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Abstract

High-order methods are emerging as a crucial tool for aerodynamics. One application is for
solving large eddy simulations (LES). The use of the discontinuous Galerkin (DG) discretiza-
tion in particular has attractive properties for these simulations. The stabilization methods
used for high-order DG for underresolved Navier Stokes perform some compensation for sub-
grid scale effects, like subgrid-scale modeling in explict LES. In this work, the mathematical
formulation of the finite element method is used to create a new technique for quantifying the
artificial generation of entropy due to stabilization in a common DG formulation, in order
to clarify the necessity of explicit subgrid modeling and give insight into future modeling
strategies for LES performed using high-order finite element methods.
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Chapter 1

Introduction

1.1 Fluid mechanics problems in aerospace engineering

When the Wright brothers first flew in late 1903, they took a leap above and beyond those

would-be aviators who had come before them. They had little more than a high school

education and a few years' experience in printing and bicycle shops, which starkly contrasts

with today's aeronautical engineers. Nonetheless, they did share one advantage over their

predecessors which is crucial even today: data. The Wright brothers innovated by building

a wind tunnel and mastering its use, creating small experiments that were able to better

inform them how to anticipate the way that their airplanes would fly.

Looking at the aerospace industry today, it is obvious that the same data-driven decision

making process informs the modern designer. Despite over a hundred years of experience,

aeronautical design is far from a closed problem. As an industry, we constantly seek new

data and an improved ability to predict the characteristics of an aircraft or spacecraft's flight

in the atmosphere. There are countless problems in aeronautics that are hard to solve, and,

fittingly, aeronautics remains an active area of research interest. Some of the largest of these

problems are in the domain of aerodynamics.

The applications of aerodynamics consists of two major areas, external flows, concerning

the flow around an aircraft or spacecraft, and internal flows, which are inside of turboma-
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chinery or other vehicle components. Regardless of which application area one considers,

the primary goal of the aerodynamicist is to provide accurate and reliable predictions of the

aerodynamic loading on vehicles or their components, as well as predicting the coupled ther-

modynamics that are involved in the case of high-speed and reacting flows. These predictions

are complicated by the nonlinear and time-dependent nature of real fluid mechanical flows.

1.2 Time-dependent phenomena in fluid mechanics

Considering the high-resolution simulation of fluid flows, we must take care to capture the

variations of the flow in time and space. Chaotic behavior can arise from the huge number

of interactions involved in a real fluid flow, and this, in turn, can lead to an unpredictable

state of the flow. In other words, the snapshot of a real fluid flowfield at any given time can

be strongly dependent on the infinite sequence of previous snapshots of the flowfield. This

leads to unpredictable states, and as the flow's complexity grows we are quickly unable to

simply and accurately describe the flow state by using simplifying variables or assumptions.

These effects make predicting or simulating fluid flows extremely challenging. Some of the

most important predictions that aerodynamicists need to make are directly complicated by

the challenges of the fundamental unsteadiness of many relevant fluid flows.

One such example is known as laminar-turbulent transition. When a viscous flow in a

free stream encounters a flat plate or airfoil, the flow will, at first, remain laminar. Viscosity

has the effect of slowing the flow that is nearest the boundary, but nonlinear interactions

between scales are both small and stable in the laminar case. This leaves a region in which

the only significant effect of friction is decelerating the flow near the wall; the region where

the flow is slowed down is called a laminar boundary layer. After traveling some distance

along the surface, the boundary begins to exhibit some additional nonlinear effects. As these

nonlinear effects appear, the transition region begins. In the transition region, initially small

interactions between the viscous and inertial effects in the flow grow in an unstable fashion.

Eventually, these interactions introduced by the boundary excite vortical flow features. As

transition progresses to fully-developed turbulence, these interactions progress to a state of

16



chaotic, three-dimensional vortices. These are often referred to as "eddies", and the region

of the boundary layer in which they occur is the turbulent boundary layer. This process,

referred to as "laminar-turbulent transition", is a key point of study for aircraft design to-

day. With some effort, this transition point can be experimentally observed, and predicting

where it will be on a new airfoil or aerodynamic surface is quite hard. This fact has large

consequences on aircraft design, for instance, because the stresses imparted by the fluid on

the aerodynamic surface are different for laminar and turbulent boundary layers, and, thus,

predicting the laminar-turbulent transition is crucial to making accurate estimates of drag.

Another example can be found in separation. When flow past an aerodynamic body

experiences a strong adverse pressure gradient (e.g. in the case of an airfoil at high angle of

attack), flow can separate from the body, leaving a strongly vortical wake region character-

ized by reversal of flow downstream of the separation point. In the design field, this is an

important phenomena to predict. Flow separation often results in a sudden and substantial

increase in drag and decrease in lift. For aircraft in particular, the realization of this phe-

nomenon is known as "stall"; in fact, the unsteady flow reversal at stall onset is known to

aviators as "stall buffeting". Stall, like transition, is hard to predict, and for this reason it

is usually roughly estimated using theorerical insights and only later more accurately found

using wind tunnel and flight testing.

These examples, though just a subset of the applications that exist, make it clear that

prediction of time-dependent flows is a problem of crucial importance in the development of

the next generation of aeronautical design tools.

1.3 Compressible Navier-Stokes equations

Many fluid flows are well modeled by the Navier-Stokes equations. Developed by Claude-

Louis Navier and George Gabriel Stokes, these equations consider the conservation of mass,

momentum, and energy of a fluid flow. The derivation of these equations can be found in

the literature [11.
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The resulting governing equations are as follows. The continuity equation, given by:

op a
+ (puj) = 0

ax
(1.1)

where p is the density, and uy is the velocity in the xj direction. The momentum equations:

a a ap aTi3-(Pui) +a (Puij) + -- = a--
at Oxj xi ax

(1.2)

for i E {1, 2, 3}, where p is the pressure and the stress tensor _ is given by:

+ OuiOxi ) + A &Uk
aXk

(1.3)

where M is the dynamic viscosity and A is the bulk viscosity, which by the Stokes hypothesis

is A = -2p. Finally, the energy equation is given by:

a-(pE)+ a pu
at axj ( (E +

+ 'nT0
p )

(1.4)

where E is the total energy of the system, T is the temperature, and KT is the thermal

conductivity of the system. The temperature, pressure, and density are related by the ideal

gas law:

p = pRT (1.5)

An equivalent and useful form relates the pressure to the total energy and the velocities by:

P = (" - 1) (pE

where, here, -y =c/cy is the specific heat ratio.
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1.4 Numerical solutions of the Navier-Stokes equations

With the Navier-Stokes equations defined, we now have a set of partial differential equations

that will describe fluid flow. However, solving these equations is not a trivial endeavor.

The Navier-Stokes equations are nonlinear, and they are known to have strong interactions

between all scales of the flow; even the smallest scales will have a substantial effect on the

largest scales (and vice-versa). For this reason, computational fluid dynamics remains an

active research area, with active research in both solving the equations as-derived and using

different modeling strategies.

1.4.1 Direct Numerical Simulation

The solution of the Navier-Stokes equations such that the entire range of both spatial and

temporal scales is accurately represented is known as Direct Numerical Simulation (DNS).

The smallest scales that must be resolved can be estimated by the Kolmogorov scales. The

Kolmogorov length scale, q, refers to the length scale at which friction effects are dominated

by molecular diffusion and the Kolmogorov time scale, T., refers to the corresponding time

scale. They are given by:
( 3) 1/4

y = -- (1.7)

and

T77 (1.8)

where v = p/p is the kinematic viscosity and E is the rate of dissipation of energy in the

fluid.

At the same time, DNS must also capture the scale, L, of the largest eddies that will be

present in the flow. Rogallo and Moin [241 show that in order to resolve the Kolmogorov scales

spatially, the number of gridpoints would scale with Reynolds number by about N3  ReO 4 ,

and considering temporal requirements, the number of degrees of freedom would scale with

Re3 , where Reynolds number is defined by Re = poVoL, with po and V0 , the reference density

and reference velocity for the problem. This scaling proves far too costly to be practical for
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high Reynolds number flows.

1.4.2 Reynolds Averaged Navier-Stokes

Since the time dependence and complex relationships between the small, unsteady scales

and the larger scales create a substantial burden for the simulation of real viscous flows,

fluid dynamicists have sought ways to reduce the resolution requirements for Navier-Stokes

simulations. One such option is to use the RANS equations. RANS simulations use the

Reynolds decomposition [21] to separate a flow into a time-averaged and fluctuating part.

We describe the Reynolds decomposition for an arbitrary choice of variable X:

X =X + (1.9)

where X and X represent the Reynolds-averaged part and fluctuating parts of X, respec-

tively. For compressible flows, the concept of Favre averaging [8] is necessary to find the

compressible RANS equations. The Favre average is given by:

X PX (1.10)

where p gives the density of a flow, X represents the Favre average of a general quantity X,

and U) represents the Reynolds average of a quantity, as above.

Using these techniques, the compressible RANS equations can be found, which are solved

to find the Reynolds-averaged state [29]. The most crucial implications of these simplifica-

tions are two. First, the time dependence of the averaged quantity goes effectively to zero.

In other words, the turbulent fluctuations are completely unresolved. This, in turn, leads to

the second implication, which is that the effects of turbulence need to be modeled to close

the equations. These models include, prominently, the Spalart-Allmaras model [25], the k-E

model [16], and the k-w model [29].

These choices have two results of immediate importance to the CFD engineer. They

collapse the resolution requirement of RANS relative to DNS, to the point that simulations
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using RANS are not only tractible but even industrially practical. On the other hand, even

in the limit of infinite resolution, solutions to the RANS equations do not approach DNS

solutions. In CFD parlance, they are not "scale-resolving". While they are a decent model for

some engineering problems involving turbulent flows, there remains a necessity for modeling

techniques that capture time-dependent flows in a scale-resolving way.

1.4.3 Large Eddy Simulation

With a perfectly resolved solution to the Navier-Stokes equations out of reach for high

Reynolds number flows, we must find a way to generate approximations to a time-resolved

Navier-Stokes system. Where the RANS method uses an a priori global averaging operation

in time to reduce the computational cost necesary for a solution, Large Eddy Simulation

(LES) uses a filtering operation in space and/or time to reduce cost. From a physical

perspective, LES tries to capture the large eddies, which carry the majority of the energy of

the flow, while modeling the smaller eddies [17]. This notion is underpinned by the idea that

the small eddies of the flow are much more likely to be described by universal behavior which

can be accurately captured by a model. The historical development of LES is described well

in the literature [18, 20].

The formal description of LES is to take a variable of interest f(_) and define its "large-

scale" component f(x):

f(x) = j (_')G(x, Z'; ) dx' (1.11)

In this section, we use the overline ( to represent the large-scale component, and G is the

filter kernel, which in the literature varies from Gaussian functions to top hat functions and

others [20]. Using this transformation, the LES equations can be found, which introduce a

small number of terms to capture the effect of the unresolved parts of the flow, which need

to be modeled. Now, we use the same concept of Favre averaging, except applied to the

filter. For an arbitrary choice of variable X, the so-called Favre-filtered [8] version is given
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This can be used to write a statement of the compressible LES equations [191:

a- + x (Tii) =0at axj

a
a (

at /

(Tfti) + a
Ox3

0 (
+0 ~pU,

3xy

(Tf3ii) + a__ 
0a-:ii

axi Ox3

OxTay
Ox3

8OT"\
- a I'T Jt

ax- (fjrij + T a

= (ycvQj) -Ox3
j ) + Ox, \2 Ox3

In these equations, it should be noted that A and WT are the viscosity and thermal con-

ductivity associated to the filtered temperature i. It has been assumed in this formulation

that:

/xj xi ) axT
+

axi)

We now see that the terms on the right hand side of (1.14) and (1.15), have to do with

the effect of the subgrid scales. The terms on the left hand side all have counterparts in

(1.2) and (1.4). The resolved scale terms can be well described by the filtered state variables,

density P, momentum pui, and energy p5. The subgrid terms have to be modeled. These

terms represent, in turn, the subgrid scale stresses:

aij = p (Oiujj - ii6ij) (1.16)

the subgrid scale heat flux:

Qj = P (uT - 'i3)

the subgrid scale turbulent diffusion, given by OJ,/Oxj, where:

'7 = P (s -- )
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and the subgrid scale viscous dissipation, given by 0DT/Oxj, where:

D7 = - 6 rig (1.19)

Various techniques for modeling the subgrid scales can be found in the literature [19, 10, 20].

1.5 Implicit and explicit LES methods

The issue of modeling subgrid scales is of significant interest to researchers. Some authors,

however, claim that subgrid scale modeling is not necessary for optimal LES. This claim

is based on the fact that for a discrete simulation of a Navier-Stokes flow, there will be

"numerical dissipation", an artificial error induced by the finite numerical representation. In

a simplified mathematical form, we seek to solve a conservation law for Navier-Stokes given

by:
S+ V - NS = 0 (1.20)

at

We can not, however, solve this perfectly using numerics, and we effectively solve a discrete

version:
OUh + V *-FNS + V 'Fdiscrete = 0 (1.21)
at

When we solve DNS, we must solve (1.21) such that the effect of the discretization, .Fdiscrete,

is very small relative to that of the physical flux, TNS.

When we run a large eddy simulation, we design sdsdel such that we solve, as nearly as

possible:

+V NS + V . model o (1.22)at - G

where ii is the approximation of the filtered state. However, some authors claim that using

a stable scheme and neglecting the modeling term could result in an adequate model of

real flow [2, 7, 22]. This technique of relying on the numerical dissipation inherent in the

discretization is known as implicit LES (ILES). In these cases, (1.21) is solved, but, this

time, the effect of the discretization, T discrete, will no longer be negligible compared to the
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effect of the physical flux, FNS. On the other hand, we can refer to the classical approach

as explicit LES, in which the subgrid scale effects are modeled through the inclusion of a

subgrid scale model as in (1.22). For high-order discontinuous Galerkin discretizations in

particular, it has been demonstrated that implicit methods might outperform explicit LES

at predicting flow features of interest [9, 11], especially when comparing implicit and explicit

LES methods at equal cost [261.

We can now tie these notions together. Comparing (1.22) with (1.21), we can see that,

when .Fdiscrete functionally replaces jGSdel, the discretization can be interpreted as a model

in ILES. Looking back to (1.13), (1.14), and (1.15), it can be seen that the subgrid scale

terms in the LES governing equations will be the ones that are effectively modeled by the

discrete stabilization of a scheme. A key insight for the future of modeling efforts for LES is to

understand what physics are induced by the stabilization process of discretization. With this

insight, we can delineate the cases for which explicit modeling is and is not necessary, and we

can design models that are complementary to the stabilization induced by the discretization

process.

1.6 Contributions

In this thesis, we attempt to investigate the subgrid scale modeling effect induced by one par-

ticular choice of discretization method, the discontinuous Galerking spacetime finite element

method.

We begin by introducing the analytic entropy behavior of a Navier-Stokes flow. From

here, we outline the method we will be using to solve the Navier-Stokes equations using

the spacetime entropy variable formulation for DG, which represents one particular state-

of-the-art high-order solver. We also select numerical flux functions that are commonly

used in the literature, as a representative example. Next, we derive a method to compute

exactly the entropy evolution equation for this DG scheme, including entropy contributions

by the discretization choices. This method allows for quantifying exactly how each of the

stabilization terms inherent to our discretization contribute to the entropy evolution for the
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discretized system.

Finally, we perform a series of numerical experiments that leverage this method in order

to show how entropy is generated at various levels of underresolution of the scheme. This

study will provide some insight into what the physical effects of the DG discretization will

be-- in the form of entropy production- and how they vary with the order of polynomials

as well as the number of elements used to represent the solution.
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Chapter 2

Entropy behavior of the

compressible Navier-Stokes equations

In this chapter, the thermodynamic entropy of a compressible flow is defined, and equations

governing its behavior in analytical solutions to flow problems are derived for useful forms

of the governing equations.

2.1 Thermodynamic entropy

Entropy is a measure of the disorder of a physical system. For fluid flows, the thermodynamic

entropy is a measure of the irreversible processes that occur in the flow, either due to heating

in the system or due to the viscous dissipation of momentum into heat. The nondimensional

thermodynamic entropy per unit mass is given by s. The generation of entropy is governed

by the Gibbs relation, which is given by:

1
dh = cvT ds + - dp (2.1)

p

where the enthalpy h is defined by:

h = U + - (2.2)
P
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The internal energy and enthalpy are related to the temperature by

U =cvT 
(2.3)

h = cPT

with the specific heat at constant volume given by cv and the specific heat at constant

pressure given by c,. For these relations, and throughout this work, we assume a calorically

perfect gas. For an ideal gas, the specific heats are related by: R = cp - cV. The internal

energy is also related to the total energy by:

pE = pU + pujui (2.4)
2

Using (2.1), (2.2), and (2.3), we can relate the entropy s to the state of the system by:

s = lnI (2.5)

for a calorically perfect gas.

2.2 Second law of thermodynamics for Navier-Stokes flows

The process by which entropy is generated in and transported by a flow can be seen by

multiplying (1.2) by ui then subtracting it from (1.4) and substituting (2.4). This gives:

DU OU a Ou. 0 ( T )'u
P = p + pu3  (U)=-p + rvr +T . (2.6)

Dt at axj axj axj Dxi axi

The Gibbs relation, (2.1), can be generalized to the substantial derivative:

Dh = Ds 1Dp
Dt Dt p Dt
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Now, (2.2), (2.6), and (2.7) are combined to find:

Ds Os + s 1 O T 1 u8
= --+ pu-- =x - r + -7z (2.8)

Dtx cvTOx Ox cvT '0xj

Some rearrangement leaves:

0 0 T (KTaT' T (OT\2  ai
-(ps) + (pu s) - -- -= - + - (2.9)at Ox3  Oxj cvT Oxj cvT2 axj cvT " axj

This result allows us to describe the production and transport of entropy by a fluid flow. The

first term, (ps)/Ot gives the change in entropy per unit volume in time. The second term,

O(pujs)/0xj, gives change in entropy due to convection out of a control volume. The third

term a((iT OT/0xj)/T)/0xj describes the flux of entropy out of the control volume due

to the reversible heat processes. On the right hand side, the first term, rT(OT/Oxj ) 2 /T 2

gives the production of entropy due to irreversible heating processes, and it is evidently

nonnegative. Similarly the second term on the right-hand side, Tij(Ouj/Oxj)/T, can be

shown to be nonnegative. This term represents the production of entropy by the viscous

dissipation of kinetic energy into heat.

In order to show that Tij(Oui/Oxj)/T is positive, we expand it using the definition of rij

in (1.3) and setting A according to Stokes theorem:

1 Ou- 1 (4 (Ou + Ou) 2 Au k Otut
cvT 8x3  cvT axj kxi 3 Ox (x1

-AII (u Ou+ 0ui 2 Ou,2 (2.10)

cvT Ox3 Ox3 Ox3 Oxi 3 OxXk))
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Unwrapping this statment for {i, j} E {1, 2, 3} gives:

1 Dijau
TDxi T

((Du 2 + (v 2+ < (DW 2 + (u\2
(j\x) 09X Dx] +

2 +(W

+ ~ H"p (aDz Dx 0V (W 2+(U
yOU) aDv) Dw2 a

=
T (2

2 
Dv

52-- +2 x +D2 
w

Dz ay

[aUx 2 + (V)+ (OWJ J
+V 2+ u

+x 2

Next, it is integrated over some control volume V:

dV +if (puj s)

f KT

dV -

a 2

(DTNj

O ( I'TDT)
Dxj T Dx3J

dV + f
Ti Dui
T Dxj

dV =

(2.12)

dV > 0

By applying the divergence theorem, we find:

dV + D (pujs) d

ps dV +

V xj ( TxJ dV =

pujsnj dS - n
f T axj

Assuming that there is no normal flow through or heat flux across DV results in:

ps dV > 0 (2.14)

At last, it can be seen that the total specific entropy for a Navier-Stokes system on a control

volume with no flow or heat flux across its boundary will only increase.

This is the statement of the Clausius-Duhem inequality or the second law of thermody-

namics for a viscous flow.
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kOy/

2

2
-3

(Dulk ~2\

k )kJ(~ Du

Dxk I

(2.11)

+ (v 09) 2)> 0

Ds fIPS
Dt iV

at f
(2.13)

dS
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2.3 Entropy properties of the weighted residual forms of

the Navier-Stokes equations

The Clausius-Duhem entropy inequality can be derived in an alternative approach by utiliz-

ing a weak form of the compressible Navier-Stokes equations. This approach also has a direct

connection to the weak form used in finite element methods. In this section, we discuss this

weak form derivation, so that we can apply it to the discontinuous Galerkin finite element

method that we will use in our numerical simulations.

2.3.1 Conservative form

The Navier-Stokes equations can be written in a conservative form:

au+V. (F- v) =0 (2.15)

where the state vector is given by:

p 

P

Pu

U = pv (2.16)

\pEl

with:

V = v w)T (2.17)
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and the fluxes are defined:

pv(E+) pw(E+)

VT

VT T+ rVT

0

Yl+"iT

0

T3 2

V -T 2 + KT a

It will be useful later to write the viscous flux as a function of the gradient of the state:

Fv =KVu (2.20)

where the diffusion tensor is given by:

0

,(6UGi6jm + 6 j13 1m) - p(6'ok16km)61j

/(6216jm + '5 16
2m) - 2A(6k16km)62j

p( 6 31 6 jm + 6 j16 3m) - 2Ip(6k16km)63j

lpVi( 6 jiim + 6 ii 5 jm) - 2/piVj(Sk6km) + % p 2 6
jm6

1O

such that FY = K. Vu.
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_ pV + P

PET (E + P)

pu

puu + p

puv

puw+

Puv

pvv + p

pvw

and

pw

puw

pvw

pww +p

(2.18)

0

(2.19)

Nil im = (2.21)

- p 6 jm 614



2.3.2 Entropy variable formulation

In this section, an entropy variable form of the Navier-Stokes equations is discussed that

closely follows previous work [14, 3]. Additional information about the entropy variable

formulation can be found in Appendix B.

A set of symmetrizing entropy variables can be written,

- 1 ~-Y-1 p

P

V Pv (2.22)
P

PW
P

. P .

A nonlinear transformation exists from these entropy variables to the conservative vari-

ables: u = u(v). Further details on this transformation can be found in Appendix B. Using

the transformation a version of the conservative Navier-Stokes equations can be written as:

A 0 V + XVv - V - (KVv)= 0 (2.23)
at

where 0 =X is a symmetric positive definite system, = AIo = F is symmetric, and

R= F o = __ is a symmetric positive semi-definite system [3, 3, 14].- t9(Vu) A0  (Vv)poivestm

2.3.3 Weighted residual form

The weighted residual form can be found by specifying a domain of interest, Q. Because

we desire to use a spacetime formulation as well, we must also specify a time domain I, on

which a solution is sought:

I E [to, t] (2.24)

The conservation equations are weighted with a function w from some appropriately

smooth space V : Q X I -+ R" and the result is integrated to give the weighted residual
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wat dV dt + jfwT (V. (FI -FV))

Now, testing using the entropy variables as has been done in the literature [3, 14J, such

that w = v, gives:

dV dt + 4o dV dt - ffvT (V - FV)

The terms in (2.26) can be translated into the Clausius-Duhem inequality. The derivation

of these relations can be found in Appendix B. First, the temporal term of Clausius-Duhem

inequality, the variation of entropy:

Tal 1 a
V_ - = - - [ps]at -Y - 1 at

(2.27)

Next, the inviscid entropy flux term can be found:

1 (V - (psV)) (2.28)

The viscous interior flux term is divided into into a viscous shearing contribution and a

heating contribution, respectively:

vT(V - Fv =(V -Fv*) _ VT(V - FH*) (2.29)

The heat flux component of the viscous term is given by:

V(V -FH* )V r'VT
T

1
R

VT - VT
2
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dV dt = 0

f, VT U4i

(2.25)

dV dt = 0 (2.26)

(2.30)



The viscous shearing contribution can be written:

V T(V - Fv* ) = -- 2M
P-

((X :) ) 2
2

+v

This gives, finally,

vT(V - Fv) =
1 (I TVT
R T )

1

R
VT - VT)

T2 J

Uj2+ 09J 2J+ (O)2

+ V 2
2+ u

az

- 2, (a:)2

(+u
I -

It is easy to see that Ii1T (VTYT) is always nonnegative, and that VT(V 7 Fv*) is always

negative or zero. Plugging these into (2.26), results in a statement of the Clausius-Duhem

inequality for the analytical weak form:

dV dt + f (V - (psV))

- If.R V

vT (V -FV*) + fI

dV dt

SKTVT)

Tf(y 1)
dV dt =

(VT .VT)
k\ T2 J

By rearranging and applying the divergence theorem, it can be stated equivalently:

dV dt + (psV) -n dS dt

- 1) rVT -n
R T

- (Y - 1) vT (V - Fv*) + f
(T (VT VT)

R T
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x

2]

(p

(2.31)
+w
O9x

P ( (2.32)

+w 2
09}J

Il ja(ps)

d

(2.33)

dV dt > 0

f,J PS
dS dt = (2.34)

dV dt > 0

+p t a +p t a

+p M

-1 f fan

-(-Y - 1) f 2



Again, for problems where there is no normal velocity through and no heat flux across the

boundary &Q, we can see the same result is generated here, that total specific entropy is

only produced on the domain:

dfj ps dV dt > 0 (2.35)

or equivalently:

J p(t)s(t) dV - f p(to)s(to) dV > 0 (2.36)

This result, (2.33) in particular, gives us a useful statement of the Clausius-Duhem stat-

ment for the forthcoming discretization. While promising, it still does not provide insight

into the effect of discretization on the entropy budget. The next chapter will dive into

uncovering this effect.
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Chapter 3

Entropy behavior of the discontinuous

Galerkin discretization of the

compressible Navier-Stokes equations

For the discontinuous Galerkin discretization it should be possible to make a similar state-

ment about the entropy satisfaction of the DG solution. This new statement will account

for the entropy production induced by the stabilization inherent to the scheme as well as the

resolved physical entropy behaviors.

3.1 Discontinuous Galerkin discretization of the Navier-

Stokes equations

In order to approximate the solution to a Navier-Stokes problem numerically, we discretize

the domain as a set of non-overlapping elements:

(3.1)Q={j} Vi
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The space V is then approximated by the space of polynomials of order d" in space and dt

in time:

Vh = {w w E [p(d.'dt) (, X I)m , Vr E Q (3.2)

where p(d.,dt) (r, x I) is the space of polynomials that span the element , in space with order

d. and the timeslab I in time with order dt. This space is selected such that the approximate

solution is a function of the entropy variables: Uh = U(Vh), with Vh E Vh. The definition of

the timeslab I is modified to be a finite subdivision of the temporal domain:

I E [t", t+ 1 ] (3.3)

For this work, the partitioning of the domain will be structured in both space and time, such

that any temporal spacetime element faces have normal vectors that coincide always to the

time direction, and generally spacetime element faces should have normal vectors to either

time or one of the spatial coordinate directions.

When solved numerically, the weighted residual form of the equations are not satisfied

exactly. In fact, (2.25) is effectively solved on each element r,, and the flux contributions

for the element boundaries 9,8 come from integrating by parts this weighted residual form.

On each boundary face, however, description of the fluxes is ambiguous. This results from

the fact that the elements are not required to be continuous and the values of the fluxes

can therefore differ on either side of a face f. This necessitates a numerical flux function on

element boundaries in both space and time. For this case, the second method of Bassi and

Rebay (BR2) [41 is used to compute the viscous numerical flux functions, and the Roe flux

formulation of Ismail [15, 23] is used for the inviscid fluxes, and full upwinding is used in

time.
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These choices result in the following DG weak form:

- IT dvdt +(w(tn+1)u(tn+l1) --_ t")Tuh(t")) dVat hd t+ (( U+ h d

-jvwT- FI dvdt+Zjj wT- Fv dV dt

+ sf1 ( _(WTI n + (wT F I )n) dS dt (3.4)

-W(u) (w) [[uh]] dS dt

- E ffiw] { (uh) (Vuh + T Lff ([[uhi]))} dS dt = 0

for all w E Vh. Here, the lifting operator rf : [Vh(f)]d _ [Vh]d associated with a face f is

given by:

Sfv& T rf ( ) dV = f {0.n}T, dS V E[V] (3.5)

and if is defined as the set of all elements sharing a face f. A jump operator is also

introduced here. On a face f, the jump operator applied to an arbitrary quantity X is given

by:

[[X]] = (X)+n+ + (X)- n- (3.6)

Here, the value of X+ is the value of X as defined on one side of the face, and X- is the

value of X as defined on the opposite side of the face, and n are the corresponding normal

vectors pointing out of the element from which comes the definition of X*.

Lastly, an averaging operator is introduced for brevity. The averaging operator of an

arbitrary quantity X across a face f is given by:

{X} = ((X)+ + (X)-) (3.7)

This is the form of the equations that are solved natively in the eddy solver developed by

the NASA Advanced Supercomputing division [5], which is used to perform the simulations
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Further details of the temporal, inviscid, and viscous numerical

flux functions can be found in Appendix A.

3.2 Manipulation of the weak form solution

In order to investigate the entropy behavior of the DG discretization, terms analogous to

(2.33) are necessary. In order to get them, we can leverage the divergence theorem applied

to the temporal fluxes:

fj
dV dt = - f'Ilw Uh

at

dn+1

dV dt + f(WT Uh) dV (3.8)

and to the inviscid fluxes:

jVwT -FI dV d = wT (FI a)' dS dt - wT (V -FI)

and finally to the viscous fluxes:

JVwT -FV dV dt = wT (FV - n) dS dt - ffwT (V -FV)

Practically speaking, this equation will be solved numerically, so there will exist a residual

due to quadrature error. A residual statement can be written for the temporal quadrature

errors:

E "tquad-= aT Uh dV dt - J TaUh
dV dt + / (wTuh) dV (3.8a)

for the inviscid quadrature errors:

E,quad =- vwT - FI

-jjwT

dV dt + fwT (I - n)

(V -FI) dV dt
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dV dt (3.9)

dV dt (3.10)

dS dt
(3.9a)
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and for the viscous quadrature errors:

If VwT -FV
dV dt + fwT (FV. n)

- wT (V -Fv) dV dt

Summing these over the entire domain, we now write:

EtquaI = - Uh dV dt- ]

+ (W(tn+1)Tu (tn+1) _ (t"+))+ ~ wt~jUht1)- W(tni) T Uhti)

E,quad - - ffVwT - E' dV dt - fwT(V -FI)

+ j((w (_F
f Cr !

E Vquad - - S
K

fjVwT - FV

+ E
f Eri fI f/

dV dt -5 fI w T(V - FV)

((wT (EV. n))++ (wT - n))- )

IV dt

dS dt
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(3.1Oa)

T OUh
at dV dt

(3.11)
dV

and

dV dt

n)+ + (wT dS dt
(3.12)

(3.13)

( -n)) -



Combining (3.11), (3.12), and (3.13) with (3.4) gives:

ZjjwT h dV dt - E w(t+) T (uh(t'_) - Uh(t")) dV

+ wT (V -FI) dV dt - fwT (V -Fv) dV dt

+F fj n -F - _n)) + (wT (_ -FIn)) ) dS dt

f )TVW(3.14)

- { ((u) w} [[uh]] dS dt

- f [[w]]- {K(uh) (Vuh + r7fif ([[Uh]]))} dS dt

+ I (wT (Ev. ))+ + (wT (Fv. n)) dS dt + Equ" = 0
f el', I 

If

We note that the quadrature errors, Etquad, Iquad, and EVqui are zero when integrating

exactly, and we define their sum E = E'tqu' + EIq"a - EV.quad for brevity. This error

is not a residual error term in the solution of the equations themselves, rather, they are

an error introduced in transforming the data into a more useful form using the divergence

theorem under quadrature. A small EqU&, then, indicates that this analysis is not tainted

by quadrature errors.

Now we can see that this form of the governing equation gives us a new outlook on the

entropy behavior of the system. There will be a contribution in both space and time from

the "jump terms" which exist because of discontinuities at the spacetime element boundaries.

These contributions can be interpreted as the implicit subgrid scale model induced by this

DG discretization.
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3.3 Entropy conservation and the second law of thermo-

dynamics

As seen in Section 2.3.3, testing using the entropy variables, such that w = v, results in a

statement that gives the Clausius-Duhem inequality or the second law of theromodynamics.

We can use our expanded form in (3.14) to investigate the artificial generation of entropy

due to the underresolution of the scheme:

h dV dt - ( - U(t+)) dV

+ j v (V - FI) dV dt - v T(V -Fv) dV dt

I: ~ ~ ~ n - _F ( (V T + (VT _ n - F, - .) d S dt

- sf ((u ))T (vh) +i (ug) (vh) - (ulrt+ + u-_n-) dS dt (3.15)

f- f {f(h) (Vvh)})) ([Un]] dS dt-)d

- f j [[v, ]]- {Ruh) (Vuh + rl ff ([[Uh]]))} dS dt

+ f (vT (Fv )) + (vT (FV _n) dS dt + Equad 0

A number of the terms in (B.11) can be translated into simple expressions of the en-

tropy transport terms in the Clausius-Duhem inequality, as we have seen already in Equa-

tions (2.27), (2.28), and (2.32). Taking these relations and substituting them into (B.11)

gives a new statement of the Clausius-Duhem inequality that includes the terms from the
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discretization. These terms constitute artificial sources of entropy production or destruction:

'j t [ps] dV dt + Z V - [psV] dV dt

VJJK T) dV dt

+ ( -1) v(t)T (Uh(tn) - Uh(t"+)) dV

- (y - 1) v ( n- F'-n) + \v n -Fi) dS dt

(3.16)
+ ( - 1) j

f Eri ff

- ) ( E - 1) [[Vh]]

-~~ (ri - )(

- (7 - 1) v(V - Fv*)

Now it can be seen that in (3.16)

free to produce or destroy entropy oi

be as the entropy effects created b3

similar to what has been suggested i

With the form given in (3.16), a

except for the reversible heat entrop

{K(uh) (Vuh + -qfff [[Uh]]))} dS dt

(Fv .n))+ + (vT (Fv -n)) dS dt =

dV dt + E-y 14 (VT VT) dV dt

as opposed to (2.33), there are a set of terms that are

a timeslab. One way to think about these terms could

the implicit model for the unresolved subgrid scales,

the literature [6].

* of the terms are readily computable from the state,

term that includes a second derivative of T. We can
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apply the divergence theorem to write:

1KTV

R
VT)~
kTJ

f j K
fe l i

dV dt =

r'KT (VT.- 1)

(VTn)) +

dS dt =

(N (VT.-))

This allows the calculation of E, 1K fKTV -( ) dV dt without explicit calculation of

any second derivative terms. As a downside, it contributes additional quadrature error when

we calculate E IquI in (3.13).

At this point, we introduce a shorthand for each of the terms in (3.16). The first set of

terms concern the resolved entropy transport. The total entropy is defined by:

S(t) = ps dV (3.18)

and its variation on a timeslab I defined on t E [ta, tn+ 1] is denoted by (AS)ttta = S(tn+1 ) _

S(tn). The resolved component of this entropy change is given by:

dV dt = -(- - 1)
K K

The total flux of entropy across the spatial boundaries of a DG discretization is given by:

(AS)AI = f nV -[psV] dVdt= -(d - 1)jvT (V - FI)

Rounding out the resolved entropy transport is a term that captures the diffusion of entropy:

(AS)e t = - 1)
dfeFf

I:f/fr.
(3.17)

dS dt

(ASAUX = (p)Iffa P dV dt (3.19)

dV dt (3.20)

r'T(VT -n)
dS dt (3.21)
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Once the resolved transport of entropy is accounted for, the resolved production of entropy

must be considered. Entropy is produced on the domain by two sources. The first is pro-

duction by the action of viscous shearing in the resolved scales:

(ASshear =( - 1)jv (V - Fv*) dV dt

f p 4 aU) 2 + V) a 2(.2
S( I -1) ]]1 p 3 (8x) ( m )+( z (3.22)

(Ou 9v Du Ow \ 2 i'&u 8w\ 2
+ P + -z + + -z ox dV dt > 0

Entropy is also produced by the irreversible effects of heating on the domain:

(AS) a 7 - I T VT dV dt;> (3.23)Jprod f fn~ R k T2

With these terms, all of the resolved scales are accounted for. However, when the flow

is underresolved, there is some production or destruction of entropy due to the stabilization

scheme. There are three entropy terms from the stabilization, due to the temporal upwinding:

(AS) = ('y - 1) jv(t+) (Uh(t'_) - Uh(t+)) dV (3.24)

due to the inviscid numerical flux:

(AS)sc= ) (vT -nE-Fn)) d
f Er (3.25)

+ (VT _F _n- F,- n) dS dt
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and due to the viscous numerical flux:

( - 1) Z

+ (-Y - 1)
f Eri

+ (- f - 1)
fr F

(Vvh} - [[uh]]

f,

dS dt

(Vuh + rnfrf ([Uh]])) }[[Vh]] - {f(Uh)

I; (v (FV + + (vT (FV dS dt

We can now restate (3.16) using this shorthand:

(AS)AU1  + (AS)AUX + (AS) t

resolved transport terms

+ (AS)Iisc + (AS)d 5 c + (AS)vis,
numerical stabilization terms

(A shear +(AS)heat > o
reprod prod

resolved production terms

Here, of course, we have assumed that the quadrature error is negligible with respect to

the dominant terms in (3.16) and (3.27). With this form written out, we can see that the

stabilization terms have the effect of artificially producing (or destroying) entropy.
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(3.27)

f (K(UhD )T(A S) disc = -
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Chapter 4

Numerical experiments

In this chapter, we perform some numerical experiments to use this new technique to char-

acterize the entropy behavior of the DG scheme. These experiments have the twofold goals

of evaluating the merits of the ILES concept and help elucidate strategies for new explicit

subgrid physical models designed for high-order discretizations.

4.1 Problem setup

4.1.1 Taylor-Green vortex problem

The Taylor-Green vortex problem is a classic canonical problem in turbulent flow. The

Taylor-Green vortex system was first developed and analyzed by Taylor and Green in the

late 1930s [121. The behavior of the Taylor-Green vortex problem has been well studied and

its behavior is well known. The flow exists in a cube which is periodic in three directions,
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with each of x, y, and z spanning [0, 27rL]. The initial conditions are given by:

U = Vo sin cos cos

v = -Vo cos sin cos
(4.1)

w=0

2 1 1 ( 2x 2y)) ( (2z)
P =PoV 2 [M +- j cos - cos -} ~ cos -L +2P P 0 M2 +16 L )+Cs(L L + .)

with density p, velocity components in x, y, and z, respectively, u, v, and w, and pressure

p. The Mach number is given by:
V0

MO = -O (4.2)
a0

The flow is initialized to be isothermal, such that:

SP RT0  (4.3)
P Po

and the cases are run at a variety of specified Reynolds numbers, which are defined by:

Re = poVOL (44)

Finally, the nondimensional time scale is given by:

L _L

to - Moao (4.5)V Moao

The Taylor-Green vortex problem is characterized by the convection of the initial con-

ditions, which relatively quickly leads to the stretching of the initial vortices. Eventually,

the flow undergoes a transition to turbulence at a critical point. From here, the turbulence

continues through a range of scales until all of the kinetic energy is dissipated to heat.
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4.1.2 Discretization

We will discretize the system using a uniform spacetime mesh of N x N x N hexahedral

elements in space, with timeslabs of uniform timestep At. We set the timestep using a

constant CFL number according to the resolved scales. We can approximate the resolved

scales with a length scale 6x and timsecale 6t, for polynomial representations of order px and

pt in space and time respectively, given by:

XL (4.6)
Px pxN

and

R =A (4.7)

We use the CFL number, CCFL, as a parameter to specify a resolved time scale:

6t = CCFL (4-8)
C

where c a physical wavespeed we want to resolve. Using this and the specified polynomial

order in time, pt, we can set At:

At = CCFL L pt (4.9)
c Npx

The values that specify the discretization that we use for the majority of this work can be

found in Table 4.1. These discretization choices will be used for all simulations in this work

unless otherwise noted.

Specifications
Re 1600

c 1.0
ao 1.0
Po 1.0

MO 0.1
L 1.0

CCFL 16

Table 4.1: Specifications of discretization choices for the Taylor-Green vortex problem.
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4.2 Results

4.2.1 Case selection

For this work, we consider discretizations that are in the range typical for LES. To do this,

we consider the Kolmogorov length scale and time scale for the problem. We recall that

these are given by, respectively:
3)1/4

r=(-) (1.7, reprise)

and

T7 = (1.8, reprise)

We use specification constants as shown in Table 4.1. Via scaling analysis, we can estimate

V 3
E~ 0 (4.10)

L

A slightly better approximation is to estimate the rate of dissipation of TKE per unit

mass by:

I (~ k) (4.11)
poL3 Ot ma

Pulling from later results, we use (at)ma ~ 0.012. Table 4.2 gives the approximate Kol-

mogorov scales given by these estimates, and shows them to be in decent agreement.

approximation order
Oth 1st

71 0.00395 0.00212
T, 0.25 0.0722

Table 4.2: Estimates of Kolmogorov scales.

In Table 4.3, we show a series of discretizations that we will use in this text and com-

pare their resolved length scales to the zeroth-order and first-order approximations of the

Kolmogorov length scale.

We can see in Table 4.3 that the most resolved cases (p, = 8, N = 64) are in the range

of a DNS simulation. The less-resolved cases (N = 32) tend to be between about two and
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N px
32 2
32 4
32 8
32 2
32 4
32 8
48 2
48 4
48 8
48 2
48 4
48 8
64 2
64 4
64 8
64 2
64 4
64 8

Pt CCFL

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

0.0156
0.00781
0.00391
0.0156
0.00781
0.00391
0.0104
0.00521
0.00260
0.0104
0.00521
0.00260
0.00781
0.00391
0.00195
0.00781
0.00391
0.00195

0.5
0.25
0.125
1
0.5
0.25
0.333
0.167
0.0833
0.667
0.333
0.167
0.25
0.125
0.0625
0.5
0.25
0.125

0.25
0.125
0.0625
0.25
0.125
0.0625
0.167
0.0833
0.0417
0.167
0.0833
0.0417
0.125
0.0625
0.0313
0.125
0.0625
0.0313

(OX/i7)Oth
3.95
1.98
0.988
3.95
1.98
0.988
2.64
1.32
0.659
2.64
1.32
0.659
1.98
0.988
0.494
1.98
0.988
0.494

(6 t/Ty)Oth

1
0.5
0.25
1
0.5
0.25
0.667
0.333
0.167
0.667
0.333
0.167
0.5
0.25
0.125
0.5
0.25
0.125

7.36
3.68
1.84
7.36
3.68
1.84
4.90
2.45
1.23
4.90
2.45
1.23
3.68
1.84
0.920
3.68
1.84
0.920

(tTO 1st

3.46
1.73
0.866
3.46
1.73
0.866
2.31
1.15
0.577
2.31
1.15
0.577
1.73
0.866
0.433
1.73
0.866
0.433

Table 4.3: Resolved scales for various discretization choices.

eight times less resolved than is necessary for a direct numerical simulation. These represent

a range of tractible resolutions for performing LES simulations of the Taylor-Green vortex

problem.

4.2.2 Controlling quadrature errors

In the discrete setting, we use numerical quadrature to perform integrations. Gaussian

quadrature approximates the integral of some function f as:

J b

Nquad

f(x) dx ~ wif(xi) (4.12)
jr=1

where the paired set of nodes and weights, xi and wi, are well known Gauss nodes and

weights. Gaussian quadrature is exact for polynomials of order p < 2Nquad -1, and as Nquad

is increased, the error between the exact integral and the approximation will converge to
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zero.

Before we can proceed, we must ensure that the errors induced by using numerical quadra-

ture to evaluate the integrals are not large with respect to the actual quantities of interest.

Thus we must evaluate Et' I" , I, and EV,qi

We can evaluate trivially Etqu, EI,qual, and EVquad easily using (3.11), (3.12) and

(3.13), from data easily accessible in the simulation. In Figure 4-1, we show that Et'qua

normalized by I(AS)tu. is small, and, in Figure 4-2, we show that EIqu normalized by

(AS)Lj is small.

10-

10-8

O 9
10~9

10 10

10-11

10-12

Temporal error induced by quadrature

p = 8, pt = 4, N = 64
p_ = 8, pt = 2, N = 64

----- p., = 4, pt = 4, N = 64
Ns -- ----- p, = 4, pt = 2, N = 64

%1 -p,= 2, pt =4, N =64
410- - -p.=2,p =2,N=64

%'4. 4. - -- ---- , 8, Pt = 4, N = 48 .'

oPf = 8, pt = 2, N = 48
S-----p. = 4, pt = 4, N = 48NOW~--- WI Us000 = 8, pt = 2, N = 48

am 100 --- p- = 2, pt = 4, N = 48
.gV* - - -p, = 2, pt = 2, N = 48

- 4b4 p es." 114% 1OMV= 8, pt = 4, N = 32
000009-0 -p, = 8, pt = 2, N = 32

~L Messe-s----p=4, pt = 4, N = 32
----- p, = 4, pt = 2, N = 32
- - -p p=2,p =4, N =32
- - -px = 2, pt = 2, N = 32

0 5 10
time, t

15 20

Figure 4-1: Quadrature error due to temporal flux transformation.

Finally, in Figure 4-3, we show that Ev,quc normalized by (AS)pr + (AS)od is small,

such that the quadrature error does not dominate the values of interest. The quadrature
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Inviscid error induced by quadrature

p-- = 8, pt = 4, N = 64
p, = 8, pt = 2, N = 64

-.-- p. = 4, pt = 4, N = 64
-.-.- p, = 4, pt = 2, N = 64
- - - p, = 2, pt = 4, N = 64
- - -px=2,pt=2,N=64

10-5 p. = 8, pt = 4, N = 48
- p. = 8, pt = 2, N = 48

---- p, = 4, pt = 4, N = 48
-.-- p., = 4, pt = 2, N = 48

p, = 2, pt = 4, N = 48
-p =2, pt = 2, N = 48

p, = 8, pt = 4, N = 32

1 -10 p, = 8, pt = 2, N = 32
10 ----- p., = 4, pt = 4, N = 32

----- Pz = 4, pt = 2, N = 32
p, = 2, pt = 4, N = 32

-!--2 = 2, pt = 2, N = 32

10 -1-
' I

10-20
0 5 10 15 20

time, t

Figure 4-2: Quadrature error due to inviscid flux transformation.

error for these terms is not as small as for the inviscid and temporal terms. Nonetheless,

the quadrature error will be less than 1% of the magnitude of the production terms, which

is reasonably small to distinguish the effects we are interested in.
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Viscous error induced by quadrature
1 -

10-2 -

---- p = 4, pt = 2, N = 64

1 ~- --- p. = 4, pt = 2, N = 64
10 6 p, = 2, pt = , N = 64

S i -pX = 2, pt = 2, N = 64
- -p., = 8, p = 2, N = 48

10 -5 se --. = 4, p = 4, N = 48
Ig ----- px = 4, pt = , N = 48

10I 5 - -ppx = 2, p = 4, N = 48

~i ~ 95 p -p=,pt=4,N=48

S-- -p, =2,pt=2,N=48
S-~p =8, pt = 4, N = 32

10 6 - p. =8, pt =2, N = 32
----- p, = 4, pt = 4, N = 32
---- p, = 4, pt = 2, N = 32
- - -p 1 = 2, pt=4, N = 32

- -p, = 2, pt = 2, N = 32

10- 7

0 5 10 15 20
time, t

Figure 4-3: Quadrature error due to viscous flux transformation.

4.2.3 Kinetic energy evolution of the Taylor-Green vortex problem

It is a standard practice in the literature to study the kinetic energy evolution of a Taylor-

Green vortex problem. The kinetic energy is defined as:

Ek(t) = Zf pV-V dV (4.13)
Ku X

Figure 4-4 shows the kinetic energy evolution for various discretization choices with pt =

2. In this plot, we can see that the kinetic energy evolution converges as both the polynomial

order of approximation and the number of elements are increased. The kinetic energy is

decreasing, which is an expected behavior for a low Mach number flow. It seems that

56

-1



0.14 - Kinetic Energy

--- p, = 8, pt = 2, N = 64
----- p, = 4, pt = 2, N = 64
- - -p,=2, pt=2, N =64

0.12 - - p. = 8, pt = 2, N = 48
----- p. = 4, pt = 2, N = 48
- - -p,=2, pt =2, N =48

p= 8, pt = 2, N = 32

0.1 --.- =4,pt=2, N =32
- - -p,= 2, pt= 2, N=32

Q0.08 -

S0.06-

0.04-

0.02-

0
0 5 10 15 20

time, t

Figure 4-4: Evolution of kinetic energy for Taylor-Green vortex problem under varied dis-
cretizations with Pt = 2.

the lowest order terms, with Px = 2 and regardless of the number of elements, tend to be

prematurely dissipative. As N is decreased, the onset of dissipation is increasingly premature.

In these cases, it seems the stabilization of the DG scheme is adding excessive dissipation

early in the process of transition to turbulence.

Moving to the Px = 4 simulations, we can see a different behavior. Early in the evolution,

before t ~ 4, the kinetic energy curves are in very good agreement for all Px = 4 or greater

simulations, for all N tested. After t ~ 4, the Px = 4, N = 32 simulation begins to

diverge from the more highly resolved simulations, now dissipating more kinetic energy than

the others. It continues this behavior until the end of the simulated window, ultimately
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resulting in a solution with significant underprediction of the kinetic energy. Again, the

other p. = 4 simulations exhibit a similar behavior, albeit one that is more closely aligned

with the highest resolution simulations.

In particular, the behavior of the px = 2, N = 64 simulation can be compared to the

behavior of the p, = 4, N = 32 simulation, as they both have 1283 spatial degrees of

freedom for the simulation. It can be seen that, at a fixed count of degrees of freedom,

the low order solution dissipates the kinetic energy more rapidly. Increasing the order of a

solution seems to more closely approximate the most resolved solutions than increasing the

number of elements.

0.014 -Dissipation of kinetic energy

p. = 8, pt = 2, N = 64
----- p., = 4, pt = 2, N = 64
- - - px = 2, pt = 2, N = 64

0.012 p. = 8, pt = 2, N = 48
.4 ----- pX = 4, pt = 2, N = 48

%- - -p= 2, pt = 2, N = 48

ft. - p, = 8, pt = 2, N = 32
0.01 % ----- p = 4, pt = 2, N = 32

- - -p =2, pt = 2, N = 32
%----... spectral, N =512

0.008 - h
o '"

- 0.006

-It

0.004 -
I%

% %

0 0.002 - -

0
0 5 10 15 20

time, t

Figure 4-5: Evolution of kinetic energy dissipation for Taylor-Green vortex problem under
varied discretizations with pt = 2.

In Figure 4-5, we consider the dissipation of kinetic energy for the same cases. We now
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introduce an N = 512 spectral incompressible solution from the literature [28] for comparison

with our results. This confirms and informs what we witness in Figure 4-4. We can see that

the solutions converge on a peak dissipation at t ~ 9. The p, = 8 solutions have good

agreement, while on the other hand, the px = 2 solutions all demonstrate early dissipation.

Additionally, we can see that the p, = 4 solutions exhibit good resolution of the dissipation

on the whole, with, however, some interesting secondary peaks in dissipation after the peak

dissipation that are not seen in the highest-order solutions.

0.14 - Kinetic Energy

pz = 8, pt = 4, N = 64
----- p = 4, pt = 4, N = 64
--- p.,=2,pt=4,N=64

0.12 - p, = 8, pt = 4, N = 48

=2, pt = 4, N = 48

p, = 8, pt = 4, N = 32

0.1 - ----- p = 4, pt= 4, N = 32
- - -p =2, pt=4, N=32

0.08 -

% '

0.06 -

0.04

0.02

0
0 5 10 15 20

time, t

Figure 4-6: Evolution of kinetic energy for Taylor-Green vortex problem under varied dis-
cretizations with pt = 4.

In Figures 4-6 and 4-7, we look at the same analysis for simulations with Pt = 4. It

can seen that the change in temporal order of approximation does very little to change the
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0.014 - Dissipation of kinetic energy

p, = 8, pt = 4, N = 64
---- p_. = 4, pt = 4, N = 64
- - -p= 2, pt = 4, N = 64

0.012 - - p. = 8, pt = 4, N = 48
----- p, = 4, ph = 4, N = 48

.o - -p.,=2,pt=4,N=48
-- 0.01'= 8, pt = 4, N = 32

0.01- ---- p= 4, pt = 4, N = 32
- -p,=2,pt=4,N=32
N--2056021 spectral, N =512

C.)1

0.008 -

- 0.006 - ,

0.004 -
a) I

I I

0.002 -

0
0 5 10 15 20

time, t

Figure 4-7: Evolution of kinetic energy dissipation for Taylor-Green vortex problem under
varied discretizations with pt = 4.

observations from the pt = 2 case. We now seek some insight as to how the stabilization

involved in our DG discretization relates to these effects.

4.2.4 Entropy evolution for the Taylor-Green vortex problem

We can see from the previous section that an underresolved DG scheme produces errors

in the kinetic energy. In order to understand what causes this, we look into the entropy

generation that underlies the spacetime DG simulation outlined here. To begin, consider the
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entropy evolution outlined in (3.27). Rearranging slightly gives:

+_ _ IAS isc _ - S 1S shear (AS heat

AtAt At At Atotal flux disc prod prod

(AS I AS heat

flux At diff

(AS)I (AS) V

/t dis /t disc

Here, again, (AS) otai is the total variation of entropy from t" to t1+1 . Figures 4-8 and 4-9

0.018 - Total entropy variation

-p, =8, pt= 2, N= 64
----- p_ = 4, pt = 2, N = 64

0.016 - - - p,= 2, pt = 2, N = 64

p.=8,pt=2,N=48
--- p, = 4, pt = 2, N = 48

0.014 -' . \ j - - -p 2 ,pt= 2 , N=48
--- p,=8,pt=2,N=32
S---p,=

4 , pt= 2 , N=32
,- - -p=2,pt=2, N=32

0.012-

0.01 -
/ " \

1I 
9

0.008 -

O% %
0.006 -

3 0.004 -

0.002 -

0
0 5 10 15 20

time, t

Figure 4-8: Evolution of total variation of entropy with pt =2.

show how (AS/At)total evolves in time. We can see that the entropy generation on a given

timeslab seems to correlate well with Figures 4-5 and 4-7. This indicates, as expected at this
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0.018 - Total entropy variation

p, =8, pt =4, N =64
0 ----- p,=4,pt=4,N=64

0.016 - -p=2,p=4,N=64
---- p.=8,pt=4, N=48t --% p:, = 4, pt = 4, N = 48

1 0.014 - -p_.=2,pt=4,N=48
S-p, = 8, pt = 4, N = 32

----- p = 4, pt = 4, N = 32

0.012 -- - -p=2, pt=4, N =32

0.012-
0.01 -

0.008 -

0
Itim/,

-0.006 %
% %

*0.004 % %

0.002 ,-'

00

0 5 10 15 20
time, t

Figure 4-9: Evolution of total variation of entropy with pt = 4.

low Mach number, that the processes that produce entropy and those that dissipate kinetic

energy from the flow are the same. From (4.14), it can be seen that (AS/At)otai on a

timeslab consists of contributions from both the resolved entropy flux in time, (AS/At)t

and from the entropy generated by the jump due to the upwinding-in-time, (AS/At)t-

By studying Figures 4-10 and 4-11, we can see that, for pt = 2, the effect of the discrete

term (AS/At)ti, tends to destroy excess entropy from the resolved entropy variation and

is beginning to converge as the flow is increasingly resolved. However, in spite of the fact

that the discrete conribution to the temporal variation in entropy is large, these temporal

jumps do not seem to induce large errors in the total variation of entropy, witnessed by the

convergence seen in Figure 4-8.
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Resolved entropy variation
0.04-

pz = 8, pt = 2, N = 64

--.-- p. = 4, pt = 2, N = 64

0035 -
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0
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time, t

Figure 4-10: Evolution of resolved entropy variation with pt 2.

When the temporal order of approximation is increased to pt = 4, almost all of (AS/ At) toa

is accounted for by the resolved terms. This effect can be clearly seen in Figure 4-13. Com-

putation at high temporal order sharply reduces entropy contributions from the temporal

upwinding scheme.

We can break down (4.14) again, into terms that are due to resolved production, inviscid
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0 -Discrete entropy variation
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Figure 4-11: Evolution of discrete entropy variation with pt = 2.

numerical flux, and viscous numerical flux contributions to the entropy variation.

AS l AS I AS) shear + gheat

flux disc prod prod

tot.aSA )prod

(AS) IU AS)
( t fl AA disc) (4.15)

heat

/t diff ( ) disc)

V
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0.018 - Resolved entropy variation
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Figure 4-12: Evolution of resolved entropy variation with pt =4.

The results of this breakdown are seen in Figure 4-14, Figure 4-15, and Figure 4-16, for

N = 32, N = 48, and N = 64, repectively. The results in these figures reinforce the

observation that the difference between pt = 2 and pt = 4 is small, although some slight

changes in the entropy evolution persist (see in particular the peak regions) due to this

choice.

Particular observations can be made that, regardless of N, in the p, = 2 cases the

dominant cause of entropy generation is the inviscid terms. As p, is decreased, this source

of entropy generation decreases in all cases. For all of the cases shown here, regardless of N,

p,, and pt, the entropy generated by the viscous terms is small but significant. It shows little

sensitivity to the conditions of the discretization. The cases for which the viscous entropy
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Figure 4-13: Evolution of discrete entropy variation with pt = 4.

generation is changed seem to be largely the p, = 2 cases, for which turbulent transition is

triggered prematurely. In these cases, the viscous entropy generation also rises prematurely.
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Figure 4-14: Breakdown of entropy generation for N = 32 cases. Solid blue line:

(AS/At)totai; red dashed line: (AS/At)prod; yellow dashed line:; -(AS/At)'; purple dashed
line: -(AS/At)v.
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4.2.5 Discrete contributions to the satisfaction of the second law of

thermodynamics

We can now look at how the discrete terms in (3.27) work together to provide an entropy

stable solution. The grouping of terms in (4.15) hides some details of what is happening in

these solutions.

In Figures 4-17, 4-18, and 4-19, we can see that, as p, decreases, paired contributions to

the entropy transport from the convective flux of entropy on the domain and the inviscid

numerical flux are present. We recall the definitions of the convective flux of entropy:

(AS)LZ= V - [ps_] dV dt (3.20, reprise)

and the entropy flux due to heat diffusion:

(AS) =~Zjj -rvV - dV dt (3.21, reprise)

Because of the periodicity of the domain, these terms should be zero by the divergence

theorem. However, because of the use of the DG discretization, these divergences will not

be satisfied exactly. The figures show that, when p, is less resolved, these divergences are

poorly behaved, and the numerical fluxes have to compensate for them.
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4.2.6 Constant degree-of-freedom studies

In this section, we will consider variation of the results of cases with a similar number of

spatial degrees of freedom. The number of degrees of freedom is just the number of unknowns

per state variable in space:

NDOF,x = Npx (4.16)

We first look at the case of NDOF,x = 128, with pt = 4. For these cases, we will have a

resolution relative to DNS of (Jx/r/) = 3.68 and (Jt/T.) = 1.73. In Figures 4-20 and 4-21,

we can see that the high-order solution has favorable results to the low order ones, in terms

of converging to the spectral solution for the dissipation of kinetic energy. In Figure 4-22,

Kinetic Energy
0.14

- - -p=2, p = 4, N = 64
----- px = 4, pt = 4, N = 32

p,= 8, pt = 4, N = 16
0.12 -

0.1 -

0.08 -

t 0.06 -

0.04 -

0.02 -

0 I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

time, t

Figure 4-20: Kinetic energy evolution for Taylor-Green vortex problem with NDOF,X = 128
and pt = 4.

we can see that the inaccuracies are correlated to entropy production by the inviscid solver.
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00.0046
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0
0 2 4 6 8 10 12 14 16 18 20

time, t

Figure 4-21: Dissipation of kinetic energy for Taylor-Green vortex problem with NDOF,x=

128 and pt = 4.

We repeat this analysis, this time using cases with NDOF,x = 64 and pt = 4, for which

(Jx/r7) = 7.36 and (Jt/-r) = 3.46. The kinetic energy evolution is shown in Figure 4-23, and

the dissipation is shown in Figure 4-24. At this level of underresolution, the high-order

solution, for the first time, notably deviates from the spectral solution. However, even when

it fails to capture the dissipative peak, it seems to capture the overall temporal evolution

very well. Nonetheless, the high-order solution is the most accurate for a fixed NDOF,.x, and

the lower-order solutions deteriorate in accuracy much more quickly than the high-order

solutions.

Finally, we compare the results of all of the px = 8, pt = 4 solutions that are used in

this thesis. In Figures 4-25 and 4-26, we can see the kinetic energy evolution and dissipation
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of kinetic energy for these cases. Overall, agreement looks good, with in particular the

N = 8 solution showing some deviations from the other two cases. It seems, especially with

the entropy peak being cutoff in the N = 8 solution, that the "modeling effect" of the DG

discretization is doing a commendable job of generating entropy correctly. In Figure 4-27, we

can see how each term contributes to the entropy variation in time. Based on these results,

we can see that when high-order discretizations are used, the viscous and inviscid numerics

both contribute to the so-called modeling effect and to the entropy variation of the system.

In particular, at high-order, the presence of a significant inviscid flux does not necessarily

correlate to a premature or excessive generation of entropy on the domain.
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Figure 4-23: Kinetic energy evolution for Taylor-Green vortex problem with NDOF,X 64
and pt = 4.
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Figure 4-24: Dissipation of kinetic energy for Taylor-Green vortex problem with NDOF,x

and pt = 4.
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Figure 4-25: Kinetic energy evolution for Taylor-Green vortex problem with px = 8 and
pt = 4, with N E {8,16,32}.
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Figure 4-26: Dissipation of kinetic energy for Taylor-Green vortex problem with p. = 8 and

pt = 4, with N E {8,16,32}.
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Chapter 5

Conclusions and future work

5.1 Summary

We have developed a framework within the discontinuous Galerkin formulation for the

Navier-Stokes equations to understand how the discretization produces or destroys entropy

in order to satisfy a discrete version of the Clausius-Duhem statement. This framework was

then used to look at how, in various underresolved simulations of the Taylor-Green vortex

problem, entropy is generated by different stabilization terms introduced by the numerical

flux functions.

We can see that when low spatial order (p,) polynomials are used to represent the solution,

excess entropy is generated by the inviscid numerical flux, which persists even into cases with

large numbers of elements (N). This effect seems to penalize the use of low-order DG schemes

for implicit LES of turbulent flows. At a fixed number of degrees of freedom, it seems that

the simulation will be significantly inaccurate if p, is chosen small and exhibit excess entropy

generation from the inviscid solver.

The effect of the temporal discretization seems to be somewhat benign. When a low

temporal order (pt = 2) is chosen, the entropy generated by the temporal jump can be a

large contributor to the total energy variation on a timeslab. However, when the contribution

of the temporal jump is large, because it is not actively stabilized by the scheme, it does
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not seem to contribute an aphysical entropy surplus. The effect of the temporal jump seems

to be to prevent the inviscid and viscous solvers from contributing excess entropy to the

system. With the higher temporal order (pt = 4), entropy generated by the jump term is

minimal, and the resolved entropy variaton on a timeslab accounts for almost all of the total

entropy variation.

When a simulation uses a significantly high polynomial order, it seems that the entropy

production converges quickly to that of the most resolved cases. The temporal evolution of

kinetic energy is well captured for high px, even when relatively few elements are used in a

given direction.

With this said, it seems that error is induced in the high-order simulations whenever the

discretization terms are producing entropy. This tends to happen for high p, cases on a fixed

number of degrees of freedom. It seems that some care must be taken when evaluating LES

discretizations at a fixed number of degrees of freedom. For a fixed number of degrees of

freedom, the high px, low N results have apparently, more ability to resolve flow structures.

The approximation for relating the resolved scales for polynomial respresentation in (4.6) and

(4.7) may be too crude for this relationship, and a better rule-of-thumb may be appropriate

for determining tradeoffs than the number of degrees of freedom.

5.2 Future directions

In light of these results, there is much to be further investigated. First of all, the limited

Reynolds numbers used in this work are not enough to unequivocally state that the discretiza-

tion adequately models the small scales. At Re = 1600, the flow is sufficiently turbulent,

but it is quite possible that at higher Reynolds numbers, the accuracy when underresolved

that we observe for high-order solutions may not be robust. Similarly, this effect may not be

robust for flows that are not strictly in the low Mach number regime. Moreover, the choice of

the Taylor-Green vortex problem means that the turbulence generated here is homogeneous

and isotropic. This analysis can be extended to canonical problems of non-homogeneous

turbulence, to evaluate how the stabilization accounts for unresolved entropy effects in these
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more complex geometries.

Additionally, there may be potential for more local analysis of these terms. The analysis

that leads to (3.16) and the analysis that follows is based on testing with v. We can also test

with a function w that only has support on a given element and takes the value of v on that

element. This means we can effectively use (3.16) and the other analyses that are based on

the weak form governing equations locally on the elements. Not only that, but by using the

lifting operator (defined in Equation 3.5) on (3.16), we may be able to localize the entropy

generation effects within elements. Using the data that would result from such an analysis,

we could then consider how the entropy generation by the discretization localizes compared

to known behaviors for the canonical flows of interest, via, for example, DNS studies.
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Appendix A

Inviscid and viscous numerical fluxes

A simplified statement of the DG weak form for Navier-Stokes is given by:

JKTuh

( wTFrn -

dV dt +

wT#= -n)

(w(tn+1)Tuh(tn+1) - W(tni Tuh(t)) dV

dS dt - fj (Vw T ) - (F - FV) dV dt = 0

A.1 Inviscid fluxes

The inviscid numerical flux is basically given by the method of Roe [23]. The inviscid Roe

flux computes:

F = (F1 + +F) + IX (u+ (A.2)

where, X is a flux Jacobian evaluated about the Roe-average state, which is to be defined.

We will use a shorthand for the normal fluxes:

pVnu + pnx

pVnV + pny

PVnW + pnz

pVnH
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with the normal velocity given by v, = un,, + vn, + wnz, and the enthalpy defined by

H = E + E. The Roe-averaged state is given by:
p

PRoe + FPP

Roe _ /7U+ + N/Fu-
U - 1 V

Roe _\/7v+ + \/VV
V =-

Roe = + V
W = ___ _

HR~e = 7 + V/7H
H RoeJ - acobi H++ v b H--

The eigenvalues of the flux Jacobian are given by:

Ao=v +a Al=v, -a A 2 = Vn

(A.4)

(A.5)

where a is the speed of sound defined by:

a2 = (y - 1) (H
1

(V -V)) (A.6)

According to the appendix of [271, the flux Jacobian can be applied to a vector using the

form:

Xx = A 2x+ ziR + Y2R2

with right vectors given by:

R,=

1

U

V

w

H

0

nx

ny

nz

Vn

(A.7)

(A.8)
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and Y1 and Z2 given by:

Z1 = 2Lix + -L2xa a (A.9)
Z2 = - Lx + u-1L2x

C

where L1 and L 2 are left vectors given by:

(U (u+ v2 +w2)

-- (- - 1)u nr

L= -(- - 1)v L2= ny (A.10)

-(-y - 1)W nz

(y- 1) 0

with, finally, scaling parameters o- and U 2 given by:

1 1
or = - (Ao + A) - A 2 = (Ao -A 2 ) (A.11)2 2

It should be noted that the eddy implementation of Roe's inviscid solver uses a slightly

different definition for a-. Finally, we can ensure that eigenvalues are bounded away from

zero by applying an "entropy-fix" [13] where:

~ (E + 2 JAI < E

JAI = 2 (A.12)
JAI otherwise

This method is used to compute F' n.

A.2 Viscous fluxes

For the viscous numerical flux term, wTFv -n, we first note that this term uses a simplified

form. In reality, this term incorporates all of the effects of the implementation of the second

method of Bassi and Rebay, even though these effects are not captured in that particular
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form. We can elaborate them completely by starting with the form of the viscous flux. The

viscous flux can be restated as:

Fv = (uh) Vuh (A.13)

The second method of Bassi and Rebay replaces the residual terms due to the viscosity:

Rdiff(uhw) = -) wTFV n dS dt + f

Rdiff(uh, w) = S*f
-

fEFi fif
(VwT) - K (uh) Vuh

[ {RX" (Uh) (Vw)

dV dt

- [[uh]]

+ [[w]] -{(uh) (Vuh - rlfrf

- E
f GI'b

([[uh]1)) dS dt

K(Ub) (V7W))T1 (U+ - Ub)

+ (w+) T (n + (Ub) ((Vuh) + f 4'f (u+ - Ub) _+); B.C.) I
We introduced a few things here. The lifting operator rf : [Vh(f)]d _ [Vh]d associated with

a face f is given by:

fV-0 -T r f (b)KES JVTf~
TdV = {- 4 dS V ( E Vh]

and rf is defined as the set of all elements sharing a face f. The averaging operator of an

arbitrary quantity X on a face f is given by:

1
{X} = ((X)+ + (X)-) (A.16)
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Meanwhile, the jump operator on a face f applied to an arbitrary quantity X is given by:

[[X]] = (X)+n+ + (X)- n- (A.17)

This can be rewritten as:

Rdiff(uh, w) = -j j (Vw T) - K (VUh) dV dt

(K(u )) T (Vw)+ + (_(U-))T TWO- (+n+ + u-n~)

+ (w+n+ + w-n-) - (R(uh) (Vuh + rfrf ([[uhl]))

+ K(u-) (Vu- + rfrf ([[uh]])))

K (ub) (Vw)+) T (u - Ub)

I dS dt

+ (w+) Tb ( + (ub) ((Vuh) -+ 'ff (u+ - Ub) na+); B. C.) dS dt (A.18)

For the cases of periodic boundaries, rb= 0 and Fi is the set of all spatial faces. Thus we

can ignore the contributions from the boundary faces, f E Fb and we can say:

Rdiff(uh, w) = (VwT ) - (Vuh)

[2 ((R(U7)(VW)+ + __U-) (7W) .(U'rr+ + u-rG)

+ (w+n+ + w-n-) I (R(uh) (Vuh + r7ff ([[Uhi]))

+ K(u) (Vuh + rrf ([[uh])))] dS dt (A.19)
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and for an equivalent statement, we can move these contributions to the element:

Rdiff(uhw) -

-f
dV dt

alA , KT (Uh) (Vw) - [[Uhl]

+ w { (u) (Vuh)O -

For hexahedra, it can be shown that the lifting operator on a face can be rewritten:

rf ([[u]]) = L [[u]] (A.21)

where L is some parameter that is constant with respect to the solution but dependent on the

geometry of the mesh, the discretization choice, etc. We will roll this dependent parameter

into the definition q in the remainder of this appendix and in the main body of the text.

Now, we can write the total residual equation explicitly as it's calculated in the code:

dV dt +

jVwT - FI dV dt + fjJ

(w + 

_ n) +
(17w)+ + (R(U-))

VWT. F

wF .n)

dV

V dV dt

dS dt

T(Vw)-) - (ugn+ + u-n-)

(w+r+ + wn-) . (R(u) (Vu + ,[[U

dS dt = 0 (3.4)
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+ w' {K(uh) rlfryf ([[uh]]) - _n dS dt} (A.20)

-zK
f,Ii,- Uh

-zf
(w(tn+1)Tuh(tn+1) - w(t"+Tuh(t_))

+ r f

2 (u))-
ferF f/I;

-
f EJ7 f,Ii

dS dt

(W') - K(VUh)

fr,

+ ((u) 17U- + 77[u]]



Appendix B

Entropy variable formulation

B. 1 Transformations between conservative variable

entropy variable formulations

In this section, we formulate an entropy variable form that follows closely the methodology

enumerated by [14], but disposes some less optimal choices, to ultimately get results similar

to [3].

We have a new statement of the strong form:

au+ V - (FI - Fv* - FH*) = 0 (B.1)

where, here the heat contribution is separated from the viscous contribution proper, with,

as above:
/ ~\

Pu

Pv

U

V= V

W

(2.16, reprise)

PwI

\pEJ
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[pyT
F -pVTE + PI

pVT (E + P)

Pu

PuU + p

Puv

Puw

Pv

puv

Pvv + p

Pvw

Pw

Puw

Pvw

Pww + p

(2.18, reprise)

pu E + hPV E + P of E +

and, slightly modified from above:

0T

FV* T

H= +0I

-NTVT

0 0 0

T21 T22 T23T

73 1

_V-1

0

0

0

0

T32  7-33

V1 2 V1'13

0

0

0

0

-~ T TaT

with our familiar definitions:

p = (b - 1) ( pE -

Dug+
Oxi

2 -JE

2 OUk
3 aXk

(1.6, reprise)

(1.3, reprise)

We note that Fv = Fv* + FH*.

We can show that non-dimensional entropy can be viewed as an increasing function of
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(B.2)

(B.3)

0

0

0

0

and
T uj(

Tij = A -
(axy



time that falls out of the state for an ideal gas:

s = In(pp-7) + C (2.5)

with some constant C. We take C = 0 for simplicity. One thing leads to another and we get

to the set of symmetrizing entropy variables:

S +__+

7Y- 1  -Y-1

P2

-P
p

p

(2.22)

which corresponds to a general entropy function H = --

Using ui = [u]j, we can write the pressure in terms of the state function:

p = (b - 1) (U5 -
(U2 +U2

2 Ui)

and, leveraging that definition, the nondimensional state entropy:

s =ln(pu) = ln ( -) I~ !(U 2 + U2 2)\U - U 42 Ui
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And, with these, we can write the nonlinear transformation between u and v:

s =Y+I pE
v 1 = - +_ _

-1 '-Y-1I p

-In ( 1)
7-Y-1 ((Y- )(U

4 7-+ 1

P

2 3 +
iU1

ulu51

Ui y

-u-1)u - ( + u2 + u)
2 2 3 4)

- 1uu 2 - + u
PV 1 Uiu3
p -uiu 5 -- u1+ u + u2)

V4 =
p -y1

V 5 =
P_

uu4
1U-(U2+ 2 +Uu2

1 2U1

p 'y-1uiu5 - ( +u +u4)

In order to reverse this transformation, we examine the definition of vi:

s *-+l pE
v1=- +

,y-1 -1 p

We reorder and substitute using the definition of pressure in (1.6):

s = - ( - 1)v 1 + (Y + 1)
p ( p 1

2 (u2 + V 2 + W2))

- (- 1)v1 +

S = -y- ("Y- 1)v1

Now, with s

( + 1) - 1+ 1 + ()2 )
2 + V2+ V2V 2  3 V 4

V 5

= s(v), we just need the pressure to fully define u with respect to v.
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consider the definition of s and use logarithm tricks to start.

s=In(pp-) =lnp--ylInp

1 +-_ =- lnp+ ~'lnp
'-1 -1 'y-1

exp (

- 1)1exp

And we can write:

0

-
0
7-1

(P)

p = exp -

p-1= p,--
ThY-

1

Now, we consider the last four terms of v:

pu
V2 -

U 2

p p
pv _ U 3

p p

V4=pw -U4v 4
p p

p
V5 =

p

Hey-o! We can work with that. Now we note that P - in the definition of vi,p p
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=p 'Y-1p r-l = (- - 1)- ( p \ p4 fl~
(B.7)

y-
1

( (B.8)

(B.9)

U 1

p

which

-YS 1



allows us to write a nonlinear transformation from v to u:

U 1 = -vop

U2 = V2P

U 3 = V3p

U4 = V4p

U5 = [- 1s p

=-v5 exp -

= V2 exp-
7Y - 1V5

= V3 exp-

=v4exp-

= - S + - vi] exp - -- _
Y -1 -1 - 1. V5

(B. 10)

B.2 Deriving second law of thermodynamics properties

As stated in the literature [3, 14], testing using the entropy variables, such that w = v,

should result in a statement that states the Clausius-Duhem inequality or the second law

of theromodynamics. We can use our expanded form in (3.14) to investigate the artificial

generation of entropy due to the underresolution of the scheme:

z afff(V dV dt + (vT - U))
i Ot1+

dV

+T F F n - F' -n)- ('n - Fv -n dS dt

fvT (V.- (FI - Fv)) dV dt+ + R "r}=0 (B.11)

We start with the first term and the last integral term, which constitute the infinite-resolution

case terms. These, simplified, should simplify to a simple statement of the Clausius-Duhem
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statement. We start with the temporal term:

TUh = 1 ap
at - 15 at

s ap
Y-1- at + + I a,

-- 1 at

pE Op
p at

at

atP t P]
= 1 sap

~-1 at +
-y + 12a

-Y- i a:

- at
1 ap +-ia

- -I at Y-Ia

t P

+p 2E +

(pu )
P at

p(pv)a t
a L p

p2E]
P P

pw(pw)a t
(V-V)]

pE ap p2E ap
+ a t P at

+ pEap -
p at

0 2 Op
t -I t

+p2 V (

P

pE -
1

(_Y_-_) )

P 2 at

t [pE]

+ pEOp
t P at

1 ap= - s~t S9

p2 a+ a

sp 

- - s + a
I ap

- -

ap

1 2[:(1
ap
at

ap

a [pEj a [p(T -V)1
1-t [p at[p

I a [pE] 2 [E
a p - pkiM) t +P9 j at _p

+ 2 4
at

P at

~1 ( pE
_p pE

E 1

1

(V - V)]

p2 E p3

p p

p2 1 1

+p at (2
P2 OE
P at

(B.12)

Here, we have used the definition of p from (1.6). We can continue to use this definition by

taking the derivative of (1.6)!

( - )- P

+ P ( E- 1
(T - V)(-1_))]

1 1 a
(V~~ -Vt=

pa(pE)
P at

+at [pj

2Eat

p2 Ot

ap

ap =a(t

-1) E+

-1) a (E 1

- 09

2 at

1 1
(V -V)]

(B.13)
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Back into the temporal term:

Tv h 1 ap
at -I at

+ 1 pap
at '-Ip at + 09 [E 2

P at 2

We can use the definition of s from (2.5) and expand using logarithm rules.

Salogp + -log p +
- I a log a a

1 +p ap [E
-Y- 1 p at 2 (V -V)]

1 ap + ap ap 1 a (logp)
Y - I at I + t gp+at - 1 at

+ 9 _pE1 at

11
2( V P at [

- plgp:] + [plog p]

1 ap p ap E - (V V)]
Y - I at p at [ 2

p 9 [plog (pp-)] I 

-t2

Thus, we have:
T aUh

at

1 ap
- - at

a p 1

(Y -V)] (B.15)

py- 1]

- - [a s (2.27)

We can approach the inviscid divergence term, vT(V - FI), similarly. We start with the

divergence of the fluxes:

(

V-F'=

V -V + pV -V

u(Vp - _) + pu(V - V)+ pVu -V + 2

v(Vp-Y)+-pv(V-_V)+pVv-V+ a

w(Vp - V) + pw(V -L)+ pVw - + P
__ z

H(Vp.V) +pH(V -_V)+ p -VH j

(B.16)
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0

0

-rT V2 T

0

'V - (T - Z)

So we can write:

vTg -FI)
s

-Y-1
+ -y+ 1 pE)

7-1 p
(Vp.) +

"pu 2 7+ (Vp
p

+ p22
p

+Pv
p 03

V)+ pv2
p

+pvp
p 0y

(Vp V)

(V -) )+ p (V - )
p

pw&p
p 5z

p
p

+ p2(Vp V)2
p

+ Vu-V+
p

E+

2 2

p

p2V

p
v-V+ P w vw-V

p

- (Vp.V)
p)

= Ks+
Y-1

- )
p

Y+l1
7--l

2 pE

p

+ [ Ips+ Y+ 1[- 
-

'+

p2
+ _V-(VV) -

p
1 +

S+
7Y-l '.-l

+ P(V
p

-2p
2E
p

e(VE-V)
p

- p(V- V))] (VpV)

- p+ - (pE - p

= jiS+i

(V-. ) )

Now, we note that the gradient of (1.6) is given by:

Vp= (-y- 1) (Vp)E+p(VE) -[kvP)~kvL 2 (Vp) (1 1-7) - pV (17-
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S
++ 1

-Y- 1

- -
p1

V21 (Vp-V)
PV

+p(V.V)-
p

p (V-V)p

+ p-V -(VV) V - (VE -V)

p 
p

(V-) -p] (VV)

+ IT7-17p - )+

- (VE V)
p

1

py- 1 p(V.V)1]

(B.18)

VI)) (B.19)

V.- v* H* =F H (B.17)

pE) (.V
pf

(E+
p

(VV)-P 2E

p

_V -

2
- (pE

p

p 2 (V+
p



Substituting and returning to the inviscid spatial flux:

V T(V-FI) = - 1 s+ T
7-1 7-Y -

(Vp-Y) + -- 1s+
L -1 y-1

= K s+ -Y (V7P -Y)

-)) (Vp-V)

+ - s+
[ - 1

1 Vp 1
-p-v+ (Vp-V)

-p I-1

11

- 1 s[Vp-V+p(VV)]+ _ (Vp-V)- 11 P -

-- 1 s(V-(pV))+ ( Vp-V)- 1 P -
y-l 7-1 1  - 1 p

- 1 (V-(psV)) + VS-(pE)+ V -V(pE)

- P(V') - E1 pV (logp)
-I -Y -

- (V - (psV)) - - V (log p) + Vp-V
p- 1  -)-1 p- 1

1Y -y Vp __

- (V -(ps))- pV- + Vp-Vy-1 y- 1 p -I

v T(V - FI) = - (V - (psV))

(B.20)

For the divergence of the heat flux term, vT (V - FH*), we have:

vT(V F H* _P [-TV2T] ITVVT
p RT

1 (VT)
R \T}
1 (VT\
ITV ' T)RT

1

R
1

+ -KT

(VT)-(V )

VT-VT)
T2

Here, we pause and note that the rightmost term is always negative! Now, we look at the
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Y- 1 -1 p(V-V)

I 1
7-1

1 Vp V
Y- P--

V T(V -F H )

(B.21)

-1 P (17- )

+ - 1VP - V+ (E- (V

(7p -_Y) + 171 s] (V-E)-



divergence of the viscous flux term, vT(V - Fv*). We have:

v T(V - _FV*)=PY (V.T) (

- =- - - V -( )
p

-P [V.V'--V. (V.'-)
p

p
p

(VVT )F = P VVI L(VV + (VV)T)-
2
3 ((vV) T

v) F

VV)F + VV (NV) T )F - ptr ((VV)TVI)

= - ((x)

Dy
D9v
ax)

2 (

p
p

[4[- A
u Dv2

)y 9XJ

2 (Du

+9-

OW/

'IV

09DWJ
2

+(au
-f-I-

2 +(OW) 2)

29 ()2)

2+ (W)2)

aw} +y
(B.22)

We note again that this term is always negative. We can now take the discovered terms and

substitute them into (B.11), assuming for the moment that the solution is continuous. This

gives:

-ps

+ T ,+fj R
dV dt + fj

VT

lv

f/
- [psV) dV dt

T (VT. VT\
- T2J

fjjV T(V .FV*)

IV dt

dV dt = 0
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vT(V - FV*) _

Dw )
2

J99jz

21D9W
OX-

I:

(B.23)

au 2

ax)

9U
9z

= - p(VV,



We can jimmy this to show:

dvdt V - [psVL] dV dt -j

{f 1K
K

Y T 1R VT -T)

R

dV dt - (y -)vT(V - Fv*)

This shows that the DG discretization in the infinite limit of resolution satisfies the Clausius-

Duhem inequality [14].
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