon the other features. Note

that it is also possible to use a multi-class SVM model to predict each categorical

feature directly, as described in [38] with the parameters M ∈ Rkd×(p0+p2+1) for each

feature d ∈ {p0 + 1, . . . , p0 + p1}. In this case, we would keep the dummy encoded

decision variables as covariates to predict the other features and add constraints re-

lating vid, (i, d) ∈ M1 and ṽid, (i, d) ∈ M2. For illustrative purposes and simplicity

of notation, we present the formulation using binary SVM to predict each dummy

variable d.
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We consider the following optimization problem:

min c([β,θ],W, Ṽ; X) :=
1

2

(
‖θ‖2 + ‖β‖2

)
+C

(
n∑
i=1

p0∑
d=1

(γid + γ∗id) +
n∑
i=1

p0+p1∑
d=p0+1

ξid

)

s.t. xid = wid− (i, d) ∈ N0,

ṽid = ṽfixedid (i, d) ∈ N2,

βdd = 0 d = 1, . . . , p0,

θdd = 0 d = 1, . . . , p2,

γid ≥ wid − (βTd

wi

ṽi

+ βd0)− ε d = 1, . . . , p0, i = 1 . . . , n,

γ∗id ≥ (βTd

wi

ṽi

+ βd0)− wid − ε d = 1, . . . , p0, i = 1 . . . , n,

ξid ≥ 1− ṽid(θTd

wi

ṽi

+ θd0) d = 1, . . . , p2, i = 1 . . . , n,

γid ≥ 0 d = 1, . . . , p0, i = 1 . . . , n,

γ∗id ≥ 0 d = 1, . . . , p0, i = 1 . . . , n,

ξid ≥ 0 d = 1, . . . , p2, i = 1 . . . , n,

ṽid ∈ {−1, 1} d = 1, . . . , p2, i = 1 . . . , n.

(2.17)

This formulation is based upon SVM with a linear kernel; however we can extend

Problem (2.17) to arbitrary kernels, including the multi-class cases, using the modified

objective function

c([β,θ],W,V; X) :=
1

2
(‖β‖2

H + ‖θ‖2
H) + C

(
n∑
i=1

p0∑
d=1

(γid + γ∗id) +
n∑
i=1

p0+p1∑
d=p0+1

ξid

)
,

(2.18)

where ‖ · ‖H is the norm in a given Reproducing Kernel Hilbert Space H.

Another important aspect of Problem (2.17) is the compound objective function,

which is the summation of objective functions derived from both SVM regression and
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SVM classification methods. Observe that if we fix a single imputed entry wid or ṽid,

the contribution to the objective function scales linearly as (βTd

wi

ṽi

 + βd0) if d is

continuous or scales linearly as (θTd

wi

ṽi

 + θd0) if d is categorical. This is desirable

because we do not wish to weight continuous and categorical variables unequally in

our imputation. Next, we describe the updates in Algorithm 1 for mixed SVM based

imputation, which we refer to as opt.svm.

In step 1 , we fix the imputed values W,V and update the auxiliary variables

[β,β0,θ,θ0]. Independent of the choice of kernel, Problem (2.2) decomposes by di-

mension p into p0 SVM regression problems and p2 SVM classification problems for

the categorical variables. For each continuous feature d ∈ {1, . . . , p0}, we update

βd, βd0 by solving

min
1

2
‖β‖2 + C

n∑
i=1

(γid + γ∗id)

s.t. βdd = 0

γid ≥ wid − (βTd

wi

ṽi

+ βd0)− ε i = 1 . . . , n,

γ∗id ≥ (βTd

wi

ṽi

+ βd0)− wid − ε i = 1 . . . , n,

γid ≥ 0 i = 1, . . . , n,

γ∗id ≥ 0 i = 1, . . . , n.

(2.19)

Similarly, for each dummy feature d ∈ {p0 + 1, . . . , p0 + p2}, we update θd, θd0 by
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solving

min
1

2
‖θ‖2 + C

n∑
i=1

ξid

s.t. θdd = 0

ξid ≥ 1− ṽid(θTd

wi

ṽi

+ θd0) i = 1 . . . , n,

ξid ≥ 0 i = 1, . . . , n.

(2.20)

Taking the Lagrangian duals, both Problems (2.19) and (2.20) can be reformulated

as quadratic optimization problems which can be solved efficiently [36].

Next, we fix the auxiliary variables [β,β0,θ,θ0] and update the imputed values

W,V using BCD or CD. In step 2a , Problem (2.2) decomposes by observation i into

n nonlinear integer optimization problems. For each i we solve

min
wi,ṽi

p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid

s.t. xid = wid (i, d) ∈ N0,

γid ≥ wid − (βTd

wi

ṽi

+ βd0)− ε d = 1, . . . , p0,

γ∗id ≥ (βTd

wi

ṽi

+ βd0)− wid − ε d = 1, . . . , p0,

ξid ≥ 1− ṽid(θTd

wi

ṽi

+ θd0) d = 1, . . . , p2,

γid ≥ 0 d = 1, . . . , p0,

γ∗id ≥ 0 d = 1, . . . , p0,

ξid ≥ 0 d = 1, . . . , p2,

(2.21)

where (wi, ṽi) ∈ Rp0 × {−1, 1}p2 is the imputation for observation xi. Note that if

all features are continuous, Problem (2.21) reduces to a linear optimization problem.

Because we are using the dummy encoding in this formulation, it is possible to obtain
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an imputation in which multiple classes are selected for a single categorical entry.

In this case, when opt.svm terminates, we select the imputation among the set of

potential candidates which minimizes the objective function of Problem (2.21).

In step 2b , we update the imputed values one at a time. To update wid, (i, d) ∈

M0, we solve the one-dimensional linear optimization problem:

min
wid

p0∑
d=1

(γid + γ∗id) +

p0+p1∑
d=p0+1

ξid

s.t. γid ≥ wid − (βTd

wi

ṽi

+ βd0)− ε d = 1, . . . , p0,

γ∗id ≥ (βTd

wi

ṽi

+ βd0)− wid − ε d = 1, . . . , p0,

ξid ≥ 1− ṽid(θTd

wi

ṽi

+ θd0) d = 1, . . . , p2,

γid ≥ 0 d = 1, . . . , p0,

γ∗id ≥ 0 d = 1, . . . , p0,

ξid ≥ 0 d = 1, . . . , p2.

(2.22)

We update ṽid, (i, d) 6∈ N2 by solving the binary optimization problem:

min
ṽid∈{−1,1}

n∑
i=1

p0∑
d=1

(
max{wid − (βTd

wi

ṽi

+ βd0)− ε, 0} +

max{(βTd

wi

ṽi

+ βd0)− wid − ε, 0}
)

+

n∑
i=1

p2∑
d=1

(
1− ṽid(θTd

wi

ṽi

+ θd0)
)
.

(2.23)
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2.2.5 Tree Based Imputation

Finally, we consider an imputation model based on classification and regression trees.

For each dimension we train a decision tree to predict the missing values, using the

other features as covariates. We train regression trees to predict each of the continuous

variables and classification trees to predict each of the categorical variables. Given

a regression tree for continuous dimension d, we will impute xid, (i, d) ∈ M0 to be

the mean in dimension d of all points in the same leaf node as xi. Similarly, given a

classification tree for dimension d, we will impute xid, (i, d) ∈ M1 to be the mode in

dimension d of all points in the same leaf node as xi.

For general prediction tasks, we can use greedy [29] or globally optimal [7] solution

methods to train the decision trees. In this case, we consider the latter approach

because it admits a clear optimization model with mixed integer decision variables

which fits into our framework for imputation. For each dimension d, let Td ∈ {0, 1}n×n

denote the set of indicator variables

tdij =


1, if (wi,vi), (wj,vj) are in the same leaf node

of the decision tree for dimension d,

0, otherwise.

(2.24)

Let (Td,W,V) ∈ T d denote the set of optimal decision tree constraints for dimension

d as described in [7]. We consider the following optimization problem:

min c(T,W,V; X) :=
n∑
i=1

n∑
j=1

[ p0∑
d=1

tdij(wid − wjd)2 +

p0+p1∑
d=p0+1

tdij1{vid 6=vjd}

]
s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(Td,W,V) ∈ T d, d = 1, . . . , p,

(2.25)

Next, we describe the updates in Algorithm 1 for decision tree based imputation,

which we refer to as opt.tree.
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In step 1 , we fix the imputed values W,V and update the decision tree variables

T. For each continuous feature, we fit a regression tree to predict wd based upon the

other features. Similarly, for each categorical feature, we fit a classification tree to

predict vd based upon the other features. In practice, we may use greedy or optimal

methods to find these trees; however, if we use greedy trees then the objective function

value c(T,W,V; X) is not guaranteed to be monotonically decreasing over the course

of the algorithm.

Next, we fix T and update the imputed values W,V using BCD or CD. In step

2a , Problem (2.3) decomposes by dimension into p0 quadratic optimization problems

and p1 integer optimization problems. For each continuous dimension d = 1, . . . , p0,

we solve:

min
wd

n∑
i=1

n∑
j=1

tdij(wid − wjd)2

s.t. wid = xid, (i, d) ∈ N0,

(2.26)

where wd ∈ Rn are the imputed values in the dth dimension. This is a quadratic

optimization problem with an explicit optimum. For each wid, (i, d) ∈M0, an optimal

solution is

wid =



∑
(j,d)∈N d

0
tdijxjd∑

(j,d)∈N d
0
tdij

, if
∑

(j,d)∈N d
0
tdij ≥ 1,

1

|N d
0 |

∑
(j,d)∈N d

0

xjd, otherwise,
(2.27)

where N d
0 := {(i, r) ∈ N0 : r = d}. This solution corresponds to setting each missing

entry equal to the mean of all observed values in the same leaf node. If the number

of non-missing values in the same leaf node as wid is zero, i.e.,
∑

(j,d)∈N d
0
tdij = 0, then

we set all of the values in that leaf node to the mean impute solution.

For each categorical dimension d = p0 + 1, . . . , p0 + p1, we solve the following

integer optimization problem:

min
vd

n∑
i=1

n∑
j=1

tdij1{vid 6=vjd}

s.t. vid = xid, (i, d) ∈ N1,

(2.28)
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where vd ∈ {1, . . . , kd}n are the imputed values for the dth dimension. An optimal

solution is

vid =


mode

(
{xjd : tdij = 1, (j, d) ∈ N1}

)
if |{xjd : tdij = 1, (j, d) ∈ N1}| ≥ 1,

mode
(
{xjd : (j, d) ∈ N1}

)
otherwise.

(2.29)

In step 2b , we update the missing imputed values one at a time, which results in

slightly different closed form solutions for wid, (i, d) ∈M0 and vid, (i, d) ∈M1. First,

we update the continuous variables wid, (i, d) ∈M0 by solving:

min
wid

2
n∑
j=1

tdij(wid − wjd)2. (2.30)

An optimal solution to Problem (2.30) is

wid =



∑
j 6=i t

d
ijwjd∑

j 6=i t
d
ij

, if
∑

j 6=i t
d
ij ≥ 1,

1

|N d
0 |

∑
(j,d)∈N d

0

xjd, otherwise.
(2.31)

Next, we update the categorical variables vid, (i, d) ∈M1 one at a time by solving:

min
vid

2
n∑
j=1

tdij1{vid 6=vjd}, (2.32)

An optimal solution to Problem (2.32) is

vid =


mode

(
{vjd : tdij = 1}

)
, if |{vjd : tdij = 1}| ≥ 1,

mode
(
{xjd : (j, d) ∈ N1}

)
, otherwise.

(2.33)

Both of these updates coincide with the predicted values from the decision trees

constructed.
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2.2.6 Model Selection Procedure

Each of the above methods and choice of hyperparameters generates some imputed

values. For single imputation, a single set of imputed values should be generated in

the end. We propose the following procedure for model selection.

Given X with existing missing data M0,M1, we generate an additional fixed

percentage of data missingMvalid
0 ,Mvalid

1 , with the known values as the hold-out set,

and perform each of the imputation methods under the combined missing pattern.

We evaluate the imputation quality on the hold-out validation set by measuring how

closely the imputed values resemble the ground truth values. In particular, the mean

absolute error (MAE) between true and imputed values for each imputation method

is calculated. The validation MAE is defined to be

1

|Mvalid
0 |

∑
(i,d)∈Mvalid

0

|wid − xid|+
1

|Mvalid
1 |

∑
(i,d)∈Mvalid

1

1{vid 6=xid}. (2.34)

Lower values indicate closer imputation, and perfect imputation corresponds to

an MAE of zero. Another metric of imputation quality is root mean squared error

(RSME), which is given by

√√√√ 1

|Mvalid
0 |

∑
(i,d)∈Mvalid

0

(wid − xid)2 +
1

|Mvalid
1 |

∑
(i,d)∈Mvalid

1

1{vid 6=xid}. (2.35)

For each imputation method, the combination of hyperparameters that achieves

the lowest MAE in validation (or RMSE) is selected, and the X is again imputed but

under the original missing patternsM0,M1. This set of imputed values is now ready

to be evaluated or used for downstream tasks.

The hyperparameters that we tune via this method are summarized in Table 2.3.

In addition, we also use this cross-validation procedure to select the best method

out of opt.knn, opt.svm, and opt.tree. We refer to this composite method as

opt.cv. Similarly, we may use the cross-validation procedure for model selection for

any set of imputations. We define benchmark.cv to be the procedure that selects
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Table 2.3: Hyperparameters tuned via the model selection procedure outlined in
Section 2.2.6. σ2 is a parameter in the radial basis function kernel,

K(xi,xj) = exp(
‖xi−xj‖

σ2 ). cp is a complexity parameter related to the depth of the
decision tree.

Method Hyperparameters

K-NN K
SVM C, σ2

Trees cp

the best method out of: mean, pmm, bpca, knn, and iknn that will be later used

in computational comparisons (see Section 2.3.1 for descriptions of these individual

methods).

2.2.7 Extensions to Multiple Imputation

Thus far, we have described opt.impute methods for single imputation which out-

put a single completed data set. On the other hand, multiple imputation methods

output m ≥ 2 different completed data sets for a single missing data problem. Af-

terwards, analysis is performed on each of the m data sets separately, and the results

are pooled [69]. For some applications, multiple imputation is preferred because it

captures the variation in missing data imputation, which enables us to compute confi-

dence intervals for downstream models trained on the imputed data sets. In addition,

the pooled results from models fit on multiple imputed data sets may provide better

point estimates than models fit on a single imputed data set in some cases.

To extend opt.impute to produce multiple imputations, we generate m warm

starts using a probabilistic procedure, run opt.knn, opt.svm, or opt.tree from these

starting points, and output the full set of m completed data sets. These warm starts

can be generated from sample draws under a previously estimated posterior distribu-

tion; an example would be using outputs from the mice procedure. This provides us

with a representative set of imputations found by the opt.impute algorithm, which

converges to local optima. We refer to the multiple imputation method as opt.mi. In

the computational experiments, we use the benchmark multiple imputation method
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mice to generate the warm starts.

Note that there are other possible ways of adapting opt.impute to the multiple

imputation schema. We may introduce m instances of artificial noise in the observed

values, and solve the resulting optimization problems. Alternatively, we may run

opt.impute on m bootstrapped samples of the original data set. Afterwards, we can

analyze each of the m imputed data sets separately and pool the results as before.

2.3 Real-World Data Experiments

In this section, we evaluate the performance of opt.impute on many real-world data

sets. Our comparisons include 1) the effect on imputation accuracy, and 2) the effect

on the performance of downstream machine learning tasks. We compare to the most

commonly used state-of-the-art methods on a large sample of data sets from the

UCI Machine Learning Repository. For data sets that include categorical variables,

we impute the discrete values directly using our specialized imputation methods for

categorical variables and benchmark methods.

2.3.1 Experimental Setup

To test the accuracy of the proposed missing data imputation method, we run a series

of computational experiments on data sets taken from the UCI Machine Learning

Repository for both regression and classification tasks. The data sets cover a range

of number of observations n and number of features p, potentially mixed with both

continuous and categorical variables. The numbers of continuous (p0) and categorical

(p1) variables in each of these data sets are given in Table 2.10.

In these experiments, we use full data sets in which all entries are known, and

we generate patterns of missing data for various percentages ranging from 10% to

50%. We take the full data sets X that have no missing entries to be the ground

truth. We run some of the most commonly-used and state-of-the-art methods for data

imputation on these data sets to predict the missing values and compare against our

optimization based imputation methods. The individual methods in this comparison
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are:

1. Mean Impute (mean): The simplest imputation method. For each missing

value xid, imputes the mean of all known values in dimension d.

2. Predictive-Mean Matching (pmm): An iterative method which imputes miss-

ing values from known values in a given dimension using linear regressions. It

is commonly used for multiple imputation and can be generalized to multiple

missing dimensions using the chained equations process [32]. Implemented using

the MICE package in R.

3. Bayesian PCA (bpca): A missing data estimation method based on Bayesian

principal component analysis [76]. Implemented using the pcaMethods package

in R.

4. K-Nearest Neighbors (knn): A single-step, greedy method which imputes

missing values using the K-nearest neighbors of an observation based upon

Euclidean distance. The candidate neighbors must have non-missing values in

the imputed feature. Averaged distance is used if some other coordinates are

missing. Implemented using the impute package in R.

5. Iterative K-Nearest Neighbors (iknn): Implemented in R and Julia, based

on the description in the original papers [27, 34] .

6. Optimal Impute (opt.impute): All sub-methods below use warm starts in-

cluding: mean, knn, bpca and five random starts where the values are imputed

by a random sampling of the non-missing observations of that feature. The im-

putation which results in the lowest objective value is selected for each method.

(a) K-NN based (opt.knn): This method solves the optimal K-nearest neigh-

bors problem (2.8). Convergence time depends upon the quality of the

initial warm start. We run both block coordinate descent and coordinate

descent for small data sets of size n ≤ 10,000, and only coordinate de-

scent for large data sets with higher n. The implementation was in the
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programming language Julia with fast algorithms for K-nearest neighbor

calculations.

(b) SVM Regression and Classification based (opt.svm): This method solves

the maximum margin support vector machine problem (2.17) using a radial

basis function kernel. For continuous variables, we use ε-support vector re-

gression; for categorical variables, we use classical support vector machines.

These problems were solved using coordinate descent methods. The im-

plementation was in Julia using the scikit-learn package in Python.

(c) Decision Tree based (opt.tree): This method solves the optimal decision-

tree problem (2.25). For continuous variables, a single-leaf regularized

regression tree is used; for categorical variables, a fast coordinate descent-

based algorithm for solving Optimal Classification Trees is used [7]. We

run coordinate descent for the imputation problems. The implementation

was in Julia using the packages glmnet and OptimalTrees.

In addition, we consider two composite methods: opt.cv, which selects the best

method from opt.knn, opt.svm, and opt.tree; and benchmark.cv, which selects the

best method from mean, pmm, bpca, knn, and iknn. These composite methods use the

cross-validation procedure described in Section 2.2.6. To generate the validation set

for each missing data problem, we randomly sample an additional 10% of the entries

to be hidden under the MCAR assumption. After running each individual method,

we select the one that gives the lowest MAE on the validation set. We re-run this

method on the original missing data set to obtain the final imputation.

Each imputation method was run for a maximum time limit of 12 hours on each

data set. The quality of the imputations is evaluated using the same MAE and RMSE

metrics defined in Section 2.2.6. For each of the opt.impute methods, we also record

and present the convergence in objective value and MAE to show the progress over

the iterations.
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Table 2.4: Statistical assumptions of mechanisms used to generate patterns of
missing data M for data set X. Here, we suppose that f is the underlying density
of the missing pattern, and Xobs,Xmiss are the observed and missing components of

the data set, respectively.

Mechanism of Missing Data Assumption

Missing Completely at Random (MCAR) f(M|Xobs,Xmiss) = f(M)
Missing at Random (MAR) f(M|Xobs,Xmiss) = f(M|Xobs)
Not Missing at Random (NMAR) f(M|Xobs,Xmiss) is a function of Xmiss

Missing Pattern

Because the mechanism which generates the pattern of missing data can affect im-

putation quality, we run experiments under two different missing data mechanisms:

missing completely at random (MCAR) and not missing at random (NMAR). These

statistical assumptions are summarized in Table 2.4. The MCAR assumption implies

that the missing pattern is completely independent from both the missing and ob-

served values. The NMAR assumption implies that the missing pattern depends upon

the missing values. There is an intermediate type of assumption, missing at random

(MAR), which implies that the missing pattern depends only upon the observed val-

ues, but not upon the missing values. Because this assumption is less general than

NMAR, we do not consider this mechanism for our experiments.

To generate MCAR patterns of missing data, we randomly sample a subset of the

entries in X to be missing, assuming that each entry is equally likely to be chosen.

The NMAR patterns are generated by sampling missingness indicators as independent

Bernoulli random variables where each probability pid equals the probability that a

normal random variable N(xid, ε) is greater than a particular threshold for dimension

d. The threshold for each dimension d is the quantile of Xd which corresponds to the

desired missing percentage level.

Note that regardless of the missing data scenarios generated for the experiments,

in order to make fair comparisons, we always use MCAR as the generating mechanism

for cross validation.
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Downstream Tasks

For 10 data sets from the UCI Machine Learning Repository, we run further ex-

periments to evaluate the impact of these imputations on the intended downstream

machine learning tasks. This selection includes a representative sample of 5 data

sets for regression and 5 data sets for classification, with dependent variable obser-

vations Y ∈ Rn and Y ∈ {0, 1}n respectively. We evaluate both single and multiple

imputation methods in these experiments.

For single imputation, we consider opt.cv and benchmark.cv. First, we divide

each downstream data set using a 50% training/testing split. Next, we randomly

sample a fixed percentage of the entries in X to be missing completely at random,

ranging from 10% to 50%. For each missing percentage, we impute the missing

values in the training set and then fit standard machine learning algorithms to obtain

a classification or regression model. We impute the missing values in the testing set

by running the imputation methods on the full data set. For the regression tasks, we

fit cross-validated LASSO and SVR models and compute the out-of-sample accuracy

on the imputed testing set. For the classification tasks, we fit cross-validated SVM

and Optimal Trees models and compute the out-of-sample R2 on the imputed testing

set.

We also evaluate the performance of multiple imputation methods on the down-

stream tasks. In these experiments, we consider the following methods:

1. Multivariate Imputation by Chained Equations (mice): An iterative

method which imputes each dimension with missing values one at a time draw-

ing from distributions fully conditional on the other variables. We use predictive

mean matching for continuous variables and logistic regression for categorical

variables. This process is repeated to generate m fully imputed data sets. Im-

plemented via the MICE package in R.

2. Optimal Impute for Multiple Imputation (opt.mi): Starting from m

warm starts, we run opt.knn, opt.svm, or opt.tree to generate a new set of

m fully imputed data sets. We use warm starts produced by mice, and the best
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model among K-NN, SVM, and trees is selected initially via cross-validation.

For both mice and opt.mi, we generate m = 5 multiple imputations for the training

set and fit an ensemble of predictive models on these completed training sets. We

make predictions on the test set by averaging the predictions from the model ensemble.

For the classification tasks, we use a threshold value of 0.5. We run this experiment

100 times with different training/testing splits and distributions of missing values for

each data set and report the averaged out-of-sample of the predictive models.

2.3.2 Results

We run the methods on 95 data sets from the UCI Machine Learning Repository.

These data sets range in size from n = 47 to 20,000 observations and dimension

p = 3 to 279. In the following sections, we first show the convergence for each of

the opt.impute methods is fast and generally leads to a decrease in MAE. Next, we

demonstrate that the quality of the imputations is significantly higher for opt.impute

compared to the reference methods, and that this leads to improved performance on

downstream classification and regression tasks. We further discuss the sensitivity of

imputation quality to the model parameters (K, cp, C), warm starts, descent method

(BCD or CD), and data characteristics including the missing pattern. Finally, we

compare the computational burden of each method.

Convergence

Figure 2-1 represents the change in objective value and MAE over the iterations for

each of the opt.impute methods based on mean warm start, using iris data set

as an example. We present results for opt.knn (CD and BCD), opt.svm (CD), and

opt.tree (CD). The convergence is relatively fast for all methods; in particular, the

BCD algorithm for knn converges significantly faster than the CD algorithm. When

comparing the change in MAE, the value generally monotonically decreases with

each iteration in concordance with the change in objective, especially during the first

few iterations. In some paths, MAE increases slightly after a certain point. RMSE
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Figure 2-1: Solution paths of opt.impute methods on the iris data set. These
plots show the objective value and mean absolute error (MAE) of the imputation

over the course of the algorithm. Each path represents a different algorithm:
opt.knn (BCD and CD), opt.svm (CD), and opt.tree (CD). Mean imputation

warm start is used.

exhibits the same behavior and is therefore not plotted. This suggests a potential issue

of overfitting to the known observations, which may be remedied by regularization

or early stopping. In summary, the solution paths illustrate: 1) convergence is often

fast, and 2) the objective functions are decent proxies for out-of-sample MAEs, and 3)

imputation quality for each first-order method generally improves until convergence.

In general, we found that the BCD algorithm for opt.knn did not significantly

improve upon imputation accuracy compared to the CD algorithm, but only improved

upon speed. Because the BCD algorithms do not scale as well, we restricted our

analysis to the CD algorithms for opt.svm and opt.tree.

Imputation Accuracy

The imputation accuracy for each data set is presented in Table 2.10 for the scenario

in which 30% of the entries are missing, assuming MCAR. We compare the benchmark

ones and each individual opt.impute method (not cross validated); the method with

the lowest MAE (i.e., best imputation accuracy) is bolded. Among all data sets,

48



at least one of the opt.impute methods obtains the lowest MAE in 76.2% of the

data sets, followed by iknn and bpca imputation methods with 9 and 4 wins each.

Comparatively, mean, knn, and pmm impute have the weakest performances. Among

the opt.impute methods, the tree based model achieves the lowest MAE in most

data sets.

We repeat this experiment for other percentages of missing data with the winning

counts summarized in Figure 2-2, using opt.cv as our proposed method. We show the

number of times that each method achieves the best overall imputation with lowest

MAE and RMSE under five different missing data percentages, as well MCAR and

NMAR scenarios. In all missing data scenarios, our proposed method produces the

best imputations in more than half of the data sets according to both performance

metrics. Among the comparator methods, mean and pmm are generally among the

weaker ones. When MAE is the metric, the heuristic method iknn performs the best

among the benchmark methods, suggesting that the idea of iteratively updating the

imputed values have merits. At higher percentages of missing values (the right-most

subfigures), bpca improves in its performance when RMSE is the metric of evaluation,

but is still not as strong as opt.cv.

In Figure 2-3, we present summary results of the MAE and RMSE values as

geometric means across all data sets for each missing percentage and missing data

mechanism, with the confidence bands representing one geometric standard deviation

multiplied above and divided below by the mean. Comparatively, opt.cv achieves

the lowest average MAE and RMSE values for all missing percentages. At the 10%

missing data percentage, the average MAE of the opt.cv imputations is 0.100, a

reduction of 14.9% from the average MAE of 0.118 obtained by the best benchmark

method knn. As missing percentages increase, opt.cv remains the most accurate

imputation method, with the average MAE of 0.142 at 50% missing, a reduction

of 12.1% from the average MAE of 0.172 obtained by the next best method knn.

The performance of opt.cv relative to benchmark ones does not appear to differ

drastically between the MCAR and NMAR scenarios, with overall higher MAE for

NMAR across most methods, as expected.
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Figure 2-2: Number of data sets in which each missing data imputation method
achieves lowest mean absolute error (MAE) and root mean squared error (RMSE)
from true value. Each panel represents a different missing percentage ranging from

10% to 50%. Panels in the top row are for not missing at random scenarios, whereas
the ones in the bottom row are for missing completely at random scenarios.
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Table 2.5: Pairwise Wilcoxon signed-rank tests and t-tests between opt.impute and
benchmark methods, with the p-values adjusted for multiple comparisons.

opt.impute Benchmark ∆ rank (adjusted p-value) ∆ MAE (adjusted p-value)

opt.cv

mean -0.7855 (<0.001***) -0.0502 (<0.001***)
pmm -0.8355 (<0.001***) -0.0399 (<0.001***)
bpca -0.6329 (<0.001***) -0.0214 (0.0019**)
knn -0.6281 (<0.001***) -0.0134 (0.0499*)
iknn -0.5352 (<0.001***) -0.0199 (0.0046**)

opt.knn

mean -0.6424 (<0.001***) -0.0419 (<0.001***)
pmm -0.6091 (<0.001***) -0.0316 (<0.001***)
bpca -0.4875 (<0.001***) -0.0131 (0.0601)
knn -0.3850 (<0.001***) -0.0051 (0.4574)
iknn -0.3611 (<0.001***) -0.0116 (0.1011)

opt.svm

mean -0.5852 (<0.001***) -0.0355 (<0.001***)
pmm -0.4875 (<0.001***) -0.0252 (<0.001***)
bpca -0.2515 (<0.001***) -0.0067 (0.3335)
knn -0.1371 (0.0033**) +0.0013 (0.8485)
iknn -0.0322 (0.0884) -0.0052 (0.4589)

opt.tree

mean -0.7139 (<0.001***) -0.0454 (<0.001***)
pmm -0.7712 (<0.001***) -0.0351 (<0.001***)
bpca -0.5137 (<0.001***) -0.0165 (0.0176*)
knn -0.4136 (<0.001***) -0.0086 (0.2152)
iknn -0.3135 (<0.001***) -0.0151 (0.0337*)

To isolate the effect of each individual method from the cross-validation proce-

dure, we further summarize the results by comparing one method at a time against

the benchmark ones. Table 2.5 presents the statistical comparisons between each

opt.impute method and each benchmark method. We conduct pairwise Wilcoxon

signed rank tests and paired t-tests between each pair of methods. When compar-

ing opt.cv against the benchmark methods, our proposed cross-validated method

achieves significantly lower rank and signficantly lower MAE compared to each bench-

mark one. For each individual opt.impute method, with the exception of opt.svm

against heuristic iknn, the opt.impute one has significantly lower rank. The de-

crease in MAE is still significant when mean, bpca, and pmm are comparators, but

no longer significant when compared to knn or iknn. This suggests that each of the

proposed method holds its own against most benchmark ones, especially under rank

comparisons, but the cross-validation procedure adds another layer of improvement

in imputation quality.
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Table 2.6: Data sets considered for downstream regression and classification tasks.
For classification tasks, we list the average baseline out-of-sample accuracy of an
SVM model fit on the full data set, and for regression tasks, we list the average

baseline out-of-sample R2 of a LASSO model fit on the full data set.

Downstream Task Name (n, p) Baseline Accuracy or R2

Classification

climate-model-crashes (540, 18) 0.95
connectionist-bench (990, 10) 0.93
ecoli (336, 8) 0.96
iris (150, 4) 1.00
pima-indians-diabetes (768, 8) 0.77

Regression

abalone (4177, 7) 0.51
auto-mpg (392, 8) 0.82
housing (506, 13) 0.71
parkinsons-telemonitoring-total (5875, 16) 0.09
wine-quality-white (4898, 11) 0.27

Finally, we compare against the same cross-validated procedure introduced in

Section 2.2.6 applied on all the benchmark methods (benchmark.cv) with results in

Figure 2-2b. At 30% missing data, we observe 10.1% average improvement in MAE

down to 0.118 from 0.131. Further, opt.cv achieves highest imputation accuracy in

more than 78.6% of the datasets compared to benchmark.cv.

Performance on Downstream Tasks

Next, we evaluate the performance of standard machine learning algorithms for clas-

sification and regression trained on the imputed data. We consider the data sets in

Table 2.6, which were selected as a representative subsample from the UCI Machine

Learning Repository data sets. These data sets range in size, having n = 150 to 5875

observations and p = 4 to 16 features. The difficulty of the regression or classification

task on the completely known data set also varies widely. The baseline out-of-sample

accuracy of an SVM model for the binary classification problems ranges from 77%

to 100%, and the baseline out-of-sample R2 of a LASSO model for the regression

problems ranges from 0.09 to 0.82. For each of these data sets, the downstream tasks

become more difficult as the missing data percentage increases.

In Figures 2-4 and 2-5, we show how the imputation method chosen impacts the

performance for downstream tasks, across different data sets and different missing
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Figure 2-3: Mean absolute error (MAE) and root mean squared error (RMSE)
across 95 data sets for each imputation method, comparing opt.cv against all
benchmark methods and against the cross-validated best benchmark method,

benchmark.cv. The center lines are geometric mean with one geometric standard
deviation multiplied above and divided below. The x-axis corresponds to the

percentage of missing entries.
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data percentages. In Tables 2.7 and 2.8, we show pairwise t-test results, aggregating

out-of-sample performance results by downstream task and missing percentage. These

results include comparisons for both single and multiple imputation methods.

For the single imputation methods, we observe that opt.cv significantly outper-

forms the best cross-validated benchmark method for all missing percentages in both

classification and regression tasks. Moreover, this improvement in out-of-sample ac-

curacy and R2 is monotonically increasing with the missing percentage. At 50%

missing data, the average improvement in out-of-sample accuracy is 1.7% for classifi-

cation tasks, and the average improvement in out-of-sample R2 is 0.024 for regression

tasks.

For the multiple imputation methods, we observe that opt.mi significantly out-

performs mice for all missing percentages in the regression tasks, and 3/5 missing

percentages in the classification tasks. At the 50% missing percentage, the average

improvement is 0.5% in out-of-sample accuracy for classification tasks and 0.010 in

out-of-sample R2 for regression tasks. While these improvements are smaller than

those for single imputation, they are significant at the p = 0.001 level.

Overall, these results suggest that opt.impute leads to gains in out-of-sample per-

formance in both single and multiple imputation settings. The relative improvements

are consistently greatest at the highest missing percentages, where the imputation

method selected has the largest impact on the downstream performance.

Finally, we compare the performance of single vs multiple imputation for opt.impute.

We observe that opt.mi significantly outperforms opt.cv in 8/10 scenarios, with the

largest improvements occurring at the highest missing percentages. At the 50% miss-

ing percentage, the average improvement is 0.4% in out-of-sample accuracy for classi-

fication tasks and 0.017 in out-of-sample R2 for regression tasks. These improvements

are similar to the gains in performance over mice.

Sensitivity to Parameters

Model performance can be impacted by various parameters. For a specific data set

and model, the performance can be sensitive to hyperparameters such as the number
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Figure 2-4: Average out-of-sample accuracy values with standard errors of SVM and
Optimal Trees models trained on data imputed via opt.impute and benchmark
methods across a sample of binary classification problems and a range of missing

data percentages. Multiple and single imputation methods are solid and dotted lines
respectively.

Table 2.7: Pairwise t-tests between opt.impute and benchmark methods for
downstream classification tasks, with the p-values adjusted for multiple comparisons.

∆ Out-of-Sample Accuracy (adjusted p-value)

Missing % opt.mi - mice opt.cv - benchmark.cv opt.mi - opt.cv

10 -0.0001 (1.0000) 0.0016 (0.0059**) 0.0006 (0.2076)
20 0.0018 (0.0059**) 0.0026 (<0.001***) 0.0008 (0.2076)
30 0.0005 (0.9858) 0.0082 (<0.001***) 0.0002 (1.0000)
40 0.0018 (0.0491*) 0.0113 (<0.001***) 0.0043 (<0.001***)
50 0.0052 (<0.001***) 0.0171 (<0.001***) 0.0038 (<0.001***)

Table 2.8: Pairwise t-tests between opt.impute and benchmark methods for
downstream regression tasks, with the p-values adjusted for multiple comparisons.

∆ Out-of-Sample R2 (adjusted p-value)

Missing % opt.mi - mice opt.cv - benchmark.cv opt.mi - opt.cv

10 0.0014 (<0.001***) 0.0034 (<0.001***) 0.0013 (<0.001***)
20 0.0029 (<0.001***) 0.0113 (<0.001***) 0.0027 (<0.001***)
30 0.0071 (<0.001***) 0.0161 (<0.001***) 0.0077 (<0.001***)
40 0.0085 (<0.001***) 0.0195 (<0.001***) 0.0108 (<0.001***)
50 0.0097 (<0.001***) 0.0237 (<0.001***) 0.0174 (<0.001***)
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Figure 2-5: Average out-of-sample R2 values with standard errors of SVR and
LASSO models trained on data imputed via opt.impute and benchmark methods
across a sample of regression problems and a range of missing data percentages.
Multiple and single imputation methods are solid and dotted lines respectively.

of neighbors K in K-NN and the trade-off parameter C for SVM. It is also affected

by the number of random starts and choice of algorithm between block coordinate

descent and coordinate descent. Data characteristics such as sample size n, feature

dimension p, and missing data percentage may affect the imputation quality as well.

This section explores how these parameters impact the imputation quality.

We found that all of the imputation model hyperparameters that we investigated

affect imputation accuracy. Figure 2-6 shows the relationship between the hyperpa-

rameters and MAE for various data sets and missing patterns. For opt.knn (CD and

BCD), the out-of-sample MAE first decreases and then increases as the hyperparam-

eter increases. When K reaches the sample size, the imputation is equivalent to mean

imputation. For opt.svm, the imputation accuracy remains relatively constant with

respect to changes in parameter C after a certain threshold. There were no external

parameters for trees, as the trees in each step were pruned during the training process.

Overall, these plots suggest that the opt.impute methods are relatively robust even
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Figure 2-6: Sensitivity of MAE to the choice of K for the number of neighbors for
K-NN coordinate descent, K-NN block coordinate descent, and the trade-off

parameter C for SVM in data set iris. The colors represent different missing data
percentages. The parameter value that achieves lowest MAE is labeled for each

missing data percentage.

if their hyperparameters are not known exactly.

For opt.knn, the performances of block coordinate descent and coordinate descent

are comparable. Under most missing data scenarios, block coordinate descent achieves

the lower MAE in a few more data sets. As the missing data percentage increases, in

many problems both block coordinate descent and coordinate descent methods find

the same solutions, thus resulting in a tie. Comparing between the two, there is no

clear dominant strategy; in practice we recommend running both methods and then

selecting the imputation which yields the lowest objective value.

Computational Speed

Next, we compare the computational time required for all imputation methods across

a selection of six UCI data sets and missing data patterns. Each method was run on

a single thread of a machine with an Intel Xeon CPU E5-2650 (2.00 GHz) Processor

and limited to 8 GB RAM with a time limit of 4 hours. For various opt.impute

methods, we report the running times for mean warm starts, as multiple warm starts

can be trivially parallelized. The results are shown below in Table 2.9.

Mean imputation is almost instantaneous and is therefore not presented in the

table. For small-scale problems on the iris data set, all imputation methods finish

quickly. As the data dimension p increases (for example, in the libras-movement

data set), most opt.impute methods scale better than the pmm method. As the
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Table 2.9: Computational time comparison of benchmark and opt.impute

imputation methods. Blank entries indicate that the method failed to converge with
the 4 hour time limit.

Time (in seconds)

Benchmark opt.impute

Name (n, p) Missing % bpca knn pmm knn.CD knn.BCD svm.CD tree.CD

iris (150, 4)
10 0.802 0.088 0.353 0.006 0.023 0.131 0.049
30 1.717 0.446 0.474 0.036 0.041 0.498 0.091
50 1.875 0.736 0.334 0.085 0.097 0.762 0.062

banknote-authen. (1372, 4)
10 2.262 2.552 1.717 0.261 1.285 3.269 0.046
30 14.058 14.914 1.911 0.772 4.981 15.625 0.116
50 17.820 16.889 2.141 1.578 17.573 15.280 0.159

libras-movement (360, 90)
10 2.624 0.088 0.353 0.006 0.023 0.131 0.049
30 3.423 0.446 0.474 0.036 0.041 0.498 0.091
50 1.892 0.736 0.334 0.085 0.097 0.762 0.062

mushroom (5644, 76)
10 26.432 387.386 4782.855 8.037 72.169 1442.942 -
30 46.726 8.134 1068.476 12.818 17.572 - -
50 63.556 10.155 893.243 10.511 12.948 - -

skin-segmentation (245057, 3)
10 392.310 1144.120 12193.105 1144.144 144.679 - 9.574
30 450.584 1380.138 - 1420.641 - - 15.616
50 615.037 2503.464 - 2582.102 - - 17.818

cnae-9 (1080, 856)
10 30.310 13.038 - 12.701 12.727 - -
30 58.205 13.970 - 13.931 13.972 - -
50 126.059 14.361 - 14.284 14.343 - -

sample size n increases, opt.knn.CD also scales better than pmm, as seen in banknote-

authentication and skin-segmentation. Among the opt.impute methods, tree

based imputation scales very well with respect to sample size n but not dimension p.

Despite its high imputation quality, SVM based imputation scales relatively poorly

with respect to both n and p. Among the proposed methods, opt.knn.CD has the

best scalability in both n and p.

In particular, when comparing coordinate descent and block coordinate descent

methods, the former performs best when the data size is large. When n is in

the 100,000s, the coordinate descent method still converges within one hour (see

skin-segmentation). For the block coordinate descent method, each iteration re-

quires solving a separate system of linear equations for each continuous dimension, or

an integer optimization problem for each of the categorical dimensions. On the other

hand, the main bottleneck of opt.knn.CD is computing the K-NN assignment on X

to update Z each iteration, which requires only O(n log n) time. When the problem

size is small, the running times of the two methods are comparable, and the block

coordinate descent method is slightly faster because it converges in fewer iterations.
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However, when the number of data entries to be imputed exceeds a certain threshold,

the block coordinate descent method slows down and takes much longer. In prac-

tice, we recommend running both when n ≤ 10,000 and performing model selection

between the two, and running only coordinate descent when n is larger.

2.4 Discussion

One of the primary contributions of this chapter is the formulation of the missing

data problem as a family of optimization problems. This framework accommodates

almost any predictive model that describes the conditional relationship within the

data, ranging from parametric to fully non-parametric models. By design, these

formulations admit arbitrary missing pattern and mixed data types and do not require

specific joint distributional assumptions on the data. In addition, we show how these

methods can be used to generate multiple imputations.

The first-order methods that we developed to solve these optimization problem

are highly scalable and produce high quality solutions. These methods are computa-

tionally fast; for example, the coordinate descent method for SVM solves problems

with 100,000s of data points and 1,000s of features in seconds on a standard desktop

computer. With more random starts, we obtain solutions which continue to improve

upon the objective. Since random warm starts can be trivially parallelized, increas-

ing the number of warm starts does not change the computational times materially

if implemented efficiently.

For single imputation, we propose opt.cv, a combination method which uses

cross-validation to select the best imputation objective function from K-NN, SVM,

and decision tree models. We provide evidence on opt.cv’s strong empirical perfor-

mance against benchmark single imputation methods in large scale computational

experiments on 95 real-world data sets. For all of the missing data scenarios consid-

ered, opt.cv produces the best overall imputation for the largest number of data sets.

In addition, opt.cv produces the lowest average MAE and RMSE for the majority of

missing data scenarios. Our proposed cross validation procedure generates additional
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missing pattern under MCAR, which may be further improved by adapting the gen-

erative procedure for more accurate reflection of imputation quality in the original

data missing.

Further, we demonstrate that using the imputations produced by opt.cv with

values closer to the ground truth leads to gains in out-of-sample performance on

downstream regression and classification tasks. This suggests that at medium-to-high

missing percentage scenarios, machine learning practitioners will benefit significantly

by adopting this framework for single imputation.

For multiple imputation, we propose opt.mi, a method which runs opt.impute on

a set of probabilistically generated warm starts. We show that this method offers sig-

nificant improvement over both mice and opt.cv in the downstream tasks. However,

the multiple imputation methods have drawbacks because they are computationally

slower, require pooling after analyzing multiple data sets, and produces an ensemble

of models which is less interpretable than a single model. Therefore, unless statistical

inference is required, opt.cv may be preferable for many applications.

Given the optimization formulations introduced in this chapter, there are multiple

open questions for future research. We may consider alternate cost functions for

missing data imputation that reflect out-of-sample performance better. For example,

in the K-NN based model, we could add a regularizer term or use the L1 distance

or Mahalanobis distance metric instead of the squared Euclidean distance metric.

The tree based imputation method invites future development in fast optimal trees

for convergence and better performance. Finally, solving the global optimization

problem (2.1) fast and accurately for any of the three examples of non-convex, non-

linear cost functions c(U,W,V; X) proposed in this work remains an open question.

2.5 Conclusions

In summary, we frame the classical missing data problem as a non-convex optimiza-

tion problem based upon a variety of predictive models. We propose a family of new

imputation methods, opt.impute, which finds high quality solutions to this problem
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using fast first-order methods. Through extensive computational experiments on 95

data sets from the UCI Machine Learning Repository, we show that opt.impute

yields significant gains in imputation quality over state-of-the-art imputation meth-

ods, which leads to improved out-of-sample performance on downstream tasks. This

approach scales to large problem sizes, generalizes to multiple imputation, and gives

significant improvement over state-of-the-art methods across a broad range of missing

data scenarios.
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Table 2.10 Comparison of imputation methods on data sets from the UCI Machine Learning repository with
30% missing values. The lowest mean absolute error for each data set is indicated in bold.

Benchmark opt.impute

Name n p0 p1 mean pmm bpca knn iknn knn svm tree

acute-inflammations-1 120 1 5 0.3701 0.3626 0.2307 0.2694 0.3598 0.2285 0.2267 0.2185

acute-inflammations-2 120 1 5 0.3701 0.3626 0.2307 0.2694 0.3598 0.2285 0.2267 0.2185

airfoil-self-noise 15035 0 0.2332 0.2270 0.2332 0.2018 0.2054 0.1944 0.1949 0.2002

airline-costs 31 9 0 0.1799 0.1566 0.1054 0.1113 0.1071 0.0970 0.1084 0.1037

auto-mpg 392 5 2 0.2404 0.1793 0.1547 0.1623 0.1690 0.1396 0.1362 0.1291

balance-scale 625 4 0 0.3011 0.4112 0.3011 0.3503 0.3113 0.3701 0.3206 0.3049

banknote-

authentication

13724 0 0.1608 0.1596 0.1608 0.1321 0.1361 0.1117 0.1182 0.1243

beer-aroma 23 8 0 0.2036 0.2004 0.1772 0.1773 0.1838 0.1728 0.1638 0.1628

blood-transfusion 748 4 0 0.1123 0.1215 0.1123 0.0945 0.0880 0.0799 0.0824 0.0664

breast-cancer-

diagnostic

569 30 0 0.1066 0.0431 0.0558 0.0520 0.0565 0.0486 0.0512 0.0351

breast-cancer-

prognostic

194 31 1 0.1304 0.0727 0.0850 0.0846 0.0911 0.0794 0.0682 0.0576

breast-cancer 683 8 1 0.2458 0.1531 0.1318 0.1541 0.1788 0.1367 0.1355 0.1333

climate-model-crashes 540 18 0 0.2505 0.3404 0.2505 0.2651 0.2570 0.2750 0.2921 0.2519

communities-and-

crime-2

111 101 23 0.1374 0.2191 0.1137 0.0864 0.1053 0.0845 0.0875 0.0577

communities-and-

crime

123 99 23 0.1613 0.2901 0.1327 0.0987 0.1252 0.0973 0.0936 0.0711

computer-hardware 209 7 1 0.1989 0.1888 0.1989 0.1824 0.1703 0.1917 0.1780 0.1832

concrete-compressive 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750

concrete-flow 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750

concrete-slump 103 7 0 0.2338 0.2005 0.2057 0.2053 0.1982 0.1854 0.1868 0.1750

congressional-voting-

records

232 0 16 0.4357 0.4351 0.2150 0.2504 0.4357 0.2107 0.2449 0.3509

connectionist-bench-

sonar

208 60 0 0.1629 0.1208 0.1440 0.1088 0.1219 0.1071 0.0918 0.0905

connectionist-bench 990 10 0 0.1506 0.1632 0.1294 0.1049 0.1001 0.0829 0.1143 0.1224

construction-

maintenance

33 4 0 0.3614 0.2461 0.3638 0.3299 0.2836 0.3283 0.3250 0.3979

contraceptive-method-

choice

14738 1 0.2767 0.2768 0.2519 0.2634 0.2336 0.2229 0.2263 0.2452

dermatology 358 33 1 0.2254 0.1447 0.1484 0.1212 0.1421 0.1082 0.1364 0.1957

diabetes 43 2 0 0.1868 0.2768 0.1868 0.1844 0.2095 0.2404 0.1847 0.1950

ecoli 336 7 0 0.1215 0.1224 0.0938 0.1071 0.0908 0.0990 0.1109 0.0904

fertility 100 7 2 0.3526 0.3854 0.3433 0.3432 0.3476 0.3369 0.3450 0.3665

flags 194 22 6 0.3246 0.3146 0.3246 0.2542 0.3039 0.2475 0.3290 0.2603

geographic-origin 105968 0 0.0827 0.0764 0.0599 0.0510 0.0557 0.0477 0.0584 0.0438

glass-identification 214 9 0 0.1140 0.0825 0.0956 0.0862 0.0865 0.0851 0.0923 0.0862

haberman-survival 306 3 0 0.1701 0.2258 0.1701 0.1754 0.1663 0.1734 0.1727 0.1696
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Table 2.10 Comparison of imputation methods on data sets from the UCI Machine Learning repository with
30% missing values. The lowest mean absolute error for each data set is indicated in bold.

Benchmark opt.impute

Name n p0 p1 mean pmm bpca knn iknn knn svm tree

hayes-roth 132 4 0 0.2768 0.3719 0.2778 0.2873 0.2779 0.2965 0.2948 0.2770

heart-disease-

cleveland

297 8 5 0.3261 0.3386 0.2878 0.2945 0.3023 0.2763 0.2738 0.3041

hepatitis 80 4 15 0.3094 0.3019 0.3094 0.2753 0.2626 0.2573 0.2657 0.3480

hill-valley-noise 606 100 0 0.0998 0.0105 0.0066 0.0052 0.0283 0.0051 0.0781 0.0114

hill-valley 606 100 0 0.0971 0.0974 0.0055 0.0042 0.0273 0.0042 0.0783 0.0031

housing 506 13 0 0.1821 0.1211 0.1154 0.0985 0.1042 0.0798 0.1049 0.1261

hybrid-price 153 3 0 0.1538 0.1605 0.1538 0.1289 0.1069 0.1370 0.1202 0.1231

image-segmentation 210 19 0 0.1450 0.0806 0.0856 0.0637 0.0672 0.0627 0.0846 0.0628

immigrant-salaries 35 3 0 0.2247 0.2134 0.2247 0.1869 0.1700 0.1901 0.1673 0.1808

indian-liver-patient 579 8 2 0.1039 0.0953 0.0954 0.0981 0.0873 0.0910 0.1167 0.0789

ionosphere 351 34 0 0.2016 0.1739 0.1552 0.1107 0.1187 0.1172 0.1206 0.1475

iris 150 4 0 0.2200 0.1292 0.1571 0.1274 0.1370 0.1132 0.1048 0.1130

japan-emmigration 45 5 0 0.2096 0.2625 0.2098 0.2064 0.1737 0.2097 0.1866 0.2131

lenses 24 0 4 0.6607 0.6667 0.6696 0.6339 0.6607 0.6786 0.6786 0.6667

libras-movement 360 90 0 0.1823 0.0304 0.1022 0.0670 0.1014 0.0688 0.0522 0.0139

lpga-2008 157 6 0 0.1459 0.1769 0.1424 0.1448 0.1414 0.1496 0.1294 0.1299

lpga-2009 146 11 0 0.1750 0.1048 0.1074 0.1169 0.1131 0.1047 0.0889 0.0881

lung-cancer 27 0 56 0.3677 0.3475 0.3644 0.3426 0.3677 0.3586 0.3348 0.3438

mammographic-mass 830 0 5 0.2803 0.3307 0.2691 0.2386 0.2762 0.3390 0.2439 0.2243

monks-problems-1 124 0 6 0.6441 0.6396 0.6441 0.6059 0.6441 0.6411 0.5991 0.6502

monks-problems-2 169 0 6 0.6405 0.6373 0.6454 0.6340 0.6405 0.6481 0.6438 0.6383

monks-problems-3 122 0 6 0.6554 0.5976 0.6554 0.6813 0.6554 0.6577 0.6877 0.6622

parkinsons-

telemonitoring-motor

587516 0 0.0623 0.0395 0.0372 0.0389 0.0342 0.0301 0.0458 0.0265

parkinsons-

telemonitoring-total

587516 0 0.0623 0.0395 0.0372 0.0389 0.0342 0.0301 0.0458 0.0265

parkinsons 195 21 0 0.1348 0.0888 0.0849 0.0754 0.0814 0.0690 0.0824 0.0691

pima-indians-diabetes 768 8 0 0.1217 0.1453 0.1109 0.1164 0.1098 0.1089 0.1049 0.1069

planning-relax 182 12 0 0.1441 0.0823 0.1143 0.1188 0.1195 0.1019 0.0809 0.0680

post-operative-patient 87 0 8 0.3891 0.4428 0.3891 0.4143 0.3861 0.3937 0.4348 0.3955

pyrim 74 27 0 0.1798 0.1235 0.1758 0.1172 0.1193 0.1145 0.1219 0.1282

qsar-biodegradation 105541 0 0.0749 0.0379 0.0656 0.0385 0.0410 0.0324 0.0566 0.0452

seeds 210 7 0 0.2082 0.0795 0.0651 0.1099 0.0862 0.0715 0.0730 0.0644

soybean-large 266 0 35 0.2880 0.2583 0.2467 0.1874 0.2880 0.1858 0.1865 0.2103

soybean-small 47 0 35 0.2689 0.2816 0.2673 0.1577 0.2689 0.1571 0.1571 0.1837

spect-heart 80 0 22 0.2173 0.2134 0.2083 0.1899 0.2173 0.1951 0.1869 0.1913

spectf-heart 80 44 0 0.1307 0.1631 0.1307 0.1226 0.1195 0.1141 0.1058 0.1138

statlog-project-

landsat-satellite

443536 0 0.1556 0.0405 0.0472 0.0390 0.0480 0.0329 0.0345 0.0293
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Table 2.10 Comparison of imputation methods on data sets from the UCI Machine Learning repository with
30% missing values. The lowest mean absolute error for each data set is indicated in bold.

Benchmark opt.impute

Name n p0 p1 mean pmm bpca knn iknn knn svm tree

teaching-assistant-

evaluation

151 1 4 0.4017 0.4074 0.4094 0.3711 0.3992 0.4086 0.5131 0.3370

thoracic-surgery 470 3 13 0.1469 0.1704 0.1388 0.1433 0.1463 0.1415 0.2205 0.1397

thyroid-disease-ann-

thyroid

377221 0 0.0773 0.0774 0.0869 0.0723 0.0603 0.0838 0.1162 0.0729

thyroid-disease-new-

thyroid

215 5 0 0.0935 0.1083 0.0887 0.0849 0.0754 0.0774 0.0893 0.0851

triazines 186 60 0 0.1574 0.0667 0.1184 0.0503 0.0708 0.0454 0.0892 0.0495

tv-sales 31 8 0 0.2073 0.1949 0.1808 0.1934 0.1729 0.1952 0.1731 0.1964

vote-for-clinton 27049 0 0.0644 0.0715 0.0538 0.0676 0.0552 0.0523 0.0633 0.0537

wall-following-robot-2 54562 0 0.0721 0.0955 0.0721 0.0754 0.0720 0.0792 0.0847 0.0717

wall-following-robot-

24

54564 0 0.0917 0.1172 0.0917 0.0886 0.0872 0.0862 0.0946 0.0895

wiki4he 176 0 44 0.2200 0.2234 0.1857 0.1872 0.1968 0.1777 0.1731 0.2085

wine-quality-red 159911 0 0.0976 0.0945 0.0761 0.0796 0.0744 0.0683 0.0757 0.0742

wine-quality-white 489811 0 0.0756 0.0782 0.0668 0.0771 0.0645 0.0598 0.0676 0.0597

wine 178 13 0 0.1680 0.1537 0.1203 0.1184 0.1144 0.1091 0.1105 0.1296

yacht-hydrodynamics 308 6 0 0.2102 0.1991 0.2088 0.1858 0.1861 0.1866 0.1867 0.1799

yeast 14848 0 0.0721 0.0917 0.0689 0.0740 0.0671 0.0683 0.0928 0.0680

zoo 101 1 15 0.2892 0.2832 0.1835 0.1518 0.2860 0.1502 0.3637 0.1478
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Chapter 3

Robust Classification

This work, co-authored with Dimitris Bertsimas, Jack Dunn, and Colin Pawlowski,

is in revisions with the INFORMS Journal on Optimization [9].

Motivated by the fact that there may be inaccuracies in features and labels of

training data, we apply robust optimization techniques to study in a principled way

the uncertainty in data features and labels in classification problems, and obtain

robust formulations for the three most widely used classification methods: support

vector machines, logistic regression, and decision trees. We show that adding robust-

ness does not materially change the complexity of the problem, and that all robust

counterparts can be solved in practical computational times. We demonstrate the

advantage of these robust formulations over regularized and nominal methods in syn-

thetic data experiments, and we show that our robust classification methods offer

improved out-of-sample accuracy. Furthermore, we run large-scale computational ex-

periments across a sample of 75 data sets from the UCI Machine Learning Repository,

and show that adding robustness to any of the three non-regularized classification

methods improves the accuracy in the majority of the data sets. We observe the

most significant gains for robust classification methods on high-dimensional and diffi-

cult classification problems, with an average improvement in out-of-sample accuracy

of robust vs. nominal problems of 5.3% for SVM, 4.0% for logistic regression, and

1.3% for decision trees.
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3.1 Introduction

Three of the most widely used classification methods are SVM (Support Vector Ma-

chines), logistic regression, and CART (Classification and Regression Trees) [49].

These classifiers are among the state-of-the-art machine learning methods, giving

high out-of-sample accuracy on many real-world data sets and admitting tractable

training algorithms for large-scale problems. However, in many scenarios, the training

data are subject to uncertainty which can negatively affect the performance of these

classifiers. Regularization is a common technique for mitigating the effect of data

uncertainty and addressing the problem of overfitting. In this chapter, we propose

a novel approach for developing improved classifiers using techniques from robust

optimization to explicitly model uncertainty in the data in a principled manner.

Support vector machines were first introduced by [36] and have gained popularity

since then. SVM classifiers find a hyperplane that maximizes the margin of separation

and use a hinge loss function when the data are not separable. Alternatively, the

geometric concept of margin can be viewed as a form of regularization. Previous work

has shown the equivalence between support vector machines and a robust formulation

of the hinge loss classifier [99]. In this chapter, we develop new robust formulations

for SVM and other classifiers which lead to further gains in out-of-sample accuracy

compared to non-robust methods.

Logistic regression is one of the oldest and most widely used classification methods

that models the probability of a response belonging to a certain class. The perfor-

mance of logistic regression can be improved by introducing a regularization term

to penalize model complexity, and the resulting problem can be solved efficiently for

large scale problems [48]. Decision trees, a family of classification methods, aim to

partition the space recursively and make predictions based on the region into which

the points fall. Popular methods such as CART [29] construct the partitions with

greedy heuristic methods, although recently methods have been developed that effi-

ciently find globally optimal solutions to the decision tree problem [7]. In practice,

scientists and researchers apply these methods to real-world problems using packages
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which have been developed in R and other programming languages. Methods for

SVM, logistic regression, and CART are included in the R packages e1071, stats,

and rpart, respectively.

The model training problems for SVM, logistic regression, and decision trees can

all be formulated and solved as traditional optimization problems, and therefore can

benefit from the systematic improvements in model formulation and solver speeds in

this area. Recent studies have explored using modern Mixed Integer Optimization

(MIO) methods to solve problems in classical statistics such as the Least Quantile

Squares [15] and Best Subset Selection problems [14], and to create algorithmic ap-

proaches for fitting regression models [12, 13]. These methods have been successful in

part due to dramatic increases in hardware and software computing power for MIO

over the past 30 years.

One of the biggest challenges in the field of machine learning is to design models

that avoid the issue of overfitting, where the model describes the noise instead of the

underlying relationship. Strong models should take into consideration the noise struc-

ture during model estimation, and in many real-world problems, the data representing

both the feature variable (xi, i = 1, . . . n) as well as the label variable (yi, i = 1, . . . , n)

are subject to error. For example, the “Wisconsin Diagnostic Breast Cancer” data set

is widely used in the machine learning community. This data set involves classifying

benign and malignant tumors, with features computed from digitized images includ-

ing the radius, texture, symmetry, etc. of the cell nuclei. Even though the features

in this data set are relatively precisely measured, the images are not free from noise,

and the accuracy of the measurements depends on the precision of the recognition

programs. More generally, in data sets with missing data that require imputation,

uncertainties are also introduced.

As an example of label uncertainty, in the contraceptive-method-choice data

set from the UCI machine learning repository, women were surveyed to report their

current contraceptive method choice as well as demographic and socio-economic char-

acteristics. Because of the survey nature of the data, we may suspect that some

respondents have reported dishonest answers to the questions about their choice of
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contraceptive method. In cancer clinical trials, caregivers determine whether or not

each patient has achieved remission, and these labels are subjective and depend upon

the accuracy of the tumor measurement. Another common source for such errors is

the employment of labeling personnel to provide labels for the training set. Therefore,

it seems natural to expect that some of the labels may be incorrect when training the

classifier.

Related Work

To date, there has not been a principled way of modeling data uncertainty directly

for classification problems in the literature. In this chapter, we propose a framework

based on robust optimization to address classification problems whose data (both

in features and in labels) are subject to error. Robust optimization is a flexible

framework for modeling uncertainty [2] and is arguably one of the fastest growing

areas of optimization in the last decade. For a wide variety of problems in domains

such as finance, statistics, and health care, robust formulations have been shown to be

computationally tractable and lead to improved solutions compared to the classical

optimization formulations [5]. The key advantage of robust solutions is that they

provide near optimal solutions that remain feasible when problem parameters are

perturbed, and thus are attractive when the problem is subject to uncertainty.

In particular, robust optimization has been shown to lead to improvements for

many statistics problems. In the machine learning community, the success of SVM

in classification and Lasso in regression has been largely attributed to their regular-

ization terms that reduce data overfitting. [77] demonstrate how robust classification

can be used to handle situations with imbalanced training data, and [70] derive classi-

fiers protected against stochastic adversarial perturbations to the training data. [99]

establish that robustness is a key reason behind the strong performance of regularized

methods, due to the generalization ability of robustness.

There has been prior work which consider robust optimization classifiers based

upon SVM, first proposed in [24, 23]. These approaches have dealt mainly with fea-

ture uncertainty. One of the robust classification methods proposed in this work,
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namely feature-robust SVM, closely resembles the linear optimization robust classi-

fiers proposed by [91], except these methods contain an additional regularizer term in

the objective. This difference is important because more recently, it has been shown

that a robust optimization formulation of the maximum margin classifier is equiva-

lent to the classical SVM; thus methods derived as robust variations to classical SVM

are “double-counting” the effect of robustness [99, 6]. In addition, there have been

previous attempts to model uncertainties in labels for SVM, although these methods

are largely heuristic in nature and have been tested primarily on synthetic or contam-

inated data [25, 74]. There has also been work on robustifying kernel SVM methods

against feature uncertainty by [1]. The approach we present could be extended to

kernel methods, but this is beyond the scope of the work.

For logistic regression, regularized versions such as Elastic Net have been proposed

[103], which consider adding a convex combination of the `1 and `2-norm penalty to

the objective; however these regularized classifiers were not derived using tools from

robust optimization. Using robust optimization, logistic regression models that are

robust to feature uncertainty have been derived for various uncertainty sets [42, 54].

To our knowledge, no work has been done framing decision trees as a robust

optimization problem. Because tractable formulations and solution methods for the

optimal decision tree problem were proposed quite recently in [7], robust optimal

decision trees have not been explored.

In summary, results from the literature indicate that ideas from robust optimiza-

tion have the potential to add value to existing classification methods. Prior work

on SVM establishes the equivalence between regularization and robustness for certain

problems, and in some examples robust classifiers yield higher out-of-sample accuracy

compared to nominal methods. However, these works have largely focused on theoret-

ical derivations of robust methods, with limited testing on synthetic data. Without

extensive computational experiments, we do not know if these robust classifiers yield

gains in out-of-sample accuracy in practice, especially in comparison with regularized

methods.

We build upon these previous efforts to present a framework for robust classi-
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fication which accommodates three of the most widely used classification methods:

SVM, logistic regression, and CART. By considering a diverse variety of classifiers, we

compare the impact of adding robustness to different models, and we evaluate the per-

formance of these methods in practice through large-scale computational experiments.

Contributions

This chapter shows how to incorporate robustness in classification problems generally.

Under the framework of robust optimization, we systematically develop new robust

methods that offer predictable improvements in out-of-sample accuracy over nominal

classifiers. We summarize our contributions below:

1. We present a principled framework for robust classification, which combines

ideas from robust optimization and machine learning, with an aim to build

classifiers that model data uncertainty directly. Building on previous work for

modeling feature uncertainty, we introduce an approach for modeling uncer-

tainty in labels, as well as both features and labels simultaneously. By viewing

machine learning algorithms as a family of optimization problems, we show that

the robustification of existing classification methods can be done in a unified

and principled way. This leads to tractable problems with relatively small over-

head compared to the original methods. In particular, we use this framework

to derive counterparts to SVM, logistic regression, and CART that are robust

to variations in features and labels in the data. In the case where we consider

feature uncertainty only, the resulting robust formulations for SVM and logistic

regression match previous results in the literature.

2. We demonstrate the advantage of robust formulations over regularized and nom-

inal methods through synthetic data experiments with two classes divided by

a separating hyperplane. Compared to nominal and regularized methods, the

robust SVM and logistic regression methods recover the separating hyperplane

classifiers closer to the truth, leading to gains in out-of-sample accuracy espe-

cially in the worst case analysis.
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3. We demonstrate that robust classification improves out-of-sample accuracy in

large-scale computational experiments across a sample of 75 data sets from the

UCI Machine Learning Repository. Furthermore, we identify characteristics of

classification problems for which robust methods lead to significant accuracy

gains compared to non-robust methods. Specifically, in problems with high

dimensional data and difficult separability, the value of robustness is even more

prominent.

4. We provide a simple, empirically-derived decision rule for machine learning prac-

titioners that predicts with high accuracy when robust methods can offer signif-

icant improvement over the nominal methods, with an average improvement in

out-of-sample accuracy of 5.3% for SVM, 4.0% for logistic regression, and 1.3%

for CART. Compared to regularized SVM or logistic regression, the average

out-of-sample accuracy improvement of our principled approach to robustness

is 2.1% over regularized SVM and 1.2% over regularized logistic regression when

this rule is satisfied.

We would like to distinguish robust optimization in statistical problems from the

field of robust statistics, developed by [57], which studies how an estimator performs

under perturbation of the model. Even though both fields share the motivation to

avoid unduly effects from outliers, the underlying methodologies are totally different

and address the problems from separate angles. While robust statistics passively

evaluates the robustness properties of a given algorithm, robust optimization actively

constructs models which take into account data uncertainty.

The structure of the chapter is as follows. In Section 3.2, we present a selection

of widely-used classification methods. In Section 3.3, we give a brief introduction to

robust optimization and introduce some terms and properties that will be used later.

In Section 3.4, we demonstrate how to apply robust optimization to the classification

methods to derive a family of classification methods that are robust to uncertainty in

the features of the training data set. In Section 3.5, we repeat this process to develop

methods that are robust to uncertainty in data set labels. In Section 3.6, we combine
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these approaches to develop classification methods that are robust to noise in both

features and labels. In Section 3.7, we compare the performance of these robust clas-

sification methods to their non-robust counterparts and regularized methods through

a series of synthetic data experiments. In Section 3.8, we comprehensively compare

the performance of our robust classifiers to their benchmark methods on a wide range

of real data sets. We conclude in Section 3.9.

3.2 Overview of Classification Methods

In this section, we present a selection of widely-used methods for classification. These

are the methods to which we will later apply robust optimization techniques. For this

section and in the rest of the chapter, let {xi, yi}ni=1 be the training data provided

for the classification task, where xi ∈ Rp is the feature vector and yi ∈ {−1, 1} is the

label for observation i.

3.2.1 Soft-Margin Support Vector Machines

Soft-margin support vector machines are a variation on the simpler maximal margin

classifier which relax the requirement that the data be separable and instead allow for

points to be incorrectly classified [36]. Support vector machines use hinge loss as the

loss function, and balance the minimization of total loss and maximization of margin

with parameter C that can be tuned via validation. This classifier can be formulated

as the following problem:

min
w,b

1
2
‖w‖2

2 + C

n∑
i=1

max{1− yi(wTxi − b), 0}. (3.1)
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Problem (3.1) can equivalently be formulated as the following problem:

min
w,b

1
2
‖w‖2

2 + C
n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n.

(3.2)

The dual problem can be formulated through the use of Lagrange multipliers:

max
α

C

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxi
Txj

s.t. 0 ≤ αi ≤ C i = 1, . . . , n,

n∑
i=1

αiyi = 0.

Both the primal and dual are convex quadratic optimization problems. Since the

dual problem has fewer decision variables, and the majority of these variables tend

to be equal to zero or the cost parameter C in the optimal solution, it is typically the

problem solved in practice [49]. In addition, the dual form is advantageous because it

allows us to do the kernel trick to learn non-linear decision rules [36]. Alternatively,

we may modify the objective function of problem (3.1) by changing the norm of the

regularizer term from `2 to `1 [102]. The resulting classifier is formulated as follows:

min
w,b

‖w‖1 + C
n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n.

(3.3)

Problem (3.3), which we refer to as `1-regularized SVM, is equivalent to a linear

optimization problem which is efficiently solvable.
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3.2.2 Logistic Regression

Logistic regression assumes the response variable Y follows a Bernoulli distribution

with the probability depending on the x and the model parameter β ∈ Rp, β0 ∈ R

P(Y = 1|X = x) =
eβ

T x+β0

1 + eβT x+β0
,

P(Y = −1|X = x) =
1

1 + eβT x+β0
.

Concisely, the conditional probability can be written as

P(Y = yi|X = x) =
1

1 + e−yi(βT xi+β0)
.

Logistic regression coefficients β and β0 are typically fit using maximum likelihood

method. The log-likelihood is

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)
.

Therefore, the maximum-likelihood estimators β and β0 aim to solve the following

problem:

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)
. (3.4)

Problem (3.4) is a concave maximization problem that is efficiently solvable by meth-

ods such as coordinate descent or Newton’s method [4].

Similar to the regularization techniques in the popular lasso regression [90] for

variable selection and shrinkage, a regularization term can be added to the logistic

regression likelihood function, giving

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)
− λ‖β‖q, (3.5)

where ‖ · ‖q is a given `q norm.
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3.2.3 Decision Trees and CART

Decision Trees are a family of classification methods that seek to recursively partition

the feature space into disjoint regions and predict labels for new points based upon the

region into which the point falls. The most widely-used method for training decision

trees is CART [29], which takes a greedy heuristic approach to constructing the tree

rather than posing the entire process as a single optimization problem.

However, in order to use robust optimization techniques to create robust decision

trees, we require the formulation of the decision tree training problem as a formal

optimization problem. Optimal Decision Trees [7] are a recent method that considers

the entire decision tree learning procedure as a single mixed-integer optimization

problem, and uses this to take a globally optimal view while constructing the tree. To

create robust decision tree methods, we will take the Optimal Decision Tree problem

and apply robust optimization.

Consider the problem of training a general decision tree. At each branch node in

the tree, a split of the form aTx < b is applied. Points that satisfy this constraint

will follow the left branch of the tree, while those that violate the constraint follow

the right branch. Each leaf node is assigned a label, and each point is assigned the

label of the leaf node into which the point falls. Figure 3-1 summarizes this for an

example decision tree with two branch nodes, A and B, that apply splits aTAx < bA

and aTBx < bB respectively. There are three leaf nodes that assign labels {-1}, {+1},

and {+1} (from left to right in the figure).

Given that the tree contains K nodes, we define the sets PLk , PRk , and Pk for

k = 1, . . . , K to capture the hierarchy of the tree

• PLk = the ancestors of node k in the tree of which we have taken the left branch

(a split of the form aTk xi < bk) to get to node k;

• PRk = the ancestors of node k of which we have taken the right branch (a split

of the form aTk xi ≥ bk) to get to node k;

• Pk = PLk ∪ PRk , i.e., all ancestors of node k.
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A

B +1

-1 +1

aTAx < bA aTAx ≥ bA

aTBx < bB aTBx ≥ bB

Figure 3-1: An example of a decision tree with two partition nodes and three leaf
nodes.

We will now state the Optimal Decision Tree problem from [7] below as Problem (3.6)

and then provide an explanation of the model:

min
K∑
k=1

fk −
K∑
k=1

λkdk (3.6a)

s.t. gk =
n∑
i=1

1− yi
2

zik k = 1, . . . , K, (3.6b)

hk =
n∑
i=1

1 + yi
2

zik k = 1, . . . , K, (3.6c)

fk ≤ gk +M [wk + (1− ck)] k = 1, . . . , K, (3.6d)

fk ≤ hk +M [(1− wk) + (1− ck)] k = 1, . . . , K, (3.6e)

fk ≥ gk −M [(1− wk) + (1− ck)] k = 1, . . . , K, (3.6f)

fk ≥ hk −M [wk + (1− ck)] k = 1, . . . , K, (3.6g)

dk = 1 k = dK/2e, . . . , K, (3.6h)

dk ≤ dj k = 1, . . . , K,∀j ∈ Pk, (3.6i)

dk +

p∑
l=1

akl = 1 k = 1, . . . , K, (3.6j)

K∑
k=1

zik = 1 i = 1, . . . , n, (3.6k)

zik ≤ dk i = 1, . . . , n, k = 1, . . . , K, (3.6l)
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zik ≤ 1− dj i = 1, . . . , n, k = 1, . . . , K,∀j ∈ Pk, (3.6m)

n∑
i=1

zik ≥ Nck k = 1, . . . , K, (3.6n)

ck ≥ dk −
∑
j∈Pk

dj k = 1, . . . , K, (3.6o)

aTj xi + ε ≤ bj +M (1− zik) i = 1, . . . , n, k = 1, . . . , K,∀j ∈ P lk, (3.6p)

aTj xi ≥ bj −M (1− zik) i = 1, . . . , n, k = 1, . . . , K,∀j ∈ Puk , (3.6q)

ak ∈ {0, 1}p k = 1, . . . , K, (3.6r)

0 ≤ bk ≤ 1 k = 1, . . . , K, (3.6s)

zik, wk, ck, dk ∈ {0, 1} i = 1, . . . , n, k = 1, . . . , K. (3.6t)

At each node k = 1, . . . , K in the tree, we must decide whether to apply a split

or set the node to be a leaf node. The binary variable dk takes value 1 if no split is

applied, and 0 otherwise.

If we choose to apply a split at a node k, the variables ak and bk are used to set

a split of the form aTk x < bk. To mirror the behavior of CART, we only consider

univariate decision trees and hence we only allow a single variable to be used in each

split. This is achieved by the constraints (3.6r), which forces the components of ak to

be binary, and (3.6j) means we can only choose one of these variables at each node.

Note that (3.6j) also forces a = 0 if dk = 1, so we cannot apply a split at a node that

has been marked as a leaf node.

We use the binary variables zik to track which leaf node k each point i = 1, . . . , n in

training set is assigned. Constraints (3.6p) and (3.6q) ensure that points are assigned

only to a node if they satisfy all required splits, while constraints (3.6l) and (3.6m)

ensure that points can only be assigned to leaf nodes. Finally, (3.6k) ensures that

each point is assigned to exactly one leaf node.

The objective is to minimize the number of misclassified points. The number of

misclassified points in a node k is tracked using the variable fk. Note that it is always

better to assign the leaf node a label that agrees with the most common label among

points in the node. This means the misclassification count is given by the size of
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the minority label. We use the variables gk and hk to count the number of points

of each label in each node k, which is achieved with constraints (3.6b) and (3.6c).

Constraints (3.6d) through (3.6g) set fk to min{gk, hk} to count the misclassification

in each node, and the objective sums this misclassification over all nodes.

CART imposes a constraint relating to the minbucket parameter, which requires

each leaf node to contain at least this number of points. Constraints (3.6n) and (3.6o)

enforce this restriction in the model for a supplied minbucket parameter N .

The small number of remaining constraints relate to ensuring the decision to split

or not at each node is permitted by the structure of the tree. For example, no leaf

node is permitted to have a child node. We omit the full details of these precedence

constraints from this description of the model and instead refer the reader to [7] for

the complete description.

This is a mixed-integer optimization problem that is practically solvable on real-

world data sets and leads to results that are highly competitive with heuristic decision

tree methods like CART (see [7] for a comprehensive comparison).

3.3 Brief Overview of Robust Optimization

In this section, we give an overview of robust optimization and introduce the notions

of uncertainty sets and dual norms that will be used later when applying robust

optimization techniques to the unified classification framework.

Robust optimization is a means for modeling uncertainty in optimization prob-

lems without the use of probability distributions. Under this modeling framework,

we construct deterministic uncertainty sets that contain possible values of uncertain

parameters. We then seek a solution that is optimal for all such realizations of this

uncertainty. Consider the general optimization problem:

max
x∈X

c(u,x)

s.t. g(u,x) ≤ 0,
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where x is the vector of decision variables, u is a vector of given parameters, c is a

real-valued function, g is a vector-valued function, and 0 is the vector of all zeros.

Relaxing the assumption that u is fixed, we assume instead that the realized values

of u are restricted to be within some uncertainty set U . We form the corresponding

robust optimization problem by optimizing against the worst-case realization of the

uncertain parameters across the entire uncertainty set:

max
x∈X

min
u∈U

c(u,x)

s.t. g(u,x) ≤ 0 ∀u ∈ U .

Despite typically having an infinite number of constraints, it is often possible to

reformulate the problem as a deterministic optimization problem with finite size,

depending on the choice of uncertainty set U . The resulting deterministic problem is

deemed the robust counterpart, which may be a problem of the same complexity as

the nominal problem, depending on the structure of U .

There is extensive evidence in the literature that robust solutions have significant

advantages relative to nominal solutions. A case study of linear optimization problems

from the NETLIB library found that in 13 out of 90 problems, the optimal non-

robust solution violates some of the inequality constraints by more than 50% of the

right-hand side values, when the uncertain coefficients are subject to small (0.01%)

perturbations. On the other hand, robust solutions for these identical problems which

are feasible for all perturbations up to 0.1% lead to objective values that are within

1% of the optimal [3].

Dual Norms

Let x = (x1, . . . , xn) be a vector in Rn. For any real number q ≥ 1, we define the `q

norm of x in the standard way, denoted by ‖x‖q:

‖x‖q ,
( n∑
i=1

|xi|q
) 1

q

.
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A particular problem that is encountered frequently when using robust optimization

is the so-called dual norm problem:

max
‖x‖q≤1

{aTx}.

When q > 1, the optimal solution to this problem is ‖a‖q∗, where q∗ = 1
1− 1

q

. This

`q∗ norm is called the dual norm of the `q norm. In addition, when q = 1, it can be

shown that the optimal solution to this problem is ‖a‖∞, where the `∞ norm of a

vector x ∈ Rn is defined by

‖x‖∞ , lim
q→∞
‖x‖q = max{|x1|, |x2|, . . . , |xn|}.

A simple extension to this problem is when the norm of x is restricted by any number

ρ > 0. In this case we have the following:

max
‖x‖q≤ρ

{aTx} = max
‖y‖q≤1

{aT (ρy)} = ρ · max
‖y‖q≤1

{aTy}, (3.7)

and the optimal solution to this problem is thus ρ ‖a‖q∗ .

3.4 Robustness Against Uncertainty in Features

In this section, we present the notion of robustifying classification methods against

uncertainties in the features of the training set. Using an uncertainty set to model

possible values of the features in reality, we then define and state the feature-robust

counterpart for each of the classification methods. We note that the feature-robust

counterparts for SVM and logistic regression are known in the literature, but we

include their derivation here for completeness.

3.4.1 Motivating Feature-Robustness

Uncertainties in the features can arise from measurement errors during data collection

and from input errors during data manipulation and missing value imputation. If left
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unaddressed, the trained model may be biased and severely influenced by inaccuracies

in the data. Our goal is to train a feature-robust model that takes such uncertainties

into account, which is stable and provides high accuracy in circumstances where data

are perturbed.

With the robust approach, such uncertainties are taken into consideration when

training the classifiers. To model uncertainty in the features of the training set, we

assume that the data xi are subject to additive perturbations ∆xi ∈ Rp, i = 1, . . . , n.

Let ∆X = (∆x1,∆x2, . . .∆xn) and define the following uncertainty set:

Ux = {∆X ∈ Rn×p | ‖∆xi‖q ≤ ρ, i = 1, . . . , n}, (3.8)

where ρ is a parameter controlling the magnitude of the considered perturbations,

and hence the degree to which the features in the training set are able to deviate

from their nominal values.

After introducing these perturbations, the features in the training set take values

xi + ∆xi, i = 1, . . . , n. We now seek to construct a classifier that is robust to all

such perturbations ∆X ∈ Ux. To do this, we robustify against this uncertainty set of

feature parameters in each of our classification methods. In practice, the parameter

ρ can be chosen via validation, and the range to be searched over can be fixed if each

feature in the data set is normalized. We also note that when ρ = 0, the problem is

equivalent to the nominal problem, and so the nominal solution is a possible candidate

to be considered during validation. This means the feature-robust classifier will only

be preferred over the nominal method when the validation score is better.

In addition, note that Ux is the cartesian product of the sets {∆xi ∈ Rp|‖∆xi‖q ≤

ρ}, i = 1, . . . , n. This structure enables us to derive tractable robust counterparts for

all three classification methods. We may consider alternative uncertainty sets for the

feature perturbations as well, for example polyhedral or ellipsoidal uncertainty sets.

Here, we consider the norm uncertainty set Ux because it admits a simple geometric

interpretation and only requires tuning a single parameter ρ, which makes it tractable

to evaluate in the computational experiments and to use in practice.
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We present the reformulated robust counterparts below for soft-margin support

vector machines, logistic regression, and optimal decision trees. For each method,

we refer to the resulting deterministic optimization problem as the feature-robust

counterpart of that classifier.

3.4.2 Soft-Margin Support Vector Machines

The regularized Support Vector Machine problem in (3.2) has been shown by [99]

and [45] to be equivalent to the robust counterpart of a nominal problem under a

particular choice of uncertainty set in the features. These results suggest that the

regularization term ‖w‖2
2 is a by-product of feature robustness. Further discussion of

the equivalence between classical SVM and feature-robust formulations is provided

in Section 3.10. In the following sections, to avoid double counting the effect of

robustness, we consider the hinge loss classifier without the regularization term to be

the nominal method for SVM:

min
w,b

n∑
i=1

max{1− yi(wTxi − b), 0}. (3.9)

Robustifying Problem (3.9) against the uncertainty set Ux gives the following robust

optimization problem:

min
w,b

max
∆X∈Ux

n∑
i=1

max{1− yi(wT (xi + ∆xi)− b), 0}. (3.10)

We now derive the robust counterpart to Problem (3.10). Note that this is equiv-

alent to Theorem 3 in [99].

Theorem 1. The robust counterpart to Problem (3.10) is

min
w,b

n∑
i=1

ξi

s.t. yi(w
Txi − b)− ρ‖w‖q∗ ≥ 1− ξi i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n.

(3.11)
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where `q∗ is the dual norm of `q.

Proof. Proof. We can reformulate Problem (3.10) as

min
w,b

n∑
i=1

ξi

s.t. yi(w
T (xi + ∆xi)− b) ≥ 1− ξi ∀∆X ∈ Ux i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n.

The first constraint must be satisfied for all ∆X ∈ Ux, thus the constraint is equivalent

to

min
∆X∈Ux

(yiw
T∆xi) ≥ 1− ξi − yi(wTxi − b) i = 1, . . . , n.

Here, for all i = 1, . . . , n, the minimization term is equal to the objective value of the

following optimization problem:

min
∆xi

yiw
T∆xi

s.t. ‖∆xi‖q ≤ ρ.

Because yi is constant, we recognize this optimization problem as the dual norm

problem. Therefore, by (3.7), for any given value of w, the objective value of this

problem is −ρ‖w‖q∗ , where `q∗ is the dual norm of `q. Replacing the minimization

term with this optimal value and rearranging yields (3.11).

Depending on the choice of norm, the feature-robust counterpart of SVM can be

solved efficiently using various optimization methods. For example, when q = q∗ = 2,

feature-robust SVM can be solved using second-order cone optimization methods [4].

When q = 1, q∗ =∞ or q =∞, q∗ = 1, feature-robust SVM can be reformulated as

a linear optimization problem.
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3.4.3 Logistic Regression

Robustifying Problem (3.4) against the uncertainty set Ux yields the following robust

optimization problem:

max
β,β0

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(β

T (xi + ∆xi) + β0)
)
. (3.12)

Next we determine the robust counterpart to Problem (3.12). We note that similar

results on more specific uncertainty sets have been previously shown in [42, 54].

Theorem 2. The robust counterpart to Problem (3.12) is

max
β,β0
−

n∑
i=1

log

(
1 + e−yi(β

Txi + β0) + ρ‖β‖q∗
)
, (3.13)

where `q∗ is the dual norm of `q.

Proof. Proof. Consider the inner minimization problem in (3.12), which is the fol-

lowing optimization problem:

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(β

T (xi + ∆xi) + β0)
)
. (3.14)

Let ωi = yi(β
T (xi + ∆xi) + β0), and define g(ωi) = − log (1 + e−ωi). The first-order

derivative of g with respect to ωi is

dg

dωi
=

1

1 + eωi
,

which is strictly positive. Therefore, for each i = 1, . . . , n, the solution to the inner

minimization problem in (3.12) is the same as the solution of the problem

min
∆xi

yi(β
T (xi + ∆xi) + β0)

s.t. ‖∆xi‖q ≤ ρ.

(3.15)
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This is equivalent to the following problem:

yi(β
Txi + β0)−max

∆xi

− yiβT∆xi

s.t. ‖∆xi‖q ≤ ρ.

We recognize this maximization term as the dual norm problem. Therefore, by (3.7),

the optimal solution is ρ‖β‖q∗ , where `q∗ is the dual norm of `q. We conclude that

the optimal value to (3.15) is yi(β
Txi + β0)− ρ‖β‖q∗ . Substituting the optimal value

into the inner minimization problem in (3.12), we obtain

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0) + ρ‖β‖q∗
)
.

Maximizing the above equation over β, β0 yields (3.13).

If q ≥ 2, the robust counterpart (3.13) is differentiable (as in the nominal problem)

and thus is still solvable using gradient and Newton methods. However, if q ∈ {1,∞}

then Problem (3.13) becomes non-differentiable and we may solve it using subgradient

methods. Alternatively, we may remodel the nonlinear terms to obtain a differentiable

formulation with linear constraints, which is solvable using gradient and Newton

methods for constrained optimization [4].

Compared to the nominal case, the feature-robust counterpart of logistic regression

has an additional ρ‖β‖q∗ term in the exponent of the logit function. It resembles

the regularization term in regularized logistic regression, shown in Equation (3.5).

However, the additional term from robustness penalizes model complexity in the

logit, or log odds ratio, while the regularization term is a linear penalty on the entire

likelihood. The connection between the two can be shown via a first-order Taylor

series expansion of the objective function of the feature-robust counterpart, which

gives the following:

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)
−

n∑
i=1

e−yi(β
Txi + β0)

1 + e−yi(β
Txi + β0)

ρ‖β‖q∗ .
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In cases where ρ‖β‖q∗ is small and its coefficient is close to one, robustification over

features and regularization of logistic regression are approximately equivalent.

3.4.4 Optimal Decision Trees

Robustifying Problem (3.6) against the uncertainty set Ux gives a problem identical to

Problem (3.6) except with the following constraints in place of the constraints (3.6p)

and (3.6q):

aTj (xi + ∆xi) + ε ≤ bj +M (1− zik) ∀∆X ∈ Ux, i = 1, . . . , n, k = 1, . . . , K,∀j ∈ P lk,

(3.16a)

aTj (xi + ∆xi) ≥ bj +M (1− zik) ∀∆X ∈ Ux, i = 1, . . . , n, k = 1, . . . , K,∀j ∈ Puk .

(3.16b)

We refer to this optimization problem as Problem (3.16).

Theorem 3. The robust counterpart to Problem (3.16) is identical to Problem (3.16)

except with the following constraints in place of constraints (3.16a) and (3.16b):

aTj xi + ρ+ ε ≤ bj + (1− zik) i = 1, . . . , n, k = 1, . . . , K, ∀j ∈ P lk, (3.17a)

aTj xi − ρ ≥ bj + (1− zik) i = 1, . . . , n, k = 1, . . . , K, ∀j ∈ P lk. (3.17b)

Proof. Proof. Because constraint (3.16a) must hold for all ∆X ∈ Ux, this constraint

is equivalent to

max
∆X∈Ux

{
aTj ∆xi

}
≤ bj +M (1− zik)− aTj xi − ε i = 1, . . . , n, k = 1, . . . , K, ∀j ∈ P lk.

This maximization term is equal to the optimal value of the following problem:

max aTj ∆xi

s.t. ‖∆xi‖q ≤ ρ.

We recognize this as the dual norm problem, and by (3.7), the optimal value is
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ρ‖aj‖q∗ , where `q∗ is the dual norm of `q. Moreover, if this constraint is to be non-

trivial (which requires zik = 1), we know from (3.6m) that dj = 0 for all ancestors

j ∈ P lk. Thus, from (3.6j) we have that
∑

l ajl = 1 and so together with (3.6r) we

know that a single element of aj is 1 with all other elements being 0. This means that

‖aj‖q∗ = 1 for any q, so the value of the maximization term is simply ρ. Rearranging

terms yields the constraint (3.17a). We use an identical approach to yield (3.17b)

from (3.16b).

This remains a linear mixed-integer optimization problem regardless of the original

choice of q. The only difference compared to the nominal problem is the introduction

of a margin of size ρ around each bj. The problem is therefore practically solvable

like the nominal problem.

3.5 Robustness Against Uncertainty in Labels

In this section, we introduce the notion of robustifying classification methods against

uncertainties in the labels of the training set. We consider a discrete uncertainty set

which limits the number of incorrect labels to be less than or equal to a fixed number

Γ. We then define and state the label-robust counterpart for each of the classification

methods.

3.5.1 Motivating Label-Robustness

Uncertainties in data labels can occur naturally from errors in manual entries, self-

reporting, or non-exact, non-objective label definition. To model uncertainty in the

labels of the training set, we consider a scenario where some number of the supplied

labels are incorrect. We introduce variables ∆yi ∈ {0, 1}, where 1 indicates that the

label was incorrect and has in fact been flipped, and 0 indicates that the label was

correct. We consider the following uncertainty set:

Uy =

{
∆y ∈ {0, 1}n

∣∣∣∣ n∑
i=1

∆yi ≤ Γ

}
,
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where Γ is an integer-valued parameter controlling the number of data points that

we allow to be mislabeled. Observe that in contrast to the uncertainty set over the

features, Uy cannot be decomposed as the Cartesian product of smaller uncertainty

sets.

We can then model the true labels of the training set as yi(1−2∆yi), i = 1, . . . , n.

Applying robust optimization, we modify the training process so that our classifier

is optimized against the worst-case realization ∆y ∈ Uy to obtain a classifier that is

label-robust. In practice, the parameter Γ which determines the size of our uncertainty

set is often modeled as a proportion of the total number of data points, and can be

chosen via validation. Note that when Γ = 0 the problem is the same as the nominal

problem. In this sense, our validation can include the nominal case, so the best

label-robust solution will only be preferred over the nominal case if it leads to an

improvement in accuracy in validation.

As in Section 3.4, we present the reformulated robust counterparts below for

logistic regression, SVM, and optimal trees. For each method, we refer to the resulting

deterministic optimization problem as the label-robust counterpart of that classifier.

3.5.2 Soft-Margin Support Vector Machines

Robustifying Problem (3.2) against the uncertainty set Uy gives

min
w,b

max
∆y∈Uy

n∑
i=1

max{1− yi(1− 2∆yi)(w
Txi − b), 0}. (3.18)
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Theorem 4. The robust counterpart to Problem (3.18) is

min
n∑
i=1

ξi + Γq +
n∑
i=1

ri

s.t. q + ri ≥ φi − ξi i = 1, . . . , n,

ξi ≥ 1− yi(wTxi − b) i = 1, . . . , n,

ξi ≤ 1− yi(wTxi − b) +M(1− si) i = 1, . . . , n,

ξi ≤Msi i = 1, . . . , n,

φi ≥ 1 + yi(w
Txi − b) i = 1, . . . , n,

φi ≤ 1 + yi(w
Txi − b) +M(1− ti) i = 1, . . . , n,

φi ≤Mti i = 1, . . . , n,

ri, ξi, φi ≥ 0 i = 1, . . . , n,

q ≥ 0,

s, t ∈ {0, 1}n.

(3.19)

where M is a sufficiently large constant.

Proof. Proof. Fix w and b, and consider the inner maximization problem

max
∆y∈Uy

n∑
i=1

max{1− yi(1− 2∆yi)(w
Txi − b), 0} i = 1, . . . , n. (3.20)

Define the functions

fi(∆yi) = max{1− yi(1− 2∆yi)(w
Txi − b), 0}, i = 1, . . . , n.

Since ∆yi ∈ {0, 1} for all i, we observe

fi(∆yi) = [fi(1)− fi(0)]∆yi + fi(0) i = 1, . . . , n.
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Let φi = fi(1) and ξi = fi(0) for i = 1, . . . , n. It follows that Problem (3.20) is

equivalent to

max
n∑
i=1

(φi − ξi)∆yi + ξi

s.t. ∆y ∈ Uy.

Next, consider the following polyhedron, which is the convex hull of Uy:

Py =

{
∆y ∈ Rn

∣∣∣∣ 0 ≤ ∆yi ≤ 1,
n∑
i=1

∆yi ≤ Γ

}
.

Since the polyhedron Py has integer extreme points, this problem is equivalent to its

linear relaxation

max
n∑
i=1

(φi − ξi)∆yi + ξi

s.t. 0 ≤ ∆yi ≤ 1 i = 1, . . . , n,

n∑
i=1

∆yi ≤ Γ.

By strong duality, this has the same objective value as its dual problem

min Γq +
n∑
i=1

ri +
n∑
i=1

ξi

s.t. q + ri ≥ φi − ξi i = 1, . . . , n,

ri ≥ 0 i = 1, . . . , n,

q ≥ 0.
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Minimizing over w and b, this optimization problem becomes

min
n∑
i=1

ξi + Γq +
n∑
i=1

ri

s.t. q + ri ≥ φi − ξi i = 1, . . . , n,

ξi = max{1− yi(wTxi − b), 0} i = 1, . . . , n,

φi = max{1 + yi(w
Txi − b), 0} i = 1, . . . , n,

ri ≥ 0 i = 1, . . . , n,

q ≥ 0.

Reformulating the problem to specify the values of the variables ξi, φi with linear

constraints yields the desired result.

Problem (3.19) is a mixed-integer optimization problem which is practically solv-

able.

3.5.3 Logistic Regression

Robustifying Problem (3.4) against the uncertainty set Uy gives

max
β,β0

min
∆y∈Uy

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

Txi + β0)
)
. (3.21)

Theorem 5. The robust counterpart to Problem (3.21) is

max
β,β0

−
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

(
1 + e−yi(β

Txi + β0)

1 + eyi(β
Txi + β0)

)
i = 1, . . . , n,

νi ≤ 0 i = 1, . . . , n,

µ ≤ 0.

(3.22)
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Proof. Proof. Define the functions fi(∆yi) = − log
(

1 + e−yi(1− 2∆yi)(β
Txi + β0)

)
for i = 1, . . . , n. Because ∆yi ∈ {0, 1}, we can express fi(∆yi) as

fi(∆yi) = [f(1)− f(0)]∆yi + f(0)

= log

(
1 + e−yi(β

Txi + β0)

1 + eyi(β
Txi + β0)

)
∆yi − log

(
1 + e−yi(β

Txi + β0)
)
.

We can thus rewrite the inner minimization part of Problem (3.21) as

min
∆y∈Uy

n∑
i=1

[
log

(
1 + e−yi(β

Txi + β0)

1 + eyi(β
Txi + β0)

)
∆yi − log

(
1 + e−yi(β

Txi + β0)
)]

.

(3.23)

Since the convex hull of Uy has integer extreme points, Problem (3.23) has the

same objective as its linear optimization relaxation [20]

min
∆y

n∑
i=1

[
log

(
1 + e−yi(β

Txi + β0)

1 + eyi(β
Txi + β0)

)
∆yi − log

(
1 + e−yi(β

Txi + β0)
)]

s.t. 0 ≤ ∆yi ≤ 1 i = 1, . . . , n,

n∑
i=1

∆yi ≤ Γ.

(3.24)

By strong duality, the optimal value to Problem (3.24) is equal to that of its dual

problem

max −
n∑
i=1

log

(
1 + e−yi(β

Txi + β0)
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

(
1 + e−yi(β

Txi + β0)

1 + eyi(β
Txi + β0)

)
i = 1, . . . , n,

νi ≤ 0 i = 1, . . . , n,

µ ≤ 0.

Substituting this back into Problem (3.21) in place of the inner minimization, it

becomes a single maximization problem, giving the stated result.
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This problem has a twice continuously differentiable concave objective function

and constraints, making it tractably solvable with an interior point method [4].

3.5.4 Optimal Decision Trees

Robustifying Problem (3.6) against the uncertainty set Uy gives a problem identical

to Problem (3.6) with the following constraints in place of constraints (3.6b), (3.6c),

(3.6d), (3.6e), (3.6f), and (3.6g):

gk =
n∑
i=1

1− yi(1− 2∆yi)

2
zik k = 1, . . . , K, (3.25a)

hk =
n∑
i=1

1 + yi(1− 2∆yi)

2
zik k = 1, . . . , K, (3.25b)

fk ≤ gk +M [wk + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K, (3.25c)

fk ≤ hk +M [(1− wk) + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K, (3.25d)

fk ≥ gk −M [(1− wk) + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K, (3.25e)

fk ≥ hk −M [wk + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K. (3.25f)

We refer to this optimization problem as Problem (3.25).

Theorem 6. The robust counterpart to Problem (3.25) is identical to Problem (3.25)

with the following constraints in place of constraints (3.25a), (3.25b), (3.25c),(3.25d),

(3.25e), and (3.25f):

gk =
n∑
i=1

1− yi
2

zik k = 1, . . . , K,

(3.26a)

hk =
n∑
i=1

1 + yi
2

zik k = 1, . . . , K,

(3.26b)

fk ≤ gk − Γµ1,k −
n∑
i=1

ν1,ik +M [wk + (1− ck)] k = 1, . . . , K,

(3.26c)
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fk ≤ hk − Γµ2,k −
n∑
i=1

ν2,ik +M [(1− wk) + (1− ck)] k = 1, . . . , K,

(3.26d)

fk ≥ gk + Γµ3,k +
n∑
i=1

ν3,ik −M [(1− wk) + (1− ck)] k = 1, . . . , K,

(3.26e)

fk ≥ hk + Γµ4,k +
n∑
i=1

ν4,ik −M [wk + (1− ck)] k = 1, . . . , K,

(3.26f)

µm,k + νm,ik ≥ −yizik i = 1, . . . , n, k = 1, . . . , K, m = 1, 4, (3.26g)

µm,k + νm,ik ≥ yizik i = 1, . . . , n, k = 1, . . . , K, m = 2, 3, (3.26h)

µm,k, νm,ik ≥ 0 i = 1, . . . , n, k = 1, . . . , K, m = 1, . . . , 4. (3.26i)

Proof. Proof. We can substitute (3.25a) into constraint (3.25c) to obtain

n∑
i=1

1− yi(1− 2∆yi)

2
zik ≥ fk −M [wk + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K,

n∑
i=1

1− yi
2

zik +
n∑
i=1

yizik∆yi ≥ fk −M [wk + (1− ck)] ∀∆y ∈ Uy, k = 1, . . . , K.

Since this must hold for all ∆y ∈ Uy, this is equivalent to the following constraint:

n∑
i=1

1− yi
2

zik + min
∆y∈Uy

{ n∑
i=1

yizik∆yi

}
≥ fk −M [wk + (1− ck)] k = 1, . . . , K.

The convex hull of Uy has integer extreme points, so the value of the minimization

term is equivalent to the optimal value of its linear relaxation (for any fixed k)

min
n∑
i=1

yizik∆yi

s.t. 0 ≤ ∆yi ≤ 1 i = 1, . . . , n,

n∑
i=1

∆yi ≤ Γ.
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By strong duality, this problem has the same optimal objective value as its dual

max Γµ1,k +
n∑
i=1

ν1,ik

s.t. µ1,k + ν1,ik ≤ yizik i = 1, . . . , n,

µ1,k, ν1,ik ≤ 0 i = 1, . . . , n.

Substituting this back into the original constraint gives

n∑
i=1

1− yi
2

zik + Γµ1,k +
n∑
i=1

ν1,ik ≥ fk −M [wk + (1− ck)] k = 1, . . . , K,

µ1,k + ν1,ik ≤ yizik i = 1, . . . , n,

µ1,k, ν1,ik ≤ 0 i = 1, . . . , n.

We substitute back for the original definition of gk from (3.6b), and change the signs

of µ and ν to get

gk − Γµ1,k −
n∑
i=1

ν1,ik ≥ fk −M [wk + (1− ck)] k = 1, . . . , K,

µ1,k + ν1,ik ≥ −yizik i = 1, . . . , n,

µ1,k, ν1,ik ≥ 0 i = 1, . . . , n.

We can rearrange this to obtain constraint (3.26c), as well as parts of constraints (3.26g)

and (3.26i).

We repeat this entire process identically for constraints (3.25d), (3.25e), and (3.25f)

to achieve the stated result.

Similar to before, this remains a linear mixed-integer optimization problem, and

so is practically solvable. The label-robustification for Optimal Decision Trees also

has a simple geometric interpretation. Recall that in the model, gk is the number of

points in node k with label yi = +1, hk is the number of points in node k with label

yi = −1, and fk is the number of points in node k that are misclassified, which in

the nominal case is simply min{gk, hk}. In the label-robust counterpart, the extra
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terms in these constraints require feasible solutions to have strict separation between

fk, gk and hk. Indeed, we can obtain a feasible solution by setting µm,k = 1 and

νm,ik = 0, which then requires |gk − hk| ≥ 2Γ, and fk = min{gk, hk}+ Γ. This means

that a feasible label-robust solution requires the majority class in each node to be a

strict majority, and the size of this required separation is controlled by the robustness

parameter Γ. Increasing Γ has the effect of increasing the label purity of all nodes in

the tree, since trees that do not have the required margin between gk and hk at every

node k in the tree are treated as being infeasible for the label-robust problem.

3.6 Robustness in Both Features and Labels

In this section, we consider applying the methods of Sections 3.4 and 3.5 simultane-

ously to construct a new family of classifiers that are robust to uncertainty in both

features and labels. We will refer to this family as robust-in-both classifiers. To

develop these classifiers, we simply expose the classification problem to both feature-

uncertainty with uncertainty set Ux, and label-uncertainty with uncertainty set Uy.

This is a natural extension of our previous methods to handle classification problems

which may have errors in both the features and labels of the training data. For exam-

ple, in the contraceptive method choice data set considered in Section 3.5, survey data

is used to obtain information on both the features (demographic and socio-economic

characteristics) and labels (contraceptive method choice), and both factors may be

influenced by inaccurate reporting.

We present the reformulated robust counterparts below for soft-margin support

vector machines, logistic regression, and optimal decisions trees, which we refer to

as the robust-in-both counterpart for each method. The proofs are similar to the

derivations of the robust counterparts in the previous two sections, and are included

in the end.

Like both methods individually, the robust-in-both classifier has to select the

robustness parameters ρ and Γ through validation. As per the individual cases, when

we set ρ = Γ = 0, the problem reduces to the nominal problem. Note also that if only
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one of ρ/Γ is zero, the problem reduces to the label-robust/feature-robust problem

respectively. This means that as part of the robust-in-both validation process, we

consider the models from the nominal, feature-robust and label-robust classifiers in

addition to the robust-in-both classifier, and then select the classifier among these

with the best validation accuracy. In this sense, the robust-in-both classifier is the

strongest of all the robust classifiers, since it selects in validation the best performing

robust classifier of all those we have considered.

3.6.1 Soft-Margin Support Vector Machines

Robustifying Problem (3.1) against both Ux and Uy gives the following robust opti-

mization problem:

min
w,b

max
∆y∈Uy

max
∆X∈Ux

n∑
i=1

max{1− yi(1− 2∆yi)(w
T (xi + ∆xi)− b), 0}. (3.27)

Theorem 7. The robust counterpart to Problem (3.27) is

min
n∑
i=1

ξi + Γq +
n∑
i=1

ri

s.t. q + ri ≥ φi − ξi i = 1, . . . , n,

ξi ≥ 1− yi(wTxi − b) + ρ‖w‖q∗ i = 1, . . . , n,

ξi ≤ 1− yi(wTxi − b) + ρ‖w‖q∗ +M(1− si) i = 1, . . . , n,

ξi ≤Msi i = 1, . . . , n,

φi ≥ 1 + yi(w
Txi − b) + ρ‖w‖q∗ i = 1, . . . , n,

φi ≤ 1 + yi(w
Txi − b) + ρ‖w‖q∗ +M(1− ti) i = 1, . . . , n,

φi ≤Mti i = 1, . . . , n,

ri, ξi, φi ≥ 0 i = 1, . . . , n,

q ≥ 0,

s, t ∈ {0, 1}n.

(3.28)
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where `q∗ is the dual norm of `q, and M is a sufficiently large constant.

The proof of Theorem 7 is straightforward as it is a direct result of applying the

proofs for robustness in features and labels sequentially.

Problem (3.28) is a mixed-integer optimization problem which is practically solv-

able.

3.6.2 Logistic Regression

Robustifying Problem (3.4) against both Ux and Uy gives the following robust opti-

mization problem:

max
β,β0

min
∆y∈Uy

min
∆X∈Ux

−
n∑
i=1

log

(
1 + e−yi(1− 2∆yi)(β

T (xi + ∆xi) + β0)
)
. (3.29)

Theorem 8. The robust counterpart to Problem (3.29) is

max −
n∑
i=1

log

(
1 + e−yi(β

Txi + β0) + ρ‖β‖q∗
)

+ Γµ+
n∑
i=1

νi

s.t. µ+ νi ≤ log

1 + e−yi(β
Txi + β0) + ρ‖β‖q∗

1 + eyi(β
Txi + β0) + ρ‖β‖q∗

 i = 1, . . . , n,

νi ≤ 0 i = 1, . . . , n,

µ ≤ 0.

(3.30)

where `q∗ is the dual norm of `q.

The proof of Theorem 8 essentially applies the process in the proof for feature-

robust logistic regression, followed by the process in the proof for label-robustness to

obtain the final robust counterpart.

Problem (3.30) is a maximization of a concave, twice continuously differentiable

function in β and β0 with constraints for any given ρ and Γ. Therefore, we can solve

this problem using interior point methods [4].
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3.6.3 Optimal Decision Trees

Robustifying Problem (3.6) against both Ux and Uy gives a problem identical to

Problem (3.6) with the following exceptions:

• The constraints in (3.16) in place of constraints (3.6p) and (3.6q);

• The constraints in (3.25) in place of constraints (3.6b), (3.6c), (3.6d), (3.6e), (3.6f),

and (3.6g).

Theorem 9. The robust counterpart to the above problem is identical to Problem (3.6)

with the following exceptions:

• The constraints in (3.17) in place of constraints (3.6p) and (3.6q);

• The constraints in (3.26) in place of constraints (3.6b), (3.6c), (3.6d), (3.6e), (3.6f),

and (3.6g).

The proof of Theorem 9 is again a direct corollary to the proofs in robustness

in features and robustnesss in labels. This resulting problem is still a linear mixed-

integer optimization problem, and so remains practically solvable.

3.7 Computational Experiments with Synthetic

Data Sets

In this section, we evaluate the performance of robust methods on synthetically-

generated data sets in order to understand the relative performance of the different

types of robustness and also how robust methods compare to the regularized methods

used in practice. In these experiments, we run SVM and logistic regression methods to

recover the separating hyperplane classifier on a synthetic example. We focus on SVM

and logistic regression in this analysis because both of these classification models are

suitable given the data generation process and have widely used regularized methods

to compare against.
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Figure 3-2: Example of synthetically-generated data in two dimensions alongside
the true generating hyperplane.

3.7.1 Experimental Setup

The experiment uses data in R2. The data is generated synthetically in three parts:

1. 25 points are generated as multivariate random normal, N(1.5e, I), where e is

the vector of ones and I is the identity matrix. These points are given the label

+1.

2. 25 points are generated as multivariate random normal, N(−1.5e, I) and labeled

−1.

3. 10 outlier points are introduced as multivariate random normal, N(0, 3I), where

0 is the vector of zeros. The labels are randomly generated as either −1 or +1.

We split this data 75%/25% into training and validation sets, which we used to

tune the parameters for the regularized and robust methods. We included relatively

few points in the training and validation sets to make the classification task nontrivial

given the simple data generation process. To create the test set, we generated 10,000

points in the same way as each major cluster of points (items 1 and 2 above).

An example of a data set generated according to this procedure is shown in Fig-

ure 3-2. We can see that there are two distinct clusters of points, with some scattered

noise centered in the area between the two clusters. By the symmetry of this data

generation process, we can see that the true hyperplane separating the two clusters

of points is given by the equation eTx = 0, also shown in Figure 3-2. The goal of the

100



experiment is to determine how closely the various methods can recover this truth in

the data in the presence of added noise via the addition of these outlier points. In

particular, we are interested in the following two measures:

• Accuracy: We measure accuracy by reporting the out-of-sample error of the

trained classifiers on the larger test set.

• Similarity: To evaluate the ability of each method to recover the truth in the

data, we measure the norm of the difference between the separating hyperplane

generated by the methods and the true hyperplane (eTx = 0).

3.7.2 Classification Methods

For these experiments, we consider SVM and logistic regression, as these both create

classifiers with a single hyperplane, which matches the truth in the synthetic data.

In both cases, we compare the nominal method, the regularized method, and all

three robust methods (features, labels and both). Each method was implemented in

the Julia programming language, a rapidly maturing language designed for high-

performance scientific computing [22]. The optimization problems required by each

method were formulated in JuMP, a state-of-the-art library for algebraic modeling

and mathematical optimization [71]. The commercial solver Gurobi [53] was used

to solve the linear and mixed-integer optimization problems for SVM, and the open

source solver Ipopt [94] was used to solve the convex optimization problems for

logistic regression.

To ensure a fair comparison, we use the `1 norm in the regularized methods and

set q = ∞ for the feature uncertainty set so that the norms in the robust methods

are also `1 norms. For each method, the values of ρ and Γ were selected through

validation when using the corresponding robust classifiers.

3.7.3 Results

This experiment was repeated 2000 times, and we present the means and standard

errors of the two measures for each method in Table 3.1. For SVM, the nominal and
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regularized methods have roughly the same power in recovering the truth in the data,

after accounting for the standard errors. The feature-robust method improves upon

the nominal method in both measures, and the label-robust method further improves

upon both measures. The best performance in both measures is obtained when we

consider both types of robustness simultaneously in the robust-in-both method, and

this method improves significantly upon both methods that consider only a single

type of robustness.

For logistic regression, we see that the nominal method performs the worst in

both measures. The regularized method and our feature-robust method are roughly

comparable, with the regularized method having a slight edge, and both offering a

small improvement over the nominal method. As with SVM, the label-robust method

offers significant improvement in both measures, and the robust-in-both method adds

a further slight improvement on top of label-robust, showing that considering both

types of robustness leads to additional power over considering just a single type.

In Table 3.2, we break down the results by percentile in out-of-sample error, and

we report the 10th, 20th, . . . , 90th percentiles for each method. We find that robust

methods match or outperform nominal and regularized methods across the board,

and this relative improvement increases as the percentile increases. This follows

our expectation that these robust methods reliably produce high quality classifiers,

which protects us from giving biased predictions in worst case scenarios. In the worst

Table 3.1: Performance results for synthetic data experiments. For each method, we
report the mean and standard error over 2000 runs for both the out-of-sample error

and the distance of the generated classifier from the truth in the data.

Method

SVM Logistic Regression

Out-of-sample
error (%)

Distance from
truth

Out-of-sample
error (%)

Distance from
truth

Nominal 2.571± 0.021 0.357± 0.004 2.717± 0.023 0.388± 0.004
Regularized 2.643± 0.027 0.357± 0.004 2.694± 0.022 0.384± 0.004
Features 2.516± 0.020 0.345± 0.004 2.701± 0.023 0.386± 0.004
Labels 2.396± 0.018 0.320± 0.004 2.450± 0.019 0.332± 0.004
Both 2.363± 0.018 0.310± 0.004 2.436± 0.019 0.329± 0.004
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Table 3.2: Out-of-sample error results by percentile for synthetic data experiments.

Percentile

Classifier Method 90th 70th 50th 30th 10th

SVM

Nominal 3.771 2.695 2.275 1.985 1.774
Regularized 3.941 2.700 2.235 1.975 1.775
Features 3.651 2.650 2.225 1.965 1.755
Labels 3.381 2.460 2.125 1.915 1.755
Both 3.325 2.425 2.100 1.890 1.740

Logistic regression

Nominal 4.096 2.940 2.400 2.050 1.795
Regularized 4.041 2.910 2.385 2.045 1.795
Features 4.050 2.917 2.393 2.043 1.790
Labels 3.552 2.565 2.175 1.928 1.745
Both 3.515 2.550 2.165 1.920 1.745

case scenario presented (90th percentile out-of-sample error), robust-in-both SVM and

logistic regression yield out-of-sample errors of 3.325% and 3.515%, while regularized

methods give out-of-sample errors of 3.941% and 4.041%, respectively.

From these experiments on synthetic data, we conclude that our robust classifiers

can effectively deal with data that has been contaminated with noise. For both SVM

and logistic regression, we observe that the robust methods offer significant improve-

ments over the nominal and regularized methods, both in their accuracy and in their

ability to correctly recover the truth in the data. Further, we found that the robust-in-

both methods which combine robustness in the features and labels performed stronger

than the feature-robust and label-robust methods individually, demonstrating that

there is value in considering both types of uncertainty simultaneously.

3.8 Computational Experiments with Real-world

Data Sets

In this section, we report on a series of comprehensive computational benchmarks

to compare robust methods to their nominal counterparts. We also explore problem

characteristics which influence the performance gain of robust methods, and derive a
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simple decision rule recommending when robust classification should be applied.

3.8.1 Experimental Setup

In order to comprehensively report performance of the robust classification methods

on real data sets, we tested the accuracy of these methods on a selection of 75 problems

from the UCI Machine Learning Repository [66]. The data sets were selected to give a

variety of problem sizes and difficulties to form a representative sample of real-world

problems, with the largest data set having n = 245, 057 observations, and the highest

number of features being p = 857.

To obtain a binary classification problem for each data set, we consider the one-

vs.-rest problem of predicting the occurrence of the first class in the data set. Each

data set was split into three parts: the training set (60%), the validation set (20%)

and the testing set (20%). The training set was used to train each classifier for a

variety of combinations of input parameters. For each combination of parameters,

the misclassification error on the validation set was calculated, and this was used to

select the best combination of parameters for each classifier. Finally, the classifier

was trained using these best parameters on the combined training and validation

sets, before reporting the out-of-sample misclassification error on the testing set.

All methods were trained, validated, and tested on the same random splits, and

computational experiments were repeated five times for each data set with different

splits. For each data set and classification method we report the average out-of-sample

accuracy across all five splits.

3.8.2 Classification Methods

In these real-world experiments, we consider all three classification methods: SVM,

logistic regression, and decision trees. We set q =∞ for all of the feature-robust and

robust-in-both uncertainty sets, so that all the norms in the robust methods are `1.

The implementations for SVM and logistic regression are identical to those used in the

synthetic experiments, which are described in Section 3.7.1. We implement Optimal
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Table 3.3 Out-of-sample accuracy averaged across five seeds for each classification method and its robust counterparts on all data sets.

Data Set Information SVM Logistic Regression CART

UCI Data Set Name n p Nominal Features Labels Both Nominal Features Labels Both Nominal Features Labels Both

acute-inflammations-1 120 7 1.0000 1.0000 1.0000 0.9083 1.0000 1.0000 1.0000 1.0000 0.9583 1.0000 1.0000 1.0000

acute-inflammations-2 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9750 1.0000 0.9833 1.0000

arrhythmia 68 280 0.5692 0.7077 0.6923 0.6308 0.6923 0.6923 0.6923 0.6923 0.6769 0.7077 0.6923 0.7692

balance-scale 625 5 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200

banknote-authentication 1372 5 0.9912 0.9869 0.9927 0.9912 0.9920 0.9905 0.9927 0.9905 0.9533 0.9642 0.9635 0.9635

blood-transfusion 748 5 0.7638 0.7638 0.7638 0.7638 0.7826 0.7812 0.7785 0.7812 0.7799 0.7893 0.7799 0.7799

breast-cancer 683 10 0.9500 0.9574 0.9559 0.9559 0.9559 0.9574 0.9544 0.9574 0.9338 0.9456 0.9426 0.9426

breast-cancer-diagnostic 569 31 0.9351 0.9596 0.9439 0.9614 0.9561 0.9684 0.9526 0.9684 0.9281 0.9053 0.9333 0.9018

breast-cancer-prognostic 194 33 0.7128 0.7128 0.7128 0.7179 0.7128 0.7231 0.7692 0.7590 0.7436 0.7385 0.7436 0.7538

car-evaluation 1728 16 0.8000 0.7930 0.7832 0.7826 0.8006 0.7925 0.7994 0.7925 0.8603 0.8551 0.8597 0.8597

chess-king-rook-vs-king 28056 35 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004 0.9004

chess-king-rook-vs-king-pawn 3196 38 0.9743 0.9731 0.9743 0.9687 0.9756 0.9750 0.9734 0.9743 0.9693 0.9693 0.9693 0.9693

climate-model-crashes 540 19 0.9500 0.9593 0.9537 0.9574 0.9500 0.9537 0.9556 0.9537 0.9259 0.9241 0.9296 0.9241

cnae-9 1080 857 0.9750 0.9861 0.9685 0.9481 0.9806 0.9796 0.9796 0.9824 0.9657 0.9722 0.9704 0.9694

congressional-voting-records 232 17 0.9565 0.9870 0.9783 0.9826 0.9739 0.9826 0.9739 0.9826 0.9870 0.9826 0.9870 0.9870

connectionist-bench 990 11 0.9758 0.9758 0.9778 0.9768 0.9747 0.9778 0.9737 0.9768 0.9747 0.9737 0.9727 0.9727

connectionist-bench-sonar 208 61 0.7073 0.7707 0.7561 0.7561 0.7463 0.7512 0.7756 0.7659 0.7268 0.7317 0.7122 0.7317

contraceptive-method-choice 1473 12 0.6776 0.6769 0.6789 0.6755 0.6714 0.6769 0.6748 0.6776 0.6891 0.6980 0.6986 0.6986

credit-approval 653 38 0.8508 0.8569 0.8492 0.8585 0.8615 0.8615 0.8600 0.8631 0.8569 0.8415 0.8554 0.8415

cylinder-bands 277 485 0.5564 0.7164 0.5891 0.6691 0.6727 0.6727 0.6727 0.6727 0.6764 0.6800 0.6691 0.7018

dermatology 358 35 0.9662 0.9887 0.9972 0.9803 1.0000 1.0000 1.0000 1.0000 0.9887 0.9887 0.9859 0.9887

echocardiogram 61 7 0.7167 0.7000 0.6833 0.6833 0.7833 0.7500 0.7833 0.7333 0.7500 0.7167 0.7333 0.7500

ecoli 336 8 0.9582 0.9522 0.9582 0.9582 0.9612 0.9612 0.9612 0.9582 0.9493 0.9343 0.9284 0.9284

fertility 100 13 0.8700 0.9000 0.8800 0.9000 0.8700 0.9000 0.8800 0.9000 0.9000 0.8400 0.8900 0.8400

flags 194 60 0.6923 0.8769 0.7949 0.8205 0.7641 0.8564 0.8462 0.8564 0.8821 0.8872 0.8923 0.9026

For each data set, the best result (or multiple in the case of ties) for each method is indicated in bold, and the best method overall for the data set is underlined.
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Table 3.3 (Cont.) Out-of-sample accuracy averaged across five seeds for each classification method and its robust counterparts on all data sets.

Data Set Information SVM Logistic Regression CART

UCI Data Set Name n p Nominal Features Labels Both Nominal Features Labels Both Nominal Features Labels Both

glass-identification 214 10 0.7163 0.7070 0.7395 0.7256 0.7116 0.7209 0.7488 0.7349 0.7674 0.7814 0.7860 0.7860

haberman-survival 306 4 0.7279 0.7344 0.7344 0.7344 0.7410 0.7311 0.7344 0.7311 0.7049 0.6623 0.6820 0.6787

hayes-roth 132 5 0.6846 0.6846 0.6769 0.6692 0.6615 0.8000 0.6769 0.7923 0.8154 0.8154 0.7385 0.7385

heart-disease-cleveland 297 19 0.8407 0.8339 0.8339 0.8203 0.8305 0.8271 0.8339 0.8305 0.7559 0.8000 0.7695 0.8068

hepatitis 80 20 0.8500 0.8500 0.8000 0.8125 0.8375 0.8250 0.8625 0.8250 0.8125 0.7875 0.8250 0.7875

hill-valley 606 101 0.5884 0.9620 0.5884 0.9620 0.9934 0.9636 0.9421 0.9636 0.5504 0.5504 0.5504 0.5504

hill-valley-noise 606 101 0.8612 0.8545 0.8628 0.8512 0.8463 0.8876 0.8083 0.8876 0.4744 0.4992 0.4942 0.4959

image-segmentation 210 20 0.9286 0.9857 0.9667 0.9476 0.9762 0.9762 0.9762 0.9762 0.9476 0.9810 0.9714 0.9810

indian-liver-patient 579 11 0.7155 0.7155 0.7155 0.7155 0.7172 0.7155 0.7224 0.7224 0.6931 0.6862 0.6914 0.6845

ionosphere 351 35 0.8743 0.8743 0.8514 0.8743 0.8829 0.8743 0.8571 0.8714 0.8971 0.9086 0.8914 0.9086

iris 150 5 1.0000 1.0000 1.0000 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9867 1.0000

letter-recognition 20000 17 0.9921 0.9922 0.9923 0.9923 0.9907 0.9907 0.9907 0.9908 0.9896 0.9896 0.9896 0.9896

libras-movement 360 91 0.9056 0.9694 0.9611 0.9694 0.9444 0.9639 0.9528 0.9639 0.9333 0.9361 0.9528 0.9389

magic-gamma-telescope 19020 11 0.7922 0.7923 0.7924 0.7924 0.7916 0.7919 0.7920 0.7919 0.8364 0.8364 0.8367 0.8367

mammographic-mass 830 11 0.8193 0.8072 0.8000 0.8060 0.8289 0.8289 0.8217 0.8217 0.8289 0.8145 0.8217 0.8108

monks-problems-1 124 12 0.8240 0.7360 0.8000 0.8000 0.7440 0.7680 0.7760 0.7920 0.8080 0.8400 0.8400 0.8400

monks-problems-2 169 12 0.6118 0.6176 0.6118 0.6176 0.5647 0.6235 0.6176 0.6235 0.6118 0.6294 0.6353 0.6353

monks-problems-3 122 12 0.9167 0.9333 0.9167 0.9333 0.8500 0.9250 0.9333 0.9250 0.8917 0.9333 0.9333 0.9333

mushroom 5644 77 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9894 0.9901 0.9894 0.9894

nursery 12960 20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7910 0.7910

optical-recognition 3823 65 0.9929 0.9961 0.9974 0.9966 0.9942 0.9969 0.9976 0.9971 0.9830 0.9830 0.9830 0.9830

ozone-level-detection-eight 1847 73 0.9301 0.9301 0.9301 0.9295 0.9312 0.9322 0.9295 0.9317 0.9322 0.9322 0.9328 0.9328

ozone-level-detection-one 1848 73 0.9545 0.9702 0.9561 0.9702 0.9561 0.9702 0.9686 0.9702 0.9702 0.9702 0.9702 0.9702

parkinsons 195 22 0.8564 0.8359 0.8513 0.8615 0.8410 0.8103 0.8462 0.8205 0.8615 0.8410 0.8821 0.8410

pen-based-recognition 7494 17 0.9904 0.9889 0.9901 0.9891 0.9903 0.9899 0.9897 0.9897 0.9849 0.9893 0.9848 0.9848

pima-indians-diabetes 768 9 0.7765 0.7778 0.7765 0.7791 0.7778 0.7739 0.7791 0.7752 0.7542 0.7373 0.7477 0.7294

For each data set, the best result (or multiple in the case of ties) for each method is indicated in bold, and the best method overall for the data set is underlined.
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Table 3.3 (Cont.) Out-of-sample accuracy averaged across five seeds for each classification method and its robust counterparts on all data sets.

Data Set Information SVM Logistic Regression CART

UCI Data Set Name n p Nominal Features Labels Both Nominal Features Labels Both Nominal Features Labels Both

planning-relax 182 13 0.7222 0.7222 0.7222 0.7222 0.6778 0.6944 0.6944 0.7000 0.6889 0.6833 0.6889 0.6556

poker-hand 25010 11 0.5010 0.5023 0.5028 0.5023 0.5028 0.5006 0.5018 0.5000 0.5913 0.5913 0.5913 0.5913

post-operative-patient 87 14 0.6235 0.6471 0.7059 0.7059 0.6118 0.6353 0.6588 0.6588 0.6824 0.6235 0.6471 0.6235

qsar-biodegradation 1055 42 0.8749 0.8758 0.8777 0.8758 0.8730 0.8730 0.8701 0.8682 0.7943 0.8142 0.8104 0.8114

seeds 210 8 0.9524 0.9429 0.9524 0.9429 0.9571 0.9524 0.9524 0.9476 0.8429 0.8762 0.8667 0.9000

seismic-bumps 2584 21 0.9342 0.9342 0.9342 0.9342 0.9319 0.9327 0.9327 0.9327 0.9342 0.9342 0.9342 0.9342

skin-segmentation 245057 4 0.9281 0.9348 0.9328 0.9366 0.9184 0.9184 0.9345 0.9345 0.9656 0.9656 0.9656 0.9656

soybean-large 266 63 0.7736 0.8830 0.8642 0.8717 0.7962 0.8792 0.9019 0.8868 0.8830 0.8642 0.8491 0.8491

soybean-small 47 38 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

spambase 4601 58 0.9257 0.9265 0.9252 0.9265 0.9230 0.9248 0.9246 0.9246 0.8896 0.8913 0.8926 0.8926

spect-heart 80 23 0.5875 0.7125 0.6500 0.7125 0.6750 0.7875 0.6625 0.7625 0.7625 0.7750 0.7750 0.7750

spectf-heart 80 45 0.5625 0.6750 0.6625 0.6500 0.5875 0.7500 0.5375 0.7625 0.7625 0.7250 0.8000 0.7375

statlog-project-german-credit 1000 49 0.7300 0.7420 0.7380 0.7400 0.7380 0.7470 0.7400 0.7400 0.7250 0.7100 0.7030 0.7150

statlog-project-landsat-satellite 4435 37 0.9811 0.9813 0.9822 0.9820 0.9833 0.9826 0.9833 0.9824 0.9477 0.9484 0.9511 0.9511

teaching-assistant-evaluation 151 53 0.7000 0.6733 0.6867 0.6733 0.7133 0.7067 0.7133 0.7067 0.6467 0.6733 0.6267 0.7067

thoracic-surgery 470 25 0.8426 0.8511 0.8426 0.8511 0.8213 0.8489 0.8362 0.8468 0.8511 0.8426 0.8511 0.8426

thyroid-disease-ann-thyroid 3772 22 0.9920 0.9926 0.9918 0.9915 0.9934 0.9934 0.9936 0.9934 0.9915 0.9971 0.9971 0.9971

thyroid-disease-new-thyroid 215 6 0.8977 0.8837 0.8977 0.8884 0.8977 0.8977 0.8977 0.8977 0.8884 0.9023 0.9302 0.9116

tic-tac-toe-endgame 958 19 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9801 0.9005 0.9026 0.8995 0.8995

wall-following-robot-2 5456 3 0.6220 0.6544 0.5415 0.5553 0.6081 0.6114 0.6609 0.6609 0.9879 1.0000 1.0000 1.0000

wall-following-robot-24 5456 5 0.6235 0.6544 0.6420 0.6561 0.6301 0.6348 0.6565 0.6563 0.9879 1.0000 1.0000 1.0000

wine 178 14 0.9657 0.9657 0.9714 0.9657 0.9714 0.9714 0.9943 0.9943 0.9257 0.9429 0.9371 0.9371

yeast 1484 9 0.6902 0.6902 0.6902 0.6902 0.6801 0.6828 0.6929 0.6929 0.7286 0.7219 0.7219 0.7219

zoo 101 17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

For each data set, the best result (or multiple in the case of ties) for each method is indicated in bold, and the best method overall for the data set is underlined.
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Figure 3-3: Pairwise comparisons between nominal and robustness methods,
showing the number of data sets for which each type of robustness generates the

highest out-of-sample accuracy for each method.

Decision Trees using the JuMP software package in Julia, and the commercial solver

Gurobi [53] was used to solve the mixed-integer optimization problems.

As in the other two methods, for Optimal Decision Trees we select the values of

ρ and Γ through validation when using the corresponding robust classifier. During

validation, we also select the complexity parameter (cp), the minimum number of

points per node (minbucket), and the exploration depth around the warm start so-

lution (explorationdepth). See [7] for a full description of these parameters. We

compare the robust counterparts of the Optimal Decision Tree problem to the CART

heuristic rather than the nominal Optimal Decision Tree problem. This allows us to

provide a benchmark of the robust methods against the state-of-the-art methods that

are widely used today. For the CART method we used the rpart package [89] in the

R programming language [88].

Table 3.3 shows the out-of-sample accuracy performance of each classification

method and its robust counterparts on all selected data sets. For each data set, the

best result (or multiple in the case of ties) for each method is indicated in bold, and

the best method overall for the data set is underlined.

3.8.3 Pairwise Comparisons

First, we present the results comparing individual robust classification methods against

their nominal counterparts.
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Table 3.4: Pairwise comparisons of robust classification methods against their
nominal counterparts.

Nominal Method Robustness Type Wins Losses Ties

SVM
Features 37 19 19
Labels 35 18 22
Both 39 20 16

Logistic Regression
Features 34 20 21
Labels 35 21 19
Both 40 20 15

CART
Features 36 23 16
Labels 33 24 18
Both 33 24 18

Results for the three nominal methods and all robust variations are summarized in

Figure 3-3. Each pair of bars in the graph represent a pairwise comparison between a

specific robust method and its nominal counterpart. Each bar represents the number

of data sets for which the either the robust or nominal method produced the single

strongest classifier, based on out-of-sample accuracy. We see that for each classifica-

tion method, all types of robustness have a lead over the nominal ones. In the case

of logistic regression and SVM, robust-in-both produces most improvement in the

number of correctly classified data sets. However for CART, it is the feature robust

method that is most effective in improving classification over the nominal counter-

part. Because the robust-in-both method encompasses the individual feature and

label robust methods, this result could be due to difficulties in validation where the

selected combination of robustness parameters did not lead to better out-of-sample

performance than the individual robust methods. The exact counts of wins, ties, and

losses for each robust counterpart compared to the corresponding nominal method

are shown in Table 3.4.

Next, we consider the best of the nominal and robust-in-both methods across

SVM, logistic regression, and CART. For each data set, we recorded which of these

six methods had the highest out-of-sample accuracy. Figure 3-4 shows the breakdown

of counts for data sets in which there is a unique highest out-of-sample accuracy. All
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Figure 3-4: Comparison of the number of data sets for which the nominal and
robust-in-both approaches for each method give the highest out-of-sample accuracy.

of the six methods yield the unique highest out-of-sample accuracy for certain data

sets, which indicates that each type of classifier is able to exploit different aspects

of the data set in their own ways to potentially lead to higher quality solutions. In

all cases, the robust counterpart produced the highest number of uniquely optimal

solutions.

3.8.4 Predicting the Effectiveness of Robust Classification

Thus far, we have demonstrated the strength of robust methods compared to their

nominal counterparts over the set of 75 problems from the UCI Machine Learning

Repository. For machine learning practitioners, we would also like to provide guid-

ance about when it is worthwhile to use robust classification methods in practical

applications. In this section, we consider the problem of predicting whether or not

a robust classifier is likely to improve out-of-sample accuracy relative to the nomi-

nal method, using only the dimension of the training data and the accuracy of the

nominal method on these data. Note that we consider in-sample nominal accuracy

because this is an attribute of the training problem, and therefore is available at the

validation stage when selecting the final classification method.

First we consider the influence of nominal in-sample accuracy in isolation. Ta-

ble 3.5 shows the improvement in out-of-sample accuracy of robust-in-both methods
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Table 3.5: Improvement due to robustness by baseline in-sample accuracy,
comparing the baseline method to the corresponding robust-in-both classifier.

Nominal Method Nominal Accuracy Wins Losses Ties Robust Improvement

SVM

0–60% 6 0 0 10.7± 5.6%
60–70% 5 3 1 2.2± 1.9%
70–80% 8 5 3 0.9± 1.1%
80–90% 6 3 1 0.3± 0.5%
90–100% 14 9 11 0.0± 0.4%

Logistic Regression

0–60% 2 1 0 7.7± 5.2%
60–70% 10 0 0 4.5± 1.2%
70–80% 8 7 0 1.2± 1.0%
80–90% 4 5 1 1.1± 0.9%
90–100% 16 7 14 0.2± 0.1%

CART

0–60% 1 0 2 0.7± 0.7%
60–70% 1 0 0 2.4±−%
70–80% 7 8 2 0.1± 0.9%
80–90% 7 8 0 −0.3± 0.9%
90–100% 17 8 14 −0.1± 0.6%

over their nominal counterparts for different ranges of nominal in-sample accuracy.

We define the robust improvement as the absolute difference in out-of-sample accu-

racy between the methods, that is the accuracy of the robust-in-both method less

the accuracy of the nominal method. For instance, if the robust-in-both and nominal

methods had accuracies of 84.7% and 81.3%, respectively, the robust improvement

would be +3.4%.

The most significant result is for data sets where nominal SVM has in-sample

accuracy below 60%. For these 6 problems, robust-in-both SVM improves upon the

out-of-sample accuracy in every instance, and yields an average robust improvement

of 10.7%. For logistic regression and SVM, we see that as the nominal accuracy

increases, both the proportion of robust-in-both wins and the robust improvement in

accuracy decrease. For CART, the robust improvement is largely independent of the

nominal accuracy, although the win proportion is higher for problems with nominal

accuracy in the range of 90% to 100%. This suggests that nominal in-sample accuracy

by itself is not a strong predictor of robust effectiveness for CART methods. However,

note that there are only four data sets with a nominal CART accuracy below 70%,

the region where the other robust methods are strongest.
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(a) Nominal SVM vs. robust-in-both SVM
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(b) Nominal logistic regression vs. robust-in-both logistic regression
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(c) CART vs. robust-in-both Optimal Decision Trees
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Figure 3-5: Plots of winning method (nominal vs. robust-in-both) by the baseline
in-sample accuracy and dimension of points in each data set. The dashed line

divides each plot into two regions with different levels of robustness gain. Nominal
and robust-in-both wins are indicated by • and ×, respectively.
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Table 3.6: Improvement due to robustness by baseline in-sample accuracy and
dimension of points, comparing the nominal method to the corresponding

robust-in-both classifier.

Baseline Method Region Wins Losses Ties Robust Improvement

Nominal SVM
Above 14 4 3 5.3± 1.9%
Below 25 16 13 −0.2± 0.3%

Nominal
Logistic Regression

Above 17 2 1 4.0± 1.0%
Below 23 18 14 0.4± 0.3%

Nominal
Optimal Decision Trees

Above 7 3 4 1.4± 0.8%
Below 17 25 19 −0.7± 0.4%

CART
Above 9 3 2 1.3± 0.9%
Below 24 21 16 −0.3± 0.5%

Region Above refers to the top-left sections in Figure 5 (high data dimension, low baseline
accuracy); Region Below refers to the bottom-right sections in Figure 5 (low data dimension, high

baseline accuracy).

Next, we consider the combined influence of nominal in-sample accuracy and di-

mension of data points on the robust improvement. Figure 3-5 plots the winning

method against these two attributes of the training problem. We have constructed a

dividing line which is identical on all three plots that partitions the points into two

regions. This line follows the equation log10(p) = 0.05a−2.5, where a is the in-sample

accuracy of the nominal method on the data set, p is the dimension of the data set,

and the coefficients 0.05 and 2.5 were selected manually. In Table 3.6 we present a

breakdown of the relative performance of the nominal and robust-in-both methods in

the two regions. For all three classifiers, robust methods beat nominal methods for a

majority of data sets in the region of lower nominal accuracy and high dimensionality

(above the dividing line). In this region, we see significant average improvements in

out-of-sample accuracy of 5.3% for SVM, 4.0% for logistic regression, and 1.3% for

CART. Below the dividing line, we observe that robust methods are still competitive

with nominal methods, with neither offering a significant advantage.

We also include in Table 3.6 a comparison of robust-in-both Optimal Decision

Trees to nominal Optimal Decision Trees. Previously, we have only considered the

performance relative to CART in order to provide a strong benchmark against the

state-of-the-art methods, but it is also insightful to directly compare the robust for-
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mulation to its nominal counterpart. Below the dividing line, the robust-in-both

approach is not as strong compared to the Optimal Decision Trees as it is compared

to CART. This can be attributed to the fact that the Optimal Decision Trees are

a stronger classification method than CART, and thus provide a stronger nominal

baseline. However, we see that above the line, the relative improvement of robust-

in-both Optimal Decision Trees over Optimal Decision Trees is very similar to their

improvement over CART, with an average improvement in out-of-sample accuracy

of 1.4%. This therefore shows that the dividing line is a strong predictor for when

robust methods perform strongest relative to nominal methods, even in the presence

of a significantly stronger nominal method.

It seems natural that the data dimension and nominal accuracy are likely indica-

tive of the problem difficulty. This implies that robust methods are most beneficial

for harder problems. We also expect robust methods to perform strongest on noisy

data. Together, this offers evidence that problem difficulty and data uncertainty are

correlated, a result that is consistent with intuition. Based on the dividing line used

earlier, we present the following decision rule to address the task of predicting the

effectiveness of robust methods over nominal:

log10(p) ≥ 0.05a− 2.5, (3.31)

where p is the dimension of the data points, and a is the nominal in-sample accuracy.

If this relationship is satisfied, the data set falls into the “Above” region of Table 3.6,

and therefore the robust classification methods are highly likely to offer significant

accuracy improvements over their nominal counterparts.

This demonstrates that we can predict with high-accuracy a significant improve-

ment in out-of-sample accuracy when using robust methods for classification problems

with high-dimensional data and low nominal accuracy. This has large practical im-

portance for machine learning; given a real-world classification problem, (3.31) gives

a simple but strong recommendation for when to use robust classification in place of

nominal SVM, logistic regression, or CART.
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3.8.5 Comparison with Regularized Methods

To demonstrate the added value of our principled framework for modeling data un-

certainty with robust optimization, we compare the robust classification methods to

other popular methods that exhibit robust properties indirectly.

Table 3.7 Out-of-sample accuracy averaged across five seeds for each
method using both regularized and robust-in-both methods on all
data sets.

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

acute-inflammations-1 120 7 1.0000 0.9083 1.0000 1.0000

acute-inflammations-2 120 7 1.0000 1.0000 1.0000 1.0000

arrhythmia 68 280 0.6154 0.6308 0.7538 0.6923

balance-scale 625 5 0.9200 0.9200 0.9200 0.9200

banknote-authentication 1372 5 0.9869 0.9912 0.9855 0.9905

blood-transfusion 748 5 0.7638 0.7638 0.7664 0.7812

breast-cancer 683 10 0.9679 0.9559 0.9664 0.9574

breast-cancer-diagnostic 569 31 0.9719 0.9614 0.9684 0.9684

breast-cancer-prognostic 194 33 0.7692 0.7179 0.7692 0.7590

car-evaluation 1728 16 0.7977 0.7826 0.7936 0.7925

chess-king-rook-vs-king 28056 35 0.9004 0.9004 0.9004 0.9004

chess-king-rook-vs-king-pawn 3196 38 0.9743 0.9687 0.9756 0.9743

climate-model-crashes 540 19 0.9611 0.9574 0.9556 0.9537

cnae-9 1080 857 0.9769 0.9481 0.9713 0.9824

congressional-voting-records 232 17 0.9787 0.9826 0.9574 0.9826

connectionist-bench 990 11 0.9737 0.9768 0.9707 0.9768

connectionist-bench-sonar 208 61 0.7268 0.7561 0.7073 0.7659

contraceptive-method-choice 1473 12 0.6800 0.6755 0.6814 0.6776

credit-approval 653 38 0.8626 0.8585 0.8733 0.8631

cylinder-bands 277 485 0.7200 0.6691 0.6182 0.6727

dermatology 358 35 0.9915 0.9803 1.0000 1.0000

echocardiogram 61 7 0.7000 0.6833 0.6667 0.7333

ecoli 336 8 0.9791 0.9582 0.9731 0.9582

fertility 100 13 0.8500 0.9000 0.8400 0.9000

flags 194 60 0.8872 0.8205 0.8615 0.8564

glass-identification 214 10 0.7302 0.7256 0.7395 0.7349

haberman-survival 306 4 0.7279 0.7344 0.7180 0.7311

hayes-roth 132 5 0.8519 0.6692 0.8074 0.7923

heart-disease-cleveland 297 19 0.8305 0.8203 0.8441 0.8305

hepatitis 80 20 0.8375 0.8125 0.8125 0.8250

hill-valley 606 101 0.8364 0.9620 0.9884 0.9636

For each data set, the best result (or both in the case of a tie) for each
method is indicated in bold.
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Table 3.7 (Cont.) Out-of-sample accuracy averaged across five seeds for
each method using both regularized and robust-in-both methods
on all data sets.

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

hill-valley-noise 606 101 0.8132 0.8512 0.8678 0.8876

image-segmentation 210 20 0.9905 0.9476 0.9810 0.9762

indian-liver-patient 579 11 0.7155 0.7155 0.7224 0.7224

ionosphere 351 35 0.8743 0.8743 0.8943 0.8714

iris 150 5 1.0000 0.9800 1.0000 1.0000

letter-recognition 20000 17 0.9916 0.9923 0.9904 0.9908

libras-movement 360 91 0.9694 0.9694 0.9583 0.9639

magic-gamma-telescope 19020 11 0.7848 0.7924 0.7862 0.7919

mammographic-mass 830 11 0.8120 0.8060 0.8301 0.8217

monks-problems-1 124 12 0.6960 0.8000 0.6560 0.7920

monks-problems-2 169 12 0.5824 0.6176 0.5882 0.6235

monks-problems-3 122 12 0.9360 0.9333 0.9360 0.9250

mushroom 5644 77 1.0000 1.0000 1.0000 1.0000

nursery 12960 20 1.0000 1.0000 1.0000 1.0000

optical-recognition 3823 65 0.9956 0.9966 0.9958 0.9971

ozone-level-detection-eight 1847 73 0.9355 0.9295 0.9366 0.9317

ozone-level-detection-one 1848 73 0.9702 0.9702 0.9675 0.9702

parkinsons 195 22 0.8872 0.8615 0.8462 0.8205

pen-based-recognition 7494 17 0.9893 0.9891 0.9896 0.9897

pima-indians-diabetes 768 9 0.7647 0.7791 0.7660 0.7752

planning-relax 182 13 0.7027 0.7222 0.7027 0.7000

poker-hand 25010 11 0.5018 0.5023 0.5005 0.5000

post-operative-patient 87 14 0.7059 0.7059 0.7059 0.6588

qsar-biodegradation 1055 42 0.8692 0.8758 0.8578 0.8682

seeds 210 8 0.9333 0.9429 0.9619 0.9476

seismic-bumps 2584 21 0.9342 0.9342 0.9335 0.9327

skin-segmentation 245057 4 0.9326 0.9366 0.9187 0.9345

soybean-large 266 63 0.9094 0.8717 0.9170 0.8868

soybean-small 47 38 1.0000 1.0000 1.0000 1.0000

spambase 4601 58 0.9287 0.9265 0.9241 0.9246

spect-heart 80 23 0.6375 0.7125 0.6750 0.7625

spectf-heart 80 45 0.6375 0.6500 0.6750 0.7625

statlog-project-german-credit 1000 49 0.7420 0.7400 0.7350 0.7400

statlog-project-landsat-satellite 4435 37 0.9867 0.9820 0.9851 0.9824

teaching-assistant-evaluation 151 53 0.7200 0.6733 0.8067 0.7067

thoracic-surgery 470 25 0.8511 0.8511 0.8532 0.8468

thyroid-disease-ann-thyroid 3772 22 0.9905 0.9915 0.9910 0.9934

thyroid-disease-new-thyroid 215 6 0.8837 0.8884 0.8977 0.8977

For each data set, the best result (or both in the case of a tie) for each
method is indicated in bold.
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Table 3.7 (Cont.) Out-of-sample accuracy averaged across five seeds for
each method using both regularized and robust-in-both methods
on all data sets.

Data Set Information SVM Logistic Regression

UCI Data Set Name n p Regularized Robust Regularized Robust

tic-tac-toe-endgame 958 19 0.9812 0.9801 0.9801 0.9801

wall-following-robot-2 5456 3 0.6440 0.5553 0.6537 0.6609

wall-following-robot-24 5456 5 0.6436 0.6561 0.6565 0.6563

wine 178 14 0.9829 0.9657 0.9886 0.9943

yeast 1484 9 0.6869 0.6902 0.6842 0.6929

zoo 101 17 1.0000 1.0000 1.0000 1.0000

For each data set, the best result (or both in the case of a tie) for each
method is indicated in bold.

First, we compare our feature-robust SVM to `1-regularized SVM, which is equiv-

alent to classical SVM except for the `1 norm regularizer term. This is a feature-

robust method under a different uncertainty set (see Section 3.4.2). We implemented

Problem (3.3) in JuMP and solved this problem with Gurobi. Experimentally,

feature-robust SVM and `1-regularized SVM produce comparable classifiers; across

all 75 data sets analyzed, the average difference in out-of-sample accuracy between

these two methods was 0.2 ± 0.4%. This therefore gives evidence that our proposed

uncertainty set for feature-robustness is an equally strong model of the uncertainty

in the features of the data.

Next, to benchmark robust-in-both methods against regularized methods, we com-

pare robust-in-both SVM against `1-regularized SVM, and robust-in-both logistic re-

gression against `1-regularized logistic regression (which uses an ad-hoc method for

introducing robustness). For `1-regularized logistic regression, we implemented Prob-

lem (3.5) with q = 1 in JuMP and solved this problem with Ipopt. We present the

accuracy results for this comparison in Table 3.7.

In Table 3.8, we present the relative performance of robust-in-both and regularized

methods broken down into the same two regions as defined in Section 3.8.4. As before,

the regions are determined by the in-sample accuracy of the non-robust method and

the data dimension. We see that for both SVM and logistic regression, robust methods

still offer improved accuracy over regularized methods for a majority of data sets in the

117



Table 3.8: Improvement due to robustness by baseline in-sample accuracy and
dimension of points, comparing the regularized method to the corresponding

robust-in-both classifier.

Baseline Method Region Wins Losses Ties Robust Improvement

Regularized SVM
Above 8 6 1 0.5± 1.1%
Below 18 29 13 −0.7± 0.5%

Regularized
Logistic Regression

Above 8 5 0 1.9± 1.6%
Below 24 28 10 0.1± 0.3%

Region Above refers to the top-left sections in Figure 5 (high data dimension, low baseline
accuracy); Region Below refers to the bottom-right sections in Figure 5 (low data dimension, high

baseline accuracy).

region of lower nominal accuracy and high dimensionality (above the dividing line).

In this region, we see average improvements in out-of-sample accuracy of 0.5% over

regularized SVM and 1.9% over regularized logistic regression. Below the dividing

line, we observe that robust methods are still competitive with nominal methods,

although regularized SVM outperforms robust SVM by 0.7% in this region. If we

consider alternate norms and compare robust SVM and logistic regression against

`2-regularized methods instead, we obtain similar results.

These results demonstrate that classifiers do benefit from a principled approach

to robustness evidenced in real-world data, even when compared to regularized meth-

ods that are stronger than nominal ones. In all cases, we observe that our robust

methods perform best on classification problems which satisfy the decision rule given

by equation (3.31).

3.8.6 Computational Tractability and Speed

Table 3.9 shows the complexity of each nominal method and its robust counterparts.

Under all three classifiers, the feature-robustness does not change the nature of the

optimization problem complexity. Logistic regression changes from unconstrained

convex optimization to constrained when label-robustness is introduced. Label-robust

SVM introduced integer-valued variables and therefore becomes a mixed-integer opti-

mization problem. For Decision Trees, since the nominal formulation is mixed-integer

optimization formulation, label robustness does not change the nature of the problem.
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Table 3.9: Problem complexity of nominal and robust classification methods.

Method Nominal Feature-robust Label-robust Robust-in-both

SVM LO LO MIO MIO
Logistic Regression Unconstr. CO Unconstr. CO Constr. CO Constr. CO
Decision Trees MIO MIO MIO MIO

Robustness-in-both takes the maximum complexity between feature-robust and label-

robust formulations; in this case, the complexity is equal to that of the label-robust

in all three classifiers.

In order to provide empirical measures of the complexity of each method, we also

compare the total time required to solve a problem instance for each method with

or without robustness across a selection of UCI data sets. These sets are chosen to

be representative of the various dimensions and separability among all data sets. For

the robust methods, a typical choice of ρ = 0.01, Γ = 10% is used. The problems

were solved on a machine with a 16-core, Intel Xeon E5-2687W (3.1 GHz) Processor

and 128 GB RAM and the total solver time taken to solve each problem instance to

optimality was recorded. All tests were limited to a single thread for consistency. If

the problem was not solved to optimality within an hour, the solve was terminated.

In this case, we report the time taken to find the solution that was best under the

hour time limit. In particular for robust counterparts of CART, strong heuristics give

very good solutions almost instantly, and sometimes these solutions are not further

improved after an hour. In a real-world application of these methods, the time taken

to find the solution is the more important measure than the time taken to prove the

solution optimal; therefore time to finding solution is used.

The results for selected data sets are presented in Table 3.10. In general, the

nominal and feature-robust classifiers require solver time of around the same order

of magnitude. Label robustness generally slows down computation by 1–2 orders

of magnitude; in particular, since label-robustness for SVM changes the problem

from a linear optimization problem to a mixed-integer optimization problem, the

computational time is considerably longer. The robust-in-both classifier tends to

exhibit similar solution times to the label-robust method.
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Table 3.10: Solver time for selected UCI data sets in seconds for ρ = 0.01 and
Γ = 10%.

Method Type of
Robustness

UCI Data Set (number of points, dimension)

hayes-roth bank. auth. nursery skin seg. flags cnae-9
(132, 4) (1372, 4) (12960, 19) (245057, 3) (194, 59) (1080, 856)

SVM

Nominal 0.00 0.02 0.05 454.38 0.01 0.02
Feature 0.00 0.02 0.36 553.94 0.01 0.32
Label 0.23 4.50 58.58 695.06∗ 0.37 2.41
Both 0.24 4.77 91.70 695.06∗ 0.60 15.81

Logistic
regression

Nominal 0.00 0.05 0.02 0.03 0.03 0.41
Feature 0.00 0.08 0.03 0.16 0.16 113.24
Label 0.03 0.24 4.70 56.33 0.06 0.52
Both 0.03 0.25 5.45 71.12 0.06 0.51

Decision
trees

Nominal 0.02 0.02 0.18 1.44 0.02 0.65
Feature 0.04 0.02∗ 1.06 1.46∗ 0.64 0.65∗

Label 3.39 45.00∗ 0.18∗ 1.47∗ 3.01 183.43
Both 0.05 —a 0.18∗ 1.48∗ 2.39 146.01

∗ Not solved to optimality within the time limit. The time reported is instead the time taken to find the solution
that is best at termination.
a The robust-in-both optimal decision tree problem is infeasible for this particular choice of ρ/Γ.

3.8.7 The Price of Robustness

Introducing robustness in classifiers generates solutions that may be suboptimal under

the nominal data, but are likely to remain feasible or close to optimal when the data

change [19]. We can evaluate this trade-off for the robust classifiers by comparing

the out-of-sample accuracies, as evaluating the model accuracy on the unobserved

testing data can be thought of as a way of exposing the solution to perturbations in

the training data.

The empirical findings show that robustness improves prediction accuracy in many

real-world data sets across all three classifications methods. In each classifier family

individually, feature-robust, label-robust, and robust-in-both generally have higher

winning counts compared to their nominal counterpart. When comparing all three

nominal methods and their robust versions together, robustness continues to perform

well in the majority of data sets, particularly in subsets of data sets that are more

difficult to classify. Overall, robust methods offer quality solutions that nominal ones

cannot achieve.

Another practical aspect on the price of robustness is the computational time

requirement. In most cases, the computational time for robust methods is on the same
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order of magnitude as their respective nominal ones, suggesting that robustification

does not incur a significant burden on speed. It should also be noted that as mixed

integer optimization problems, label-robust SVM and CART can easily be limited

by computational constraints. Several problems we considered were not solved to

optimality, rather stopped after a smaller time limit to get a strong, yet suboptimal,

solution. Allowing for longer time limits in these cases has the potential for further

improving the accuracy.

3.9 Conclusions

In this chapter, we consider three major classification methods under a modern Robust

Optimization perspective: SVM, logistic regression, and CART. For each classifier,

we address uncertainties in features, labels, and both simultaneously in a principled

manner by constructing appropriate uncertainty sets and deriving robust counterparts

in the same way for all methods. We also discuss the implementation and practical

solvability for each method with robustness.

Synthetic experiments demonstrate that our methods derived by taking a princi-

pled approach to robust classification may improve greatly upon existing classification

methods. In the synthetic study, we show that robust-in-both SVM and logistic re-

gression outperform both nominal and regularized methods and produce classifiers

closer to the underlying truth, especially in the worst case scenarios. In particular,

the 90th percentile out-of-sample errors for our methods are significantly lower than

the 90th percentile out-of-sample errors for the benchmark methods. Because regu-

larized SVM can be cast as a feature-robust optimization problem for a particular

uncertainty set, this shows that the choice of uncertainty set may be critical. For the

simple synthetic problems considered here, the robust methods derived using label

uncertainty sets perform best.

To evaluate the value of adding robustness in practice, we performed computa-

tional experiments on a large sample of data sets from the UCI Machine Learning

Repository, comparing nominal, regularized, and robust methods for each of the three
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classifiers. We find that robust solutions provide higher out-of-sample accuracy for

many data sets, and the large majority of classifiers which strictly outperformed all

other methods were robust. In particular, we identify that high-dimensional and

hard-to-separate problems benefit most from our principled approach to robustness.

The findings suggest that we can predict how much value robustness will add to a

data set given only the accuracy of a classical method and dimension of the data set

features. This allows us to offer guidance as to when robust classification methods

can deliver significant improvements in practical settings.

3.10 Equivalence with Classical Support Vector Ma-

chines

The feature-robust counterpart presented in Theorem 1 is similar to the classical SVM

problem (3.2). Making the substitution ξ̃i = ξi−ρ‖w‖q∗ in Problem (3.11), we obtain

min
w,b

nρ‖w‖q∗ +
n∑
i=1

ξ̃i

s.t. yi(w
Txi − b) ≥ 1− ξ̃i i = 1, . . . , n,

ξ̃i ≥ −ρ‖w‖q∗ i = 1, . . . , n.

(3.32)

Comparing Problem (3.32) to the classical SVM formulation (3.2), we observe

that adding feature robustness or regularization to the hinge loss classifier lead to

nearly identical optimization problems. Depending upon the choice of uncertainty

set and the selection of the regularizing term, this equivalence may be exact. Under

the assumption that the training data are non-separable, [45] has shown that the

robust optimization problem

min
w,b

max
∆X∈Ũx

n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n,

(3.33)
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is exactly equivalent to the problem

min
w,b

ρ‖w‖q∗ +
n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi i = 1, . . . , n,

ξi ≥ 0 i = 1, . . . , n,

(3.34)

where

Ũx =

{
∆X ∈ Rn×p

∣∣∣∣ n∑
i=1

‖∆xi‖q ≤ ρ

}
.

It follows that (3.34) is equivalent to the classical SVM problem (3.2) for the choice of

q∗ = 2, or the `1-regularized SVM problem (3.3) for the choice of q∗ =∞. This implies

that the classical and regularized SVM problems are indeed robust formulations of

the nominal hinge loss classifier under specific choices of uncertainty set.
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Chapter 4

Personalized Diabetes

Management Using Electronic

Medical Records

This work appeared in Diabetes Care, with co-authors Dimitris Bertsimas, Nathan

Kallus, and Alexander Weinstein [11].

Current clinical guidelines for managing type 2 diabetes do not differentiate based

on patient-specific factors. In this chapter, we present a data-driven algorithm for

personalized diabetes management that improves health outcomes relative to the

standard of care.

We modeled outcomes under 13 pharmacological therapies based on electronic

medical records from 1999 to 2014 for 10,806 patients with type 2 diabetes from

Boston Medical Center. For each patient visit, we analyzed the range of outcomes

under alternative care using a k-nearest neighbor approach. The neighbors were cho-

sen to maximize similarity on individual patient characteristics and medical history

that were most predictive of health outcomes. The recommendation algorithm pre-

scribes the regimen with best predicted outcome if the expected improvement from

switching regimens exceeds a threshold. We evaluated the effect of recommendations

on matched patient outcomes from unseen data.
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Among the 48,140 patient visits in the test set, the algorithm’s recommendation

mirrored the observed standard of care in 68.2% of visits. For patient visits in which

the algorithmic recommendation differed from the standard of care, the mean post-

treatment glycated hemoglobin A1c (HbA1c) under the algorithm was lower than

standard of care by 0.44± 0.03% (p� 0.001), from 8.37% under the standard of care

to 7.93% under our algorithm.

A personalized approach to diabetes management yielded substantial improve-

ments in HbA1c outcomes relative to the standard of care. Our prototyped dash-

board visualizing the recommendation algorithm can be used by providers to inform

diabetes care and improve outcomes.

4.1 Introduction

Diabetes is a chronic condition affecting almost 10% of the US population [75]. Indi-

viduals with diabetes experience abnormally high blood glucose levels, which can lead

to severe complications such as heart disease, stroke, and kidney failure. The most

common form of diabetes is type 2 diabetes, which constitutes 90-95% of all diabetes

cases in the US [35]. The disease is typically managed through healthy eating, physical

activity, oral medication, and/or insulin injections. While there are evidence-based

clinical guidelines for glycemic control [80], how to choose among pharmacological

therapies to maximize effectiveness for a given patient is not well understood. There

has been growing interest in using clinical evidence to understand the effects of treat-

ments in different type 2 diabetes populations. In a joint statement from 2012, the

American Diabetes Association and the European Association for the Study of Dia-

betes highlighted the need for a patient-centered approach to diabetes management

[59]. The need for an individualized approach is especially pressing given the variety

of disease symptoms, comorbid conditions, pharmacological treatments, individual

treatment histories, and other individual characteristics that may inform treatment

[87].

Evidence suggests that the response to blood glucose regulation agents can differ
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among population subgroups. A post-hoc secondary analysis found that African-

American pre-diabetic adults responded better to metformin than Caucasian pre-

diabetic adults [100]. Another study recommended less aggressive treatments for

older patients, as they were more likely to experience severe consequences from hy-

poglycemia [60]. These studies each provide valuable insights with respect to a single

subgroup or treatment, but do not offer a decision rule for the general population

that providers can easily apply in practice.

Tailoring glycemic management for specific subpopulations can be critical. Among

patients with chronic kidney disease, contraindication to metformin needs to be taken

into consideration when prescribing medication [68]. Separate glycated hemoglobin

(HbA1c) goals may be needed for subgroups or individuals differentiated by age, co-

morbidities, and other clinical characteristics [87]. A personalized treatment recom-

mendation using a quantitative approach could readily incorporate different glycemic

targets and contraindications, and thus allow for more systematic management of

subgroups.

We provide an algorithm that generates a personalized type 2 diabetes treatment

recommendation for any given patient based on evidence from historical outcomes of

similar patients drawn from an electronic medical records (EMR) database. EMR

analysis allows for pinpoint comparisons of effectiveness because of the abundance of

clinical evidence from multiple treatment options administered to a diverse population

over long-term patient clinical histories. EMR data combines the large sample sizes

found in some insurance claims databases with the depth of longitudinal clinical

evidence typically found in clinical trials. One caveat is that EMR data are not

controlled via randomization.

Our methodological approach applies machine learning techniques and causal in-

ference to make personalized recommendations based on comparative effectiveness

among subpopulations in the EMR database. Machine learning techniques have been

increasingly adopted in health care, along with many other fields [61, 10, 17]. Our

novel approach leverages the power of analytics and abundant data in the EMR sys-

tem to improve quality of care.
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The recommendations are personalized by patient characteristics, including age,

sex, race, BMI, treatment history, and diabetes progression. We evaluate the effec-

tiveness of the personalized treatment recommendations against the current standard

of care by estimating patients’ counterfactual outcomes from historical outcomes of

similar patients in the EMR database. We develop a prototype clinical support dash-

board that provides evidence for the algorithm’s recommendations and could guide

providers in caring for type 2 diabetes patients in a personalized manner.

4.2 Research Design and Methods

4.2.1 Analytic overview

We modeled outcomes for patients with type 2 diabetes based on EMR data. We di-

vided each patient’s medical history into distinct lines of therapy, each characterized

by a particular drug monotherapy or combination therapy. Within each line of ther-

apy, we considered patient visits occurring every 100 days. At each visit, the provider

decides whether to proceed with the patient’s current line of therapy or to recom-

mend an alternative regimen. We developed a non-parametric prescriptive algorithm

that provides personalized treatment recommendations. For each patient visit, we

used k-nearest neighbor (kNN) regression [37] to predict the potential HbA1c out-

come under each treatment alternative. The nearest neighbors were chosen to control

for confounding that may be present in non-randomized data [81] and to maximize

similarity on the patient characteristics that were most predictive of outcomes. The

algorithm then prescribed the regimen with best predicted outcome, provided the

predicted improvement relative to the patient’s current regimen exceeded a confi-

dence threshold. The outcome metric was the average HbA1c measurement 75 to

200 days after the visit date. The effect of the prescriptive algorithm was evaluated

by comparing the expected HbA1c outcome under our recommended therapy to the

observed outcome under the standard of care (ground-truth) therapy, according to

a commonly used matching approach [58]. We conducted additional simulations to
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ensure that the results were robust to training models on different datasets and using

alternative predictive modeling techniques.

4.2.2 Data

Through a partnership with Boston Medical Center (BMC), an academic medical

center in Boston, Massachusetts, we obtained EMR for over 1.1 million patients from

1999 to 2014. In this dataset, 10,806 patients met all of the following inclusion criteria:

• Were present in the system for an observation period of at least 1 year;

• Received a prescription for at least one blood glucose regulation agent, including

insulin, metformin, sulfonylureas, or one of the other blood glucose regulation

agents listed below, and had at least one medical record 100 days prior to the

date of this prescription;

• Had at least three recorded laboratory measurements of HbA1c; and,

• Did not have a recorded diagnosis of type 1 diabetes, as defined by the pres-

ence of International Classification of Diseases (ICD-9) diagnosis code 250.x1 or

250.x3 combined with the absence of any subsequent prescriptions for oral blood

glucose regulation agents. (If the patient received oral blood glucose regulation

agents subsequent to one of these diagnosis codes, we assumed the diagnosis

record was an error.)

For each patient, we had access to demographic data, including date of birth, sex,

and race/ethnicity, and to all BMC EMR data, including a history of drug prescrip-

tions and measurements of height, weight, BMI, and HbA1c, as well as creatinine

levels (Table 4.1). Neither the size of the population nor the proportion with good

glycemic control changed substantially over the course of the study.

4.2.3 Interpreting individual medical histories

We divided each patient’s medical history into distinct lines of therapy, each charac-

terized by a particular drug regimen (Figure 4-1). Within each line of therapy, we
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Table 4.1: Demographics, medical history, and treatment history of patients
(N = 10, 806).

Feature Mean (SD)

Age (years) * 59.7 (13.6)
% Male 42.4%
% Black 58.5%
% Hispanic 15.1%
% White 16.6%
BMI (kg/m2) * 33.1 (8.1)
HbA1c (%) * 7.9 (1.8)
% with good glycemic control, i.e. HbA1c ≤ 7.0%* 37.7%
Years since first treatment in EMR 3.52 (3.66)
Current prescription for metformin† 45.6%
Current prescription for insulin† 30.2%
Contraindicated to metformin‡ 17.4%
Number of patients with first visit prior to 2007 (%) 6,175 (57.1%)

* Sample statistics are calculated across all patient visits. Individual patients with longer
medical histories may be over-represented in the sample.
† Individuals may have a current prescription for both metformin and insulin.
‡ A patient was considered to be contraindicated to metformin when current serum level
of creatinine was greater than 1.5 mg/dL.
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considered patient visits occurring every 100 days, corresponding to the life cycle of a

red blood cell [47]. These patient visits provided the basis for our definition of patient

outcomes.

Figure 4-1: Treatment history for a sample patient.

The black points connected by black lines in the lower portion of the figure depict the HbA1c
measurements over time for an example patient. The dotted horizontal black line shows
a desired HbA1c threshold of 7%. The history of prescriptions this patient has received
for each of three drugs, insulin, metformin, and sulfonylureas, is shown in red, green, and
blue, respectively. The start and end of each line of treatment is indicated by a vertical
tick mark. Finally, above the phase descriptions are small black dots indicating the date of
each patient visit.

Lines of Therapy. We developed an algorithm to define precisely when each line

of therapy ends and the next line begins according to when the combination of drugs

prescribed to the patient changes in the EMR data. Each line of therapy was char-

acterized by a unique drug regimen, defined to include all blood glucose regulation

agents prescribed to the patient within the first 6 months after starting that line of

therapy.

Regimens were defined as combinations of drugs from one or more drug classes.

The drug classes we considered were metformin, insulin, and other blood glucose

regulation agents; the other agents included sulfonylureas, thiazolidinediones, DPP-
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4 inhibitors, meglitinides, alpha-glucosidase inhibitors, GLP-1 agonists, and other

antihyperglycemic agents. If a sufficient number of HbA1c observations existed during

a period in which no drugs were prescribed, we defined the patient’s line of therapy as

“NoRx.” We considered thirteen possible regimen types (Table 4.2). A combination

of drug classes was included as a regimen type if it was observed in a sufficient number

of patient visits.

Table 4.2: Pharmacological regimens.

Observed standard of care regimen
(Abbreviation)

Number of
patient visits

No regimen prescribed, new patient (NEWPT) 5,449
No regimen prescribed, existing patient (NORX) 2,137
Metformin monotherapy (MET0) 9,649
Insulin monotherapy (INS0) 7,539
Other blood glucose regulation agent monotherapy (OTHER0) 4,671
Metformin combined with one other non-insulin agent (MET1) 6,959
Metformin combined with insulin (METINS0) 3,977
Insulin combined with one non-metformin oral agent (INS1) 2,139
Combination of two non-metformin, non-insulin agents (OTHER1) 1,047
Metformin combined with two other oral agents (MET2) 1,749
Metformin combined with insulin and one other agent (METINS1) 2,005
Insulin combined with two non-metformin agents (INS2) 249
All other multi-drug (3+) combinations (MULTI) 570

Total 48,140

Patient Visits. Within each line of therapy, we considered patient visits occurring

every 100 days, beginning with the visit at which that regimen was initiated and

continuing until no later than 80 days prior to the start of the subsequent regimen.

There were 48,140 unique patient visits in our dataset (Table 4.2). At each visit,

we defined a set of visit-specific patient characteristics, including the current line of

therapy (i.e. therapy given during the 100 days immediately preceding the current

visit) and recent HbA1c and BMI history. The outcome was measured as average

HbA1c 75 to 200 days after the visit. This effect period was chosen to allow for

a complete red blood cell life cycle to elapse before measuring the effect of a drug
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therapy.

We defined the standard of care for each visit as the drug regimen which was

administered. For 16.3% of visits, the provider prescribed an adjustment to the

current line of therapy; in the other 83.7%, the provider’s prescription was to continue

the current regimen.

4.2.4 Prescriptive algorithm

Our novel prescriptive algorithm considers a menu of available treatment options,

including the patient’s current treatment; uses k-nearest neighbor regression models

to predict potential outcomes under each option; rejects any non-current treatment

option with predicted outcome above a pre-specified HbA1c threshold; and chooses

the remaining option with best predicted outcome. The menu of options for a given

patient could be determined by the provider, accounting for contraindications and

other preferences, such as not using intensive control for elderly patients or patients

with a history of severe hypoglycemia.

For the purposes of this analysis, the menu of options for each patient was chosen

relative to the intensity and composition of the patient’s current treatment regimen.

Specifically, the algorithm considered only regimens that represented an incremental

addition or subtraction of a drug, or substitution of a drug of comparable intensity;

metformin and insulin were considered to be of the lowest and highest intensity,

respectively. Patients with serum creatinine levels, greater than 1.5 mg/dL [68], a

sign of kidney disease, were not offered metformin-based regimens. The menu options

used in our analysis, differentiated by current treatment, are depicted in Figure 4-

2; by definition, the algorithm never recommended metformin-based therapies for

patients with the contraindication described above.

For each patient visit, the outcomes predicted by kNN under each treatment were

compared. Our algorithm selected the treatment with the best predicted HbA1c

outcome subject to the condition that this best predicted outcome improve upon the

predicted outcome under the patient’s current treatment by at least some threshold δ.

We chose the optimal threshold value of 0.8% by testing the algorithm on a single test
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Figure 4-2: HbA1c benefit of prescriptive algorithm for patients switching regimens.

Each cell in the figure represents patients for whom the prescriptive algorithm recommended
switching from the regimen on the vertical axis to the regimen on the horizontal axis. The
color in each cell indicates the mean HbA1c benefit (%) of the prescriptive algorithm for
patients in that cell, with red indicating benefits of the algorithm and blue indicating
worsening relative to standard of care. Each cell is labeled with the number of patients who
made that switch; cells labeled with a dash were not on the menu of options provided to
patients currently on a given regimen. Patients with serum creatinine levels greater than 1.5
mg/dL were not considered for metformin-based regimens, and therefore are never assigned
by the algorithm to columns with metformin-based regimens.
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set, using values of δ ranging from 0% to 1.5%. Increasing the threshold δ causes the

algorithm to recommend switching for fewer patients, but the mean benefit among

those who switch increases. Above a certain threshold, the recommendation fits to

noise in the training data and does not provide better mean benefits in the testing

set. The optimal threshold balances these concerns.

kNN regression is a non-parametric, instance-based algorithm that makes predic-

tions by averaging the outcomes for the subset of observations most similar to the

target as defined by some distance metric [37]. To predict potential outcomes un-

der each regimen, we used a kNN regression based on a treatment-specific weighted

Euclidean distance across normalized patient and visit-specific factors. The weights

were derived by training a separate ordinary least squares linear regression model for

each treatment regimen and using the magnitudes of the regression coefficients (Fig-

ure 4-3). This weighted distance improves upon classical kNN by selecting neighbors

based on the factors most predictive of HbA1c outcome, rather than weighting all

factors equally.

We considered factors from the following categories: demographic information,

medical history, and treatment history. Specifically, the demographic factors used

in the model were age, sex, and race. The medical history factors were days since

first diabetes diagnosis; the patient’s average serum creatinine level in the previous

year; the patient’s past two HbA1c and most recent BMI observations up to and

including the current visit; the patient’s average, median, 25th percentile, and 75th

percentile HbA1c and BMI in the 1000-day period up to and including the current

visit; and the patient’s frequency of HbA1c measurements. The treatment history

factors were the number of regimens the patient had tried; the number of visits

since starting the current regimen; whether or not the patient had been previously

prescribed metformin; and the patient’s current regimen.

The prediction step of our algorithm is best illustrated through an example.

Suppose we would like to estimate a patient’s potential outcome under metformin

monotherapy. To identify the importance of each factor in predicting outcomes, we

used patient visits in which metformin monotherapy was prescribed to train an ordi-
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Figure 4-3: Feature weights used to calculate similarity between patient visits.

Darker shading indicates larger values.
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nary least squares regression on normalized values of each patient factor listed above.

The most predictive factors were: the patient’s most recent HbA1c measurement

(regression coefficient magnitude 0.22), whether the patient was currently prescribed

insulin (0.11), the patient’s mean BMI over the past 1000 days (0.11), and several

other HbA1c and BMI measurements (coefficient magnitudes ranging from 0.03 to

0.10); see Figure 4-3 for full details. To estimate the patient’s potential outcome, we

used the coefficient magnitudes to weight the Euclidean distance between this patient

visit and each patient visit in which metformin monotherapy was prescribed. Thus,

for any choice of k, we could rank the k closest neighbors from this treatment group.

This procedure was repeated for each therapy in the patient’s menu of treatment

options.

Intuitively, the number of neighbors k used to estimate post-treatment HbA1c

levels should increase with the size of the dataset. For each treatment t, we found

the value k∗t that minimized the root-mean-square error of the kNN predictions on a

subset of the data not used to evaluate the algorithm. We regressed k∗t on
√
nt, and

thus derived the dependence function k∗t = 0.34 · √nt, which was used to select k in

the prescriptive algorithm.

To verify the accuracy of the kNN HbA1c predictions, we evaluated the R2 metric.

Positive values of R2 suggest patient characteristics are predictive of future HbA1c.

For comparison, we evaluated the predictive accuracy of LASSO regression [90] and

random forest [28], two state-of-the-art machine-learning methods used widely due

to their high prediction accuracy. We used the predictions from these models in two

alternative prescriptive algorithms.

4.2.5 Model evaluation

To evaluate the performance of the kNN-based prescriptive model, we tested the

algorithm’s recommendations on a set of patient data that had not been used when

training the models.

Because counterfactual treatment effects are not observable, we used the weighted

matching approach embedded in the kNN regression to impute potential outcomes,
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an approach commonly used for causal inference in observational studies when ran-

domization is unavailable [58]. For each visit, we applied our prescriptive algorithm

to recommend a therapy. If that recommendation matched the prescribed standard

of care therapy, we observed the true effect from the therapy. Otherwise, the outcome

was imputed by averaging the outcomes of the most similar patient visits at which

the recommended therapy was administered; these similar visits were chosen from a

test set not used for training, and the number of neighbors k∗t was selected to fit the

size of the test set. This estimated outcome was compared to the true outcome under

standard of care at the given patient visit.

Our hypothesis was that the average predicted HbA1c outcome after applying our

prescriptive algorithm would be less than that observed from administering standard

of care, resulting in a net average improvement in outcomes.

4.2.6 Sensitivity analysis

To ensure the evaluation of our algorithm was not sensitive to the particular random

split of the database into training and test data, we evaluated the effectiveness of our

algorithm (with fixed threshold δ = 0.8) under additional random splittings of the

data.

4.2.7 Software

All analyses were performed in R 3.3.0 [88].

4.3 Results

The R2 of the kNN predictions on unseen data ranged from 0.20 to 0.54 depending

on the regimen (Table 4.3). The strongest models were for insulin monotherapy,

metformin monotherapy, metformin plus insulin, and multi-drug (3+) therapies. The

R2 values from the LASSO and random forest models ranged from 0.24 to 0.53. The

predictive power was similar across the three methods.
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Table 4.3: Out-of-sample R2 under various predictive methods.

Regimen kNN LASSO Random Forest

NEWPT 0.38 0.33 0.41
MET0 0.46 0.42 0.48
INS0 0.54 0.53 0.53
OTHER0 0.40 0.39 0.40
MET1 0.42 0.39 0.42
METINS0 0.46 0.46 0.47
INS1 0.44 0.43 0.43
OTHER1 0.34 0.35 0.35
MET2 0.32 0.32 0.33
METINS1 0.41 0.42 0.45
INS2 0.20 0.31 0.24
MULTI 0.46 0.36 0.46

The performance of the prescriptive algorithm is summarized in Table 4.4. The

mean HbA1c outcome after treatment was 0.14% lower under the prescriptive algo-

rithm than under the standard of care treatment, with standard error (SE) 0.01% and

significance level p� 0.001. Of the 48,140 patient visits in our dataset, the algorithm

differed from the standard of care for 15,323 visits, 31.8% of all visits. For this subset

of visits, the mean HbA1c outcome under the algorithm was lower by 0.44 ± 0.03%

compared with standard of care, with p � 0.001, a reduction from 8.37% under

the standard of care to 7.93% under our algorithm. The median outcome for these

visits was 0.21% lower under the prescriptive algorithm compared with standard of

care. For comparison, the median difference for all visits was zero because, for 68.2%

of visits, there was no difference between the algorithm’s recommendation and the

standard of care.

In our analysis, the mean difference in HbA1c was more negative than the median

due to a left-skewed distribution. Some patients received particularly large benefits

from using the prescriptive algorithm, which had an outsize effect on the mean but

did not affect the median.

Figure 4-2 depicts the number of patients for whom the prescriptive algorithm

recommended switching from a given current line of therapy to a given new line of

therapy, along with the mean reduction in HbA1c for patient visits in each category.
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Table 4.4: Performance of prescriptive algorithms.

All patient visits (N = 48, 140)

kNN LASSO Random Forest

Mean HbA1c benefit relative to
standard of care, % (SE)

-0.14 (0.01)* -0.13 (0.01)* -0.07 (0.01)*

Visits for which algorithm’s recommendation differed from observed
standard of care

kNN LASSO Random Forest

Number of visits (%) 15,323 (31.8%) 12,684 (26.3%) 14,302 (29.7%)

Mean HbA1c benefit relative to
standard of care, % (SE)

-0.44 (0.03)* -0.45 (0.03)* -0.26 (0.03)*

* p� 0.001.

Among trajectories with at least 300 patients, the largest benefit of the algorithm

was achieved through personalized recommendations for 7,564 patients currently on

insulin monotherapy to switch to monotherapy with metformin or another blood

glucose regulation agent. However, for the vast majority of patients currently on

insulin-based regimens, the algorithm recommends that those patients continue with

that therapy. Among the 7,564 patient visits, those who were recommended to switch

from insulin were on average younger (mean age 52.9 years versus 61.4 years) and

had substantially higher average HbA1c (11.0% versus 8.0%).

The performance of the prescriptive algorithm in specific patient subgroups is

summarized in Tables 4.5 and 4.6. The overall mean HbA1c outcome using the

prescriptive algorithm was 0.14% lower than standard of care for both male and

female patients. The benefit of using the algorithm was 0.14% for black patients

(29,120 visits), 0.09% for white patients (7,444 visits), 0.22% for Hispanic patients

(6,732 visits), and 0.11% for all other patients (4,844 visits). The benefit of the

algorithm was 0.20% for patients under the age of 60 and 0.08% for patients aged 60

or older. The benefit was 0.20% for patients with poor glycemic control, i.e. current
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HbA1c greater than 7.0% as compared with 0.05% for those with good glycemic

control.

Table 4.5: Performance of algorithm in study subgroups; all patient visits.

Subgroup Number of visits* Mean HbA1c benefit relative
to standard of care, % (SE)†

Male 20,231 -0.14 (0.01)
Female 27,909 -0.14 (0.01)

Black 29,120 -0.14 (0.01)
White 7,444 -0.09 (0.01)
Hispanic 6,732 -0.22 (0.01)
Other 4,844 -0.11 (0.01)

Age < 60 23,705 -0.20 (0.01)
Age 60+ 24,435 -0.08 (0.00)

Good glycemic control
(HbA1c ≤ 7) 18,156 -0.05 (0.01)

Poor glycemic control
(HbA1c > 7) 29,984 -0.20 (0.01)

* N = 48, 140
† p� 0.001 for all instances.

Our methodology motivates a provider dashboard that would report information

on the demographics, medical history, and response to treatment for patients similar

to an index patient. A prototype dashboard visualization for one sample patient visit

is shown in Figure 4-4. The dashboard would include the patient’s demographic and

health information along with visualizations of the patient’s treatment history and

HbA1c progression. In addition, the dashboard would display the mean, standard

deviation, and full distribution of HbA1c outcomes among the k∗t nearest neighbors

who received each treatment in the menu of options. Based on this evidence, the

dashboard would display a treatment recommendation. The provider would have the

ability to override this recommendation given any special management needs of the

patient. For instance, if the patient is elderly and the distribution of HbA1c outcomes

indicates that the recommended therapy has an elevated risk of hypoglycemia, the

provider may opt for an alternative treatment.
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Table 4.6: Performance of algorithm in study subgroups; visits for which algorithm’s
recommendation differed from standard of care.

Subgroup Number
of visits

Percent of
all visits
in subgroup

Mean HbA1c benefit
relative to standard
of care, % (SE)*

Male 6,363 31.5% -0.44 (0.02)
Female 8,960 32.1% -0.44 (0.02)

Black 9,103 31.3% -0.45 (0.02)
White 2,309 31.0% -0.29 (0.03)
Hispanic 2,400 35.7% -0.61 (0.03)
Other 4,844 31.2% -0.34 (0.04)

Age < 60 8,783 37.1% -0.55 (0.02)
Age 60+ 6,540 26.8% -0.30 (0.02)

Good glycemic control
(HbA1c ≤ 7) 4,438 24.4% -0.20 (0.02)

Poor glycemic control
(HbA1c > 7) 10,885 36.3% -0.54 (0.02)

* p� 0.001 for all instances.
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Figure 4-4: Visualization of prescriptive algorithm: Provider dashboard prototype.

This figure visualizes how the prescriptive algorithm can be used by providers for a single
patient.

• The provider enters the patient id of the current patient in the top left textbox.

• The table below shows basic summary of patient demographics and medical history.
We envision the time series of patient HbA1c levels and past medications will also be
presented visually here.

• Each plot represents a scenario under a potential treatment, providing the predicted
post-treatment HbA1c. The algorithm’s recommended treatment is highlighted.

• For a given treatment, the histogram represents the distribution of actual HbA1c
outcomes under the k∗t most similar patient visits in the data set, the post-treatment
HbA1c level is on the horizontal axis and the number of visits is on the vertical axis.

• When the provider mouse-over the bars in the histogram, more details on the similar
patient visits are displayed together with a similarity score for the provider to further
inspect.

143



The overall mean HbA1c outcome using the LASSO-based prescriptive algorithm

was lower by 0.13 ± 0.01% (p � 0.001) compared with the mean standard of care

outcome. The benefit from using the random-forest-based prescriptive algorithm

relative to standard of care was 0.07± 0.01% (p� 0.001).

In the sensitivity analyses, under three alternate random splittings of the dataset,

the overall mean benefit of using the prescriptive algorithm compared with standard

of care ranged from 0.11% to 0.15% (p� 0.001 in all instances).

4.4 Discussion

To our knowledge, we present the first prescriptive method for personalized type 2

diabetes care. Using historical data from a large EMR database, this novel prescrip-

tive method resulted in an average HbA1c benefit of 0.44% at each doctor’s visit for

which the algorithm’s recommendation differed from standard of care.

Our method incorporates patient-specific demographic and medical history data

to determine the best course of treatment. Compared to other machine learning meth-

ods considered, the kNN prescriptive approach is highly interpretable and flexible in

clinical applications. The novelty of our approach is in personalizing the decision-

making process by incorporating patient-specific factors. This method can easily

accommodate alternative disease management approaches within specific subpopula-

tions, such as patients with chronic kidney disease and elderly patients. We believe

this personalization is the primary driver of benefit relative to standard of care.

In practice, the algorithm can be integrated into existing EMR systems to dynami-

cally suggest personalized treatment paths for each patient based on historical records.

The algorithm ingests and analyzes EMR data and generates recommendations. An

intuitive, interactive dashboard summarizes the evidence for the recommendation,

including the expected distribution of outcomes under alternative treatments (Figure

4-4).

Due to the nature of retrospective data from existing EMR, this study has several

limitations. Patients were not randomized into treatment groups. While our matching
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methodology controls for several confounding factors that could explain differences in

treatment effects, we can only estimate counterfactual outcomes. EMR data do not

include socio-economic factors or patient preferences that may be important in treat-

ment decisions. Due to lack of sufficient data, GLP-1 agonists were not considered

as a separate drug class. If more data were available, we could further differentiate

regimen types beyond the thirteen we include in this analysis. In addition, the study

population from BMC may not be representative of the US population as a whole.

With EMR medication order data alone, we cannot be certain whether a pre-

scribed medication was filled or taken, and cannot know precisely when the medica-

tion was stopped. Although this data quality issue could hamper attempts to make

drug efficacy comparisons, our analysis aims to address the question of which drugs

to prescribe under real-worlds scenarios. We optimize for an outcome that takes into

account unobserved factors such as non-adherence. For instance, if non-adherence is

more prevalent among patients prescribed insulin than other regimens, this perspec-

tive may explain why, in our study population, the algorithm recommends insulin less

often than it is prescribed in clinical practice.

Our method can be extended to be more flexible and comprehensive. Currently the

prescriptive algorithm does not support individualized glycemic targets; we assume

that a lower glycemic level is always preferred. The study currently optimizes only

for a single health outcome; a more comprehensive algorithm would consider adverse

event outcomes as well.

Despite these limitations, the study establishes strong evidence of the benefit of

individualizing diabetes care. The success of this data-driven approach invites further

testing using datasets from other hospital and care settings. Testing the prescriptive

algorithm in a clinical trial setting would provide even stronger evidence of clinical

effectiveness. As large-scale genomic data becomes more widely available, the algo-

rithm could readily incorporate such data to reach the full potential of personalized

medicine in type 2 diabetes.

In this study, we developed a novel data-driven prescriptive algorithm for type 2

diabetes that improves significantly on the standard of care when tested on patient-
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level EMR data from a large medical center. Our work is a key step toward a fully

patient-centered approach to diabetes management.
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Chapter 5

An Actionable Tool for Mortality

Predictions in Cancer Patients

This work is in revision with Journal of Clincal Oncology: Clinical Cancer Informat-

ics, with co-authors Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, John Siberholz,

Alexander Weinstein, Eddy Chen and Aymen Elfiky [8].

With rapidly evolving treatment options in cancer, the complexity in the clinical

decision-making process for oncologists represents a growing challenge magnified by

oncologists’ disposition of intuition-based assessment of treatment risks and overall

mortality.

Given the unmet need for accurate prognostication with meaningful clinical ratio-

nale, in this chapter we developed a highly interpretable prediction tool to identify

patients with high mortality risk prior to the start of treatment regimens. Using

electronic health record (EHR) data between 2004 and 2014 from a large national

cancer center, we built an actionable tool using novel development in modern ma-

chine learning to predict 60-, 90- and 180-day mortality from the start of an anti-

cancer regimen. Our proposed prediction models achieved significantly higher es-

timation quality in unseen data (AUCs: 0.83-0.86) compared to benchmark mod-

els. We identified key predictors of mortality such as change in weight and al-

bumin levels. The results are presented in an interactive and interpretable tool
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(stuff.mit.edu/~zhuo/tree_vis/index.html).

Our fully-transparent prediction model was able to distinguish with high precision

between highest and lowest risk patients. Given the rich data available in EHRs and

advances in machine learning methods, this tool can have significant implications for

value-based shared decision making at the point-of-care and personalized goals-of-care

management to catalyze practice reforms.

5.1 Introductions

As the landscape of treatment options continues to expand for cancer patients with the

development of novel targeted therapies and immunotherapies, the increasing com-

plexity in the treatment decision making process for physicians alike has represented

a growing challenge. When considering a new line of treatment for a patient, a clini-

cian aims to account for a number of factors including performance status, previous

treatments, the toxicity and efficacy of treatment at hand, and the patient’s overall

goals of care. Most significantly, in the setting of non-curative-intent treatments, the

clinician needs to make assessment on the benefits of therapy versus the risk of mor-

tality given patient characteristics. Today such assessments are made largely using

human intuition and experience, often unable to take into full account the past and

present trends and nuances of a patient’s objective clinical and disease trajectories

over time. Factually, physicians tend to overestimate prognosis in cancer [51, 86],

and patient preferences are very sensitive to these estimates [30, 84, 55]. Agencies

including the National Quality Forum (NQF) and organizations such as the American

Society of Clinical Oncology (ASCO) have identified chemotherapy administration to

patients for whom there is no clinical benefit as the most pervasive and superfluous

practice in oncology [46, 82]. Indeed, unqualified use of aggressive treatments in pro-

gressive disease is associated with increased symptom burden for patients, aggregate

adverse events, and intensity and cost-of-care interventions that have little morbidity

or mortality benefit [97, 39, 44, 52].

In this chapter, using the electronic health records (EHRs) of the spectrum of
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all cancer patients treated at a tertiary cancer center and novel machine learning

algorithms constructed by the coauthors, we developed a predictive tool (delivered

as a web or mobile-based application) to estimate the probability of mortality for a

particular patient and a particular envisioned cancer treatment. We refer the reader

to the website (stuff.mit.edu/~zhuo/tree_vis/index.html) for the tool. The tool

we developed makes an important contribution to the clinical practice of oncology as

it is:

1. Personalized and specific:

The tool takes as inputs the EHR of a particular patient, the cancer type and an

envisioned cancer treatment and outputs the mortality risk adjusted for these

patient characteristics.

2. Interpretable and clinically meaningful:

A physician can easily understand the reasoning behind the algorithm, illus-

trated as an interpretable decision tree. The model also identifies key predictors

of mortality such as change in weight.

3. Evidence-based and data-driven:

The tool was informed by EHRs of more than 23,000 patients at a large national

cancer hospital. We included 401 predictors including demographics, medical

and treatment history, laboratory tests, and genomic results.

4. Actionable:

The clinician can compare different envisioned treatments for a particular pa-

tient with respect to the range of mortality risk and make decisions informed

by these estimates.

5. Validated and accurate:

We compare the accuracy and the area under the curve (AUC) in unseen patient

data from 2012-2014, with very encouraging results compared to competing

approaches.

149

stuff.mit.edu/~zhuo/tree_vis/index.html


6. Based on novel development in modern machine learning:

The methodology of this chapter is based on two novel algorithms: a) the

predictive tree developed using optimization ideas, [7] and b) the statistical

method for missing data imputation as in Chapter 2 [18].

Because of its importance in clinical decision making, mortality prediction has

long attracted research interest in the medical and biostatistical communities. In re-

cent years, some prediction models have been made accessible online as tools, which

has allowed the results from prognostic research to be readily available for use at

point of care. Although such tools provide convenience to physician users, the data

and models behind these tools limit the potential for reaching higher prediction qual-

ity while maintaining the interpretability. Most tools are based on cancer registry

patient cohorts, limited to a small number of patient characteristics from the time

of diagnosis, thereby overlooking critical information over a period of time that ulti-

mately has significant implications for a patient’s prognosis. Even with more detailed

datasets, the interface of the tool requires learning accurate models with few variable

inputs; black-box models such as artificial neural networks or gradient boosted trees

that rely on a large number of predictors would not be suitable for such interactive

tools. Further, those methods offer little explanation to the physicians on why such

predictions were made. These concerns highlight critical considerations that explain

the lack of practical translation of novel prognostic research into standard clinical

workflows.

In notable contrast to the previous efforts, in this work we built a highly inter-

pretable tool to predict individual mortality risk for a given treatment, using rich

EHR data of more than 23,000 patients from a major academic cancer center with

over 400 predictors. The remainder of the chapter details the data, method, and

validation results of the model.

150



5.2 Methods

We retrospectively obtained patient data from the EHR and linked Social Security Ad-

ministration mortality data for patients at the Dana-Farber/Brigham and Women’s

Cancer Center (DF/BWCC) from 2004 through 2014. To be eligible for the study,

patients must be at least 18 years of age at cancer diagnosis, and have had at least one

anti-cancer treatment over the course of their care. The primary outcomes were mor-

tality rates at 60, 90 and 180 days after initiation of anti-cancer regimen, including

chemotherapy, immunotherapy, and targeted therapy. If the patient’s date of death

is missing and the last known date alive is before the cutoff, that patient’s record

is censored for predicting that outcome. Each observation corresponds to a patient

initiating an anti-cancer regimen, which was systematically recorded in the EHR.

5.2.1 Data

We considered 401 predictive features, including demographics, cancer diagnoses, co-

morbidities, prior treatments, resource utilization, gene mutations, and vital signs and

laboratory tests results. Missing values were imputed using the algorithm Optimal-

Impute developed by selected coauthors,13 which frames the imputation task as a

family of optimization problems and solves directly. This algorithm has demonstrated

significant improvement in downstream prediction tasks compared to classical meth-

ods. We used regimens initiated from 2004-11 as the training set, and then assessed

each model’s predictive performance using regimens initiated from 2012-14 as the vali-

dation set. The institutional review boards of Dana Farber Cancer Institute, Partners

Healthcare, and Massachusetts Institute of Technology approved this study.

5.2.2 Model and Tool Development

The mortality predictions are based on a novel decision tree algorithm, Optimal Clas-

sification Trees.12 We selected decision trees for their advantage in interpretability,
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where the predictions are based on a few decision splits on variables of high impor-

tance. Such tree structure can readily model nonlinearities and interaction between

variables. However, classical decision tree methods typically cannot achieve the same

level of accuracy as their less interpretable counterparts such as artificial neural net-

works and gradient boosted trees. To mitigate the tradeoff between interpretability

and prediction accuracy, we made use of recent advances in machine learning. In par-

ticular, the Optimal Classification Trees algorithm trains a single decision tree with

state-of-the-art performance, achieving high accuracy without the need to sacrifice

interpretability. After training the model, for interpretation and verification, we gen-

erate the following: 1) a visualization of the decision tree, where experts can follow

through the logic and predicted mortality risks to verify the clinical relevance; and

2) feature importance scores, which provide an estimate on the relative importance

of the key variables in mortality predictions.

We next built the interactive tool for physicians based on the trained decision

trees. The tool is made available as a web-based application (stuff.mit.edu/~zhuo/

tree_vis/index.html), in the format of a patient characteristics questionnaire. The

clinician user will have the option to select 60-, 90-, or 180-day mortality predictions

and cancer types (all cancers, breast, lung, ovarian, kidney, etc.). This user will then

be prompted to provide answers to a few questions, corresponding to the decision

splits in the trained decision tree. The questions are adaptive based on the user’s

answers to previous questions. Once answers are provided, the tool will generate a

predicted mortality risk specific to this patient. Examples are provided in the results

section.

We also envision this tool to be integrated in an EHR environment, where the

answers to the questions are automatically pulled from the EHR database, and the

physician will simply have to verify the inputs and view the output mortality risks in

the workflow.
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5.2.3 Performance Comparisons

We evaluate the performance of Optimal Classification Trees in unseen patient data

for the quality of mortality predictions. To demonstrate our improvement in prognos-

tic quality, our model should be compared against the established prognostic studies

on the same patient population. For such comparisons, the outcome variables (short-

term mortality) need to be aligned, and the predictor variables from prior studies

need to be available. Unfortunately, among the studies we identified, no such com-

parison could be conducted. As proxies, a variety of other machine learning models

were trained and validated on the same set of data for comparisons.

First, a multivariate logistic regression model was trained to predict mortality on

a subset of variables commonly used in prior studies. Specifically, these variables

included demographic information, cancer characteristics, and comorbid. Laboratory

test result history and gene mutations were excluded as they were not widely used

in prior studies. We regard this model as the baseline model given it reflected the

data and methodology used in previous, classical prognostic algorithms. Then, we

added in the full set of potential predictors from the EHR and fit both a logistic

regression model and an elastic net regularized logistic regression to predict mortality.

We also trained a classical classification and regression trees (CART) algorithm as

a baseline for decision tree based methods [29]. Finally, as a comparison against

modern black box algorithms, we fitted gradient boosted trees using the full set of

potential predictors extracted from the EHR [43]. All model parameters were selected

via cross-validation, a procedure where model performance on a reserved validation

set of patients are used to select best parameters.

We report AUC for each model and prediction accuracy based on a default 50%

threshold. The analyses were repeated for each of the three time horizons (60-, 90-,

and 180-day mortality) and subgroups by cancer type.
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5.3 Results

5.3.1 Patient and Treatment Characteristics

A total of 23,983 patients were selected in the cohort. Among those, 14,427 (60.2%)

were in the training set and 9,556 (39.8%) were in the validation set. These patients

initiated 46,646 total new regimens; 2,619 (5.6%) of regimen starts were followed by

the patient’s death within 60 days and 44,027 (94.4%) regimens were not. Overall,

regimens that led to mortality were associated with more severe diseases and heavier

resource utilization before initiating the regimen. For example, higher proportions

of lung cancer and pancreatic cancer patients were observed in regimens that led to

mortality. Patients in this group on average also had more severe disease staging,

as well as higher number of prescribed medications, inpatient/outpatient visits, and

blood infusions. The regimens that led to mortality were also associated with more

comorbid conditions such as congestive heart failure, stroke, diabetes. Finally, the

laboratory test results for regimens that led to mortality were often significantly worse

than the ones that did not lead to mortality (lower weight and albumin, higher cancer

marker, worse blood counts, etc.). The median survival was 514 days for all patients.

5.3.2 Interpretable Tool Based on Machine Learning

We trained the Optimal Classification Trees to predict the 60-, 90-, and 180-day mor-

tality. The model produced accurate predictions with accuracies of 94.9%, 93.3%,

and 86.1%, and AUCs of 0.86, 0.84, and 0.83, respectively. We further trained the

model to predict the mortality for each subgroup of cancer sites, achieving simi-

larly high estimation qualities with AUCs ranging from 0.77 to 0.90. Based on

the prediction algorithm, we developed the tool and made it available online at

stuff.mit.edu/~zhuo/tree_vis/index.html, a screenshot of which is illustrated

in Figure 5-1. Once the clinician enters the desired time horizon and cancer site, the

clinician will answer a few questions regarding the patient before the tool outputs a
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final risk estimation. In this example, in learning the risk of 60-day mortality for a

lung cancer patient, the tool adaptively asks the clinician to input the percent change

in weight and the albumin levels. With these two input values, the tool immediately

presents the final risk for 60-day mortality of 46.79%.

Figure 5-1: Screenshots of the cancer mortality prediction questionnaire. The
clinician enters responses to a few questions regarding the patient’s medical history,
many of which can be automatically populated via EHR integration, and the tool

will immediately generate predictions.

5.3.3 Model Interpretation

Each model trained with Optimal Classification Trees presents a highly interpretable

decision tree which the tool is based on. Such tree stratifies patients into risk groups

based on values of a sequence of key variables, the selection of which is learned
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automatically by the model. As an example, Figure5-2 presents the tree that predicts

the 60-day mortality for breast cancer patients. The total number of metastatic solid

tumors is the first splitting variable - patients with few metastatic solid tumors (left of

the tree) are placed into the lower-risk branch (0.4%) compared to the higher-risk one

(5.84%). Within each branch, patients are further stratified based on other variables.

For example, in the lower-risk branch, if the pulse is above 86, the patient has a

mortality risk of 1.31%; if the pulse is below 86, depending on the age (below or above

60 years), the risk is 0% and 0.88%, respectively. In the higher-risk branch, many of

the decisions are based on change in weight, albumin, and some other laboratory test

results.

Figure 5-2: Mortality prediction tree for breast cancer patients on 60-day mortality.
Patients are stratified based on a sequence of variables, eventually placed into a

mortality risk bin.

This model also produces feature importance rankings in mortality prediction

(Figure 5-3). In tree based models, the feature importance score measures the relative
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contribution of a particular feature in the model based on the frequency this variable

is selected for splitting and the improvement in model performance at each split; the

score of all variables sum up to one. Among all patients, percent change in weight

from a patient’s moving average over the past 90 days is the most important predictive

feature of mortality (more drastic decrease is associated with higher risk of mortality).

Albumin level, pulse, white blood counts, total bilirubin, and weight were the next

predictive variables.
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Figure 5-3: Feature importance in 60-day mortality prediction for patients (all
cancer and by cancer sites). The importance score is based on the relative
contribution to the model performance of each feature during the Optimal

Classification Trees training process. The ten most important predictors are shown
in this figure.

While the feature importance does not demonstrate the interaction across pre-

dictive variables, the relationship was evidently characterized by the tree structure.

Because the change in weight was suggested in many cancer types as one of the top

predictors of mortality, we investigate further the impact of change in weight as a sin-
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gle variable on the mortality outcomes. Figure 5-4 presents the 60-day, 90-day, and

180-day observed mortality rates stratified by the weight change. In general, more

weight loss is associated with higher mortality rates, with the exception of the high-

est quantile (weight gain of at least 1.15%). We suspect that there are confounding

factors affecting the weight gain for patients at moderate mortality risk as a result of

edema. In fact, lower albumin levels are observed in the highest weight gain group

(see figure legend). This evidence further suggests that non-linear interactions mod-

eled by decision trees are suitable for these complicated relationships. Aside from

this group, the trend is generally monotone, with the risk of mortality highest in the

group with at least 2.62% weight loss, almost doubling that in the next risk group.
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Figure 5-4: Mortality rates (60-day, 90-day, and 180-day) stratified by change in
weight, as a percent of the past 90-day average. More weight loss is generally

associated with higher mortality rates.

5.3.4 Machine Learning Models Comparison of Performance

Among all the transparent machine learning models being compared against, Optimal

Classification Trees achieved the best performance in validation (Table 5.1). The only
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Table 5.1: Model performances (accuracy and AUC) for 60-day, 90-day, and 180-day
mortality predictions in the validation set, comparing Optimal Classification Trees

against five other prediction models.

Mortality predictions 60-day 90-day 180-day
Accuracy
Logistic regression (fewer predictors) 94.6% 93.0% 83.4%
Logistic regression 94.4% 93.0% 84.5%
Regularized logistic regression 94.9% 93.1% 84.6%
CART decision tree 93.8% 91.1% 83.7%
Optimal Classification Tree 94.9% 93.3% 86.1%
Gradient boosted trees 95.0% 93.6% 87.2%
AUC
Logistic regression (fewer predictors) 0.74 0.76 0.76
Logistic regression 0.74 0.76 0.75
Regularized logistic regression 0.79 0.80 0.80
CART decision tree 0.81 0.79 0.78
Optimal Classification Tree 0.86 0.84 0.83
Gradient boosted trees 0.90 0.89 0.87

method that improves over Optimal Classification Trees is the black-box method of

gradient boosted trees. The receiver operating characteristic (ROC) curves for each

of the methods are in Figure 5-5. In terms of AUC, classical logistic regression, both

with a smaller set of predictors or full set of predictors, has the lowest AUC compared

to all other methods. CART and regularized logistic regression have improved out-

of-sample performance than logistic regression yet weaker performance than Optimal

Classification Trees and gradient boosted trees (p < 0.001). In the subgroup analyses,

we found similar performance for our method. In the sensitivity analyses where

different missing data imputation methods were used, the results did not change

drastically (results not shown).

5.4 Discussions

Within the context of the growing momentum toward a value-based healthcare de-

livery system,6 we built an accurate prognostic tool to predict a cancer patient’s

survival probability before initiating a new treatment. Developed with the intent to

augment physicians’ clinical decision-making at the point-of-care, it also holds the
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Figure 5-5: ROC curves for 60-day, 90-day, and 180-day mortality predictions,
comparing the following methods: Optimal Classification Trees, CART, logistic
regression with fewer variables, logistic regression with all variables, regularized

logistic regression, and gradient boosted trees.

possibility of acting as a catalyst for necessary patient-provider discussions, leading

to true informed consent and goals-of-care concordance.

Our predictive tool uses novel machine learning methods to support the movement

toward fully personalized, evidence-based treatment decisions. The Optimal Classi-

fication Trees model we used is fully-transparent, interpretable, and produces highly

accurate results. With simple question-and-answer interactions and potential EHR

integration, the tool can become an essential component in an oncologist’s workflow,

augment clinical decision making, and prompt defined crucial conversations between

the primary oncologist and the patient. In the back end, the novel Optimal-Impute

method completes the necessary data cleaning process that eventually leads to accu-

rate results in the downstream tasks of mortality prediction.

The rich data constitutes the other key reason for our high prediction quality.

Because this study predicts mortality in a large population with available EHR data,

we were able to study a much broader set of covariates than typical mortality pre-

diction studies. We studied 401 covariates in total, including 289 variables encoding

gene mutation results, 52 on recent treatments, and 18 on recent laboratory and vital
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test results. The longitudinal nature of the EHR data used in this study further en-

ables the study of patient characteristic through time. For instance, we included the

percentage change in weight from the 90-day moving average weight measurement, a

predictor not used in previous mortality prediction work.

We would like to perform head-to-head comparisons against existing prognostic

studies and online tools. However, among the short-term mortality studies we have

identified, most require subjective variables such as performance status and clinician

assessment which our data do not contain. As proxies, we compared against surrogate

models trained using the same set of patient data as our Optimal Classification Trees-

based model. The stronger results under our model suggest that our data and method

have an edge compared to traditional approaches.

Our study has several limitations. First, as a single-institution retrospective study,

it is subject to data selection and measurement biases. Second, validation was per-

formed using an internal data set. In addition to the internal validation we performed,

the algorithm must be tested prospectively in an external cohort. Looking forward,

it is necessary to anticipate that this model may become outdated as a result of

novel drugs and changing treatment paradigms. As precision-based disease variables

such as whole-genome sequencing data become available in more patients, our model

performance could potentially improve. The process of iteratively fine-tuning and

updating the prognostic model is essential for relevant integration into contemporary

clinical practice. Further prospective studies with this and other types of tools should

be done to demonstrate the clinical utility of this tool, measuring the impact on mor-

tality and other outcomes such as decreased length of stay in the hospital, earlier

enrollment to hospice, and self- or family-reported quality of life.

5.5 Conclusions

We have developed an actionable tool for individual mortality prediction among can-

cer patients prior to treatment initiation, based on an accurate prediction model by

combining: 1) a large cohort of general cancer patients, 2) longitudinal EHR data that
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provide extensive and nuanced information compared to registry and claims data, 3)

novel machine learning methods with high interpretability and state-of-the-art per-

formance, and 4) clinical intuition and knowledge from experienced oncologists on

the team. Notably, this machine learning-based algorithm could be easily general-

ized across any institution with an EHR to catalyze, engage, and guide necessary

physician-patient discussions about the care trajectory, including risks and rewards

of treatment choices prior to treatment initiation. Moreover, the implications of this

work demonstrate the capacity to actionably integrate EHR data from large cohorts of

patients, advanced machine learning algorithms, and human medical expertise, which

translate to more advances that improve clinical outcome and workflow efficiency in

other areas of medicine and healthcare delivery.
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Chapter 6

Conclusions

In this thesis, I took a new look at some of the classical problems in machine learning

and statistics with a fresh perspective from optimization. The problems such as miss-

ing data imputation (Chapter 2) and classification (Chapter 3), have shown to benefit

from the added edge of rigorous optimization formulations and solution techniques.

Because of the flexibility introduced in the optimization framework, we were able to

incorporate novel development in predictive methods such as Optimal Trees into the

formulation of some decade-old problems.

These newly developed machine learning algorithms have not only demonstrated

improved performance in large-scale real world data set experiments, but are also

solving the problems in health care that motivated the development of these algo-

rithms. In the case of mortality prediction in cancer patients (Chapter 5), applying

opt.impute for missing data along with the cutting edge algorithm Optimal Clas-

sification Tree on a rich EHR data set with demographic, treatment and medical

history, laboratory tests results, and genomic information, we were able to accurately

risk stratify the patients and provide valuable insight to care providers, especially

regarding end-of-life decisions to improve patient quality of life.

The story of how we approached personalized diabetes management in Chapter

4 showcases the power of prescriptive analytics that combines predictive machine

learning and optimization in the health care setting. In our simulated clinical trial,

by adapting treatment recommendations to different patients, we demonstrated a

163



clinically relevant reduction in average hemoglobin A1c levels compared to current

practice. More importantly, to our knowledge this is the first study that takes a data-

driven, personalized approach to recommend treatments for diabetic patients with

statistical validations. We hope that it will encourage more researchers in operations

research and machine learning to continue developing personalized medicine in other

medical domains.

As the end goal is to influence clinical practice, I firmly believe that academic re-

search alone is not sufficient. Physicians need readily accessible and understandable

models that are integrated to their workflows. As prototypes, we present the mor-

tality prediction as an online interactive tool, where the physician can quickly obtain

the risk for a given patient by filling out a simple, adaptive questionnaire. We envi-

sion with EHR integration the process will be further streamlined. For personalized

diabetes management, we present the prototype dashboard where the distribution of

outcomes among similar patients under alternative treatments are plotted, providing

the justification on why such particular treatment is recommended. In both cases,

the physician can see clearly the rationale behind how the prediction or prescription

is made. Combined with human judgment and intuition, we are hopeful that such

clinical decision tools developed under our models will be able to take clinical practice

to the next level, further improving the quality of care delivered.
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