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Abstract

In this thesis, we explore wire routing strategies for new paradigms in chip design. Where
current chip design techniques involve multi-layered techniques to prevent wire crossings and
electrical interference, we work with new technology that utilizes coaxial wires, allowing the
construction of single-layered chips. Though the single layer lends itself well to optimization
techniques, this approach generates novel challenges of its own. We design and implement
multiple global routing algorithms appropriate for the new technology, and we discuss how
these algorithms address technical constraints introduced by different variations of the rout-
ing problem. We cover three approaches using different techniques; these include simulated
annealing, local heuristics, and global mixed-integer optimization.

We demonstrate the performance of these algorithms on physical chip designs and existing
layouts, including metrics of total wire length, overall routability, and running time. We
also discuss our process of algorithm design, specifically in context of satisfying engineering
requirements decided by an external technical team. Finally, we describe our ideas for future
areas of research, tailored towards improvement of our approaches and addressing technical
problems that will be introduced as the new technology develops.
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Chapter 1

Introduction

1.1 Motivation

Our work was motivated by the need for a new class of routing algorithms, stemming from

the use of new technology involving micro-scale coaxial wires. This new technology is being

developed by the Miniature Multi-wire Systems (MMS) project team at The Charles Stark

Draper Laboratory, and we worked closely with the team throughout all of our algorithm

development.

Wires used in current printed circuit board (PCB) designs are unshielded. This property

necessitates a PCB design rule to ensure that no wires can cross in close proximity to one

another. Because of this, PCB layouts generally need to be multi-layered in order to feasibly

route all required wires. If coaxial wires are used, however, wire crossings are no longer a

restriction on how PCBs are designed, or how wires are routed. This in turn allows engineers

to place all PCB components on a flat plane, greatly simplifying both the chip design and

the fabrication process.

Though a number of automated wire routing tools exist, we have not identified a tool

that can be adapted to solve routing problems for coaxial wires. This is primarily due to the
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MMS project requiring considerations that do not exist in traditional wire routing problems,

and as such are not considered by any tools. For example, with coaxial wires we can route all

connections using a single-layer layout because crossings are no longer disallowed. However,

depending on the order in which the coaxial wires are placed in the PCB, we may need to

avoid routing wires over certain points. This restriction is unique to coaxial wire placement

and hence are in general not a part of the solution process for existing automated wire

routing tools. As a result, we found it necessary to design new routing algorithms from the

ground up, suitable for the new problems introduced by the MMS project.

1.2 General Problem Statement

This thesis addresses the problem of providing a general routing algorithm suitable for coaxial

wire routing. Given the features present on a PCB, including component locations and pin

geometry, we develop an algorithm that provides a routing order over the set of wires on the

PCB. This routing order must contain all wires, and it must allow every wire to be placed on

the PCB without specific kinds of obstruction, which we will describe in detail later in this

thesis. We would also like our algorithm to be modular and extensible, allowing different

sets of requirements and constraints to be added such that this algorithm is useful as the

new technology continues to develop.

1.3 Approach

We take three main approaches to solving our wire routing problem. Our first approach

utilizes simulated annealing. Simulated annealing is a commonly used technique for global

routing algorithms [21], and we describe its applicability towards the first set of problem

requirements.
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Our second approach involves the description of sub-problems related to the overall rout-

ing algorithm, and the development of some greedy local heuristics for solving these sub-

problems. Together, the sub-problems solve the global routing algorithm.

Our final approach addresses different sub-problem constructions and introduces mixed-

integer optimization methods [12] for solving certain individual sub-problems. We also de-

scribe implementation details in the interest of lowering algorithm runtime and increasing

flexibility. Finally, we outline but do not solve some theoretical extensions to the formula-

tions.

1.4 Contributions

The contributions of this thesis are as follows:

• A framework for understanding the new problems introduced by the emerging coaxial

wire routing technology,

• Multiple unique routing algorithmic approaches, each suited towards different types of

coaxial wire routing problems and requirements,

• A functional implementation of the approaches and comparisons of their results on an

existing model, and

• A discussion of extensions to the research presented here, specifically focused on ad-

dressing changes we expect to take place in development of the wire and chip technol-

ogy.

15



1.5 Structure

In Chapter 2, we describe the specifics of the overall problem statement, including descrip-

tions of three different versions of the wire routing problem. Chapters 3, 4, and 5 go into

detail about our modeling approaches for the three different problems: this includes a simu-

lated annealing algorithm, several local heuristics, and a number of mixed-integer program-

ming formulations. In Chapter 6, we discuss the results of our approaches as they apply to

the different wire routing problems, and provide a case study in which we provide a complete

solution to a specific problem, and show how our solution is physically implemented on a

mock-up of a PCB. Finally, in Chapter 7, we give our conclusions and discuss a number of

areas of opportunity for future research and exploration into the wire routing problem as a

whole.
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Chapter 2

Problem Definition

2.1 Wire Routing Background

Integrated Circuit (IC) technology is ubiquitous in the modern day. Much of this can be

attributed to the shrinking scale of ICs; as printed circuitboard (PCB) size decreases, it

becomes easier to utilize ICs in diverse applications. Even as PCB sizes shrink, IC technology

increases in power, with more transistors, gates, and sensors being packed on to smaller and

smaller PCBs. These technological advances are facilitated by simultaneous technological

development in the manufacture and design of ICs.

The PCB design process begins with a circuit description, which details the components

and functions of the entire PCB. A PCB designer converts this circuit description into a

geometric description called a layout, which describes the layer and placement of all electronic

components. PCB designers check these layouts against design requirements, and generate

pattern generator files that are then used in the PCB fabrication process [20].

To produce a layout, or the geometric representation of a circuit, PCB designers fre-

quently use automated software tools that arrange the necessary components and route

wires between them. The software tools observe some additional design rule constraints,

17



which include constraints like preventing bare wires from crossing to avoid electrical inter-

ference and matching wire lengths for certain groups of wires, primarily those connected to

memory components. For complex PCBs with a large number of interconnects, the task of

arranging components within the PCB space is generally performed manually, as the large

number of variables and constraints significantly slows down even the best automated soft-

ware. Additionally, manual layouts tend to perform better than automated layouts, most

likely due to the intuitive understanding of PCB designers [20].

Even after a PCB has been designed, there is still a lengthy electrical verification process

which must be completed before the PCB is fabricated. Combined with the layout and

design process, a cycle of PCB design may take on the order of weeks to months, with the

largest and most complex PCBs sometimes taking several years to design [20]. Once the

PCB layout has been finalized, a routing procedure is generated and given to a wire bonder,

the tool that physically connects wires to endpoints on the chip surface.

The second design phase relevant to this paper is the routing phase. During the routing

phase, the locations of components on the PCB are used to generate a netlist, which describes

the full set of connections that must be made. Routing is usually divided into two phases:

global routing and detailed routing. In the global routing phase, loose routes are generated

for each net, as shown in Figure 2.1. In the detailed routing phase, these loose routes are

transformed into an actual route that the wire will take [20].

Figure 2.1: Global Routes vs. Detailed Routes
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There are a number of algorithms that are traditionally used for both global and de-

tailed routing. A common approach is simulated annealing, which begins with an initially

randomized approach and continually improves a solution according to a temperature decay

process. We describe this approach in more depth in Chapter 3. Other algorithms include

Lee’s Algorithm, which uses a breadth-first search to find a guaranteed shortest path between

any two vertices on a planar rectangular grid [18], modified depth-first search algorithms [7],

Line-probe algorithms, and Steiner Tree-based algorithms tailored towards wire routing [20].

We adapt simulated annealing for our solution to the first of three different routing problems.

The other algorithms could also be adapted to the same problem, but we do not explore

them in this thesis.

In Chapter 5, we describe a Mixed-Integer Programming (MIP) formulation that we use

to solve a routing problem. Problems with a similar geometric structure that have been

formulated using MIP include the floor layout problem (FLP) that is central to the design

of very-large-scale integration (VLSI) computer-PCBs, [1, 14, 19, 4, 13, 15, 3, 11] and the

circle cutting or circle packing problem [17].

2.2 MMS Project Motivation

The goal of the MMS project is to leverage the usage of micro-coaxial cables and planar

component placement to avoid several of the lengthy PCB design steps. The problem of com-

ponent arrangement in a layout is significantly simplified by reducing the three-dimensional

aspect of placement to just two dimensions. Though layout optimization is outside the scope

of this thesis, we expect that follow-on work will be completed to incorporate optimization

of component placement in order to make the design cycle even shorter.

Additionally, the usage of micro-coaxial cables reduces the total number of wires necessary

as well as some of the design rules. Because each wire is individually shielded, wires can be
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grounded using their shields during the fabrication process, eliminating the need for routing

additional grounding wires during the layout and routing phase of PCB design. The shielding

also removes the constraint of keeping wires from touching or crossing, giving greater degrees

of freedom for wire placement on the PCB.

Finally, and most importantly, shielded wires maintain electrical integrity of their signals

far better than unshielded wires. This can reduce or even completely remove the electrical

verification portion of the design phase. The combination of these improvements, along with

concurrent technology being developed to bond and route the micro-coaxial wires, gives the

overall design process a timescale of days, instead of the weeks or months traditional routing

techniques could require.

2.3 Definitions

In this section, we outline some terminology necessary for this thesis. These terms include

general definitions as well as some specific to our algorithm.

The main data input to our wire routing algorithms are the locations of pins on a PCB.

Pins are electrical connection points, and are the endpoints of all wires that must be routed;

we will refer to these interchangeably as nodes. Pins are physically located on components,

which are the fundamental building blocks of a PCB. A component could be, for example, a

resistor, a capacitor, or an integrated circuit. These components can be placed anywhere on

the PCB, and their locations control the coordinates of their associated pins. These pins are

grouped into logical nets, which can be of any size (greater than or equal to two). Usually,

a net will contain exactly two pins, which we refer to as a pair. Similar nets are grouped

into broad categories known as a net class. The class of a net is a categorization of the pins

within that net. These include a default class, for most non-specialized nets, IO classes for

specific types of input/output nets, and a power class for all power and ground nets. We

20



will refer to all non-power nets as belonging to the signal class.

Power nets control the routing of power across the PCB by connecting components to

capacitors, and signal nets transmit digital signals between the different components. We

handle these two categories of nets differently, as they have different design requirements and

different types of wires. Power wires have broader cores and less shielding, whereas signal

wires have smaller cores and more shielding; it is more important to maintain electrical

integrity on the signal wires. The amount of shielding on a wire controls the wire stripping

and bonding process, and so they are treated differently by the algorithm as well as by the

wire bonder.

The wire bonder attaches a wire to the PCB surface at a wire pad. This is a location on

the PCB that is centered around a pin. This wire pad functions as a “keep-out zone” around

the pin, delineating the total area that must be accessed by the wire bonder. When the wire

is bonded to a pin, the head of the wire bonder descends to the PCB surface and physically

connects the two together. If the keep-out zone is obstructed, perhaps by another wire, the

wire will not be successfully bonded. We refer to any unbonded wire pads as blacklisted

pads, which cannot be crossed by any routed wire. Once a wire pad has been bonded to, it

is no longer blacklisted, and wires can be routed over it. It is not always possible to have a

straight line solution between all wire endpoints; we thus introduce the notion of stopover

points. These are non-terminal locations on the PCB surface through which wires can be

routed, and their placement and properties is a primary focus of this thesis. Wires can have

multiple stopover points, but stopover points can only be used once per wire.

2.4 Main Problem Explanation

There are a number of different variations of our routing problem. We describe three prob-

lems which vary in their imposed constraints and input data. Despite these differences,

21



the underlying structure for each remains generally unchanged. We will first discuss the

similarities between the problems, then cover the differences in detail.

Each type of problem requires a list of pins as input. This list contains relevant infor-

mation about each pin, including its associated net name, net class, and (x, y) location. In

some cases, we need additional input information, which we will mention in the sections that

follow.

A common constraint across the variations is the inability for wires to cross over black-

listed pads. In order to avoid crossing blacklisted pads, we place stopover points somewhere

on the PCB. Additional constraints controlling stopover point placement define one of the

major differences between the problem variations, including a minimum distance between

placed points and regions of the PCB where no stopover points can be place.

The notion of crossing blacklisted pads is geometric, as both wires and wire pads have

physical width. We allow different wire and pad widths to be specified as input, but we most

frequently use a wire width of 25µm and a pad width of 62.5µm, a ratio of 2.5 between the

pad width and the wire width. In some cases, we differentiate between types of wires, as

power and signal wires have different construction and could have different width.

We define a blacklisted pad crossing to be any case where the distance between the center

of a wire and the center of a blacklisted pad was less than half the width of the blacklisted

pad plus half the width of the wire, as shown in Figure 2.2. This ensures that all wire pads

remain unobstructed until they are accessed by the wire bonder.

1
2
Pad Width +1

2
Wire Width

Figure 2.2: Minimum Distance Between Wire and Pad

The wire routing mechanism is the same for all problem variations. We allow only point-
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to-point straight lines, which reflects the behavior of wire bonders that will be used for the

project. We do not impose any restrictions on the angle between consecutive wire segments

bonded to the same point, but we do impose minimum angle restrictions between different

wire segments bonded to the same point. This is a consequence of the behavior of the wire

bonder: a single wire changing direction through a point requires only a single bond, but

multiple wires connected to a point requires multiple bonds, one for each wire.

All problem variations have the same output requirement. In each case, we solve for a

feasible routing order. A feasible routing order is an order of placement for every wire on

the PCB, including adding stopover points, such that no wire endpoint is obstructed before

it is bonded to. The information for each wire includes its endpoints, its associated net

name, the physical locations of all stopover points along the wire, and its total length. In

our solutions, we seek to minimize total wire length, which saves money and manufacturing

time. Two of the three problems add either additional objectives or modify this slightly, but

minimum total wire length drives all versions.

One final aspect of consideration is the idea of routing feasibility. In general, the problems

we solve (of any variation) do not necessarily have a feasible solution. Thus, when we solve

these problems, we would like to either produce a feasible solution or decide infeasibility in

a reasonable amount of time, with a secondary goal of identifying dense regions of pins that

make it difficult to route the necessary wires.

We discuss our main problem variations below, mentioning the specific requirement

changes in context of the main problem defined above.

2.4.1 Single Wire Type Routing

In the Single Wire Type Routing problem, all wires we encounter have the same type, and

thus the same geometry and routing requirements. Here, the type of wire classifies it as

either a power or a signal wire; though other classes of wire exist, we group them based on
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their similar interaction with our algorithm. We also only handle wire pairs, and thus do

not have any nets with size greater than two. This problem variation is largely equivalent

to the main problem, in that we still take in a list of pins as input and solve for a feasible

routing order, including the addition of stopover points.

This problem also has a slightly different objective function. Though one of the major

consequences of using micro-coaxial wires is that wire crossings no longer affect electrical

integrity of the system, we use an objective function that allowed for choices of weighting

between total wire crossings and total wire length. This choice allows the problem to be

more applicable to different physical implementations.

2.4.2 Multiple Wire Types Routing

In this version of the problem, we route both power and signal wires. Each type of wire has

its own common wire width and pad ratio. We also handle multi-node nets in this problem,

which are handled differently between wire types.

A multi-node net can have any number of pins greater than 2, and power and signal nets

of this type must be routed in certain ways. Multi-node power nets are routed with spanning

trees [8], with a single root node and all other power pins as leaf nodes. Multi-node signal

nets are routed with paths [8], for which we choose two pins as endpoints and route a path

through the remaining pins between the endpoints. We will discuss the specifics of these

implementations in Chapters 4 and 5.

The objective function for this problem is solely total wire length, unlike either other

problem variant.
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2.4.3 Constrained Stopover Point Placement Routing

This version of the problem allows multiple types of wires, and nets of any size. We handle

power routing slightly differently than described in the previous section, where we chose a pin

from the list of power pins as the central point. In this problem, we instead connect all power

pins to endpoints on capacitors. Capacitors are placed on the PCB, and are the primary

method of transporting power to PCB components. In order to connect power pins to the

capacitors, we take in as input a list of all capacitors locations. These capacitor locations are

necessary for the two alternate power routing strategies we find in the constrained stopover

point placement routing problem. In both cases, power nets terminate at endpoints on or

near the capacitors.

In the first power routing strategy, multiple power nodes can connect to the center of

a capacitor. This is similar to the power routing strategy in the previous problem, but

multiple capacitors are used as connection points instead of a single power pin. There are

some restrictions, however: there is a maximum number of wires that can connect to any

single capacitor, and there is a minimum angle of incidence that must be present between

any two wires bonded to the same pin. We demonstrate one such angle of incidence in Figure

2.3, with space for 6 power wire connections to the same wire pad. If the angle between any

two wires is smaller than this minimum angle, there will not be space for the second wire to

be bonded to the pin.

Minimum Angle of Incidence

Figure 2.3: Minimum Angle of Incidence
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The second form of power routing depends on the electrical design team designating

expanded regions on the PCB that function as extensions to the capacitors, as in Figure 2.4.

The component labeled C6 is a capacitor, and the yellow area to the left of the components

is the electrical connection region placed on the PCB.

Figure 2.4: Capacitor Region

Without these expansions, it is not possible to route all power wires to capacitors without

multiple wires connecting to a single point, as in the first power routing strategy. Instead,

we use the new regions to place our own power endpoints. Consider a different capacitor

region in Figure 2.5. Our algorithm routes wire pairs, so we need to divide the capacitor

region into areas such that every power wire in the corresponding net has an endpoint within

the region to bond to. We do this by dividing the region into a discrete grid of rectangles,

identifying intersections of grid lines as endpoints, and assigning endpoints to power wires.

We discuss this further in Chapter 5.

This problem introduces constraints on the stopover point placement that do not exist in

the other two problem variations. Along with the regular restrictions against placing stopover

points such that wires do not cross blacklisted pads, these constraints prevent stopover points
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Figure 2.5: Assigned Pins in Capacitor Region

from being placed on any PCB component or within a short distance of existing stopover

points. To handle these new constraints, we accept extra input data in the form of a list

of each individual component on the board and its upper and lower x and y coordinates.

This change in the constraints on stopover point placement is design motivated. Because

stopover points require a physical change to the PCB, it is far easier to place these points

on regions of the PCB where no component already exists.

As an additional consequence of the physical consideration of placing stopover points,

this problem variation has a slight change to the objective function. Instead of only focusing

on total wire length, we also would like to minimize the number of stopover points placed on

the board. These two objectives are certainly related; a zero-stopover point solution would

have the minimum possible wire length (as it would mean each pair was routed with the

shortest possible wire, from endpoint to endpoint).
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Unlike the other two variations, where we developed a single solution algorithm, we will

describe several different approaches towards solving the minimum stopover problem.

2.5 Modeling Approaches

Before we describe the details of our algorithms, we will discuss the motivation behind our

modeling approaches. When addressing a real world problem like our wire routing problem,

the choice of modeling approach dictates how easy it is to find solutions, in a computational

sense, as well as how applicable those solutions actually are.

Because of the geometric nature of our problem, there is a natural choice to model the

feasible space of our variables by discretizing it. Because our geometric decision variables

are stopover points, this discretization means that if stopover points need to be placed, we

place them on predetermined grid points. We can additionally exploit the known nature of

the points and preprocess pairs of points for feasibility, saving time later in the solution. By

controlling the level of discretization (specifically, the interval between discrete points), we

can balance the tradeoff between fast solution times and realistic answers.

On the other hand, maintaining a continuous variable space also feels natural. The

locations of the stopover points we place can initially be anything, and valid placements

could theoretically be missed by a discretization that is too coarse. Though solution methods

using continuous variables certainly allow for more careful placement of stopover points, we

still observe the inverse relationship between solution speed and best cost answers.

2.5.1 Single Wire Type Problem

We model the solution space of the first problem using the discretization technique. All of

the Single Wire Type problems we solve are small in size, and so discretization with pair

preprocessing is well suited for generating fast and reasonable solutions.
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As the choice of a discrete solution space feels natural for this problem, so too does our

choice of approach. We use simulated annealing for this problem, primarily because of the

prevalence of simulated annealing in other routing software [21]. The modeling approach

and solution technique complement each other here, as the preprocessing and known points

allows for fast generation and cost computation of wire routes. As simulated annealing uses

perturbations of variables evaluated by the overall cost function, it is well suited to the

model. Simulated annealing also has the benefit of having relatively low complexity and a

high ease of implementation.

2.5.2 Multiple Wire Type Problem

For this problem variant, we use continuous variables for the stopover points. This is moti-

vated by a desire for a different, more localized stopover point placement algorithm. Instead

of choosing from a set of points laid out across the entire PCB space, we focus only on

the immediate areas adjacent to wire pads that would otherwise be crossed by wires. As a

result, we need precise control over placement that would not be possible without a very fine

discrete grid.

The stopover point placement technique of focusing only on small areas around blacklisted

pads is characteristic of our solution to the Multiple Wire Type problem. We create and

apply greedy algorithms to the individual facets of the problem, with a primary focus on

speed and feasibility checking.

2.5.3 Constrained Stopover Placement Problem

We actually use a mix of discrete and continuous variable spaces for our last problem. We

apply discretization to our capacitor region assignment problem; given a capacitor region on

the PCB, we create and assign a number of discrete pins inside that region. See Figure 2.5
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for an example.

As in the Multiple Wire Type problem, we use a continuous variable space for our stopover

point placement. The nature of the constraints of this problem type, as well as the choice

of continuous variables and desire for global optimality of our solution, led to our choice of

Mixed-Integer Programming (MIP) techniques for solving this particular problem variant.

We use MIPs in two places: the first power routing strategy (multiple wires assigned to

single power pins) and the placement of stopover points.

We also exploit the modular nature of the problem, creating several different approaches

for problems subordinate to the main problem. These “sub-problems” include power routing,

multi-node net signal routing, routing order choice, and of course the placement of stopover

points.

30



Chapter 3

Single Wire Type Routing Problem

3.1 Problem Description Review

As described in Chapter 2, we are solving a variant of the wire routing problem in which

we have only a single type of wire, and all of the wire nets are of size exactly two. Given a

list of pins, their nets, and their locations on the PCB, we solve for a routing order that will

minimize total wire length, minimize wire crossings, and provide a feasible ordering that can

be implemented on a PCB.

For this problem, we model the potential stopover point space with a discrete grid, such

that any placed stopover point will fall on the grid.

3.2 Simulated Annealing Description

Simulated annealing is an optimization algorithm based on the physical process of annealing.

Annealing is a tempering process, where material is heated and then slowly cooled; this slow

cooling allows the material to form into a crystal structure with global minimum energy.

This global minimum energy state is achieved because the annealing process avoids local

31



minima [9]. Simulated annealing mirrors this process, with a variable representing the initial

temperature of the system, a function representing the temperature descent rate, and the

cost of problem solutions corresponding to energy amounts. By controlling the descent rate,

one can reach a global minimum almost surely; the temperature itself allows for solutions of

higher cost to be accepted, in order to avoid local minima [9]. The probability of selecting

higher cost solutions is related to the current temperature and the magnitude of the cost

difference; at a high temperature, the system is more likely to accept a new cost of higher

magnitude. At low temperatures, the system is less likely to accept any higher costs. For

our probability of acceptance, we used the Boltzmann distribution of the energy differences:

P = e−
δE
T ,

where δE is the difference in energies and T is the current temperature of the system.

This acceptance probability function is characteristic of Boltzmann annealing [9], which we

implemented.

3.2.1 Parameter Selection

Using simulated annealing algorithms requires careful selection of the temperature descent

rate function and initial global temperature T . If T is reduced too quickly, the algorithm

may terminate too early and select a local minimum instead of the global minimum. If

the temperature is reduced too slowly, the amount of time the algorithm takes to select a

solution can increase significantly. We use a low initial temperature and a linear descent

function in our implementation; thus, we prioritize fast solution times rather than a higher

likelihood of finding the global optimal. This choice was made in order to provide PCB

designers with a wider variety of good feasible solutions, allowing them to manually make

changes if appropriate. Speed of solutions is also a primary aim of the project, and thus
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faster but potentially suboptimal solutions are favorable.

The simulated annealing approach is amenable to any choice of objective function, so long

as a cost value can be obtained at any stage of the algorithm. Because the Single Wire Type

problem considers both the total wire length and the total number of wire crossings, our

objective function contains both values, with the ability for users to specify the appropriate

relative weights.

3.3 Algorithm Description

3.3.1 Overview

We employ a two-level simulated annealing algorithm. The top level of the algorithm is

global, encompassing all of the wires in the problem, and the bottom level of the algorithm

is local, which controls the route of only one wire at a time.

The global annealing selects wires to route, and chooses to accept new routes in context

of the entire solution. The local annealing, on the other hand, modifies individual wire routes

with a selection of perturbations. The two processes also differ in their cost functions; the

cost function for the global annealing is the weighted sum of the total wire length and the

number of wire crossings, while the cost function for the local annealing is only an individual

route’s length.

We chose to use two different annealing processes because of the potential conflict between

the two parameters in the global objective function. Because we found total wire length and

wire crossings to be generally inversely related, and because we are not sure if wire crossings

will continue to be important for this problem, the local annealing allows us to more quickly

reduce the length and number of stopover points for all wire routes in the problem.
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3.3.2 Preprocessing

We are able to exploit the discretization of our solution space by preprocessing out almost all

of our feasibility checks for this problem. We do this by analyzing the straight line route (in

other words, the no stopover route) between every pair of points, checking if the route crossed

any pads; if it does, we keep track of all of the pads it crosses. When we have completed

preprocessing for all of the wire pairs, we combine the crossing data into a dictionary that

maps pairs to pads crossed by the pairs.

Later in the algorithm, when we perturb the routes, this preprocessing allows us to

select points from a set that is guaranteed to be feasible. As the structure of the dictionary

associates wire pads with routes they cross, we are able to expand the feasible set of stopover

points as the algorithm proceeds; once a pad has a wire bonded to it, we can route wires

over the pad without any consequence.

3.3.3 Simulated Annealing Algorithm

We begin our solution by selecting an arbitrary ordering of the wire pairs. We then iterate

through each pair in the ordering, generating an initial feasible solution for each pair. To

determine a solution, we choose one of the two pair endpoints as our starting node. From

the starting node, we then select a new point on the PCB which could be reached from the

starting point without crossing a blacklisted pad. This new point becomes the first stopover

point, and we repeat the process of choosing a feasible next point from the new stopover

point. We continue choosing new stopover points until we are able to reach the destination

point of the pair.

Choosing the initial routes in this way ensures that we start with a feasible, though

certainly suboptimal, solution. The perturbations that we introduce later in the algorithm

also maintain feasibility, which allows us to terminate the algorithm at any point without
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consequence. This property reduces the negative impact of a poor choice in temperature

descent rate; if the algorithm exceeds some maximum runtime, we can end the process and

still retrieve a feasible solution.

The local simulated annealing processes maintain initial temperature values and temper-

ature descent rate functions separate from the global annealing process. Each execution of

the local annealing process is separate from any other, though the initial values of temper-

ature and temperature descent rate do not change between function calls. We differentiate

between the values by subscripting the initial temperature and descent rate for the global

annealing algorithm with g, and subscripting these values in the local algorithm with l.

With all initial routes generated, we begin our global simulated annealing process, de-

scribed in Algorithm 3.1. The initial parameters are the set of all pairs W , the initial

randomly generated solution S, the initial temperature Tg, and the temperature descent

rate dg(T ). As mentioned, we chose a low initial temperature and linear descent rate, such

that the outer loop functions as a for loop with several thousand iterations.

We describe the local annealing algorithm in Algorithm 3.2. The parameters for this

algorithm are the current pair w, the current pair solution s, the initial temperature Tl, the

descent rate dl(T ), and the maximum number of iterations maxIter. We once again choose a

low initial temperature Tl and a linear descent rate dl(T ). The parameter maxIter controls

how many unsuccessful attempts are allowed when trying to perturb a path. If we do not

successfully generate a new feasible route after this maximum number of iterations, we cease

the local annealing process. This prevents situations where we have already achieved the

best possible route (a straight line from endpoint to endpoint), but were trying to improve

it regardless.

In the local annealing algorithm, we use a roulette wheel selection to determine a route

modification technique. The roulette wheel selection divides the interval [0,1] into buckets

corresponding to a number of choices; in this case, the choices are the route modification
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Algorithm 3.1 Global Annealing Algorithm

1: function GlobalAnnealing(W , S, Tg, dg(T ))
. W : set of all pairs
. S: initial solution
. Tg: initial temperature
. dg(T ): temperature descent rate function

2: while Tg > 0 do
3: Let CS be the cost of the initial solution
4: Choose a pair w from the set W
5: Let sw be the current solution for pair w
6: Let s′w = LocalAnnealing(w, s, Tl, dl(T ), maxIter), a new solution for w
7: Let CS−sw+s′w be the total cost with the new solution s′w
8: if CS−sw+s′w < CS then
9: S = S − sw + s′w
10: else
11: Let P be a draw from a uniform distribution [0, 1]
12: Let δE = CS − CS−sw+s′w

13: if P < e−
δE
T then

14: S = S − sw + s′w
15: end if
16: end if
17: Tg = Tg − dg(t)
18: end while
19: end function

36



Algorithm 3.2 Local Annealing Algorithm

1: function LocalAnnealing(w, s, Tl, dl(T ), maxIter)
. w: current pair
. s: current pair solution
. Tl: initial temperature
. dl(T ): temperature descent rate function
. maxIter: maximum iterations

2: while Tl > 0 do
3: Let cs be the cost of the initial solution
4: Let infeasible = True
5: Let iter = 0, the number of iterations
6: while infeasible and iter < maxIter do
7: Let R′ be a draw from a uniform random distribution on [0, 1]
8: Using a roulette wheel selection, use R to select a route modification technique
9: Perform the route modification to obtain a new solution s′

10: if s′ is feasible then infeasible = False
11: end if
12: end while
13: if infeasible then
14: return s
15: else
16: Let c′s be the cost of the new solution s′

17: if c′s < cs then
18: s = s′

19: else
20: Let P be a draw from a uniform random distribution on [0, 1]
21: Let δE = cs − c′s
22: if P < e−

δE
T then

23: s = s′

24: end if
25: end if
26: Tl = Tl − dl(t)
27: end if
28: end while
29: end function
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techniques. For n choices, these buckets are created by selecting n− 1 values a1, a2, ..., an−1

such that
∑n−1

i=1 ai = 1. These values divide [0,1] into n separate intervals: [0, a1), [a1, a1 +

a2), [a1+a2, a1+a2+a3), ..., [
∑n−1

i=1 ai, 1]. A random number is then generated uniformly over

[0,1], and falls into exactly one of the intervals. The choice corresponding to that interval is

the final selection.

We apply this selection process to five route modification techniques. These are as follows:

1. Swap - Take two stopover points from the wire path, and switch their positions in the

order. For example, to swap points 2 and 4, 1 2 3 4 5 becomes 1 4 3 2 5

2. Eliminate - Remove a single stopover point from the wire path. For example, to remove

point 3, 1 2 3 4 5 becomes 1 2 4 5.

3. Move - Move a single stopover point from its current index to a different index. For

example, to move point 2 to be after point 4, 1 2 3 4 5 becomes 1 3 4 2 5.

4. Insertion - Choose a new stopover point, and insert it at some index in the order. For

example, to add a new point 6 to be after point 2, 1 2 3 4 5 becomes 1 2 6 3 4 5.

5. Reversion - Select a subset of the stopover points, and reverse their order. For example,

to choose as our subset points 1 through 3, 1 2 3 4 5 becomes 3 2 1 4 5.

In practice, we greatly prefer the elimination technique, as routes most commonly need

no stopover points at all. Thus, as this is the only technique in which stopover points

were removed, it leads to minimal solutions much more quickly. Each of the perturbations

depends on uniformly randomly chosen indices, and uniformly randomly chosen feasible

stopover points where appropriate. As mentioned in the procedure, we check the resultant

paths for feasibility, and we accept candidate solutions only when the perturbed path is

feasible for all modified routes.
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3.4 Conclusions

To solve the Single Wire Type Routing problem, we employ a simulated annealing algorithm,

based on a discrete geometric modeling approach. This choice of discretizing the solution

space is a modeling decision made to help us understand the problem space, as well as allow

feasible space processing that facilitates the performance of our algorithm.

Our simulated annealing algorithm has two levels: the first is for the global problem, and

has a cost function of the total wire length and number of wire crossings in the solution.

This cost function is identical to the objective function for the problem as a whole. The

second level is for the local problem, which routes a single wire from endpoint to endpoint

while introducing perturbations that eventually reduce the total wire length.

With our algorithm and modeling approach, we are able to provide fast solutions for

Single Wire Type Routing problems, though we are only able to handle small problems.

Extending our implementation to handle larger problems involves significant changes to the

algorithm, including the removal of the preprocessing step, a more careful study of the input

parameters, and potentially a removal of the discretization in our approach.
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Chapter 4

Multiple Wire Type Routing Problem

4.1 Problem Description Review

In this section, we describe our algorithm for solving the Multiple Wire Type problem. In

this problem, we see two different wire types: power and signal. These wires can have

different width, which also changes the width of their associated wire pads.

We also see multi-node nets, for both power and signal wires. These nets must be handled

separately for the two wire types. For multi-node power nets, we create a spanning tree [8]

from a central pin to the remaining power nodes. For multi-node signal nets, we find an

ordering that gives a shortest path [8] through the nodes.

Finally, our objective function for this problem is solely total wire length, without addi-

tional terms for wire crossings or stopover point count.

4.2 Continuous Variable Space

Our approach to this problem involves a change from a discrete model of the chip space to

a continuous model. This allows us to place stopover points anywhere on the chip, but we
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no longer have the luxury of predetermining feasible routes between every pair of nodes.

Using a continuous variable space gives us more finely-grained control over where we place

stopover points. Our algorithm in this chapter takes advantage of this ability, and places

stopover points immediately adjacent to blacklisted pads to minimize the total deviation

necessary for routing wires. Changing the distance from stopover points to blacklisted points

would not be immediately possible with the discrete variable space, unless the discretization

could be arbitrarily small. As discussed in the previous chapter, however, sufficiently small

discretizations negatively impact the performance of the simulated annealing algorithm.

4.3 Different Wire Types

This version of the problem introduces a difference between the wire and pad widths of power

and signal wires. The technology that fabricates the wires is still under development, so we

do not have finalized numbers on how wide the two types of wires will actually be.

Instead of absolute numbers on the widths of wire pads, we use a ratio of wire width to

pad width. This is because different widths of wires require different sized bond heads; a

large wire will require a large bond head to hold and place the wire. Though the width of

wires will change with project development, the ratio between wire and pad width will likely

remain the same. Thus, we use it here.

4.4 Algorithmic Approach

4.4.1 Dividing Multi-Node Nets

Before we can apply our algorithm, we need to consider all of our multi-node nets, both

power and signal. Our algorithm works only on pairs, so we need to take each multi-node

net and convert it to a list of pairs, which we add to the original list of two-node nets.
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For each multi-node power net, we first determine the most centrally located point in

the net. The most centrally located point is the point such that, if we connected all other

points to the central point with wires, the total wire length is minimized. We then generate

a list of pairs for every other node in the net, using the centrally located point as the other

pair endpoint. Figure 4.1 shows a power net routed in this way. Because these power nets

are relatively small, having no more than 100 total nodes, we use a brute force approach to

find the most central point.

Figure 4.1: Power Spanning Tree

To route signal nets, we find the shortest possible path through the nodes, with each

node in the net being a possible start or end point. Using the shortest path, we generate a

series of pairs: for example, if our path was A B C D, the pairs generated are A-B, B-C, and

C-D. Figure 4.2 shows an example of one such path for a four-node signal net. All of the

multi-node signal nets we encountered had at most four nodes, so a brute force calculation

of the shortest path is sufficient.

43



Figure 4.2: Signal Path

4.5 Routing Order

We refer to the order in which we route the wires as the routing order. This requires careful

consideration, as selecting a poor order can lead to many more wires requiring stopover

points, and thus a higher total wire length, as discussed below.

Routing a wire directly from pair endpoint to pair endpoint is the shortest possible route

for that wire; adding any stopover point will necessarily increase the wire length. As a

result, we would like to route as many wires as possible without stopover points. This has

two effects: first, as described, this allows all of the directly routed wires to have shortest

possible length. Second, every placed wire removes its endpoints from the set of blacklisted

pads. This allows us greater freedom in placing later wires during the course of the algorithm.

Before we route any wires or place any stopover points, we consider each wire pair

individually. For each wire pair, we determine how many blacklisted pads would be crossed

by a wire that directly connects the pair’s endpoints without any stopover points. The wires

with zero pad crossings are exactly those wires which we can place without having to add

stopover points; there are no blacklisted pads that the wires need to be routed around. We
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then sort all wires by their crossing number to determine our routing order. This order can

change throughout the course of the algorithm: whenever we remove a blacklisted pad, any

wires that crossed that blacklisted pad have their total number of crossings reduced.

At any point in the algorithm, we can freely route all wires with zero pad crossings. These

wires may cross other wires elsewhere, so we order all zero pad crossing wires by their length,

from shortest to longest. Shorter wires have less slack with which they can handle crossings,

so placing them first makes the final three-dimensional implementation of the ordering have

a closer total length to our two-dimensional projected value.

Once all zero-crossing wires have been routed, we remove all of their endpoints from

the set of blacklisted points, and recalculate the number of blacklisted pad crossings for the

remaining wires. We continue this process until there are no more zero-crossing wires to

route. When we do not have any more zero-crossing wires, every pair we have left must have

at least one crossing. To continue routing wires, we must place at least one stopover point

on at least one of the wires.

We add stopover points to the wire with the fewest number of crossings, choosing uni-

formly at random from all wires with the same number of crossings if there is no single

minimum. By choosing a wire with a small number of crossings, we attempt to minimize

the additional wire length that will be necessary to route the wire. Fewer pad crossings

indicates that we will likely place fewer stopover points, which adds less wire than more

stopover points would when using our placement procedure.

4.5.1 Greedy Stopover Placement

Without a convenient set of stopover points to choose from, we need to determine a fast

heuristic for selecting stopover points. In line with our objective of minimizing total wire

length, our solution is to add stopover points that requires as little deviation from a straight

line wire as possible. We demonstrate this in Figure 4.3, where the pair endpoints are in
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blue, a blacklisted point is in black, and the candidate stopover points are in green.

Figure 4.3: Stopover Point Adjacent to Blacklisted Point

In this case, the length of the new wire (shown by the dashed line) after adding ei-

ther stopover point is shortest when choosing the bottom stopover point. Using this as

our stopover point generation method, Algorithm 4.1 describes the entire stopover point

placement heuristic.

The choice of start or endpoint can greatly affect how this algorithm performs, but it

runs sufficiently quickly that we evaluate both. On line 6, we determine the closest point

by enumerating all of the blacklisted points crossed by the wire, and keeping track of the

closest as we check each. We do this because we build our solution from the start point to

the end point; adding stopover points near the blacklisted point closest to the start gives

us the greatest likelihood of successfully adding a wire segment from the start point to a

stopover point.

On line 7, we generate the two stopover points adjacent to the blacklisted point, as in

4.3. In the remaining logic of the algorithm, if there is not a feasible route from the start

point to either stopover point, we set the best stopover point as our new end point. We pass

the actual endpoint as an argument through every iteration; once we have placed a stopover

point, we call the original algorithm with the stopover point as the new start point, and the

original endpoint as the endpoint.
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Algorithm 4.1 Stopover Point Placement Heuristic

1: function StopoverHeuristic(s, e)
. s - start point, e - end point

2: Try to route a wire directly from start to end
3: if no blacklisted pads are crossed then
4: return wire from start to end
5: else
6: Determine crossed blacklisted pad closest to start
7: Find stopover points above and below blacklisted pad
8: Let bestPoint be the stopover point resulting in the shortest total wire length
9: Let alternatePoint be the other generated stopover point
10: Try to route a wire directly from start to bestPoint
11: if new wire does not cross blacklisted pads then
12: Call StopoverHeuristic(bestPoint, e)
13: else
14: Try to route a wire directly from start to alternatePoint
15: if new wire does not cross blacklisted pads then
16: Call StopoverHeuristic(alternatePoint, e)
17: else
18: Call StopoverHeuristic(s, bestPoint)
19: end if
20: end if
21: end if
22: end function
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4.6 Conclusion

The algorithms presented in this chapter are well suited to our modeling choice of a continu-

ous variable space. We have created local algorithms for placing stopover points and handling

multi-node nets, which allow us to solve the Multi Wire Type problem in a continuous space.

We route multi-node nets based on their wire type. We route power nets by selecting

the most central node and creating a spanning tree with the most central node as the root,

and the remaining power pins as leaves. For signal nets, we find the shortest path through

the nodes. We convert the multi-node nets to a list of pairs, which we then provide to our

algorithm.

Our algorithm first attempts to route as many zero-crossing wires as possible, and recal-

culates wire crossings after every set of zero-crossing wires is placed. When we have no more

zero-crossing wires, we begin adding stopover points. We place stopover points by finding

blacklisted pads crossed by a wire, then attempting to add stopover points immediately

adjacent to these blacklisted pads. We continue adding stopover points until we have an

entirely feasible route from pair endpoint to pair endpoint.

Our algorithm is not globally optimized, but it runs quickly and provides valuable bench-

marks on the number of wires requiring stopover points and an initial ordering. In the next

section, we describe an approach to a different problem that builds on the ideas we use to

solve the Multi Wire Type problem, expanding on ideas like the choice of routing order and

different methods of handling multi-node nets.
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Chapter 5

Constrained Stopover Point

Placement Routing Problem

5.1 Problem Description Review

The Constrained Stopover Point Placement problem involves many of the constraints of the

other two routing problems, with some additional considerations. As in the Multi Wire Type

problem, we have both power and signal wires as well as multi-node nets.

Though we handle signal multi-node nets in the same way, we have two different ways

of handling power nets in this problem. The first method of handling power is similar to

the approach in the Multi Wire Type problem, in which we created a spanning tree from a

centrally located node. In this problem, we still assign multiple power nodes to the same

node, but these nodes are instead capacitors on the PCB instead of one of the power nodes.

Additionally, we have restrictions over how many power nodes can be connected to the same

capacitor, as well as restrictions on the minimum angle between power wires connected to the

same capacitor. These angle restrictions are demonstrated in Figure 2.3. The second power

approach involves the creation of pins inside capacitor regions on the PCB, and assigning

49



power nodes to these created pins. See Figure 2.5 for an example.

We also have new constraints on the placement of stopover points. In addition to being

restricted by our inability to cross blacklisted pads, we must now take into account PCB

components. We cannot place stopover points on any of these PCB components, affecting

our ability to use algorithms described in the previous chapter.

5.2 Problem Approach

As in the Multi Wire Type problem, we treat the feasible region for stopover points as

continuous instead of discrete. This decision, along with the nature of the stopover point

restrictions, led us to choose a Mixed-Integer Programming formulation for our stopover

point placement algorithm. The complex nature of this problem variation is well-suited for

a modular approach, so we separate it into sub-problems, which we solve individually then

combine together for a full solution.

The first sub-problem is decomposing multi-node nets into lists of pairs. We have already

discussed how we handle multi-node signal nets with shortest paths, but breaking down

multi-node power nets requires additional work. There are multiple ways to multi-node

power nets into pairs, and we discuss two different methods in this chapter. The second sub-

problem is the choice of routing order. We create a graph [8] data structure representative of

the physical layout of the PCB and pins, and use this graph to determine several choices of

routing orders. The final sub-problem is the placement of stopover points on the PCB. We

provide a Mixed-Integer Programming formulation which can place a single stopover point

per wire, and discuss two methods of placing multiple stopover points on a single wire.

We will discuss the sub-problems in the order they were described, which is also the order

they are encountered and solved in the implementation: first, we handle all multi-node nets,

then we decide on a routing order strategy, then we place stopover points as necessary.
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5.3 Decomposing Multi-Node Nets

5.3.1 Sub-Problem Description

The first sub-problem and step in the algorithm is to convert all multi-node nets to pairs.

We handle multi-node signal nets by finding a shortest path over the nodes, which we discuss

in Chapter 4. In this section, we discuss the Capacitor Region Problem and the Capacitor

Assignment Problem, both of which are methods of handling multi-node power nets.

5.3.2 Capacitor Region Problem

The Capacitor Region Assignment problem is a method of routing power in which we are

given the minimum and maximum x and y coordinates of a number of capacitor regions across

the PCB. These capacitor regions are areas of conductive metal that are electrically connected

to the actual capacitors. These regions allow for connections to capacitors without multiple

wires connecting to the same point, which may be necessary for certain PCB constructions.

Greedy Algorithm

We use a two-stage greedy algorithm that first creates a grid of connection points on the

capacitor region, and then assigns these connection points to power pins. In the first stage,

we initially divide the capacitor region into a number of squares such that the side lengths of

the squares are equal to the minimum distance necessary between connection points on the

PCB (this distance being exactly the width of a power wire pad plus the width of a power

wire). By increasing the side lengths of the squares as much as possible while removing

unneeded boxes, we are able to divide the capacitor region into rectangles such that the

rectangles have the maximum minimum dimensions, with at least as many rectangles in the

region as power pins that need to be connected to the capacitor. This process guarantees the

maximum distance between the centers of the rectangles, which avoids interference between
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pads on the same capacitor as much as possible. In Figure 5.1, we show the the connection

point grid before and after the distances between the connections points are maximized.

Figure 5.1: Capacitor Region Connection Point Grid

In the second stage of the algorithm, we use the connection points within the capacitor

regions as power endpoints. We then iterate through the list of power pins, greedily assigning

the closest unassigned power endpoint to the current power pin in the list.

5.3.3 Capacitor Assignment Problem

The capacitor assignment problem is an entirely different method of routing power, in which

all pins in a power net are assigned to the physical capacitors on a PCB, without using

capacitor regions. Multiple power pins can be assigned to a single capacitor, up to a prede-

termined maximum. Additionally, the angle between any two wires connected to the same

capacitor must be sufficiently large, such that the wires can be bonded to the capacitor

without interference.

Initial Formulation

We present a preliminary MIP formulation that solves the Capacitor Assignment Problem:

min
∑
p∈P

∑
c∈C

dpcxpc (5.1a)
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s.t.
∑
c∈C

xpc = 1 ∀p ∈ P (5.1b)

∑
p∈P

xpc ≤ k ∀c ∈ C (5.1c)

xpc ∈ {0, 1} ∀p ∈ P, ∀c ∈ C (5.1d)

There are four sets of parameters in (5.1). First, we have the set of all power pins P , in

which we refer to an individual power pin as p. Similarly, the set of capacitors C contains

individual capacitors denoted by c. We also have the values dpc, which are the distance from

any power pin p to a capacitor c. We have an additional constant k, which is the maximum

number of power pins that can be assigned to any single capacitor. In Figure 5.2, an example

capacitor endpoint is shown in yellow, a power endpoint is shown in red, and the distance

between them is indicated by the label dpc.

The only variables of (5.1) are the binary variables xpc, which take on a value of 1 if

power pin p is assigned to capacitor c, and 0 otherwise. Besides constraints (5.1d) that force

xpc to be binary, (5.1) has two sets of constraints. Constraints (5.1b) ensure every power pin

is assigned to exactly one capacitor and constraints (5.1c) limits the number of power pins

that can be assigned to a capacitor to be less than or equal to k. Finally, objective (5.1a)

seeks to minimize the total length of wire needed to connect all pins and capacitors.

Formulation (5.1) is not complete as it does not explicitly control the angle between

power pins assigned to the same capacitor. For this we use the heading angle apc (in degrees)

between power pin p and capacitor c with respect to the positive x axis. This is illustrated in

Figure 5.2. For two power pins p1 and p2 assigned to the same capacitor c the clockwise angle

between them is |ap1c−ap2c| and the counterclockwise angle between them is 360◦−|ap1c−ap2c|.

Hence, we can ensure these angles are greater than equal to a given minimum angle α > 0
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Figure 5.2: Heading and Distance Between Power and Capacitor

by adding the following constraints to (5.1).

min {|ap1cxp1c − ap2cxp2c|, 360◦ − |ap1cxp1c − ap2cxp2c|} ≥ α (5.2)

for all p1 ∈ P , p2 ∈ P , and c ∈ C. This constraint is nonlinear, and could greatly complicate

the solution to the MIP formulation, but fortunately the following proposition shows they

can be linearized through a simple prepossessing.

Proposition 1. Let f : [0, 360◦]2 → [0, 360◦]2 be given by

f(a1, a2) =



(ap1c, ap2c) ap1c > ap2c, (ap1c − ap2c) < 180◦

(ap2c, ap1c) ap2c > ap1c, (ap2c − ap1c) < 180◦

(360◦ + ap2c, ap1c) ap1c > ap2c, (ap1c − ap2c) > 180◦

(360◦ + ap1c, ap2c) ap2c > ap1c, (ap2c − ap1c) > 180◦

.
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Then (5.2) is equivalent to

f(ap1c, ap2c)xp1c − f(ap1c, ap2c)xp2c ≥ α− (2− xp1c − xp2c)(360◦ + α) ∀p1 ∈ P, p2 ∈ P, c ∈ C.

Proof. This constraint requires preprocessing to be valid, but functions equivalently to the

nonconvex version when correctly constructed. First, consider the headings (ap1c, ap2c) for

each pair of power pins (p1, p2) that can be assigned to capacitor c. Next, order the headings

such that ap1c > ap2c. Next, find the difference ap1c − ap2c. If the difference is less than 180◦,

the heading values do not need to be modified.

If the difference is greater than 180◦, add 360◦ to the smaller of the two headings ap2c.

The difference ap1c − (360◦ + ap2c) is now negative, because the headings are on the inter-

val [0◦, 360◦), so the positions of ap1c and ap2c are changed by f . This ensures that the

smallest angle between the two headings is the result of the subtraction f(ap1c, ap2c)xp1c −

f(ap1c, ap2c)xp2c.

With the headings so ordered, the right hand side of the constraint ensures that the

constraint is only active if both power pins are assigned to the capacitor; in other words,

if both xp1c and xp2c are equal to 1. If they are not both equal to 1, there should be no

restrictions imposed. To enforce this, the right hand side should be equal to α when xp1c =

xp2c = 1, and should be sufficiently small so as not to impose any restrictions on the values

of xp1c and xp2c otherwise. Clearly, when xp1c = xp2c = 1, α− (2−xp1c−xp2c)(360◦+α) = α,

so the first condition is satisfied.

When xp1c and xp2c are not both 1, the maximum possible value of the right hand side

of the constraint is −360◦. This is less than minimum possible value of the left hand side.

By construction, the left hand side is positive when xp1c = 1, and is equal to 0 when xp1c =

xp2c = 0, so the minimum value is obtained when only xp2c = 1. Again by construction, ap2c

is strictly less than 360, so the minimum possible value of the left hand side is strictly greater
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than the maximum possible value of the right hand side, and thus the constraint does not

apply when xp1c and xp2c are not both equal to 1, satisfying the second condition.

The technique of adding a multiplier that “turns off” the constraint is a common technique

in linear programming referred to as a “Big-M” constraint[2]. Though these constraints do

not necessarily lead to the best formulations, they are an intuitive way to present the idea

of constraints being selectively active based on conditions of the variables. We present these

formulations in greater detail in our optimal stopover point placement formulation.

Full Formulation

Using the initial formulation and incorporating the linear form of the angle constraint, the

full formulation is as follows:

min
∑
P

∑
C

dpcxpc

s.t.
∑
C

xpc = 1 ∀p ∈ P

∑
P

xpc ≤ k ∀c ∈ C

f1(ap1c, ap2c)xp1c − f1(ap1c, ap2c)xp2c ≥ α− (2− xp1c − xp2c)(360◦ + α) ∀p1 ∈ P, p2 ∈ P, c ∈ C

xpc ∈ {0, 1} ∀p ∈ P, c ∈ C

5.4 Determining a Routing Order

5.4.1 Sub-Problem Description

After the first sub-problem is solved, and all multi-node nets have been decomposed into

pairs, we determine an order by which wires will be routed and stopover points will be

added. This routing order is not necessarily equivalent to the output of the algorithm. The
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distinction between the two is described in more detail in context of the data structure in

the following section.

5.4.2 Conflict Graph

The order in which the algorithm processes wires and the final ordering of wires that is the

output of the algorithm are motivated by the construction of a conflict graph, which we

define below.

Definition 1. A conflict graph G = (V,E) is a directed graph representing the interaction

between wires connecting pairs of pins and other pair endpoints on the physical layout of a

PCB. A vertex vi ∈ V corresponds to pair i on the PCB, and an edge e ∈ E is directed from

vertex vi to vertex vj if a wire connecting the endpoints of pair j crosses over a wire pad of

pair i.

We provide an example of a physical layout of wires and the conflict graph implied by

those wires. Consider Figure 5.3. In this image, there are 6 wires identified by the numbers

at their endpoints. There are also pad crossings, including wire 3 crossing a pad endpoint

of wire 1 and wire 4 crossing a pad endpoint of wire 2, among others. Figure 5.4 shows the

conflict graph corresponding to Figure 5.3. All pairs in the physical layout (1 through 6) are

represented by nodes in the conflict graph, and all pad crossings (wire 3 crossing an endpoint

of wire 1, etc.) are represented by directed edges in the graph from the crossed pair to the

crossing pair.

The interpretation of these directed edges is that if an edge is directed from vertex vi to

vertex vj, pair i needs to be routed before pair j. If a wire is placed connecting the endpoints

of pair j before routing pair i, at least one of the endpoints of pair i will be obstructed, which

makes bonding a wire to the obstructed endpoint(s) impossible. If pair i is routed first, pair

j will not be obstructed, and can be routed normally.
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Figure 5.3: Wire Layout Example

Figure 5.4: Conflict Graph Example

This construction lends itself naturally to the idea of using a topological sort[5] on the

graph, which provides an ordering on a directed graph such that for every directed edge from

vertex vi to vertex vj, i comes before j in the ordering. A topological sort is only possible,

however, if the graph is acyclic; the example graph in Figure 5.4 is certainly not acyclic, and

conflict graphs corresponding to actually layouts are in general not acyclic.

Eliminating cycles is the primary goal of the next section, which is an optimal placement
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of stopover points in order to route wires. Routing wires between endpoints via stopover

points allows those wires to avoid crossing pair endpoints. Consider Figures 5.5 and 5.6.

Adding a stopover point along the path of wire 3 means it no longer crosses an endpoint of

wire 1, so we can remove the edge directed from pair 1 to pair 3 in the graph. The graph is

now acyclic, and we can use a topological sort to obtain a final ordering.

Figure 5.5: Modified Wire Layout Example

Figure 5.6: Modified Conflict Graph Example

This is the primary difference between the notion of a routing order during the solution
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process and the output of the algorithm. As the algorithm progresses, the routing order

dictates the stage in which a wire has stopover points added to it. The final output is a

topological sort of the conflict graph once all necessary stopover points have been placed,

and thus when all necessary edges that make the graph cyclic have been removed.

The primary problem is now, given a cyclic conflict graph, which edges need to be re-

moved; in other words, which wires need stopover points? There are two ways to approach

this question. The first is through the lens of an existing combinatorial problem, that of

finding the Minimum Feedback Vertex Set[10]. This problem identifies the minimum set of

vertices such that their removal results in an acyclic graph. The correct problem is indeed

the minimum set of vertices instead of the minimum set of edges ; though adding stopover

points removes edges, the process of adding stopover points to a pair i results in the wire

not crossing any wire pads, which actually removes all incoming edges to the vertex vi. It

is not a direct correspondence, however, as adding stopover points to a pair i does not af-

fect incoming edges to vertex vi. We show a constructed graph that allows the Minimum

Feedback Vertex Set problem to be used.

To do this, augment the conflict graph G with a set of vertices V ′ such that for every

vertex vi, all outgoing edges from vi are transferred to v′i, and there is a new edge from vi to

v′i. Finding the minimum feedback vertex set over the vertices in V ′ is equivalent to finding

the minimal set of wires requiring the addition of stopover points. In practice, and primarily

due to our method of placing stopover points, we do not use this combinatorial problem.

We find that the MIP formulation used for placing stopover points is often infeasible; this

indicates that there is no place that a stopover point can be placed without a wire pad being

crossed. If we used the minimum feedback vertex set to find the minimal set of wires needing

stopover points, and if it was impossible to route at least one of those wires without stopover

points, we would need to resolve the combinatorial optimization problem. The Minimum

Feedback Vertex Set problem is known to be NP-Complete[10], so it may be too costly to
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continually resolve the problem for the large graphs we encounter in real problems.

As a result, we use a heuristic approach to determine the routing order. To do this, we

observe that we can immediately route wires without any incoming edges; these wires do

not cross any pair endpoints, and can be placed without conflict. By ordering wires based

on their corresponding outdegree in the conflict graph, and noting that routing a wire with

stopover points removes all outgoing edges from a pair in the conflict graph, we are deleting

the maximum number of edges from the conflict graph with every routed wire. Though this

does not necessarily correspond to the greatest reduction in cycles, this choice of routing

pairs with maximum outdegree has been observed to significantly reduce the number of

wires requiring stopover points when compared to a random choice, or when ordering pairs

by maximum indegree.

This ordering avoids the issue of needing to recalculate every time a MIP is infeasible; we

can simply iterate through the ordering. Additionally, the ordering can be determined signif-

icantly faster from the graph data structure than the time necessary to solve a combinatorial

optimization problem such as the Minimum Feedback Vertex Set problem.

5.5 Optimal Stopover Placement

5.5.1 Sub-Problem Description

With all multi-node nets decomposed and a conflict graph constructed, the next stage of

the algorithm is to determine the optimal placement of stopover points for pairs determined

by the routing order. Due to the nature of restrictions on stopover point placement, a MIP

formulation is well suited towards modeling the stopover point placement problem.

The primary formulation presented in this section can optimally place a single stopover

point per wire. It is not always the case that the corresponding MIP is feasible; there exist

situations in which multiple stopover points must be placed in order to route a wire. We
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present two different ways of addressing the multiple stopover point placement problem, first

with a heuristic that uses a modified version of the single stopover point placement MIP,

and finally a MIP that can directly place multiple stopover points. This final formulation is

highly complex and nonlinear, and we do not implement it in practice.

We first discuss the sets of constraints limiting stopover point placement, then describe

how the formulations result from those constraints. All of the sets of constraints share a

common theme of describing forbidden regions on the PCB: these are blacklisted regions,

which are induced by blacklisted points, component regions, which are described by the

geometry of the PCB, and wire regions, which are caused by wires that are already placed

on the PCB. Each forbidden region is a polyhedron, and the following sections about the

forbidden regions will describe the constraints defining said polyhedron.

5.5.2 Forbidden Polyhedral Regions

Blacklisted Regions

The major constraints on stopover point placement are those imposed by the unbonded,

also known as blacklisted, wire pads present on the chip. Because no wire can cross over or

obstruct a blacklisted pad, stopover point placement must be restricted such that the wires

connecting the start point to the stopover point, and the stopover point to the end point,

satisfy this condition.

In Figure 5.7, a pair endpoint is shown in blue, and a blacklisted point in black. Consider

the shaded region L defined by constraints l1, l2, and l3. If a point is placed anywhere within

L, and a wire is connected from the blue endpoint to the point within L, the wire must

cross the blacklisted point. Note that if the other pair endpoint is within L, then a wire

directly connecting the two endpoints crosses the blacklisted point; this is exactly the idea

of directing an edge in the conflict graph from the black pair to the blue pair.
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The construction of constraints l1, l2, and l3 are straightforward; l1 and l2 are lines

from the center of the blue endpoint that lie tangent to the blacklisted pad, and l3 is a

line perpendicular to the line connecting the centers of the two points. Constraint l3 also

lies tangent to the blacklisted pad. The circle of the blacklisted pad used to generate the

constraints does not have the same width as the original blacklisted pad width. Instead,

because wires have physical width, the diameter of the circle is the width of the original

blacklisted pad plus the width of the wire that will be used to connect the pair endpoints.

l1 : al1xp + bl1yp ≤ cl1

l2 : al2xp + bl2yp ≤ cl2

l3 : al3xp + bl3yp ≤ cl3

L

Figure 5.7: Blacklisted Region Constraints

These constraints are defined for each endpoint of a pair, and so there are actually two

sets of blacklisted region constraints generated when defining the forbidden regions. Figure

5.8 and Figure 5.9 demonstrate blacklisted regions created by the start and end point of

a pair, respectively. In the images, the start and end point are in blue, while a number

of blacklisted points are in black. The grey regions shown are the union of the defined

blacklisted regions. Because the end point lies within a blacklisted region in Figure 5.8, it

is impossible to route a wire directly between the endpoints without crossing a blacklisted

pad. As a result, a stopover point needs to be placed somewhere outside of the grey regions

in order to feasibly route the pair.
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Figure 5.8: Start Point Blacklisted Regions

Figure 5.9: End Point Blacklisted Regions

Component Regions

The layout of a PCB involves a number of physical components. These components have

certain electrical properties, and placing a stopover point on a component may lead to an
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infeasible system. As a result, one of the inputs to the algorithm is a list of components that

must be free of stopover points. Constraints ensuring that stopover points are not placed on

components are simple; components are bounded regions with predefined structure. Figure

5.10 demonstrates an example of nearly every component encountered in the wire routing

problem, in which region R is defined by constraints r1, r2, r3, and r4. Components with

non-rectangular structure can be defined in a similar way, with linear constraints for each

side of the component.

r1 : yp ≤ cr1

r2 : xp ≤ cr2

r3 : yp ≤ cr3

r4 : xp ≤ cr4 R

Figure 5.10: Component Region Constraints

Figure 5.11 demonstrates several component regions on the same PCB as Figures 5.8 and

5.9, with the pair endpoints once again in blue, the blacklisted points in black, and the areas

in which stopover points cannot be placed in grey.

Wire Regions

Because adding stopover points to a PCB involves a wire bonder making a physical connec-

tion to the PCB at the location of the stopover point, it is not possible to place a stopover

point on top of an already existing wire. To avoid this, the formulation includes a set of

constraints that describe the regions of all placed wires on the PCB. Consider Figure 5.12.

In this image, two pair endpoints are shown in blue, with a light blue wire routed between
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Figure 5.11: Component Regions

them.

w1 : yp ≤ cw1

w2 : xp ≤ cw2

w3 : yp ≤ cw3

w4 : xp ≤ cw4

W

Figure 5.12: Wire Region Constraints

The size of W is such that it prevents a stopover point from being placed on the wire

or on the pair endpoints, which is accomplished by setting constraints w1, w2, w3, and w4

are half a pad width away from the pair endpoints. The specific pad width used is that of

the pair to be routed; this ensures that a stopover point placed anywhere outside W cannot

possible overlap the pair endpoints or placed wire.

Figure 5.13 demonstrates two examples of this final set of stopover point constraints,

with several placed wires on the chip. Note that the endpoints of the wires are not marked
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Figure 5.13: Wire Regions

as blacklisted pads; these pads have already been bonded, and can be crossed without con-

sequence.

5.5.3 Mathematical Programming Formulation

All constraints outlined in the previous sections exactly define all regions in which stopover

points cannot be placed, for various reasons. Stopover points placed in a blacklisted region

will cause a wire to overlap a blacklisted pad, and stopover points cannot physically be

bonded to locations inside component regions or on top of existing wires and points. The

union of all these forbidden region constraints gives the feasible space shown in Figure 5.14.

The only remaining consideration for the problem formulation is the objective function.

When a stopover point is placed, the optimal location is one such that the placement is

feasible and that the total wire length caused by adding the stopover point is minimized.

67



Figure 5.14: All Constraints

With this in mind, (5.3) describes the optimal placement of a single stopover point:

min
√

(xs − xp)2 + (ys − yp)2 +
√

(xe − xp)2 + (ye − yp)2

(xp, yp) /∈ L ∀L ∈ L

(xp, yp) /∈ R ∀R ∈ R

(xp, yp) /∈ W ∀W ∈ W

lbx ≤ xp ≤ ubx

lby ≤ yp ≤ uby

(5.3)

Here, the values xs and ys are the x and y coordinates of the start point, respectively.

Similarly, xe and ye are the x and y coordinates of the end point. The decision variable in

this formulation is (xp, yp), which is the location of the placed stopover point. As previously

stated, the objective function minimizes the distance from the start point to the stopover

point, plus the distance from the stopover point to the end point.
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We have identified regions L, R, and W , and we collect these into sets L, R, and W of

blacklisted regions, component regions, and wire regions. Finally, the values lbx, ubx, lby,

and uby are the lower and upper bounds of xp and yp, and are given by the boundaries of

the PCB.

The constraints in this formulation of the form (xp, yp) /∈ G for some region G are

nonconvex, which renders the entire problem difficult to solve in both theory and prac-

tice. Mixed-Integer Programming is a common technique for handling nonconvex problems,

because mixed-integer programs can be solved efficiently in practice. In the following sec-

tion, we describe a method of transforming this mathematical programming problem into a

mixed-integer problem that we are able to quickly solve.

5.5.4 Mixed-Integer Programming Formulation

Note that in Figures 5.7, 5.10, and 5.12, the constraints shown describe the region in which

stopover points cannot be placed. A standard way to handle constraints of this type is to

force the decision variables (in this case, the location of the stopover point) to satisfy at least

one of the constraints in reverse. This guarantees that the decision variables lay outside of the

forbidden polyhedral region, but it requires the usage of some additional binary variables[16].

There are multiple ways of ensuring that at least one of the constraints is satisfied. We

use a Big-M formulation [22, Section 6.1], which is a formulation method that is intuitive to

describe and understand. Lemma 1 describes how a Big-M formulation is created.

Lemma 1. If P is a polyhedral region described by aix + biy ≤ ci, i = {1, . . . ,m}, then a

MIP formulation for (x, y) /∈ P is given by the following:

aix+ biy ≥ ci + (1− zi)M, {i = 1, . . . ,m}
m∑
i=1

zi ≥ 1
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zi ∈ {0, 1}

In a formulation of this type, the variables zi take on a value of 1 if constraint i is active,

and a value of 0 if constraint i is inactive. The value of M is chosen to be large enough such

that if zi is 0, the constraint does not restrict the feasible space; this allows all constraints

to be present in the formulation, with only necessary constraints affecting the value of the

decision variables.

For example, in Figure 5.7, we describe the constraints l1, l2, and l3. We then create three

binary variables z1, z2, and z3, and obtain the following constraints for a single blacklisted

region:

aL1xp + bL1yp ≥ cL1 + (1− z1)M

aL2xp + bL2yp ≥ cL2 + (1− z2)M

aL3xp + bL3yp ≥ cL3 + (1− z3)M

z1 + z2 + z3 ≥ 1

zi ∈ {0, 1}

If we replicate this process for all forbidden regions, we obtain (5.4), which is a mixed-

integer program without the nonconvex region constraints:
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min
√

(xs − xp)2 + (ys − yp)2 +
√

(xe − xp)2 + (ye − yp)2

s.t. aL1xp + bL1yp − cL1 ≤ (1− zL1)M

aL2xp + bL2yp − cL3 ≤ (1− zL2)M ∀L ∈ L

aL3xp + bL2yp − cL3 ≤ (1− zL3)M

zL1 + zL2 + zL3 ≥ 1

aR1xp + bR1yp − cR1 ≤ (1− zR1)M

aR2xp + bR2yp − cR2 ≤ (1− zR2)M

aR3xp + bR3yp − cR3 ≤ (1− zR3)M ∀R ∈ R

aR4xp + bR4yp − cR4 ≤ (1− zR4)M

zR1 + zR2 + zR3 + zR4 ≥ 1

aW1xp + bW1yp − cW1 ≤ (1− zW1)M

aW2xp + bW2yp − cW2 ≤ (1− zW2)M

aW3xp + bW3yp − cW3 ≤ (1− zW3)M ∀W ∈ W

aW4xp + bW4yp − cW4 ≤ (1− zW4)M

zW1 + zW2 + zW3 + zw4 ≥ 1

lbx ≤ xp ≤ ubx

lby ≤ yp ≤ uby

zLi, zRj, zWk ∈ {0, 1} ∀L ∈ L, R ∈ R,W ∈ W , i ∈ {1, . . . , 3}, j, k ∈ {1, . . . , 4}

(5.4)

5.6 Multiple Stopover Placement

An optimal solution to (5.4) in the previous section is the optimal placement for a single

stopover point on a routed wire. In practice, there is no guarantee that a single stopover
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point is sufficient for a routing solution; the placement of blacklisted points around one of

the pads to be routed could require multiple stopover points. If the MIP is infeasible, we

have no way of actually routing the wire. Currently, if we find that the MIP is infeasible, we

iterate through our routing order to find alternate pairs to try, solving a new MIP for the

new pair. In practice, this method handles most situations when a pair cannot be routed

with a single stopover point.

In the following sections, we describe two approaches that can handle more complicated

cases, where no pairs in the routing order can be successfully routed with a single stopover

point. The first approach is a heuristic that extends the single stopover point placement

formulation. We employ this algorithm for more difficult problems. The second approach is

a mixed-integer nonlinear program that selects the optimal placement for multiple stopover

points, using as few as possible.

5.6.1 Single-Sided Heuristic

Our heuristic strategy for placing multiple stopover points relies on our formulation in the

previous section. When we place a single stopover point, we depend on constraints implied

by both the endpoints of the pair to be routed. By only considering those constraints

corresponding to the starting point, we remove a significant number of constraints that

restrict the feasible space in which we can place a stopover point. Of course, the stopover

point placed by such a formulation cannot feasibly connect the two endpoints, but we can

resolve the MIP with constraints from both endpoints, using the stopover point as the new

starting point. This process is then iterated until an entirely feasible route from pair start

point to pair end point can be found. Instead of generating only one potential stopover point,

we can increase our chance of success by generating multiple different stopover points and

allowing any of these points to act as a start point for further rounds of generating stopover

points.
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The process of generating multiple different stopover points and using these as start

points is shown in Figure 5.15. In the image, we begin with a pair endpoint in blue. In the

next stage of the algorithm, we generate three unique green stopover points using only the

start point constraints. These stopover points are used as the start points for the next round

of the algorithm, which we indicate with a light blue coloring. If a light blue start point does

not lead to a new stopover point, we discard it; this can be observed in the transition from

step 2 to step 3, when we discard the middle stopover point. When the algorithm reaches

the blue end point, we select whichever route is the shortest, which is the bottom route in

this case.

If there is an optimal solution, we record the new potential starting point s, and add

a set of constraints to the new one-sided MIP. This set of constraints is a bounding box

around the new potential starting point, and ensures that the next time we solve the MIP,

we generate a unique new starting point. We represent the progression of the algorithm in

Figure 5.15.

Figure 5.15: Single-Sided Heuristic Progression

As in the previous section, we formulate a mathematical program to optimally place

stopover points given multiple start points in (5.5).
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min
√

(xe − xp)2 + (ye − yp)2 + da

s.t.
∨

(DPs +
√

(xs − xp)2 + (ys − yp)2 ≤ da, (xp, yp) /∈ L ∀L ∈ Ls)

(xp, yp) /∈ R,W,G ∀R ∈ R,W ∈ W , G ∈ G

lbx ≤ xp ≤ ubx

lby ≤ yp ≤ uby

(5.5)

In this formulation, the constraint

∨
(DPs +

√
(xs − xp)2 + (ys − yp)2 ≤ da, (xp, yp) /∈ L ∀L ∈ Ls)

chooses exactly one start point s from the set of all start points S. This is done through

an exclusive or function on the constraints; only one set of constraints is active, with no

constraints used for other start points. There are two separate sets of constraints captured

by the exclusive or. First, the constraint DPs +
√

(xs − xp)2 + (ys − yp)2 ≤ da reflects the

wire length that results from using a start point s. Because the start points s are not the

original pair start point, they are the furthest point along a wire that is routed from the

pair start point to the point s. As a result, they have an attached distance DPs which is the

total distance from the pair start point to the point s. In Figure 5.15, DPs is the distance

from the leftmost blue point (the pair start point) to any light blue point, which are the set

of start points S at any stage of the problem. The sum of DPs and
√

(xs − xp)2 + (ys − yp)2

is thus the total distance from the pair start point to the stopover point (xp, yp) when start

point s is used.

The second set of constraints is (xp, yp) /∈ L ∀L ∈ Ls. This is identical to the blacklisted

region constraints from (5.3), but with an added subscript s on the set of blacklisted regions

Ls. Unlike component and wire regions, blacklisted regions depend on the location of the
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start point; there is a unique set of blacklisted region constraints for any start point s. By

incorporating these constraints into the exclusive or, we ensure that only the set of blacklisted

constraints corresponding to the chosen start point is used.

The final new element of the formulation is the addition of a set G. In Figure 5.15,

we generate multiple stopover points at each stage of the algorithm. In order to do this,

we solve the problem in (5.5) multiple times. Unless there are multiple optimal solutions,

solving (5.5) will result in the same stopover point being generated every time. To avoid

this, after we successfully generate a stopover point, we add a forbidden region G around

that point. This ensures that the next stopover point is not the same point that was just

generated. When the algorithm moves to a new set of start points, all existing regions G ∈ G

are discarded.

In Algorithm 5.1, we describe the logic surrounding the usage of (5.5). In the algorithm,

the Multiple Start Point MIP (MSP) is (5.5). Note that if the set of start points S has

only one element, (5.5) is equivalent to (5.3). The parameter pointLimit in the algorithm

determines how many stopover points the algorithm tries to add at any stage; increasing

this value will lead to more MIPs being solved, but could increase the likelihood of finding

a solution.
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Algorithm 5.1 Single-Sided Heuristic

1: function SingleSidedHeuristic(S, e, F )
. S - Set of start points
. e - End point
. F - Forbidden regions

2: Let p be the result of solving a new MSP from S to e
3: if p is optimal then
4: return p and terminate the algorithm
5: else
6: Let S ′ be a new empty array
7: Remove all blacklisted region constraints generated by e from MSP
8: for i = 1 to pointLimit do
9: Let s be the result of solving MSP from S to e
10: if s is optimal then
11: Add s to S ′

12: Add a new set of constraints G to MSP
13: else
14: if S ′ is empty then
15: The problem is infeasible
16: return None
17: else
18: SingleSidedHeuristic(S ′, e, F )
19: end if
20: end if
21: end for
22: SingleSidedHeuristic(S ′, e, F )
23: end if
24: end function
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Lemma 2. Formulation (5.5) is equivalent to the formulation (5.6).

min
√

(xe − xp)2 + (ye − yp)2 + da

s.t. DPs +
√

(xs − xp)2 + (ys − yp)2 ≤ da+ (1− zs)M ∀s ∈ S

aLs1xp + bLs1yp − cLs1 ≤ (2− zs − zLs1)M

aLs2xp + bLs2yp − cLs2 ≤ (2− zs − zLs2)M ∀Ls ∈ Ls, s ∈ S

aLs3xp + bLs3yp − cLs3 ≤ (2− zs − zLs3)M

zLs1 + zLs2 + zLs3 ≥ 1∑
s∈S

zs = 1

lbx ≤ xp ≤ ubx

lby ≤ yp ≤ uby

zs ∈ {0, 1} ∀s ∈ S

aRjxp + bRjyp − cRj ≤ (1− zRj)M ∀R ∈ R, j ∈ {1, . . . , 4}

zR1 + zR2 + zR3 + zR4 ≥ 1

aWkxp + bWkyp − cWk ≤ (1− zWk)M ∀W ∈ W , k ∈ {1, . . . , 4}

zW1 + zW2 + zW3 + zW4 ≥ 1

aGhxp + bGhyp − cGh ≤ (1− zGh)M ∀G ∈ G, h ∈ {1, . . . , 4}

zG1 + zG2 + zG3 + zG4 ≥ 1

zRj, zWk, zGh ∈ {0, 1} ∀R ∈ R,W ∈ W , G ∈ G, j, k, h ∈ {1, . . . , 4}

zLsi, zs ∈ {0, 1} ∀L ∈ L, s ∈ S, i ∈ {1, . . . , 3}

(5.6)

Proof. The non-convex set of constraints

∨
(DPs +

√
(xs − xp)2 + (ys − yp)2 ≤ da, (xp, yp) /∈ L ∀L ∈ Ls)
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can be made convex by separating the two sets of constraints (DPs+
√

(xs − xp)2 + (ys − yp)2 ≤

da and (xp, yp) /∈ L ∀L ∈ Ls, and by introducing an additional set of variables zs. The

variables zs are binary, and take on a value of 1 if start point s is used and 0 otherwise.

Converting the first set of constraints (DPs +
√

(xs − xp)2 + (ys − yp)2 ≤ da ∀s ∈ S to

DPs +
√

(xs − xp)2 + (ys − yp)2 ≤ da+ (1− zs)M ∀s ∈ S allows the variables zs to control

the value of da. If zs is equal to 0, then the distance from s to (xp, yp) is unconstrained. If

zs is equal to 1, then the distance must be less than or equal to da; in other words, only

those zs which are active constrain da. The additional constraint
∑

s∈S zs = 1 ensures that

exactly one zs is chosen to be active.

The second set of constraints (xp, yp) /∈ L ∀L ∈ Ls,∀s ∈ S can be represented by the

following set of constraints:

aLs1xp + bLs1yp − cLs1 ≤ (2− zs − zLs1)M

aLs2xp + bLs2yp − cLs2 ≤ (2− zs − zLs2)M ∀Ls ∈ Ls, s ∈ S

aLs3xp + bLs3yp − cLs3 ≤ (2− zs − zLs3)M

zLs1 + zLs2 + zLs3 ≥ 1

(5.7)

This is similar to the Big-M formulation observed in (5.4), but there are two binary vari-

ables activating the constraint instead of 1. These binary variables are zs, which indicates

whether or not start point s is active, and zLsi, which indicates whether constraint i defin-

ing blacklisted region Ls is active. As mentioned previously, the set of blacklisted regions

changes based on the start point s, so the binary variables and constraints are indexed by

the blacklisted region Ls to reflect this fact.
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5.6.2 Multiple Stopover Point Placement Formulation

We have also developed a mixed-integer nonlinear program that will place multiple stopover

points along a route. We set a maximum number of stopover points per route n; the formu-

lation in this section is based on this value. The constraints for the multiple stopover point

placement problem are unfortunately no longer linear. Recall in Figure 5.7 the construction

of the three constraint outlining blacklisted regions. All three of these constraints lie tangent

to the blacklisted wire pad, and one of the three lies perpendicular to the line between the

start point and the stopover point.

A formulation that allows multiple stopover points to be placed must have blacklisted

cone constraints for every pair of points along the route, but we cannot preprocess these

constraints if they depend on variable stopover points instead of a defined start and end

point. Consider Figure 5.16. In the image, a stopover point is in green, a blacklisted point

is in black, and three tangent points are shown in white. The shaded region labeled L(xi,yi)

is the blacklisted region associated with stopover point (xi, yi).

(xt1 , yt1)

(xt2 , yt2)

(xt3 , yt3)

L(xi,yi)

Figure 5.16: Tangent Points

Blacklisted regions such as L(xi,yi) affect the placement of every adjacent pair of stopover

points along the path of a wire. Stopover point (xi, yi) is constrained by the blacklisted

regions induced by the stopover points (xi−1, yi−1) and (xi+1, yi+1); these are the “start”

and “end” points for stopover point (xi, yi). A mathematical programming formulation of

the multiple stopover point problem requires an objective function; this is the sum of the
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distances along the wire from stopover point (xi, yi) to stopover point (xi+1, yi+1). We use a

shorthand of d((xi, yi), (xi+1, yi+1)) to represent the distance between the two stopover points.

The final element of the formulation is a constraint ensuring that any pair placed stopover

points are either a minimum distance pw away from each other, or have the same position.

This allows there to be fewer than n stopover points, by allowing any number of those

stopover points to have the same position. The mathematical programming formulation is

shown in (5.8), with n stopover points being placed along a wire. The standard component

region and wire region constraints still apply.

min d((x0 − y0), (x1, y1)) + d((xn, yn), (xn+1, yn+1)) +
k−1∑
i=1

d((xi, yi), (xi+1, yi+1))

s.t. (xi, yi) /∈ L(xi−1,yi−1) ∀i ∈ {0, . . . , n}

(xi, yi) /∈ L(xi+1,yi+1) ∀i ∈ {0, . . . , n}

(xi, yi) /∈ R ∀R ∈ R, i ∈ {0, . . . , n}

(xi, yi) /∈ W ∀W ∈ W , i ∈ {0, . . . , n}

d((xi, yi), (xj, yj)) ≥ pw or d((xi, yi), (xj, yj)) = 0 ∀i, j ∈ {0, . . . , n+ 1}

(x0, y0) = (xs, ys)

(xn+1, yn+1) = (xe, ye)

lbx ≤ xi ≤ ubx ∀i ∈ {0, . . . , n}

lby ≤ yi ≤ uby ∀i ∈ {0, . . . , n}

(5.8)

We have already discussed how to transform the component and wire region constraints

into convex form. In the following lemma, we expand the blacklisted region constraints

to a union of disjunctive constraints, though the resultant formulation is still complex and

nonlinear.
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Lemma 3. The constraint (xp, yp) /∈ L(xb,yb) can be represented as a union of the following

constraints

a1(p, b, r)xp + b1(p, b, r)yp ≤ c1(p, b, r)

a2(p, b, r)xp + b2(p, b, r)yp ≤ c2(p, b, r)

a3(p, b, r)xp + b3(p, b, r)yp ≤ c3(p, b, r),

(5.9)

where

a1(p, b, r) = yp − xb −
r2(xp − xb)− r(yp − yb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

a2(p, b, r) = yp − xb −
r2(xp − xb) + r(yp − yb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

b1(p, b, r) = −xp − yb −
r2(yp − yb) + r(xp − xb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

b2(p, b, r) = −xp − yb −
r2(yp − yb)− r(xp − xb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

c1(p, b, r) = −xp(xb +
r2(xp − xb)− r(yp − yb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
)

+ yp(−yb −
r2(yp − yb) + r(xp − xb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
)

c2(p, b, r) = −xp(xb +
r2(xp − xb) + r(yp − yb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
)

+ yp(−yb −
r2(yp − yb)− r(xp − xb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
)

a3(p, b, r) = xb − xp

b3(p, b, r) = yb − yp

c3(p, b, r) = (xb − xp)(xb −
r(xb − xp)

√
(xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
)

− (yp − yb)(yb −
r(yb − yp)

√
(xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2
).

(5.10)

Proof. Determining the equations for ai, bi, and ci requires the positions of the tangent
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points in Figure 5.16, which are given as follows:

xt(1,2)(p, b, r) = −yb −
r2(yp − yb)± r(xp − xb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

yt(1,2)(p, b, r) = xb +
r2(xp − xb)∓ r(yp − yb)

√
−r2 + (xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

xt3(p, b, r) = xb −
r(xb − xp)

√
(xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

yt3(p, b, r) = yb −
r(yb − yp)

√
(xp − xb)2 + (yp − yb)2

(xp − xb)2 + (yp − yb)2

These are found as a function of a stopover point p = (xp, yp), a blacklisted point b = (xb, yb),

and the radius of the blacklisted pad r (as before, the width of the blacklisted pad is actually

the width of the pad plus the width of the wire to be routed).

To find the constraints associated with each tangent point, we apply the point-slope

formula. For points (xt1, yt1) and (xt2, yt2), we calculate the slope from the stopover point

(xp, yp), For point (xt3, yt3), we use the negative reciprocal of the slope between (xp, yp) and

(xb, yb). For the constraints generated by points (xt1 , yt1) and (xt2 , yt2), the slope is

yti − yp
xti − xp

.

Using point-slope form for a line, we get

y − yp =
yti − yp
xti − xp

(x− xp).

In the standard form of a line, this is

(yp + yti)x+ (−xp + xti)y = −xpyti + xtiyp.

In the formulation, the x and y without subscripts will be replaced with both the next and
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previous points on the route, for the blacklisted cones in each direction. For constraint 3,

the slope is

−xb − xp
yb − yp

.

In point-slope form, this becomes

y − yt3 = −xb − xp
yb − yp

(x− xt3),

which, in standard form, is

(xb − xp)x+ (yb − yp)y = xt3(xb − xp)− yt3(yp − yb).

We now have all three constraints in the form ax+by = c. We substitute in our equations for

xti and yti , so that we have equations for a, b, and c, which we will use in our full formulation.

Note that each coefficient expands into two different coefficients; this is due to expanding ±

and ∓. For the constraints generated by points (xt1 , yt1) and (xt2 , yt2):

a(p, b, r) = yp − yti

b(p, b, r) = −xp + xti

c(p, b, r) = −xpyti + xtiyp

For the constraint generated by point (xt3 , yt3):

a(p, b, r) = xb − xp

b(p, b, r) = yb − yp

c(p, b, r) = xt3(xb − xp)− yt3(yp − yb)

When the correct tangent points are substituted into the expressions, the equations in (5.10)

83



are recovered.

We can once again apply the Big-M technique to selectively activate these constraints,

which leads us to the following formulation:

min d((x0 − y0), (x1, y1)) + d((xn, yn), (xn+1, yn+1)) +
k−1∑
i=1

d((xi, yi), (xi+1, yi+1))

s.t. a1(pi−1, b, r)xi + b1(pi−1, b, r)yi − c1(pi−1, b, r) ≤ (1− zL4)M

a2(pi−1, b, r)xi + b2(pi−1, b, r)yi − c2(pi−1, b, r) ≤ (1− zL5)M ∀i ∈ {0, . . . , n}, L ∈ L

a3(pi−1, b, r)xi + b3(pi−1, b, r)yi − c3(pi−1, b, r) ≤ (1− zL6)M

zLi−11 + zLi−12 + zLi−13 ≥ 1

a1(pi+1, b, r)xi + b1(pi+1, b, r)yi − c1(pi+1, b, r) ≤ (1− zL1)M

a2(pi+1, b, r)xi + b2(pi+1, b, r)yi − c2(pi+1, b, r) ≤ (1− zL2)M ∀i ∈ {0, . . . , n}, L ∈ L

a3(pi+1, b, r)xi + b3(pi+1, b, r)yi − c3(pi+1, b, r) ≤ (1− zL3)M

zLi+11 + zLi+12 + zLi+13 ≥ 1

aRkxp + bRkyp − cRk ≤ (1− zRk)M ∀R ∈ R, k ∈ {1, . . . , 4}

zR1 + zR2 + zR3 + zR4 ≥ 1

aWhxp + bWhyp − cWh ≤ (1− zWh)M ∀W ∈ W , h ∈ {1, . . . , 4}

zW1 + zW2 + zW3 + zW4 ≥ 1

d((xi, yi), (xj, yj)) ≥ pw or d((xi, yi), (xj, yj)) = 0 ∀i, j ∈ {0, . . . , n+ 1}

lbx ≤ xi ≤ ubx ∀i ∈ {0, . . . , n}

lby ≤ yi ≤ uby ∀i ∈ {0, . . . , n}

zLij, zRk, zWh ∈ {0, 1} ∀L ∈ L, R ∈ R,W ∈ W , i, j ∈ {1, . . . , n}, k, h ∈ {1, . . . , 4}

84



5.7 Conclusion

In this chapter, we present an algorithm that solves the Constrained Stopover Point Place-

ment problem, divided up into sub-problems that address the three main facets of the prob-

lem: routing multi-node nets, determining a routing order, and placing stopover points.

We discuss two different approaches to routing multi-node power nets, addressing two

different regimes of power routing constraints. For the routing order, we discuss our usage

of a conflict graph to keep track of pad crossings and add stopover points to wires with

maximum effect.

Finally, we present two different MIP formulations for placing stopover points, for the

single stopover point and multiple stopover point problems. We also discuss modifications

of the single stopover point MIP to allow it to solve the multiple stopover point problem

without having to add a large number of nonlinear constraints.
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Chapter 6

Computational Results

6.1 Description

In this chapter, we present a selection of results from our solutions to the three routing

problems, demonstrated on actual PCB designs. We ran all tests on a machine running

Windows 7 Enterprise, with a 3.20 GHz Intel®Core™i5-6500 CPU and 16 GB of RAM, and

the runtime is reported in seconds.

6.2 Inputs

As discussed in Chapter 2, all of our pin input came in the form of a spreadsheet, detailing

a number of different attributes per pin. Table 6.1 shows a sample of our pin inputs.

RefDes PinNum Net Name Net Class X-Loc Y-Loc

P1 A1 Net-1 (Default) -5500.00 3837.50
P1 A3 Net-2 (Default) -5500.00 3562.50
P1 A4 Net-3 (Default) -5500.00 3287.50
P1 C4 Net-4 ETH -4475.00 -3900.00
P1 E3 Net-5 PWR 2400.00 -3900.00

Table 6.1: Sample pin input.
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In the Constrained Stopover Point Placement problem, we also require similar tables

that detail the position of capacitor regions and all other components on the chip, for power

routing and stopover placement, respectively.

6.3 Simulated Annealing Approach

In our simulated annealing algorithm, we use a preprocessing step that iterated through

every pair of points on the entire PCB, checking whether or not a wire could be routed

between the endpoints without crossing a blacklisted pad. Though this step is useful, it

severely restricts the size of problem we are able to handle with the simulated annealing

algorithm. Consider Figure 6.1. This figure shows our test layout with 32 nodes in 16 pairs.

Completing the preprocessing step for even a problem of this size takes nearly a minute on

average. If we modify the problem slightly, keeping the same number of nodes but increasing

the size of the PCB such that the components are spread out over a range of several hundred

units, the preprocessing step will not conclude even after several hours.

Figures 6.2 and 6.3 show an initial set of feasible routes, and the solution obtained after

allowing the simulated annealing algorithm to run for several minutes after the preprocessing

was complete.

Obtaining an optimal solution for this problem takes on the order of five total minutes.

The actual PCB layouts that we use in later problem iterations have hundreds to thousands

of individual nodes, placed on PCBs that are tens of thousands of microns in both the x and

y directions. Our implementation of simulated annealing is unequipped to handle such large

problems, but we discuss some modifications in our final chapter that would significantly

improve the algorithm’s performance and applicability to both other routing problems.
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Figure 6.1: Simulated Annealing Layout

Figure 6.2: Simulated Annealing Initial Solution
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Figure 6.3: Simulated Annealing Improved Solution

6.4 Local Heuristic Approach

We addressed a large number of test cases using our local stopover point placement algo-

rithm. Though the vast majority of current problems we solve are constrained stopover point

placement problems, our local placement algorithm still provides a fast analysis of the solu-

tion space, indicating dense regions of pins that are likely to cause problems, and providing

a rough estimate of the amount of pairs that will require stopover point placement.

6.4.1 Component Placement

When complete, our algorithm displays not only the routing order solution, but also a great

deal of other information about the wires and stopover points in the solution. This includes

statistics on the length of wires in the solution, including total and average wire length, as

well as the number of stopover points and the number of wires that required stopover points.
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One of the most important consequences of this property is that it allows us to evaluate

PCB layouts and rearrange components to decrease the complexity of any routing solution.

Consider Figure 6.4. In this image, our local placement algorithm generates 73 stopover

points for 40 of the 281 total pairs.

Figure 6.4: Initial Component Layout: 73 Stopover Points

When we considered this solution, we realized that we could reduce much of the com-

plexity in the solution by rotating the lower left component by 180 degrees. In Figure 6.5,

we show the results of that rotation. Our routing solution for the new layout has just 3

stopover points on 3 routes, with the same number of pairs.

This change was made due to an observation of the solution, rather than through any

direct placement optimization. We did encounter component optimization, however, when

members of the design team used the number of stopover points placed by our algorithm as

an objective function for placement. Figures 6.6 and 6.7 demonstrate one such placement

change, in which the components around the outside edge of the PCB are rearranged to

decrease the number of pairs requiring stopover points from 22 to 14, in 578 pairs.
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Figure 6.5: Rotated Component Layout: 3 Stopover Points

Figure 6.6: Layout Before Component Rearrangement: 22 Stopover Points

6.4.2 Local Heuristic Results

In Figure 6.8, we show an example of our algorithm’s performance on the largest test case

we encountered. This layout has 1218 pins in 609 pairs, and includes both power and signal

nets. In 201 seconds, we found a solution with 827 stopover points, which are distributed
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Figure 6.7: Layout After Component Rearrangement: 14 Stopover Points

among 206 of the 609 pairs. This solution is feasible for the Multiple Wire Type Routing

problem, but is not feasible for the Constrained Stopover Placement problem; we will discuss

our MIP solution to this same layout in the next section.

Figure 6.8: Local Placement Heuristic on Complex Chip: 827 Stopover Points

Though this is an application of our local stopover placement algorithm, the method
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we use to route power is actually the Capacitor Region Assignment strategy we describe in

Chapter 5. This is because the capacitor regions are the current standard in power routing,

and all of our more recent layouts contain them and depend on their usage. In Figure 6.9,

we show our solution to the power routing problem. This is the same power layout that we

will use in the next section.

Figure 6.9: Power Routing Layout

6.5 Mixed Integer Programming Approach

The implementation of our MIP approach differs slightly from the formulation described in

Chapter 5. The formulation we present has a quadratic objective function, due to the sum

of squared distances:

min (xs − xp)2 + (ys − yp)2 + (xe − xp)2 + (ye − yp)2.
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In practice, we observed that solving problems using this objective resulted in very slow

solution times; in fact, the solver tended to time out after 20 minutes when trying to reach

an optimal solution.

In order to determine the reason behind these timeouts, we solved an equivalent formu-

lation, but used a linearized L1 norm for the objective function. We did this as a feasibility

test; because we only changed the objective function, the set of problems that were feasible in

each formulation were equivalent. To use the linearized L1 norm, we replaced the objective

function with the following:

min d1 + d2 + d3 + d4

subject to the following constraints, which follow the same standard linearization method

mentioned earlier:

xs − xp ≤ d1

xs − xp ≥ −d1

ys − yp ≤ d2

ys − yp ≥ −d2

xe − xp ≤ d3

xe − xp ≥ −d3

ye − yp ≤ d4

ye − yp ≥ −d4.

Our solver was able to handle these infeasibility tests in a second, even for problems with

over a thousand nodes. If we wanted to place a stopover point, we first tried solving the

placement problem using the linearized L1 norm objective. If it was infeasible, we either

tried the next pair in the routing order, or continued with our Single-Sided Stopover Point
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Placement formulation. If it was feasible, we resolved the problem using the original sum of

squared distances objective.

Initial usage of the quadratic objective led us to refine our formulation further. If we

used the objective as presented, our solution times averaged over 40 seconds, even when we

knew the problem was feasible. Our first approach was to remove the squared terms from

the objective, and place them in constraints, as shown below:

min w1 + w2 + w3 + w4

s.t. (xs − xp)2 ≤ w1

(ys − yp)2 ≤ w2

(xe − xp)2 ≤ w3

(ye − xp)2 ≤ w4

wi ≥ 0 ∀i ∈ {1..4}

We did not notice a significant difference when using this formulation. Our next approach
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was to remove the difference terms from the constraints:

min v1 + v2 + v3 + v4

s.t. xs − xp ≤ w1

xp − xs ≤ w1

ys − yp ≤ w2

yp − ys ≤ w2

xe − xp ≤ w3

xp − xe ≤ w3

ye − yp ≤ w4

yp − ye ≤ w4

w2
i ≤ vi ∀i ∈ {1..4}

wi, vi ≥ 0 ∀i ∈ {1..4}

(6.1)

This change significantly reduced the average time taken for solutions, from over 40

seconds to an average of 1-2 seconds per problem.

6.6 Case Study

In this section, we present a beginning to end solution for a single layout, using the Capacitor

Assignment Problem for routing power. The routing order was obtained by ordering pairs by

outdegree in the conflict graph, and we used the MIP formulation in (5.4). For this problem,

we use a signal wire width and power wire width of 25µm, and a ratio of 1:2.5 for wire width

to pad width for both types of wire.
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6.6.1 Layout

Before we route any wires, we can observe the layout of the chip in figure 6.10.

Figure 6.10: Case Study Layout

The boxes in dark red indicate the major chip components. The placement of components

on this chip dictates the locations of pin endpoints, as well as where stopover points cannot

be placed. The rectangles with blue regions are capacitors, and stopover points cannot be

placed on these components either.

In Figure 6.11, we show the results of routing power nodes according to our strategy.

Here, we have 40 power nodes routed to 19 different capacitors, despite setting a maximum

of 6 power wires per capacitor. We found that this power routing strategy tends to require
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Figure 6.11: Case Study Power Pairs

a higher number of capacitors than expected. Though we allow 6 wire connections per

capacitor, the angle constraints generally result in fewer connections being made to each

capacitor, and thus a higher number of capacitors used overall. This plot does not indicate

that these are the final routed wires (though in many cases the wires match the solution);

rather, these are wires that route only endpoint to endpoint for visualization purposes.

Figure 6.12 shows the initial layout of both power and signal nets on the chip, once again

linking endpoints directly for visualization. This problem has 257 pairs in total, of which

217 are signal. There is a clear relationship between pin density and complexity of wires

routed on the chip; in the lower left component, many wires cross wire pads.
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Figure 6.12: Case Study All Pairs

6.6.2 Routing

As discussed in Chapter 5, we formulated the stopover point placement problem as a MIP.

To solve these MIPs, we used the OPTI Toolbox [6], which is an open-source MATLAB

interface for a number of free solvers. Because our MIP has quadratic constraints, we found in

testing that the solvers tended to time out when trying to solve infeasible stopover placement

problems. To address this, we first tried to solve the placement problems using the L1

distance as an objective function. The L1 problems solved much more quickly, and indicated

whether or not the problem was feasible. If the MIP with the L1 formulation was feasible,

we resolved the same problem using the sum of squared distances as the objective, with the
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reformulation in (6.1).

Solving this problem, including routing power and placing stopover points, took an aver-

age of 15.4 seconds, when tested in 30 unique trials. We present our solution, which required

only one stopover point, in figure 6.13, with the single stopover point outlined in dark red.

Figure 6.13: Case Study Solution

Once we have added the stopover point and determined a feasible solution, we rebuild

the initial conflict graph, taking into account the change in wire pad crossings because of

the new wire route. As stopover points remove cycles from the conflict graph, we now have

an acyclic conflict graph, upon which we can perform a topological sort and retrieve a final

pair ordering.
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This solution was implemented on a mockup of a PCB, with wires manually bonded to

wire pads by a technician. The image shown contains a subset of the total wires, but is the

first routed PCB prototype generated for the project, made possible by our algorithm.

Figure 6.14: Physical Implementation of Case Study

6.6.3 Conclusions

The problem we show in this chapter is similar to many of the others that we have solved with

our different algorithms, regardless of which problem variation we are working under. Our

solution is optimized, with only a single stopover point for several hundred interconnects,

and it runs quickly, allowing engineers and chip designers to rapidly prototype and evaluate

chip layouts.

6.7 Summary

We did not in general seek to provide the best possible or most highly optimized algorithms

for the sub-problems and problem variations presented in this thesis. Instead, we focused
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on providing algorithms that instead could be used for rapid prototyping, while still finding

feasible solutions. Once solution methods were established and we had the functionality

to solve real problems, we modified our formulations and approaches in order to improve

solution speed and quality.

For example, the Big-M formulation shown in Chapter 5 is a generally poor method of

handling selective constraint activation in Mixed-Integer Programs. In preliminary tests,

we have employed other strategies towards generating convex formulations, and have ob-

served that the MIP formulations take less time to solve than that of (5.4). By providing

both the non-convex mathematical programming formulation and an example of a convex

MIP formulation, we provide both a working solution and a basis for developing improved

solutions.

In this chapter, we have presented solutions to three different variations of routing prob-

lems, using three different modeling approaches. We have also explored a case study which

constitutes a complete solution to the routing problem, and was physically prototyped by

an engineering team.
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Chapter 7

Conclusions and Future Work

In this paper, we have presented algorithmic approaches to three new wire routing problems,

motivated by emerging technology. These problems are the Single Wire Type routing prob-

lem, the Multi Wire Type routing problem, and the Constrained Stopover Point Placement

problem. Our solution approaches differ in structure as well as modeling assumptions, in-

cluding a discretized simulated annealing approach, a continuous local heuristic approach,

and a continuous mixed-integer programming formulation. We also presented a variety of

related sub-problems, including three different strategies for routing multi-node power nets,

a strategy for routing multi-node signal nets, methods for choosing a routing order, and a

number of different formulations for placing stopover points. We designed these algorithms

to run quickly and efficiently, sometimes sacrificing optimality in favor of shorter run times.

This decision was made in context of the larger design process, in which chip designers

will use our results to reconfigure chip layouts in order to further optimize the overall wire

routing.

We have designed and implemented our algorithms to prepare them for future expansion.

The new and dynamic nature of the problem means that we have little idea how constraints

and requirements will change through the project life cycle, but we hope to provide a strong
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basis of both code and techniques for a follow-on researcher or developer. At every step, we

generated feasible and realistic solutions for the project team, and in the end have generated

a solution that was actually implemented on a circuit board. Though there is still work to

be done from the standpoint of the technicians finalizing the specifications of the project, we

have built generalizations into our algorithm such that future requirements can be adapted

and taken in stride.

Throughout this project, we have identified a number of interesting and potentially useful

topics of exploration into this problem. The emergent nature of the project meant that we

were not able to freeze requirements and solve a problem entirely to optimality; rather, we

continually developed new techniques and approaches that were suitable for the project at

the time. We break down future changes first by problem variation and sub-problem:

1. Simulated Annealing Approach

• We used a discretized solution space with our simulated annealing approach.

Changing this assumption to a continuous solution space and removing the pre-

processing would allow this technique to work with any of the three problem

variations, and in particular the nature of simulated annealing would allow the

addition of constraints from the Constrained Stopover Point Placement problem.

If the MIP formulation runs too slowly on future problems, this may be a new

avenue to take.

2. Local Routing Approach

• We currently use this approach as a method of identifying problem areas on the

PCB and quickly determining an estimate for the number of wire routed needing

stopover points. Further optimization of this algorithm for speed and a way to

algorithmically identify difficult areas (instead of needing to actually inspect areas
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with many stopover points) would allow for additional PCB layout optimization

before routing algorithms are applied.

3. Mixed-Integer Approach

(a) Capacitor Assignment

• The most recent capacitor assignment problem provides us with large, rectan-

gular regions on the chip, with pre-defined wire pads located throughout this

region in a rectangular grid. We suspect that there may be a way to optimize

how these regions are constructed, minimizing routing conflicts elsewhere on

the chip.

(b) Routing Order

• Though we identified an optimal approach to choosing the fewest number

of vertices necessary to remove cycles from a graph, we continued to use

our heuristic, which performed quickly and satisfactorily. Implementing the

optimal approach, though potentially slow, could decrease the number of

stopover points necessary overall, reducing the number of MIPs that it is

necessary to solve.

(c) Stopover Placement

• We utilize a Big-M formulation for our stopover placement MIP. In general,

such formulations work, but do not necessarily perform well. We are in-

terested in exploring how alternate formulations (using convex combinations

of the vertices of polytopes defined by the blacklisted pad inequalities, for

example) could improve solution time.

We have also identified several areas of interest unrelated to the sub-problems. These

include:

107



• Of foremost concern to the project team is the three-dimensional aspect of the project.

All of our solutions assumed that the problem was to be solved on a completely flat

board, where we did not need to consider how wires acted in three dimensions. In

actuality, there are a number of additional and important constraints. For example,

the physical construction of the wires dictates their bend radius; a wire that needs to

travel a short distance on the x-y plane cannot travel too far in the z direction before

the tight bend would break it. Controlling the heights at which wires cross in three

dimensions is just as important as ensuring that they do not cross wire pads in two

dimensions, but we were not able to explore this aspect of the routing problem.

• All algorithms described here take in as input a list of nets and pin locations on

the chip. Exploring how solution quality improves when chip components are moved

around or changed is of particular interest to the project team. Currently, to analyze

how components are moved, the team uses electronic modeling software to manually

build a chip layout, which our algorithm then takes in as input. A way to optimize or

even automate component placement would significantly reduce chip planning time.
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