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1 Introduction

Markov random fields based on the lattice Z 2 have been extensively used in
image analysis in a Bayesian framework as a-priori models for the intensity
field and on the dual lattice (Z 2 )* as models for boundaries. The choice of
these models has usually been based on algorithmic considerations in order to
exploit the local structure inherent in Markov fields. No fundamental justifi-
cation has been offered for the use of Markov random fields (see, for example,
GEMAN-GEMAN [1984], MARROQUIN-MITTER-POGGIO [1987]). It is
well known that there is a one-one correspondence between Markov fields
and Gibbs fields on a lattice and the Markov Field is simulated by creat-
ing a Markov chain whose invariant measure is precisely the Gibbs measure.
There are many ways to perform this simulation and one such way is the
celebrated Metropolis Algorithm. This is also the basic idea behind Stochas-
tic Quantization. We thus see that if the use of Markov Random fields in
the context of Image Analysis can be given some fundamental justification
then there is a remarkable connection between Probabilistic Image Analysis,
Statistical Mechanics and Lattice-based Euclidean Quantum Field Theory.
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We may thus expect ideas of Statistical Mechanics and Euclidean Quantum
Field Theory to have a bearing on Image Analysis and in the other direc-
tion we may hope that problems in image analysis (especially problems of
inference on geometrical structures) may have some influence on statistical
physics.

This paper deals with the issues just described and above all it suggests a
program of research for dealing with the fundamental issues of probabilistic
image analysis.

What is the fundamental problem of Image Analysis? It may be stated as
follows: Given noisy images (possibly stereo) of the visual world in motion,
represent and recognize "structures" in some invariant manner. For example,
if the structures of concern are three-dimensional rigid objects then we want
this recognition to be invariant under the action of the euclidean group. Thus
symmetries play an important role in the whole process. Ultimately, we want
to identify the mechanisms (circuits) which perform the full recognition task.
There are three aspects to this problem: a) the identification and representa-
tion of a priori knowledge of the visual world without which the recognition
cannot take place; b) the extraction of knowledge from the imprecise images
available about the visual world and c) understanding the correct interaction
between a priori knowledge and the imprecise data available in the form of
images. It is this formulation of the problematique that suggests a Bayesian
framework. In this paper we deal only with some partial aspects of b) and
c) and it is here that the connection with statistical physics enters.

The visual world is a continuous world and if we believe that it is im-
portant to capture symmetries then mathematical formulations should not
be on the lattice L but should be based on R 2 . Even if we are interested
in algorithms on a digital machine which necessarily involve discretization,
then in order to capture the symmetries in the limit of lattice spacing going
to zero attention must be paid to the discrete formulations of the problem
(see for example, KULKARNI-MITTER-RICHARSON [1990]).

This paper is organized as follows. In section 2 we discuss Markov fields
and Euclidean fields and state the conjecture regarding Osterwalder-Schrader
fields. Section 3 is concerned with a variational problem in Image Analysis
and its probabilistic interpretation and it shows how these ideas are related
to those of Section 2. Finally in Section 4 we discuss Stochastic Quantization.
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2 Markov Fields and Euclidean Fields. (NEL-
SON [1973])

Let Rd denote Euchidean d-dimensional space (d > 2) and let S(Rd) denote
Schwartz space. If V is a topological vector space, a linear process over V is
a stochastic process 9: indexed by V which is linear and such that if f, -4 f
in V then T(fa) --+ q(f) in measure. This implies that q:(f) for f E V is a
random variable over (Q, F, , ).

Let qo be a linear process over S(Rd). If A C Rd is open, A(A) be the
a-algebra generated by p(f) with support of f C A and if A is any subset of
Rd let A(A) = n A(A') where A' ranges over all open sets containing A.

A'DA

A(A) will also denote the set of all random variables which are measurable
with respect to A(A). Let Ac denote the complement of A and 0A denote
the boundary of A.

A Markov field on Rd is a linear process y over S(Rd) such that when-
ever A is open in Rd and a is an integrable random variable in A(A) then
E(cajA(Ac)) = E(aIA(0A)). Here E denotes conditional expectation.

Let O(d) be the Euclidean group of Rd. By a representation T of O(d)
on some probability space (., F, /) we mean a homomorphism r/ -- T(rq) of
O(d) into the group of automorphisms of the measure algebra and this group
acts in a natural way on random variables.

A Euclidean field is a Markov field y over S(Rd) together with a repre-
sentation T of O(d) on (Q, ., it) such that Vf E S(Rd) and rV E 0(d)

(Covariance) T(i)(P(f) = o(f or-1 ), (2.1)

and if p in the reflection in the hyperplane R d- l

T(p)a = a, a E A(Rd-l). (2.2)

Consider the mapping

Sn (Rd)n C

: Sn(fl, " , fn) = E(p(f,) ... (fn))

and assume it is continuous. By the Schwartz Kernel Theorem, there exists
a distribution S, E S'(Rdn) such that Sn(fl, ' , fn) = Sn(fi 0 0 fn)-
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Nelson proves that the sequence of distributions S,, satisfy euclidean in-
variance, symmetry and Osterwalder-Schrader positivity, namely, if A is the
half-space x d > 0, so that 0A is the hyperplane Rd-l and Ac is the half space
xd < 0 then E[(T(p)&c)a] > 0 where ac E A(A) and T(p)& E A(Ac).

An example of such a euclidean field is obtained as follows. Let SR(Rd)
be the real Schwartz space, let m > 0 and let H be the real Hilbert space com-
pletion of SR(Rd) with respect to the scaler product < g, (-A + m 2 )-lf >
where A is the Laplace operator. Let qo be the unit Gaussian on H, i.e. qz is
a real Gaussian process indexed by H with mean zero and covariance given
by the scalar product on H. Extend p to the complexification of H by lin-
earity. Restricted to S(Rd), qp is a linear process over it. Nelson proves that
cp is a Euclidean field, that is it is Markov and satisfies euclidean invariance,
symmetry and Osterwalder-Schrader positivity. Indeed the Markov property,
covariance property and reflection implies Osterwalder-Schrader positivity.

Non-gaussian random fields can be constructed using Multiplicative func-
tionals or measure transformations. Let S° be a Markov field over S(Rd) with
the underlying probability space (f, .F, hz). We say, that a random variable
, is multiplicative if for every open cover {Ai} of Rd, there exists strictly
positive pi in A(Ai) with /3 = I i. We shall see later how we construct

P(q) 2 fields using these ideas.
To see the connections with Gibbs density let us proceed formally. Let

Ho(x) = X((VW(x))2 + m2( (x))2)

and consider the formal expression

exp(-JHo(x)dx) n d (x).
xER2

The rigorous interpretation of this expression is as a Gaussian measure y,
on S'(R2 ) with mean zero and covariance C = (-A + m 2)-1 . This measure
corresponds to the free euclidean field. Non-gaussian measures are obtained
by considering formal expressions

exp(- j[Ho(x) + AP(o(x))]dx) 1n do(x)
ven xER 2
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where P is an even polynomial and A is a coupling constant. The above
corresponds to the canonical Gibbs density for transverse vibrations of an
elastic membrane subject to the non-linear restoring force F = -m2qp(x) -
AP'(V(x)), (after integration over momentum variables O(x)), and ' denotes
derivative).

Now if 9 is the unit Gaussian process over S(R 2 ), then P(y), for an even
polynomial does not make sense. To fix ideas let us consider the case where
P(p) = y4. It turns out, however that

P4: (g) - Jg(x): (x) dxforg e L'nLf

has a well-defined meaning in a limiting sense in L 2(Q, ', it), where: (X)4:

is an element of the 4th Homogeneous class. In a more concrete way,: 9 3 :
go3- 3E(p02 )D and this is well-defined. Now if we consider

exp(- fg(x)': ( 4 (x) : dx)

E(exp(-f g(x): W4 (ax): dx)

then # is a multiplicative random variable and we are able to construct the
non-gaussian measure

dy = exp(-j f (4 d)) d)
d exp(- f : r4 ' dx)

This measure is the so-called (qp4)2 -measure.
The proof that (0p4) 2-measure defines a Markov field is surprisingly diffi-

cult and has been accomplished only recently (see ALBEVERIO, HOEGH-
KROHN and ZEGARLINSKI [1989]). It depends on the complicated theory
of local specifications, related Gibbs states and cluster expansions. On the
other hand the property of Osterwalder-Schrader positivity is much easier to
verify. With a view to proving the Global Markov property and for problems
in Image Analysis we advance the following conjecture.

We define an Osterwalder-Schrader field (O-S) on R 2 to be a linear pro-
cess qp over S(R2 ) which satisfies the Euclidean covariance property (2.1) and
Osterwalder-Schrader positivity. For example an Osterwalder-Schrader field
may be obtained by considering a function of a Markov field. We conjecture
that every Osterwalder-Schrader field can be obtained as a function of a
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Markov Field. We call such a Markov field a Hidden Markov Field for the
O-S field.

Let us see this conjecture in the familiar context of stochastic processes.
Let (qptlt E R), Ap : f -Q- V be a stochastic process, which is continuous in
probability, stationary, symmetric (i.e. pt and p_-t are stochastically equiva-
lent). It is O-S positive if V 0 < tl < ..* t,, V f: V'" C, bounded Borel
(V is a topological vector space) we have

< f( ,tl ... I(n), f(O-tl ,.. *-tn) >LZ2(Q,FP) > 0.

Now, let Fbt : Q -V V/, be a stationary, symmetric Markov process and let
b: V -+ V be bounded and Borel.

Define a new process by

vt(w) = b(st(W))-

;5t is called a Markov extension of pot. pt is symmetric and stationary and
satisfies O-S postivity but is not necessarily Markov. The conjecture would
be:

Does every stationary, O-S process have a Markov extension?
This conjecture in discrete-time is not true (cf. ARVESON [1986]) but in

the form stated previously may be true.
(It is clear that every bounded Borel function of a symmetric, stationary

Markov process is O-S positive).

3 Probabilistic View of Image Segmentation

We think of a noisy image as a function g : Q -- R where Q C R 2 is a
bounded, open set. We assume g E L°'(Q). A variational formulation of the
image segmentation problem due to Mumford and Shah (cf. MUMFORD-
SHAH [1989]) is as follows. Approximate g by a function f and a closed set
r C Q such that the following energy function is minimized:

E(f, r) = J If -g 2 dx + IVfl2dx + aH(r) (3.1)

Here f is required to be in WV, 2(Q\r), H'(T) denotes the 1-dimensional
Hausdorff measure of r and 3, a are positive constants. We would like to
give a probabilistic interpretation of E(f, r) by considering
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exp(- IV 12d aHl (r))

as a Gibbs density with respect to a suitable reference measure which is to
serve as a prior measure on (f, r) and exp(- f Ig - f12dx) as a likelihood
function of g given f. The choice of the energy functional is dictated by the
requirement that f should approximate g in the L2 -sense, it should be smooth
away from the boundaries r and the total length of the boundary should be
short. Note that for fixed r, exp(- fa/r [Vf 2dx) nIEa\r df(x) would have
a rigorous interpretation as a Gaussian measure ,uc with mean zero and
covariance C = (-A)-1 on S'(2/Fr). Using the recent work of Surgailis (cf.
ARAK-SURGAILIS [1989]) we can give a rigorous interpretation as a density
to the following:

n

exp(- n IZAf 12dx -2 Ef(ri) - (p(n))
a\ U ri i=I

i=l

n

which, for an appropriate T(n), is a density over f E Wo'2(f\ Uj ri), n and
i=l

a set of straight lines ri which form together with X2 a polygonal partition
of fQ (cf. MITTER-ZEITOUNI [1990]). We outline here the basic result of
Surgailis which constructs a measure on closed polygonal partitions of Q.

Let Q2 be a closed convex subset of R2 with smooth boundary. In R 2 ,
choose coordinates (t,x) such that, for all y E Q, t(y), x(y) > 0. Let CQ
denote the lines which intersect Q, each line t E CQ is parameterized by its
distance from the origin pe and the angle it forms with the t = 0 axis, ae.

Let tL(d£) be a uniform measure on the set ae, pel£ E CQ. The Poisson
point process with intensity jt(de) will be denoted yon,'and the measure it
induces on the boundary 0f2 by the hitting points {(xe, te)lte = inf{tle E Q}}
is again a Poisson point process on the triple (x, t, v,) with intensity /an. Here
and in the sequel, v denotes the velocity of the particle, i.e. the tangent of
the angle formed by the trajectory and the t axis.

For any line £ E C4, let ye denote the slope of e. Clearly, y(de) can be
considered as a measure on ve and xe, the intersection of f with the x axis.
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In the sequel, we consider the measure u(dv, dx) obtained from the uniform
measure p(de) on a, p, i.e.

dv
t(dt) = (dv, dx) = dx( +2 (3.2)(1+v2 )

Inside Q, construct a point process on the quadruple (t, y, v', v") with
intensity

lPa(dt, dy, d', dv") = v' - " Idydt(1 + (v' (1 + (v" (3.3)
(1 + (vI)2)3 (1 + (VII)2)(

Finally, construct a random partition of Q as follows:
Pick up on &ff, no triples (t, x, v) according to the law I aon , and inside Q,

n1 quadruples (t, y, v', v") according to the Poisson process with intensity / P .

At each of those points, start a line of slope v (two lines of slopes v', v" in
the case of interior points) and evolve v according to the Markov transition
law

P(vt+dt E dulvt = v) = u - v (dudt (3.4)

Finally, at each intersection of lines (when viewing it in the direction of grow-
ing t) kill the intersected lines. Clearly, such dynamics describe a random
partition of Q by polygons, c.f. fig. 1. The basic result of Arak and Surgailis
is:

x

t

Figure 1: Random Polygonal Parltlon
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Lemma 3.1

1 n
P(n, £ E dei,= 1,. ,n)= p(d)..* . (dn) exp(-2 E C£(£)) (3.5)

i=1

where C(£i) denotes the length of the i-th segment.
Note that due to the presence of n in (3.5), one can't consider (3.5)

directly as a candidate for a density: indeed, if one were to consider P(n, e, E
-t e), the required normalization constant (as e -- , 0) would have depended
on n and therefore, a path with no jumps will be infinitely more likely than
a path with one jump.

One way out of this problem is by using an appropriate definition: Let

zn J ... f: P(ni, E dii, 1,,n)
CD 'D
0o

n=O

(Z- ) is the probability of having n lines in a specific partition. Now, one
may define:

Definition The prior density of a partition (n, ei) is given by

Zn P(n, ei E £ Ei = , 1,*.n)
p(n, e;) = ( -)lim Pn (3.6)Z E--O 22n3

Combining these ideas with some of the ideas contained in Dembo-Zeitouni
(cf. DEMBO- ZEITOUNI [submitted]) the desired result referred to before
can be obtained. The more general problem of interpreting exp(- f IVfl 2 dx-
H'(r)) as a density remains open.

The interpretation of d fn If - gl2dx + fn\r IVf 2dx + acHl(r) as a pos-
terior density accomplishes something important. It frees us from obtaining
Maximum A Posteriori estimates of (f, r) via minimization of the above
functional. We can in principle obtain other estimates such as conditional
mean estimates. Indeed for closed, convex partitions of Q it opens up the
possibility of doing inference on geometries via Monte-Carlo simulations.
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4 Stochastic Quantization (see BORKAR-
CHARI-MITTER [1988] for Stochastic Quan-
tization of (W4)2 fields).

The problem of stochastic quantization for the energy functional (3.1) is to
create a Markov process whose invariant measure is exp(-E(f, r)). In this
section we wish to suggest a program for achieving this goal. We concentrate
on the prior density exp(- fo JVf 1 2dx - cHl(r)). The first step in the pro-
cedure is to replace the above energy functional appearing in the density by
an approximating functional

4E(f,v) = j Vf12(1 - v 2)ndx + a ((lfl)( 2) + + - )dx.

(4.1)
In (4.1) the variable v(x) E [0,1] should be thought of as a control variable,
which controls the gradient of f and depends on the discontinuity set r, n is
a parameter which tends to infinity. The above expression makes sense for
f, v E W' 2 (Q2). 1-(1-v 2 )n approximates smoothed neighbourhoods of r and
the approximate boundaries can be identified with (1 -v 2 )n _ 0. If we denote
by un(B) = 2(n + 1) fB v(1 --v 2)nlVvldx, then essentially Pn(Q) -.+ H 4 (r)
in a weak sense. For details of this approximation scheme see AMBROSIO-
TORTORELLI [1990].

The first step in the program would be to identify

exp(-£n(f, v) 1I d(f(x), v(x)) _ dt n
zER 2

as a measure in a suitable distribution space. The covariances involved will
have appropriate boundary conditions. One can then study the weak con-
vergence of this measure dun as n -, oo. The functional derivatives of 4E
with -respect to f, v can be computed:

6 -= -V.(Vf (1Vf -2)n) (4.2)

v E = -acV (Vv . (1 - v2 )n) + Zn(lVf 2 + caIVvI 2)(1 -V2)n

an 2

+ -16 (4.3)
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(There are additional terms involving the normal derivatives).
In analogy with the study of stochastic quantization of (~4)2 fields, the

problem of stochastic quantization for fixed n is the study of the coupled pair
of stochastic differential equations

df(t) = 5f dt + dw(t) (4.4)
sf
64

dv(t) - dt + dv(t) (4.5)

where w(.) and v(.) are infinite-dimensional independent Brownian motions.

5 Conclusions

The conceptual program outlined in this paper is quite general and may be
applied to other variational problems arising in Image Analysis, for exam-
ple, those involving curvature terms. These variational problems may be
important to obtain non-overlapping segmentations of images with a view to
identifying occluded regions.
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