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Abstract

Deciding how to represent and manage uncertainty is a vital part of designing complex
systems. Widely used is a probabilistic approach: assigning a probability distribution
to each uncertain parameter. However, this presents the designer with the task of
assuming these probability distributions or estimating them from data, tasks which
are inevitably prone to error. This thesis addresses this challenge by formulating a
distributionally robust design optimization problem, and presents computationally
efficient algorithms for solving the problem. In distributionally robust optimization
(DRO) methods, the designer acknowledges that they are unable to exactly specify
a probability distribution for the uncertain parameters, and instead specifies a so-
called ambiguity set of possible distributions. This work uses an acoustic horn design
problem to explore how the error incurred in estimating a probability distribution
from limited data affects the realized performance of designs found using traditional
approaches to optimization under uncertainty, such as multi-objective optimization.
It is found that placing some importance on a risk reduction objective results in
designs that are more robust to these errors, and thus have a better mean performance
realized under the true distribution than if the designer were to focus all efforts on
optimizing for mean performance alone. In contrast, the DRO approach is able to
uncover designs that are not attainable using the multi-objective approach when
given the same data. These DRO designs in some cases significantly outperform
those designs found using the multi-objective approach.

Thesis Supervisor: Karen E. Willcox
Title: Professor of Aeronautics and Astronautics
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hi, h 2  Half-widths at uniformly spaced points in the horn flare
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i Imaginary unit, I
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L Length of the horn from inlet to outlet

M Multi-objective design optimization problem

m Sample size

'P Full observability design optimization problem

P Ambiguity Set

p Empirical distribution from a sample of the uncertain parameters

PQ Probability density function of the quantity of interest

p* Worst-case distribution within the ambiguity set

Pu Probability density function of the uncertain parameters

Q Quantity of interest (Qol)

R Radius of the truncated absorbing boundary in the horn model

r Radius of ambiguity

Normalized radius of ambiguity (0-1)

S Sample average approximation-based design optimization problem

s Reflection coefficient of the acoustic horn

Sm Standard deviation in performance of design xm under the true
distribution Pu
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u Vector of uncertain parameters

U Space of possible uncertain parameter vectors

v Non-dimensionalized pressure
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X Space of possible design vectors

xec True optimal design-an optimizer of '

xmI Optimal design computed using a sample size m
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z Dummy variable used in the optimization over a K-L divergence
ambiguity set

zoo True optimal mean performance-the optimal objective value in 'P
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Zm Mean performance of design xm under the sample distribution p
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CHAPTER 1

INTRODUCTION

In designing a system to achieve optimal performance, the designer typically evalu-

ates system performance using some quantity of interest (QoI) (e.g., cost, efficiency,

weight). The QoI depends on design variables, which the designer wishes to select

optimally. Typical design variables include geometric quantities (e.g., span, sweep

angle for an aircraft wing), material properties (e.g., material stiffness, density for an

aircraft wing spar), or operational decisions (e.g., nominal altitude for an aircraft).

The QoI will also depend on other parameters which are out of the designers control.

Furthermore, in any real-world system the designer may have imperfect knowledge

of their true values, rendering these parameters uncertain. Typical examples of such

uncertain parameters in the design of an aircraft are windspeed (and thus operational

Mach number), or cargo weight.

Computational modeling of the system of interest provides the designer a means

to cheaply and rapidly explore how changes in the underlying parameters affect the

output quantity of interest, and thus supports more informed design decisions. We

consider the setting in which the designer has access to a high-fidelity computational

model of the system of interest. The model takes, as input, values for the design

variables and the uncertain parameters, and returns an accurate evaluation of the

QoL. In practice, such computational models are often complex, proprietary, legacy,

and/or written in poorly documented code that the designer may not have time to

decipher. With these settings in mind, we treat the model as a black-box. This means

we assume no knowledge of the model structure or the behavior of the output variable
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and its functional relationship to input variables. This makes the design methodology

discussed herein general in the sense that it can be applied to any system, provided

the designer has a computational model with input and output as described above.

The field of design optimization under uncertainty concerns the specification, rep-

resentation, and treatment of uncertain parameters during a design process. The

importance of considering the nature of the uncertain parameters in engineering de-

sign has long been established," the primary reason being that methods that simply

consider all parameters to be deterministic tend to over-fit designs to the chosen pa-

rameter values. This often results in degraded performance of the system when it is

exposed to the true uncertain operating environment.5'6

One decision a designer must make is in how to characterize and represent the

uncertainty. The most prevalent approach is to treat the uncertain parameters as

random variables, with each parameter being assigned a probability distribution de-

scribing how it varies.2' 5 Other treatments and representations of uncertainty have

also been established,7 such as interval or set-based uncertainty,8-1 0 and possibility

theory." In this work we focus on the case of probabilistic uncertainties, where the

designer must specify a probability distribution for the uncertain parameters.

In practice the designer will never have perfect knowledge of how the underlying

system parameters vary, and thus they will not have access to the exact probabil-

ity distribution governing an uncertain parameter. Consequently, the designer will

be forced to assume a probability distribution, or to estimate it from known data,

processes that will always be prone to error.

Fortunately, the designer usually has some incomplete knowledge about the uncer-

tainty, which can help mitigate this error. In this case we say the designer has partial

observability over the uncertainty. One situation in which partially observable un-

certainty commonly arises is the case when the designer has no knowledge about the

distribution of uncertain parameters itself, but instead has access to a sample of pa-

rameter values drawn from this distribution. This is the case, e.g., when the designer

takes discrete measurements of the uncertain parameters. In this work we will con-

sider this scenario, denoting by m the size of the sample (number of measurements).
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Of particular interest is the case where the sample size, m, is low. This represents

the situation where only limited data are available to characterize the probability

distribution.

Recently, a body of work has emerged from within the optimization community

studying an approach that explicitly accounts for the fact that one is never able

to exactly specify a probability distribution in practice.1 2 - 8 This approach, called

distributionally robust optimization (DRO), weakens the assumption of specifying a

single probability distribution for the uncertain parameters. Instead, it only requires

the designer to select a set of possible probability distributions-the optimization

considers all distributions within this set.

In this work we explore how imperfect knowledge of uncertainties affects the per-

formance of traditional optimization under uncertainty methods. In particular, we

show that these methods often produce designs that perform poorly when realized un-

der the true distribution of uncertainty. We then present a formulation of the design

optimization as a DRO problem. This formulation explicitly seeks designs that are

robust to deviations in the distribution of the uncertainty. We present computation-

ally efficient algorithms for solving the DRO problem, when the set of distributions

is constructed using either the L2 -norm or the Kullback-Leibler (K-L) divergence.

We apply this formulation to a model design problem and show that it outperforms

traditional design optimization under uncertainty methods when the uncertainty is

only partially observable.

The outline of this thesis is as follows. Chapter 2 formulates the problem of de-

sign optimization using only m, realizations of the uncertain parameters and presents

two traditional methods for solving this problem using sample average approxima-

tion (SAA), and multi-objective optimization (MOO). A model design problem is

also presented, which serves as a motivating example to illustrate the challenges as-

sociated with design under partially observable uncertainty. Chapter 3 presents a

formulation of the design problem as a DRO problem, and presents algorithms for

solving the resulting optimization problems. Chapter 4 presents the results of the

DRO approach applied to the model design problem. These results are used to an-
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alyze the performance of the approach, and compare it to both the SAA and MOO

approaches. Finally, Chapter 5 concludes the thesis and suggests possible areas to

explore in future work.
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CHAPTER 2

DESIGN OPTIMIZATION UNDER

PARTIALLY OBSERVABLE UNCERTAINTY

In this chapter we formulate a design optimization under uncertainty problem adapted

to the setting in which the designer only has access to a sample of realizations of the

uncertain parameters. In Section 2.1 we introduce a methodology for optimizing the

mean performance of designs using sample average approximation (SAA). In Section

2.2 we introduce a model design problem, to which we apply the SAA approach

and illustrate the consequences of partial observability. Finally, Section 2.3 discusses

multi-objective optimization (MOO), and explores how this widely used approach to

optimization under uncertainty performs in the partial observability setting.

2.1 Direct optimization using sample average approx-

imation

We denote the vector of design variables by x E X, where X is the feasible design space

encoding constraints on the design. To represent the uncertain parameters, we define

a probability space (Q, Y, Pu) with sample space Q, --algebra F, and probability

measure Pu. We define the random variable u : Q - U, which has dimension equal

to the number of uncertain parameters in the design problem. The uncertainty space,

U, represents the space of all possible realizations of the random variable, u. We use

subscripts to denote particular realizations of the uncertain parameters, i.e., U1 =

23



u(wo) for some wi E Q. We represent the QoL of our system as a function, Q (x, u),

of the design variables x, and the uncertain variables, given by the random variable

u. As the QoI, Q (x, u), is a function of the random variable u, it too is a random

variable, with probability measure denoted PQ. Thus, the performance of a design x

is completely characterized by the distribution PQ. Note that the randomness in the

QoI is induced only by the randomness in u. In a slight abuse of notation, we will

use Q(x, ui) to denote the deterministic value of the QoI evaluated at a realization of

the uncertain parameters, ui. The problem of design optimization under uncertainty

is thus to find a set of optimal design variables that produce a favorable distribution

of performance, PQ.

In this work we will be focus on optimizing the mean of the distribution in design

performance. In this case, assuming that a lower QoI is favorable, the optimization

problem we wish to solve is

'P: min Eo [Q (x, u)]. (2.1)
xEX

We denote the optimal objective value of ' by Z,, and a corresponding minimiz-

ing design by x,. A key limitation in solving 'P is that it requires the designer to

have exact knowledge of the probability distribution, P, governing the uncertain

parameters. In practice the designer will not have complete knowledge of the exact

distribution of the uncertainty. In the setting we consider, the designer has access to

a sample of m realizations of the uncertain parameters, drawn from the distribution

Pu. Consequently, the designer will be forced to use this sample to make an assump-

tion about the true probability distribution, with unknown impacts on the resulting

optimal design.

In this setting, a simple and commonly used approach is to use SAA. This amounts

to approximating the true distribution Pu using the empirical distribution p associ-

ated with the sample. In this case j1,.. ,pm denote the likelihood that the uncertain

parameters u are realized as u, ... , um respectively. This approach is justified by

the fact that as m. -+ o the empirical distribution p is will converge to the true dis-
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tribution Pu for most well-behaved distributions encountered in practice. For a given

random sample u1 ,..., um, with associated empirical distribution p, we use SAA to

write a finite sample analogue to 'P:

5: min E [Q(x,u) = mmin EpiQ(x, ui). (2.2)
xEX xEX

We denote the optimal objective value of 8 by Zm, and the corresponding optimal

design by xm. Note that Zm is the expected performance of xm under the sample

distribution ]. In practice, what we really care about is how the design xm performs

under the true distribution Pu. To this end, we define the expected performance of

the design xm under the true distribution of uncertainty, Pu, and denote this by

Zm = Ep [Q (xm, u)] . (2.3)

Note that Zm is able to be calculated by the designer, as it requires only the sampled

values of the uncertainty, whereas Zm is not observable by the designer, since it

requires knowledge of the true distribution P,.

As m -+ oc we expect 'P and 8 to be equivalent, so that Zm -4 Z, and x -+ x,0 .

However, for finite m this approximation will be subject to sampling error. Conse-

quently, the solution x, obtained by the designer in the finite sample setting will

differ from the true solution x,. Moreover, xm and Zm will vary between different

draws of the random sample. If the empirical distribution p generated by a partic-

ular sample draw is a good approximation of the true distribution Pu, then we can

reasonably expect x,, to be close to the true optimal design x.. On the other hand,

if the sample is not representative of the true distribution P, then x, may differ

greatly from the true solution x,, and the corresponding design performance, Zm,

may be poor.

The designer has no control or a priori knowledge of whether a particular sample

draw is representative of the true distribution. We thus seek design methodologies

that are robust to this sampling error, in the sense that over all possible sample

25



draws the methodology consistently results in designs that perform well under the

true distribution. To this end, we will be primarily interested in the performance of

designs averaged over all possible sample draws of size m. We will also be interested

in the risk level of the methodology, as indicated by how designs perform in the

worst-case sample draws.

2.2 Motivating example: the challenges of optimiza-

tion under uncertainty

In Section 2.2.1 we introduce a motivating example: the problem of designing an

acoustic horn for maximum efficiency subject to an uncertain operating condition.

In Section 2.2.2 we apply the SAA approach outlined in Section 2.1 to the horn

design problem, and investigate how partial observability affects the performance of

the resulting designs.

2.2.1 Model problem formulation

In this section, we introduce an example design problem that will be used throughout

this thesis to explore different design methodologies, and illustrate various aspects of

their performance. We suppose that we are tasked with optimizing the design of an

acoustic horn in order to minimize the amount of internal reflection present, and thus

maximize the efficiency of the horn. In order to analyze how the design of the horn

affects the amount of internal reflection, we utilize a computational model. A brief

summary of the model is presented in Figure 2-1 below and the description that fol-

lows. For more details on the theory behind the acoustic horn and the computational

model used, we refer the reader to References 19,20 and 21.
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+ h,L

1/3 L 1/3 L 1/3 L

rNIin I

Figure 2-1: The geometry of the acoustic horn model (Adapted from Ng et aL.').
The design variables used in this thesis are h1 and h2, while the remaining parameters
shown are considered Eixed.

The exterior domain is truncated by a circular absorbing boundary of radius

R = 25. The non-dimensional horn geometry is axisymmetric and is parameterized

by five variables. We consider three of these to be fixed parameters: the horn inlet

length L = 5, and half-width a = 0.5, and the outlet half-width b = 3. The remaining

two variables are design variables h, and h2, corresponding to the half-widths at two

uniformly spaced points in the horn flare (see Figure 2-1). Both design variables hi,

and h2 are constrained to lie within the interval [a, b) =0. 5, 3 ]. The governing

equation is the non-dimensional Helmholtz equation,

V2V + k 2V = 0, (2.4)

where v is the non-dimensionalized pressure, and k is the wave-number, which we

treat as the uncertain operating condition of the horn. The boundary conditions on
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the horn inlet Fin, horn surface FN, and far field boundary FR are given by

Fin ikv + = 2ik, (2.5)

N: On -0, (2.6)

FR: a - (ik - -L + 8R(1 kR) , (2.7)

where n is a unit vector normal to the corresponding boundary, and i = v . The

governing equation is solved to compute v using a reduced basis finite element model

with n = 116 basis vectors. The QoI for the acoustic horn model is the reflection

coefficient:

S = f vdf-1 , (2.8)

which is a fractional measure describing how much of an incoming wave is internally

reflected in the horn, as opposed to being transmitted out into the environment. It

is thus considered a measure of the horn efficiency, with a lower reflection coefficient

giving more favorable performance. Thus, framing the acoustic horn design problem

using the notation introduced in Section 2.1, we have:

Design variables: x = [h1 , h2 ]T, (2.9)

Design space: X = [0.5, 3 ] x [ 0.5, 31, (2.10)

Uncertain parameters: u = k, (2.11)

Uncertainty space: U = [1.3,1.5], (2.12)

Output Qol Q (x, u) = s. (2.13)

We perform an exploratory analysis of the acoustic horn design space to show how

the uncertain wave number affects the reflection coefficient for different horn designs.

For this study, we suppose that the wave number follows a fixed truth probability

distribution

u - P,, = Uniform(1.3, 1.5). (2.14)
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The design points explored comprise a 50 x 50 point, uniformly spaced grid in the de-

sign space X. For each design, the mean and variance of the Qol under the uniformly

distributed uncertainty is computed using 10-point Gaussian quadrature. Figures

2-2 and 2-3 show contour plots of the mean and standard deviation of the reflection

coefficient over the design space X.
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40
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Figure 2-2: Mean value of the QoI over the acoustic horn design space, for a uni-
formly distributed wave number.

We see that the reflection coefficient has a non-linear dependence on the design

variables. Horn designs in which x, > X2 result in poor mean performance. This is

expected since such designs feature a concave horn flare, resulting in a high degree

of internal reflection. We denote the design that achieves optimal (minimal) mean

reflection coefficient x,,, and the design that achieves minimal standard deviation

in the reflection coefficient by x,. The fact that these designs are distinct suggests

that it is possible to trade-off between improving the mean performance of the horn

design, and reducing the degree of variability in this performance. This type of mean-

standard deviation tradeoff will be explored further in Section 2.3.
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Figure 2-3: Standard deviation in the QoI over the acoustic horn design space, for
a uniformly distributed wave number.

In addition to these designs, Figures 2-2 and 2-3 also show three point-wise opti-

mal designs. These are the designs that achieve optimal performance at point-wise

values of the uncertain parameter, i.e. wave numbers of u = k = 1.3, 1.4, and 1.5,

respectively. Figure 2-4 shows the horn flare geometry of each of the aforementioned

designs, and the corresponding design performance-given by the Qol-over the range

of the uncertain variable.

We see that designs x1.3 , x 1.4 and x 1. all exhibit low reflection at the corresponding

design wave numbers, but also exhibit reduced off-design performance. We also see

from the performance of x, that it is possible to obtain a horn design with consistent

performance over the range of wave numbers, however, this comes with the downside

that QoI is relatively high everywhere. In fact, the performance of x, ends up being

superior to x, at almost all wave numbers. In this case we say that x, stochastically

dominates x,, since it performs better at every point in uncertainty space.
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Figure 2-4: Performance of designs that exhibit optimal mean performance (x,),
minimal variation in performance (x,), or optimal performance at a particular value
of the uncertain variable (x1 .3 , x 1 .4 , x 1.5).
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2.2.2 The consequences of partial observability

In this section we apply the SAA approach to the acoustic horn design problem. We

simulate T sample draws, each consisting of m random realizations from P,. For

each draw t = 1, ... , T, we solve 8 using an interior point methoda to obtain xm. We

then evaluate Zm, the performance of xm under the true distribution P,, by solving

Eqn. 2.3 using 10-point Gaussian quadrature.

In order to evaluate how the methodology performs across all sample draws, we

compute the average of Zm over the T sample draws, denoted by

1 T

1-p(Zm) = E [f{Zm,.. Z }] = T :ZM, (2.15)
t=1

where Z denotes the value of Zm in sample draw t. We evaluate the risk level of

the methodology using the notion of conditional value-at-risk (CVaR) (sometimes

referred to as expected shortfall (ES) or expected tail loss (ETL)). In our setting, the

CVaR at level 10% (CVaRio) is defined as the expected value of the worst 10% of all

sample draws. We approximate the true CVaRiO using T sample draws. Assuming

we have ordered the sample indices so that Z, ... , ZT is in ascending order, we can

define the approximate CVaRiO of Zm, denoted q(Zm), as

#(Zm) = E [{Z I t > 0.9T}] . (2.16)

For the sake of comparison, we also compute x, and Z,. Recall that these are the

solutions to the full optimization problem ' (Eqn. 2.1), which requires knowledge of

the true distribution P.. This problem is again solved using 10-point quadrature, this

time using the empirical distribution support and probabilities as quadrature nodes

and weights respectively. We simulate T = 500 realizations of random samples. For

each random sample we compute an optimized design, and evaluate the mean design

performance under the true distribution Zm, as described above. Figure 2-5 gives a

histogram of Zm values across the 500 sample draws, for sample sizes m = 5, 10, 20.

aAs implemented in the function fmincon, included in the MATLAB Optimization Toolbox2 2
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Figure 2-5: Histograms showing the mean performance of designs computed from
T = 500 sample draws of size m. The optimal, mean, and CVaR1O values over all
sample draws are indicated.

We see that for some sample draws, Zm is close to the true optimal objective

Z, = 0.0289. However, the long right tails of the histograms indicate that there are

also many sample draws for which Zm is far from Z,. This is especially the case as

we decrease the sample size m. In the m = 5 case, the CVaR1O is # = 0.0550. This

indicates that, in the worst 10% of sample draws, the QoI is over 90% higher (worse)

than the true optimum. This drop in performance is the consequence of designing

with only partial observability over the distribution of uncertainty.

In order to see how partial observability can lead to such a fall in performance,

we investigate how it is manifested in the resulting horn designs. Figure 2-6 displays

the performance of the best and worst performing horn designs obtained over all the

sample draws of size m = 5.
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Figure 2-6: Performance of two designs over the uncertainty space U. These are the
designs that exhibit the best and worst mean performance over all designs computed
using different sample draws of m = 5 realizations of the random variables.

We see that in the worst sample draw the realizations are clustered around one end

of the range of the uncertainty. As a result, the empirical distribution associated with

this sample is a poor estimate of the true uniform distribution. The design computed

using this sample is over-fitted to the empirical distribution, ultimately leading to

poor performance under the true distribution. In contrast, the best sample draw

has an empirical distribution that more accurately reflects the underlying uniform

distribution. These results show how using the SAA approach and neglecting to

acknowledge that we are dealing with partial observability often produces designs

that are over-fitted to the sample data.
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2.3 Robustness through multi-objective optimization

Directly optimizing for mean performance under the empirical distribution using SAA

is one widely-used approach to optimization under uncertainty. A common approach

to introducing robustness is to augment the SAA objective by adding a weighted

penalty on the variability in the performance of the design. This amounts to casting

the problem as a multi-objective optimization (MOO) problem, in which the designer

optimizes for mean performance across the sample, while simultaneously minimizing

the variability in performance within the sample. This section illustrates the potential

benefits of this approach in the partially observable uncertainty setting.

Reducing the variability in performance aims to prevent the optimization from

over-fitting to the given sample, thus leading to better performance under the true

distribution. To see this, consider the extreme case of a design with perfectly consis-

tent performance over the entire range of the uncertainty. Such a design will exhibit

identical performance under both the sample distribution and the true distribution.

However, minimizing the variability in performance alone has the downside that it

often leads to bad mean performance, as was illustrated in the exploratory design

analysis in Section 2.2.1.

In order to optimize for both mean and variability in performance, we introduce

the trade-off parameter A, which governs the relative importance placed on the mean

objective versus the standard deviation objective. Note that in the case A = 0, the

designer optimizes for the mean performance under the empirical distribution, and

thus the MOO problem reduces to the SAA problem, 8 (Eqn. 2.2). The MOO problem

for jointly optimizing the mean and standard deviation in performance over a sample

of the uncertain parameters, ui, ... , urn, with associated empirical distribution p, can

be written as
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M(A) min (1-A)Ef [Q(x,u)]+Ao-,[Q(xu)], (2.17)
xEX %

Mean Std. Dev.

where

m

Ef [Q(x, u)] = PiQ(x, uj),

0-0 [Q(x, u)] = PZ(Q(x, uj) - EO [Q(x, u)])2 ,

A E [0, 1].

We solve M(A) using an interior point methodb, and denote the resulting optimal

design by xm, where the value of A used will be clear from the context or explicitly

denoted using the notation xmIA. In this section, we suppose that the fixed truth

distribution of the uncertainty is Uniform[ 1.3, 1.5]. We are interested in how the

optimal design, xm, performs under this true distribution P, rather than the sam-

ple distribution ]5. To this end, we define the mean and standard deviation in the

performance of the design xm under the true distribution, and denote these by

Zn Ep [Q (Xm, u)], (2.18)

Sm OPu [Q (Xm, u)] (2.19)

As in Section 2.2.2, we solve these equations using 10-point Gaussian quadrature.

For comparison, we also define the true optimal designs that the designer is only able

to obtain if they have full observability over the uncertainty. These are denoted by

x.1,, and are solutions to M(A), with the empirical distribution p replaced by the true

distribution P,. The mean and standard deviation in performance of these designs

are denoted by ZIA and Sook, and are computed using Eqn. 2.18 and Eqn. 2.19,

respectively. Again, the notation "A" will often be dropped when the value of A used

is clear from the context.
bAs implemented in the function fmincon, included in the MATLAB Optimization Toolbox 22
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The canonical result sought in MOO is the trade-off curve between the two ob-

jectives, parameterized by the trade-off parameter A. In the full observability case

this curve is termed the Pareto Frontier, and describes the performance of the set

of designs that achieve an optimal affine combination of Z. and S,. In the partial

observability case, the designer is unable to generate the true Pareto Frontier, as they

do no not have access to the true distribution P.. Instead, for each random sample,

we can generate a set of designs that achieve an optimal affine combination of sample

mean and sample standard deviation, i.e., a set of solutions to M(A) for A E [0, 1].

Note that being an optimizer of M does not necessarily guarantee good mean and

variance in performance under the true distribution, which are given by Zm and Sm

respectively.

To illustrate this, we solve M(A) repeatedly, T = 1000, 600, 200 times, for different

samples of size m = 5,10, 20 respectively. For each resulting optimal design, xm, we

evaluate the mean, Zm, and standard deviation, Sm, in performance under the true

distribution. We repeat this for 20 uniformly spaced values of A E [0, 0.95]. Figure

2-7 shows the mean versus standard deviation trade-off curves for each sample size,

with the full observability Pareto Frontier included as a baseline. Recall that the

p(-) operator computes the average of these values over all of the T realizations (see

Eqn. 2.15).

The first thing to note is that the mean-variability curves for a finite sample size,

m, do not coincide with the Pareto frontier. As the sample size is decreased, the trade-

off curve moves away from the optimal Pareto Frontier, becoming sub-optimal. The

shape of the curve also changes as we decrease the sample size. For small m, we see

that optimizing for the sample mean alone no longer gives the best mean performance

under the true distribution. Instead, shifting some of the objective weight onto the

standard deviation objective actually results in an improvement in the true mean

performance.
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Figure 2-7: Mean versus standard deviation curves generated using MOO, with
varying sample size, for the acoustic horn design problem. Each curve corresponds
to a sample size m = 5,10,20, and is computed by averaging over T = 1000,600,200
samples, respectively. Each point on a curve corresponds to a particular value of

A E [0, 1].

In addition to the average performance over all realizations, we are also interested

in how the performance of designs varies between different sample realizations. To

investigate this, we analyze the trade-off between average mean performance over

all realizations, pt(Zm), and the CVaRi0 in mean performance between realizations,

< (Zm) (see Eqn. 2.16). These mean-risk trade-off curves are shown in Figure 2-8.
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Figure 2-8: Mean versus CVaR10 curves generated using MOO, with varying sample
size, for the acoustic horn design problem. Each curve corresponds to a sample
size m = 5, 10, 20, and is computed by averaging over T = 1000, 600,200 samples,
respectively. Each point on a curve corresponds to a particular value of A e [ 0, 1 ].

We see that increasing A from zero (i.e., adding some importance to the variability

objective) improves both the average and CVaR10 in performance over repeated trials.

In particular, we see that if the optimal value of A is chosen for a sample size m =

5, the average performance of the resulting designs is better than a sample of size

m = 10 with A = 0. Similarly, samples of size m = 10 with the optimal A parameter

outperform samples of size m = 20 with A = 0. This suggests that introducing a

variance reduction objective and optimally selecting the trade-off parameter A can

result in an improvement in the mean performance of designs, in terms of both the

average and CVaR1 0 over many sample realizations.

However, increasing A past a critical value leads to a sharp reduction in the average

and CVaR1 0 of mean performance over many sample realizations. To understand
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this trend more concretely, we revisit the sample realizations studied in Figure 2-6.

Recall that these so-called best and worst realizations produced the best and worst

performing designs (respectively) using the SAA approach. Figure 2-9 shows the

performance of horn designs found by solving M for A 0, 0.5, and 0.95, using the

worst case sample of size m 5.
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Figure 2-9: Performance over the uncertainty space, LU, of designs computed by
solving M(A), with A = 0,0.5,0.95 and the worst-case sample of size m = 5 realiza-
tions.

Recall that in the A = 0 case, M reduces to 8 and the designer optimizes for

mean performance at the realized uncertainty values. The resulting design in this

case exhibits good performance in the sampled region of the uncertainty space, but

poor performance in the region where the uncertain parameter was not realized in

the sample (in this case near u = 1.3). In this way, the design has been over-fit to

the sample. Adding weight to the variance reduction objective gives the A = 0.5 de-
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sign. This design exhibits worse performance at some realized values of the uncertain

parameter, but in return exhibits more consistent performance over the uncertainty

space. The net effect is that this design has improved mean performance under the

true distribution of uncertainty, despite having worse mean performance under the

sample distribution. However, we see that as A is increased further to A = 0.95,

the mean performance under the true distribution suffers, as the variance reduction

objective dominates and leads to consistent, but consistently poor performance.

Figure 2-10 gives a plot analogous to Figure 2-9, this time showing the performance

of designs found using the best possible sample of size m = 5 studied in the previous

section.
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Figure 2-10: Performance over the uncertainty space U of designs computed using
A = 0,0.5,0.95 and the best-case sample of size m = 5 realizations of the uncertain
parameter.

In this case, adding weight to the variance reduction objective by increasing A

always degrades design performance under the true distribution. However, this re-
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duction is minor at moderate values of A, e.g., in the A = 0.5 case shown. This

suggests that while the variance reduction objective may be beneficial to design per-

formance when optimizing with a poor sample, it may also harm performance when

a favorable sample is used.

From these results, we can conclude that adding a variance reduction objective

makes the design methodology robust to poor realizations of the sample. This ro-

bustness is achieved by ensuring that the designs we select are able to generalize from

the sample distribution to the true distribution. However, a criticism of the MOO

approach is that the variance reduction objective does not directly robustify designs

against partial information. Instead, it results in designs that are generally conserva-

tive, performing consistently at the cost of performing well on average. In particular,

if the designer increases A past a critical value the design will become overly conser-

vative, leading to consistently poor design performance. Note that this critical value

is not known to the designer a priori. Moreover, it depends on the particular realiza-

tion of the sample used, so there is no way to guarantee that the value of A used in

the optimization does not exceed the critical value. In this way, the addition of the

variance reduction objective can in fact be a threat to mean design performance.

In this section we have illustrated the importance of ensuring that designs are

not over-fitted to the empirical distribution given by a random sample. This natu-

rally raises the question of whether we can explicitly seek such designs, rather than

achieving this feature as a secondary effect of variance reduction.
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CHAPTER 3

DISTRIBUTIONALLY ROBUST DESIGN

OPTIMIZATION

In this section we present a principled method for introducing the notion of robust-

ness against variability in sample distributions into the design problem, using the

mathematical framework of distributionally robust optimization (DRO). Section 3.1

formulates the problem of finding distributionally robust designs from a given sample

of the uncertain parameters. These are designs that achieve good mean performance

under the sample distribution, while requiring that this performance be robust to

deviations in the distribution of the uncertainty. Section 3.2 discusses how to select a

set of probability distributions to robustify the design against, and presents efficient

algorithms for solving the resulting distributionally robust design problem.

3.1 Formulation

The central idea behind the distributionally robust approach is to optimize the de-

sign while considering a set of possible distributions of the uncertainty, rather than

a single distribution.13 2 3 The set of distributions that we consider in the optimiza-

tion is termed the ambiguity set,'4 which we denote by P. We seek a design that

performs well for all distributions within the ambiguity set. This is achieved by solv-

ing a minimax problem to optimize the worst-case expected performance under any

distribution within the ambiguity set. Using the notation introduced in Chapter 2.1,
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the distributionally robust design optimization problem can be written

minmax EP {Q (x, u)], (3.1)
xEX PEP

where P E P denotes probability distributions within the ambiguity set P. In the

setting we consider, the designer has access to a sample of m independent realizations

of u, randomly drawn from Pu and denoted u1,..., um.,. This sample is used to

compute the expectation in the DRO problem (Eqn. 3.1), giving the finite sample

DRO problem
m

minmax ZiE Q(x,u). (3.2)
XCX pEP i=1

We denote the optimal design found in D by xm, where the ambiguity set used in

the optimization, P, will be clear from the context, or explicitly denoted using the

notation xmIp. Solving 'D does not require knowledge of the true distribution of

uncertainty. Instead it requires the designer to specify the ambiguity set, which is

assumed to contain the true distribution with high probability.

The inner maximization problem in D involves finding the worst-case expectation

over all distributions in this ambiguity set. This inner maximization problem gives

the worst-case distribution

m

p* = argmax Ep [Q (x, u)] = argmax PiQ(x, uj). (3.3)
PEP PEP .

Note that in the context we consider, the ambiguity set contains only discrete prob-

ability distributions, which we denote p (c.f. P for a general distribution). This

ensures that computing the expectation under any distribution in the ambiguity set

is tractable given only a black-box computational model. Once the worst case dis-

tribution p* is found, the outer minimization problem finds the design that achieves

the best possible improvement in the mean performance under this distribution. This

outer problem now has the same form as the SAA problem, 8 (Eqn. 2.2), with the

worst-case distribution p* taking the place of the empirical distribution p, and can

be solved using similar optimization methods. A noteworthy difference however, is
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that the worst-case distribution within the ambiguity set may differ between designs.

Thus if an iterative design optimization method is used, the inner optimization needs

to be re-solved at each iteration. Furthermore, it is also worth noting that if the

worst-case distribution p* is allowed to have many zero entries-as is the case when

an L2-norm ambiguity set is used (see Section 3.2.1)-then the outer optimization

problem can become poorly conditioned, and will consequently be sensitive to the

initial condition. For the acoustic horn design problem, we are able to overcome

this challenge by switching from an interior-point method to a trust-region reflective

algorithma.

Finally, it is interesting to note that in contrast with the MOO problem, M

(Eqn. 2.17), we are not explicitly optimizing for a reduction in the variation in perfor-

mance over the uncertainty space. In Section 2.3 we showed that adding a variance

reduction objective to the problem does make the resulting designs robust to changes

in the distribution of uncertainty. However, we also showed that this can come at

the cost of over-conservatism, with the resulting designs often exhibiting consistently

poor performance. In the DRO approach we only explicitly optimize for mean per-

formance. We introduce robustness by optimizing for mean performance under all

distributions within the ambiguity set. This requirement prevents the optimization

from over-fitting the design to a single distribution that, under partial observability,

is likely to differ from the true distribution. The DRO formulation often implicitly

reduces the variation in performance over the uncertainty space, but more impor-

tantly, it guarantees that the resulting design is robust to deviations in the uncertain

distribution. The challenge of DRO lies in selecting the ambiguity set, and computing

the worst-case distribution in a computationally efficient manner.

aAs implemented in the function fmincon, included in the MATLAB Optimization Toolbox 22
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3.2 Constructing the ambiguity set and finding the

worst-case distribution

The tractability and success of the distributionally robust approach relies on a careful

selection of the ambiguity set P. In the context we consider, the designer has access

to a sample of m realizations of the uncertain variables. We define Q' C Im to be

the set of all possible vectors assigning probabilities to each of the m realizations, i.e.,

m

Qm = {p E RM : pi = 1pi > 0 i = 1,m} (3.4)
i=1

Each element in Qm is a vector p, where pi gives the probability that the random

variable u takes the value ui, for i 1, ... , m. If we only consider the empirical

distribution associated with the sample, then the ambiguity set becomes a singleton,

P = {}. This reduces the problem to the SAA problem 8 (Eqn. 2.2). In the

DRO approach, we acknowledge the fact that the empirical distribution f does not

perfectly reflect the true probability distribution. This is done by including additional

distributions in the ambiguity set.

To ensure that the ambiguity set contains the true distribution with high proba-

bility, we aim to include all distributions that are a plausible reflection of the true dis-

tribution. To this end, we define a function D(., -) : Qm x Qm - R>o, that measures

the distance (a non-negative scalar) between two discrete probability distributions in

the probability space Qm . We then construct the ambiguity set P C Qr to contain

all distributions that are sufficiently similar to the empirical distribution given by the

sample data. The allowable distance from the empirical distribution, r, is termed the

radius of ambiguity. Using these definitions, the ambiguity set constructed using the

distance function D, is given by

PD(P, r) {p E m : D(p, P) < r}. (3.5)

One decision to make when constructing the ambiguity set is the choice of r,
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the radius of ambiguity, which determines the size of the set. Increasing the size of

the ambiguity set allows the designer to be almost certain that it will include the

true distribution. On the other hand, if the ambiguity set becomes too large the

optimization will be unable to fully exploit the structure of the data. This leads

to over-conservatism and, consequently, poor mean performance of the resulting de-

sign. To see this, consider expanding the ambiguity set to include every possible

distribution. This gives rise to the usual worst-case optimization problem, since the

worst-case distribution will always be one in which all the probability density is as-

signed to the worst possible realization of the uncertainty. In many real situations

this is an unrealistic candidate for the true distribution, and so accounting for this

distribution in an optimization for mean performance is generally an overly conser-

vative approach. The effect of the radius of ambiguity on the performance of the

resulting DRO designs is explored in Section 4.2.

The other important decision to make when constructing the ambiguity set is the

choice of the distance function, D(., .). A good function is one that accurately mea-

sures how plausible a given distribution is, given our known data on the uncertainty.

This ensures that as we grow the ambiguity set we preferentially add distributions

that are plausible candidates for the true distribution. The following subsections in-

troduce two of the distance functions studied in this work. In each subsection, we

discuss the benefits and drawbacks of each choice and present algorithms for solving

the inner maximization problem (Eqn. 3.3) that results from each choice.

3.2.1 L2-norm ambiguity

The first distance function we consider utilizes the L 2 or Euclidean norm between

two vectors in Q"', and is defined by

m
DL2(P, P) = lip - P112 = ~ ZOPi - pA) 2 (3.6)
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The L 2-norm can be interpreted as a modified x 2 distance. Consequently, the ambi-

guity set generated using this distance can be interpreted as the set of probabilities

satisfying a goodness of fit test in relation to the empirical distribution (see Ref. 24

for details on this interpretation).

Using this notion of distance, we define the ambiguity set as the set of all distri-

butions within a given L2 distance of the sample distribution. We continue to denote

the radius of ambiguity by r, where it will be clear from the context that this is

measured in the L2-norm. The L2 -norm ambiguity set is defined as

PL2( f, r) p E Q : DL 2 (f, p) < r}. (3.7)

Note that after a particular value of r rmax, the ambiguity set will contain all

possible distributions, i.e. PL2(16, rmax) = Qnm Increasing r beyond rmax will thus have

no effect on PL2. Note also that rmax depends on m. With these facts in mind, we

introduce a normalized form of the radius of ambiguity. This normalization assists in

the selection of r, and facilitates size comparisons between ambiguity sets generated

using different distance functions. The normalized radius of ambiguity is defined as

S= E [0, 1]. (3.8)

The allowable range of the radius of ambiguity can be expressed as f E [0, 1], re-

gardless of m. Note that selecting the f parameter for the ambiguity set in the DRO

problem, 'D, is analogous to selecting the parameter A in the MOO problem, M.

When ] corresponds to the empirical distribution for a sample of equally likely

realizations, we have the special case that p = where I E Rm denotes a vector of

ones. In this case we can derive rma, analytically:

12 + 'M 2

rmax (m) = DL2(f), el) - - -, (3.9)

where the degenerate distribution ej E Qm has ei = 1, and all other entries set to 0.
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In order to gain an intuition for the shape of the L 2 ambiguity set, Figure 3-1

illustrates PL2 C Q 3 , for r- 0.25, 0.5, 0.75, plotted in barycentric co-ordinates. It

e2

f =0.75

f =0.25

f ... .. ... .. ....

.......... ......
el e3

Figure 3-1: Plot of L2 ambiguity sets in 3-dimensional barycentric co-ordinates.

is interesting to note that at a certain value of f, PL2 reaches the boundary of the

probability simplex '. From this point on, PL2 will include distributions that assign

a probability of zero to some values of the uncertainty that have been realized in the

sample. A criticism of the L2-norm distance is that as the ambiguity set grows, it

will include such distributions before other distributions that are more plausible, i.e.

those that assign all realizations in the sample a non-zero probability.

Under this choice of distance function, the inner maximization problem given by

Eq. (3.3) involves finding the distribution p* E PL2 that generates the worst possible

expected performance of a given design. Given a design, x, a sample of the uncertain

parameters, ui, for i = 1, ... , m, and a radius of ambiguity r, this can be formulated

as a convex maximization problem, involving a linear objective function subject to
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linear and second-order cone constraints:

max piQ(x, u)
P

(3.10)

s.t. P11 -p12  r

Much of the appeal of using an ambiguity set defined by the L 2-norm is that this

problem can be solved in closed-form using Algorithm 3-1. This algorithm was origi-

nally derived in Ref. 24, for the limited case where p = . The algorithm presented

here is an extension applicable to a general f. The relaxation of this restriction is

useful if, for example, the designer opts to bin the realizations and create the sample

distribution out of bin frequencies, since this will mean that j5 in general. For

details on the derivation of the algorithm see Ref. 24.
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Algorithm 3-1: Compute the worst-case probability distribution in a given L2 ball.

Input:
Discrete reference distribution f,
Function values at distribution support Q(x, uj) = Q,
Radius of L2 ambiguity set r.

Output:
Worst-case discrete distribution p*, on the same support as

1: T = length(f)
2: K = {1, 2, ... , m}
3: while |KJ > 1 do
4: k = m -|K|

- 1 ZQ
5: (m= k) Qi

(mn - k) iEK

6: s = E (Qi - Q2)
(m -k) iEK

7: if k = 0 then
Qi-Q8: p= i+ r,iEK

9: else
10: for i E K do

11: =+ E A + (m -
(mn -- k) i K i g s

12: end for

13: pi = 0, 1 K
14: end if
15: if pi > 0 Vi E K then
16: p* = p
17: return p*
18: else
19: Find critical j E K. This is the last index of pi < 0 to become positive

as we decrease r. This can be done by setting pi = 0 in line 10 and
solving for r.

20: Set K= K\{j}.
21: end if
22: end while
23: pi=0, i K
24: pi = 1, i E K
25: p* = p
26: return p*
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3.2.2 K-L divergence ambiguity

The second function that we study for comparing the degree of similarity between

two discrete probability distributions is the K-L divergence (or relative entropy). The

K-L divergence has been used extensively in the literature to construct ambiguity

sets for DRO. 1 -1 8 The K-L divergence between the reference distribution, ] , and a

distribution (of equal dimension), p, is defined by

m

DKL (P, P) = P log . (3.11)(Pi)
The K-L divergence has two cases that require special consideration. In this work,

we adopt the conventions that for any a,

0
DKL (0, a) = 0 log - = 0, (3.12)

a

DKL (a, 0) = a log a= o. (3.13)
0

The first convention (3.12) is adopted because lim x log(x) = 0. The second conven-

tion (3.13) ensures that a distribution that assigns a zero probability to a realization

that was observed in the sample will result in an infinite K-L divergence. This en-

sures that such distributions will not be included in the K-L divergence ambiguity

set. This is a favorable contrast with the L2-norm ambiguity set, which can include

distributions that assign realizations observed in the sample a likelihood of zero.

Since the K-L divergence function is not symmetric, the ordering of the arguments

matters. In this work we choose the reference distribution p as the first argument

when constructing the K-L ambiguity set. This is motivated by a recent paper by Van

Parys et al., which showed that this choice is optimal (see Ref. 16 for more details).

We define the K-L ambiguity set in a way that is analogous to the L 2-norm

ambiguity set. We denote the radius of ambiguity by r, where it will be clear from

the context when this is measured in terms of the K-L divergence (as opposed to the
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L 2-norm), and define

PKL(, r) = { p E Q"' : DKL(, p) <r }. (3.14)

As in the previous section we define a normalized radius of ambiguity r, which we

can use to directly compare the size of the K-L divergence ambiguity set with the size

of an L2-norm ambiguity set. However in this case there is no well-defined maximum

radius rmax. In fact, we could increase r indefinitely, with the boundaries of PKL

getting asymptotically close to the probability simplex Q"'. Instead of normalizing by

the maximum radius as we did in the L2-norm case, we instead define the normalized

K-L divergence radius of ambiguity to be

maxPPK ||p - IN. E [0, 1]. (3.15)
I - -

This is essentially a normalized Loc-norm radius. The maximum L,, norm gives the

maximum difference that any single probability is allowed to vary, over all distri-

butions within the ambiguity set. Note that there are other valid ways to param-

eterize the size of the ambiguity set, e.g., by measuring the volume proportion of

Q"n) contained in the ambiguity set. However, care should be taken that the chosen

parameterization is consistent across different dimensions, m, and distance function

D. In order to gain an intuition for the shape of the K-L ambiguity set, Figure 3-2

illustrates PKL - Q 3 , for f = 0.25, 0.5, 0.75, plotted in barycentric co-ordinates.

Given a design x, a sample of the uncertain parameters ui, for i =1, ... , m, and a

K-L divergence radius of ambiguity r, the inner maximization problem given by Eq.

(3.3) can be formulated as a convex maximization problem. This is done by intro-

ducing new variables zi, i = 1, ... , m and performing simple algebraic manipulation

in order to reformulate the K-L divergence constraint to yield linear and exponential
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Figure 3-2: Plot of K-L ambiguity sets in 3-dimensional barycentric co-ordinates.

cone type constraints:

Mpi :?:p exp , =,.,M

Pi log < r M P( (3.16)
z. r

Under this reformulation, the maximization can be written as

max piQ(x, ui) (3.17)
PIZ

s.t. pi! Pi exp ( , =1..,

Zzi < r
i=1

pE~
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The problem can be solved in this form by many commercial convex optimization

packages, for example the CVX package, 25 ,26 which uses a successive approximation

method. However, since this problem needs to be solved at every iteration of the

design optimization, the computational cost of a brute force optimization such as this

can quickly accumulate. To achieve further speedup, the optimization problem in

Eqn. 3.17 has been analyzed in detail in the literature, 2 7, 2 8 and has been shown to

be reducible to a scalar root-finding problem. Algorithm 3-2 outlines how to solve

the the optimization problem using this approach, which is far more computationally

efficient than solving Eqn. 3.17 directly. For details on the derivation of the algorithm,

as well as a discussion on how best to solve the root finding problem (line 14 of the

algorithm) we refer the reader to Reference 28. Note that although the authors of that

work suggest using Newton's method, it was found for our problem that a bisection

method with initial bracket

[V, h ip v maxQie+rE, max Qi+100 , (3.18)
iEK iEK

where c is a small positive number, proved to be efficient and robust.
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Algorithm 3-2: Compute worst-case distribution within a KL ball

Input:
Discrete reference distribution n,
Function values at distribution support Q(x, uj) = Qj ,
Radius of KL ambiguity set r.

Output:
Worst-case discrete distribution p*, on the same support as f.

1: m = length(f)
2: K= {i := }
3: k = {i : pi > O}

4: Define f (v) = P 3i log(v - Qj) + log
iEk

5: for i E K do
6: pi = 0
7: end for
8: I* = Knargmaxi Qi
9: if ] k E I* such that f(Qk) < r then

10: v = Qk
11: r = 1 - exp(f (v) - r)
12:

13: else

A , for v > maxQj
V - Qi iGK

> If multiple k exist, choose any one

Pk = r

14: Find v such that
15: r = 0
16: end if
17: for i E k do

18: q = Q
V - Qj

19: end for
20: for i E A do

(1 - r)qi
21: Ai = t

22: end for
23: p* = p
24: return p*

f (v) = r using a line search
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CHAPTER 4

PERFORMANCE OF THE

DISTRIBUTIONALLY ROBUST APPROACH

This chapter explores various aspects of the performance of the DRO design method-

ology outlined in the previous section. In particular, we investigate three important

aspects of the approach by applying it to the acoustic horn design problem pre-

sented in Section 2.2.1. In Section 4.1 we investigate how the method trades off mean

performance with the risk level in performance, and also compare and contrast the

performance of distance functions used to construct the ambiguity set. In Section

4.2 we explore the issue of sizing the ambiguity set. In particular, we investigate

the relationship between the size of the ambiguity set and the performance of the

resulting designs, and how this relationship depends on how accurately the sample

data reflects the true distribution of uncertainty. Finally, Section 4.3 analyzes how

the performance of the DRO approach depends on the distribution of the underlying

uncertainty.

4.1 Mean-risk tradeoff

In Section 3.2, we discussed how enlarging the ambiguity set trades off mean per-

formance over all sample draws, versus robustness in performance between draws.

In this section, we study how effectively the DRO methodology is able to make this

trade-off, for each of the distance functions studied.
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We do this using computational experiments on the acoustic horn design problem

described in Section 2.2.1. In particular, we draw T = 1000, 600, 200 independent

random samples of size m = 5, 10, 20 (respectively) from Pu. Note that in an effort to

minimize the effect of random sampling when comparing the different methods, we

use the same samples as those used to study the MOO approach. For each sample, we

compute distributionally robust designs xm by solving problem D. We do this for the

L2-norm ambiguity set, using 22 different values of the radius of ambiguity spanning

the range f E [0, 1]. This experiment is repeated (again using the same samples), but

this time using the K-L divergence ambiguity set, and 21 uniformly spaced values of

the radius of ambiguity spanning f E [0, 11. For each design we evaluate the mean of

the QoI under the true distribution, and denote this by Zm (see Eqn. 2.3).

We are interested in how effective and robust the DRO methodology is at pro-

ducing designs that perform well under the true distribution, when given only m

realizations of the uncertain variables to use in the optimization. To this end, we

compute the mean performance, pk(Zm), and the CVaRio or risk level in performance,

#(Zm), over the T sample draws (as discussed in Section 2.3). Figure 4-1 below plots

the mean-risk trade-off curves for the DRO methodology using both L2-norm and K-L

divergence ambiguity sets. The analogous mean-risk curves for the MOO approach

(from Figure 2-8) are also shown for comparison.
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Figure 4-1: Mean-Risk tradeoff curves for designs computed using sample draws of
size m = 5,10,20 and the DRO approach with L2-norm and K-L divergence ambiguity
sets. Also shown are the corresponding curves for the MOO approach, as well as the
true optimal performance.

The first thing to note is that when the radius of ambiguity is zero, the DRO

and MOO problems, 'D and M respectively, are both equivalent to the SAA problem,

S. Naturally, this means that the mean-risk trade-off curves for all methods coincide
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here. As we increase the radius of ambiguity, f, we increase the amount of distribu-

tional robustness enforced in the designs, which is analogous to increasing A in the

MOO approach. We see that the mean-risk tradeoff curves for the DRO have qualita-

tively similar behavior to their MOO counterparts. At first, adding robustness leads

to an improvement in both the mean and risk objectives, but after a critical radius

of ambiguity is reached, increasing the radius further results in worse performance

in terms of both mean and risk. However, it is worth noting that this drop in per-

formance is bounded much more favorably when using the DRO approach than with

the MOO approach. This means that designs found using the largest ambiguity sets

significantly outperform the designs found using the MOO approach with A = 0.95.

The mean-risk curve corresponding to the K-L divergence ambiguity set reaches

the critical point at a better mean and risk level than the mean-risk curves for either

the L2-norm ambiguity set or the MOO approach. This means that if the optimal

values of A and r are chosen for each sample size and ambiguity set combination,

the DRO approach using a K-L divergence ambiguity set will, on average, produce

designs with the best mean performance and lowest risk level in performance.

We define the optimality gap for a methodology as the difference between the

performance of designs found using that methodology (averaged over T sample real-

izations), and the true optimal design performance, which the designer could obtain

if they had full observability over the uncertainty. The SAA approach exhibits the

largest optimality gap, and is thus used as a baseline. Table 4-1 presents the optimal

mean and risk levels attained by each method, for each sample size. Also shown is

the corresponding percentage reduction in the optimality gap (when compared with

the SAA baseline) achieved by each method.

We see that for all of the sample sizes we studied, the DRO method with a K-L

divergence ambiguity set results in the greatest percentage reduction in the optimal-

ity gap. We also see that the percentage reductions decrease as the sample size is

increased, indicating that the benefit of the DRO approach is greatest at small sample

sizes.
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Mean (%) CVaR(%)

m=5 SAA 3.32 (-) 4.49 (-)
MOO 3.14 (41.62) 3.76 (45.91)
L2 3.14 (41.66) 3.72 (48.23)
KL 3.13 (45.58) 3.72 (48.47)

m=10 SAA 3.16 (-) 3.85 (-)
MOO 3.05 (39.61) 3.42 (44.41)
L2 3.05 (40.11) 4.42 (44.60)
KL 3.04 (43.04) 3.33 (53.97)

m=20 SAA 3.09 (-) 3.59 (-)
MOO 3.02 (35.63) 3.27 (46.52)
L2 3.02 (35.81) 3.27 (45.20)
KL 3.01 (38.49) 3.18 (58.82)

Table 4-1: Best average mean and average CVaR1 O values attained by each method
for sample sizes of m = 5,10, 20. Also shown is the percentage reduction in the
optimality gap relative to the SAA result.

4.2 Sizing the ambiguity set

For a given problem, there is an optimal ambiguity set size that would result in an

optimal mean-risk tradeoff; however in practice the designer will not know this optimal

radius of ambiguity. In this section we investigate how the size of the ambiguity set

affects the performance of the resulting designs, with the goal of uncovering trends

that can inform the designer on a good choice of ambiguity set size. In particular, we

study how the optimal size of the ambiguity set and the performance of the resulting

design are influenced by the degree to which the empirical distribution associated

with the sampled uncertainty reflects the true distribution.

We introduce the notion of statistical distance between a sample and the true

distribution from which the sample was drawn. For this analysis, we choose the

Kolmogorov-Smirnov (K-S) statistic as the measure of statistical distance. In our

setting, the K-S statistic is defined as the maximum difference between the empir-

ical cumulative distribution function (CDF), and the (continuous) CDF of the true
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distribution, PU. We denote the K-S statistic by K. A sample that has an empirical

distribution closely resembling Pu will be close to K = 0, while a sample with an

empirical distribution that does not well resemble PF will be close to K = 1.

For each of the samples used in the previous section, the K-S statistic was com-

puted, and the realizations were sorted in order of increasing K. The realizations were

then separated into 7 equally sized bins, with each bin characterized by the mean K-S

statistic of all realizations within the bin. In what follows, we will focus primarily

on the K-L divergence ambiguity set. Analogous results for the L2 -norm ambiguity

set, along with a discussion on how these differ from the K-L divergence case, are

presented in Appendix A.

Figure 4-2 presents the mean performance of designs computed using samples of

size m = 5. We average the mean performance of designs across the realizations in

each K-S statistic bin, and plot average mean design performance versus the mean r

of the bin, and the normalized radius of ambiguity used in the optimization, f. We

first focus on Figure 4-2(a), which shows the relationship between design performance

and the size of the ambiguity set, for three different levels of K. We see that as K

increases, the resulting design performance generally gets worse. At all levels of

K, increasing the size of the ambiguity set from i = 0 results in an improvement

in design performance until a critical ambiguity set size is reached, at which point

further increase results in worse design performance. Note that this was the trend

observed in Section 4.1. However, we now see an additional trend: as K increases

and the sample becomes a worse representation of the true distribution, the critical

ambiguity set size also increases. A higher value of K is also associated with a less

severe drop in performance when the critical ambiguity set size is exceeded. This

means that overestimating the critical ambiguity set size affects low K realizations

more than high K realizations.

We now turn our attention to Figure 4-2(b), which shows the relationship between

the K-S statistic, K, and design performance for designs found using three different

sizes of the ambiguity set. Again we see the general trend that an increase in K

results in worse design performance. We also see that a relatively small increase in
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the ambiguity set size from f = 0 to i = 0.2 results in improved mean performance

across all levels of K. This means that using a non-zero ambiguity set size always

resulted in improved design performance, regardless of whether or not the sample

used was a good representation of the true distribution. Increasing the size of the

ambiguity set further continues to improve performance for samples with high K, but

now this comes at the cost of worse performance for samples that have small K. A

result of this is that using a large radius of ambiguity results in more consistent design

performance across different levels of r,.

Figure 4-3 repeats this analysis for a sample size of m = 10. Figure 4-3(a) shows

that at this sample size a small increase in the ambiguity set size away from zero

is still associated with an improvement in performance for any K. However, when

compared with the m = 5 case, the critical ambiguity set size is smaller for all levels

of K. This has two implications. Firstly, the performance improvement attainable

by increasing the ambiguity set size from zero to the critical value is less than for

m = 5. Secondly, the maximum penalty in performance caused by exceeding the

critical ambiguity set size is more severe. As a result of this second implication, an

increase in K is no longer always associated with worse performance. Instead, we see

that optimizing using a large ambiguity set can, in fact, perform better on data that is

a worse representation of the true distribution, than on data that represents the true

distribution well. Figure 4-3(b) shows the relationship between K and performance

for samples of size m = 10 . We observe qualitatively similar behavior to the m = 5

case. The only notable difference at this sample size is that as the radius of ambiguity

increases beyond the critical value, the penalty in performance for small K is greater,

while the improvement in performance for high K is smaller.

The trends observed in increasing the sample size from m = 10 to m = 20 are

similar to those seen between m = 5 and m = 10. Figure 4-4 shows the results of the

analysis for a sample size m = 20. In Figure 4-4(a) we see that the critical ambiguity

set size is again decreased for all levels of K, when compared with the m = 10 case.

It is worth noting however, that the critical ambiguity set size is still greater than

zero, indicating that a small ambiguity set will still outperform the SAA approach at
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this sample size. In Figure 4-4(b) we see that using a small ambiguity set (i = 0.1)

leads to a small improvement for small K, and a moderate improvement for large K.

Increasing the size of the ambiguity set a small amount beyond this (to r = 0.3) we

observe the same trend as in the m = 10 case, whereby worse design performance for

small i, is traded off in favor of better performance for high K. However, in contrast to

the m = 5 and m = 10 cases, this trend does not continue to the maximum ambiguity

set size. Instead, increasing the size beyond f= 0.3 results in a drop in performance

across all levels of K

These trends can be summarized to form two key conclusions for the acoustic horn

design problem. Firstly, if the designer wishes to optimize the worst-case performance

of the design, they should focus on the worst samples (high K), as these are the samples

that result in the worst performing designs. To do this they should tailor the size

of the ambiguity set to these realizations by using a relatively large ambiguity set

size. In this way the designer will hedge against samples with high ,, at the cost of a

drop in performance if the sample draw has low K. Secondly, as the amount of data

available increases, the designer should generally decrease the size of the ambiguity

set. In the m = 20 case in particular, care should be taken not to increase the size of

the ambiguity set too much, as this can result in a drop in performance across all levels

of K. It should be stressed that the trends and relationships shown in this section

are for the acoustic horn design problem. Such trends will be problem dependent, as

they will depend on the shape of the function defining the quantity of interest, i.e.,

Q (x, u). Note in particular that there may be some problems for which designing

using samples with a large r, do not result in over-fitting, e.g., if the quantity of

interest is constant with respect to the uncertain variables.
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Figure 4-2: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 5 and the DRO approach with a K-L divergence
ambiguity set.
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Figure 4-3: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 10 and the DRO approach with a K-L divergence
ambiguity set.
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Figure 4-4: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 20 and the DRO approach with a K-L divergence
ambiguity set.
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4.3 Effect of the underlying distribution

In this section we investigate how the shape of the probability distribution governing

the uncertain parameters affects the performance of the DRO approach for design un-

der partially observable uncertainty. When applying the methodology to the acoustic

horn model problem in the previous sections, we used a uniform fixed truth distribu-

tion (Eqn. 2.14). In this section, we repeat the previous experiments, this time with

a new truth distribution, given by:

u ~ P, = Normal(1.4, 0.0577). (4.1)

The mean and standard deviation of the normal distribution were chosen to be equal

to those of the uniform distribution used in the previous sections. The PDF's of the

two distributions are shown in Figure 4-5.

7

6

5

3

S2 -

1

T.2 1.3 1.4 1.5 1.6
Uncertain variable, u

Figure 4-5: Comparison between the uniform and normal probability density func-
tions used in the acoustic horn design experiments.

The experiment outlined in Section 4.1 was repeated using the normal distribution.

Results for the K-L divergence ambiguity set are presented in this section, while

analogous results for the L2-norm ambiguity set can be found in Appendix A. The

performance of designs under the true distribution is evaluated using 10-point Gauss-

Hermite quadrature.
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Figure 4-6 shows the average mean performance vs. the CVaRiO in mean perfor-

mance over all T samples. The analogous mean-risk curves for the uniform distribu-

tion (as seen in Figure 4-1) are shown for comparison. Also shown is the performance

of the true optimal designs, found as solutions to the full problem 'P (Eqn. 2.1) using

the uniform and normal distributions respectively.

We see that the mean-risk curves for the two distributions are qualitatively similar.

Under the normally distributed uncertainty, increasing the radius of ambiguity from

zero still results in an improvement in both mean performance across the samples,

and the CVaRiO across the samples. However we see that in comparison to the

uniformly distributed uncertainty, the critical radius-after which a further increase is

detrimental-occurs much sooner. As a result, the potential performance gain by using

the DRO approach compared to the SAA approach (which is equivalent to r = 0) is

smaller for the normally distributed uncertainty.

We also repeat the analysis of Section 4.2, this time using the normally distributed

uncertainty. Figure 4-7 shows the relationship between the radius of ambiguity, the

K-S distance of the sample, and the performance of the resulting designs for the case of

normally distributed uncertainty. The sample size used is m = 10. We are interested

in comparing these results with the analogous results for the uniform distribution in

Figure 4-3. We see that for the normally distributed uncertainty the critical radius

of ambiguity is smaller. As a result, the improvement in performance gained by

increasing the radius of ambiguity from zero to the critical radius of ambiguity is also

smaller, and the maximum penalty for exceeding this critical radius is greater.

These results show that for the acoustic horn design problem we study, the DRO

methodology is still able to outperform the SAA approach under normally distributed

uncertainty, but to a lesser extent than under uniformly distributed uncertainty. A

full study including additional distributions is required to understand the cause of

this, and to generalize these results enough to make claims about which distributions

of uncertainty are most amenable to the DRO methodology.
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Figure 4-6: Comparison between mean-risk trade-off curves for designs computed
using normally distributed and uniformly distributed uncertainty. Results are for
sample sizes m = 5,10,20 and the DRO approach with K-L divergence ambiguity
set.
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Figure 4-7: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using normally
distributed samples of size m = 10 and the DRO approach with a K-L divergence
ambiguity set.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This thesis has shown the potential benefits of a distributionally robust approach to

design optimization under partially observable uncertainty. Our approach has been

shown to outperform both SAA and MOO based approaches on the model design

problem we studied. The formulation has also been shown to be computationally

tractable, as the algorithms presented in this thesis require a practically identical

computational budget to widely used existing methods.

Although the distributionally robust approach in this paper has been demon-

strated on a single problem, the formulation and algorithms make no assumptions

about the system in question. The approach is therefore applicable to a wide range of

design problems. The effects of uncertainty on the quantity of interest vary depending

on the system in question. Planned future work involves testing the distributionally

robust approach on additional design problems, to explore whether certain charac-

teristics of the system of interest influence the performance of the method. Similarly,

characteristics of the underlying distribution of the uncertainty could influence the

performance of the method. In this thesis we compared the performance of the

method for uniformly and a normally distributed uncertainty, but more distributions

will need to be investigated before reliable insights can be gained.

There is also room for future improvements to the distributionally robust approach

itself, namely, the exploration of different formulations of the ambiguity set. In this

thesis the ambiguity set is formulated using either the L2 -norm or the K-L diver-

gence. Both of these formulations only take advantage of the reference probability
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vector p to determine which probability vectors are similar enough to the reference

distribution to be included in the ambiguity set. They do not incorporate the sample

realizations u1, ... , un. Notions of distance such as the Wasserstein distance (also

known as the earth-movers distance) utilize both the empirical distribution and the

sample realizations. This has been used successfully to construct ambiguity sets in

the literature.2 9 ,3 0 Future work could involve investigating whether ambiguity sets

constructed using the Wasserstein distance outperform those constructed using the

L 2-norm or K-L in the DRO design formulation.

In this thesis we considered the setting in which the designer has access to a sample

of realized values of the uncertain parameters. Another avenue for future work is to

extend the distributionally robust design formulation to alternative settings. For

example, the formulation could be applied to the situation where the designer has

knowledge about the moments of the distribution of uncertain parameters. This

would likely involve constructing the ambiguity sets based on moment constraints,

which has also been explored previously in the literature. 13
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APPENDIX A

ADDITIONAL RESULTS FOR THE

L2-NORM AMBIGUITY SET

This appendix contains additional results, showcasing the DRO approach with L 2 -

norm ambiguity, applied to the acoustic horn design problem. These results are

analogous to those presented in Sections 4.2 and 4.3 for the K-L divergence ambiguity

set. For details on the experimental method behind these results, we refer the reader

to those sections. In this appendix we highlight key similarities and differences in

performance between the L2-norm and K-L divergence ambiguity sets.

The next three figures show the relationship between the K-S distance of the

sample, r, the normalized radius of the L2-norm ambiguity set, f, and the performance

of the resulting designs, in terms of the mean QoI over the uncertainty space. Figure

A-1 shows the m = 5 case, Figure A-2 shows the m = 10 case, and Figure A-3

shows m = 20 results. In this study we suppose the uncertain variables are uniformly

distributed (Eqn. 2.14). Note that the reason for the large jump in - shown in the

data is that at the second highest value of r, the ambiguity set already contains over

95% of the probability space Q" (over 99.9% in the m = 10 and m = 20 cases). Thus

the result is not expected to change significantly between the two highest values of f

shown.

The conclusions to be drawn are essentially the same as for the K-L divergence

ambiguity. In each sample size studied, we see that increasing the ambiguity set a

small amount results in improved performance compared with the -= 0 (SAA) case.
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After a critical value of r is reached, increasing it further results in worse performance.

The critical value of i appears to decrease as the sample size m is increased. As a

result, the potential for improvement in performance is greatest for small m, while

the maximum penalty for exceeding the critical value of r is greatest for large m.

In the case of the L2-norm ambiguity set, the fall in performance after the critical

radius appears steeper than for the K-L divergence ambiguity set. However, this is

simply an effect of the parameterization of f. Note that if we had not computed the

results for i = 1, and simply defined the second highest value of r to correspond to

f = 1, then the results would look almost identical to those computed using the K-L

divergence ambiguity.

Figure A-4 compares the results found using uniformly and normally distributed

uncertainties, using the L 2-norm ambiguity set. This figure is analogous to Figure 4-6,

which showed similar results for the K-L divergence ambiguity. Again, we see that

the results for the L 2-norm ambiguity set are similar to those of the K-L divergence

ambiguity set. The maximum improvement gained by using the DRO approach over

the SAA approach (corresponding to r = 0) appears to be smaller for normally

distributed uncertainty. As was argued in Section 4.3, a wider study of different

underlying distributions is needed to identify the cause of this effect.
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Figure A-1: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 5 and the DRO approach with a L2 -norm ambiguity
set.
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Figure A-2: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 10 and the DRO approach with a L2 -norm ambiguity
set.

78

0

0Y

t)

3.8

3.6

3.4

3.2

3.0

2.8

II II

0.00
0.17
1.00

K = 0.07
K = 0.62

= 0.90 -

-



m = 20

0
V)

3.8

3.6

3.4

r 3.2

S3.0

2.8
C 0.2 0.4 0.6 0.8

Radius of Ambiguity, f

(a) Performance vs. Size of
Ambiguity Set

II

at
'a

a a
a a
a'
a a

a a

a a
a a

a a
a a
a a
a a
a a
a a
a a

a a
a a
a a
a a
a a
a a
a a

1 0 0.2 0.4 0.6
K-S Distance, r.

0.8 1

(b) Performance vs. K-S distance
of Sample

Figure A-3: Surface plot showing the relationship between the K-S statistic of a
sample, the ambiguity set size, and the resulting design performance using uniformly
distributed samples of size m = 20 and the DRO approach with a L2 -norm ambiguity
set.
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