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Abstract

In this thesis, a displacement-body model for strong-interaction shock-wave/boundary-

layer interaction (SBLI) is presented and evaluated. The model considers 2-D flow over a

flat plate with an adiabatic wall. The separation bubble is modeled as a displacement

body with constant surface pressure, the value of which is set equal to the value of

plateau pressure given by free-interaction theory. A shock-fitting method of

characteristics is employed to numerically compute quantities in the inviscid outer flow.

Boundary conditions that satisfy physical requirements at shock waves, slip lines, and

solid walls are enforced. Accuracy of the model is shown for both laminar and turbulent

flow regimes, as well as for Mach numbers in the hypersonic regime. Additionally, the

model provides a physical explanation for the pressure drop observed downstream of

reattachment in hypersonic flows.
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Nomenclature

Symbols

/8 Shock angle measured from x-axis

y Ratio of specific heats
6 Boundary layer 99% thickness
(* Boundary layer displacement thickness

0 Flow angle measured from x-axis (i.e., tan- )

Y Mach angle (i.e., sin- (O)
p Density
T Viscous shear stress (i.e., r,)
V Prandtl-Meyer function

# A general flow quantity

Cf Skin friction coefficient

CP Specific heat at constant pressure
k, 1 Iteration resolution parameters
M Mach number
NA, NB Grid resolution parameters

p Pressure

q Incompressible dynamic pressure (i.e., pv2)
R Gas constant
Re Reynolds number (subscript denotes length scale)
s Specific entropy
T Temperature
u x-component of velocity
v y-component of velocity
V Magnitude of V
V Velocity vector (i.e., u.X + v?)
x Coordinate along wall
x Unit normal vector along wall

y Coordinate normal to wall

Y Unit normal vector normal to wall
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Special Non-dimensional Parameters

T7wo

_X - XO
X=

XS - x0

X - Xs

Xr Xs

-y

30

y -yW
y =-

Xr - Xs

Subscripts

Evaluated upstream of the interaction region

Evaluated immediately upstream of a shock wave

Evaluated immediately downstream of a shock wave

Evaluated immediately downstream of expansion fan past reattachment point

Evaluated for incident shock wave

Plateau value

Evaluated at reattachment point

Evaluated at separation point

Evaluated at wall
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Chapter 1

Introduction

1.1 Background

Shock-wave/boundary-layer interaction (SBLI) is a fundamental feature of fluid flow in

the supersonic and hypersonic regimes. SBLI is ubiquitous in supersonic internal flows.

Supersonic and hypersonic speeds admit the presence of shock waves, and since internal

flows are contained within an enclosure, boundary layers form on the enclosure surfaces.

Thus, any shock waves that form and extend to the enclosure wall interact with the

boundary layer at those wall locations.

In external flow, SBLI is perhaps most commonly encountered in transonic flight. In such

a situation, subsonic flow is accelerated above M= 1 as it traverses an airfoil, and a

normal shock wave develops in order to compress flow back to the subsonic regime. The

normal shock wave penetrates into the boundary layer that forms on the airfoil surface,

imposing a dramatic adverse pressure gradient that may cause boundary layer separation.

In many transonic aircraft, wing sweep is employed in order to delay the onset of shock

waves and mitigate the negative effect that SBLI can have on the aerodynamic efficiency

of the aircraft.
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Normal
shock wave

M0 > 1

Figure 1-1: Flow regimes around a transonic airfoil, and the normal shock wave that
forms and interacts with the boundary layer.

Meanwhile, in supersonic flight, the generation of shock waves is unavoidable. In

supersonic aircraft configurations, SBLI occurs wherever a shock wave is incident upon

another surface of the aircraft. SBLI also occurs at compression corners, where an

oblique shock wave forms and interacts with the boundary layer on the compression

corner surface. SBLI can have dramatic consequences on aerodynamic performance (i.e.,

aerodynamic efficiency), and thermodynamic heating. The latter is particularly a problem

at hypersonic speeds, where exceedingly high temperatures can be observed when a

shock-induced separation bubble reattaches. SBLI is therefore a crucial aspect of

supersonic and hypersonic flight design.
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Oblique
shock wave

M> 1

Figure 1-2: The oblique shock wave that forms at a supersonic compression corner.

SBLI can be classified into weak interactions and strong interactions. A weak interaction

is characterized by minimal influence of the viscous boundary layer on the outer inviscid

flow, and vice versa. The overall shock structure in a weak interaction resembles that of a

purely inviscid shock wave reflection off a wall. However, the discontinuous rise in

surface pressure that occurs in a purely inviscid case (an approach in which the boundary

layer is neglected) is not observed with the presence of a boundary layer. Instead, the

subsonic channel of the boundary layer allows pressure waves to propagate upstream of

the purely inviscid reflection point, resulting in a more gradual rise in surface pressure

due to the impinging shock wave and a region of upstream influence which cannot be

predicted by a purely inviscid approach.
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Incident
shock Reflected

shock

Mo> 1

, *, Expansion

Compression

---- es ....-------

Figure 1-3: Weak interaction between an oblique shock wave and a boundary layer. The
boundary layer thickens upstream of the incident shock wave, due to upstream influence
below the sonic line. Outside the boundary layer, the two-shock structure resembles an
inviscid shock wave reflection off a wall.

If the impinging shock wave imposes a sufficiently strong adverse pressure gradient upon

the boundary layer, the boundary layer will separate. When separation occurs, the

interaction is said to be a strong interaction. Such a strong interaction is the focus of this

thesis.

In the case of a strong-interaction SBLI, there is a rapid thickening of the boundary layer

in the separation region. Thickening of the boundary layer results in the formation of

compression waves, which extend into the outer flow and coalesce to form a separation

shock wave. The separation shock wave interacts with the incident shock wave, and from

the intersection point of the two shock waves originates a slip line, or vortex sheet, across

which pressure and flow direction are continuous but other flow properties (such as M

18



and s) are not. Upon reaching the boundary layer, the incident shock wave refracts,

resulting in a system of reflected expansion waves that extends back into the outer flow

[1]. Further downstream, the boundary layer reattaches, and a series of compression

waves coalesce to form the reattachment shock wave.

Incident Separation
shock shock Expansion

- waves

Reattachment
shock- -- -- -- -- -- ---- - - ---M

Figure 1-4: Strong interaction between an oblique shock wave and a boundary layer. In
contrast to the weak interaction, there is a clear three-shock structure outside the
boundary layer consisting of: incident shock wave, separation shock wave, and
reattachment shock wave.

1.2 Prior Work

Early investigations of SBLI focused on laminar boundary layers, and were primarily

theoretical or experimental in nature. Among the earliest theoretical contributions to the

study of SBLI were those of Lees [2], in 1949, and Chapman et al. [3], in 1958. The

development of free-interaction theory by Chapman et al. was particularly significant,
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and the theory still forms the basis for developing analytical intuition into SBLI. In the

1950s, experimental investigations of SBLI with laminar boundary layers were

performed [4, 5], and they confirmed the free-interaction theory proposed by Chapman et

al.

Computational approaches to SBLI followed a similar trajectory, beginning with a focus

on laminar boundary layers. In 1964, Lees and Reeves proposed a boundary layer integral

method for SBLI, which showed excellent agreement with experimental data for

adiabatic, laminar flows [6]. More recent endeavors in computational fluid dynamics

(CFD) have shifted to focus on turbulent boundary layers, the dynamics of which under

the influence of shock waves are still largely not well understood [7, 8]. These endeavors

include recent work in large-eddy simulation (LES) and direct numerical simulation

(DNS), as well as a recent shift from the more traditional finite volume method to the

finite element method.

1.3 Motivation for a Simplified Model

In the literature, there is a lack of efficient computational tools for predicting the

characteristics of turbulent SBLI. Such a tool would be particularly useful for the

validation of newer CFD approaches, which are typically validated against either

experimental data or DNS results. The limited availability of existing data, and the long

turnaround time for new experiments or DNS, limits the range of flow conditions and
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configurations over which new CFD results can be validated. An efficient means of

checking CFD results over a range of arbitrary flow conditions is therefore quite

attractive.

A simple yet accurate computational tool for SBLI also has the potential to be a time-

saving design tool. A designer with access to such a tool might be encouraged to forego a

more time-consuming simulation or experiment altogether. There is a particular case to

be made when the quantities of interest to the designer are largely determined by inviscid

mechanisms. It should not be necessary perform an expensive simulation or an

experiment if, for example, a designer is only interested in the surface pressure associated

with SBLI.

1.4 Thesis Outline

This thesis endeavors to provide that efficient computational tool for strong-interaction

SBLI, covering both laminar and turbulent boundary layers. In the following sections, a

two-dimensional, inviscid model of an oblique shock wave impinging on a flat-plate

boundary layer is presented. First, the physical model and the computational details of

performing calculations with the model are developed. Later, numerical results are

presented and compared with experimental data. Finally, concluding remarks on the

model are offered, along with possibilities for future work to address the model's

limitations.
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Chapter 2

Development of Model

2.1 Displacement-Body Model for the Boundary Layer

2.1.1 Global Shock Structure

The global shock structure of a strong-interaction SBLI (see Figure 1-4) suggests a

simplified inviscid model, in which a displacement body produces an outer flow similar

to the one that results from the viscous boundary layer [9]. In this thesis the displacement

body takes the shape of a two-sided ramp. From the perspective of the outer inviscid

flow, this geometry results sequentially in a compression, an expansion, and finally a

second compression.
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MO> 1

Figure 2-1: The displacement-body model of a strong-interaction SBLI. The outer flow
structure shares many features with the viscous case (see Figure 1-4).

The requirements that are imposed on the displacement body are that: (a) the incident

shock wave impinges on the apex of the ramp, and (b) the pressure distribution along the

surface of the displacement body matches the surface pressure distribution inside a

shock-induced separation bubble. Requirement (a) eliminates the possibility of a

reflection of the incident shock wave off the displacement body, and also fixes the

position of the displacement body relative to the incident shock wave. Requirement (b)

fixes the shape of the displacement body by setting the strength of the first compression

and that of the expansion. In order to impose (b), information of the surface pressure

distribution inside a shock-induced separation bubble is required. This information is

obtained from the insights of free-interaction theory, which is summarized below.
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2.1.2 Free-Interaction Theory

P A

I0 x

Cf xp6

\x
S r

Figure 2-2: Distributions of surface pressure and skin friction coefficient for a strong-
interaction SBLI. Several streamwise locations of interest in free-interaction theory are
labeled.

A theoretical description of two-dimensional, strong-interaction SBLI is provided by

free-interaction theory, first proposed by Chapman et al. [3]. The relevant equations for

developing the theory are the streamwise boundary layer equation evaluated at the wall,
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and the equation for wave deflection of a supersonic flow due to the thickening of the

boundary layer:

dp IaT\dp (\ (2.1)
A ay) W

p-pO_ 2 d5*

O_ - dx (2.2)

Note that (2.2) is linearized about conditions upstream of the interaction region, and

therefore it is implicit that perturbations in the linearized parameters (p, q, and M) are

assumed to be small.

Non-dimensionalization of the parameters in (2.1) and (2.2), an x-wise integration of

(2.1) starting from xo, and the combination of the result of that integration with (2.2),

yields the following relationship:

PPOFC) 2C
=O F(x) (A-1 (2.3)

The function F(x) is defined as:

F d6 = * a d (2.4)

For an adiabatic wall, F(x-) is a universal correlation function that monotonically

increases from location xO through separation, before leveling off to a plateau value

inside the separation bubble. These features of F(x) for strong-interaction SBLI have
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been confirmed by experiment [10], and the separation and plateau values of F(x) for

laminar and turbulent boundary layers are stated in Table 2.1.

Table 2.1: Experimentally determined values [10] of the universal correlation function
F(x) at selected streamwise locations, for laminar and turbulent boundary layers.

F(-) F(-)

Laminar 0.81 1.47

Turbulent 4.22 6.00

An alternative correlation [11] for predicting the plateau pressure for a turbulent

boundary layer, which eliminates the dependence on Re through skin friction in (2.3), is:

-- 1 +0.5MO (2.5)
PO

Although elegant, the results of free-interaction theory are limited in their applicability.

Free-interaction theory relies on the assumption that, compared to momentum, viscosity

plays a relatively important role in the overall boundary layer dynamics of strong-

interaction SBLI. This assumption is generally valid for laminar boundary layers and for

turbulent boundary layers at low to moderate Re6 , but begins to break down for turbulent

boundary layers above Re6 ~ 105. This breakdown of free-interaction theory is attributed

to the thinning of the viscous sublayer compared to the thickness of the subsonic layer at

larger Re6 , and therefore a lessening influence of viscosity in the overall boundary layer

dynamics [9]. For very large Reb, an inviscid treatment of the rotational boundary layer is

more appropriate than the viscous approach of free-interaction theory.
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Nonetheless, for laminar boundary layers and turbulent boundary layers below Re5 ~ 10',

free-interaction theory reveals important features of strong-interaction SBLI. For

example, examination of (2.3) suggests that the surface pressure distribution within the

separation bubble is determined entirely by the initial flow conditions upstream of the

interaction. It is not dependent on the impinging shock wave in any way, provided that

the impinging shock wave is strong enough to induce separation. Alternative

combinations of (2.1) and (2.2) demonstrate that other features of strong-interaction SBLI

are also dependent only on upstream conditions. If, for example, (2.1) and (2.2) are

combined to eliminate p, the length scale of upstream influence (i.e., x, - xo) for a strong

interaction can be similarly shown to be independent of the impinging shock wave

strength.

Despite its many insights, free-interaction theory does not provide information about the

reattachment region. In fact, reattachment is heavily dependent on the impinging shock

wave strength, and so are quantities associated with reattachment, such as the overall

length scale of the separation bubble and the pressure rise at reattachment. An increase in

impinging shock wave strength will cause a larger separation bubble to form, since more

momentum must be transferred from the outer flow down through the boundary layer to

overcome the reversed near-wall flow [12]. A stronger impinging shock wave will also

cause a larger rise in surface pressure to occur at reattachment. The reason for this

dependence is that the total pressure rise over the interaction region is dictated by the

strength of the impinging shock wave, but the pressure rise at separation is limited by the

initial flow conditions according to free-interaction theory. Therefore, the difference
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between the total pressure rise, as necessitated by the impinging shock wave, and the

pressure rise up to the plateau value, limited by initial flow conditions, must occur at

reattachment.

Free-interaction theory provides the missing piece of information needed to fully develop

the inviscid model of 2-D, strong-interaction SBLI that is treated in this thesis. The

existence of a plateau pressure within the separation bubble suggests that the two-sided

ramp in this study have a constant surface pressure equal to the plateau pressure.

Equation (2.3) combined with the results of Erdos & Pallone [10] is used to set the

plateau pressure for a laminar boundary layer, and equation (2.5) is used for a turbulent

boundary layer. For given upstream flow conditions and a given incident shock wave, the

setting of the surface pressure on the displacement body surface to a constant value

determines a unique geometry for the displacement body.

In applying the results of free-interaction theory, it is assumed that the relevant

assumptions hold, namely that if the boundary layer is turbulent, it be limited to a low to

moderate Red. Furthermore, in assuming that the surface pressure is constant and equal to

the plateau pressure value for the entire streamwise extent of the separation bubble, an

additional constraint on the validity of the model is introduced. The assumption of a

constant surface pressure distribution within the separation bubble is most accurate when

the separation bubble is large, i.e., '-x' >> 1. Since the length scale of the separation
xs - XO

bubble is correlated positively with impinging shock wave strength, the isobaric two-

29



ramp model most closely resembles a shock-induced separation bubble for an impinging

shock wave strength far greater than that required for insipient separation.

2.2 Model of Fluid

For numerical calculations, the fluid is taken to be air with c, = 1.005 kJ/kg/K and R

287 J/kg/K. The air is assumed to be a calorically perfect gas; thus, specific heats are

assumed to be constant, and the state of the gas is described by the ideal gas equation:

(2.6)p =pRT

Furthermore, the gas is assumed to be in thermodynamic and chemical equilibrium

always. Neither dissociation nor ionization of air molecules is modeled. Rarefied gas

effects are also neglected; the gas is treated as a continuum.

2.3 Governing Equations

The laws governing fluid motion are conservation of mass, momentum, and energy. For

steady, adiabatic flow of an inviscid fluid in the absence of body forces, the conservation

laws may be written as:

V-(p V)= 0 (2.7)
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V-(p VP) =-Vp 
(2.8

V- pV) =0 (2.9)

The boundary conditions for (2.7)-(2.9) are the user-specified freestream flow quantities

and the no-flux condition, which is applied at solid walls. The no-flux boundary

condition is equivalent to enforcing that the flow direction at a solid wall be tangent to

the wall.

While (2.7) and (2.8) are conventional statements of conservation of mass and

momentum, respectively, special attention is drawn to (2.9). Equation (2.9) is a statement

of conservation of entropy, which replaces the conservation of energy equation. For the

displacement-body model, it is valid throughout the flow except across a shock wave,

where entropy is generated.

Since (2.9) cannot be applied across a shock wave, the conditions just upstream and just

downstream of a shock wave must be related by another method. Applying conservation

of mass, momentum, and energy across an oblique shock wave yields the following

relationships between the upstream and downstream conditions:

MI sin2(p3-O)- 1
tan(02 -01) = 2 cot(fp - 1) _ 1 (2.10)

A421(y + cos[ 2{pl - 01 } ]) + 2

31
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2 2 2
M sin(- 1) + Y(

M sin2(- 02)= 2y (2.11)
I sin2

-1 + 2y (M sin2($ -01)-1) (2.12)
p y + 1

p2  I(y+1)M sin2  _01)

p1  (y - 1) M0 sin 2(fl- 01) + 2

The formulation of the governing equations set out here is particularly suited for the

shock-fitting calculation procedure outlined in Chapter 3. Equations (2.7)-(2.9) are the

building blocks for a method of characteristics, which is applied in shock-free regions of

the flow. The shock-free regions, which are separated from one another by shock waves,

are then linked by application of equations (2.10)-(2.13).
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Chapter 3

Implementation

3.1 Method of Characteristics Solution Procedure

The technique known as the method of characteristics is employed in order to compute

the flow within shock-free regions. The method of characteristics seeks characteristic

curves within the computational domain, along which the partial differential equations to

be solved can be transformed into ordinary differential equations. For supersonic flow,

the governing equations (2.7)-(2.9) can be reformulated in such a manner as follows:

dp y d(M 2 )
p 2 1 + Y- M2

2

dp yM 2
SIL d =0

p QM2 -_1i

dy
on -tan 0

dy
on - tan(0+p)

dx

Equations (3.1)-(3.3) are ordinary differential relations, valid only along the specified

characteristic curves in the computational domain.

The equations are solved numerically by marching along the characteristic curves,

starting from an initial data line, according to the solution procedure outlined by Zucrow

33
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and Hoffman [13]. The calculation begins from an initial line, aligned approximately

orthogonal to the flow direction, along which the values of all flow quantities are known.

For simplicity, this description considers a data line consisting of only two points,

denoted a and b, at which flow quantities are known. At a third point, c, flow quantities

are not known but may be interpolated by the known values at points a and b. A fourth

point, d, is the point at which flow quantities are to be computed.

The geometry of the grid stencil is as follows: c is located along the straight line segment

that connects a and b; a and d lie along the same characteristic curve, which is denoted

C+; b and d lie along the same characteristic curve, which is denoted C-; and c and d lie

along a streamline, which is denoted Co.

b

C_

c CO
d

C+

a

Figure 3-1: The stencil of grid points corresponding to the description of the solution
procedure. Points a and b represent points at which flow quantities are known, point c a
point at which flow quantities are interpolated from values at a and b, and point d the
point at which flow quantities are to be computed. C, C_, and Co all denote characteristic

curves, with Co in particular corresponding to a streamline of the flow.
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3.1.1 Predictor Step

The predictor step of the solution procedure produces a preliminary estimate of flow

quantities at d. First, initial estimates of the coordinates of c and d are computed by

simultaneously solving the following system of equations:

Yd -- Ya = (Xd - Xa) tan(0. +fpa) (3.4a)

Y, -Yb (Xd- Xb) tan (Ob - Pb) (3.5a)

(0a +0b

Yd -y -=(xd -x) tan ( ) (3.6)

Yb - Ya
YC -Ya =(Xc -xa) b a (3.7)

Once initial estimates for the locations of c and dare obtained, the estimated coordinates

of c are improved by iteration. Equation (3.8), with 6 inserted in place of q, estimates the

value of Oc by linear interpolation between a and b. Equations (3.7) and (3.9) are then

solved simultaneously for improved estimates of xc and ye. This process of solving

equations (3.7)-(3.9) for improved estimates of 0e, xe, and ye is repeated until a desired

level of convergence is achieved.

#c -0a (Yc -Ya) _ a (3.8)
Yb Ya
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Y -Y,= (xd--x ) tan 0 (

Next, the updated values of x, and y, are used to estimate MC, pC, and pc by linear

interpolation between a and b. The interpolation is again given by equation (3.8), with #

replaced by the relevant flow quantity (M, p, or p).

Having computed a preliminary estimate of the flow quantities at c, the governing

equations in characteristic form are solved numerically. First, (3.1)-(3.3) are cast in a

form appropriate for a numerical solver. Integration of equation (3.1) along the streamline

from c to d yields the exact expression (3.10), whereas discretization of (3.2) and (3.3)

yields (3.11 a) and (3.12a):

Pd +C- Y (3.10)
PC I + 7-1A2

2

YMa
In(d) - 1(a) + a 1 - Oa)= 0  (3.11a)

ln(Pd)~ ~ M~ -lnP) Yi O b - 31a

A2yMb

Equations (3.10), (3.11 a), and (3.12a) are solved simultaneously for the unknowns Md, pd,

and Od. The additional unknown flow quantity Pd is then computed by the isentropic

relation:
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Pd Pc
-Y = P (3.13)

3.1.2 Corrector Algorithm

The quantities so far computed at d serve as a preliminary estimate, and are improved by

applying a corrector algorithm [13]. Each iteration of the corrector algorithm is nearly

identical to the procedure outlined above for computing the preliminary estimate of flow

quantities at d, only now the preliminary estimates (or, in later iterations, the improved

estimates from the previous iteration) are incorporated into the computations. For an

improved estimate of Xd and yd, (3.4a) and (3.5a) are recast as follows:

Yd-ya (Xd -xa)tan(+ + sin ) (3.4b)

ydy -b(xd -xb) tan ( 2 O-sin-[ M (3.5b)

An updated value of 0, is also computed by averaging its previous value with the

previously computed value of Od:

0C = O(3.14)2

Equations (3.7) and (3.9) are then solved simultaneously to obtain improved estimates of

xc and yc, and the interpolation equation (3.8) is again applied with # = 0 in order to

update Oc. The sequence of first simultaneously solving (3.7) and (3.9) for xe and Ye, and

then solving (3.8) for O, is repeated until a desired level of convergence is achieved.
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As in the predictor step, Me, pc, and pc are then estimated by the linear interpolation

equation (3.8). Finally, (3.11 a) and (3.12a) are modified to incorporate previously

computed values of quantities at d:

M + 2

ln(P) - ln(a) + 2 (6d - Oa) 0 (3.11 b)
(Ma + Md

Ms + M2

2
Ing -~b --Mbb Md)26

(Mb + Md-

Equations (3.11 b) and (3.12b) are solved along with (3.10) and (3.13) to obtain an

improved estimate of flow quantities at d. The corrector algorithm outlined here is

repeated until the computed quantities at d converge within a desired tolerance.

3.1.3 Direct Wall Point

The procedure outlined in 3.1.1 and 3.1.2 is modified slightly for the case when the Co

characteristic curve coincides with a streamline along a solid wall. A stencil of grid

points for such a case appears in the following figure.
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b

C_

C CO
I: C d

Figure 3-2: The stencil of grid points corresponding to the case when the calculation
point d is a direct wall point. All quantities at points b and c are known. Points b and d lie
along the same characteristic curve, C_ Points c and d, as well as the Co characteristic
curve connecting them, all lie along a solid wall.

In the case when the calculation point d is a direct wall point, it is assumed that quantities

at c are known, either from an earlier calculation or from boundary conditions. This is in

contrast to the case when d is an interior point, and quantities at c are estimated from

linear interpolation between known quantities at a and b. Also unique to the direct wall

point calculation is the absence of both a and the C+ characteristic curve.

The solution procedure for a direct wall point requires less computation than the interior

point case, since there are fewer unknown quantities for which to solve, and it proceeds

as follows. First, a preliminary estimate of quantities at d is computed. The coordinate

positions Xd and yd are found by simultaneously solving (3.5a) and (3.9). The unknown

flow quantities Md, pd, and pd are then found by solving (3.10), (3.12a), and (3.13). It is

noted that 6d does not need to be solved for. Rather, it is a known quantity, and equal to

the (constant) wall angle in the shock-free physical region corresponding to the

computational domain.
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With a preliminary estimate of flow quantities at d thus computed, the corrector

algorithm is again applied iteratively until convergence within a desired tolerance is

achieved. The first step of the corrector algorithm computes improved estimates Of xd and

Yd by simultaneously solving (3.9) and (3.5b). In the second and final step of the corrector

algorithm, improved estimates of Md, pd, and Pd are computed by simultaneously solving

(3.10), (3.12b), and (3.13).

3.1.4 Special Cases

Attention is drawn to two particular cases of flow regime, in which the method of

characteristics solution procedure may be greatly simplified.

The first is the case of uniform flow. Uniform flow exists in regions downstream of a

straight shock wave if two additional criteria are satisfied. First, the flow upstream of the

straight shock wave must also be uniform, and second, the flow must undergo no further

compressions or expansions after the shock wave. In such regions, the solution to the

governing equations is a solution in which there is no change in flow quantities along

characteristic curves, obviating the need for numerical computation.

The second case, which is slightly more general than the case of uniform flow, is that of

irrotational flow. Like uniform flow, irrotational flow appears downstream of straight

shock waves when the flow upstream of the straight shock wave is uniform. However,

unlike uniform flow, irrotational flow admits the presence of isentropic compression and

expansion waves downstream of the shock wave.
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To apply the method of characteristics to irrotational flow, the governing equations (2.7)-

(2.9) are reduced to the following ordinary differential relations:

V, dV 0dydO M2 -l - on - tan(O p) (3.15), (3.16)
V dx

Equations (3.15) and (3.16) for irrotational flow contrast with (3.1)-(3.3) for rotational

flow in several important ways. The most obvious difference is the fact that only two

equations are required in the description of irrotational flow, whereas three are required

for rotational flow. Less immediately obvious is the fact that (3.15)-(3.16) can be written

in the compact form:

dy
dO d on - tan( p) (3.17), (3.18)

dx

The Prandtl-Meyer function, v, which appears in (3.17) and (3.18), is defined as:

y+ Yj 1 y-n1 (3.19)V( ) = tan- j (1(M2 -1)-tan M2 -1

The numerical solution of (3.17) and (3.18) is quite straightforward. Beginning from two

points at which flow quantities are known, (3.17) and (3.18) are integrated exactly along

the C, characteristic curve passing through one known point, and along the C-

characteristic curve passing through the other known point. The result is two algebraic

equations relating M and 0 at the point at which the two characteristic curves intersect.

The quantities M and 6 at the point of intersection are readily solved for, and p and p may

be subsequently solved for by application of the isentropic relations (3.10) and (3.13).
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Note that the isentropic relations may be applied between any two points in the flow field

since, by Crocco's theorem, an irrotational flow with uniform stagnation enthalpy also

has uniform entropy. In such a manner, the entire flow field may be solved for along

characteristic curves, starting from an initial data line.

3.2 Boundary Conditions

The solution methods described above all assume knowledge of an initial line of points at

which the values of all flow quantities are known. Far upstream of the displacement

body, the initial data line is obtained directly from user-specified freestream quantities. In

shock-free regions of the flow located downstream of shock waves, an initial data line is

obtained just downstream of each shock wave by application of the oblique shock

relations (2.10)-(2.13), which are copied below from Chapter 2 for easier reference:

M1 sin2 (# -0)- 1
tan(02 - 01) = 2 cot(8 - 01) M (2.10)

M421(y + cos[ 2{pl- 01}) + 2

M sin2 ( 3- 01) + 2
M sin2(ft- 2) = 2yM -1 (2.11)

p 2  n( _ 2-

-1 + 2 (M+ sin2  -01)-l) (2.12)
p1 y+
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p2 _ (y + 1) M2 sin2 (# -_ 1 )

p1  (yI-)Mi sin2  1-O) +(2

The solution procedure described in this chapter is a shock-fitting method of

characteristics. Therefore, the existence and location of shock waves in the flow must be

arrived at independently of the method of characteristics, which is applied only in regions

where shock waves are not present. Shock waves in the flow are generated by sudden

deflections, which are induced by the geometry of the displacement body, and so the

geometry of the displacement body plays an important role in determining where in the

flow an initial data line must be computed. Details of how the geometry of the

displacement body is selected are in section 3.2.1.

The geometry of the displacement body is crucial in determining an additional boundary

condition for a shock-free region of flow. Each shock-free region is demarcated not only

by shock waves, which determine the streamwise extent of the region, but also by an

upper and a lower dividing streamline, which limit the extent of the region in the

direction normal to the flow. Along these two dividing streamlines, one flow quantity

must be arrived at independently of the method of characteristics to serve as a boundary

condition on the flow. One type of dividing streamline is a streamline coinciding with a

solid wall. Along this type of dividing streamline, the flow quantity that serves as a

boundary condition is 0, and thus this boundary condition ties in directly with the

geometry of the displacement body.

43



The other type of dividing streamline is a slip line. A slip line is defined as a line in the

flow parallel to the streamlines, across which p and 0 are continuous, but other flow

quantities, including M, are discontinuous. The boundary conditions associated with a

slip line are discussed in section 3.2.2.

3.2.1 Solid Wall Boundary

The results of free-interaction theory are used to set the boundary condition at solid walls

by setting the wall angle. Free-interaction theory is discussed extensively in section 2.1.2,

as are its implications on the geometry of the displacement body, and so only the key

results are summarized here.

The two wall angles that define the displacement body are set such that the pressure at the

wall is the same on both sides of the apex of the two-sided ramp, and equal to the plateau

value of pressure given by free-interaction theory. For the case of a laminar boundary

layer, pp is computed from (2.3):

_-po 2Cf0
q = F(zy) 2 (2.3)

No (M40 1)

For the case of a turbulent boundary layer, p, is computed from (2.5), where the influence

of Re through Cf in (2.3) has been eliminated:

-P - I + 0.5MO (2.5)
PO
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The no-flux boundary condition applied to solid walls requires that the local flow angle

be equal to the wall angle. Therefore, the setting of the wall angle by free-interaction

theory sets the flow angle, 0, at the solid wall, which provides the boundary condition

needed for a solid wall boundary.

3.2.2 Slip Line Boundary

The boundary condition associated with a slip line is less straightforward than that

associated with a solid wall. For a slip line, the boundary condition is set by coupling the

method of characteristics solution on either side of the slip line with the two no-jump

conditions that must be satisfied across the slip line. Specifically, the condition that p and

6 are continuous across the slip line is enforced.

In order to illustrate how the boundary condition at a slip line is implemented for an

irrotational flow, a discrete change in direction of a slip line is considered. The initial

Mach number above the slip line, Mui, is larger than the initial Mach number below it,

ML. The values of the quantities M, p, and 0 are desired at locations U and L, located just

above and just below the slip line immediately downstream of the deflection of the slip

line. Flow quantities upstream of these two locations are known on both sides of the slip

line from the method of characteristics applied in that region.
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Mui C+

................................ .. U slip line

MLi
-+ L

C + C_
Figure 3-3: A slip line undergoing a discrete deflection. For the deflection depicted, the
C+ characteristic below the slip line represents an incident expansion wave. The C+
characteristic above the slip line is the transmitted expansion wave, and the C_
characteristic is a reflected compression wave.

In order to compute the six unknown quantities (M, p, and 6, at the two locations U and

L), six equations relating the unknown quantities are required. Without a slip line, the

method of characteristics for irrotational flow would provide all six of the required

relations. These relations would be the equations associated with the two characteristic

curves C+ and C, (3.17) and (3.18), along with the isentropic pressure relation (3.10).

These three equations, applied both above and below the slip line, would make the six

required to solve for the six unknown quantities.

However, two of the six equations cannot be applied in the presence of a slip line. The C+

characteristic passing through U crosses the slip line when extended in the upstream

direction. But a singularity in vorticity exists at the slip line, due to the discontinuity in

velocity across it. Thus (3.17), which relies on the assumption of irrotationality along the

entire characteristic curve, is no longer valid. A similar situation is encountered if one

considers the C_ characteristic passing through L, rendering equation (3.18) invalid.
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In place of (3.17) applied at U and (3.18) applied at L, the following two continuity

conditions are enforced across the slip line:

PU=PL (3.20)

61L (3.21)

In summary, to incorporate the boundary condition at a slip line into the method of

characteristics solution procedure for an irrotational flow, equations (3.20) and (3.21) are

used to couple the two flow regions separated by the slip line.

3.3 Shock/Wave Interactions

Two types of shock/wave interaction, which are relevant to the displacement-body model

calculations, are discussed. The first is the interaction between two shock waves. The

second is the interaction between a shock wave and a slip line.

3.3.1 Shock-Wave/Shock-Wave Interaction

In the flow around the displacement body, an intersection between two shock waves

occurs where the incident oblique shock wave, which impinges on the boundary layer,

meets the separation shock wave, which is formed by the upstream compression corner of

the displacement body. The flow downstream of the intersection is determined by

application of the oblique shock relations (2.10)-(2.13), as well as additional physical

requirements that the flow must satisfy.
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When the two shock waves intersect, both are deflected and transmitted downstream. The

shock waves deflect such that pressure and flow angle are continuous everywhere

downstream of the interaction, except across shock waves. The case of an interaction

between two straight shock waves is illustrated below. The general solution admits the

presence of a slip line, across which p and 6 are continuous but other flow quantities are

not.

M> I 
slip line

Figure 3-4: A Type I interaction between two intersecting shock waves. The shock waves
(solid lines) are straight both upstream and downstream of the intersection, and a slip line
extends downstream from the point of intersection.

The interaction between the incident oblique shock wave and the separation shock wave

is assumed to be of the Type I category, according to the classification system defined by

Edney [14]. Thus, equations (2.10)-(2.13) admit a solution consistent with Figure 3-4, in

which the two straight shock waves are transmitted downstream of their intersection as

straight shock waves, and a slip line exists downstream of the intersection. The case

where the upstream Mach number and the strength of the intersecting shock waves do not

admit a solution consistent with Figure 3-4 is a Type II interaction, and is not considered.

In general, (2.10)-(2.13) admit two solutions for each of the transmitted shock waves, one
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known as the strong shock solution and the other the weak shock solution. In cases where

both solutions are possible, the weak shock solution is chosen.

3.3.2 Shock-Wave/Slip-Line Interaction

The second interaction that is considered is that between a shock wave and a slip line. In

the flow induced by the displacement-body model, such an interaction occurs between

the reattachment shock wave, which is formed by the downstream compression corner of

the displacement body, and the slip line, which originates from the interaction described

in section 3.3.1.

The interaction between an incident shock wave and a slip line is characterized by the

following features [1]. Both the incident shock wave and the slip line extend downstream

past the point at which the two intersect, but both undergo a finite deflection at the point

of intersection. In addition to these first two phenomena, which are analogous to the case

of a shock-wave/shock-wave interaction, the incident shock is also reflected off the slip

line as a fan of expansion waves.
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M2 > 1

. .................... .. slip line
M>1 ----.

expansion
waves

Figure 3-5: An illustration of interaction between a shock wave and a slip line. Upon
reaching the slip line, the incident shock wave (which approaches the slip line from
below) is transmitted as a deflected shock wave, and also reflected as a series of
expansion waves. The slip line also undergoes a deflection at the point of intersection.

The oblique shock relations (2.10)-(2.13) describe the flow downstream of the

transmitted shock wave, and the flow quantities through the expansion wave are

described by equations (3.17) and (3.18), as well as the isentropic relations (3.10) and

(3.13). These equations are combined with the slip line conditions of continuous p and 6

to determine the strengths of both the transmitted shock and the expansion wave fan.

3.4 Numerical Procedure for Curved Shock Waves

The reattachment shock wave, which is generated by the downstream compression corner

of the displacement body, extends into a region of nonuniform flow. As a result, the

shape of the shock wave is curved. In order to compute its shape, the procedure

introduced by Moeckel [15] is adopted.
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For a shock wave with isentropic upstream conditions, Moeckel presents the following

approximate expression relating the change in shock wave angle to the change in

upstream Mach number:

I ag1  g, (_yM, ' M- I__I+ _ A2-

d __g 9M 3M M 0  
1  2 1d 1 g -yM I ag, 0 (3.22)

dM I ag, a92 + g~ a92
g' a8 +g 3-a1 g + , g3a

For the plus-minus sign in (3.22), the positive is taken where > 0 just upstream of the

shock wave, and the negative is taken where -O< 0. A right-running isentropic wave just
dM

upstream of the shock wave falls under the first category, while a left-running isentropic

wave in a similar location falls under the second.

The three functions denoted g, which appear in (3.22), are defined as:

___ 2 2 2fl 7)-i

Y - I Msin -+ (3.23)

g2= tan- [ Msinficosfic- otfi (3.24)
l+M2 (7+ -sin2Q)

yM2
Y S-

63 M (3.25)

Analytical expressions for the partial derivatives of (3.23)-(3.25), which also appear in

(3.22), are readily obtained. The additional parameter Ms, introduced in (3.25), is defined

as:
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(y + 1) 2Myfsin2 - 4(M2 sin23 - 1) (yM 2sin2 3 + 1)
s (2yM2 sin28 - y + I)([y - 1]M2sin2 / + 2)

For known upstream conditions and an initial shock wave angle, (3.22) is solved

numerically for the shape of the shock wave. In order to do so, (3.22) is discretized with a

central difference scheme:

fl+1 - _ (dJ
M M7- M, \ /,1 (3.27)

2

In (3.27), subscripts represent indices in the finite difference scheme, with i denoting an

integer corresponding to a specific grid point. The right hand side of (3.27) is evaluated

using the definition of- provided by (3.22). Evaluation of a flow quantity at a midpoint

between two adjacent grid points is approximated by linear interpolation between the

known values at the adjacent grid points. Thus, for some quantity #:

Oi +1 O(3.28)
2y 2
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Chapter 4

Results and Discussion

4.1 Resolution Parameters and Grid Convergence

In the numerical solution procedure that is outlined in Chapter 3, there are four user-

specified resolution parameters that influence the accuracy of the numerical solution.

Two of these parameters are related to the grid resolution. The first grid resolution

parameter is NA. It represents the number of finite expansion waves that are used to

approximate the continuous expansion fan occurring at the apex of the displacement

body. The second grid resolution parameter is NB. It represents the number of finite

expansion waves that are used to approximate the continuous expansion fan resulting

from the interaction between the reattachment shock wave and the slip line.

The other two resolution parameters specify the number of iterations carried out in the

predictor-corrector algorithm, and they therefore describe the numerical resolution. One

of these numerical resolution parameters is denoted k, and it sets the number of iterations

carried out to improve the estimate of flow quantities at the interpolated grid point. The

interpolated grid point is denoted point c in Chapter 3. The other parameter is denoted 1,
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and it sets the number of iterations of the corrector algorithm that are carried out for each

calculation point. The calculation point is denoted point d in Chapter 3.

In order to perform a convergence study, a default value was chosen for each resolution

parameter. The default values were chosen to be large in order to produce a grid-

converged solution, and they are summarized in Table 4.1. The flow specifications used

in the convergence studies also appear in Table 4.1.

Table 4.1: Default values for the resolution parameters and the flow specifications used in
the convergence studies.

Resolution Parameters Flow Specifications

NA 100 MO 8.6

NB 100 13incident -19.80

k 20 Flow Regime Turbulent

1 20

The grid-converged flow field is depicted in Figure 4-1. The displacement body is shaded

black, and various features of the flow field are depicted. These features are: shock

waves, which are represented with thick solid lines; the slip line, which is represented

with a dotted line; and isentropic waves, which are represented with thin solid lines.
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Figure 4-1: The grid-converged flow field over the displacement body. Depicted are: the displacement body (shaded), shock waves
(thick solid lines), the slip line (dotted line), and isentropic waves (thin solid lines).



Immediately apparent in Figure 4-1 is the very dense fan of expansion waves that

originates at the apex of the displacement body. The number of expansion waves, and

thus the density of the fan, is a direct function of NA; since NA is large for the grid-

converged solution, the number of waves is also large. Further downstream, the

expansion waves reflect off the slip line to form compression waves. Some of the

compression waves may then reflect off the displacement body, but all eventually reach

the reattachment shock wave. Since all the isentropic waves originate at the apex of the

displacement body, and are neither created nor destroyed downstream, the number of

compression waves that reach the reattachment shock wave is equal to NA.

Since flow quantities are computed along each isentropic wave by the method of

characteristics, the number of isentropic waves chosen to model the expansion fan

determines the resolution of the numerical grid. The importance of the parameter NA in

determining the grid resolution is therefore paramount. The influence of NA on grid

resolution is not just limited to the region between the displacement body apex and the

reattachment shock wave. Since NA determines the number of data points that are

computed just upstream of the reattachment shock wave, and the same number of data

points just downstream of the shock wave are obtained by applying the oblique shock

relations to the upstream points, the parameter N determines the grid resolution

downstream of reattachment as well. The global importance of NA is demonstrated in

Figure 4-2, which shows the grid downstream of the reattachment shock wave for NA =

10 and NA= 50. The grid for the NA= 50 case is clearly the more resolved of the two. It is

also interesting to note that, for both cases, the grid becomes coarser as one moves along
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the reattachment shock wave away from the solid wall ( , = 0). Gradients in the flow

quantities on either side of the reattachment shock wave tend to decrease in magnitude as

distance from the reattachment point increases, and so the grid at such locations can be

coarser without significant adverse effects on the solution accuracy.

0.0151

0.01

0.005 >

0 -
1 1.02 1.04 1.06 1.08 1.1 1.12

1 1,02 1.04 1,06 1.08 1.1 1.12
;i

Figure 4-2: The grid downstream of the reattachment shock wave for NA = 10 (top) and
NA = 50 (bottom). Depicted for each case are the C+ and C_ characteristic curves, the
intersection points of which correspond to calculation points.

In order to determine the resolution necessary to obtain a grid-converged solution, the

effects of NA, NB, k, and I on solution accuracy were independently assessed. An identical

procedure was followed for each of the four resolution parameters. To assess grid

convergence for a resolution parameter, the value of the resolution parameter of interest

was gradually increased from its minimum possible value until the sensitivity of a

calculated output quantity to further refinement of the resolution parameter was judged to

be insignificant. During this process, all other resolution and flow parameters were held

fixed at the values given in Table 4.1. The results of the grid convergence study for NA

are displayed in Figure 4-3.
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ice study for NA. The output quantity p,/po is plotted against

As NA is increased, po oscillates about a mean value of approximately 41.04. Although

the oscillatory behavior persists as the grid is refined further and further, it is noted that

the amplitude of the oscillation decays. For NA~ 70, the amplitude has decayed to 0.028,

or 7E-4 as a fraction of the mean value. Since the displacement body model itself

represents a significant approximation of the viscous separation bubble, a discretization

error of this magnitude is deemed to be insignificant, and the grid is considered

converged at NA = 70.

For NB, k, and 1, the output quantity p/po is monitored instead ofppo, and it is used as a

proxy for convergence of the numerical solution. The quantity pf is defined as the

pressure at the wall just downstream of the expansion fan that results from the interaction
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of the reattachment shock wave and the slip line (see Figure 4-1, where the location ofpf

corresponds to X = 1.18, the upper limit of the horizontal axis). The reason for this choice

is simple. Unlike NA, the resolution parameters NB, k, and 1 only affect computations in

the rotational flow region downstream of the reattachment shock wave. Therefore, due to

the hyperbolic nature of supersonic flow, manipulation of these three resolution

parameters only affects the numerical solution within and downstream of the rotational

region. The quantity pf is chosen because it is measured downstream of the rotational

region, whereas the quantity p, is not.

The effect of NB on the output quantity p/po is displayed in Figure 4-4. Unlike the plot

Figure 4-5, which exhibited an oscillatory behavior, this plot exhibits a purely decaying

behavior, with p/po approaching a value of 39.93959 for the grid-converged solution.

Two important observations are noted. First, some perspective of the vertical axis scale is

warranted. Even with NB = 2, the value ofp/po is within 0.00 1% of the grid-converged

value. Therefore, any improvement in solution accuracy that results in refining the

resolution parameter NB is so small that its effect on the numerical solution is nearly

negligible. Second, with NB= 10, the fractional error in p/po compared to the grid-

converged solution is 2E-6. At this point, the solution is deemed to be converged.
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Figure 4-4: Grid convergence study for NB. The output quantity p/po is plotted against
NB-

Convergence studies for the final two resolution parameters, k and 1, are shown in Figure

4-5 and Figure 4-6. The two plots are nearly identical, and both show a very weak

dependence of the numerical solution on the resolution parameter. For both k= 5 and I=

5, the fractional error in the output quantity p/po is less than 2.5E-15 compared to the

grid-converged value. This error is small enough to state that the solution is converged at

k =I= 5.
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Figure 4-5: Convergence study for k. The output quantity p/po is plotted against k.
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Figure 4-6: Convergence study for 1. The output quantity p/po is plotted against L.
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Based on the results of the four convergence studies, a value for each resolution

parameter, corresponding to a grid-converged solution, was selected. These values are

summarized in Table 4.2, and are used to produce all the results that appear hereafter in

Chapter 4.

Table 4.2: Grid-converged values for the four resolution parameters.

Resolution Grid-Converged
Parameter Value

NA 100

NB 20

k 5

1 5

4.2 Comparisons to Experimental Data

The predictive capability of the displacement-body model was assessed by comparing its

prediction of quantities at the reattachment location to experimentally measured values.

The comparison is made for both laminar and turbulent boundary layers. Experimental

data on laminar boundary layers are provided by Barry et al. [4], and experimental data

on turbulent boundary layers are provided by Holden [16]. The laminar experiments were

conducted at MO = 2.05, and the strength of the incident shock wave is reported as

AOincident, the change in flow angle through the incident shock wave. The turbulent

experiments were conducted at two different Mach numbers, Mo = 8.6 and Mo = 11.3, and
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the strength of the incident shock wave is reported as pincident, the angle between the

incident shock wave and the x-axis. Results from the two experiments, along with results

from the displacement-body model, are presented in Table 4.3 and Table 4.4.

Table 4.3: Comparison of experimental data [4] and displacement-body model data for
laminar boundary layers. For all cases, Mo = 2.05. Error is reported as a percentage of the
experiment value. In the displacement-body calculation, Co is estimated from Reo using
the incompressible Blasius solution and the temperature correction given by Hakkinen et
al. [5], which uses the Chapman-Rubesin relationship between viscosity and temperature.

J Oincident Reo (PrIpo)experiment (PPO) mode1 Error

-30 600,000 1.22 1.27 4%

-60 260,000 1.53 1.58 3%

630,000 1.54 1.58 3%

Table 4.4: Comparison of experimental data [16] and displacement-body model data for
turbulent boundary layers. Error is again reported as a percentage of the experiment
value.

MO Ancident (PrIPO)experiment (PrIPo)model Error

8.6 -19.80 36.8 41.0 11 %

11.3 -17.60 58.9 63.0 7%

For both laminar and turbulent boundary layers, the displacement-body model

overpredicts the non-dimensional density (for the laminar boundary layer) or pressure

(for the turbulent boundary layer) at reattachment. The accuracy appears to be better for

the laminar case (3-4 %) than for the turbulent case (7-11 %). Considering the underlying

assumptions and simplicity of the displacement-body model, it appears to do a

remarkable job predicting flow quantities at reattachment. However, there are a couple of

caveats attached to this statement. First, neither set of experimental data provides an

estimate of uncertainty for the reported measurements, and therefore the model may be
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more or less accurate than the calculated error values suggest. Second, even if the

experimental data are taken at face value, the sample size of five scenarios is not large

enough to generalize and quantify the error that should be expected in the model

prediction across a larger range of Mo and incident shock wave strengths. Nonetheless,

the comparison with experimental data does lend credibility to the displacement-body

model and its predictive capability.

One puzzling trend for the turbulent data is also remarked on. In general, as M increases,

u decreases, and therefore the slopes of the C+, Co, and C_ characteristic curves tend to

approach the same value. For a given set of initial data points, this trend presents a

problem for the method of characteristics. As M is increased, a calculation point defined

by the intersection of the characteristic curves originating from three points along the

initial data line moves further and further downstream. Therefore, the grid resolution

becomes coarser at larger values of M, and the solution accuracy is expected to suffer as a

result.

The trend of reduced accuracy for larger M is not what is observed in Table 4.4. In fact,

the turbulent data in Table 4.4 suggest that the model is more accurate at Mo = 11.3 than

at Mo = 8.6. The most likely reason for the higher accuracy at Mo = 11.3 has to do not

with the method of characteristics, but rather with the displacement-body model itself. At

Mo = 11.3, the conditions of the experiment are more consistent with the assumptions of

the displacement-body model than are the conditions of the experiment at Mo = 8.6. In the

Mo = 8.6 case, the incident shock wave strength is only slightly larger than the minimum
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strength required to induce separation of the boundary layer. The result is that the actual

surface pressure distribution inside the separation bubble does not resemble the

approximate surface pressure distribution assumed in the displacement-body model,

which is a constant distribution at the plateau value of pressure (see section 2.1.2 for

more details). Therefore, it is likely that the increased modeling error for the MO = 8.6

case is more influential than the increased numerical error for the Mo = 11.3 case, and this

would explain the counterintuitive relationship between accuracy and MO in Table 4.4.

4.3 Effect of Varying Input Parameters

The two user-defined input parameters for the displacement-body model calculations are

pincident, which sets the incident shock wave strength, and MO, which sets the upstream

Mach number. In this section, the influence of these two input parameters on the solution

for a turbulent boundary layer is explored.

4.3.1 Influence of Incident Shock Wave Strength

The first input parameter that is investigated is the incident shock wave strength. Its

influence on the solution is studied by varying the input parameter inciden, while holding

the upstream Mach number constant at Mo = 5. As previously stated, the results that

follow assume a turbulent boundary layer.

65



In Figure 4-7, the non-dimensional value ofpp is plotted against the pressure ratio across

the incident shock wave, (p2/pi)incident. Clearly, the plateau pressure does not depend at all

on the incident shock wave strength. This is by design. The plateau pressure value is not a

quantity that is computed with the outer inviscid flow solver. Rather, the plateau pressure

is an input to the displacement-body model, and its value is calculated independently of

the inviscid flow solver, using the results of free-interaction theory. For a turbulent

boundary layer, free-interaction theory suggests that the plateau pressure depends only

upon MO, and since Mo is held constant as the incident shock wave strength is changed, pp

remains unchanged.

4 .5 -- ----- ------- -- --- --------- ------ -:-- --- --- -- -- --- ----- ---- --- -------- -.... -- -------- ---- - ----------

2.

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

(2 P1 incdent

Figure 4-7: The effect of incident shock wave strength on plateau pressure. The non-
dimensional plateau pressure, pp/po, is plotted against the pressure ratio across the
incident shock wave, (P21P1)incident.
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The trend of the overall pressure rise through the separation bubble as incident shock

wave strength is increased is more insightful. Figure 4-8, where the non-dimensional

value ofp, is plotted against (P2/P1)incident, illustrates this trend. There is a strong positive

relationship between the strength of the incident shock wave and the overall pressure rise.

A least squares linear regression over the range of data in Figure 4-8 has a slope of 4.5,

suggesting that a unit increase in (p2/pI)incident in this range of incident shock wave

strengths results in approximately a 4.5 factor increase inp,/po. However, it is important

to note that the association in Figure 4-8 is not linear; the influence of the incident shock

wave strength on pressure rise across the separation bubble becomes stronger as the

incident shock wave strength is increased. In fact, the data plotted in Figure 4-8 follow

the approximate power law ~ . The non-linearity is most clear visually for
PO incident

(P2/P1)incident > 9, but it is present over the entire range of incident shock wave strengths

that were investigated.
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Figure 4-8: The effect of incident shock wave strength on the overall pressure rise
through the separation bubble. The non-dimensional pressure at reattachment,p,/po, is
plotted against the pressure ratio across the incident shock wave, (p2/pi) inciden,.

In addition to the quantitative influence on surface pressure distribution, the incident

shock wave strength exerts a subtle qualitative influence on the structure of the outer

inviscid flow. This qualitative influence of incident shock wave strength is illustrated in

Figure 4-9, which shows the flow fields for flinci,,, = -25' and /3 inciden, = -30'. The former

corresponds to (p2Ip1) inciden, = 5.04, and the latter corresponds to (p2/p)incident = 7.13. The

upstream Mach number is still Mo= 5.
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Figure 4-9: The flow fields for flincidnt = -25* (top) and pincident= -30* (bottom). For
information on the various features depicted, refer to the caption for Figure 4-1.

The overall structures of the two flow fields are quite similar. For both flow fields, Mo=

5 and pp/po = 3.5. Therefore, the separation shock wave and the compression corner that

produces the separation shock wave are identical for both cases. The obvious difference

between the two flow fields is the angle of the incident shock wave, which is more

oblique for flincident = -25* than for pincident = -30*.

A more subtle difference between the two flow fields regards the expansion fan that

originates at the apex of the displacement body. In non-dimensional coordinates, the apex

is located further downstream for the case of the stronger incident shock wave (fincident - -

30*). The result is that the flow goes through a stronger expansion for the case of the

stronger incident shock wave. This behavior is expected. Just before the expansion, flow

along the displacement body surface passes through the deflected incident shock wave,
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across which the pressure rise is greater for the case of the stronger incident shock wave.

However, the pressure must return to the same plateau value for both flows after the

expansion. A stronger expansion is therefore required for the case of the stronger incident

shock wave.

At the reattachment point, both flows pass through a reattachment shock wave in order to

once again be tangent to the wall. The flow must be turned through a larger angle for the

pincident = -30' case, since the flow in this case has undergone a stronger expansion. This

line of reasoning suggests that the reattachment shock wave should be stronger for the

Pincident= -30' case than for the pincident= -25' case. That the reattachment shock wave is

in fact stronger for the pincident= -30 case is confirmed by the trend of Figure 4-8, which,

combined with the knowledge that p/po is the same for both cases, shows that p,/p is

larger for the stronger incident shock wave.

4.3.2 Influence of Mach Number

To investigate the influence of Mach number on the solution, the input parameter MO is

varied between Mo = 3 and MO = 15. While MO is varied, the value of A iincident is held

constant at -20'. A physical interpretation of these conditions is that an inverted, 20*

wedge located above the boundary layer is held in place while upstream Mach number is

varied. Again, the results reported here assume that the boundary layer is turbulent.

The first quantity of interest, the non-dimensional value ofp,, is plotted against MO in

Figure 4-10. As previously discussed in section 4 .3.1, p, is not a quantity that is
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computed with the inviscid flow solver, but a quantity that is computed from free-

interaction theory to serve as an input to the inviscid flow solver. The linear relationship

in Figure 4-10 is simply a graphical representation of equation (2.5), which states that for

a turbulent boundary layer, the non-dimensional value ofpp is a linear function of Mo.

Nonetheless, the contrast between Figure 4-7, which shows no dependence ofp, on the

incident shock wave strength, and Figure 4-10, which shows the linear dependence ofp

on Mach number, underlines that important result from free-interaction theory. That

result states that plateau pressure depends only on upstream conditions, and not on the

strength of the incident shock wave.

8.-

7-

6-

4-=

..... .. . .. ..... .. ..-.. ...... ... ...

2 4 6 8 10 12 14 16

M 0

Figure 4-10: The effect of Mach number on plateau pressure. The non-dimensional
plateau pressure, p/po, is plotted against the upstream Mach number, Mo.

In Figure 4-11, the influence of Mach number on the overall pressure rise through the

separation bubble is presented. The non-dimensional value ofpr is plotted against Mo.
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The relationship between the overall pressure rise and Mach number is qualitatively

similar to that between the overall pressure rise and incident shock wave strength. Like

Figure 4-8, in which overall pressure rise is plotted against incident shock wave strength,

Figure 4-11 shows a strong positive relationship between overall pressure rise and the

independent variable, which in this case is upstream Mach number. A least squares linear

regression of the data over this range of Mach numbers suggests that a unit increase in Mo

results in an increase in pr/po by a factor of approximately 16. However, like in Figure 4-

8, the association between the two quantities in Figure 4-11 is non-linear. In this case, the

association is more accurately described by the approximate power law ~ M0' 9, which
PO

is nearly quadratic.
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Figure 4-11: The effect of Mach number on the overall pressure rise through the
separation bubble. The non-dimensional pressure at reattachment, p,/po, is plotted against
the upstream Mach number, Mo.
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The qualitative dependence of the outer inviscid flow field on Mach number is illustrated

in Figure 4-12. In this figure, the structure of the flow field over the displacement body is

depicted for Mo = 3, Mo = 8, and MO = 13. The change in flow angle through the incident

shock wave for the three flow fields pictured is AO incident -150.

0.3

Mo= 3

02

i.

0 0.2 0.4 0.6 0.8 11.2

Mo=8

0 0.2 0.A 06 0.8 1

Mo= 13

0.5

0.2 0. 4. 0.81

Figure 4-12: The flow fields forM0 = 3 (top), Mo = 8 (middle), and Mo = 13 (bottom). For
information on the various features depicted, refer to the caption for Figure 4-1.

Due to the differences in Mach number and plateau pressure between the three flows, it is

difficult to make quantitative comparisons based on the visual information provided by

Figure 4-12 alone. However, it is quite clear that as MO is increased, the flow field

compresses in the vertical direction. This observation is consistent with expectation. As

Mach number is increased, Mach angles in the flow field decrease, and characteristic

curves in the flow align more closely with the streamlines. This phenomenon is clear
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from the expansion fan that originates at the apex of the displacement body. At larger

values of M, the expansion waves align more closely with the slip line, which is parallel

to the streamlines.

Another important observation, which is a consequence of the vertical compression of the

flow field, regards the expansion fan located downstream of the reattachment point. This

post-reattachment expansion fan originates at the intersection between the reattachment

shock wave and the slip line, and it extends down to the wall where it is reflected (the

reflection is not pictured in Figure 4-12). For larger values of MO, the vertical

compression of the flow field means that the slip line is located closer to the wall, and as

a result the point where the post-reattachment expansion fan reflects off the wall is

located closer to the reattachment point. The post-reattachment expansion fan has a

significant effect on the surface pressure distribution at hypersonic Mach number, and

this effect is discussed in more detail in the next section.

4.4 Hypersonic Flow Regime

As discussed in the previous section, the flow field over the displacement body exhibits

several distinctive qualitative features when the upstream Mach number is within the

regime of hypersonic flow, which is defined roughly as Mo > 5. These features include

the vertical compression of the flow field, and the movement upstream of the post-

reattachment expansion fan as the value of Mo is increased. Quantitatively, it was found
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that the non-dimensional overall pressure rise across the separation bubble exhibits a

nearly quadratic dependence on upstream Mach number through the hypersonic flow

regime. In order to further explore the effect of Mach number on the surface pressure

distribution in the hypersonic flow regime, the surface pressure distributions at the three

upstream Mach numbers previously investigated in Figure 4-12 (M = 3, MO = 8, and Mo

= 13) are plotted in Figure 4-13. The incident shock wave strength is set such that

AOincident = -15', and the boundary layer is assumed to be turbulent.
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Figure 4-13: Surface pressure distributions for Mo = 3 (top), Mo = 8 (middle), and Mo=
13 (bottom). The non-dimensional surface pressure, p/po, is plotted against the non-
dimensional distance along the wall, X.
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Before analyzing the plots of Figure 4-13 in detail, it is noted that the range of values

displayed on the vertical axis differs significantly between the three plots. The non-

dimensional surface pressure along and downstream of the displacement body are clearly

larger for larger values of Mo. This observation is consistent with the Mach number

dependence of plateau and reattachment pressures discussed in the previous section.

Attention is now drawn to the effect of the post-reattachment expansion fan on the

surface pressure distribution. The post-reattachment expansion fan manifests itself in the

surface pressure distribution plots of Figure 4-13 as a pressure drop downstream of the

reattachment point. The nature of the pressure drop is largely dependent on Mach

number. For Mo = 3, the pressure drop is nearly non-existent; as a fraction ofpo, the

magnitude of the pressure drop is 0.0118, or as a percentage ofp,, 0.18 %. The pressure

drop is more evident for Mo = 8 (2.46, or 6.4 %), and even more clearly so for Mo= 13

(20.6, or 20.2%). The magnitude of the pressure drop increases in both absolute and

relative terms as Mo is increased. And, consistent with the upstream movement of the

post-reattachment expansion fan in Figure 4-12, the location of the pressure drop moves

upstream with increasing Mach number. The minimum pressure occurs at = 1.29 for Mo

= 3, X= 1.19 for Mo = 8, and 5 = 1.14 for Mo = 13.

The existence of a pressure drop downstream of reattachment in hypersonic strong-

interaction SBLI is well known. However, several authors [9, 17] erroneously attribute

the hypersonic pressure drop to the interaction between the separation and reattachment

77



shock waves. From Figure 4-12, it is quite clear that this explanation is incorrect. The

separation and reattachment shock waves do not intersect until much farther downstream

than the wall location where the pressure drop is observed. The origin of the post-

reattachment expansion fan, and thus the origin of the pressure drop, is in fact the

intersection of the reattachment shock wave and the slip line.
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Chapter 5

Conclusion

In this thesis, an efficient computational tool for strong-interaction SBLI has been

developed and evaluated. The computational tool is based on the displacement-body

model suggested by Delery & Marvin [9], which replaces the viscous flow through the

interaction region with the inviscid flow over a two-sided ramp at constant surface

pressure. The geometry of the displacement body is related to user-specified upstream

conditions via free-interaction theory. Finally, a shock-fitting method of characteristics is

implemented to numerically compute the flow over the displacement body.

It has been shown that the displacement-body model accurately predicts flow quantities at

the reattachment location, both for laminar boundary layers at supersonic Mach number,

and for turbulent boundary layers at hypersonic Mach number. In the former case, where

conditions are consistent with the assumption of constant pressure through the separation

bubble, predicted quantities fall within 3-4 % of experimentally measured values. In the

latter case, which strains the model's assumption of constant pressure inside the

separation bubble, accuracy is still shown to be 7-11 %.

Several important physical insights are also gleaned from the model. Approximate

power-law relationships between upstream conditions and the reattachment pressure are
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developed for turbulent boundary layers. One such relationship, valid for Mo = 5 and the

P2C2) 1.3
approximate range 5 < -) < 9.5, is found to be . Another, valid forC- 1 incident PO I incident

A0incident = -20 and the range 3 < Mo < 15, is found to be &~ M01. 9. Furthermore, the
PO

well-known phenomenon of a hypersonic pressure drop downstream of reattachment is

quantified, and it is shown that the pressure drop results from the intersection of the

reattachment shock wave and the slip line.

The efficient computational tool for strong-interaction SBLI that is presented in this

thesis has a number of potential applications. It may be used as a preliminary design tool

to predict inviscid quantities that result from strong-interaction SBLI. These inviscid

quantities include aerodynamic loads exerted through surface pressure forces on the

physical body, as well as temperatures in the outer flow field. Additionally, the tool can

be used as a preliminary "sanity check" for new CFD approaches, prior to vigorous

verification of results with more expensive DNS or experiments.

Future work could address some of the limitations of the displacement-body model. One

concept that might be explored is an alternative shape and pressure distribution for the

displacement body. As shown in Chapter 4, the modeling error associated with the

assumption of constant pressure over the displacement body can become significant for

weaker incident shock waves. An even better approach would be to incorporate a viscous

boundary layer solver, one that solves the boundary layer equations either in partial

differential or integral form. Such a solver, coupled with an inviscid outer flow solver
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such as that presented in this thesis, could predict viscous quantities as well, including

skin friction, heat transfer, and length scales within the interaction region.
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Appendix

MATLAB Code

This appendix contains the MATLAB code that was written in order to compute the flow

field around the displacement body. The main program appears below. It is followed by

supporting .m files.

% Before running the code, the user should enter desired values in the
% "user-defined parameters" section. The code calls a number functions that
% are contained in separate .m files. These files should be contained in
% the current folder before running the code. For information on the
% storage of calculated quantities, see notes within the main code below
% and within the supporting .m files.

% Subscripts:

% 1 - upstream of interaction
% 2 - just downstream of separation shock
% 3 - just downstream of incident shock
% 4 - downstream of deflected incident shock, upstream of first expansion
% fan
% 4' - downstream of first expansion fan, upstream of reflected compression
% waves
% 4'' - at wall, just upstream of reattachment shock
% 5 - downstream of deflected separation shock, upstream of first expansion
% fan
% 5' - downstream of expansion fan, above slipline, upstream of
% reattachment shock
% 6 - downstream of reattachment shock, below slipline

%% User-defined parameters

ReO = 6e5;
Lsep = 1;
LoT = 2; % set LoT = 1 for laminar BL, = 2 for turbulent BL
N = 100; % number of finite expansion waves to approximate expansion fan
NN = 20; % number of " " fan downstream of reattachment
kk = 5; % number of iterations to compute point 3 in rotational MOC
11 = 5; % number of iterations for corrector algorithm in rotational MOC
R = 287;
gamma = 1.4;

M_1 = 8.6;
beta cl = pi - 19.8 * pi / 180;
theta_1 = 0;
T_1 = 273;
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p_1 = 101300;

%% Derived parameters

c_p = gamma / (gamma-1) * R;

%% Region 1 & Cl

r_ = p_1 / R / T_l;

betal_thetal_Ml_gamma = [beta_cl, theta_1, M_1, gamma];

%% Region 3

theta_3 = theta_1 + atan(tbm-rhs(betalthetalMlgamma));
betathetalthetasMl_pl_rl_gamma = [beta cl, theta_l, theta_3, M1l,...

p_1, r_1, gamma];

M_3 = Ms(betathetalthetasMl_plrlgamma);
p_3 = p_s(beta thetalthetasMlpl rlgamma);

r 3 = rs(beta-thetalthetasMlplrlgamma);
T_3 = T1 * p_3 * r_1 / p1 / r_3;
sgen-cl = cp * log(T_3/T_l) - R * log(p_3/p l);

%% Region 2 & C2
if LoT == 1

CfO = sqrt(0.85) * 0.664 / ReOA(1/2);
p_2 = p_1 * (1 + 1.47 / 2 * gamma * M_A2 * sqrt(2 * CfO /...

sqrt(MiJ^2 - 1)));
elseif LoT == 2

p_2 = p_1 * (1 + 0.5 * Mi1);
else

disp('Error: check value of LoT)
return

end

if p_3 < p_2
disp('Error: shock cl not strong enough to cause separation')
return

end

betac2 = fsolve(@(beta) ps([beta, theta_1, 0, M_1, p_1, r_1, gamma])/p_2

1, asin(i/M 1));

if -(asin(1/Mi1)< betac2 && betac2 < pi/2)
disp('Error computing shock angle c2: check that Ml*sin(betac2) > 1')

return
end

beta2_thetalMl_gamma = [beta c2, theta_, Ml, gamma];
theta_2 = theta_1 + atan(tbm-rhs(beta2_thetalMl gamma));
betathetalthetasMl_pl_rl_gamma = [beta c2, theta_1, theta_2, Mi,...

p_1, r_1, gamma];

M 2 = M s(beta thetalthetasMl_pl_rlgamma);
r_2 = r_s(beta-thetalthetasMl-plrlgamma);
T_2 = T1 * p_2 * r_1 / p_1/ r_2;
sgenc2 = cp * log(T_2/T_l) - R * log(p_2/p_l);

%% Regions 4,5 & C3,C4
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[betac4c3, res, flag] = fsolve(@(betac4c3) typel(betac4c3, [theta_2, theta_3],

[M_2, M_3], [p_2, p_3], gamma), [- asin(1/M_2) + theta 2,...
asin(1/M_3) + theta_3]);

if flag <= 0
disp('Error: Type II interference')
return

end

betac4 = beta c4c3(1);
betac3 = betac4c3(2);

beta4_theta2 M2_gamma = [beta c4, theta_2, M_2, gamma];
theta_4 = theta_2 + atan(tbm rhs(beta4_theta2_M2_gamma));
beta3_theta3 M3_gamma = [betac3, theta 3, M_3, gamma];
theta_5 = theta_3 + atan(tbm rhs(beta3_theta3_M3_gamma));

betathetalthetasMlpl_rl_gamma = [betac4, theta_2, theta_4, M_2,...
p_2, r_2, gamma];

M_4 = M s(betathetalthetasMlpl_rl_gamma);

if M_4 < 1
disp('Error: Region 4 is subsonic')
return

end

p_4 = p_s(betathetalthetasMl_p_rl_gamma);
r_4 = r s(betathetalthetasMl_pl_rlgamma);
T_4 = T_2 * p_4 * r_2 / p_2 / r_4;
sgen-c4 = cp * log(T_4/T_2) - R * log(p_4/p_2);

betathetalthetasMlpl_r l_gamma = [beta c3, theta_3, theta_5, M_3, ....
p_3, r_3, gamma];

M_5 = M s(beta_thetalthetasMlplrlgamma);
p_5 = p_s(bet a_theta l_thetasMlpl_rl_gamma);
r_5 = rs(betathetalthetasMlplrlgamma);
T_5 = T_3 * p_5 * r_3 / p3 r_5;
sgen-c3 = cp * log(T_5/T_3) - R * log(p_5/p_3);

%% Region 4'

M_4p = fsolve(@(M) pexp([M_4, M, p_4, gamma])/p_2 - 1, M_2);
p_4p = pexp([M_4, M_4p, p_4, gamma]);

if (p_4p - p_2) / p_2 > 10^-4
disp('Error computing conditions in 4p')
return

end

T_4p = Texp([M_4, M_4p, T_4, gamma]);
r_4p = r_4 * T_4 * p_4p / p_4 / T_4p;
theta_4p = theta_4 + prmey([M_4, gamma]) - prmey([M_4p, gamma]);
betaefl = theta_4 + asin(1/M_4);
betaef2 = theta_4p + asin(1/M_4p);

%% Expansion wave slipline interaction (4' and 5')

Li = Lsep * tan(theta_4p) / (tan(theta_4p) - tan(theta_2));
h = Li * tan(theta 2);
Hx = (h - tan(beta-c4) * Li) / (tan(beta-c2) - tan(beta-c4));
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Hy = Hx * tan(beta-c2);

thM_p_T = expwslipl(theta_4, p_4, M_4, T_4, M_5, T_5,...
theta 4p, p_4p, M_4p, gamma, N);

xy-char = characteristics(theta_4, M_4, M_5, theta_4p, M_4p,...
th_M-pT, N, h, Hy, Hx, Ll, Lsep);

%% Reflection of compression waves off ramp (4'')

if xychar(end,1) -= Li
th_MpT_2 = compwramp(thM_p_T, theta_4, theta_4p, gamma, N);
xychar_2 = characteristics2(theta_4p, M_4p, thM_p_T,

xy-char, thM_p_T_2, N, Lsep);

xychar_2 = characteristics2simple2(thM_p_T,
th_MpT_2, xychar, xychar_2, N, Lsep);

i = 0;

for j = 1:N/2
if xychar(end,2*j-1) ~= Li

i = i+1;
else

break;
end

end

k =i;
b = zeros(N,1);
b(i) = 1;
for ii = 2:N

b(ii) = b(ii-1) + ii;
end

theta_4pp = th_M_p_T_2(b(i), 1);
M_4pp = thM_p_T_2(b(i), 2);
p_4pp = thM_pT_2(b(i), 3);
T_4pp = thM_pT_2(b(i), 4);
r_4pp = p_4pp / R / T_4pp;

else
xychar_2 = characteristics2simple(theta_4p, M4p, ...

th_MpT, xychar, N);
theta_4pp = theta_4p;
M_4pp = M_4p;
p_4pp = p_4p;
T_4pp = T_4p;
r_4pp = r_4p;

end

%% Moeckel computation of shock c5

theta_6 = zeros(N+1,1);
M_6 = zeros(N+1,1);
Mu = [M_4pp; zeros(N,1)];
p_6 = zeros(N+1,1);
r_6 = zeros(N+1,1);
T_6 = zeros(N+1,1);

betac5 = zeros(N+1,1);
xc5 = [Lsep; zeros(N+1,1)];
yc5 = zeros(N+2,1);
sgen-c5 = zeros(N+1,1);
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theta_6(1) = theta_1;

[beta c5(1), res, flag] = fsolve(@(beta) tbm-rhs([beta, theta_4pp, M_4pp,
gamma]) / tan(theta_6(1) - theta_4pp) - 1, asin(1/M_4pp));

if flag <= 0
disp('Error: Reattachment shock is detached')
return

end

betathetalthetasMlpl_rl_gamma = [beta c5(1), theta_4pp, theta_6(1),
M_4pp,...

p_4pp, r_4pp, gamma];

M_6(1) = M_s (beta thetal_thetasM1_plrl_gamma);

p 6(1) = ps (beta thetalthetasMIpl_rl_gamma);
r6 (l) = rs (beta thetal_thetasMl_pl_rl_gamma);
T_6(1) = p_6(1) r_6(1) / R;
sgenc5(1) = cp * log(T_6(1)/T_4pp) - R * log(p_6(1)/p_4pp);

if xy-char(end,1) -= Li
r = zeros(N,1);
c = zeros(N,1);

end

for 1 = 2:N+1
if xychar(end,1) -= Li

thuMupuTu xiplyipl_r_c = upstream_c5(beta-c5(1-1), xc5(1-1),

yc5(1-1), xychar_2, th_M_pT, thM_pT_2, N);
else

thuMupuTuxiplyipl_r_c = upstreamc5_noreflec(beta-c5(1-1),
xc5(1-1), yc5(1-1), xy-char_2, th_M_p_T, N);

end

thu = thu MupuTuxiplyipl_r_c(1);
Mu(l) = thuMupuTuxiplyipl_r_c(2);
pu = thuMupuTuxiplyipl_r_c(3);
Tu = thuMupuTuxipl_yipl_r-c(4);
ru = pu / R / Tu;
xc5(1) = thuMupuTuxiplyipl_r_c(5);
yc5(1) = thuMupuTuxiplyipl_r_c(6);

if xy-char(end,1) -= Li
r(1-1) = thu Mupu Tuxipl_yipl_rc (7);
c(1-1) = thuMupuTu-xipl_yipl_r_c(8);
beta_c5(l) = fsolve(@(beta) moeckel(beta, gamma, Mu(1-1), Mu(l),

betac5(1-1), r(1-1), c(1-1)), beta c5(1-1));
else

beta_c5(l) = fsolve(@(beta) moeckel(beta, gamma, Mu(1-1), Mu(l),
beta c5(1-1), 1, 2), beta c5(1-1));

end

betalthetal M1 gamma = [beta c5(l), thu, Mu(l), gamma];
theta_6(1) = thu + atan(tbm-rhs(betalthetalMlgamma));

betathetalthetasMlpl_rl_gamma = [beta c5(1), thu, theta_6(l), Mu(l),...
pu, ru, gamma];

M_6(l) = Ms(betathetalthetasMlplrlgamma);

p_6(l) = p s(betathetalthetas_Ml_plrlgamma);
r_6(l) = rs(betathetalthetasMl_pl_rlgamma);
T_6(l) = p_6(l) / r_6(l) / R;
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sgenc5(l) = cp * log(T_6(l)/Tu) - R * log(p_6(l)/pu);
end

% Compute last xc5 yc5, which is intersection with slip line

xyc5_end = intersection(tan(th_M_p_T(end,1)),
xy-char(end-l,end-1), xychar(end-1,end),
xc5(end-1), yc5(end-1));

xc5(end) = xyc5_end(1);
yc5(end) = xyc5_end(2);

tan(betac5(end)),

% Truncate results in case c5 extends beyond slip line

xc5 = xc5(xc5 < xc5(end));
q = length(xc5);
yc5 = yc5(1:q);

theta_6 = theta 6(1:q);
M_6 = M_6(1:q);
Mu = Mu(l:q);
p_6 = p_6(1:q);
r_6 = r_6(1:q);
T_6 = T_6(1:q);
betac5 = betac5(1:q);
sgen-c5 = sgenc5(1:q);

% Re-calculate intersection with truncated results

xyc5_end = intersection(tan(thM_pT(end,1)), tan(beta-c5(end)),
xy-char(end-l,end-1), xychar(end-1,end), ...

xc5(end), yc5(end));
xc5 = [xc5; xyc5_end(l)];
yc5 = [yc5; xyc5_end(2)];

%% Interaction of c5 and slip line

thetat = thM_p_T(N*(N+1)/2 +
M_t = thM_p_T(N*(N+1)/2 + 2*N
p_t = thM_p_T(N*(N+1)/2 + 2*N

theta_1 = th_M_p_T(N*(N+1)/2 +
M_1 = thM_p_T(N*(N+1)/2 + N -
p_1 = thM_p_T(N*(N+1)/2 + N -

2*N - 1, 1);
- 1, 2);
- 1, 3);

N - 1, 1) ;
1, 2);
1, 3);

theta lp = theta_6(end);
Mlp = M_6(end);
plp = p_6(end);
T_lp T_6(end);

[betac6_Mlpp, res, flag] = fsolve(@(betac6_Mlpp) c5_sl(theta-lp, Milp,
p-lp, thetat, Mt, p-t, gamma, betac6_Mlpp), [beta c5(end), Ml]);

if flag <= 0
disp('Error in fsolve computing interaction of c5 with slipline')
return

end

betac6 = betac6_Mlpp(l);
Mklpp = betac6_Mlpp(2);

if Mlpp < Mlp
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disp('Error in computing expansion fan reflection of shock c5 from

slipline')
return

end

p_lpp = pexp([ Mlp, Mlpp, p_lp, gamma]);
thetalpp = theta lp + prmey([M_lpp, gamma]) - prmey([Mlp, gamma]);
T-lpp = Texp([M_lp, Mlpp, T_lp, gamma]);

%% MOC for rotational flow behind curved shock c5

Npl = q;

% Values along each C- characteristic are stored in a column vector. The

% column vectors are stored in a cell array. The first entry of each column

% vector corresponds to a point just behind shock c5, and the last entry

% corresponds to a wall point. The first column vector in the array is the

% reattachment point, and each subsequent column vector is located further

% downstream than the previous.

% Calculation prior to expansion fan

xrmoc = cell(1,Npl);
yrmoc = cell(1,Npl);
Mrmoc = cell(1,Npl);
thrmoc = cell(1,Npl);
prmoc = cell(1,Npl);
rrmoc = cell(1,Npl);
Trmoc = cell(1,Npl);

for jj = 1:Npl
xtemp = zeros(jj,1);
ytemp = zeros(jj,1);
Mtemp = zeros(jj,1);
thtemp = zeros(jj,1);
ptemp = zeros(jj,1);
rtemp = zeros(jj,1);
Ttemp = zeros(jj,1);

xtemp(1) = (xc5(jj) + xc5(jj+1)) / 2;
ytemp(1) = (yc5(jj) + yc5(jj+1)) / 2;
Mtemp(1) = M_6(jj);
thtemp(1) = theta_6(jj);
ptemp(1) = p_6(jj);
rtemp(1) = r_6(jj);
Ttemp(1) = T_6(jj);

if jj -= 1

n = 2; % Index for current column
nn = 2; % Index for previous column

while nn <= length(xrmoc{jj-1})
xO = [xrmoc{jj-1}(nn); xtemp(n-1)];
yO = [yrmoc{jj-1}(nn); ytemp(n-1)];
MO = [Mrmoc{jj-1}(nn); Mtemp(n-1)];
thO = [thrmoc{jj-1}(nn); thtemp(n-1)];
p0 = [prmoc{jj-1}(nn); ptemp(n-1)];
rO = [rrmoc{jj-1}(nn); rtemp(n-1)];
x4_y4_M4_th4_p4_r4 = interior(xO, yO, MO, thO, p0, rO, ...

gamma, kk, 11);
x4 = x4_y4_M4_th4_p4_r4(1);
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y4 = x4_y4_M4_th4_p4_r4(2);
M4 = x4_y4_M4_th4_p4_r4(3);
th4 = x4_y4_M4_th4_p4_r4(4);
p4 = x4_y4_M4_th4_p4_r4(5);
r4 = x4_y4_M4_th4_p4_r4(6);

if checkyc5(x4,y4, xc5, yc5, thetalpp)
xtemp = xtemp(1:length(xtemp) - 1);
ytemp = ytemp(1:length(ytemp) - 1);
Mtemp = Mtemp(1:length(Mtemp) - 1);
thtemp = thtemp(l:length(thtemp) - 1);
ptemp = ptemp(1:length(ptemp) - 1);
rtemp = rtemp(1:length(rtemp) - 1);
Ttemp = Ttemp(1:length(rtemp) - 1);
n = n - 1;

else
xtemp(n) = x4;
ytemp(n) = y4;
Mtemp(n) = M4;
thtemp(n) = th4;
ptemp(n) = p4;
rtemp(n) = r4;
Ttemp (n) = p4 ./ r4 ./ R;

end

n = n + 1;
nn = nn + 1;

end

xO = [xrmoc{jj-1}(end); xtemp(n-1)];
yO = [yrmoc{jj-1}(end); ytemp(n-1)];
MO = [Mrmoc{jj-1}(end); Mtemp(n-1)];
thO = [thrmoc{jj-1}(end); thtemp(n-1)];
p0 = [prmoc{jj-1}(end); ptemp(n-1));
rO = [rrmoc{jj-1}(end); rtemp(n-1)];
x4_y4_M4_th4_p4_r4 = directwall(xO, yO, MO, thO, p0, rO, ...

gamma, 11);
xtemp(n) = x4_y4_M4_th4_p4_r4(1);
ytemp(n) = x4_y4_M4_th4_p4_r4(2);
Mtemp(n) = x4_y4_M4_th4_p4_r4(3);
thtemp(n) = x4_y4_M4_th4_p4_r4(4);
ptemp(n) = x4_y4_M4_th4_p4_r4(5);
rtemp(n) = x4_y4_M4_th4_p4_r4(6);
Ttemp(n) = ptemp(n) ./ rtemp(n) ./ R;

% Truncate further in case jj-1 was truncated
xtemp = xtemp(1:n);
ytemp = ytemp(1:n);
Mtemp = Mtemp(l:n);
thtemp = thtemp(1:n);
ptemp = ptemp(1:n);
rtemp = rtemp(l:n);
Ttemp = Ttemp(1:n);

end

xrmoc{jj} = xtemp;
yrmoc{jj} = ytemp;
Mrmoc{jj} = Mtemp;
thrmoc{jj} = thtemp;
prmoc{jj} = ptemp;
rrmoc{jj} = rtemp;
Trmoc{jj} = Ttemp;
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end

% Calculation through expansion fan

dth = (thetalpp - theta ip) / NN;

xrmoc = [xrmoc, cell(1,NN)];
yrmoc = [yrmoc, cell(1,NN)];
Mrmoc = [Mrmoc, cell(1,NN)];
thrmoc = [thrmoc, cell(1,NN)];
prmoc = [prmoc, cell(1,NN)];
rrmoc = [rrmoc, cell(1,NN)];

for jj = Npl+1:Npl+NN

xtemp = zeros(jj,1);
ytemp = zeros(jj,1);
Mtemp = zeros(jj,1);
thtemp = zeros(jj,1);
ptemp = zeros(jj,1);
rtemp = zeros(jj,1);
Ttemp = zeros(jj,1);

[MpdM, res, flag] = fsolve(@(M) (dth * (jj - Npl) +
prmey([Mlp,gamma]) - prmey([M,gamma])) * 180 / pi, Mlpp);

if flag <= 0
disp('Error in fsolve computing discretized expansion fan at c5')
return

end
ppdp = pexp([bMlp, MpdM, plp, gamma]);
TpdT = Texp([Mlp, MpdM, Tlp, gammal);
rpdr = ppdp / R / TpdT;

xtemp(1) = xc5(end);
ytemp(1) = yc5(end);
Mtemp(1) = MpdM;
thtemp(1) = theta lp + dth * (jj - Npl);
ptemp(1) = ppdp;
rtemp(1) = rpdr;
Ttemp(1) = TpdT;

n = 2; % Index for current column
nn = 2; % Index for previous column

while nn <= length(xrmoc{jj-1})
xO = [xrmoc{jj-1}(nn); xtemp(n-1)];
yO = [yrmoc{jj-1}(nn); ytemp(n-1)];
MO = [Mrmoc{jj-1}(nn); Mtemp(n-1)];
thO = [thrmoc{jj-1}(nn); thtemp(n-1)];
p0 = [prmoc{jj-1}(nn); ptemp(n-1)];
rO = [rrmoc{jj-1}(nn); rtemp(n-1)];
x4_y4_M4_th4_p4_r4 = interior(xO, yO, MO, thO, p0, rO,

gamma, kk, 11);
x4 = x4_y4_M4_th4_p4_r4(1);
y4 = x4_y4_M4_th4_p4_r4(2);
M4 = x4_y4_M4_th4_p4_r4(3);
th4 = x4_y4_M4_th4_p4_r4(4);
p4 = x4_y4_M4_th4_p4_r4(5);
r4 = x4_y4_M4_th4_p4_r4(6);

if checkyc5(x4,y4, xc5, yc5, theta lpp)
xtemp = xtemp(1:length(xtemp) - 1);
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ytemp = ytemp(1:length(ytemp) - 1);
Mtemp = Mtemp(1:length(Mtemp) - 1);
thtemp = thtemp(1:length(thtemp) - 1);
ptemp = ptemp(1:length(ptemp) - 1);
rtemp = rtemp(1:length(rtemp) - 1);
Ttemp = Ttemp(1:length(rtemp) - 1);
n = n - 1;

else
xtemp(n) = x4;
ytemp(n) = y4;
Mtemp(n) = M4;
thtemp(n) = th4;
ptemp(n) = p4;
rtemp(n) = r4;
Ttemp (n) = p4 ./ r4 ./ R;

end

n = n + 1;
nn = nn + 1;

end

xO = [xrmoc{jj-1}(end); xtemp(n-1)];
yO = [yrmoc{jj-1}(end); ytemp(n-1)];
MO = [Mrmoc{jj-1}(end); Mtemp(n-1)];
thO = [thrmoc{jj-1}(end); thtemp(n-1)];
p0 = [prmoc{jj-1}(end); ptemp(n-1)];
rO = [rrmoc{jj-1}(end); rtemp(n-1)];
x4_y4_M4_th4_p4_r4 = directwall(xO, yO, MO, thO, p0, rO, ...

gamma, 11);
xtemp(n) = x4_y4_M4_th4_p4_r4(1);
ytemp(n) = x4_y4_M4_th4_p4_r4(2);
Mtemp(n) = x4_y4_M4_th4_p4_r4(3);
thtemp(n) = x4_y4_M4_th4_p4_r4(4);
ptemp(n) = x4_y4_M4_th4_p4_r4(5);
rtemp(n) = x4_y4_M4_th4_p4_r4(6);
Ttemp(n) = ptemp(n) ./ rtemp(n) ./ R;

% Truncate further in case jj-1 was truncated
xtemp = xtemp(1:n);
ytemp = ytemp(1:n);
Mtemp = Mtemp(1:n);
thtemp = thtemp(1:n);
ptemp = ptemp(l:n);
rtemp = rtemp(l:n);
Ttemp = Ttemp(1:n);

xrmoc{jj} = xtemp;
yrmoc{jj} = ytemp;
Mrmoc{jj} = Mtemp;
thrmoc{jj} = thtemp;
prmoc{jj} = ptemp;
rrmoc{jj} = rtemp;
Trmoc{jj} = Ttemp;

end
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c5_sl.m

function res = c5_sl(thlp, M_lp, p_lp, th-t, Mt, pt, gamma, ...

betac6_Mlpp)

betac6 = betac6_Mlpp(1);
M1lpp = betac6_Mlpp(2);

th_lpp = thlp + prmey([Mipp, gamma]) - prmey([Mlp, gamma]);
p_lpp = pexp([M_lp, M_lpp, p_lp, gamma]);

thtp = tht + atan(tbm-rhs([beta-c6, tht, Mt, gamma]));
p_tp = ps([beta-c6, tht, 0, Mt, p-t, 0, gamma]);

resi = (thtp - thlpp) * 180 / pi;
res2 = (ptp - plpp)/(p-tp + pilpp);
res = [resl; res2];

end
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characteristics.m

function xychar = characteristics(theta-i, M4, M5, theta4p, M4p,...
th_M_pT, N, h, Hy, Hx, Li, Lsep)

% Output is a matrix of the x- and y- coordinates of the C+ and C-
% characteristics below the slipline, as well as the slipline itself.
% The first pair of columns corresponds to the x- and y-coordinates

% (in that order) of the first finite expansion wave, and of the first
% reflected compression wave. Each subsequent pair of columns
% contains the coordinates of the next downstream finite
% expansion wave and its reflected compression wave. The final pair of
% columns contain the coordinates of the slip line.

[n,-] = size(thM_p_T);
n = n + 3;
th = [theta-i; thM_pT(1:N-1,1); theta4p; ...

th_M_pT(N:n-3-N,1); thetai; thM_p_T(n-2-N:end,1)J;
M = [M4; thM_p_T(:N-1,2); M4p; ...

thM_p_T(N:n-3-N,2); M5; thM_pT(n-2-N:end,2)];

m = 2*N + 2 + N*(N-1)/2;
dydxsl = tan(th(m:end));

thaveexp = zeros(N * (N+1) / 2, 1);
M_aveexp = zeros(N * (N+1) / 2, 1);
thavecomp = zeros(N * (N+1) / 2, 1);
M_avecomp = zeros(N * (N+1) / 2, 1);
muaveexp = zeros(N * (N+1) / 2, 1);
muavecomp = zeros(N * (N+i) / 2, 1);
dydx exp = zeros(N * (N+1) I 2, 1);
dydxcomp = zeros(N * (N+1) / 2, 1);
xy-char = zeros(N+2, 2*N+2);
xychar(1, end-i:end) = [Hx - Li, Hy - h];

i = 1;

for j = 1:N % Compute first simple region & nonsimple region

k = 1;

thaveexp(i) = (th(j) + th(j+1)) / 2;
M-ave-exp(i) = (M(j) + M(j+1)) / 2;
muaveexp(i) = asin(1/M-aveexp(i));
dydx exp(i) = tan(thaveexp(i) + muaveexp(i));
thavecomp(i) = (th(j+1) + th(j+1+N)) / 2;
M_avecomp(i) = (M(j+1) + M(j+i+N)) / 2;
muavecomp(i) = asin(1/M ave-comp(i));
dydx-comp(i) = tan(thave-comp(i) - mu_ave_comp(i));

if j == 1 % Initial slip line point given by input geometry
xyint = intersection(dydxexp(1), dydxsl(1), 0,...

0, Hx - Ll, Hy - h);
xychar(k+, 2*j-1:2*j) = xyint;

else
xyint = intersection(dydx exp(i), dydx-comp(i-j+1), ...

0, 0, xychar(j, 2*k-1), xychar(j, 2*k));
xychar(k+1, 2*j-1:2*j) = xyint;
xy-char(j+1, 2*k-1:2*k) = xyint;

end
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i = i + 1;
k = k + 1;
ii = j + N;

while k <= j

thaveexp(i) = (th(ii) + th(ii+1)) / 2;
M-ave-exp(i) = (M(ii) + M(ii+1)) / 2;
muaveexp(i) = asin(1/M aveexp(i));
dydx exp(i) = tan(th_aveexp(i) + mu-ave-exp(i));
thavecomp(i) = (th(ii+1) + th(ii+1+N-k+1)) / 2;
Mavecomp(i) = (M(ii+1) + M(ii+1+N-k+1)) / 2;
muavecomp(i) = asin(1/M-ave-comp(i));
dydxcomp(i) = tan(thavecomp(i) - muavecomp(i));

if j == k % Use slip line slope
xyint = intersection(dydx exp(i), dydx-sl(j),...

xychar(k, 2*j-1), xy-char(k, 2*j),...
xychar(j, 2*k-3), xy-char(j, 2*k-2));

xychar(k+1, 2*j-1:2*j) = xyint;
else

xyint = intersection(dydxexp(i), dydx comp(i-j+1), ...
xychar(k, 2*j-1), xychar(k, 2*j),...
xychar(j, 2*k-1), xychar(j, 2*k));

xy-char(k+1, 2*j-1:2*j) = xyint;
xychar(j+1, 2*k-1:2*k) = xy-int;

end

i = i + 1;
k = k + 1;
ii = ii + N - k + 2;

end

xychar(j+1, end-1:end) = xychar(j+1, 2*j-1:2*j);

end

% Compute second simple region (if compression waves reflect on ramp)

xyint = intersection(dydxcomp((N-1)*(N-2)/2 + N:end), tan(theta4p),...
xychar(end-1, 1:2:end-3)', xychar(end-1, 2:2:end-2)', 0, 0);

for i = 1:N
if xy-int(i, 1)<= Lsep - LI

xy-char(end, 2*i-1:2*i) = xyint(i, :);
else

break;
end

end

% Translation to match coordinate systems

T = Li * ones(N+2, 2*N+2);
T(:,2:2:end) = h;
xychar = xychar + T;

end
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characteristics2.m

function xychar_2 = characteristics2(theta4p, M4p,...
th_M_p_T, xychar, thM_p_T_2, N, Lsep)

a = zeros(N,1);
b = zeros(N,1);
a(1) = 1;
b(1) = 2*N-1;
for i = 2:N

a(i) = a(i-1) + i - 1;
b(i) = b(i-1) + N + 1 -i;

end

[n,-] = size(th_M_p_T_2);
n = n + N + 1;
th = zeros(n,1);
M = zeros(n,1);
th(1:3) = [theta4p; th_M_p_T(b(1), 1); th_M_p_T_2(1,l)];
M(1:3) = [M4p; th_M_pT(b(1), 2); th_M_p_T_2(1,2)];

i 4;
j = 2;
k = 2;

while i <= n
if ismember(j,a)

th(i) = thM_p_T(b(k), 1);
M(i) = thM_p_T(b(k), 2);
i = i + 1;
k = k + 1;
th(i) = th_M_p_T_2(j, 1);
M(i) = thM_p_T_2(j, 2);
i = i + 1;
j = j + 1;

else
th(i) = th_M_p_T_2(j, 1);
M(i) = th_M_p_T_2(j, 2);
i = i + 1;
j = j + 1;

end
end

dydx wall = tan(theta4p);

th = flipud(th);
M = flipud(M);

thaveexp = zeros(N * (N+1) / 2, 1);
M_aveexp = zeros(N * (N+l) / 2, 1);
thave-comp = zeros(N * (N+1) / 2, 1);
M_avecomp = zeros(N * (N+1) / 2, 1);
muaveexp = zeros(N * (N+1) / 2, 1);
muavecomp = zeros(N * (N+1) / 2, 1);
dydxexp = zeros(N * (N+1) / 2, 1);
dydxcomp = zeros(N * (N+1) / 2, 1);
xychar_2 = zeros(N+1, 2*N);
xychar_2(1,:) = xy-char(end-1,1:end-2);

i = 1;
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for j = 1:N % Copied from characteristics.m. Note that "exp" is a

% reflected comp wave, and "comp" is an incident comp wave.

% Also note that order/indexing is flipped (code progresses
% from downstream to upstream) inside the loop.

k = 1;

thaveexp(i) = (th(j) + th(j+1)) / 2;
M_aveexp(i) = (M(j) + M(j+1)) / 2;
muaveexp(i) = asin(1/Mave_exp(i));
dydxexp(i) = tan(th aveexp(i) + mu aveexp(i));
thavecomp(i) = (th(j+1) + th(j+1+N)) / 2;
M_avecomp(i) = (M(j+1) + M(j+1+N)) / 2;
muavecomp(i) = asin(1/Mave_comp(i));
dydx-comp(i) = tan(thavecomp(i) - muavecomp(i));

i = i + 1;
k = k + 1;
ii = j + N;

while k <= j

thaveexp(i) = (th(ii) + th(ii+1)) / 2;
M-ave-exp(i) = (M(ii) + M(ii+1)) / 2;
muaveexp(i) = asin(1/M-aveexp(i));
dydx exp(i) = tan(th_ave_exp(i) + muave_exp(i));
thavecomp(i) = (th(ii+1) + th(ii+1+N-k+1)) / 2;

M_avecomp(i) = (M(ii+1) + M(ii+1+N-k+1)) / 2;
muavecomp(i) = asin(1/Mlave-comp(i));
dydx-comp(i) = tan(thavecomp(i) - mu-ave-comp(i));

i = i + 1;
k = k + 1;
ii = ii + N - k + 2;

end

end

dydxexp = flipud(dydx-exp);
dydx-comp = flipud(dydx-comp);

i = 1;

for j = 1:N % Also copied, only used here to compute coordinates. Also
% slightly modified, to account for flipping of ave value

% vectors & to match indexing.
k = 1;

if j == 1 % Use first row of xychar_2 AND ramp geometry
xyint = intersection(dydx-comp(1), dydx wall,

xychar_2(1,1), xy char_2(1,2), Lsep, 0);
xychar_2(j+1, 2*j-1:2*j) = xy-int;

else
xyint = intersection(dydxcomp(i), dydx wall,

xy-char_2(j, 2*j-1), xy-char_2(j, 2*j),
Lsep, 0);

xy-char_2(j+1, 2*j-1:2*j) = xyint;
end

i = i + 1;
k = k + 1;
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while k <= N + 1 - j
xyint = intersection(dydx-comp( i), dydx-exp( i-1), ....

xy-char_2(j, 2*(j+k-2)+1), xychar_2(j, 2*(j+k-2)+2),...
xy-char_2(j+k-1, 2*(j-1)+1), xy-char_2(j+k-1, 2*(j-1)+2));

xy-char_2(j+1, 2*(j+k-2)+1:2*(j+k-2)+2) = xyint;
xychar_2(j+k, 2*(j-l)+1:2*(j-1)+2) = xy-int;

i = i + 1;
k = k + 1;

end

end

end
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characteristics2simple.m

function xy char_2 = characteristics2simple(theta_4p, M_4p, ...

th_M_p_T, xychar, N)
% Outputs x- and y- coordinates of the noncurved characteristics that
% extend past the first nonsimple region, in the case when there is not a

% second nonsimple region (i.e., the waves do not reflect off the ramp)

xychar_2 = zeros(N+2, 2*N);
xy char_2(1,:) = xychar(end-1,1:end-2);

M = zeros(N+1, 1);
th = zeros(N+1, 1);
M(1) = M_4p;
th(1) = theta_4p;
j = N-1+N;
for i = 2:N+1

M(i) = th_M_p_T(j,2);
th(i) = th_M_p_T(j,1);
j = j + N - (i-1);

end

thave = (th(1:end-1) + th(2:end)) ./ 2;
M-ave = (M(1:end-1) + M(2:end)) ./ 2;
muave = asin(1./M-ave);
dydx = tan(thave - mu ave);

for i = 2:2:2*N
xO = xy-char_2(1,i-1);
yO = xychar_2(1,i);
xy-char_2(:,i) = linspace(yO, 0, N+2)';
xy-char_2(:,i-1) = (xy char_2(:,i) - yO) ./ dydx(i/2) + xO;

end

end
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characteristics2simple2.m

function xychar_2 = characteristics2simple2(thM_p_T, ...

th_MpT_2, xychar, xy char_2, N, Lsep)
% Appends one additional row to xy_char_2. The additional row extends each

% characteristic curve through the third simple region, up to an x value of

% 2 * Lsep.

m = N * (N+1) / 2;
th = thM_p_T_2(m-N+:m,1);
M = thMpT_2(m-N+1:m,2);
th = [thM_pT(m+N-1, 1); th];
M [thM_p_T(m+N-1, 2); M);
thave = (th(1:end-1) + th(2:end)) ./ 2;
M_ave = (M(1:end-1) + M(2:end)) ./ 2;
muave = asin(1./M-ave);

dydx char = tan(th ave + mu_ave);
xOchar = xychar_2(end,1:2:end-1)';
yOchar = xychar_2(end,2:2:end)';

lastrowx = 2 * ones(N, 1);
lastrowy = yO_char + dydx char .* (2*Lsep - xOchar);
lastrow = [lastrow-x, lastrowy];
lastrow = reshape(lastrow', [2*N, 1]);
xy-char_2 = [xychar_2; lastrow'];

end
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checkyc5.m

function yn = check yc5(x, y, xc5, yc5, thetalpp)

% Returns true if (x,y) is located above shock c5, false otherwise.

% Note that false will be returned if x is not in or greater than the
% range of xc5.

yn = false;

if x >= xc5(end)

yc5p = yc5(end) + (x - xc5(end)) * tan(theta-lpp);

if y > yc5p
yn = true;

end

else

for i = 1:length(xc5)-1
if xc5(i) <= x < xc5(i+1)

yc5p = yc5(i) + (yc5(i+1) - yc5(i)) * (x - xc5(i))
/ (xc5(i+1) - xc5(i));

if y > yc5p
yn = true;

end
break;

end
end

end
end
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compw-ramp.m

function thM_p_T_2 = compwramp(thM_p_T, theta4, theta4p, gamma, N)

% Computes theta, M, p, and T in the second nonsimple region assuming that
% the compression waves originating at the slip line reflect off the ramp.
% Columns of the output matrix correspond to, in order, theta, M, p, and T.
% Each row corresponds to a region enclosed by finite compression waves.
% The first row is the first region downstream of the first reflected
% compression wave, and adjacent to the wall. The second row is also just
% downstream of the first reflected wave, and adjacent to the first region.
% Each subsequent row is the next region along the C- characteristic, until
% the wall is reached. The process then repeats until the entire region is
% solved.

dtheta = (theta4p - theta4) / N;

k = N*(N-1)/2 + N;
A = zeros(k, 4);

a = zeros(N,1);
b = zeros(N,1);
a(l) = 1;
b(1) = 1;
for i = 2:N

a(i) = a(i-1) + i - 1;
b(i) = b(i-1) + i;

end

j = 1;
m = N-1;

% For i = 1

m = m + N + 1 - j;

M = fsolve(@(M) wallregion(thM_pT(m, 1),...
th_M_p_T(m, 2), theta4p, M, gamma, dtheta),
thM_p_T(m, 2));

A(1,1) = theta4p;
A(1,2) = M;
A(1,3) = p-exp([thM_pT(m, 2), A(1,2),

thM_p_T(m, 3), gamma]);
A(1,4) = Texp([thM_p_T(m, 2), A(1,2),

thM_p_T(m, 4), gamma]);

for i = 2:k
if ismember(i,a) % Downstream of first reflected comp wave

j = j + 1;
m = m + N + 1 - j;

thM = fsolve(@(thM) intregion(th_M_p_T(m, 1),
thM_p_T(m, 2), A(a(j-1), 1), A(a(j-1), 2), .
gamma, dtheta, thM), [A(a(j-1), 1), A(a(j-1), 2)]);

A(i,l) = thM(1);
A(i,2) = thM(2);
A(i,3) = pexp([A(a(j-1), 2), A(i,2), ..

A(a(j-1), 3), gamma]);
A(i,4) = Texp([A(a(j-1), 2), A(i,2), ...

A(a(j-1), 4), gamma]);
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elseif ismember(i,b) % Adjacent to wall
M = fsolve(@(M) wallregion(A(i-1, 1), A(i-1, 2),

theta4p, M, gamma, dtheta), A(i-1, 2));
A(i,1) = theta4p;
A(i,2) = M;
A(i,3) = pexp([A(i-1,2), A(i,2), A(i-1,3), gamma]);
A(i,4) = Texp([A(i-1,2), A(i,2), A(i-1,4), gamma]);

else % General interior region
thM = fsolve(@(thM) intregion(A(i-1, 1), A(i-1, 2),

A(i-j+1, 1), A(i-j+1, 2), gamma, dtheta, thM),...

[A(i-1,1), A(i-1,2)]);
A(i,2) = thM(1);
A(i,2) = thM(2);
A(i,3) = pTexp([A(i-1,2), A(i,2), A(i-1,3), gamma]);
A(i,4) = T_exp([A(i-1,2), A(i,2), A(i-1,4), gamma]);

end
end

th__M_p_T_2 = A;

end

function res = wallregion(thm, Mm, th4p, M, gamma, dtheta)

res = (thm + prmey([Mm,gamma]) - th4p - prmey([M,gamma])) /...
dtheta;

end

function res = int-region(thm, Mm, thp, Mp, gamma, dtheta, thM)

theta = thM(1);
M = thM(2);

resl = (theta - prmey([M,gamma]) +
/ dtheta;

res2 = (theta + prmey([M,gammaJ) -
/ dtheta;

res = [resl; res2];

prmey([Mp,gamma]) - thp)...

prmey([Mm,gamma]) - thm)...

end

103



directwall.m

function x4_y4 M4_th4_p4_r4 = directwall(xO, yO, MO, thO, p0, rO, ...

gamma, 1)
% Note: for constant thetawall. Function is nearly identical to

% interior.m, except that the initial data "line" is only two points: point

% 3 (known point on the wall) and point 2 (known point above the wall).

% Since thetawall is assumed to be constant, the first entry of input thO

% (which corresponds to point 3) is taken to be the wall angle.

n = length(xO);

x3 = xO(1:end-1);
x2 = xO(2:end);
y3 = yO(1:end-1);
y2 = yO(2:end);
M3 = MO(1:end-1);
M2 = MO(2:end);
mu3 = asin(1./M3);
mu2 = asin(1./M2);
th3 = thO(l:end-1);
th4 = th3;
th2 = thO(2:end);
p3 = pO(l:end-1);
p2 = pO(2:end);
r3 = rO(l:end-1);
r2 = rO(2:end);
dxO = xO(2:end) - xO(l:end-1);
dyO = yO(2:end) - yO(1:end-1);

% Initial estimate for (x4, y4)
Al = {diag(-tan(th3)), eye(n-1); diag(-tan(th2-mu2)), eye(n-1)];
B1 = [y3 - tan(th3) .* x3; y2 - tan(th2-mu2) .* x2];
x4y4 = Al\Bl;
x4 = x4y4(1:n-1);
y4 = x4y4(n:end);

% Initial calculation of properties at 4
R2 = gamma .* M2.^2 ./ sqrt(M2.^2 - 1);
lnp4 = log(p2) + R2 .* (th4-th2);
p4 = exp(lnp4);
M4 = sqrt(2./(gamma-1) .* ((1 + (gamma-1)/2 .* M3.2) ./

(p4./p3).^((gamma-1)/gamma) - 1));
r4 = (p4./p3).^(1/gamma) .* r3;

% Apply corrector algorithm (1 iterations)
for k2 = 1:1

% (x4, y4)
Al = [diag(-tan(th3)), eye(n-1); ...

diag(-tan((th2+th4)./2 - asin(2./(M2+M4)))), eye(n-l)];
B1 = [y3 - tan(th3) .* x3; y2 -

tan((th2+th4)./2 - asin(2./(M2+M4))) .* x2];
x4y4 = Al\Bl;
x4 = x4y4(1:n-1);
y4 = x4y4(n:end);

% Improved calculation of properties at 4
R2 = gamma .* ((M2+M4)./2).^2 ./ sqrt(((M2+M4)./2).2 - 1);
lnp4 = log(p2) + R2 .* (th4-th2);
p4 = exp(lnp4);
M4 = sqrt(2./(gamma-1) .* ((1 + (gamma-l)/2 .* M3.^2) ./ ..

(p4./p3).^((gamma-)/gamma) - 1));
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r4 = (p4./p3).^(/gamma) .* r3;

end

x4_y4_M4_th4_p4_r4 = [x4, y4, M4, th4, p4, r4];

end
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expsol.m

function res = expsol(M4pM5p, M4, M5, th4, th5, p4, p5, gamma)

M4p = M4pM5p(1);
M5p = M4pM5p(2);

th4p = th4 + prmey([M4, gamma]) -
th5p = th5 + prmey([MS, gamma]) -
resi = (th5p - th4p) * 180 / pi;

prmey([M4p, gamma]);
prmey([M5p, gamma]);

p4p = pexp([M4, M4p, p4, gamma]);
p5p = pexp([M5, M5p, p5, gamma]);
res2 = (p5p - p4p) / (p5p + p4p);

res = [resl; res2];

end
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expw_slipl.m

function th_MpT = expwslipl(theta-i, pi, M4, T4, M5, T5,...
theta4p, p4p, M4p, gamma, N)

% Outputs matrix of four column vectors, each corresponding to (in
% order) theta, M, p, and T. The first row corresponds
% to the region downstream of the first finite expansion wave
% originating at the corner, and below all reflected compression waves.
% Each subsequent row corresponds to the region downstream of the
% next finite expansion wave, but still below all reflected waves. Once
% the region just upstream of 4' is reached, and its state solved for,
% the next row of the matrix skips to the region just downstream of the
% first reflected wave, and adjacent to the slip line. The process is
% again marched downstream, without crossing reflected waves, until the
% region adjacent to 4' is reached. The process repeats until the
% final downstream region adjacent to the slipline is reached. The
% subsequent rows of the ouput matrix correspond to the regions above
% the slipline, again ordered from upstream to downstream. The final row of
% the matrix corresponds to 5'. Note that the known regions 4, 4', and 5
% do not appear in the output matrix.

dtheta = (theta4p - thetai) / N;
dp = (p4p - pi) / N;
k = N * (N+1) / 2 + 2 * (N-1);
m = N * (N+1) / 2 + N;

% Calculate Region 1
A = zeros(k + 1, 4);
A(1,1) = thetai + dtheta;
A(1,2) = fsolve(@(M) (prmey([M, gamma]) - prmey([M4, gamma]) +...

dtheta) / dtheta, M4);
A(1,3) = p-exp([M4, A(1,2), pi, gamma]);
A(1,4) = Texp([M4, A(1,2), T4, gamma]);

% Simple Region: Calculate regions 2 through N-1
for i = 2:N-1

A(i,1) = A(i-1,1) + dtheta;
A(i,2) = fsolve(@(M) (prmey([M, gamma]) - prmey([A(i-1,2), gamma]) +...

dtheta) / dtheta, A(i-1,2));
A(i,3) = pexp([A(i-1,2), A(i,2), A(i-1,3), gamma]);
A(i,4) = Texp([A(i-1,2), A(i,2), A(i-1,4), gamma]);

end

a = zeros(N,1);
a(1) = N;
for i = 2:N

a(i) = a(i-1) + N - (i-2);
end

j = 1;

% Nonsimple Region: Calculate remaining regions
for i = N:m-1

if ismember(i,a) % Check for adjacency to slip line

j = j + 1;
if i == N % First unknown adjacent region--depends on 5

lu = fsolve(@(lu) slregion(A(i,l), A(1,2),...
A(1,3), gamma, thetai, M5, p-i,...
dtheta, dp, lu), [A(1,i), A(1,2),
thetaIi, M5]);

A(i,1) = lu(1);
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A(i,2) = lu(2);
A(i,3) = pexp([A(1,2),A(i,2),A(1,3),gamma]);
A(i,4) = Texp([A(1,2),A(i,2),A(1,4),gamma]);
A(m,1) = lu(3);
A(m,2) = lu(4);
A(m,3) = pexp([M5,A(m,2),p-i,gamma]);
A(m,4) = Texp([M5,A(m,2),T5,gamma]);

else % Subsequent regions adjecent to slipline--regular indexing
lu = fsolve(@(lu) slregion(A(i-N+j-2,1), A(i-N+j-2,2),...

A(i-N+j-2,3), gamma, A(m+j-3,1), A(m+j-3,2), A(m+j-3,3),...

dtheta, dp, lu), [A(i-N+j-2,1), A(i-N+j-2,2),
A(m+j-3,1), A(m+j-3,2)]);

A(i,2) = lu(2);
A(i,2) = lu(2);
A(i,3) = pexp([A(i-N+j-2,2),A(i,2),A(i-N+j-2,3),gamma]);
A(i,4) =T_exp([A(i-N+j-2,2),A(i,2),A(i-N+j-2,4),gaa]);
A(m+j-2,1) = lu(3);
A(m+j-2,2) = lu(4);
A(m+j-2,3) = p_exp([A(m+j-3,2),A(m+j-2,2),A(m+j-3,3),gammna]);
A(m+j-2,4) = T_exp([A(m+j-3,2),A(m+j-2,2),A(m+j-3,4),gammna]);

end

elseif i == 2*N-1 % Region above first reflected wave & adjacent to 4'

thM = fsolve(@(thM) intregion(A(i-1,1), A(i-1,2),...
theta4p, M4p, gamma, dtheta, thM),...

[A(i-1,1), A(i-1,2)]);
A(i,2) = thM(1);
A(i,2) = thM(2);
A(i,3) = p_exp([A(i-1,2), A(i,2), A(i-1,3), gamma]);
A(i,4) = T_exp([A(i-1,2), A(i,2), A(i-1,4), gamma]);

else
if j == 2 % Special indexing for region above first reflected wave

thM = fsolve(@(thM) intregion(A(i-1,1), A(i-1,2),...

A(i-N+1,1), A(i-N+1,2), gamma, dtheta, thM),...

[A(i-1,1), A(i-1,2)]);
else % Regular indexing

thM = fsolve(@(thM) intregion(A(i-1,1), A(i-1,2),...
A(i-N+j-2,1), A(i-N+j-2,2), gamma, dtheta, thM),...

[A(i-1,1), A(i-1,2)]);
end
A(i,1) = thM(1);
A(i,2) = thM(2);
A(i,3) = p-exp([A(i-1,2), A(i,2), A(i-1,3), gamma]);
A(i,4) = Texp([A(i-1,2), A(i,2), A(i-1,4), gamma]);

end
end

th_M_p_T = A;

end

function res = slregion(thcompl, Mcompl, pcompl, gamma, thexpu, Mexpu,
pexpu,...

dtheta, dp, thlMlthuMu)

thetal = thlMlthuMu(1);
Ml = thlMlthuMu(2);
thetau = thl_Ml_thuMu(3);
Mu = thlMlthuMu(4);

resl = (thetal - prmey([Ml,gamma]) + prmey([Mcompl,gamma]) - thcompl)...
/ dtheta;
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res2 = (thetau + prmey([Mu,gamma]) - prmey([Mexpu,gamma]) - thexpu)...

/ dtheta;
res3 = (pexp([Mcompl,Ml,pcompl,gamma]) - pexp([Mexpu,Mu,pexpu,gamma]))...

/ dp;
res4 = (thetau - thetal) / dtheta;
res = [resi; res2; res3; res4];

end

function res = int region(thexp, Mexp, thcomp, Mcomp, gamma,...

dtheta, thM)

theta = thM(1);
M = th_M(2);

resi = (theta - prmey([M,gamma]) + prmey([Mcomp,gamma]) - thcomp)...

/ dtheta;
res2 = (theta + prmey([M,gamma]) - prmey([Mexp,gammaJ) - thexp)...

/ dtheta;
res = [resi; res2];

end

109



interior.m

function x4_y4_M4_th4_p4_r4 = interior(xO, yO, MO, thO, p0, rO, ...

gamma, k, 1)
% Takes initial data line, outputs interior points at next downstream
% station, by applying MOC. Note that in computing each point, the upstream
% points are denoted 1 and 2, the downsteam point is denoted 4, and the
% interpolated point on the initial data line is denoted 3. k is the number
% of iterations desired to compute point 3 within each larger iteration. 1
% is the number of iterations for the corrector algorithm.

% CAUTION: To avoid infinity
% to primary flow direction,
% roughly with y-axis. Also,

errors, input values with x-axis corresponding
and ensure that initial data line aligns
may want to non-dimensionalize x, y, p, r.

n = length(xO);

xl = xO(l:end-1);
x2 = xO(2:end);
yl yO(1:end-1);
y2 = yO(2:end);
Ml MO(1:end-1);
M2 = MO(2:end);
mul = asin(1./M1);
mu2 = asin(l./M2);
thi = th0(1:end-1);
th2 = thO(2:end);
pl = pO(1:end-1);
p2 = pO(2:end);
ri = r0(1:end-1);
r2 = rO(2:end);
dx0 = xO(2:end) - xO(1:end-1);
dy0 = yO(2:end) - y0(1:end-1);

% Initial estimates for (x4, y4), (x3, y3), and th3
Al = [diag(-tan(thl+mul)), eye(n-1); diag(-tan(th2-mu2)), eye(n-1)];
Bl = [yl - tan(thl+mul) .* xl; y2 - tan(th2-mu2) .* x2];
x4y4 = Al\Bl;
x4 = x4y4(1:n-1);
y4 = x4y4(n:end);

A2 = [diag(-tan((thl+th2)./2)), eye(n-1); diag((yl-y2)./(x2-xl)), eye(n-
1)];

B2 =
x3y3
x3 =
y3 =

[y4 - tan((thl+th2)./2) .* x4; yl + (yl-y2)./(x2-xl) .* xl];
= A2\B2;
x3y3(1:n-1);
x3y3(n:end);

th3 = thi + (y3-yl) .* (th2-thl) ./ (y2-yl);

% Improve estimate for (x3 y3) and th3 (k iterations)
for kl = 1:k

A2 = [diag(-tan(th3)), eye(n-1); diag((yl-y2)./(x2-xl)), eye(n-1)];
B2 = [y4 - tan(th3) .* x4; yl + (yl-y2)./(x2-xl) .* xl];
x3y3 = A2\B2;
x3 = x3y3(1:n-1);
y3 = x3y3(n:end);

end
th3 = thi + (y3-yl) .* (th2-thl) ./ (y2-yl);
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% Compute
p3 = pl +
r3 = ri +
M3 = Ml +

interpolated p3, r3, M3

(y3-yl) .* (p2-pl) ./ (y2 -yl);

(y3-yl) .* (r2-rl) ./ (y2-yl);
(y3-yl) .* (M2-M1) ./ (y2 -yl);

% Initial calculation of properties at 4

Ri = gamma .* M1.^2 ./ sqrt(M1.^2 - 1);
R2 = gamma .* M2.^2 ./ sqrt(M2.^A2 - 1);
A4 = [eye(n-1), diag(R1); eye(n-1), diag(-R2)];
B4 = [log(pl) + R1 .* thi; log(p2) - R2 .* th2];

lnp4th4 = A4\B4;
lnp4 = lnp4th4(1:n-1);
p4 = exp(lnp4);
th4 = lnp4th4(n:end);
M4 = sqrt(2./(gamma-1) .* ((1 + (gamma-1)/2 .* M3.^2) ./

(p4./p3).^((gamma-1)/gamma) -1));

r4 = (p4./p3).^(1/gamma) .* r3;

% Apply corrector algorithm (1 iterations)
for k2 = 1:1

% (x4, y4) and th3
Al = [diag(-tan((thl+th4)./2 + asin(2./(Ml+M4)))),

eye(n-1); diag(-tan((th2+th4)./2 - asin(2./(M2+M4)))),

eye(n-1)];
Bi = [yl - tan((thl+th4)./2 + asin(2./(Ml+M4))) .*

xl; y2 - tan((th2+th4)./2 - asin(2./(M2+M4))) .* x2];

x4y4 = A1\B1;
x4 = x4y4(1:n-1);
y4 = x4y4(n:end);

th3 = (th3+th4) ./ 2;

% Improve th3 and (x3, y3)
for k1 = 1:k

A2 = [diag(-tan(th3)),
B2 = [y4 - tan(th3) .*

x3y3 = A2\B2;
x3 = x3y3(1:n-1);
y3 = x3y3(n:end);

end

(k iterations)

eye(n-1); diag((yl-y2)./(x2-xl)), eye(n-1)];
x4; yl + (yl-y2)./(x2-x1) .* xl];

th3 = thi + (y3-yl) .* (th2-thl) ./ (y2-yl);

% Compute interpolated p3, r3, M3

p3 = pl + (y3-yl) .* (p2-pl) ./ (y2-yl);
r3 = ri + (y3-yl) .* (r2-rl) ./ (y2-yl);

M3 = Ml + (y3-yl) .* (M2-M1) ./ (y2-yl);

% Improved calculation of properties at 4

R1 = gamma .* ((Ml+M4)./2).A2 ./ sqrt(((Ml+M4)./2).^2 - 1);
R2 = gamma .* ((M2+M4)./2).^2 ./ sqrt(((M2+M4)./2).^2 - 1);
A4 = [eye(n-1), diag(Rl); eye(n-1), diag(-R2)];
B4 = [log(pl) + R1 .* thl; log(p2) - R2 .* th2];

lnp4th4 = A4\B4;
lnp4 = lnp4th4(1:n-1);
p4 = exp(lnp4);
th4 = lnp4th4(n:end);
M4 = sqrt(2./(gamma-1) .* ((1 + (gamma-1)/2 .* M3.^2) ./

(p4./p3).A((gamma-l)/gamma) - 1));
r4 = (p4./p3).^(1/gamma) .* r3;

end
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x4_y4_M4_th4_p4_r4 = [x4, y4, M4, th4, p4, r4];

end
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intersection.m

function xy int = intersection(dydxl, dydx_2, x_01, y_01, x_02, y_02 )

x = (y_02 - yOl + dydx_1 .* x01 - dydx_2 .* x_02) ./ (dydx_1 - dydx_2);

y = yOl + dydx_1 .* (x - x_01);
xy-int = [x, y];

end
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M s.m

function Ms = Ms(betathetalthetasMlplrlgamma)

beta = betathetalthetasMl_pl_rlgamma(1);
thetal = betathetalthetasMlplrlgamma(2);
thetas = betathetalthetas_Mlplrlgamma(3);
Ml = betathetalthetasMlplrlgamma(4);
gamma = beta_thetalthetasMl_pl_rl_gamma(7);
Mnl = Ml * sin(beta - thetal);

num = MnJ^2 + 2 / (gamma - 1);
den = 2 * gamma / (gamma - 1) * MnJ^2 - 1;
Mns = sqrt(num/den);
Ms = abs(Mns / sin(beta - thetas));

end
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moeckel.m

function res = moeckel(beta-ipl, gamma, Mi, Mipl, betai, ...

r, c)
% Outputs residual of Mockel eq (30)
% Check magnitude of RHS--is normalizing residual with RHS a problem?

M_bar = 0.5 * (Mi + M-ipl);
betabar = 0.5 * (betai + beta ipl);
f_1 = fl(gamma, Mbar, beta bar);
g_2 = g2(gamma, M_bar, beta-bar);
f_3 = f3(gamma, Mbar, beta-bar);
df l_db = dfldb(gamma, Mbar, beta-bar);
dfl _dM = dfldM(gamma, Mbar, beta bar);
df 2_db = df2db(gamma, Mbar, betabar, g_2);

df2_dM = df2dM(gamma, Mbar, beta-bar, g_2);

LHS = (beta ipl - betai) ./ (M_ipl - M-i);
den = dfl_db ./ f_1 + f_3 .* df2_db;
Ti = (dfldM ./ f_1 + f_3 .* df2_dM) ./ den;

if r <= c
T2 = ((-l * gamma * Mbar) + sqrt(Mbar.A2 - 1) ./ M_bar .* f_3) ./

(1 + (gamma-1)/2 * M_bar.^2) ./ den;

else
T2 = ((-1 * gamma * Mbar) - sqrt(Mbar.^2 - 1) ./ Mbar .* f_3) ./

(1 + (gamma-1)/2 * Mbar.^2) ./ den;
end

RHS = -1 * Ti - T2;

res = (LHS - RHS) ./ RHS;

function f_1 = fl(gamma, Mbar, beta-bar)
f_1 = (2*gamma) / (gamma+l) * Mbar.^2 * (sin(betabar)).2 -

(gamma-1) / (gamma+1);
end

function g_2 = g2(gamma, Mbar, beta-bar)
numg2 = M bar.A2 .* sin(beta bar) .* cos(betabar) - cot(beta bar);
deng2 = 1 + Mbar.^2 .* ((gamma+1)/2 - (sin(beta-bar)).^2);
g_2 = numg2 ./ deng2;

end

function f_3 = f3(gamma, Mbar, betabar)
numf3 = (gamma+i)^2 * Mbar.A4 .* (sin(beta bar)).A2 -

4 * (Mbar.^2 .* (sin(beta bar)).^2 - 1) .*

(gamma * Mbar.^2 .* (sin(beta bar)).^2 + 1);
denf3 = (2 * gamma * M_bar.^2 .* (sin(beta-bar)).^2 - gamma +

1) .* ((gamma-1) * M_bar.A2 . (sin(betabar)).^2 + 2);
Mssq = num-f3 ./ denf3;
f_3 = gamma * Mssq ./ sqrt(Mssq - 1);

end

function dfldb = dfldb(gamma, Mbar, beta bar)
dfldb = 2*gamma / (gamma+i) * Mbar.A2 .* sin(2*betabar);

end

function dfldM = dfldM(gamma, M_bar, beta-bar)
dfldM = 4*gamma / (gamma+i) * Mbar .* (sin(beta-bar)).^2;

end
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function df2_db = df2db(gamma, Mbar, beta-bar, g_2)
numdf2db = (1 + Mbar.^2 .* ((gamma+1)/2 - (sin(betabar)).A2)) .*

(Mbar.^2 .* cos(2*betabar) + (csc(betabar)).^2) ...
+ Mbar. 2 .* sin(2*betabar) .*

(M bar.A2 .* sin(beta bar) .* cos(beta bar) - cot(beta bar));
dendf2db = (1 + Mbar.A2 .* ((gamma+1)/2 - (sin(beta-bar)).A2)).A2;
df2_db = (1./(g_2.^2 + 1)) .* numdf2db ./ den df2db;

end

function df2_dM = df2dM(gamma, Mbar, beta-bar, g_2)
numdf2dM = (1 + Mbar.^2 .* ((gamma+1)/2 - (sin(beta-bar)).A2)) .*

Mbar .* sin(2*betabar) - 2*Mbar .*

((gamma+1)/2 - (sin(betabar)).A2) .*.

(Mbar.^2 .* sin(betabar) .* cos(betabar) - cot(beta bar));
dendf2dM = (1 + Mbar.^2 .* ((gamma+1)/2 - (sin(betabar)).^2)).A2;
df2_dM = (1./(g_2.^2 + 1)) .* numdf2dM ./ den df2dM;

end

end
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p_exp.m

function pexp = p-exp(MlM2_plgamma)

Ml = MlM2_pl_gamma(1);
M2 = MlM2_plgamma(2);
p1 = MlM2_pl_gamma(3);
gamma = MlM2_pl_gamma(4);

num = 1 + (gamma-1) / 2 * M2A2;
den = 1 + (gamma-1) / 2 * M1^2;

pexp = pl * (den/num)A(gamma/(gamma-1));

end
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p-s.m

function ps = ps(beta-thetalthetasMlplrl_gamma)

beta = betathetalthetasMlplrlgamma(1);
thetal = betathetal_thetasMlplrlgamma(2);
Ml = betathetalthetasMlplrlgamma(4);
p1 = betathetalthetasMlplrlgama(5);
gamma = betathetalthetasMl_pl_rlgamma(7);

Mnl = Ml * sin(beta-thetal);
ps = pl * (1 + 2*gamma/(gamma+1) * (MnJ^2 - 1));

end
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prmey.m

function v = prmey(Mgamma)

M = M-gamma(1);
gamma = M-gamma(2);

r = (gamma + 1) / (gamma - 1);
ti = sqrt(r) * atan(sqrt(1/r * (M^2 - 1)));
t2 = atan(sqrt(M^2 - 1));

v = tl - t2;

end
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r s.m

function rs = r-s(betathetal_thetasMlplrlgamma)

beta = betathetal_thetasMl plrlgamma(1);
thetal = betathetalthetas_Mlplrlgamma(2);
Ml = betathetalthetasMlplrlgamma(4);
rl = betathetalthetasMlplrlgamma(6);
gamma = betathetalthetasMlplrlgamma(7);

Mnl = Ml * sin(beta-thetal);
num = (gamma + 1) * Mnl^2;
den = (gamma - 1) * MnJ^2 + 2;
rs = ri * num / den;

end
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T_exp.m

function Texp = Texp(MlM2_Tl_gama)

Ml = MlM2_Tl_gamma(l);
M2 = Ml_M2_Tlgamma(2);
Ti = MlM2_Tlgamma(3);
gamma = MlM2_Tl_gamma(4);

num = 1 + (gamma-1) / 2 * M2^2;
den = 1 + (gamma-1) / 2 * M1'^2;

Texp = Ti * den / num;

end
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tbmrhs.m

function rhs = tbm-rhs( betathetalMl_gamma

beta = betathetalMl_gamma(1);
thetal = betathetalMlgamma(2);
Ml = betathetalMl gamma(3);
gamma = betathetalMlgamma(4);
betaeff = beta - thetal;

num = MlA2 * sin(betaeff)A2 - 1;
den = Ml^2 * (gamma + cos(2*beta-eff)) + 2;

rhs = 2 * cot(beta-eff) * num / den;

end
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typel.m

function res = typel(betac4c3, theta23, M23, p23, gamma)

betac4 = betac4c3(1);
betac3 = betac4c3(2);
theta2 = theta23(1);
theta3 = theta23(2);
M2 = M23(1);
M3 = M23(2);
p2 = p23(1);
p3 = p23(2);

betac4_theta2_M2_gamma = [betac4, theta2, M2, gamma];
theta4 = theta2 + atan(tbm-rhs(betac4_theta2_M2_gamma));
betac3_theta3_M3_gamma = [betac3, theta3, M3, gamma];
theta5 = theta3 + atan(tbm rhs(betac3_theta3_M3_gamma));
resl = (theta4 - theta5) * 180 / pi;

betac4_theta2_thetasM2_p2_r_gamma = [betac4, theta2, 0, M2, p2, 0, gamma];
p4 = p s(betac4_theta2_thetasM2_p2_r-gamma);
betac3_theta3_thetasM3_p3_r_gamma = [betac3, theta3, 0, M3, p3, 0, gamma];
p5 = ps(betac3 theta3_thetasM3_p3_r_gamma);
res2 = (p5 - p4 ) / (p5 + p4);

res = [resl; res2];

end
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upstream_c5.m

function thuMu_pu_Tuxiplyipl_r_c = upstream c5(betai, xi, yi, ...

xy char_2, thM_p_T, thM_p_T_2, N)

% Outputs next upstream th,M,P,T when computing reattachment shock

% shape, x_{i+1} and y_{i+1}, and index in xychar_2

% Determine row-location of intersection with each characteristic line

y_hat = y-i + tan(beta_i) .* (xy char_2(:,1:2:end-1) - xi);

deltay = xychar_2(:,2:2:end) - y-hat;

npos = zeros(1,N);
for ii = 1:N

a = find(deltay(:,ii) < 0, 1);
a = a - 1;
npos(ii) = a;

end

% Calculate point of intersection with each characterstic segment,

% based on row location

dydx_2 = (diag(xy char_2(npos+1,2:2:end)) - diag(xychar_2(npos,2:2:end)))

./...
(diag(xychar_2(npos+1,1:2:end-1)) - diag(xychar_2(npos,1:2:end-1)));

xyint = intersection(tan(beta i), dydx_2, xi, y_i, ...

diag(xychar_2(npos,1:2:end-1)), diag(xy char_2(npos,2:2:end)));

x_int = xy-int(:,1);

% Find next interesction between shock and a characterstic; find column

% of xychar_2 corresponding to intersection. Note that actual columns

% in xychar_2 are 2*r-1 and 2*r

delta x = x int - xi;

mindx = min(deltax(delta_x>le-8));
rr = find(delta-x == mindx);
r = rr(l);

i = npos(r); % row of xychar_2 entry before intersection

j = r;

if i > N+1
error('Error in upstream c5.m: shock extends beyond x limit of

xychar 2. Try increasing limit.')

end

if i == 1
R = (j+l)*N - 1 - j*(j-l)/2;
thu = th_M_p_T(R,1);
Mu = th_M_p_T(R,2);
pu = thM_pT(R,3);
Tu = th_MpT(R,4);

elseif j == 1 && i ~= 1
j =i - 1;
R = (j+1)*N - 1 -j*(j-)/2;

thu = thM_pT(R,1);
Mu = th_M_p_T(R,2);
pu = thM_p_T(R,3);
Tu = th_M_p_T(R,4);

elseif i <= j && i -= 1 && j ~= 1
R = (j-1)*j/2 + i - 1;
thu = th_M_p_T_2(R,1);
Mu = th_M_p_T_2(R,2);
pu = th_M_p_T_2(R,3);
Tu = thM_pT_2(R,4);
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elseif i > j && i -= 1 && j -= 1
R = (i-1)*(i-2)/2 + j - 1;
thu = thM_pT_2(R,1);
Mu = th_M_p_T_2(R,2);
pu = thM_pT_2(R,3);
Tu = th_M_pT_2(R,4);

else
error('Error in upstream c5.m')

end

thuMupuTu xipl_yipl_r_c = [thu; Mu; pu; Tu; xint(r);
xyint(r,2); npos(r); r];

end

125



upstream_c5_noreflec.m

function thuMupuTuxiplyipl = upstream-c5_noreflec(beta-i, xi, y_i,

xy char_2, thM_p_T, N)

i = 1;
j = N - 1;
dx = -1;

while dx <= le-6

xyint = intersection(tan(betai), (xychar_2(end,2*i) -

xychar_2(1,2*i)) / ...
(xychar_2(end,2*i-1) - xy-char_2(1,2*i-1)), ...

x i, y-i, xy-char_2(1,2*i-1), xychar_2(1,2*i));

dx = xyint(1) - x_i;

j = j + N + 1 -i;

i = i + 1;

end

thuMupuTuxipl_yipl = [thM_p_T(j,:) '; xyint(1); xyint(2)];

end
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