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Abstract
Engine Health Management (EHM) is a comprehensive maintenance service offered by engine
manufacturer Pratt & Whitney (PW) to its airline customers. In its current form, engine
performance is monitored through recorded physical metrics, such as gas temperature, pressure,
and altitude, taken as single snapshots at various phases of flight. The advent of the Enhanced
Flight Data Acquisition, Storage and Transmission (eFASTTM) system, which allows for near-
continuous recording of engine metrics, provides Full-Flight Data Analytics (FFDA) that may
proactively alert and recommend maintenance activity to airlines. Adopting eFASTTM may help
avoid Adverse Operational Events (AOE) caused by unexpected engine failures and the associated
cost burdens. With respect to operating cost, airlines standardly report Cost Per Available Seat
Mile (CASM) and Cost Per Block Hour (CBH). EHM services that prevent operational disruptions
can help airlines reduce these unit-cost metrics, whose scrutiny by industry analysts affect
investment guidance, stock performance, and overall business outlook.

In this study, the value of FFDA services to airlines is investigated on the International Aero
Engines V2500, a mature engine with customers' operational histories well-documented. Using a
Poisson distribution to model the occurrence of six operational disruption types-Inflight
Shutdown, Aircraft-On-Ground, Aborted Takeoff, Air Turn-Back, Ground Turn-Back, and
Delay/Cancellation-the cost savings potential is quantified as a function of events avoided by a
hypothetical FFDA service. Airline Form 41 financial data from the Bureau of Transportation
Statistics is then used to estimate the magnitude of savings on CASM and CBH retroactively for
2012-16. Results show that unit cost reductions of 0.5% to 1.5% are possible through engine event
avoidance, representing savings up to $104M annually, but outcomes are highly dependent on
assumptions about cost of operational disruptions for each individual carrier. Overall, a baseline
model and procedure is developed for valuating FFDA and associated EHM services. Further
collaboration between airlines and Pratt & Whitney on data availability and accuracy will help
refine this model, which is the first to bridge publicly available airline costs with engine history
data, helping stakeholders transition to an eFASTTM ecosystem that promises greater operational
efficiency and safety.
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Thesis Supervisor: Arnold I. Barnett
Title: George Eastman Professor of Management Science, Sloan School of Management
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Chapter 1

Introduction

1.1 Commercial Engines and Aftermarket Services

Engine Health Management (EHM) is a comprehensive aftermarket service offered by jet

engine manufacturers to airlines to monitor, troubleshoot, and maintain the fidelity of the

engine's long-term functionality. American manufacturer Pratt & Whitney (PW) has long offered

EHM through individual data snapshots on engine temperatures, pressure, altitude, oil debris,

and other physical properties transmitted through ACARS (Aircraft Communications Addressing

and Reporting System). Advancements in data storage and transmission technology have enabled

PW to introduce Full-Flight Data Analytics (FFDA), a more comprehensive EHM service

utilizing near-continuous data point capture of even more engine performance properties. FFDA

is expected to enable faster, more accurate predictive capabilities with respect to the metrics of

interest. Specifically, the prospect of full-flight "fault detection"-instantaneously observing and

reacting to an impending engine failure-holds promise for better safety and reduced

maintenance burden for airlines.

1.2 Airline Cost Economics

For airlines, enhanced EHM services offer the opportunity to improve maintenance

scheduling and reduce direct operating costs. Predictive services can help avoid major engine

overhauls or reduce the work scope of engine events by alerting airlines to likely faults and

failures, and recommending repairs or replacements in a proactive manner. In turn, airlines can

13



expect reduced unplanned engine removals (UERs), aircraft-on-ground (AOG) events, and other

service disruptions that have direct maintenance costs as well as further expenses due to extra

crew pay, passenger re-accommodations, airport penalties, and other burdens resulting from

operational disruption. These cost components all factor into airlines' unit cost metrics, most

commonly the Cost Per Available Seat Mile (CASM) and Cost Per Block Hour (CBH). The

airlines' profitability, perceived shareholder value, stock market performance, and investment

outlook are all directly tied to CASM and other related cost metrics. Therefore, implementation

of enhanced EHM services to control engine operating costs holds promise for reduced CASM

for the airline industry.

1.3 Research Premise and Objectives

The present study aims to define the value of EHM services for the US domestic airline

industry through the lens of unit cost reduction. First, background on the history of engine health

monitoring and management services is reviewed. Next, a data sample of airline operating costs,

publicly available through the Department of Transportation's Bureau of Transportation

Statistics, will be evaluated for components related to engine maintenance. Using PW's historic

data on the International Aero Engines (IAE) V2500 engine, Poisson probability models of

various engine faults are calculated and presented to understand the current incidence of engine

events. A model for unit cost reduction is formulated through sensitivity analysis of incremental

prevention of engine fault incidence. Finally, the calculated cost benefits are analyzed and

discussed as an approximation for EHM value to the industry at-large, with PW's nascent

eFASTTM service as a product model. Commentary on further FFDA growth, big data

development and usage, and cybersecurity implications conclude the thesis.
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Chapter 2

Background and Current Literature

2.1 Pratt & Whitney and the Jet Engine

2.1.1 History of Pratt & Whitney

Pratt & Whitney, a subsidiary of United Technologies Corporation (UTC), has produced

commercial and military aircraft engines since the early twentieth century. The original Pratt &

Whitney Company of Hartford, CT was a manufacturer of measuring instruments. In 1925, it

provided funding, factory space, and its namesake to Frederick Rentschler's aircraft engine

business, which became the Pratt & Whitney Aircraft Company [1]. Throughout the twentieth

century, Pratt & Whitney played a pivotal role in the emerging aerospace industry as part of the

United Aircraft and Transport Corporation, which was eventually split by the U.S. government

for anti-trust purposes and renamed United Technologies Corporation. As part of UTC, Pratt &

Whitney (PW) pioneered both commercial and military aero-engines that powered propeller and

jet aircraft, including prominent commercial models such as the Bombardier Q400, the Airbus

A320 family, the Boeing 747, and the Airbus A380. Today, PW engines make up about 25% of

in-service commercial aircraft across the globe [2].

2.1.2 The Gas Turbine Engine

Since 1951, PW has focused on producing jet engines after moving its major propeller

products to Pratt & Whitney Canada. In the years since, PW turbofan engines have been at the

15



forefront of major breakthroughs in the commercial airline industry. Gas turbines have powered

the majority of commercial aircraft since the so-called "jet age" of the 1960s. The prototypical

gas turbine engine, shown in Figure 1, generates propulsion for an aircraft through two airflows.

First, air taken in through the fan and then forced through combustion with fuel and exhausted

through its back nozzle. The core of the engine is separated into a "cold section" and "hot

section," corresponding to the internal temperature of the components and the gas that passes

through. Second, a larger volume of air bypasses the engine's core, along its inner nacelle

(engine casing) and then exits through back nozzle.

INTAKE COMPRESSION COMBUSTION EXHAUST

AJr Inlet Combustion Chambers 7  Turbine

Cold Section Hot Section

Energy Turbine Power
(HP~hr)1ooMAW HP

Fuel Bum zZle Power
200,000 HP /~~noe HP

Lift Fan ower
25.000 A

Waste Heat
120,000 HP

Com resor Work
100.000P

Figure 1. Typical modules of an aero engine, along with spatial energy profile. Source: Wikimedia Commons (Open
Source)

2.1.3 The V2500 Turbofan Engine

International Aero Engines (IAE), a manufacturing joint venture of which Pratt &

Whitney is now the majority stakeholder, introduced the V2500 engine to revenue air service in

1989 [3], powering Airbus Industrie's A320 family of single-aisle aircraft. It has since grown to

16



be one of the most successful gas turbine engines in aviation history, reaching over 5000

deliveries in 2012, and continues to be produced for the three variants of this popular Airbus

family of aircraft. Across the global airline industry, the A320 family numbers over 7000 of in-

service aircraft, representing about half of the single-aisle, mid-range market [4]. Of these, about

3250 are powered by IAE V2500 engines [5]. The V2500 competes directly with CFM

International's CFM-56 engine, the other power plant option for airlines operating the A320

family. Figure 2 below provides a cross-section of the JAE V2500 engine.

@2014 INTERNATiONAl. AERo ENGINEs A.G.

Figure 2. Cross section of the IAE V2500 engine. Source: Pratt & Whitney public website

2.2 Engine Performance, Health, Monitoring, and Management

2.2.1 Definition of Engine Health

Gas turbine engines consist of hot and cold rotating parts operating in high-altitude

environments that physically deteriorate over repeated use. The life of an engine is dictated by its

ability to power airframes consistently and safely across varying atmospheric conditions.

17
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Because understanding of the physics of jet engine propulsion is mature and has been refined

throughout their engineering history, the components determining engine performance and

engine life are well-understood. As such, the state of any commercially produced engine can be

systematically monitored via sensors that report on the physical properties of propulsion and

flight. Data collected from sensors can be compared against known physical limits defined from

the product's initial design and engineering. Thus, standard operating limits for the various

sections, parts, and components determine whether or not an engine can safely operate a flight

mission. This systematic understanding of engine properties has fueled the practice of engine

health monitoring, and more broadly, engine health management.

2.2.2 Engine Health Monitoring and Engine Health Management

Engine Health Monitoring is the practice of ensuring that engines operate within bounds.

The known physical limits of each module and component are built in during the engineering

and design phase, ensuring that upper and lower bounds for operation are clearly defined. As

mentioned, properties such as temperature, air pressure, and altitude are metrics that can be

monitored by sensors to understand the engine's physical state during flight. These metrics

measure engine performance at the time of data capture, but the collection of data for a single

engine can be analyzed over its history to show patterns and trends. Over time, the metrics of

interest for engine health are bound by their control limits, such that a standard profile of

behavior is known. This standard profile provides the baseline against which all engines can be

compared to identify either (1) synchronicity with a known pattern, indicating normal "wear and

tear" over time, or (2) deviation from the known baseline, indicating the potential for unexpected

faults or failures. The analysis of physical metrics against known baselines forms the foundation

18



of Engine Health Monitoring [6]. This practice is akin to monitoring the vital signs for human

health, ensuring measurable properties such as body temperature, blood pressure, and pulse are

within the known limits of standard health. Extending the analogy, Engine Health Monitoring

would be akin to maintaining a patient's health record over time, watching for patterns in the

vital signs and ensuring that trends and drifts are within normal bounds.

Engine Health Monitoring forms the basis of Engine Health Management (EHM), a

broader classification that encompasses the suite of aftermarket services offered by the original

equipment manufacturer (OEM). Amongst OEMs, the "aftermarket" refers to the various

products and services offered to their customers to maintain equipment performance, such as

spares, repairs, replacements, and maintenance labor [7]. In the aviation industry, airplane engine

OEMs incorporate aftermarket services in initial contract negotiations for engine orders. At PW,

EHM is offered as a comprehensive aftermarket service that includes not only Engine Health

Monitoring, but also the associated products and labor needed for maintaining engine

performance, such as spare parts supply, repair shops, data analysis, and recordkeeping via

database storage of historic engine metrics.

2.2.3 Fleet Management Programs

EHM can involve even more comprehensive services, such as Fleet Management

Programs (FMP), whereby the airline and the engine OEM enter into a business relationship

colloquially called "power-by-the-hour" [8]. Coined by a manufacturer later purchased by Rolls

Royce, the term refers to an arrangement in which the OEM charges the airline a set cost per

flight hour delivered by an engine, and assumes maintenance and repair responsibilities based on

contract agreement. Such a relationship allows the airline to know its engine-related operating
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costs with greater certainty, and shifts much of the burden of spare part storage, maintenance

staff, and other direct maintenance responsibilities to its OEM supplier. Small or new carriers

often engage in power-by-the-hour agreements given the capital-intensive requirements for

establishing maintenance facilities. FMP relationships fall at the more extreme end of engine cost

management for an airline. Along the spectrum of EHM services, airlines have the freedom to

selectively engage with the engine OEM. A carrier may, for example, limit its relationship to

basic monitoring and alerting services, and perform maintenance in-house or contract that work

out to a third party provider. Ultimately, the EHM relationship can vary widely from carrier to

carrier, and is customized according to the contractual relationship with the OEM. The

methodology covered in this study makes no assumption about the exact business terms on

which a given EHM agreement is defined, as the cost of such agreements is generally

individualized and confidential.

2.2.4 Diagnostics and Prognostics

EHM is, at its heart, a service of diagnostics and prognostics. The former, diagnostics, as

its name suggests, is a study of empirical observations to diagnose a problem after it has

occurred. Retrospective in nature, diagnostics has generally formed the bulk of EHM services

given the need to troubleshoot, investigate, and resolve issues. While engines themselves are

very well understood, the exact reason for engine faults or events requires extensive information

to ascertain. Dearth and overabundance of information are both issues that complicate the task of

finding one or more causes to a given engine incident [9]. Nevertheless, through continuous trial

and error, the foundational understanding of engine physics, constraints on possible phenomena,

and process of elimination, EHM diagnostic methods have become an advanced practice.
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Prognostics, on the other hand, requires an understanding of past incidents, past solutions, and

sufficient levels of data and repeated trials that provide enough confidence to the predictor of an

event. Given the uncertainty inherently tied to an event that has yet to occur, lack or dearth of

data generally stymies progress on prognostic methods in EHM. Regardless, OEMs continue to

have a strong incentive to improve and enhance prognostic capabilities for several reasons, only

some of which will be defined here. First, the trajectory for sensor-based monitoring is always

toward more information, not less, given continued advances in data capture, storage, and

processing abilities. Second, with the advent of so-called "next generation" products in the

aviation sector, whereby reduction in noise, fuel consumption, and emissions drive engine

design, accurate prognostic methods help to reduce events that contribute to these adverse

byproducts of gas turbine engines. Finally, in a highly competitive market with only a few

players, advances that improve operational efficiency for airline customers provide any engine

OEM a strong business advantage.

2.3 Snapshot Versus Full-Flight Data

2.3.1 Snapshot Data: ACMF, ACARS, ADEM

Commercial aircraft today use the Aircraft Communications Addressing and Reporting

System (ACARS) to communicate with ground control [10]. The ACARS system is also the

platform on which engine data is transmitted. At PW, the ACARS-produced "ACMF Report" is

the snapshot data file from which current generation EHM services are rendered. Because of

bandwidth limitations, engine data transmitted by ACARS is limited to a single data point

captured at the so-called transient steady state for three phases of flight: takeoff, cruise, and
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landing [II]. ACMF reports allow identification of data trends over the life of the engine, such as

gas exhaust temperature, which creates a profile of likely deterioration over the flight cycles that

the engine has completed.

The ACMF method of reporting has allowed PW to develop a service called Advanced

Diagnostics and Engine Management (ADEM), which, as its name suggests, is a diagnostics-

focused type of EHM service. ADEM is a productionized platform-that is, a standard product

offering-available to airline customers that purchase the service for their own maintenance

needs. Through ADEM, fleet managers at the operating airlines can access the full set of data

captured in ACMF, create reports on a Graphical User Interface (GUI), and identify data patterns

and trends. ADEM is a mature product that has been offered by PW for decades, forming the

basis of its engine health monitoring apparatus and providing 24/7 field support for existing, in-

service engines.

2.3.2 Full-Flight Data

ADEM performs diagnostic services well, given its long maturation period and repeated

use by both airline customers as well as by PW's engine monitoring team. Despite its efficiency,

ADEM's prognostic abilities are limited by the amount of data fed by ACMF. Specifically,

because only snapshot data of the physical metrics is captured at the designated flight phases,

users are blind to any data point appearing in-between captures. Figure 3 illustrates this concern.

On the left, the current snapshot method shows trending of a generic metric, with each data point

representing a single flight. In contrast, any one of the single flights can be monitored throughout

its full flight cycle as in the right panel, with single data points now corresponding to individual
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moments. Data can go uncaptured if the metric of interest fluctuates within the same flight phase,

such as during the cruise phase illustrated in the figure.

Current Method: Eng

13U

Ine Performance Trending New Product: Full-Flight Data and Analysis

_%_1 t.Airport Terminal

* ke-Off Cruise

Single data points
multiple flights Single flight across phases -

with continuous data

Time Time

Figure 3. Comparison of current snapshot data collection method (left), and full-flight data capture (right). In the
current snapshot method, single points correspond to individual flights. With full-flight data, a continuous profile of one
or more metric is possible. Note that graphs and axes are hypothetical and meant for illustrative purposes only.
Source: Author's research, with data obscured for confidentiality.

Full-flight data capture is the newest development in engine data technology, and has

been enabled by improved speed and capacity of data acquisition, storage, and transmission.

Beyond typical ADEM services, which will continue for the foreseeable future, PW is now

turning its attention to creating an ADEM-like system that will offer even more data availability.

This full-flight data availability is an investment PW believes will allow it to expand prognostic

abilities. Furthermore, there is desire to make use of artificial intelligence and machine learning

methods to create an "Internet-of-Things" product, such as a mobile application, that puts data

and control together more efficiently for the engine operator [12]. Much like a health-focused
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"wearable" alerts the user to the number of steps taken and calories burned, a mobile application

could be developed for airline fleet managers to track and be alerted to impending engine

maintenance needs.

2.3.3 The eFASTTM System

PW began its quest for full-flight data acquisition with its Pratt & Whitney Canada

(PWC) division, which launched the Flight Data Acquisition, Storage, and Transmission (FAST)

system, to serve Cessna and Bombardier aircraft running on the PW 100 family of turboprop

engines [13]. The FAST system was based on PW's first hardware product for full-flight data

capture, and has become a productionized option for PWC customers. FAST is used on

turboprop missions that are lower in capacity, stage length, and altitude, and was enhanced in

2015 to accommodate full-flight capabilities for narrow-body jets [14]. This enhanced FAST

(eFASTTM) system was developed to serve PW's Geared Turbofan (GTF) family of high-bypass

ratio engines, as well as their predecessor, the V2500. With eFASTTM, PW aimed to capture

greater depth and breadth of data by near-continuous capture, from power-up to power-down, of

a plethora of additional engine performance metrics beyond those of the FAST system.

The eFASTTM product was developed in conjunction with the GTF, and formed part of a

suite of so-called next generation products predicated on fuel efficiency, noise and emissions

reductions, and range extension. The small to mid-size (150-180 seats) narrow-body market, now

dominated by the two most popular commercial aircraft families in the industry, the Airbus A320

and the Boeing 737, was the focus of the GTF. Today, the GTF is the sole engine option for the

Bombardier CSeries family, Embraer E2 family, and Mitsubishi Regional Jet; additionally, it is

an option for the Airbus A320 family's New Engine Option (NEO) and the Irkut MC-2 1.
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Importantly, the eFASTTM hardware was first introduced in the build-of-material (BOM)

for Bombardier's CSeries, and thus delivered to each airline customer by default [14]. This first

foray as a Health Monitoring Unit (HMU) installed aboard a commercially-operated PW

turbofan aircraft inspired the transfer of the eFASTTM hardware onto PW's most popular engine

in service, the V2500, as a business case emerged for establishing FFDA for the existing fleet of

Airbus A320 family Current Engine Option (CEO) aircraft, the moniker given to all A320

variants running on the V2500. The eFASTTm hardware box, which is connected to the avionics

bay of the aircraft, is shown below in Figure 4.

Figure 4. The eFASTTm hardware in its current form, which connects to the avionics bay of the aircraft.

2.3.4 V2500 Engine Faults and Adverse Operational Events

The V2500 is a mature engine that has not received an HMU device for full-flight data

capture, but at the time of writing, PW has received the supplemental type certificate to

incorporate eFASTTM onto Airbus A320 family aircraft [15]. The prevailing ACMF reports

transmitted through ACARS has established a mature, single-snapshot level of Engine Health

Management that, while effective for diagnoses of faults that have already occurred, has limited

prognostic capability in its current form. In its current mature state, the V2500 experiences
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engine faults that induce adverse operational events (AOE), which PW categorizes by their

disruption to the customer. The AOEs of interest in this study are outlined below.

* Aircraft-On-Ground (AOG): the unplanned grounding of an aircraft from commercial

revenue service due to an engine fault, often caused by an unplanned engine removal

* In-Flight Shutdown (IFSD): a fault that results in a full loss of engine functionality while

at cruising altitude, often induced by the engine's sensors as a precautionary measure

against more severe damage

* Air Turn-Back (ATB): otherwise known as a diversion, an event whereby the flight crew

either chooses or is advised to make a landing at an airport other than its intended

destination

* Aborted Takeoff (ABTO): a planned takeoff is stopped before reaching takeoff decision

speed, either before or during the takeoff run, due to engine sensor notification or any

visual indication to the flight deck that the takeoff cannot be completed safely

" Delay and/or Cancellation (DC): the delay or cancellation of a scheduled commercial

flight due to any suspected or actual engine fault, which may be experienced in

conjunction with mechanical checks or any of the above events

* Ground Turn-Back (GTB): an engine fault is noted on the flight controls' electronic

centralized aircraft monitor (ECAM) either during engine startup or aircraft taxi out.

Maintenance check or repair occurs at the gate.

PW's existing health monitoring employees record all AOE and non-AOE incidents related to

engine performance. This valuable database of engine events has created a searchable toolkit

from which past data, trends, and associations can be deciphered. The utility of this database will

be covered further in Chapter 3.
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2.3.5 The eFASTTM Engine Health Management Business Proposition

The existing record of AOEs mentioned above form an extensive database that represents

the status quo of V2500 engine health over two decades. If the status quo represents the current

health and safety record of the engine, then a future state can be defined in which the full-flight

data advancements improve on all of the AOE metrics for engines going forward. The advent of

eFASTTM presents such an opportunity to usher in an EHM product that, in its nascent stages,

can simply be benchmarked on its improvement to the status quo. Stated differently, one could

use the current AOE rates as a baseline, and then show that the value of full-flight data analytics

is realized through reduction of event incidence rate. Models for aircraft and engine life cycle

cost for airline operators has been studied extensively, generally in analyses of total expected

cost of a given aircraft or engine type based on its known performance parameters and

maintenance cycles, with assumptions made on labor, fuel, and crew costs [16]. The present

study will not make statements about theoretical life cycle costs, but rather will make estimates

on likely cost reductions against the status quo of AOEs for V2500 operators. That is, the

potential for AOE reductions is used as a heuristic for unlocking the possible cost savings

enabled by a full-flight data analytics paradigm for EHM services.

2.4 Airline Economics and Metrics

2.4.1 History of the Airline Industry in the US

The US airline industry was de-regulated in 1978 following decades of profitability

supported by government controls over airline routes and pricing, which established high barriers

for new entrants. This radical change in the airline business ushered in a plethora of upstart
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carriers that have come and gone in a fiercely competitive landscape [17]. The events of

September 11, 2001 marked a turning point for the industry as demand for air travel plummeted

in the immediate aftermath, and carriers were forced to reckon with oversupply of seats, labor

costs in a highly unionized environment, and increasing fuel costs. At the same time, the

emerging strength of low-cost carriers (LCC), with their cost-conscious business models and

disruptive, low fares, added downward pressure on revenue at the network legacy carriers [18].

Leading up to the Great Recession of the late 2000s, the industry had already begun a series of

mergers and acquisitions that resulted in significant consolidation of players in the US market.

The decade from 2000 to 2010 saw most US carriers going through bankruptcy proceedings,

allowing significant restructuring of business models, labor contracts, and security operations.

The introduction of so-called ancillary amenity and service fees came about as airlines sought to

increase revenue channels and "unbundle" the standard level of services of a flight ticket to

match those of the LCCs; henceforth complimentary inflight meals became buy-on-board meals,

and the standard two complimentary checked bags became fee-based checked baggage [19].

These industry-wide changes paved the way for continued improvement in operating costs, and

converged with advancements in revenue maximization methods through internet distribution,

revenue management, and ancillary fee management. The fortuitous, record-low fuel costs in the

mid-2010s helped usher in an era of unprecedented profitability for the smaller number of US-

based carriers remaining. The so-called era of "capacity discipline," which in practice meant the

strategic reduction by multiple carriers of seats on unprofitable routes, became and continues to

be an industry trend [20].
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2.4.2 Motivation for Airlines to Adopt Engine Health Services

Historically a low profit margin industry, airlines have continued to chase cost savings

through better fleet scheduling and operations. A shift in fleet utilization for mid- to long-range

domestic flights away from wide-bodies to narrow-body, twin-engine equipment types has

demonstrated the value of engine efficiency. The development of GTF-powered aircraft, as

described above, is a major contribution to this industry trend. Enhanced services such as full-

flight EHM complement the "next generation" products by offering greater visibility into engine

performance and maintenance, and can also be adapted for legacy products such as the IAE

V2500. OEMs have pushed for more aftermarket products and services beneficial to their

businesses. For the airlines, the promise of greater visibility on maintenance provides yet another

cost-cutting vehicle by way of detecting, preventing, or otherwise proactively mitigating

unplanned service disruptions. Figure 5 below shows the various components of an engine data

transmission paradigm, with particular detail on the alert and monitoring cycle that ties the

operations between the OEM and an airline.
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Figure 5. Engine data transmission paradigm, from aircraft to ground station, diagnostics and prognostics cycle, and
maintenance optimization for aircraft. Source: Volponi 2014 [9]
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Importantly, Figure 5 depicts the entire process of data capture, transmission, storage,

processing, analysis, and delivery as a continuous cycle that involves several stakeholders across

air transportation operations. This visualization sets the stage for characterizing an eFASTTM

"ecosystem" that depends on the collaboration of the various players to ensure data integrity,

accuracy, and security.

2.4.3 Different Definitions of Cost

Airline costs are typically measured on the unit level, most often by Cost Per Available

Seat Mile (CASM) or Cost Per Available Seat Kilometer (CASK). Other unit cost metrics

include Cost Per Scheduled Block Hour (scheduled gate-to-gate hours) and cost per actual block

hour (actual gate-to-gate hours). The aim of these cost metrics is to measure the airline's cost

efficiency, given its supply of seat-miles, scheduled flying, or actual flying-that is, on a single

unit basis, what does it cost the airline to operate? There is also a distinction between operating

cost, operating cost excluding fuel, and total cost [21], [22]. Generally, these categories do not

align perfectly with the traditional notion of fixed and variable costs. Instead, airline costs tend to

be categorized by functional purpose. The nuanced ways of calculating costs are covered below

[23], while particularities on unit costs are shown in the next section:

* Flight Operating Cost, Direct Operating Cost, or Aircraft Operating Cost refers to pilot

pay, fuel cost, maintenance and overhaul, and allocated capital cost (depreciation and

amortization). Stated more simply, these are costs that have to do with the flying of an

aircraft. Approximately 50% of total costs for an airline can be attributed to Aircraft

Operating Cost.
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" Ground Operating Costs include airport-related fees and services: ground handling,

landing fees, passenger processing fees, and reservation centers/travel

agencies/distribution system fees. These comprise 17-20% of total costs.

* System Operating Costs are the remaining "general overhead" costs not directly

associated with transporting passengers. These include passenger services (on-board

meals, amenities, and flight attendant pay), and marketing. Also included are "transport-

related costs," a category the encompasses a mainline carrier's fees paid to a regional

partner for regional flights. System Operating Costs comprise the remaining 30-40% of

total costs.

2.4.4 Basic Airline Metric Equations

As described above, CASM is the main unit metric for comparing costs. The unit in this

metric is the Available Seat Mile (ASM). The ASMs of any given flight, route, or network is the

scheduled seat capacity planned by the airline. For a given origin and destination (O&D), ASM

is calculated as one seat flown one mile, hence its equation,

Available Seat Miles = Total Seats * O&D Distance (1)

This equation holds for an individual flight, the sum of many individual flights, the sum of

flights in one airline's network, or even the sum of all flights in the industry, provided that seats

are multiplied by their corresponding O&D distance before summation. It is itself a unit metric

of supply in the industry, with extra weight given in direct proportion to the distance flown by a

given seat. Generally, on a single flight level, ASM is calculated as

ASM ofsingle flight = Seats on Aircraft * O&D Distance in Miles (2)
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As described above, the cost component of CASM can be defined in various ways,

depending on the intended purpose for analysis. At the highest level, an airline will report its

total network CASM as the sum of all costs realized, including all three categories described in

the previous section: Aircraft Operating Cost, Ground Operating Cost, and System Operating

Cost. Since Aircraft Operating Costs include even the amortization of capital, an airline's total

CASM is a succinct, single metric that accounts for the entire airline's operations. Therefore, the

general equation for CASM is

Total Costs (3)
CASM =

Available Seat Miles

Aircraft, Ground, and System Operating Costs

Total Seats * Miles Flown

CASM takes this general equation form, but reported CASM can vary based on the

elements of the numerator intentionally included or, conversely, excluded. As one of the most

volatile components of operating cost, fuel is often excluded in order to calculate an "ex-fuel"

CASM independent of the fluctuations in oil price. Ex-fuel CASM is useful for comparing

"internal" unit cost performance, that is, how the airline is performing on factors in its control,

such as labor, overhead, distribution, and marketing expenses. For reporting purposes, airlines

may also choose to report only their mainline operations-that is, flights operated only under its

two-letter International Air Transport Association (IATA) code, rather than that of any regional

subsidiary or regional partner operating on a seat-lease basis. This latter arrangement, seen most

often in short-haul, low-capacity flights to smaller spokes from an airline's hub, are regarded as

seats "sold and marketed" by the mainline carrier, but "operated by" a fleet and crew that are not

considered to be directly owned or employed by the airline itself. Regional carriers, including
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SkyWest, Mesa Airlines, and ExpressJet, often operate regional flights for more than one

mainline carrier. In CASM calculations, an airline or any reporting entity may choose to exclude

all regional seat-lease agreements, subtracting out the contract cost for these operations and their

associated ASMs [23].

With respect to units, CASM is customarily reported as cents per ASM. Typical system

CASM in the domestic US industry has ranged from low single digits to high teens, with CASM

generally decreasing as the carrier's average stage length increases [24]. CASM is replaced by

Cost Per Available Seat Kilometer (CASK) for airlines using the metric system. Raw numbers

for CASM and CASK are different owing to the inherent numerical difference between a mile

and a kilometer, but the metric serves the same purpose, and all relative comparisons hold true

under CASM or CASK.

CASM is an industry-wide metric that captures the attention of financiers, consultants,

and academics for its simplicity of aggregation. Figure 6 below shows mainline CASM for ten

major US carriers from 2007 to 2016.
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Mainline CASM: 2007-2016
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Figure 6. Domestic mainline CASM from 2007 to 2016. Data Source: US Department of Transportation and Bureau of
Transportation Statistics.

In the decade shown in Figure 6, CASM dipped in 2009 following the 2008 financial

crisis, but appeared to pick up again quickly from 2010 to 2014, years in which oil prices

continued on an upward trajectory. From 2014 onward, the oil industry faced historically low

prices, coinciding with a period of low CASM and high profitability for the airline industry [25].

2.4.5 CASM in its Various Forms

As mentioned in the previous section, CASM can take one of various nuanced forms

depending on the intended purpose of discussion, whether that is a carrier's CFO, a Wall Street

analyst, or an industry publication. Some of the more common types of CASM are outlined

below:
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" CASM Ex-Fuel: One of the most commonly reported forms other than total CASM, ex-

fuel CASM excludes fuel expenses to keep cost components to those internal to, or

otherwise controllable by, the airline itself.

* CASM Excluding Special Items: In some cases, airlines report a CASM that excludes

"special items" such as one-time costs of, say, a merger partner or acquisition [26].

* CASM Ex-Transport-Related Costs: As explained above, the costs of a seat purchase

contract to regional airline(s) by a mainline carrier is categorized as "transport-related

costs," a component of the aforementioned System Operating Costs. Exclusion of the

transport-related costs leaves a CASM that is "mainline only," that is, reflects only the

performance of revenue service flown by a carrier's distinctive two-letter IATA code.

* Total CASM: Generally, without explicitly stated exclusions, CASM is understood to be

Total CASM, incorporating the total costs incurred by the airline for the given period of

time being reported (usually quarterly or full year results for the airline's entire network).

Because Total CASM includes transport-related costs, fair comparison across carriers

requires that one keep in mind the inclusion of outsourced, regional flying.

Given the complexity of spreading fixed costs over an airline's entire network of

operations, it is often difficult to calculate the true CASM or other unit cost of a single route or

flight. The traditional hub-and-spoke model, moreover, makes it nearly impossible to calculate a

true CASM for a flight given the plethora of connecting itineraries that spread the "true cost" of

a trip across multiple flight legs [23]. CASM comparisons are also complicated by the numerical

fact that unit costs do not scale up linearly with the distance flown. In practice, since costs for

each departure-arrival cycle are generally fixed, simple arithmetic shows that the longer the
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flight, the lower its CASM, as those costs are spread out over more seat-miles. Conversely, short

stage length flights see higher CASM than network average, since the fixed costs incurred are

spread over fewer seat-miles. As airlines differ significantly in their route networks and hub

geography, a direct comparison of total network CASM over all routes may misrepresent an

airline's productivity relative to its peers. Inherently, an airline that operates more long-haul

flights will appear to perform better on CASM. Because of this imbalance, airlines will also

calculate a stage-length adjusted metric for CASM in order to make a viable comparison that

controls for the effect of flown distance [27].

2.4.6 The Maintenance Component of Airline Costs

Maintenance has been shown to constitute up to 13% of an airline's total operating cost

[28]. Although fuel and labor remain the largest components of airline operating costs, the focus

on cost-cutting measures as the industry continuously chases the lowest cost carrier means that

any opportunity to reduce the CASM numerator is part of the financial discussion. The AOEs

mentioned above all disrupt operations and contribute to unexpected expenses. The unexpected

aspect of these disruptions is only partially covered in the present study, given data availability.

Although maintenance costs refer generally to mechanical system repairs and upkeep, an

irregular operation (IROP) induced by an engine fault can have implications on costs in various

aspects of the business, such as additional labor cost for staffing airport or flight crews, re-

accommodation costs for affected customers, extra fuel required for route diversions, among

others. The main focus of this study is on the direct maintenance costs as reported by two carriers

of interest, so it should be noted that estimates presented here are conservative estimates of cost

savings, given the lack of data on airline IROP costs (particularly at the individual airline level).
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Comprehensive studies of actual CASM effects would require collaboration across all

stakeholders of AOEs. For the time being, this study seeks to bridge two disparate metrics of

cost, one from the OEM and the other from airlines, to understand how incidence of engine

events can be translated to unit cost metrics, which are important for airline investment,

profitability, and performance outlook.

2.4.7 Maintenance Regulations

All commercial carriers must abide by Federal Aviation Administration (FAA)

regulations regarding maintenance. In particular, there are scheduled maintenance events that

must occur after certain thresholds of flight cycles or hours, elapsed time since the previous

check, or elapsed time since entry-into-service. In industry parlance, these are denoted the "A,"

"Bi" "C," and "D" checks, labeled in order of increasing complexity, person-hours of labor, and

cost [29], [30]. These are briefly detailed below:

* "A" Check: Performed every 65 flight cycles, for routine, light maintenance and engine

inspections; completed overnight without disruption to aircraft availability.

" "B" Check: Similar to A Check, but with more comprehensive tasks; generally occurs

every 300-600 flight hours.

* "C" Check: Determined by flight hours, flight cycles, and months in service, and as such

occurs every 1-2 years; generally involves check of a majority of an aircraft's

components; takes aircraft out of service, from a few days to a couple weeks.

" "D" Check: Considered a heavy maintenance visit, this comprehensive check involves

essentially a complete disassembly of an aircraft for complete evaluation of its
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components and parts; this check may take up to a month to complete, at a large

maintenance facility.

The work scope of these checks may also depend on the equipment type, the

recommendations from manufacturers, and the degree of fleet utilization. These scheduled

checks, though required by the FAA for comprehensive safety protocol, do present both a time

and cost burden on operators. In particular, they create a set of constraints in the so-called fleet

assignment problem in operations research literature, wherein the optimal aircraft, crew, and

route assignment for an airline's given fleet is solved to maximize utilization and minimize

operating costs [31], [32]. One advantage of the routine, scheduled nature of these checks is that

they can be predicted with certainty as to their time of occurrence. The challenge of unexpected

engine faults and failures, leading to the AOEs mentioned above, is that maintenance schedules

need to be reassessed, since even one aircraft taken out of service leads to downstream

disruptions to the entire schedule. The work of this present study, therefore, can help to explain

the contribution of probabilistic modeling of unexpected engine events in the context of this fleet

assignment problem. With EHM services provided by full-flight data analytics, the impact of the

AOE on scheduled maintenance can, at the least, minimize unexpected disruptions and/or

provide a heuristic for better understanding of aircraft maintenance schedules.

2.4.8 CASM and Maintenance Optimization

The advent of more sophisticated schedule optimization solutions has helped to improve

the operational efficiency of airline operations, including crew scheduling and maintenance

scheduling [33], [34]. Generally, such optimization problems have the objective of minimizing
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cost for the operation of interest. Although CASM and unit costs are not explicitly stated as

objectives, an optimization solution that minimizes costs would logically extend to optimizing

CASM and unit costs. Given the current separation between internal engine data and external

airline cost data, the hope for this study is to develop a better understanding of the relationship

between engine monitoring, maintenance services, and realized costs-all of which will help

define the value of full-flight data analytics for the customer. More broadly, further work of this

type can help inform and refine future formulations of the ever-growing complexity of air

transportation operations research.
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Chapter 3

Methodology and Procedures

3.1 V2500 Fault Detection Database

3.1.1 Data Recording

Internal to Pratt and Whitney's (PW) existing EHM services for the V2500 engines is a

repository of the data transmitted in ACMF reports through the Aircraft Communications

Addressing and Reporting System (ACARS). These reports are fed into the Advanced

Diagnostics and Engine Management (ADEM) portal, which serves as the user interface for the

plethora of data captured from every V2500 in commercial service throughout the world. In

addition to the raw data-the actual gas temperatures, pressures, oil debris counts-the data of

interest for this present study are the engine event reports generated each time an operational

disruption occurs due to an adverse engine event, or an impending adverse event. Events can be

triggered by flight crew observation or by monitoring staff working around the clock at multiple

facilities worldwide.

In the case of an engine event, the field support personnel from PW can survey signals

from the engine or components whose physical metrics led to alerts, and can order a borescope

procedure to be done, whereby a narrow tube with light and camera is inserted into the engine

and is used to probe for signs of damage or deterioration. This procedure is not unlike a

colonoscopy that would be done on a human patient. Results from line inspection and any

borescoping are recorded into an incidence report, which also indicates what type(s) of AOE
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were caused as a result of the engine issue. Each event may trigger more than one AOE; in many

cases, one type of AOE is logically linked to another. For example, an aborted takeoff is almost

certainly going to trigger a delay or cancellation, depending on the severity of the engine fault.

In addition to records of damage, repair orders, spare orders, and other maintenance

action, the engine's operational record is also available. These include flight hours and flight

cycles experienced by each engine. Therefore, for any given AOE recorded, the incidence rate

can be expressed as the occurrence per number of flight hours or flight cycles. This rate of

incidence is important for the present study, as the premise of full-flight fault detection is to

reduce as many of these unexpected AOEs as possible. In other words, the aim of diagnostics

and prognostics at PW is to prevent or scale down the severity of any such AOEs, and the rate of

incidence is a key performance metric that indicates the success or failure of the monitoring,

alerting, and prevention tactics of EHM services.

3.1.2 Sample Size Determination

While the V2500 is widely used throughout the global airline industry, it is often not the

only power plant chosen for a given carrier's fleet of A320 family aircraft. In fact, most major

network legacy carriers in the US and Europe operate a mix of V2500 and CFM-56 engines on

their Airbus fleet. As a result, the incidence rates analyzed were reduced to two North American

carriers that operate the V2500 engine exclusively on their Airbus narrow-body fleet. Moreover,

the two carriers chosen also share characteristics that make them useful subjects of study:

" Both operate a mix of long-haul and short-haul routes throughout North America.

" While aircraft age varies between the carriers, both have active orders for more PW

engines for upcoming Airbus deliveries and maintain a relatively young fleet.
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* The carriers compete on many overlapping routes, creating an incentive for either carrier

to be astute to cost of operations for competitive concerns.

* Both carriers skew similarly toward a leisure-heavy route network.

* Both carriers are legally required to report operating expense information to the

Department of Transportation, which makes the data publicly available.

In addition to the market and strategic similarities, there carriers both have long-term

EHM agreements with PW through which their engines are monitored and managed. These

arrangements allowed for many years' worth of data to be available for analysis.

3.1.3 Data Collection

Incidence reports were obtained for the two carriers of interest for the five years between

2012 to 2016, inclusive. This time period has the advantage of having largely emerged from the

Great Recession of 2008-09. The full body of data for the two carriers include categorical data

such as date of event, engine serial number, tail number of the corresponding aircraft, event

location, and the flight phase at which the event occurred, Meanwhile, quantitative data include

total flight hours, total flight cycles, and a count of the total Adverse Operational Events (AOE):

Aircraft-on-Ground (AOG), Inflight Shutdown (IFSD), Air Turn-Back (ATB), Aborted Takeoff

(ABTO), and Delay/Cancellation (DC). Table 1 summarizes the categorical and quantitative data

available in the engine history.
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Table 1. Data represented in engine incidence reports, available through engine history records.

V2500 Incidence Report Data

Categorical Quantitative
Event Date Flight Hours
Engine Serial Number Flight Cycles
Aircraft Tail Number Count of Adverse Operational Events
Event Location
Flight Phase
Basic/Non-Basic Label

Other
Reason for Trigger
Support Personnel's Notes
Unique Event Identifier

3.2 Characterization of Data Set

3.2.1 The Poisson Distribution

In examining the available data set, it was determined that the incidence of engine faults

is best approximated using the Poisson distribution, which describes the occurrence of discrete

events that arrive with a constant rate across a finite interval of time or space [35]. Each

individual event of a given Poisson-type process arrives independently of any prior or future

individual event. Many everyday events can be described by a Poisson distribution, such as the

calls made to a customer service center on one day, attendees to a museum, or vehicles passing a

toll booth. More weighty applications of Poisson can be found in the claims filed to an insurance

company in a set period [36], number of corporation defaults in a period [37], and industrial

accidents and suicides in a period [38]. Perhaps most importantly for the present study,

occurrence of adverse events can often be modeled after a Poisson distribution, including

occurrence of earthquakes [39], cancer cell growth [40], and memory chip failures [41].
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In particular, a discrete compound Poisson distribution is appropriate for modeling the

behavior of the V2500 engine faults explored in this study. Several characteristics of the adverse

engine events and the data set lend themselves well to a Poisson analysis:

* Engine faults are discrete, individual events.

0 The total number of each AOE category is known for a set period of time: the total flight

hours, or the total flight cycles experienced by the engine.

* At this mature state of the V2500 engine, manufacturing and design defects are assumed

to have been addressed sufficiently such that faults occur independently of one another.

0 The compound nature of this Poisson process is represented by the multiple AOEs that

can be manifested due to engine fault: each AOE has its own incidence rate per interval

of time, flight hours, or flight cycles.

Given a Poisson characterization for V2500 engine faults, the rate of an AOE can be defined by

A, the incidence rate in one year's worth of f light hours (4)

The formulation of the entire Poisson probability distribution continues as follows:

An individual AOE is binomial, that is, it either occurs or it does not (5)

For each AOE type, one occurrence is independent of a past or future occurrence (6)

k, the number of times an AOE occurs in a prescribed interval of time (7)

T, the prescribed period of time (8)

To find the probability of k occurrences of one AOE type, we use the probability massfunction

as defined by
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P(k occurrences in interval) = (ATk CAT (9)

Where e is the exponential (Euler's number), and k! is the factorial of k given by

k x (k - 1) x (k - 2) x ... x 2 x 1

Figure 7 shows the Poisson Probability Mass Function (PMF) for values of A from 1 to 9,

graphed against the probability of seeing X = k events occurring, with k plotted on the x-axis.

Poisson Probability Density Function, A 1 to 9
0.4
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.2
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X= k

Figure 7. Probability mass functions graphed for various values of A. The x-axis shows possible values of k, such that
each curve represents the probability of seeing X = k events for a hypothetical Poisson process.

The Poisson PMF is noteworthy for approaching a normal distribution as A increases.

Variance also increases as 2 increases, producing the long tails observed for A= 6 and above. For
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this study, we are conceptually interested in values of k below k =2, since these values represent

lower incidence of engine events than the status quo.

The Poisson Cumulative Distribution Function (CDF) is given by

k -4T (ea)
F(k; A) = k! (10)

k=O

and defines the cumulative probability for observed occurrences up to k.

3.2.2 Formulating a Baseline Cost for Adverse Operational Events

Given that the incidence of each AOE is discrete in nature (example: 9 AOGs occurring

over 1000 flight hours), the baseline cost of engine faults over any period evaluated can be

computed if an average cost, Cn, is known for each type of AOE. If such average costs are

assumed to exist for each corresponding AOE type, then the baseline cost for each of the six

AOE types for a given interval of time can be computed as

AnC(11)

where n = 1, 2, 3, 4, 5, 6

and each n is one of the AOEs: AOG, IFSD, ATBO, ATB, GTB, and DC. The total baseline cost

can be computed as

SAnC (12)

where n = 1, 2, 3, 4, 5, 6

This summation of baseline costs is represented pictorially in Figure 8.
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Figure 8. Pictorial representation of total baseline costs across six Adverse Operational Event types.

This formulation is a simplification of the maintenance costs incurred as a result of these

AOEs. Average cost for each of the AOEs is defined internally at PW as a cost range, with

significant variation given that such cost data is only available on an aggregated level, and not

specific to the two carriers being studied here. Nevertheless, a cost range, is useful for

understanding the upper and lower bounds of AOE costs incurred because of engine faults. The

advantage of having a cost range is that a sensitivity analysis can be done as the value C, varies.

3.2.3 Full-Flight Data Analytics for Cost Reduction

Full-flight Data Analytics (FFDA) has been described in detail in the previous chapter as

a promising tool for maintenance cost reduction [42]. Although the eFASTTM system has begun

flying on the GTF-powered fleet of Bombardier CSeries aircraft, a true benchmark of cost

reduction has yet to be developed at PW. The problem with having no standard cost reduction

model is somewhat circular; a true standard does not yet exist because the "eFASTrM ecosystem"

does not have all the data it needs to form a productionized service. Yet in order to obtain such

48



data, it needs to actively operate on revenue service aircraft. The Bombardier CSeries eFASTTM

aircraft continue to inform the work done to develop and improve engine prognostics as more

deliveries take to the skies.

The development of a CSeries eFASTTM product suite is outside the scope of the present

study. Here, the potential for V2500 maintenance cost reduction is analyzed because the status

quo of historical engine faults is widely available. The previous section described in detail the

formulation of a Poisson distribution model to evaluate the probability of discrete, adverse events

occurring. Since eFASTTM has not yet been formally introduced on the V2500 product line for

data captured through revenue service, the analysis of FFDA here is theoretical and speculative

in nature. The purpose, of course, is to provide a simple model for understanding of cost

reduction. Given the wealth of V2500 engine fault data, maintenance cost reduction can be

formulated as the likelihood of using FFDA to reduce the various AOE types covered above. As

such, FFDA's potential for cost reduction is framed as follows: X, for each AOE is assumed to

be incrementally reduced through better monitoring, alerting, and detection of engine faults.

Each incremental reduction corresponds to a proportional decrease in cost Cn. At the same time,

given the Poisson nature of the AOEs, a reduction of each incidence rate A will also affect the

probability mass function (Equation 9 above). Reduction in A will also exert a downward

pressure on the probability of seeing k occurrences of any given AOE. Therefore, the utility of

modeling the cost reduction problem as a Poisson process can be summarized as follows:

For a given AOEn with a defined An, cost reduction occurs as a result of two factors:

I. Incremental Reduction in Discrete Events: lim AnCn (13)

II. Reduced probability of incidents in a given interval: lim e-An (14)
In--O k!
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In the next section, this paradigm is applied to the AOE costs of the two airline subjects being

studied, and translated into unit cost savings.

3.3 Airline Unit Costs

3.3.1 Bureau of Transportation Statistics Data Collection

The US Department of Transportation requires that commercial airlines report their

quarterly financial information, including operating expenses, to the Bureau of Transportation

Statistics (BTS) [43]. The most comprehensive set of data comes from the Form 41 set of

reports, which include financial data as well as traffic data (scheduled departures, seats). These

are publicly available data sources updated regularly by BTS. Based on the airline metrics and

ratios presented in Section 2.4.4 above, the following Form 41 schedules were determined to be

the most relevant for this study:

* Schedule P-5.2: Detailed operating expenses, including flying expenses, direct

maintenance expenses, depreciation costs, and total operating expenses, for carriers with

annual operating revenue of $20 M or more

" Schedule P-i .2: Aggregated profit and loss data, including transport-related costs, for

carriers with annual operating revenue of $20 M or more

" Schedule T2: Carrier traffic data, including available seat miles, revenue seat miles, and

revenue flights flown, shown by operating aircraft type

Additionally, the associated ID tables for categorical identifiers was also used to identify the

lowest level of data granularity. Table 2 outlines the Form 41 schedules used and the

corresponding data provided in each.
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Table 2. information Obtained from Form 41 Schedules

DOT Form 41 Schedules Used
Schedule P-5.2 Schedule P-1.2 Schedule T2

Flying Expenses Operating Revenue Available Seat Miles
Maintenance Expenses Operating Expenses Revenue Seat Miles

Engine Labor Net Income and Expenses Flights Operated
Engine Repairs Income Taxes Miles Flown

Engine Materials Operating Profit (Loss) Fuel Bum
Depreciation Costs

3.3.2 Airline Metric Calculations

For the airlines of interest, the following key metrics are computed: Available Seat Miles

(ASM), Total Costs, Maintenance Costs, and Cost Per Available Seat Mile (CASM). Various

forms of CASM are calculated, depending on the cost components included or excluded, per

introduction in Section 2.4.5 above.

Granularity of data is an important issue to consider for this methodology. Schedule P-5.2

provides data to the aircraft-type level, essentially allowing isolation of only Airbus A320 family

operations. Along with a filter on operating carrier, the maintenance costs for the two airlines of

interest are successfully segregated. As mentioned, these two carriers are exclusive operators of

the V2500 engine, allowing for a meaningful, direct analysis of maintenance costs implicated by

the PW database on historical V2500 engine performance.

A summary of the approach taken to estimating maintenance cost reduction is provided in

Figure 9, which shows the broad steps taken to translate engine database information into

potential cost implications.
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Analyze V2500 historical incidence data
Model probability of engine incidents

Investigate typical costs for engine incidents

I Estimate likelihood of preventing/reducing future
incidents if full-flight data analytics employed

11
Find relevant Form 41 cost data

Determine fraction of maintenance costs avoided I
Translate cost reduction into estimated unit cost savings:

Cost Per Available Seat Mile, Cost Per Block Hour

Figure 9. General approach taken to bridging engine fault data with airline cost reduction.
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Chapter 4

Results and Analysis

4.1 V2500 Adverse Operational Events and Associated Costs

The physical metrics that signify engine health and performance are recorded for the

V2500 across all Pratt & Whitney (PW) customers. The engine monitoring service, while

individualized by carrier agreement, generally involves trending of such metrics as exhaust gas

temperature (EGT) margin to component tolerance. Additionally, Adverse Operational Events

(AOEs) are recorded separately in a database that compiles information on individual engine

incidents, ranging from unexpected cockpit signal lights to bird strikes to inflight shutdowns.

Interactions with the carrier, the location of occurrence, the suspected cause of failure, the actual

cause found after investigation, and field support notes are also recorded. These engine event

records are analyzed for the two carriers of interest, with particular attention to the aggregate

count of six defined AOE categories. Although individual engine events can cause more than one

AOE, high-disruption events are very rare, in some cases occurring only once in the five-year

period evaluated. Thus, each event is assigned one category for simplicity, using a method that

orders categories by descending magnitude of severity.

Independence of event occurrence between the two carriers is tested through a X' test for

independence. Event categories are then modeled as mutually exclusive occurrences that follow

a Poisson distribution, with event As defined for each category. These A parameters then allow

calculation of expected annual events, expected annual cost of events, and expected cost savings

based on a range of hypothetical event avoidance rates. Finally, raw cost savings are translated to
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proportion of unit costs saved for each carrier as an approximation for the value of this full-flight

data based Engine Health Management (EHM) service.

4.1.1 Statistical Independence of Events

The two operators of the V2500 being studied have each accumulated a history of engine

events in the internal PW database, not all of which are necessarily adverse events. Many event

records are entered as a matter of process; for example, if an airline pilot sees an engine alert on

flight deck controls, any contact with PW on the matter is recorded. As such, the volume of event

records itself is not an indication of the magnitude of engine failure, but rather just an archive of

engine-related activities and communications with airline operators.

The AOEs are recorded as counts of events for a given period of time, in line with the

assumption that they follow a Poisson distribution. Engine incidents are assumed to be Poisson

events because they can be modeled by an occurrence rate A per unit time, with each single event

occurring randomly and independently of the previous or next event. Given that each record of

an engine incident is an independent occurrence, a Poisson model was used to portray the arrival

of each event type over time, in this case flight hours over a full calendar year.

The carriers selected for analysis operate the V2500 exclusively on their A320 family

fleet, but it is important to first understand whether or not AOE occurrence varies based on the

operating carrier. That is, are there differences in the airline's operations or its fleet

characteristics that could cause more AOEs to occur than statistically suggested by its ratio of

flight hours? To examine these occurrences from a statistical lens, a X2 Test of Independence

was performed, with the null hypothesis being that the incidence rates of AOEs are independent

of operator. Six major types of operational disruptions were included, based on data availability:
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Aircraft-On-Ground (AOG), Aborted Takeoff (ATO), Air Turn-Back (ATB), Inflight Shutdown

(IFSD), Ground Turn-Back (GTB), and Delay/Cancellation (DC). Events in which more than

one type of operational disruption resulted were grouped up to their most severe type of

disruption, based on the following convention, listed in hierarchical order:

1. Any event listing IFSD was grouped as "IFSD" regardless of additional labels

2. Any event listing AOG was grouped as "AOG" regardless of additional labels, except for

IFSD (per rule #1)

3. ATO and ATB were mutually exclusive events in the data set. Any ATO, regardless of

combination, was grouped as "ATO." Similarly, any ATB was grouped as "ATB"

regardless of combination. Any event in combination with IFSD or AOG were grouped

per rules #1 and #2 above.

4. DC in combination with GTB was grouped as "DC."

5. The remaining label was GTB, without combination, and therefore labeled "GTB."

Table 3 lists the various disruption combinations and the groups into which they were labeled for

the purposes of the X' test.
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Table 3. The Adverse Operational Event (AOE) groups used for X 2 Test of Independence.

x - Group Disruptions Listed

IFSD IFSD
IFSD, ATB
IFSD, DC

AOG AOG
AOG, ATB
AOG, DC
AOG, GTB
ATO, AOG
ATO,AOG,DC

ATO ATO
ATO, DC
ATO, GTB

ATB ATB
ATB, DC

DC DC
DC, GTB

GTB GTB

The groups from the x test are shown below in Table 4, as well as the outcomes shown asp-

values, with statistical significance set at a = 0.05.

Table 4. Results from X 2 Test of Independence by airline, for each type of Adverse Operational Event (AOE).

Observed Occurrence of Events

Carrier IFSD AOG ATO ATB DC GTB
Airline A 11 13 51 39 1146 165
Airline B 6 3 7 5 75 3

Total 17 16 58 44 1221 168

Expected Count of Events Based on Block Hour Ratio

Carrier IFSD AOG ATO ATB DC GTB
Airline A 12 11 41 31 861 118
Airline B 5 5 17 13 360 50

Test of Independence: Outcome
p -value 0.599 0.346 0. 004 0.008 1.5E-71 3.46E-15
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The results of the X 2 test showed statistical significance for ATO, ATB, DC, and GTB,

all of which saw p-values below a=0.05, suggesting that there may be differences in occurrence

of these AOEs based on carrier. However, the test outcome for IFSD and for AOG were not

significant. Given the conflicting statistical test outcomes, no conclusion can be drawn about the

effect of carrier on occurrence of AOEs as a whole.

Given two airlines with similar networks and fleets, some variation in occurrence of

engine events can still logically be expected based on differences in age of fleet, seat

configuration, and scheduled utilization. The X2 test was conducted to seek a general

understanding of any possible variation, and while results suggest some statistical difference for

four AOE types, there were factors for which the test did not control, such as size of each

carrier's operation, fleet age, or maintenance program differences. These refinements can be

done in future, more in-depth analyses, as the objective here is simply to note that these

variations are possible.

As this is a first look into the occurrence of AOEs and airline cost implications, the study

will proceed with AOEs pooled for both airlines. This method creates a larger sample size of

engines, and also allows for better generalizability of results to other V2500 operators. Such an

approach is useful in the early stages of full-flight data analyses, since the multitude of V2500

operators in the industry likely show wide variation in flight operations, and, by extension,

engine performance. Future work may choose a more targeted set of data for further analysis.

4.1.2 Poisson Characterization

The pooled data provide a greater volume of events from which estimates of the Poisson

model can be calibrated. Of course, this also means that a higher number of flight hours are used
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as the base time period for the A of each event type. The combined five-year totals of each event

type, along with its A, flight hours (divided by 1000, as is the PW convention), and flight cycles

(also divided by 1000) are shown in Table 5. A flight cycle is defined as a single takeoff and

landing for an aircraft. Since takeoffs and landings generally place the most strain on aircraft and

engines, a count of cycles experienced by an engine is a possible indicator of its wear and tear.

Therefore, event occurrence per thousand-unit cycles is another viable Poisson parameter for

calibrating AOE incidence rate, though thousand-unit hours will be the base denominator used in

this study.

The "blank" category was included to show the magnitude of engine event records that

were not associated with an adverse operational event. As explained earlier, communications

between the carrier and PW regarding an engine are recorded insofar as checks or diagnoses

were suggested by the interaction, even if no operational disruption occurred.

Table 5. Poisson characterization of engine event types, from 2012-2016. Flight hours and flight cycles, each
expressed as a factor of 1000, are also given.
*Number of 1000-hour units over 5 years
**Number of 1000-cycle units over 5 years

Event Type A Flight Hour Flight Cycle
Units* Units**

IFSD 17
AOG 16
ATO 58
ATB 44 8102.34 3026.09
DC 1221
GTB 168

(blank) 2057

Table 5 shows that A for the most severe events are the lowest, as expected of rare events

under a Poisson distribution assumption. Note that flight hours and cycles, as given, should be

interpreted as units of 1000 hours or cycles. Thus, a A of 17 for IFSD indicates that 17 such
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events were observed over approximately 8102 units of time, with each unit representing 1000

hours. For comparison, the "unit A" is shown in Table 6, wherein each event's A is divided by its

respective time and cycle units.

Table 6. Unit A by flight hours and cycles, per engine event type. One unit equals 1000 hours or 1000 cycles,
accordingly.

Event Type A per Unit A per Unit
Hours Cycles

IFSD 0.0021 0.0056
AOG 0.0020 0.0053
ATO 0.0072 0.0192
ATB 0.0054 0.0145
DC 0.1507 0.4035

GTB 0.0207 0.0555
(blank) 0.2539 0.6798

Per PW reporting convention, Table 6 provides the ) for each engine event type,

expressed as occurrences over 1000 flight hours. For all events, the count of occurrences is

below one, which is consistent with a Poisson model of rare events occurring over a five-year

sample. This formulation is particularly apt for a mature engine like the V2500, which has been

in service for decades, and for which faults can be expressed as Poisson events. New engine

models in their introductory phase are not expected to follow such a distribution, since the

earliest versions of industrial products, especially in the aerospace realm, generally experience

some levels of refinement in their nascent revenue service phase.

Of particular note is the count of "blank" events, which in PW's V2500 database simply

means any recorded event for which an operational issue was not attributed. For continuity, these

blank events are treated as-is here, since the occurrence of any record-inducing event, no matter

how minor, can itself be treated as a Poisson event. This characterization is true if one is to
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assume that any recorded event is a random and rare event; stated differently, the label "blank"

prescribed to events does not change the Poisson nature of the occurrences, since they are

assumed to occur randomly and independently over a given unit of time or cycles. The "blank"

events are revisited in Chapter 5, Discussion and Conclusions.

4.1.3 Costs Associated with Events

Perhaps the most difficult aspect of maintenance cost analysis is the high variability in

cost implications from one event to the next. Indeed, there is no "typical" adverse operational

event, since they are by nature unexpected; as discussed throughout this study, they are

considered rare events that occur randomly. Nevertheless, the range of possibility for such costs

could be estimated by turning the question back to the carriers-what has a "typical" AOG or

IFSD cost in the past? PW commissioned a study to survey airlines on this subject, and received

pooled responses from a sampling of carriers from around the world (all of whose identities were

kept confidential to PW). The report, completed by Firm Z', provides that cost implications from

the AOEs fall into three tiered categories based on severity of labor (particularly for flight and

cabin crew), customer re-accommodation, and engine damage. They are described in detail

below2 :

Type I: $107,000 to $533,000 cost range

The least severe type of event, this is a "relatively minor issue" that can be recovered

within the scheduled crew time. It is the most common of the three event types.

Disruption to passenger service is minimal or can be resolved within the scheduled

1 pseudonym
2 For confidentiality, actual cost data are obscured by a random factor
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buffer time. Generally, replacement and repair of engine assets is less than 10% of the

event's total cost.

Type II: $320,000 to $2,987,000 cost range

The second tier, this event type cannot be recovered within the scheduled crew time, and

incurs crew costs that can constitute up to 15% of total event cost. Longer downtime

means the airline must either bring in its own spare aircraft, or re-accommodate

customers on other carriers, incurring transportation costs as well as lost revenue if

refunds are offered. Nevertheless, the actual repairs for hard assets is still small, at fewer

than 5% of total event cost.

* Type III: $6.4M to $12.8M cost range

Considered a major operational event, crew time is exceeded, aircraft require major

component replacement(s), and ground handling costs are driven up as the aircraft is at a

remote site. Downstream effects on the network are incurred as fleet have to be

reshuffled, or significant purchases or leases must be made to recover hard assets and/or

regular operations.

A summary of event characteristics is provided in Table 7.
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Table 7. Engine event severity categories, along with cost range, cost midpoint, characteristics, and the most likely
adverse operational event types corresponding to each severity. For confidentiality, true cost data have been
obscured via randomly chosen factors.

C- R i ikel Adverse
vent Tier eaalL t V , Characteristics

000 in 000s

Type I $107-$533 $337 Recoverable within crew time

Most common event type of the three

Operations recovered within scheduled buffer time

Low cost of part replacement

Type II $320-$2,987 $1,739 Cannot be recovered within crew time

Added crew cost constitute up to 15% of event cost

Lost passenger revenue due to refunds and

rebookings to other carriers

Lease or charter fees may be incurred

Low cost of part replacement

Type JH $6,401-$12,802 $10,098 Cannot be recovered within crew time

Major parts or components replacement

Ground handling fees increase

Downstream network effects due to reallocating of

crew and fleet

y
Operational Event

DC
GTB

ATB

ATO

ATB
ATO

IFSD

IFSD
AOG

In Table 7, the cost ranges for each of the event severity categories are outlined, as well

as the average of each range. As a matter of evaluation, these cost data points will help to define

the range of costs that enhanced prognostic tools might minimize. Framed as a sensitivity

analysis, the range of event avoidance is explored in the section following.

The likely AOEs to be associated with each severity category is also listed above in Table

7. Although one may argue that each AOE could result in any of the three levels of severity, the

typical outcome of each AOE was considered in this classification, consistent with the

hierarchical grouping of AOEs shown in section 4.1.1. As will be shown later, the groupings can

be narrowed further to provide a single set of estimates.
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4.1.4 Calculated Costs of Adverse Operational Events

The previous section provided the cost ranges of each of the Type I to III events as

defined by PW commissioned surveys of airlines' historical expenses incurred from operational

disruption, ranked in order of severity. As a comprehensive baseline of potential cost savings,

sensitivity analyses were completed for each of the six AOE types by year, from 2012 to 2016.

All three severity levels were included for each AOE type. These results appear in Table 8.

Since Poisson events are, by definition, integer in nature (i.e. one cannot have 1.7 Air

Turn-Backs), Table 9 provides the same comprehensive index of costs with event counts rounded

to the nearest whole number.
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Event Type per Unit Year Annual Unit
Event Tpe Yea

Expected
As Type I Event

Min Cost Midpt Cost High Cost

As Tve II Event

Mn Cost Midpt Cost High Cost

As Type III Event

Min Cost Midpt Cost High Cost

2012 1323.42 2.78 $296,239 $934,662 $1,481,195 $888,717 $4,829,087 $8,294,689 $17,774,334 $28,039,861 $35,548,668
2013 1452.21 3.05 $325,067 $1,025,619 $1,625,337 $975,202 $5,299,030 $9,101,887 $19,504,044 $30,768,561 $39,008,088

IFSO 0.0021 2014 1561.74 3.28 $349,585 $1,102,975 $1,747,926 $1,048,756 $5,698,704 $9,788,388 $20,975,116 $33,089,248 $41,950,233
2015 1786.76 3.75 $399,953 $1,261,888 $1,999,763 $1,199,858 $6,519,757 $11,198,670 $23,997,151 $37,856,651 $47,994,302
2016 1978.20 4.15 $442,806 $1,397,097 $2,214,032 $1,328,419 $7,218,332 $12,398,580 $26,568,385 $41,912,896 $53,136,770
Total 8102.34 17.00 $1,813,651 $5,722,241 $9,068,253 $5,440,952 $29,564,909 $50,782,214 $108,819,031 $171,667,216 $217,638,061

2012 1323.42 2.61 $278,813 $879,682 $1,394,065 $836,439 $4,545,023 $7,806,766 $16,728,785 $26,390,457 $33,457,570
2013 1452.21 2.87 $305,946 $965,288 $1,529,729 $917,837 $4,987,322 $8,566,482 $18,356,747 $28,958,645 $36,713,495

AOG 0.0020 2014 1561.74 3.08 $329,021 $1,038,094 $1,645,107 $987,064 $5,363,486 $9,212,600 $19,741,286 $31,142,821 $39,482,572
2015 1786.76 3.53 $376,426 $1,187,660 $1,882,129 $1,129,278 $6,136,242 $10,539,925 $22,585,554 $35,629,790 $45,171,108
2016 1978.20 3.91 $416,759 $1,314,914 $2,083,795 $1,250,277 $6,793,724 $11,669,251 $25,005,539 $39,447,431 $50,011,078
Total 8102.34 16.00 $1,706,965 $5,385,638 $8,534,826 $5,120,896 $27,825,797 $47,795,025 $102,417,911 $161,569,145 $204,835,822

2012 1323.42 9.47 $1,010,697 $3,188,847 $5,053,487 $3,032,092 $16,475,709 $28,299,528 $60,641,846 $95,665,408 $121,283,692
2013 1452.21 10.40 $1,109,053 $3,499,170 $5,545,267 $3,327,160 $18,079,043 $31,053,498 $66,543,209 $104,975,090 $133,086,418

ATO 0.0072 2014 1561.74 11.18 $1,192,703 $3,763,091 $5,963,513 $3,578,108 $19,442,636 $33,395,675 $71,562,162 $112,892,727 $143,124,324
2015 1786.76 12.79 $1,364,544 $4,305,266 $6,822,719 $4,093,632 $22,243,876 $38,207,229 $81,872,633 $129,157,987 $163,745,265
2016 1978.20 14.16 $1,510,751 $4,766,565 $7,553,757 $4,532,254 $24,627,251 $42,301,036 $90,645,078 $142,996,939 $181,290,156
Total 8102.34 58.00 $6,187,749 $19,522,938 $30,938,744 $18,563,246 $100,868,515 $173,256,966 $371,264,928 $585,688,150 $742,529,856

2012 1323.42 7.19 $766,736 $2,419,125 $3,833,680 $2,300,208 $12,498,814 $21,468,608 $46,004,159 $72,573,758 $92,008,318
2013 1452.21 7.89 $841,351 $2,654,542 $4,206,755 $2,524,053 $13,715,136 $23,557,826 $50,481,055 $79,636,275 $100,962,110

ATB 0.0054 2014 1561.74 8.48 $904,809 $2,854,759 $4,524,045 $2,714,427 $14,749,586 $25,334,650 $54,288,537 $85,642,758 $108,577,073
2015 1786.76 9.70 $1,035,171 $3,266,064 $5,175,856 $3,105,514 $16,874,664 $28,984,794 $62,110,273 $97,981,921 $124,220,546
2016 1978.20 10.74 $1,146,087 $3,616,015 $5,730,436 $3,438,262 $18,682,742 $32,090,441 $68,765,232 $108,480,436 $137,530,463
Total 8102.34 44.00 $4,694,154 $14,810,505 $23,470,771 $14,082,463 $76,520,942 $131,436,319 $281,649,256 $444,315,148 $563,298,511

2012 1323.42 199.44 $21,276,924 $67,130,726 $106,384,618 $63,830,771 $346,842,083 $595,753,860 $1,276,615,415 $2,013,921,771 $2,553,230,830
2013 1452.21 218.84 $23,347,488 $73,663,554 $116,737,440 $70,042,464 $380,595,030 $653,729,664 $1,400,849,281 $2,209,906,626 $2,801,698,561

DC 0.1507 2014 1561.74 235.35 $25,108,448 $79,219,552 $125,542,241 $75,325,344 $409,301,016 $703,036,548 $1,506,506,888 $2,376,586,546 $3,013,013,777
2015 1786.76 269.26 $28,726,001 $90,633,277 $143,630,006 $86,178,004 $468,271,932 $804,328,036 $1,723,560,077 $2,718,998,314 $3,447,120,153
2016 1978.20 298.11 $31,803,920 $100,344,404 $159,019,598 $95,411,759 $518,446,085 $890,509,751 $1,908,235,181 $3,010,332,109 $3,816,470,361
Total 8102.34 1221.00 $130,262,781 $410,991,512 $651,313,903 $390,788,342 $2,123,456,146 $3,647,357,859 $7,815,766,841 $12,329,745,366 $15,631,533,683

GTB

2012
2013

0.0207 2014
2015
2016
Total

1323.42
1452.21
1561.74
1786.76
1978.20
8102.34

27.44
30.11
32.38
37.05
41.02
168.00

$2,927,537
$3,212,431
$3,454,725
$3,952,472
$4,375,969

$17,923,134

$9,236,660
$10,135,526
$10,899,987
$12,470,426
$13,806,601
$56,549,201

$14,637,687
$16,062,154
$17,273,625
$19,762,360
$21,879,846
$89,615,672

$8,782,612
$9,637,292

$10,364,175
$11,857,416
$13,127,908
$53,769,403

$47,722,744
$52,366,884
$56,316,602
$64,430,536
$71,334,105

$292,170,870

$81,971,047
$89,948,062
$96,732,301

$110,669,214
$122,527,140
$501,847,764

$175,652,244 $277,099,801 $351,304,488 CD
$192,745,847 $304,065,776 $385,491,694 <.
$207,283,503 $326,999,623 $414,567,006
$237,148,315 $374,112,790 $474,296,630 a
$262,558,158 $414,198,030 $525,116,315 a

$1,075,388,067 $1,696,476,021 $2,150,776,133 0
0 0

a) ,

0 CD

-

CD

ca

0
(03

!b

0 -
0)

@D *0

0
CCDP

-~CD

CD

g

"CD

2 N

~Cn
Sa)

COw
- -i

amO)C

5 CD

0

o 3



per Unit Year Annual Unit Expected
Hours Yer Hours Events

As Type I Event

Min Cost Midpt Cost High Cost

As Type II Event

Min Cost Midpt Cost High Cost

As Type III Event

Mn Cost Midpt Cost High Cost

2012 1323.42 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717
2013 1452.21 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717

IFSD 0.0021 2014 1561.74 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717
2015 1786.76 4 $426,741 $1,346,410 $2,133,706 $1,280,224 $6,956,449 $11,948,756 $25,604,478 $40,392,286 $51,208,956
2016 1978.20 4 $426,741 $1,346,410 $2,133,706 $1,280,224 $6,956,449 $11,948,756 $25,604,478 $40,392,286 $51,208,956
Total 8102.34 17 $1,813,651 $5,722,241 $9,068,253 $5,440,952 $29,564,909 $50,782,214 $108,819,031 $171,667,216 $217,638,061

2012 1323.42 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717
2013 1452.21 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717

AOG 0.0020 2014 1561.74 3 $320,056 $1,009,807 $1,600,280 $960,168 $5,217,337 $8,961,567 $19,203,358 $30,294,215 $38,406,717
2015 1786.76 4 $426,741 $1,346,410 $2,133,706 $1,280,224 $6,956,449 $11,948,756 $25,604,478 $40,392,286 $51,208,956
2016 1978.20 4 $426,741 $1,346,410 $2,133,706 $1,280,224 $6,956,449 $11,948,756 $25,604,478 $40,392,286 $51,208,956
Total 8102.34 16 $1,706,965 $5,385,638 $8,534,826 $5,120,896 $27,825,797 $47,795,025 $102,417,911 $161,569,145 $204,835,822

2012 1323.42 9 $960,168 $3,029,421 $4,800,840 $2,880,504 $15,652,011 $26,884,702 $57,610,075 $90,882,644 $115,220,150
2013 1452.21 10 $1,066,853 $3,366,024 $5,334,266 $3,200,560 $17,391,123 $29,871,891 $64,011,194 $100,980,716 $128,022,389

ATO 0.0072 2014 1561.74 11 $1,173,539 $3,702,626 $5,867,693 $3,520,616 $19,130,236 $32,859,080 $70,412,314 $111,078,787 $140,824,628
2015 1786.76 13 $1,386,909 $4,375,831 $6,934,546 $4,160,728 $22,608,460 $38,833,458 $83,214,553 $131,274,930 $166,429,106
2016 1978.20 14 $1,493,595 $4,712,433 $7,467,973 $4,480,784 $24,347,573 $41,820,647 $89,615,672 $141,373,002 $179,231,344
Total 8102.34 58 $6,187,749 $19,522,938 $30,938,744 $18,563,246 $100,868,515 $173,256,966 $371,264,928 $585,688,150 $742,529,856

2012 1323.42 7 $746,797 $2,356,217 $3,733,986 $2,240,392 $12,173,786 $20,910,324 $44,807,836 $70,686,501 $89,615,672
2013 1452.21 8 $853,483 $2,692,819 $4,267,413 $2,560,448 $13,912,899 $23,897,513 $51,208,956 $80,784,572 $102,417,911

ATB 0.0054 2014 1561.74 8 $853,483 $2,692,819 $4,267,413 $2,560,448 $13,912,899 $23,897,513 $51,208,956 $80,784,572 $102,417,911
2015 1786.76 10 $1,066,853 $3,366,024 $5,334,266 $3,200,560 $17,391,123 $29,871,891 $64,011,194 $100,980,716 $128,022,389
2016 1978.20 11 $1,173,539 $3,702,626 $5,867,693 $3,520,616 $19,130,236 $32,859,080 $70,412,314 $111,078,787 $140,824,628
Total 8102.34 44 $4,694,154 $14,810,505 $23,470,771 $14,082,463 $76,520,942 $131,436,319 $281,649,256 $444,315,148 $563,298,511

2012 1323.42 199 $21,230,379 $66,983,875 $106,151,897 $63,691,138 $346,083,352 $594,450,626 $1,273,822,769 $2,009,516,239 $2,547,645,539
2013 1452.21 219 $23,364,086 $73,715,922 $116,820,430 $70,092,258 $380,865,599 $654,194,407 $1,401,845,158 $2,211,477,670 $2,803,690,317

DC 0.1507 2014 1561.74 235 $25,071,051 $79,101,560 $125,355,256 $75,213,153 $408,691,396 $701,989,432 $1,504,263,069 $2,373,046,815 $3,008,526,139
2015 1786.76 269 $28,698,352 $90,546,042 $143,491,761 $86,095,057 $467,821,215 $803,553,861 $1,721,901,131 $2,716,381,248 $3,443,802,261
2016 1978.20 298 $31,792,227 $100,307,511 $158,961,133 $95,376,680 $518,255,472 $890,182,344 $1,907,533,594 $3,009,225,323 $3,815,067,189
Total 8102.34 1221 $130,262,781 $410,991,512 $651,313,903 $390,788,342 $2,123,456,146 $3,647,357,859 $7,815,766,841 $12,329,745,366 $15,631,533,683_

2012
2013

0.0207 2014
2015
2016
Total

1323.42
1452.21
1561.74
1786.76
1978.20
8102.34

27
30
32
37
41
168

$2,880,504
$3,200,560
$3,413,930
$3,947,357
$4,374,098

$17,923,134

$9,088,264
$10,098,072
$10,771,276
$12,454,288
$13,800,698
$56,549,201

$14,402,519
$16,002,799
$17,069,652
$19,736,785
$21,870,491
$89,615,672

$8,641,511
$9,601,679

$10,241,791
$11,842,071
$13,122,295
$53,769,403

$46,956,033
$52,173,370
$55,651,594
$64,347,156
$71,303,605
$292,170,870

$80,654,105
$89,615,672
$95,590,050
$110,525,996
$122,474,752
$501,847,764

Event Type IA

$172,830,225 $272,647,932 $345,660,450 w-
$192,033,583 $302,942,147 $384,067,167 Vi -
$204,835,822 $323,138,290 $409,671,644 0.
$236,841,419 $373,628,647 $473,682,839 (
$262,445,897 $414,020,934 $524,891,794
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Tables 8 and 9 provide a comprehensive reference for the possible costs incurred in each year if

one is to consider the pooled flight hours as a single operator of the V2500. Importantly, they

provide an estimate for events regardless of their severity. However, in order to provide a more

specific assessment of full-flight data value, a narrowed grouping is created as follows:

IFSD Type II

AOG Type III
ATO Type II

ATB Type II
DC Type I

GTB Type I

In considering each AOE's category, the annotations provided by PW field support in the

event logs were evaluated to understand the severity of issues, particularly those AOEs with

small 2 over the five-year period. Details provided of events informed an assessment on the

range of severity, leading to assignment of the appropriate Type label corresponding to the Type

definitions provided above in Section 4.1.3.

In the spirit of approximation, these event severities were assigned based on the data

available at the time of writing. As more work is done to elucidate the intricacies of operational

disruptions, particularly in ways that offer greater specificity of cost estimations (for example, if

there are more severity types than the three found), the model presented here can be adapted to

incorporate new information. Tables 8 and 9 above are provided as a comprehensive sensitivity

analysis, allowing each AOE to be valued at each of the severity levels. For more specific needs,

the reader is encouraged to consider the various severity levels presented and the cost ranges that

provide bounds by which different conclusions can be drawn.
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4.1.5 Event Cost Estimates for Prescribed Severity Levels

Having determined a Type label for each AOE, a more refined calculation of event costs

was done by using the average of each prescribed cost range. Again, the A per unit hours was

used, with occurrence determined by multiplying with the reported 1000-unit hours of each year.

Results are shown in Table 10.

Table 10. Expected cost, by year, of each operational disruption based on average cost of prescribed severity type.
Expected costs have been inflation-adjusted to 2016 dollars.

Event Type Year

2012
2013

IFSD 2014
2015
2016
2012
2013

AOG 2014
2015
2016
2012
2013

ATO 2014
2015
2016
2012
2013

ATB 2014
2015
2016
2012
2013

DC 2014
2015
2016
2012
2013

GTB 2014

2015
2016

Expected Events
3

3

3

4
4
3

3

3

4
4

9
10
11
13
14
7

8
8
10
11

199
219
235
269
298
27
30
32
37

41

Expected Cost
$5,479,083
$5,397,336
$5,361,543
$7,101,957
$6,956,449
$31,814,029
$31,339,372
$31,131,540
$41,237,167
$40,392,286
$16,437,248
$17,991,121
$19,658,991
$23,081,359
$24,347,573
$12,784,526
$14,392,897
$14,297,448
$17,754,892
$19,130,236
$70,344,352
$76,259,139
$81,287,909
$92,439,984

$100,307,511
$9,544,209
$10,446,457
$11,068,992
$12,714,793
$13,800,698
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By using the systematic method described above to categorize each AOE with its severity

level, and by using the average cost of its respective level, one specific set of cost estimations

was calculated in Table 9. The growing cost of each event type over time can be attributed to the

increasing flight hours reported by these two pooled carriers, which is logical given their

continuous growth in fleet size over these five years. A single, generalized A per 1000-unit hours

was used, since the rate of occurrence is assumed to be Poisson in nature for every year.

4.1.6 Reducing Event Occurrence in a Poisson Process

The Poisson model for engine events is appropriate given the rare and random nature of

occurrence. It is also a useful tool for considering what level of engine event reduction is

possible. The discrete event Poisson model provides the probability of observing exactly X = k

events for a given A, based purely on chance. Therefore, if no tools, devices, or interventions

were implemented to the existing fleet of engines, and we assume that the Poisson model holds

for future years, the probability of observed annual occurrences of each engine event type can be

found. In particular, the probability distribution of each adverse operational event would follow

those found in Figure 8, which provides a normalized x-axis for event occurrence expressed as

the z% ofA events.
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Event Reductions Based on Poisson Probabilities

12%
10%, 9.9%

-40%, 9.3%
10%

20%, 6.6%
8%

6%

4%
.0

-40%,2.1%

2%/

0%/
-90% -80% -70% -60% -50% -40% -30% -20% -10% 0% +10% +20% +30% +40% +50% +60% +70% +80% +90% +100%

Observed Occurrences (as z% of ;)

-IFSD: A=17 - AOG: A=16 - ATO: =58 ATB:A=44 - DC:A=1221 - GTBA=168

Figure 8. Poisson probability distribution for each adverse operational event type. The x-axis is observed
occurrences, X = k, as before, but has been normalized as a percentage of X. Therefore, k = z% of X = number of

observed occurrences expressed as a proportion of k.

In Figure 8, the x-axis has been normalized to express each X = k observation as a

percentage of A. That is, k = z% ofA, where z ranges from -100% to + 100% (a range representing

complete elimination of events for that given AOE, up to a doubling of the number of events).

These probabilities are, again, the likelihood of observing a particular number of occurrences

simply due to randomness. By logic, full-flight data provides value only when the observed

occurrences k is smaller than A. Consequently, k = z% ofA, for values of z between 0 and 1,

defines occurrences in the left half of the probability curve. The data labels shown in Figure 8 are

a few possible reduction levels (shown as first term), and the Poisson probability of observing

that amount of reduction is provided as the second term in the data label.

In the next section, we analyze the expected costs incurred should FFDA enable

diagnostics or other tools that reduce engine event occurrence. Based on the Poisson probabilities

alone, achieving 20% to 30% reduction only has a 5 to 6% likelihood, if no full-flight data

analytics tools are used for the V2500. Of course, since FFDA is a deliberate intervention for
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catching these events sooner, it is expected that likelihood of achieving reductions will be greater

than by pure chance alone. The possible magnitudes of reduction depend on the FFDA

capabilities achieved, and thus a range of volumes is considered here.

4.1.7 Prospective Reductions in Engine Events

In this nascent stage of full-flight data analytics for the V2500 program, algorithmic and

procedural techniques for prognosticating engine faults continue to be developed and refined.

Therefore, cost reductions are conceptual in nature, and take on varying levels of "benefit" as

preliminary estimates of cost reduction from the status quo. It is the author's opinion that engine

event reductions of 20% or less are reasonable expectations. Based on the equation for the

Poisson cumulative distribution function, we can find the likelihood of observing events between

two values of k. From Figure 8, for the AOG probability mass function (PMF), the cumulative

probability between k = A - (0.2A) and k = A is the area under the PMF between these two k's.

For A = 16, this area is 0.56 - 0.20 = 0.36. Given that there is a 36% probability that the

observed number of occurrences would represent a 0 to 20% reduction just by chance, it follows

that a targeted prognostics effort through full-flight data could produce results within these

bounds.

Nevertheless, for a complete analysis, we consider cases in which each AOE observes

5%, 10%, 20%, 30%, 50%, 70%, or 90% reduction in the k count of events in each year. The

logic, therefore, is that the higher the percentage of event reduction, the more favorable it will be

for cost avoidance. Having a range will also allow for a better understanding of the sensitivity of

cost results to this input.
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No further commentary will be made about where on the spectrum these reductions will

occur for the eFASTTM product. Rather, as an academic and exploratory method of

understanding the relationship between engine events and maintenance cost, many different

scenarios are calculated and provided for the reader's consideration. Table 11 summarizes the

calculations performed for this spectrum of event reduction percentages.
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5% Reduction 10% ReductionEvent Type Year

2012
2013

IFSD 2014
2015
2016

Total
2012
2013

AOG 2014
2015
2016

Total
2012
2013

ATO 2014
2015
2016

Total
2012
2013

ATB 2014
2015
2016

Total
2012
2013

DC 2014
2015
2016

Total
2012
2013
2014
2015
2016

Total

20% Reduction
Expected

Events
3
3
3
4
4
17
3
3
3
4
4
16
9
10
11
13
14
58
7
8
8
10
11
44
199
219
235
269
298
1221
27
30
32
37
41

168

30% Reduction

$0
$0
$0
$0
$0

$1,739,112
$0
$0
$0
$0
$0

$10,098,072
$0

$1,739,112
$1,739,112
$1,739,112
$1,739,112
$5,217,337

$0
$0
$0

$1,739,112
$1,739,112
$3,478,225
$3,366,024
$3,702,626
$4,039,229
$4,375,831
$5,049,036

$20,532,745
$336,602
$673,205
$673,205
$673,205
$673,205

$2,692,819

50% Reduction 70% Reduction

$0
$0
$0
$0
$0

$3,478,225
$0
$0
$0
$0
$0

$20,196,143
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$1,739,112

$10,434,674
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$6,956,449
$6,732,048
$7,405,252
$8,078,457
$9,088,264

$10,098,072
$41,065,491
$1,009,807
$1,009,807
$1,009,807
$1,346,410
$1,346,410
$5,722,241

$1,739,112
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$5,217,337

$10,098,072
$10,098,072
$10,098,072
$10,098,072
$10,098,072
$30,294,215

$3,478,225
$3,478,225
$3,478,225
$5,217,337
$5,217,337

$20,869,348
$1,739,112
$3,478,225
$3,478,225
$3,478,225
$3,478,225

$15,652,011
$13,464,095
$14,810,505
$15,820,312
$18,176,529
$20,196,143
$82,130,982

$1,683,012
$2,019,614
$2,019,614
$2,356,217
$2,692,819

$11,444,481

90% Reduction
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$1,739,112
$8,695,562

$10,098,072
$10,098,072
$10,098,072
$10,098,072
$10,098,072
$50,490,358
$5,217,337
$5,217,337
$5,217,337
$6,956,449
$6,956,449

$29,564,909
$3,478,225
$3,478,225
$3,478,225
$5,217,337
$5,217,337

$22,608,460
$20,196,143
$22,215,757
$23,898,769
$27,264,793
$29,957,612

$123,196,473
$2,692,819
$3,029,421
$3,366,024
$3,702,626
$4,039,229

$16,830,119

90% Reduction

$3,478,225
$3,478,225
$3,478,225
$3,478,225
$3,478,225

$15,652,011
$20,196,143
$20,196,143
$20,196,143
$20,196,143
$20,196,143
$80,784,572
$8,695,562
$8,695,562

$10,434,674
$12,173,786
$12,173,786
$50,434,257

$6,956,449
$6,956,449
$6,956,449
$8,695,562

$10,434,674
$38,260,471
$33,660,239
$37,026,262
$39,719,081
$45,441,322
$50,153,755

$205,664,057
$4,712,433
$5,049,036
$5,385,638
$6,395,445
$7,068,650

$28,274,600

$3,478,225
$3,478,225
$3,478,225
$5,217,337
$5,217,337

$20,869,348
$20,196,143
$20,196,143
$20,196,143
$30,294,215
$30,294,215

$111,078,787
$10,434,674
$12,173,786
$13,912,899
$15,652,011
$17,391,123
$71,303,605
$8,695,562

$10,434,674
$10,434,674
$12,173,786
$13,912,899
$53,912,482
$46,787,732
$51,500,165
$55,539,394
$63,281,248
$70,349,898

$287,795,039
$6,395,445
$7,068,650
$7,405,252
$8,751,662
$9,761,469

$39,719,081

$5,217,337
$5,217,337
$5,217,337
$6,956,449
$6,956,449

$26,086,685
$30,294,215
$30,294,215
$30,294,215
$40,392,286
$40,392,286

$141,373,002
$13,912,899
$15,652,011
$17,391,123
$20,869,348
$22,608,460
$90,433,841
$10,434,674
$12,173,786
$12,173,786
$15,652,011
$17,391,123
$69,564,493
$60,251,827
$66,310,670
$71,359,706
$81,457,777
$90,209,439

$369,926,021
$8,078,457
$9,088,264
$9,761,469

$11,107,879
$12,454,288
$50,826,960
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Finally, in order to understand the magnitude of the combined reduction of all event types, the

cost reductions by year were summed and are shown in Table 12.

Table 12. The cost reduction sums shown by year and by level of event reduction. Five-year totals are also provided
for each level of reduction. Amounts are inflation-adjusted to 2016 dollars.

Event Reduction Percentage

Year 5% 10% 20% 30% 50% 70% 90%

2012 $3,888,381 $11,782,974 $33,817,134 $45,600,108 $81,597,092 $100,803,339 $134,620,473
2013 $6,325,910 $12,303,605 $36,852,780 $47,357,274 $84,210,054 $108,469,050 $143,522,718
2014 $6,629,865 $12,913,824 $37,646,103 $49,118,651 $88,551,935 $114,033,677 $150,238,504
2015 $8,705,624 $14,203,913 $41,924,454 $56,128,367 $98,396,463 $138,201,785 $180,126,238
2016 $9,200,465 $14,922,706 $43,421,708 $58,007,811 $103,505,233 $146,926,941 $190,012,046
Total $34,750,246 $66,127,022 $193,662,178 $256,212,211 $456,260,778 $608,434,791 $798,519,980

Tables 12 provides the detailed outcome of the various scenarios that could be realized

under a full-flight data enabled prognostics system that could prevent the number events that

constitute the status quo of the V2500. These simplified scenarios assume a single percentage

reduction across all engine event types. Of course, as full-flight data capabilities improve over

time, it is likely that PW's prognostics ability will not increase uniformly; some engine event

types may receive more attention depending on data availability or customer need. It must be

acknowledged here that prognostics capabilities are not a singular tool, but a suite of capabilities

that depend on the relationship between PW and the airline customer. Therefore, while a singular

percentage reduction of events is unlikely, it is a helpful approximation as to the value

proposition to the airline's maintenance costs.

Table 12 provides a condensed summary, with cost savings of all events added together.

By definition, cost savings increase as event reduction increases. However, because engine

events are discrete, the values in practice should appear more stepwise in nature. As an example,

if a certain adverse operational event occurred 13 times in a year, and full-flight data prognostics
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were to have an efficacy of 50%, there would be 6.5 events prevented. However, engine events

are discrete in nature, and there is no notion of a "partial event," so either 6 events were avoided,

or 7 events, but not 6.5 events.

4.2 Airline Unit Costs

4.2.1 Historical CASM

Cost data for the two carriers of interest were obtained from Form 41 Schedule P-1.2,

which contains both operating revenue and expenses for all mainline US carriers. Generally, in

order to find operating expenses for a carrier's mainline operations, the "transport-related costs"

are subtracted from total operating expenses to exclude expenses associated with capacity

purchase from regional carriers. Although the two carriers chosen for analysis in this study have

neither subsidiaries nor seat purchase agreements, for consistency, their reported transport-

related costs were subtracted, and the result was slightly lower than the reported total operating

expenses (as shown in Table 13). This small discrepancy could possibly be attributed to one-time

leases, charters, or other exceptional expenditures; in all cases, the difference is negligible given

the total reported operating expenses. Nevertheless, for consistency, the "total operating costs"

from here on will mean the ex-transport operating expenses.
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Table 13. Total Operating Expenses, as reported from Form 41 Schedule P-1.2, alongside the same costs excluding
transportation expenses. The resulting cost total is essentially the same, given the two carriers' lack of contracted
regional service. Figures are reported as 000s of $ USD, and inflation-adjusted to 2016 dollars. Cost have been
inflation-adjusted to 2016 dollars using the Bureau of Labor Statistics' Seasonally-Adjusted Consumer Price Index
[44].

Year Total Operating Expenses

2012
2013
2014
2015
2016

$6,056,014
$6,620,173
$7,075,607
$6,993,390
$7,202,613

Total Operating Expenses
(Ex-Transport)

$6,012,234
$6,579,043
$7,051,498
$6,987,979
$7,200,538

Having completed the total cost calculation, the available seat miles (ASM) were obtained

through Form 41 Schedule T-2. Below in Table 14, the total costs, ASMs, and mainline CASM

area shown.

Table 14. Total Mainline CASM for Carriers A and B, from 2012 to 2016. Dollars have been inflation-adjusted to 2016
dollars.

Ex-Transport Total Cost
$6,012,234,434
$6,579,042,676
$7,051,498,482
$6,987,978,788
$7,200,537,830

ASM CASM
51,371,552,309 11.70#
56,659,847,664 11.61#
61,394,302,317 11.49#
70,645,499,502 9.89#
79,277,701,952 9.08#

It should be noted that the ASMs and CASM shown above are inclusive of aircraft type

other than the Airbus A320 family, as Form 41 Schedule P-1.2 does not distinguish aircraft type

in the reporting process. This is not expected to be problematic for the remainder of the analysis,

as Schedule P-5.2, which contains the detailed maintenance costs of interest, does present data at

the aircraft type level.
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4.2.2 Unit Costs: CASM and Cost Per Block Hour

Another unit cost measure considered here is the Cost Per Block Hour (CBH), which is

the analog to CASM using scheduled aircraft utilization in the denominator rather than available

seat miles. When two or more airlines are evaluated, CBH may be a good tool for equalizing the

effects of route network, which may skew representation via differing stage length. CBH

mitigates this difference by using a unit time as a base. Using the same cost totals as in the

previous section, CBH is shown in Table 15. "Block hours" is defined as the scheduled origin

gate to destination gate ("gate to gate") time of a flight. "Flight hours" is defined as total airborne

time, also known in industry parlance as "wheels-up to wheels-down." Form 41 Schedule T-2

provides both time measures: block hours are called ramp-to-ramp hours, while flight hours are

called airborne hours. For the purposes of this study, block hours will be used as the basis for the

cost-per-hour metric.

Table 15. Unit cost defined as Cost Per Block Hour. Dollars have been inflation-adjusted to 2016 dollars.

Cost Per

Year Ex-Transport Total Cost Block Hours Block Hour
2012 $6,012,234,434 942,136 $6,381.49
2013 $6,579,042,676 1,037,276 $6,342.62
2014 $7,051,498,482 1,108,380 $6,361.99
2015 $6,987,978,788 1,237,385 $5,647.38
2016 $7,200,537,830 1,351,011 $5,329.74
Total $32,991,836,240 5,676,188 $5,812.32

4.2.3 Maintenance Component of Total Costs

DOT requires airlines to abide by its specific Form 41 accounting conventions. For

Schedule P-5.2, total aircraft operating costs are reported, as described above in section 2.4.3.

These include expenses related for flying operations (pilot compensation and benefits, fuel,
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insurance for flight equipment), direct maintenance (distinguished between airframe and aircraft

engine for labor, outsourced repairs, and repair materials), and depreciation and amortization.

Importantly for this study, direct maintenance expenses are reported at the aircraft type level,

allowing isolation of data to the individual A320 family variant. For this analysis, the aircraft

selected are the A319, A320, and A321, all of which are powered by the V2500 engine on the

two carriers of interest. In Table 16 that follows, the maintenance cost accounts from Form 41

Schedule P-5.2 relevant to this study are shown, and include expenses associated with engine

repair and logistics.

Table 16. Definition of cost accounts specific to engine maintenance costs from Form 41 Schedule P-5.2.

Cost Account Category Description and/or Included Items
"Apprentice mechanic, chief mechanic, cleaner, crew chief electrician,

5225.2 Labor - Aircraft Engines engineer, foreman, inspector, lead mechanic, mechanic, mechanic
helper"

5243.2 Aircraft Engine Repairs - Outside Outsourced engine repairs

5246.2 Maintenance Materials - Aircraft Engines "Materials used to repair aircraft engines"

"This consists of maintenance overhead, expenses related to the

5279.6 A pplied Maintenance Burden - Flight Equipment administration of maintenance stocks and stores, record keeping,
scheduling, controlling, planning and supervising maintenance
operations."

For Applied Maintenance Burden, which serves as an overhead for both airframe and

engine maintenance, the proportion attributable to engines was calculated by summing the labor,

repairs, and materials cost accounts for both airframe and engine, and then finding the percentage

of that sum coming from the engine categories. This breakdown is shown in Table 17.
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Table 17. Percentage of total aircraft maintenance (labor, repairs, and materials accounts) attributable to engines.
These factors were used to apportion the Applied Maintenance Burden to engine-specific costs only.

Year
Engine Percentage of Total

Aircraft Maintenance
2012 36.02%
2013 40.94%
2014 44.42%
2015 45.76%
2016 47.33%

Overall 43.56%

The reported amounts in each of the maintenance cost categories shown above were obtained for

the two carriers of interest. The sum of the four cost categories is total maintenance costs, and is

shown in Table 18.

Table 18. The four maintenance cost categories from Form 41 Schedule P-5.2. Figures shown are in $USD (000s)
and inflation-adjusted to 2016 dollars.

Carrier Year Engine Applied Maintenance Engine Engine Total Maintenance
Repairs Burden Materials Labor Costs

2012 $134,308 $29,670 $44 $0 $164,022
2013 $148,215 $33,700 $53 $0 $181,967

Airline A 2014 $157,209 $36,046 $59 $0 $193,313
2015 $190,042 $37,518 $65 $0 $227,625
2016 $239,587 $40,931 $98 $0 $280,616
2012 $71 $0 $2,336 $0 $2,292
2013 $3,911 $0 $26,217 $0 $29,124

Airline B 2014 $7,536 $0 $38,385 $0 $44,686

2015 $8,703 $0 $40,899 $0 $48,586
2016 $14,945 $0 $36,249 $0 $51,193

Note that in Table 18, the maintenance cost totals are reflective only of A320 family

aircraft, and thus only revenue service powered by the V2500. This is a critical step in the

methodology, as Form 41 does not specify the engine OEM used by each airline. By virtue of

management decisions at these two carriers, the entire fleet of A320 family aircraft are operated

on PW-monitored V2500 engines (all thrust ratings included). This allows for proper analysis of
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maintenance cost outcome, as reported to the DOT, given the internal PW data warehouse of

V2500 engine faults and events.

The fleet size of Airline A is several times higher than that of Airline B in the time period

analyzed. This fleet disparity is one main factor that explains the difference in magnitude of

maintenance spending at the two carriers. Interestingly, the amount spent on maintenance does

not appear to scale linearly based on fleet size. Table 19 summarizes the fleet size ratio and

Airline A
maintenance cost ratio (Arline B ) in the time period studied.

Table 19. Fleet Size Ratio and Maintenance Cost Ratio between Airline A and Airline B. From Form 41, Schedule B-
43 and Schedule P-5.2. *lndicates an outlier value likely due to misreporting from DOT BTS database.

Year Fleet Size Ratio Maintenance Cost Ratio

2012 .4.00 68.16*
2013 3.59 6.04
2014 3.12 4.21
2015 2.72 4.59
2016 2.39 5.48

The ratios showing the fleet size and maintenance cost disparities between the two

carriers is interesting, as Airline A appears to be spending many times more on maintenance than

its fleet size would suggest. For the years 2013-14, the fleet ratio and cost ratio gap narrowed as

Airline B grew its fleet size faster, but its incurred costs still remained lower on a proportional

basis. There is, perhaps, some evidence that Airline A is spending more on maintenance while

not reaping proportionally higher benefits, based on its higher than expected incidence of Ground

Turn-Backs, Delays/Cancellations, Air Turn-Backs, and Aborted Takeoffs. Without further data

on cost details available for study, no judgment will be made on the efficacy of maintenance

spending.
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Nevertheless, it appears that maintenance activity for both carriers do not occur in-house.

Returning to Table 18 above, it is apparent that neither airline incurs Engine Labor cost in these

years. This is likely due to outsourcing of engine maintenance, which many carriers do as part of

their business model. Another noticeable trend is the lack of applied maintenance burden for

Airline B, whereas Airline A does spend quite a bit on this category. Since applied maintenance

burden refers to the "overhead" associated with maintenance activities, one can likely conclude

that Airline A expends more resources for maintenance overhead-which is not surprising given

the disparity between its fleet ratio and cost ratio-though specific details are not known, as

"applied maintenance burden" is a commingled category.

Ultimately, what can be concluded is that both carriers opted to contract out their repair

services, but the cost differences seen in the other categories (relative difference, not absolute

difference) could be due to strategic management decisions or, in rare cases, incorrect cost

accounting on the part of the airline. For evaluative purposes, this study will assume that the sum

of all engine maintenance cost items captures the true maintenance burden.

The specific maintenance accounts used here constitute a putative cost basis that full-

flight data analytics can impact. It must be emphasized that these particular categories of

maintenance costs are not all maintenance costs realized by these carriers. Indeed, depreciation

and other less operationally-associated cost accounts are not represented. This point is further

emphasized below with a look at Schedule P-1.2's maintenance cost category, which as

mentioned, is a commingled category for all maintenance activity. As such, maintenance appears

to constitute a larger proportion of aircraft operating costs in Table 20 than in Table 18.
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Table 20. Total operating costs, maintenance costs (as defined Schedule P-1.2), and the proportion of maintenance
that constitutes total operating costs. Figures are reported in 000s and inflation-adjusted to 2016 dollars.

Year Ex-Transport Costs Total Maintenance Costs Maintenance Proportion

2012 $6,012,234 $576,032 9.6%
2013 $6,579,043 $662,609 10.4%
2014 $7,051,498 $660,228 9.6%
2015 $6,987,979 $743,956 10.9%
2016 $7,200,538 $855,724 11.9%

It should be noted that Table 20 provides general evidence that maintenance of all forms

constitute about 10-11% of total mainline costs. This outcome is consistent with previous

literature showing that maintenance is about 10-12% of an airline's costs [28]. For further

granularity on maintenance specific to the V2500 engine, the sum of engine-related costs (from

Table 18) are shown below in Table 21 as a percentage of Aircraft Operating Costs (AOC),

which, as noted earlier, comprise the costs incurred for flying the aircraft.

Table 21. Aircraft operating costs and engine maintenance costs, as defined previously as engine-specific cost
accounts from Form 41 Schedule P-5.2. Figures shown are in $USD (000s) and inflation-adjusted to 2016 dollars.

Year Aircraft Operating Costs (AOC) Engine Maintenance Costs Engirce aintenance as

2012 $3,356,259 $166,429 5.0%
2013 $3,631,635 $212,095 5.8%
2014 $3,854,318 $239,234 6.2%
2015 $3,506,751 $277,227 7.9%
2016 $3,441,327 $331,810 9.6%

While AOC has climbed progressively in the five years shown, engine maintenance costs

appear to have increased at a higher rate, constituting 5% in 2012 but reaching 10% in 2016. The

increase of $173.3 million in engine maintenance over five years, in light of AOC increasing

only $245.4 million, might suggest that 69% of the AOC increase is due to engine maintenance
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alone. However, it is important to note that within this same time frame, the global oil industry

declined significantly, resulting in record low fuel prices that reduced airlines' AOC. Thus, it is

useful to look at AOC excluding fuel (ex-fuel) costs. Table 22 below shows each year's ex-fuel

AOC, the engine-specific maintenance costs, the proportion of ex-fuel AOC attributable to

engine maintenance, and the year-over-year growth of each.

Table 22. Aircraft operating cost, excluding fuel, along with engine-specific maintenance cost as defined above from
Schedule P-5.2 cost items. Year-over-year growth is also shown for each AOC ex-fuel and engine maintenance cost,
to show pattern of cost increase. The final column shows the percentage makeup of AOC due to engine
maintenance. Figures shown are in $USD (000s) and inflation-adjusted to 2016 dollars.

Aircraft Op Cost Aircraft Op Cost Engine Maintenance Engine Maintenance Engine Maintenance as
Year Ex-Fuel Ex-Fuel Growth Cost Cost Growth Percentage of AOC
2012 $1,416,591 $166,429 11.7%
2013 $1,580,571 11.6% $212,095 27.4% 13.4%
2014 $1,758,802 11.3% $239,234 12.8% 13.6%
2015 $2,005,639 14.0% $277,227 15.9% 13.8%
2016 $2,188,209 9.1% $331,810 19.7% 15.2%

The data from Table 22 show that ex-fuel growth in AOC has decreased over this time

period, while engine maintenance cost has moved more sporadically: starting at 27%, it drops by

half before climbing again to about 20%. In spite of this nonlinear growth, engine maintenance

costs have stably constituted 12-15% of ex-fuel AOC in this time period.

4.2.4 Engine Event Cost Reductions and CASM

Having determined an estimate of the cost reductions by percentage improvement on the

status quo occurrence of events, attention will now turn to estimating these cost reduction effects

on CASM and Cost Per Block hour (CBH). Reductions in unit costs are almost always expressed

as percentage decreases, since raw CASM itself means little unless given a reference point. The

calculation is as follows:
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Old CASM - New CASM
%Improvement = Old CASM

Old CASM -Total cost - Cost Savings

%Improvement = Old CASM

The calculation for CBH reduction is similar to that of CASM above.

Table 23. CASM reduction by percent,
and 16 above.

with proportion of engine events reduced as variable. Based on equations 15

Percentage of
20%

-0.56%
-0.56%
-0.53%
-0.60%
-0.60%

Engine Events Avoided
30% 50%

-0.76% -1.36%
-0.72% -1.28%
-0.70% -1.26%
-0.80% -1.41%
-0.81% -1.44%

Table 23 shows that CASM is reduced by 0.5-0.6% if 20% of status quo V2500 events

are prevented or mitigated. In general, a CASM reduction range of 0.5% to 1.5%3 can be

expected if the event avoidance rate is 20-50%, a reasonable lower- to mid-range that does not

overpromise FFDA's prognostic capabilities. On the surface, it is difficult to assess the

significance of a 0.5-1.5% decrease in CASM for an airline, as unit cost changes are interpreted

in the context of the airline's quarter-to-quarter cost trends, as well as its performance relative to

the industry. Moreover, CASM change must also be considered alongside an airline's capacity

and route network changes. An increase in ASMs through increased stage length, for example,

would lower CASM by virtue of spreading fixed costs over more ASMs, making that CASM

change less noteworthy. Nevertheless, it is noted that at 20% event reduction, cost implications

' Range will vary depending on true event cost data used; see footnote I
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Year
2012

2 .2 2013
2014

' 2015
2016

5%
-0.06%
-0.10%
-0.09%
-0.12%
-0.13%

10%
-0.20%
-0.19%
-0.18%
-0.20%
-0.21%

70%
-1.68%
-1.65%
-1.62%
-1.98%
-2.04%

90%
-2.24%
-2.18%
-2.13%
-2.58%
-2.64%



are significant on an annual basis, with a range of $33.8M to $43.4M of potential raw savings4.

Implications of this magnitude of change on CASM are discussed further in the Discussion

section below.

For CBH, percentage improvement is identical to that of CASM, as the amount of cost

savings is identical for either case. Since the denominator includes the old CBH value, it is a

self-controlled metric that reflects the impact of the engine event cost savings. Perhaps more

interesting are the raw dollars per flight hour saved, which are shown below.

Table 24. Reduction of block hour cost in raw dollars. Values are inflation-adjusted to 2016 dollars.

Percentage of Engine Events Avoided
Year 5% 10% 20% 30% 50% 70% 90%
2012 -$4.13 -$12.51 -$35.89 -$48.40 -$86.61 -$106.99 -$142.89
2013 -$6.10 -$11.86 -$35.53 -$45.66 -$81.18 -$104.57 -$138.37

1n 2014 -$5.98 -$11.65 -$33.96 -$44.32 -$79.89 -$102.88 -$135.55
u -2 2015 -$7.04 -$11.48 -$33.88 -$45.36 -$79.52 -$111.69 -$145.57

2016 -$6.81 -$11.05 -$32.14 -$42.94 -$76.61 -$108.75 -$140.64

The cost savings per block hour presented in Table 24 provide another set of estimates by

which to value FFDA prognostic services. For event reductions in the 20-50% range, cost

savings vary from $30 to $80 per block hour. Given that maintenance costs constitute

approximately 10% of total costs, as shown in Table 20, these dollar values represent 6-15% of

the maintenance component of block-hour costs, a relatively significant share of the

approximately $533 attributed to maintenance per block hour.

In order to provide further perspective on realistic CASM savings, the two airlines'

individual unit costs can be evaluated separately using the same method. In particular, because

Airline A operates aircraft types other than the A320 family, the unit cost reductions above may

4 Given the engine event cost ranges used
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be diluted by additional seat-miles and flight hours. In the following examples, the full unit cost

reduction procedure is completed and summarized for each carrier.

Table 25. Estimates of percent reduction of CASM as well as Cost Per Block Hour shown for Airline A.

Percentage of Engine Events Avoided
Year 5% 10% 20% 30% 50% 70% 90%
2012 -0.07% -0.20% -0.33% -0.79% -1.16% -1.49% -2.07%
2013 -0.06% -0.19% -0.35% -0.75% -1.10% -1.44% -2.00%
2014 -0.06% -0.19% -0.34% -0.72% -1.07% -1.40% -1.93%
2015 -0.06% -0.20% -0.40% -0.80% -1.24% -1.57% -2.17%
2016 -0.10% -0.21% -0.61% -0.82% -1.46% -1.85% -2.45%

Percentage of Engine Events Avoided
Year

2012

2013
2014

2015
2016

5%
$4.03

$3.75

$3.60
$3.73
$5.64

10%
$12.25
$11.81
$11.72
$11.70
$11.63

20%
$19.86
$21.47

$21.38
$23.39
$33.73

30% 50%

$47.86 $70.94

$46.20 $67.67

$45.09 $66.86
$46.29 $71.61

$45.01 $80.55

70%

$90.80
$89.14

$87.84

$90.77

$102.01

90%
$126.42

$123.53
$121.21
$125.36

$135.39

Similarly, Airline B's specific results are calculated, and shown in Table 26.

Table 26. Estimates of percent reduction of CASM as well as Cost Per Block Hour shown for Airline B.

Percentage of Engine Events Avoided
Year 5% 10% 20% 30% 50% 70% 90%
2012 -0.06% -0.18% -0.32% -0.80% -2.19% -2.49% -3.11%
2013 -0.07% -0.17% -0.47% -0.74% -2.08% -2.40% -2.97%
2014 -0.06% -0.17% -0.45% -0.71% -1.91% -2.24% -2.78%
2015 -0.10% -0.21% -0.60% -0.83% -2.16% -2.66% -3.29%
2016 -0.11% -0.29% -0.60% -0.87% -2.10% -2.68% -3.26%

Percentage of Engine Events Avoided
Year
2012
2013
2014

2015
2016

5%
$3.53
$4.39

$3.80
$5.01
$5.23

10%

$10.58
$10.25
$10.12

$10.03
$14.08

20% 30% 50%
$19.40 $48.21 $131.41
$28.07 $44.43 $124.00

$26.78 $42.18 $113.46

$29.42 $40.45 $105.13

$29.04 $42.25 $101.93

70%
$149.05

$143.04
$132.44

$129.36

$130.10

90%

$186.68
$177.22
$164.50
$159.78
$158.27
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As can be deduced from Tables 25 and 26 above, there is varying effect of the tentative

cost reductions when the two constituent carriers' data are segregated. In particular, Airline B

appears to benefit more simply because its smaller size and fewer flight hours. This difference is

manifested in its higher percentage in CASM reduction, and higher reduction in CBH. In fact,

the higher the percentage of engine events avoided, the greater its benefit on unit costs.

At 20% and 30% event reduction, both carriers show very similar reductions in CASM,

ranging from 0.3-0.6%, and 0.7-0.9%, respectively. However, there appears to be an inflection at

50% event reduction, at which Airline A's CASM reduction ranges from 1.1% to 1.5%, but

Airline B's CASM reduction range is higher on average by almost half a percentage point: 1.9%

to 2.2%. At 70% and 90% reduction, this trend for Airline B continues, with its CASM reduction

nearly one full percentage point higher than that of Airline A. Thus, it appears that the 50%

inflection point marks the threshold at which event reduction impacts CASM more significantly

between these two carriers. With lower ASMs, Airline B gets the benefit of a higher unit cost

reduction when the hypothetical efficacy of FFDA prognostics is higher than 50%.

This 50% efficacy inflection point is interesting and worthy of further analysis with data

comparing other airlines. It is unclear if such an inflection point exists for all CASM reduction

tables generated through the same methodology, but if so, then it would have significant

implications on how full-flight data EHM services are marketed, executed, and delivered. In

particular, this finding suggests that the value promised by FFDA to PW customers may be

difficult to generalize beyond a certain efficacy threshold. This idea is explored further in the

next chapter.
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Chapter 5

Discussion and Conclusions

The present study seeks to define the potential value of full-flight data analytics in the

context of engine event reduction. It forms a part of the growing body of work internally at Pratt

& Whitney (PW) that is done to evaluate and affirm the business case for the EngineWiseTM

suite of Engine Health Management (EHM) services and products, with the Enhanced Flight

Data Acquisition, Storage and Transmission (eFASTTM) system being a particular focal point.

Having introduced the Flight Data Acquisition, Storage and Transmission (FAST) service on

Pratt & Whitney Canada's turboprop fleet, eFASTTM is PW's foray into full-flight data

acquisition, storage, analysis, diagnostics, and prognostics for its jet engine products. The

eFASTTM hardware was first introduced as a default option on PW's Geared Turbofan

(PW I 500G series) aboard the Bombardier CSeries aircraft, though that EHM arrangement is

brokered through Bombardier to airline operators. Seeking to generalize the eFASTTM product,

PW is looking into offering the hardware as an add-on to its most popular engine to date, the

International Aero Engines V2500, which powers the Airbus A320 family of aircraft.

Introduction of eFASTTM onto the V2500 is only in trial stages, and as such, the full-flight data

warehouse itself has not yet been established. Therefore, the approach taken in this study was to

characterize the benefits of full-flight data analytics (FFDA) in terms of its improvement over the

status quo, which is represented by the current database of engine-induced operational

disruptions to airline customers. Event reductions were then translated to cost reductions, which

in turn were applied to publicly available airline costs as reported to the US Department of
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Transportation (DOT). Cost reductions were further interpreted as unit cost reductions, as an

outcome of the overall cost avoidance model based on inputs from the Poisson parameters,

expected flight hours, and the magnitude of disruption events. In this section, the implications of

this study will be discussed in further detail, beginning with a review of the assumptions made.

5.1 Review of Framework and Assumptions

5.1.1 Grouping of Adverse Operational Events

The architecture of PW's V2500 database lent itself well to a Poisson characterization of

engine events, since each individual record can be treated as a rare, random occurrence that is

mutually exclusive of any other record. For each individual record, a determination was made at

the time of data entry as to which, if any, operational disruptions arose as a result of that

particular engine event. Although a protocol exists, there is a significant level of subjectivity and

variability in the event-recording process.

First, each record is input by one or several PW field specialists, introducing variability

into the event recording based on person-to-person variation in style, level of detail, and even

urgency--one could speculate that a more severe event might affect an employee's sense of

urgency, such that he/she rushes through without providing detail, or conversely that this person

may be compelled to over-provide details if he/she feels the event must be avoided in the future.

Here, it is worthwhile to discuss the fidelity of the V2500 database as an objective dataset

befitting a strict Poisson characterization of the engine incident process. It was shown in Table 5

(Chapter 4) that 2,057 events from the five-year set showed "blank" under event type, meaning

that no operational disruption was noted for that record. Yet upon inspection of the "narrative"
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field of these records, which contains textual input from the employee recording the event, some

of these "blank" events appeared to have incurred operational disruptions that were not labeled

as one of the Adverse Operational Events (AOE). Although further review of the blank entries

confirmed that such mistakes were rare, it was also found that many "blank" events provided

very limited details in the "narrative" field, suggesting that there could be more operational

disruptions than were officially recorded. If this is the case, then the database itself could very

well be underreporting the engine incidents that occur, and, in the context of this study, causing

the estimated cost results to be lower than actual. Of course, any database in which inputs are not

automated will be subject to this type of human variability, and these outliers alone do not

delegitimize the dataset. Rather, this evidence points to one part of the cost valuation framework

that can be further refined through a more standardized reporting protocol.

Further standardization in reporting could also help to elucidate the incidence rate of

AOEs occurring in combination. In Section 4.1.1 of Chapter 4, individual engine events were

grouped according to their perceived level of severity in order to reduce the number of possible

categories. This grouping process was aided by the fact that very few events--often, only single

occurrences in two to three year windows-were reported with multiple AOEs in combination.

In practice, the labeling of events in combination is another area of subjectivity that exposes the

dataset to possible under- or over-reporting. For example, if a flight does a Ground Turn-Back

(GTB), wherein it returns to the gate after having begun its taxi toward takeoff, it is almost

certain to be delayed, but we do see an entire set of GTB-labeled events recorded alone without

any other AOEs in combination. The same would apply for aborted takeoffs that don't have any

GTB recorded, but it is logical to assume that at least some of these aborted takeoffs did return to

the gate, and also consequently experienced a delay/cancellation. The difficulty of categorizing
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events in combination reflects the complicated nature of operational disruptions. Indeed, as

described in Section 4.1.3 regarding the Type I-III severity labels, the cost range of events can

vary widely because there are so many different elements that comprise an operational

disruption, and so many different costs can be incurred. Crew time-outs and ferrying of new

crew, for example, always occur together, but spare parts may or may not need to be ferried

depending on where an engine incident takes place. For costs with such variation and ambiguity,

estimates are better expressed as ranges than specific values, as shown in this study. The

literature suggests that studies of airline operational disruptions often focuses on the logistics of

disruption management, rather than detailed cost reduction measures [45]. Moreover, work has

generally been done on specific and visible types of disruptions, such as passenger delay costs

[46], which was observed to be the largest AOE by volume, but not the most individually costly

events from a maintenance perspective.

5.1.2 Poisson Distribution and Characterization

The V2500 database of engine events provides a record of individual incidents across

five years for two operators, each event of which can be considered a rare, mutually exclusive,

randomly arising event. These characteristics are befitting of a Poisson set of occurrences, which

are defined by the typical number of occurrences over a given time period or space [38]. A

possible counterargument to application of a Poisson model could be that engine events, in their

current state, have been actively monitored and improved for years by PW, and are not akin to

"naturally occurring" events not monitored for incidence rate, such as the number of arrivals at a

hospital emergency room over a week-that is, PW is actively monitoring and trying to reduce

engine events around-the-clock, but presumably no one is actively monitoring emergency room
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arrivals since the hospital cannot predict and prevent patient accidents. Yet, the Poisson model

has in fact been applied to adverse events that are monitored and targeted for reduction, such as

cancer survival [40] and, more relevant, air transportation accidents [47]. Moreover, given the

maturity of the V2500 program, major engine faults are rare and random, lending themselves

well to a Poisson model. Along with the accuracy and availability of information on flight hours

experienced by each engine, the occurrence of disruptions is very fitting of the Poisson

parameter, A.

5.1.3 Poisson Parameter Pooling

This study's methodology called for the pooling of two carriers' engine events over five

years of records. In order to explore the possibility of non-random variation in event incidence

between the carriers, a X2 Test of Independence by airline was conducted for each of the adverse

operational events to determine if the null hypothesis of independence between the two carriers

would be rejected. Four of the six AOEs tested, namely Aborted Takeoff (ATO), Air Turn-Back

(ATB), Delay/Cancellation (DC), and Ground Turn-Back (GTB), were statistically significant in

the X2 test, potentially raising concern about whether the two carriers really do operate

differently enough that the same engine type results in statistically different incidence of engine

faults. However, since the remaining two AOEs, Aircraft-On-Ground (AOG) and Inflight

Shutdown (IFSD) were not statistically significant, there remains some uncertainty as to the

independence of the carriers. In other words, the difference across all AOEs could not be

attributed to operator variation alone.

Nevertheless, one may argue that pooling two separate airlines' data, no matter how

closely their route networks align, is inappropriate. This concern was addressed earlier with the
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reasoning that a pooled approach makes for a larger sample size that is likely more applicable to

other PW customers of the V2500. Should this model for cost reduction be used on raw data of

other carriers, a pooled Poisson parameter is likely to be more robust than if based on one

carrier's data alone. Indeed, pooling of the Poisson parameter is not uncommon in the literature

for adverse events such as automobile accidents [48]. For this study in particular, the

commonalities between the two carriers selected, which lent themselves to better access to Form

41 data, provided further confidence for combining the data sets.

The approach taken to apply the Poisson event parameter, ), was to make use of five

years' worth of V2500 event records, and then to recalculate each year's event totals by finding

the product of A and the 1000-unit hour totals for each year. Such an approach may appear

counterintuitive, given that the true number of events of each year are already known. The

justification for this modified methodology is to establish a general framework that can be

applied to any given year, and not necessarily these five specific years. The use of such a

generalized A parameter is, perhaps, more useful if considered as a tool to predict future years'

count of engine events. Suppose that a given airline customer has a planned number of flight

hours for an upcoming year, which airlines often do forecast when budgeting and investor

guidance is prepared for the upcoming calendar year. Given the planned number of 1000-unit

flight hours, one can apply ) to predict the likely number of each AOE type, and quantify the

potential cost range over which FFDA can have an effect. As eFASTTM-based EHM services

mature and stabilize, this method will likely become even more useful.

5.1.4 Event Reduction Estimation
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Full-flight data analytics was assumed to reduce adverse operational events induced by

engine faults. The Poisson characterization of engine events is helpful for quantifying the status

quo, but with respect to engine event reduction, it only provides the probability of observing a

certain number of occurrences, given a known 2 and a period of time over which events are

observed and counted. The Poisson model itself does not tell us how likely FFDA can reduce

costs, it simply provides a baseline expectation for how often events should occur under random

conditions. This includes the probability of observing a count of events greater than 2, which,

although counterintuitive, is embedded by definition because the Poisson probability model

accounts for event counts both above and below the A parameter. In Section 4.1.7, a simple

model of event avoidance was used, whereby the V2500 status quo of event faults was reduced

by a given percentage. These percentages, ranging from 5% to 90%, essentially cover the lower

half of the Poisson distribution for each given adverse operational event. That is, we have P(X =

k) for all k < A, but in turn k has been defined as some fraction of A such that

k = zA (17)

where 0 < z < 1.

The z here is the ratio ascribed to each k such that any k will never exceed 2. Implicitly,

we want to see occurrences of events below 2, so (J-z) % is the amount by which 2 is reduced.

The underlying Poisson process does not itself limit observances to only those less than 2, but

since the focus is on event avoidance and EHM process improvement, it is not necessary to

consider the upper half of the distribution (where k > 2). FFDA prognostics, however, should

decrease the number of events that are manifested in practice, since it is expected to detect,

prevent, or minimize unexpected failures. Comparable work in the medical field has tried to

characterize medication errors as a Poisson process, with review of individual events as
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preventable or non-preventable as a motivation for reducing A for these adverse events [49].

Work has also been done to characterize engine failure as a Weibull process for two airlines,

though without suggestion for reducing failure rates [50]. For the study here, the Poisson

distribution of engine events was used as motivation for understanding the incidence rate of

unexpected engine failures, but we do not estimate Poisson probabilities because the objective of

FFDA prognostics is to proactively prevent failures and ultimately minimize randomness in the

occurrence of such failures.

5.2 Translation of Engine Maintenance to Airline Costs

5.2.1 Form 41 Data Reliability

One of the vestiges from the pre-deregulation era of airlines is that the DOT continues to

require all airlines to report very extensive cost, revenue, traffic, and capacity data, beyond that

which is required of typical 10K filings of publicly traded companies. In addition to collecting

the data, the DOT has made this information publicly available, allowing for airline business

research. For the purposes of this study, the Form 41 schedules detailing operating expenses

proved to be the most useful, particularly since maintenance costs are detailed quite

comprehensively in Schedule P-5.2. The availability of this data is fortuitous, but the fidelity of

the information is highly dependent on the consistency with which airlines report their data.

While there is no reason to believe that unscrupulous activity is occurring, it remains the case

that Form 41 data is not audited in an official capacity. Therefore, much of the information

available must be accepted as is. Nevertheless, Form 41 is and continues to be the standard used

by professionals and academics alike [22], including the airlines themselves in competitive
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analysis. Thus, this commentary is provided here for transparency, rather than to cast doubt on

data credibility.

5.2.2 Nuances of Form 41 Data Fields

Form 41 contains many schedules and tables that present airline financial and operational

data by different cross sections. Importantly, Schedule P-5.2 allowed for maintenance expense

data to be disaggregated by source (airframe or engine), making the data significantly more

useful than if estimations were made on the proportion of maintenance attributable to engines.

Moreover, other than operating airline, a key identifying field in this Schedule is aircraft type,

which allowed for selection of not just A320 family aircraft, but the variants themselves (A319,

A320, A32 1). In this study, with the ability to segregate maintenance data on only the two

airlines of interest and only their A320 family fleet, we are able to pinpoint the reported

maintenance costs specific for the V2500, since the two carriers operate it exclusively for their

A320 family. Internally, PW's V2500 database of course also allows for only these two carriers'

engines to be analyzed. Therefore, the level of specificity afforded by these data sources lend

confidence to the outcomes of the analysis.

It should be noted here that this study's cross-source data analysis, that is, the use of

publicly available Form 41 data, along with the internal PW V2500 database of engine events, is

limited by the fact that they are disparate sources. On the one hand, the reader must keep in mind

that internal and external data, especially when reported by different sources, introduce multiple

layers of variation. On the other hand, the ability to pinpoint operating airline, aircraft type, and

engine-specific cost within the Form 41 fields by using PW's V2500 data set mitigates much of

the uncertainty, particularly since engine fault rate is external to Form 41 itself. Indeed, this type
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of internal-external hybrid maintenance cost evaluation is a unique feature of this study, enabled

by access to PW's engine database and extensive study of DOT airline data.

5.2.3 Unit Cost Reduction Estimation

To the knowledge of the author, this is the first study to bridge the raw data of engine

fault events with the realized engine maintenance costs publicly reported to the US DOT.

Despite the perceived potential from so-called "big data" analytics enabled by such technologies

as eFASTTM, interest on the airline side is limited by each carrier's relationship to the original

equipment manufacturer (OEM), which can vary based on contract terms and the associated

EHM services elected. Using the two carriers of interest, it has been shown here that the potential

for unit cost reduction can vary widely. The higher the proportion of engine events avoided, the

higher the expected cost savings. As presented in Table 23 (Chapter 4), the model here predicts

about a half-percentage decrease in annual CASM in the assumed ideal scenario of 20% engine

event avoidance. A more optimistic scenario of 20-50% engine events avoided yields CASM

reductions up to 1.5%. Such a figure could carry broader significance for an airline customer that

not only wishes to reduce costs, but also minimize disruption to operations that carry with it

negative customer sentiment, media portrayal of inefficiency, and other intangible damages

caused by irregular operations. On raw dollars, the 2016 estimates of 50% event reduction

translates to a full year cost savings of $104 million, which is not trivial for a mid-sized carrier

like the hypothetical combination of Airline A and Airline B studied here. With many of the

smallest US carriers facing total costs of at least $1 billion annually, cost savings in the tens of

millions would be a boon to an industry with little control over its largest cost component, fuel

expense.
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With regards to fuel expense, an appropriate method for evaluating the magnitude of

savings calculated here is to compare it to the year-over-year change in CASM that each airline

has experienced over time. Figure 9 presents ten major US carriers and their mainline CASM

changes from 2010 to 2016. An "Airline Composite" is included as a single proxy for the

industry that encompasses industry total cost and industry ASMs.

Mainline CASM For US Airlines: Year-to-Year Change

- Alaska Airlines Inc.

-American Airlines Inc.

- Delta Air Lines Inc.
.n Frontier Airlines Inc.

....... Hawaiian Airlines Inc.

-Jetflue Airways

Southwest Airlines Co.
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...... irgin America

a 
- Airline Composite
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Figure 9. Mainline CASM Year-over-Year Change in Percent, 2010 to 2016.

Figure 9 shows that year-over-year CASM change can vary widely, first in response to

fuel spiking around 2010-11, and then tumbling beginning in 2014 and onward, which was

marked by a period of unprecedented profitability for airlines. In these later years, a savings of

up to $104 million would have been less substantial in comparison, but that fuel-driven cost

advantage has slowly crept back up in the couple years since 2016. Without the effect of major

fuel swings, the years between 2012 to 2014 showed year-over-year CASM converging around

+/- 5%. If FFDA-enabled reductions were to constitute 1.5 percentage points of cost savings in
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the +/- 5% CASM range, then these values would be quite significant for an airline's earnings

reports and investor outlook.

With respect to cost per flight hour, the 20-50% reduction scenario translates to $30-$80

saved per block hour. These figures may appear more compelling for airlines, if only because a

Cost Per Block Hour (CBH) reduction is a concrete value distilled to a unit of aircraft utilization

time. The CBH metric may also be more useful for both parties to reach an agreement on EHM

service costs, especially if existing contracts already establish a cost-per-flight-hour charge in a

fleet management program.

Some limitations should be explained in the context of the two carriers' data used for

these conclusions. First, the two carriers chosen are not large, network legacy carriers, and thus

their fleets are simple and uniform. Such fleet decisions were, of course, intentionally made with

cost considerations in mind, as is typical of the low-cost carrier model [51]. There may thus be a

"self-selecting" issue at play, in which the carriers themselves have already maximized their cost

reduction potential. If so, the inputs used from their DOT-reported maintenance data could

represent a low baseline from which more reductions are not easily achieved. Second, both

carriers primarily outsource their maintenance operations, as evidenced by the lack of engine

labor costs in Table 18 (Chapter 4). This type of maintenance and repair operations (MRO)

structure was also decided with costs in mind, as it minimizes complexity at each airline. For

both carriers, these business choices reduce the utility of the cost reduction model presented in

this study, though the framework remains useful for other carriers operating more complicated

fleets or MROs, assuming the relevant data inputs are available.

Of course, data availability itself dictated the selection of these two carriers for study, so

while the magnitude of cost reduction ranges from low to moderate based on the inputs used, the
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various components of this model can be made more robust with data inputs that are specific to

the airline customer. With individual contracts and relationships, the methodology here can be

honed and refined so that fewer assumptions need to be made. For example, a tailored

conversation would allow for the model to be adapted to a particular carrier's sub-fleet of PW

engines, eliminating the dependence on a generalized formula that is not representative of that

carrier's particular operations. Even broader, the applicability of this study's model to the

industry at-large is at yet uncertain given the inability to obtain all specific data inputs on aircraft

type, engine type, and incidence of adverse operational events for all engines other than the IAE

V2500. To the extent that the airframe manufacturer cooperates or wishes to be involved, the

FFDA methodology would be influenced by all three stakeholders: PW, the airframe

manufacturer, and the airline customer. The procedures presented in this study should motivate

airlines to share more engine performance data in order to produce a more widely applicable

model of unit cost reduction.

Ultimately, the annual cost saving presented here ranged from $8-9 M in annual cost

savings, up to $104 M if half of all engine events were avoided (based on the cost inputs used,

which can vary depending on an airline's particular experience with AOEs and engine

disruptions).

5.2.4 Cost-Benefit Analysis of an Engine Prognostics Product

The value of the services promised by full-flight data analytics and prognostics is best

summarized by Table 12 (Chapter 4), which is reproduced again below in abridged form.
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Table 27. Estimated cost savings from 20% and 50% reduction of adverse operational events.

Year 20% Reduction 50% Reduction
2012 $33,817,134 $81,597,092
2013 $36,852,780 $84,210,054
2014 $37,646,103 $88,551,935
2015 $41,924,454 $98,396,463
2016 $43,421,708 $103,505,233

As described in Chapter 4, a scenario with 20% reduction is a simplifying assumption

made on the best approximation for prognostics efficacy. Based on Year 2016 costs, a

hypothetical airline could see about $43 million in cost savings across its fleet if 20% of all

AOEs were avoided or mitigated. Economic reasoning provides that this airline will, all other

factors being equal, be indifferent between business-as-usual, or paying $43 million to avoid

such engine events. The carriers studied here, Airline A and Airline B, have a combined fleet

size of about 300 narrow-body aircraft. Therefore, on average, an airline of this size would be

willing to pay $43 = $143,333 per aircraft per year to avoid 20% of engine-induced
3 00 aircraf t

disruptions.

Is this a reasonable assumption to make? Continuing on the same line of reasoning, the

airline is equivalently willing to spend $393 per aircraft per day, and $39.30 per hour if each

aircraft were assigned 10 hours per day of block hour utilization, a reasonable industry standard

[52]. This method can be extended further for the 50% event reduction case to produce the

following table.

Table 28. Airlines' Theoretical Per-Hour Willingness-to-Pay for Engine Health Management Program. Assumes fleet
of 300 aircraft with average daily utilization of 10 hours.
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20% Reduction 50% Reduction
Annual Cost Savings $43,421,708 $103,505,233
Per Aircraft Per Year $144,739 $345,017
Per Aircraft Per Day $397 $945
Per Aircraft Per Block Hour $40 $95

Based on the simplified analysis in Table 29 for airlines' theoretical willingness-to-pay,

an EHM program that produces 20% reduction in engine events would cost the airline $43

million annually, but on a per block hour basis would cost $40. With block hour costs of $3200

per hour (in Year 2016 for pooled Airlines A and B), a $40 EHM block hour fee represents a

1.25% increase. Indeed, we found that the block hour cost reduction for 20% event reduction is

about $34, roughly on the same order as the $40 estimated here. The rough calculation presented

here is, in fact, a simplified version of the CBH savings, and is shown here as a heuristic for a

potential pricing model that PW or any other prognostic service provider could consider.

In this simplified estimate for pricing strategy, it should be noted that an airline customer

is unlikely to pay the direct equivalent of the engine disruption costs avoided, because those

costs are themselves estimates predicated on (1) a constant rate of engine event occurrence,

namely ) of the Poisson process model shown above, (2) a guarantee that the service provider

will reduce disruptions at the promised level, and (3) that cost estimates for events are accurate.

All three of these assumptions must be satisfied to some degree in order for the provider to offer

a theoretical Engine Health Management product for which the airline is willing to pay, but

absolutes are unlikely to be possible. In economic terms, a more likely pricing strategy for the

provider would be to price lower than the estimated savings to the customer but higher than

average cost. For example, if the hypothetical cost of prognostics EHM to PW were $20 per

block hour, then a price between $20 and $40 per block hour to the customer would be a
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reasonable charge that allows both the airline and the EHM provider to reap some economic

surplus.

5.3 Full-Flight Data in Its Current State

At present, the widespread availability and use of data, particularly from social media

channels that can aggregate large amounts of personal information, have undoubtedly had

spillover effects into all types of industries that can benefit from data acquisition and analysis. In

the aerospace sector, data has always been prevalent, but the ability to capture, store, and

maintain data at the scale of continuous capture for, say, a 15-hour intercontinental flight is now

very real and tangible. Pratt & Whitney's traditional ADEM platform for engine health

monitoring and management has proven to be a valuable part of its aftermarket services. It

follows, therefore, that continued advancements in data acquisition and storage through cloud

platforms will not only be adopted, but received emphatically.

This study has shown that a paradigm for applying engine health management to airline

operations cost is not only viable, but likely to be expected in the coming years. While the cost

reduction results shown here vary widely depending on cost inputs, the creation of a baseline

model and set of procedures by which data can flow, from the recording of engine incident

reports, to the aggregation of engine events over time via a statistical distribution model, to

cross-source integration with airline cost information, are the most valuable result of this study.

A visual representation of this paradigm is shown in Figure 10.
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Figure 10. Paradigm for data and process flow for a full-flight data engine health management service. Orange inputs
are those already in place, while green inputs are planned and awaiting initiation.

Figure 10 above is very much in line with PW's plans for a mature, productionized EHM

service that will arise from its EngineWiseTM brand of aftermarket services. As expected from a

culture of science and engineering, PW has been working steadfastly on ensuring hardware

production and integration with aircraft is done precisely and carefully. The soft products that

arise from this EHM paradigm will be introduced bit by bit. With the advent of the Geared

Turbofan, which is only in its nascent stages of commercial passenger service, the development

of full-flight data tools will occur in tandem with the maturation of PW's newest and most

advanced single-aisle engine product to date. Of course, one should not discount the reliable and

iconic IAE V2500, which is the main focus of this study precisely because it is a reliable and

mature engine. The benefit of having an established dataset that is not full-flight in nature created

a baseline for this study. Given the availability of engine event records as the status quo, the first

step in defining a value for FFDA is to delineate the process by which the status quo can be

improved and eventually replaced by a new status quo that promises fewer operational
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disruptions to the customer. From the most minor at-gate delay to the most unexpected aircraft-

on-ground complication, proactive prevention with the sufficient tools to provide prognostic

guidance to the airline operator is the service promise. Integration with the MRO network at PW

and at the airlines will further improve efficiency in responding to events and optimizing

maintenance schedules to maximize aircraft utilization.

The use of full-flight data in EHM services for MRO optimization is only a question of

time, if not for the sake of cost reduction, then for the general principle that more data also

equates to better safety. In a post-Malaysia Airlines MH370 world, lack of data is both

inconceivable and unacceptable in times of emergency, whether from the airframe or the engines

of a commercial passenger aircraft. Although 2017 was one of the safest in commercial airline

history [53], the threat of unscrupulous individuals in fomenting fear and terrorism continues to

exist, whether domestic or international. The availability of data, then, can be said to have

inherent safety value that is not yet fully quantified.

5.4 Next Generation Products at Pratt & Whitney and the Airline Industry

Pratt & Whitney has invested heavily to create a full-flight data analytics platform that

supports a comprehensive engine health management service for airline customers, both current

and future. On the horizon are efforts to bring the data services out to a tangible medium for the

customer, namely airlines, to access quickly and easily. The current ADEM system offers a

customer user interface platform for airline fleet managers to access engine health information,

and has been the standard offering for years. As FFDA matures, platforms for analyzing and

using the data will be provided across multiple channels in an effort to expedite decision-making
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and operations optimization. In particular, there are prospects for leveraging the so-called

"Internet-of-Things" method to bring the same sets of data, analysis, conclusions, and

recommendations to the mobile application space [12], [54]. Though envisioned as a product

farther down the line, the emphasis here is on accessibility, ease, and speed of delivery. The pace

at which commercial aviation moves and evolves requires that those in charge are equipped with

the tools to streamline the operations of the business. At its heart, an airline is a complex and

intricate operations puzzle that is always subject to change, delay, and surprises. FFDA aims to

deliver greater control to the decision-makers that work to ensure the puzzle fits together

precisely and quickly.

5.5 Implications on Security and Privacy

With large data comes large responsibility. As more and more data is compiled, worry

turns toward the threat of cybersecurity and the unauthorized use of aviation data by individuals

to potentially shut down an aircraft or its engines as an act of terrorism. These are considerations

that fall in tandem with the security needs of the "connected world," whereby IoT and artificial

intelligence provide powerful tools for accomplishing great tasks, such as predicting when an

engine will need proactive maintenance, but also presents vulnerabilities that might be exploited

by unscrupulous individuals.

The existing snapshot method of data transmission through the ACARS system has

persisted for decades without breach of security because it has not, so far, tapped into the more

open and vulnerable internet networks on which full-flight data will necessarily depend. This is

of course not an issue localized to PW's systems, but to all aerospace systems now and hereafter
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that make use of cloud-based platforms that involve, by default, remote data storage and

processing. Fortunately, research is being done to better understand the risks of cyberattacks into

integrated networks that contain highly sensitive information [55], [56]. Although this study does

not aim to provide prescriptions for cybersecurity in the aviation space, the author cautions and

urges the technology of data acquisition to occur alongside the technology of data encryption and

safety monitoring.

5.6 Conclusions and Applications

This study has established a model by which full-flight data analytics can create value for

the airline customer operating Pratt & Whitney engines. Existing incidence rates of adverse

operational events were quantified, and the potential for cost avoidance was evaluated through

various scenarios of event prevention. Using publicly available cost data for two carriers that

operate the V2500 engine, the cost avoidance estimates were translated to potential unit cost

savings, which are metrics of value to airlines in determining operational efficiency, business

outlook, and investor confidence.

When applied to other operators of the V2500, the event avoidance and cost savings will

vary based on their historical engine event incidence rates. Given the variety of EHM services

possible, which are based on individual airline agreements, the realized value of flight-flight data

analytics will also vary. Nevertheless, the model presented here offers a baseline on which

individual airline datasets can iterate and refine. Importantly, successful implementation of

engine health prognostics will rely on cooperation between Pratt & Whitney and airline

customers to capture, transmit, and share the most accurate data possible. The stakeholders must
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seek alignment on data integrity and availability, so as to ensure that the outcome is reliable,

replicable, and ever-growing in intelligence.
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