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Abstract

In this thesis, we present an evaluation of four state of the art convolutional neural
network (CNN) object detectors, and a method to incorporate temporal informa-
tion into an object detection pipeline for a micro aerial vehicle (MAV). This work
was done as part of the Defense Advanced Research Projects Agency's (DARPA)
Fast Lightweight Autonomy (FLA) program with the goal of creating an autonomous
MAV that could explore and map an unknown urban environment. We tested four
CNN-based object detectors on a range of compact deployable compute devices in or-
der to select the best detector-hardware pair for our flight vehicle. We chose to use the
MobileNetSSD object detector running on an Intel NUC Skull Canyon. Additionally,
we developed an efficient object detection method that incorporates temporal infor-
mation found in sequential camera frames by selectively utilizing an object tracker
when the object detector fails. Our temporal object detection method shows promis-
ing results improving the recall of the base object detector on two of three datasets
while maintaining a high framerate.

Thesis Supervisor: Nicholas Roy
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 The Problem

Robots are becoming an ever larger part of our daily lives. Their applications are

becoming broader as hardware gets smaller and more powerful and algorithms be-

come more effective and efficient. However, in order for robots and humans to work

together, machines must have an understanding of the world similar to that of their

human counterparts. The necessity for a common understanding highlights the im-

portance of semantics for robots, or meaningful labels assigned to the perceived en-

vironment. For example, it is important for a home assistant robot to know that

an apple is different from a plate when a human asks for a snack. Furthermore, the

robot must be able to recognize both the apple and the plate in order to connect their

meanings with the immediate environment. This requires a semantic perception sys-

tem for the classification of objects. We propose such a semantic perception system,

specifically, an object detection pipeline, to be used by deployed robots to recognize

objects in their environments.

This object detection pipeline was used as part of a larger program called Fast

Lightweight Autonomy (FLA) put on by the Defense Advanced Research Projects

Agency (DARPA). In the first phase of the program, the goal was to use a micro

aerial vehicle (MAV) to locate an item (a red barrel) at the end of a trajectory and

return to the start, moving as fast as possible (20m/s) while dodging obstacles. This
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environment could range from an outdoor field, to a forest, or to the inside of a

warehouse.

In the second phase of the program, the challenge was to explore an urban envi-

ronment and create a semantic map of the objects that the flight vehicle encountered

during its exploration. To complete this mission, the flight vehicle would need state

estimation, depth estimation, local mapping, flight control, behavior selection, object

detection, and object localization. The goal was to complete these tasks using only

monocular camera methods, the motivation being that images contain a rich source

of information that is commonly underutilized. The advent of Convolutional Neu-

ral Networks (CNNs), along with advances in classical computer vision techniques,

have made using a single camera for the tasks stated above much more reliable for

flight vehicles. CNNs in particular have made hard coded feature functions for image

analysis largely a thing of the past.

Object detection was used to report back what the vehicle encountered on its

exploration of the urban environment. The class of objects that the vehicle was to

report were predetermined ahead of deployment. For this mission, the objects to

detect were mainly people and cars. These objects are typical in urban environments

and knowledge of their locations may be of importance for soldiers deployed in an

unknown city assessing possible dangers or points of interest.

An object detection is made by placing a bounding box around each object of

interest in a given image with an associated semantic label. An example is shown

in Figure 1-1. The detections are then sent to a mapper that localizes the object in

the global map to be reported back to the user. While seemingly straightforward,

the task of object detection comes with a host of challenges. For example, it is easy

for humans familiar with cars to pick them out of an image whether the car is big or

small, and regardless of the car's orientation. Cars alone come in all kinds of shapes,

sizes, and colors. Additionally, when encountered in the real world they can be found

in many different orientations. A large part of the difficulty in the object detection

task is generalizing. Not only are there many types of cars, they can be encountered

in many different situations. Often times, cars in an environment can be occluded or
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Figure 1-1: An object detection consists of a bounding box, a semantic label, and a
confidence score.

found in cluttered environments and the object detection system would have to be

able to pick out the car from the clutter. This problem becomes even more difficult

when the object detection system is asked to classify other objects in addition to cars.

There are classical computer vision techniques that can perform object detection in

many ways whether it be by breaking an object down into parts 117] or computing

hand crafted features [74]. Unfortunately, these methods can be tedious and often

times do not perform well in a variety situations.

A CNN, a type of artificial neural network, on the other hand, is able to learn useful

feature functions for analyzing images, eliminating the need for handed coded feature

functions. CNNs, once trained on enough data, can learn general representations

of many classes of objects. This makes them very accurate detectors outperforming

methods that preceded them. The ability of CNNs to generalize is why we chose to

use CNN-based object detectors for the flight vehicle. Although many existing object

detectors exist, such as Faster R-CNN 158], You Only Look Once v2 (YOLOv2)

157], and the Single Shot MultiBox Detector (SSD) 142], there are still challenges for

deployment.

Part of the DARPA FLA program was to put all the autonomy and image pro-

cessing stated above onto a single MAV. A main concern when deploying CNN-based

methods is their computational load onboard the vehicle, which often has much less
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compute power than the environments where the methods were developed. CNNs,

while state of the art, use millions of parameters when computing detections from a

single image. This can come at a significant cost especially on a vehicle with a small

computational budget. Decreasing the size of the CNN could speed up computation,

but would come at a cost to accuracy. On top of this, in an autonomous flight system,

the detections need to be sent in real-time to the object localizer to be placed in the

global map. The challenge then becomes finding a CNN object detection pipeline

that can perform well enough in real-time without consuming the entire computation

budget of the vehicle. Many state of the art detectors boast short computation times

and high accuracy, but do not tackle the issue of deploying these systems on size-,

weight-, and power-constrained devices.

Additionally, the state of the art object detectors are made to detect objects on

single images. During deployment, the detector will process sequential images in a

live video stream. Due to vehicle movement, lighting changes, and viewpoint changes,

some objects detected in one camera frame may not be detected in the next. This can

cause object detections to be dropped and may provide too few detections to properly

localize the object. Specifically for the DARPA challenge, the MAV is flying through

an urban environment where objects are generally sparse. In many cases, the vehicle

will encounter objects at a distance or in the periphery of the camera frame, which

could mean that several detections are required to localize the object.

To address these problems, we present an evaluation of the runtime and resource

consumption of some of the fastest state of the art object detectors. This evalua-

tion can aid in the selection of a particular method for devices with relatively lower

computation throughput. Additionally, we propose a selective tracking-by-detection

method that uses temporal object representations to create more consistent object

detections over time.
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1.2 Our Approach

The following sections will discuss how we selected an appropriate neural network ob-

ject detector for our hardware and incorporated temporal information in the detection

pipeline to increase object recall and temporally consistent detections.

1.2.1 Neural Network Object Detector Evaluation

The first step involved selecting an object detection method to put on the vehicle using

an analysis of the current state of the art in object detection. Our main criteria in this

evaluation were speed, accuracy, and computational resource consumption. To this

end, we narrowed down the search space of detectors to CNN-based methods because

CNNs are the top performing in terms of accuracy and are highly generalizeable given

enough training data. Additionally, all of our proposed hardware on which to deploy

the object detector had a GPU, which allowed the detector to reduce its inference

time.

Using past evaluations as a starting point such as the one done by Huang et

al. [28] and the experimental results from the original object detection papers, we

narrowed down our search to the You Only Look Once (YOLO) methods (YOLOv2

[57] and Tiny YOLO [54]) and the Single Shot MultiBox Detector method [421. We

chose these methods because they were designed to be both fast and accurate.

The object detection methods were evaluated across selected deployable compute

devices that could be used on the flight vehicle. When testing the object detection

methods on the devices, we were mainly looking at the test time frame rate and

GPU, CPU, and memory usage. The methods were first tested on a desktop machine

with an NVIDIA TitanX GPU and Intel Core i7-6700K CPU. After initial testing on

a machine without size, weight, and power constraints, we tested the methods on a

range of deployable hardware. This included a NVIDIA Jetson TX1, a NVIDIA Jetson

TX2, an Intel Movidius Neural Compute Stick, and an Intel NUC Skull Canyon.

After the evaluation of these methods on different hardware, we decided to move

forward with the Single Shot MultiBox Detector using MobileNet 127] as its feature
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extractor. We will refer to this combination as MobileNetSSD. This setup ran the

fastest while still maintaining reasonable accuracy performance.

We used a version of MobileNetSSD [3] implemented with the Caffe deep learning

framework [33]. The network runs entirely on the Intel NUC Skull Canyon using an

OpenCL version of Caffe [71] so that we could take advantage of the NUC's GPU for

inference.

1.2.2 Object Detection for Micro Aerial Vehicles

Although deploying a CNN object detector onboard a MAV works generally well given

that it can run in real-time, most state of the art detection methods were made to

address the PASCAL Visual Object Classes detection challenge [151, which measures

the accuracy of detectors on a test set of still images. However, when detectors are

running on a robot, they process sequential camera frames, and also need to deal with

varying object poses and possibly blurred images from motion.

To tackle this problem, we leveraged information present across camera frames to

augment the object detection pipeline. Specifically, we increased the confidence of

detections on objects the robot has seen before by using a similarity metric based on

object color, size, location, and bounding box dimensions. This metric was created

by using an adaptive weighting scheme for each of the metric components based on

the size of the bounding box in a given frame. Since we know the general shape and

size of the objects we are detecting and the environment in which we are flying, the

bounding box size roughly relates to the distance from which an object is viewed.

Based on this size, we can dynamically weight how much the system should rely on

color, bounding box shape and size, and location.

We also leveraged an object tracker in the detection pipeline by selectively apply-

ing it to find objects that the detector found in a previous frame, but failed to detect

in the current frame. The tracker was selectively applied by using the similarity met-

ric to to determine if the object was detected or not. In this way, we only applied the

tracker to an object that needed to be detected.

The augmented object detection pipeline was designed keeping into consideration
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the limited computational capacity onboard the vehicle, and the need to maintain a

real-time system. The entire pipeline consists of a detection step, a rescoring step, a

tracking step, and a non-maximum suppression step. Although the detection pipeline

could be setup with any arbitrary single image object detector and image based

object detector, we implemented the system with the MobileNetSSD object detector

and GOTURN object tracker [24]. Together, the system runs at a minimum of 40

frames per second on the Intel NUC Skull Canyon.

1.2.3 Contributions

Our first contribution is an evaluation of several state of the art CNN-based object de-

tection networks tested across a range of deployable compute hardware. The evaluated

object detection networks included YOLOv2, Tiny YOLO, SSD, and MobileNetSSD.

The hardware for the evaluation included a NVIDIA Jetson TX1, a NVIDIA Jetson

TX2, an Intel Movidius Neural Compute Stick, and an Intel NUC Skull Canyon. The

test results can help in selecting an appropriate CNN-based detector and compute-

device pair.

The second contribution is a proposed method to incorporate temporal informa-

tion into an object detection pipeline that is both effective at increasing detector recall

and maintaining a high frame rate. This is done by combining an object detector and

an object tracker in an efficient framework where the object tracker is only applied

when necessary.

1.2.4 Thesis Outline

This thesis is organized into six chapters. Chapter 2 provides a background for CNNs

as well as past and current methods for object detection, object detection evaluation,

object tracking, and object detection in videos. Chapter 3 gives a summary of the

methodology of the evaluated neural network object detectors. It then provides the

results of the object detector evaluation across the tested hardware. Chapter 4 de-

scribes how the object detector was deployed on the flight vehicle. Lastly, Chapter
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5 introduces the temporal object detector and presents results of the method using

data collected in three different environments.
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Chapter 2

Background

2.1 Convolutional Neural Networks

At the core of the object detector analysis and our temporal object detector, is the use

of convolutional neural networks (CNN). CNNs are a type of artificial neural network

that take 2D signals as input; this can include things such as an audio signal or an

image. Neural networks are useful because they can approximate complex nonlinear

functions. Neural networks are made up of a series of units often referred to as neurons

stacked into layers. Each neuron consists of a series of weights wi, a bias term b, and

an output function. In a network, a neuron takes in inputs xi from other connected

neurons. The output of the neuron is the output function applied to the sum of the

weights, wi, times the inputs, xi, plus the bias b. If the output function is a linear

function, then the sum of the weighted inputs plus the bias is exactly the output. To

produce a nonlinear result, a nonlinear function is applied. Common nonlinear output

functions used in neural networks include the tanh(x) function shown in Equation 2.1,

the rectified linear unit (ReLU) shown in Equation 2.2, and the leaky rectified linear

unit shown in Equation 2.3.

ex - e-X 21
e + eX
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f(x) = max(x, 0)

f) max(x, 0) x >= 0 (2.3)
amin(x, 0) x < 0

The nonlinear function can be chosen depending on the desired output of the

neuron, for instance if we wanted to have the output bounded between -1 and 1, or

to act as a threshold function on some property of the input. The output of a neuron

with an applied nonlinear function, taking n inputs xi, with n weights wi, a bias b,

and a nonlinear function f(x) is shown in Equation 2.4.

y =f xiwi+b (2.4)

A neural network is then a series of layers of neurons stacked onto one another

as shown in Figure 2-1. The network in Figure 2-1 takes in a column vector x and

outputs a single value y. The first layer of the network is the input layer, the middle

layer is a hidden layer, and the last node is the output layer.

xi

x2

y

x
3

x
4

Figure 2-1: A fully connected three layer neural network.

A neural network is trained through a process called stochastic gradient descent

using backpropagation. During training, a network is given an input and a label. The

24
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input is passed through the network and a loss is computed between the output of

the network and the label. The loss function can be thought of as a function that

makes a comparison between the output of the network and the label. The goal then

is to minimize this function. This minimization is done using stochastic gradient

descent, which calculates gradients for the network parameters with respect to the

loss function. Since each layer of the network depends on its parameters and input,

the gradients can be found by recursively applying the chain rule to each layer of

the network; this use of the chain rule is known as backpropagation. The network

parameters 9 can then be updated using the calculated gradients with Equation 2.5

where t is the iteration and 7 is a scalar typically called the learning rate.

9t+1 <- Ot +qV9O (2.5)

Convolutional neural networks are similar to the previous example network except

that they take 2D inputs and have volumetric layers of filters instead of layers of

neurons. The filters are convolved with the input signal to produce a volumetric

feature map output. Convolution makes CNNs spatially invariant allowing the filters

to be trained to respond to a feature anywhere in the input signal. This is especially

useful in image processing where key features may appear anywhere in the image.

In an example, similarly done by Howard et al. [271, given an input image of size

D, x D, x p, where D, is the width of the image and p is the number of channels,

to produce an output feature map of size D, x D, x N, where N is the number of

output channels, N number of Dk x Dk x p filters are applied to the input image.

Like the neurons of a neural network, the volumetric layers, also known as con-

volutional layers, are typically followed by some type of nonlinear function like those

mentioned previously. There are also other types of common layers like max pooling,

which selects the maximum value from a portion of a feature map. These convo-

lutional layers, nonlinear functions, and pooling layers make up the basic building

blocks of CNNs.
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2.2 Object Detection

Object detection tackles the problem of locating object of interest in an image. In the

time before CNNs were applied to the problem, solutions usually involved using some

sort of hand-coded features to detect objects of interest. One such method by Viola

and Jones was presented in [74]. Their method used rectangular features quickly

computed using an integral image. Machine learning was used to select descriptive

features and train a classifier. Using a hierarchy of classifiers, they took a coarse to

fine approach to find the object in the image. The detection algorithm was able to

run at 15 frames per second (fps) on a 700 MHz Intel Pentium III, however it could

only detect one class of objects.

To better incorporate detecting more than one class of object, Torralba et al. in

[70] proposed training classifiers jointly. They did this by looking for common fea-

tures between object classes. This method could also help generalize the detector for

a single object class by finding common features between different viewpoints. An-

other pre-CNN-based object detector used histograms of oriented gradients or HOG

features presented by Dalal and Triggs [6]. Dalal and Triggs used their histogram

of oriented gradients method for human detection using a linear SVM. They found

that objects can be characterized by a local distribution of intensity gradients. Their

detector worked so well that the authors created their own more difficult dataset to

demonstrate its capabilities. They also pointed out a few advantages of their method

over others. They found that using HOG descriptors over SIFT [43] features reduced

the number of false positive detections by an order of magnitude. HOG descriptors

are also good at generalizing the shape and structure of an object because they can

be invariant to small translations or rotations.

Although the work done by Dalal and Triggs was groundbreaking at the time, it

was still limited. Like the work done by Viola and Jones, it was only designed to

detect one object. Both of these techniques could be used to detect multiple objects,

but would need separate classifiers for each object class.

An object detection method by Felzenszwalb, Girshick, McAllester, and Ramanan
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[17] used parts-based models to find objects. The idea behind the parts-based mod-

els is that objects can be represented by their individual parts. Their method uses

mixture models making it possible to detect objects at different orientations and de-

formability such that objects parts can be in different places with relation to each

other. This formulation helps their method generalize to different object represen-

tations. The discriminatively trained part-based model [17] achieved state-of-the-art

performance on PASCAL VOC challenges [14, 11, 12] and the INRIA Person dataset

[6]. Despite this performance, it took the method approximately 2 seconds to evaluate

an image with a 2.8Ghz 8-core Intel Xeon Mac Pro.

Soon CNNs dominated the object detection space. One of the early CNN based

object detectors by Sermanet et al. [62] was called OverFeat. Their method combined

classification, localization, and object detection. The authors first trained a CNN

classifier using stochastic gradient descent (SGD) on the ImageNet 2012 dataset [8],

composed of 1.2 million images and 1,000 classes. The first few layers had a similar

setup to the network made by Krizhevsky et al. [38] with ReLU nonlinearities and

max pooling. For localization, they replaced the classification layers with a regression

network to make bounding box predictions at different locations and scales on the

image. The detection task was done similarly except that they have to train for a

background class when there are not any objects of interest in the image. Their

method came in fourth for the classification task, first in the localization task, and

first in the detection task for the ILSVRC 2013 dataset [60].

After Overfeat, came a family of region-based based convolutional neural network

object detectors. These were R-CNN [21], Fast R-CNN [201, and Faster R-CNN

[58]. The idea behind these methods is to combine region proposals with CNNs,

hence R-CNN. The first R-CNN [21] uses selective search [721 to create 2,000 region

proposals. The regions are then warped to a specific size to be put through a CNN

like the Krizhevsky et al. network [38]. The CNN produces a feature vector that was

scored by a class-specific SVM for classification. The authors found that performance

improved if the CNN was first pretrained on ILSVRC 2012 [7] dataset and then

finetuned on the data from VOC, composed of only 20 classes.
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This method did well on the VOC 2012 challenge scoring a mAP of of 53.3%,

30% higher than the nearest competitor at the time. Although this method had good

accuracy and scaled fairly well for many classes, it still had a long run time of nearly

13 seconds for each image using a GPU. The next version, Fast R-CNN, was designed

to address this limitation.

The creators of Fast R-CNN pointed out some issues with R-CNN. The first prob-

lem was that R-CNN had multiple stages; the CNN and the SVM. Second, training

was slow since these parts had to be independently trained. Lastly, R-CNN was very

slow during inference time since it did a forward pass through a CNN for every region.

Fast R-CNN aimed to unify the process. Given an image and regions of interest, Fast

R-CNN generates confidences for each class and bounding box offsets in one pipeline.

They accomplish this in part by having a multi-purpose loss function that has both

class and location components.

This method increased accuracy from R-CNN and greatly increase both training

and test speed. They reported an inference time of 0.3 seconds per image and an

mAP on PASCAL VOC 2012 [13] of 66%.

After Fast R-CNN came Faster R-CNN. The idea behind Faster R-CNN was

to share the computation of the region proposals with the detector, by creating a

region proposal network (RPN) where all but the last few layers are shared with the

detector. The RPN then returns region proposals and objectness scores, whether or

not the region contains an object, to the detector. The RPN uses a sliding window

across a feature map and for each location it predicts a certain number of regions and

objectness scores.

This combination of RPN and detection layers led to a substantial speed up for an

entire object detection pipeline. This created one of the first CNN object detection

methods that could run in real time running at 5 fps on a GPU while also scoring

state of the art accuracy on the PASCAL VOC 2007 111] and PASCAL VOC 2012

[131.

Another architecture similar to Faster R-CNN by Dai et al. was the Region-based

fully connected networks or R-FCN [5]. Their idea was to share more computation
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between the region proposal network and the detector. The last convolutional layers

of the network create a set of position sensitive score maps for each class. A position

sensitive region of interest (RoI) pooling layer comes after. These scores could then

be used to classify a region and refine the bounding box. This method was able to

achieve an inference time of 170ms or roughly 5.88 fps and an mAP of 83.6% on the

VOC 2007 set [11].

Many of these proposed CNN-based object detectors had two parts, region pro-

posals and classification. Other methods have more of a unified implementation. One

such method is the You Only Look Once (YOLO) 156] object detector.

YOLO presented by Joseph Redmon et al. in [56] is a neural network architecture

that has a unified bounding box proposal and object recognition pipeline. YOLO

does this by representing the object detection problem as a regression problem. This

method is able to look at the entire image at once, as opposed to sliding window

methods. For bounding box proposals, looking at the entire images gives it the ability

to take in contextual information. Compared to the R-CNN type object detectors,

YOLO is very fast running at a reported 45 fps.

2.3 Object Detection Evaluation

In order to determine which object detection method to use for a particular task, it

is important to have a way to compare them. One of the popular object detection

benchmarks is the PASCAL Visual Object Classes (VOC) Challenge [15]. The PAS-

CAL VOC Challenge provides a way to evaluate and compare the accuracy of different

object detectors. The challenge provides annotated training and testing images for 20

different classes. Using the same data for training and testing across different meth-

ods of object detectors offers a more even playing field for comparison. The PASCAL

VOC challenge evaluates object detectors using Average Precision (AP). AP is found

by taking the average of the measured precision of the method over different recall

levels. Recall measures how many true positive detections were found out of the total

above a rank and precision measures the proportion of true positive detections over
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all the detections made above a rank. A detection is deemed a true positive if the

ratio of the overlap area, the area shared by the detection bounding box and the

ground truth bounding box, to the total area of both bounding boxes is above 0.5.

While the evaluation method used in the PASCAL VOC Challenge is widely used

and useful when comparing object detectors, it does not measure other useful metrics

like object detector runtime. Another detector evaluation by Dollir et al. [9] looked at

different pedestrian detectors in street settings. Although they were only measuring

the performance of the methods detecting one class, they looked at more metrics

geared towards deployment performance. The detectors were tested on data recorded

by driving cars around a city. They split the annotation of their data by the distance

of the pedestrian from the car using three levels: near, medium, and far. This way

they could do an in-depth evaluation on the detector performance at these different

distance levels. Instead of using AP, the authors used the log-average miss rate as their

metric which averages the miss rate of the detector at nine different false positives

per image rates. This was also an evaluation that looked at the runtime performance

of the detectors.

A recent evaluation of state of the art CNN object detectors by Huang et al.

[28] was a very thorough analysis of several different object detection architectures

and feature extractors. The authors tested Faster R-CNN, R-FCN, and the Single

Shot MultiBox Detector (SSD) with different combinations of feature extractors. The

tested feature extractors included VGG [64], Residual Networks [23], and MobileNets

[271. This analysis not only evaluated the object detectors on accuracy, but also GPU

time, memory usage, and FLOPs or multiply-adds. In order to do this evaluation they

had to implement many of the network combinations themselves in the deep learning

framework Tensorflow [1]. This evaluation most closely resembled the evaluation done

in this thesis. However, their evaluation was not tested across different hardware and

they also did not include the YOLOv2 [57] network in their evaluation.
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2.4 Object Tracking

When object detection is used for real-world applications, the input data is a stream

of images rather than on disconnected images. This is why we chose to incorporate

an object tracker into our temporal object detector since this is the domain in which

they function. One popular tracking method was Kernelized Correlation Filters or

KCF [25] from Henriques et al.

The authors break down the problem of tracking objects in images as trying to

train a classifier on a training target image and then finding the target in the next

frame by successfully being able to separate it from the background. The classifier can

then be updated with the new target model. A key insight of the KCF tracker is that

they are able to exploit a property of circulant matrices that allow them to quickly

and efficiently train on thousands of translated samples. Their tracker performs well

and can be used on either raw pixels or on HOG 16] features mentioned earlier. Using

raw pixels they achieve a mean precision of 56% and with HOG features they achieve

an even better result of 73.2%. In addition to the high accuracy, this method is also

very fast. With raw pixels the method can run at an average of 278 frames per second

and using HOG features it can run at an average of 292 frames per second.

Another tracking algorithm, from Comaniciu et al. [4], also focuses on target

representation and correlation. Their goal is to optimize a smooth similarity function

to localize the target in a new frame. They do this by applying a spatial isotropic

kernel to the target object in a frame. The object representation is a histogram of

features, which for example could be color. The isotropic kernel weights the pixels in

the center of the target region more then the edges since those pixels are the most

representative of the target. They then maximize a likelihood score derived from the

Bhattacharyya coefficient to localize the target from a search region in a following

frame. The method achieves a frame rate of 150 frames per second on a 1GHz PC.

Somewhat of an alternative to using a single representation of the target object,

Reliable Patch Trackers (RPT) from Zhu et al. [39] uses a particle filter to weight

different trackable regions of an object. The authors propose using these regions to
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track their trajectories and separate them from the image background. Although

a robust method, achieving an intersection over union over 0.5 on 38 of 51 videos

compared to KCF [251, which only achieved this on 31, this method only runs at an

average of 4.2 frames per second.

Similar to breakthroughs in object detection, the use of convolutional neural net-

works has also made progress for object tracking. One such tracker by Ma et al.

[44] learns correlation filters over the features extracted from each level of the feature

maps. They use a hierarchical view of the CNN layers in a network in that the last

layer contains semantic information, which is more invariant to object deformation,

while the previous layers contain more spatial information for the object. Using the

correlation filters on this hierarchical structure of identification to spatial localization

they can track a desired object. While a fairly robust tracker in terms of its accuracy

on tracking datasets, it is slower than other trackers like KCF running at 10.7 frames

per second while using a GeForce Titan GPU for forward passes of the CNN.

Akin to the hierarchical method, the fully convolutional network based tracker of

FCNT [75] also exploits the differences in feature map layers to track objects. They

switch between using two different layers of the network to track the target object

depending on the presence of distractors or deformations. Again, like the hierarchical

method this method is robust, but is only capable of running at 3 frames per second

using a Titan GPU.

Although the previous methods were relatively slow, some CNN based trackers

can run at much higher frame rates. Two related trackers, SiamFC [21 and CFNet [731

by Jack Valmadre and Luca Bertinetto depart from the previous CNN-based trackers

by using a two input CNN, or siamese network, for the target and search region,

trained to find the similarity between two image patches. This shift in methodologies

led to higher frame rates while maintaining relatively high accuracy. Both methods

can run between 58 and 86 frames per second. CFNet is based on SiamFC, but they

are able to incorporate a correlation filter as part of one side of the siamese network

and train both the filter and network offline. This allows them to use a shallower

network than just the siamese network and maintain a similar accuracy.
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2.5 Object Detection in Video

Some methods address object detection in video directly. One of the challenges in

the ImageNet Large Scale Visual Recognition Challenge 2015 [61] is to detect objects

in video. One method that tackles this problem is Seq-NMS proposed by Han et al.

122]. This is a simple add-on to existing object detection methods where detections

are linked over time based on their overlap with a detection with a previous frame.

They create a sequence of detections over an entire video and reassign scores across

the sequence. In this way they can maintain some temporal information in the final

detections. This is similar to the method we use, however Seq-NMS can reason over

an entire video sequence and it only uses an overlap criteria for object association.

The winner of the object detection in video challenge, T-CNN created by Kang et

al. [35] uses both single frame object detection methods and tracking methods in a

single pipeline. Their method consists of using two still image detection networks. The

detections produced from these detectors are then sorted based on score to suppress

low scoring classes that are unlikely to be in the video sequence. They use object

motion to propagate detections from previous to subsequent frames and trackers are

applied to create tubelets across the video clip. These are then re-scored based on

the detection scores. Finally, the proposals from each detector are combined by non-

maximum suppression to produce the final result.

Another class of methods that also tackle the object detection in video challenge

use tubelet proposals. These include "Object Detection from Video Tubelets with

Convolutional Neural Networks," by Kang et al. [361, "Object Detection in Videos

with Tubelet Proposal Networks" by Kang and Li et al. 134], and "Object Detection

in Videos by Short and Long Range Object Linking" by Tang et al. [65]. Tubelets

are linked candidate detections across video frames. The work by Kang et al. uses a

three step tubelet proposal pipeline that consists of object proposals, object proposal

scoring, and tracking of high scoring proposals. The authors then perturb, score,

and run a non-maximum suppression step for each detection generated by the tubelet

proposal pipeline. The last step is to use a Temporal Convolutional Network that
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takes in as input information from the tubelet such as detection and tracking score

and it outputs a probability of whether or not the proposed detection overlaps a

ground truth detection. In this way they can capture more temporal information

over an entire tubelet.

Both the work by Kang and Li et al. and Tang et al. use neural network based

tubelet proposals. Kang and Li et al. combine a tubelet proposal network that gen-

erates tubelets across the video taking into account motion learned from training. A

Long Short-Term Memory network then generates object confidences using informa-

tion from the entire video. Tang et al. on the other hand, use a cuboid proposal

network that creates a bounding box extending over several frames containing an

object where a tubelet is generated and theses tubelets are then linked across video

segments.

Detect and Track or D&T is a method created by Feichtenhofer et al. [16] that

brings together advances in CNN object detection and object tracking. D&T builds

on top of the R-FCN [5] detection network and combine it with a correlation layer

and ROI tracking. Feature maps of different scales are used by the correlation layer

to find the movement of the object from one frame another. In this way they can

both detect and track objects in a unified manner. This method scores well on the

detection task with an online version running at roughly 7.9 frames per second and

achieving a mean average precision of around 79%.

The previous methods assume that the entire video sequence is available, as is the

case on the object detection in video challenge, however another method created by

Galteri et al. [18] only uses a previous frame to help locate object from one frame

to another. The method uses a feed back loop where information from the previous

frame can be fed into the current. Region proposals from the previous frame are fed

back into the current frame and they rescore the current proposed regions based on

their overlap. This has a dual effect of helping to find previously detected images and

narrowing down the proposals in a current frame. Although this is a fairly simple

method to incorporate temporal information it does require that the baseline detector

uses region proposals in its detection pipeline.
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A method used for deployed object detection was developed by Pillai and Leonard

as described in [52]. The method assumes that the robot builds a semi-dense recon-

struction of the world it views. They partition the semi-dense reconstruction using

spatial and edge color information. Once the scene is segmented, they can use this

as object proposals for object recognition by projecting the segmentation into the

camera frames. The object can then be classified using a bag-of-visual-words method

and aggregated over multiple frames. This was shown to be a fairly robust method

for object detection. It does however assume that the robot is able to create a good

reconstruction of the world around it. Many times this type of reliable information

is not available to the robot.
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Chapter 3

Convolutional Neural Network

Object Detector Evaluation

In this chapter we will give an overview of the evaluated object detectors and their

runtime performance. The first section will give a summary of the methodology for

the evaluated detectors: You Only Look Once v2 (YOLOv2), Tiny YOLOv2, the

Single Shot MultiBox Detector (SSD), and a variant of SSD called MobileNetSSD.

The second section will discuss the tested hardware: a desktop setup with an NVIDIA

TitanX GPU and Intel Core i7-6700K CPU, a NVIDIA Jetson TX1, a NVIDIA Jetson

TX2, an Intel Movidius Neural Compute Stick, and an Intel NUC Skull Canyon.

The stated hardware specifications were reported by the respective maker or directly

queried from the device unless otherwise noted.

The main goals for selecting an object detector were to minimize computation time

and load as well as maintain an acceptable level of detection accuracy. The object

detection network needed to run on size-, weight-, and power-constrained hardware

onboard a micro aerial vehicle (MAV) along with other processes for autonomous

estimation, planning, and control.

Specifically, the first requirement for the object detector was that it had to run

at a minimum of 2 frames per second (fps) on the deployed hardware. Since the

MAV is moving through the environment, it might miss important objects in the

scene if the frame rate of the object detector were slower. While 2 fps was set as
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Table 3.1: Object Detector Requirements
Specifications Objectives

Frames Per Second > 2 fps
GPU Usage < 70%

Classes > 5 classes (People, Cars, Doors, Windows, Dumpsters, etc) J

the minimum, faster is better. To successfully localize an object, the vehicle would

need 3-5 detections of that object. The speed of the vehicle, distance to the object,

and layout of the environment influence how long and at what viewpoints objects

are seen. The faster the detector, the higher the chance the vehicle will have more

detections for localization.

The second main requirement was that the object detection network could only

take up roughly 70% of the GPU to allow enough room for other processes to function.

The desktop setup and Jetsons were able to run with CUDA from NVIDIA, a pro-

gramming extension framework that allows processes to utilize NVIDIA GPUs, while

the Skull Canyon utilized OpenCL, a similar framework for heterogeneous processor

program execution for GPU utilization. These differences affected the performance

of the networks on the respective hardware.

The third requirement was accuracy. This was a difficult requirement to determine

precisely since the vehicle would be flying through varying environments. As an

initial benchmark, the trained networks were judged on their mean Average Precision

(mAP) on the PASCAL VOC 2007 test set [15]. The final network was evaluated by

its average precision on the test set of its training data. This number was then broken

down by object class to ascertain which objects the network struggled to detect.

The last requirement for the detector was that it needed to be able to detect > 5

classes. All the tested object detectors could be trained to detect at least 20 classes,

so this was an easy requirement to meet. A break down of the requirements can be

found in Table 3.1.
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3.1 You Only Look Once v2 (YOLOv2)

YOLOv2 157] is a successor object detection network to the original YOLO [56] created

by Joseph Redmon et al. The YOLOv2 network was made with speed in mind,

making it a natural network to evaluate on our hardware. YOLOv2 made several

improvements to the first YOLO pulling together successes of other object detection

networks and the author's own innovations.

The YOLOv2 network architecture consists of a base classification network of 18

convolution layers and 5 maxpooling layers followed by 3 3 x 3 convolution layers

and two 1 x 1. As opposed to YOLO, YOLOv2 uses batch normalization [32] after

every convolution layer. This helps to normalize the input to each layer and regularize.

Batch normalization also helps to prevent overfitting so the authors decided to remove

the dropout layers from the network.

Another change from YOLO, is that YOLOv2 uses anchor boxes, or priors, over

bounding box shapes and sizes, similar to Faster R-CNN [58] and SSD [42]. Using

anchor boxes slightly decreases the mAP of the network from 69.5 to 69.2, but the

recall shows a larger increase going from 81% to 88%. To incorporate the anchor

boxes, YOLOv2 has a nominal input size of 416 x 416 so that the output feature

map is 13 x 13. Having an odd-sized feature map ensures that there is an anchor box

in the center of the image where, in many datasets, an object is located. Although

anchor boxes were similarly used in other methods, the authors of YOLOv2 made

some notable differences. For one, Faster R-CNN and SSD use hand-picked anchor

boxes, whereas YOLOv2 finds its anchor boxes by running k-means clustering on the

training data ground truth boxes. The clustering is done using the distance function

in Equation 3.1, where d is the calculated distance and IOU is the intersection over

union. The intersection over union is the ratio of the area of the intersecting region

between two bounding boxes and the total area of the intersecting bounding boxes as

shown in Figure 3-1. This distance formulation creates equal weighting for small and

large boxes. The authors choose k = 5 for the k-means clustering. They show that

with k = 5, the network achieves similar performance to methods that use 9 anchor
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IOU =

Figure 3-1: The intersection over union between two bounding boxes is found by
dividing the area of the intersecting region of the boxes by the total area of the
boxes.

boxes. Additionally, using anchor boxes causes the spatial, and class and objectness

predictions to be separated. For the case of both YOLO and YOLOv2, objectness

is the IOU of the predicted bounding box and the ground truth bounding box and

the class prediction is given by the conditional probability of an object of that class

residing in the given bounding box given that the bounding box contains an object.

d(box, centroid) = 1 - IOU(box, centroid) (3.1)

An additional difference between the implementations of Faster R-CNN and SSD,

and YOLOv2, is that instead of predicting anchor box offsets, YOLOv2 predicts

bounding box coordinates relative to the anchor box cell location. Also, the bounding

box size is made relative to the image size. This constrains the ground truth boxes to

be within 0 and 1 and the network output is also constrained to be between 0 and 1

using a logistic activation. The detection output is given by the following equations:

bX = cr(px) + ax (3.2)
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Figure 3-2: Anchor boxes, in green, are used as priors for predicting bounding boxes.
The equations for producing the bounding box coordinates for YOLOv2 and SSD are
shown on the right.

by = o-(py) + ay (3.3)

b = awePw (3.4)

bh = ahePh (3.5)

Pr(object) -IOU(b, object) = -(p,) (3.6)

where b, and by are the centers of the predicted bounding box, bw and bh are the

width and height of the predicted bounding box, a, and ay are the image coordinate

centers of the anchor box center, aw and ah are the anchor box's width and height,

b is the predicted bounding box, a is the logistic activation function, and px, py, pw,

Ph, and p0 are the outputs of the network. An example of anchor boxes on a feature

map is shown in Figure 3-2.
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YOLOv2 uses a passthrough layer to incorporate a feature map layer with a

resolution of 26 x 26 to help find objects of different sizes. The passthrough layer

stacks adjacent features into different channels matching the 13 x 13 size. The base

feature extractor, Darknet-19, requires almost a fourth of the floating point operations

than the VGG-16 [64] base network used by Faster R-CNN at a slight cost of 2%

accuracy on ImageNet.

YOLOv2 also has a useful feature in that it is trained to work with input images

of different sizes. This adaptability of input size allows trade-off between speed and

accuracy. The inference time decreases with lower resolution images at the cost

of some accuracy. The authors train YOLO2 on images ranging from 320 x 320 to

608 x 608 with multiples of 32 in between. In this evaluation, we only tested YOLOv2

at its default 416 x 416 input size.

Another feature not explored in our evaluation of the network, is that when

YOLOv2 is incorporated with a variable loss function and a tree version of Word-

Net called WordTree, the network can be trained on both detection and classification

datasets. The training process uses a hierarchical tree of object classes and only

back-propagates the classification loss when the input to the network is from a classi-

fication dataset and back-propagating the full loss when the input is from a detection

dataset.

3.2 Tiny YOLO

Tiny YOLO is a faster version of the YOLOv2 network. It gains this speed at a cost

to its accuracy, decreasing from a reported 76.8 mAP for YOLOv2 to 57.1 mAP on

the 2007 test set [541. Tiny YOLO is derived from the Darknet reference network [55].

The Darknet reference network has similar top 1 and top 5 ImageNet classification as

the AlexNet network [38] with only 1/10 of the parameters. Tiny YOLO uses the first

seven convolutional layers and six max pooling layers from the Darknet network. This

is much shallower compared to the 18 layers of the base network used by YOLOv2.

Additionally, Tiny YOLO only has one added 3 x 3 convolutional layer followed by
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a 1 x 1 convolutional layer compared the YOLOv2's three added 3 x 3 layers. These

reductions in size make Tiny YOLO fast, but also less accurate. Despite the drop

in accuracy, this lightweight network made a good candidate for our system and we

chose to include it in our evaluation.

3.3 The Single Shot MultiBox Detector (SSD)

The other network architecture we evaluated was the Single Shot MultiBox Detector

also known as SSD created by Liu et al. [42]. SSD, like YOLO and YOLOv2, was

designed to be fast. SSD uses a base classification network followed by convolution

layers of different sizes for multiscale detections. SSD uses these added layers, whereas

YOLOv2 has a passthrough layer to use features from a previous feature map.

Predictions are made from these added layers by applying a 3 x 3 x p kernel,

where p is the number of channels at each cell in the feature layer. Again, like Faster

R-CNN and YOLOv2, SSD uses anchor boxes of different scales and aspect ratios

at each feature map cell. The network then predicts anchor box offsets, as opposed

to YOLOv2's cell-relative bounding box coordinates, and class confidence scores for

every anchor box in each cell. The class scores for each anchor box correspond to

confidence of the presence of that class in the anchor box. Along with the four

bounding box offsets, this is a total of (c + 4)k outputs for each cell where k is

the number of anchor boxes per cell. The equations for finding the bounding box

coordinates are given by:

bX = px aw + ax (3.7)

by = P- ah + ay (3.8)

bw = awePw (3.9)
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bh= ahePh (3.10)

where b. and by are the centers of the predicted bounding box, b, and bh are the

width and height of the predicted bounding box, a, and ay are the image coordinate

centers of the anchor box center, aw and ah are the anchor box's width and height, b

is the predicted bounding box, and p2, py, pw, and Ph are the outputs of the network.

A comparison of the network outputs is shown in Figure 3-2.

The anchor box scale is chosen to be different for each size feature layer so that

each layer learns to correspond with differently scaled objects in the image. The

aspect ratios of the anchor boxes are selected to be 1, 2, 3, 1, and 1. Equation 3.11

sets the scale, Sk, for the anchor boxes of feature layer m:

Sk = Smin smax - min (k - 1), k E [1, m (3.11)

where smin and smax are set to be 0.2 and 0.9 respectively. A sixth anchor box is

also created with an aspect ratio of 1 and scale according to Equation 3.12.

= S/g (3.12)
s' = sksk+1 -

The width and height of the anchor boxes are given by Equations 3.13 and 3.14

where a is an aspect ratio from the set above.

Wk=kf (3.13)

h a Sk(3.14)k Va

Training SSD involves matching ground truth bounding boxes with anchor boxes.

First, the anchor box that has the highest IOU with a ground truth bounding box is

found. Then, all other anchor boxes with an IOU greater than 0.5 are also matched

to a given ground truth bounding box. Adding additional matching anchor boxes

helps to simplify what the network has to learn and the network can predict more
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scores for these overlapping bounding boxes.

The loss function for SSD is similar to the loss function from the MultiBox detector

[10], but includes more classes. The high level loss function is a weighted combination

of a confidence loss, Leonf, and a localization loss, Llc. The loss function is shown in

Equation 3.15 where x is 1 if an anchor box is matched with a ground truth and is

0 otherwise. c is the class confidence, 1 is the predicted bounding box, g is a ground

truth box, and a is a weight assigned to the localization loss. The confidence loss is

a softmax loss over the class confidences and the localization loss is a smooth Li loss

as in [201.

L(x, c, l, g) = (Lconf (xc) + aLlc (x, l, g)) (3.15)

Since the anchor boxes tile the entirety of the feature maps, there are a lot of

negative examples presented to the network. To help alleviate this bias, the authors

set the ratio between negative and positive examples to be 3:1 by ordering the anchor

boxes from highest confidence loss to lowest confidence loss and they pick the highest

boxes until they reach the desired ratio.

During training, the data shown to the network is augmented to help it generalize.

The data is augmented by switching between using the original image, sampling a

patch of the image with a minimum IOU with an object, and randomly sampling a

patch from the image. To constrain the augmentation patches range in scale from 0.1

to 1 and the aspect ratio is kept between 1 and 2. On top of these augmentations,2

some of the images are also flipped horizontally and undergo photometric distortions.

The standard version of SSD uses VGG-16 [64] as its base network feature ex-

tractor. VGG-16 is a 16-layer cousin of a classification network that won the 2014

ImageNet Challenge. The idea behind the design of the VGG networks is that they

use 3 x 3 filters, which are small but also still capture the concepts of up, down,

left, and right. They then stack these filters with max pooling layers and end with

three fully connected layers. The authors of SSD make a few changes to the origi-

nal VGG-16 network to incorporate it into the detector by changing two of the fully
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connected layers to convolution layers and removing the dropout layers and the last

fully connected layer.

3.3.1 MobileNetSSD

While the authors of SSD used VGG-16 as their feature extractor, advancements in

CNN network architectures have created faster and more efficient networks. One such

development was the creation of MobileNets by Howard et al. 1271 for the purpose

of lightweight applications. The core of MobileNets is the use of depthwise separable

convolution layers. Using depthwise separable convolutions is not a particularly new

idea and the authors note that it was first introduced in 1631. Depthwise separable

convolution is a type of factorization of standard convolution layers requiring less

computation and parameters. The factorization divides the standard convolution

operation done by a convolution layer into two steps by first applying the depthwise

filters to each channel and then combining the output.

The factorization is carried out by breaking apart the standard Dk x Dk x M filter,

where Dk is the filter size and M is the input channel size, used to create each new

layer of the feature map output. The filter is broken into M number of Dk x Dk x 1

filters which are applied to each channel of the input. The second piece is a 1 x 1 x M

filter applied to the output of the M number of Dk x Dk x 1 filters effectively creating

a linear combination of the output. For a full convolutional layer of N number of

filters, this turns into M number of Dk x Dk x 1 filters followed by N number of

1 x 1 x M filters, also known as pointwise convolutions. Each set of filters is its own

layer followed by a batchnorm layer and a ReLU nonlinearity layer. This factorization

can be seen in Figure 3-3.

The savings of this factorization can be easily calculated as shown by Howard

et al. 127]. The computational cost of a standard convolutional layer is shown in

Equation 3.16 where Cstandard is the cost of a standard convolutional layer and Df is

the size of the input and output assuming a stride of 1.

Cstandard = Dk - Dk . M - N - Df - Df (3.16)
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The computational cost of a depthwise separable convolutional layer is given by

Equation 3.17 where cdw is the cost of a depthwise separable convolutional layer.

c,, = Dk - D -M-Df -Df +M-N-Df -Df (3.17)

In Equation 3.17, Dk -Dk -M -Df -Df is the cost of the depthwise convolution and

M -N -Df -Df is the cost of the N number of 1 x 1 x M convolutions. By taking the

ratio of the cost of the depthwise separable convolutions and the full convolutions we

can find the computational savings of this factorization shown below:

Dk - D -M-D -Df +M-NDfD -D
Dk Dk M-N-Df-Df

(3.18)

which can be simplified to:

1 1

+ Dk

(3.19)

The authors compared several MobileNet classifiers to other high performing clas-

sifiers like VGG-16. In addition to making a standard size classifier, the authors also
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tested shallower and skinnier networks. When compared to VGG-16, the standard

MobileNet classifier network uses 569 million multiply-add operations while VGG-16

uses 15300 million. Additionally, the MobileNet network uses 4.2 million parame-

ters while VGG-16 uses 138 million. MobileNet reduces the multiply-add operations

by more than - and reduces the parameters by '. The cost to accuracy for using26 3

fewer parameters is only 0.9% with VGG-16 scoring 71.5% accuracy on ImageNet and

MobileNet scoring 70.6%.

The standard size MobileNet architecture uses a full sized convolutional layer for

the first layer followed by alternating depthwise convolutions and pointwise convolu-

tions. There are a total of nine pairs of depthwise and pointwise convolutions followed

by an average pooling layer, a fully connected layer, and then a softmax layer. To

incorporate this network into the SSD architecture, the pooling layer, fully connected

layer, and softmax layer were removed. Then four extra depthwise separable layers

were added.

3.4 Test Setup

Each of the four object detection networks described in this chapter were tested across

five hardware platforms: a full desktop setup with a NVIDIA TitanX GPU and Intel

Core i7-6700K CPU, a NVIDIA Jetson TX1, a NVIDIA Jetson TX2, an Intel Movid-

ius Neural Compute Stick, and an Intel NUC Skull Canyon. The desktop setup and

Jetsons had NVIDIA GPUs allowing the use of the NVIDIA CUDA framework to ex-

ploit GPU computation. The original networks from the authors' Github repositories

and website 154, 41, 3] were used for testing on the desktop and Jetsons because they

were implemented on platforms that used CUDA. To be used by the Intel Movidius

Stick, the networks had to be converted to a special graph format. Caffe implementa-

tions of all the networks were used for the evaluation done on the NUC since it does

not have an NVIDIA GPU. All the networks were evaluated using weights trained on

the PASCAL VOC 2007 and 2012 training sets to detect 20 classes.

We evaluated each of the networks on its runtime frame rate, GPU usage, CPU
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Table 3.2: Intel Core i7-6700K CPU Specifications
Cores 4
Process Base Frequency 4.00 GHz

Table 3.3: NVIDIA Titan X GPU Specifications
TFLOPs 11
CUDA Cores 3584
Base Clock Rate 1417 MHz

usage, and memory usage. Each network was tested in its GPU configuration and

its CPU-only configuration. The frame rate timing on all the platforms except for

the NUC included the pre- and post-processing steps for the detector consisting of

image resizing and normalization, raw network output to detection bounding boxes,

and non-maximum suppression. For timing, we used the same timer as the authors

of GOTURN [24]. Additionally, the evaluations on all the hardware, except for the

NUC, processed images from a webcam through the network. The evaluation on the

NUC used the Caffe timing tool, which does not include the pre- and post-processing

steps.

The following sections will describe the testing setup for each platform and the

methods used for gathering the evaluation data. The final section will give an overview

of the cumulative results.

3.5 NVIDIA TitanX GPU and Intel Core i7-6700K

CPU Network Evaluation

The full desktop machine we ran our initial evaluation on was able to utilize a NVIDIA

TitanX GPU and an Intel Core i7-6700K CPU. The specifications for each are shown

in Tables 3.2 and 3.3. This setup used the CUDA toolkit version 8.0 from NVIDIA

[49].

We used this setup to be our baseline performance for the networks. The hard-

ware most closely matched those described in the networks' papers. Although this

hardware setup was not deployable for our application, it provided what we might
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expect to be close to peak performance. To test YOLOv2 and Tiny YOLO, we used

the original implementation from the author [54]. This implementation was written

in C using the author's own deep learning framework called Darknet [55]. The eval-

uation used the author's detection demonstration, which feeds the network images

from a live video stream and shows the detection results. We used a Play Station Eye

camera to provide the video.

The results for the SSD networks were collected in a similar way to the YOLO

networks. The same type of demonstration was made that would feed the networks

images from a video stream captured by the Play Station Eye camera. The demo was

written in C++ and the networks were implemented using the Caffe deep learning

framework using the C++ API.

Across the four networks evaluated on this setup, we collected results for the

networks' frame rate in frames per second (fps), GPU usage as a percentage, GPU

memory usage in MiB, CPU usage as a percentage, and CPU memory as a percentage.

The frame rate was recorded by taking the average fps of the network over one minute

of runtime. The fps was recorded after the network had already processed 30 frames in

order to discard any extraneous initial inference rates. The GPU usage was recorded

using the nvidia-smi tool [47]. The GPU usage was queried approximately every 15

seconds for five samples and then averaged to create the final usage percentage. The

GPU memory usage was recorded the same way as the GPU usage. CPU usage and

CPU memory usage were recorded using the htop tool [261 in the same way as the

GPU measurements in 15 second intervals. For GPU and CPU measurements, the

network was allowed to "warm up" for more than 10 seconds to remove any initial

transient values. Any reported values above 100% for the CPU usage means that

more than one core is being used. The results of the evaluation on this setup are

shown in Tables 3.4 and 3.5. Table 3.4 shows the results when the network is able to

utilize the GPU and Table 3.5 shows the results when the network is only allowed to

use the CPU.
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Table 3.4: Desktop GPU Network Evaluation Results
Network FPS GPU Usage] GPU Memory Usage [MiB] CPU Usage CPU Memory Usage

YOLOv2 32.5 32.80% 1015 116.80% 3.50%

Tiny YOLO 31.9 18.20% 553 113.60% 2.70%

SSD 45.6 34.40% 1234 52.50% 2.10%

MobileNetSSD 40 32.40% 532 50.60% 1.70%

Table 3.5: Desktop CPU Network Evaluation Results

Network FPS CPU Usage CPU Memory Usage

YOLOv2 0.3 100.00% 1.70%

Tiny YOLO 1 101.20% 0.80%

SSD 0.4 99.28% 4.30%

MobileNetSSD 6.5 84.86% 2.10%

The baseline results are not exactly what was expected. From their respective

papers we would have expected YOLOv2 and Tiny YOLO to outmatch the default

SSD network in terms of speed, but the SSD network had the highest frame rate

on this setup. This discrepancy of reported tested frame rates can be explained

by the GPU usage of each network. None of the networks used the full GPU, and

SSD used the most amount of the GPU at 34.40%. Had the other networks been

utilizing more of the GPU, it would have been expected that they could more closely

reach their reported speeds. The hardware for this setup was kept at its default

values for this evaluation and was not optimized. Another result to note is the GPU

memory usage for each network. As expected, the smallest networks, Tiny YOLO

and MobileNetSSD, used the least amount of memory and SSD used the most.

Running the networks in CPU-only mode was also illuminating. Here, Mo-

bileNetSSD outperformed the other networks in frame rate and CPU usage. Mo-

bileNetSSD was over 16x faster than the default SSD and was over 6x faster than

Tiny YOLO. Additionally, MobileNetSSD used the least amount of the CPU.
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3.6 NVIDIA Jetson TX1 Network Evaluation

After the initial baseline was taken with the full desktop setup, we tested the networks

on a NVIDIA Jetson TX1. The Jetson TX1, albeit small, is still a very capable

computing device popular for applications with size, weight, and power constraints.

The size of the TX1 itself measures a mere 50mmx87mm. We tested the Jetson

TX1 using its development board. An image of the testing setup is shown in Figure

3-4. The Jetson TX1 specifications are shown in Tables 3.6 and 3.7. The TX1 has

a NVIDIA Maxwell GPU and a quad-core ARM Cortex-A57 CPU. Additionally, the

TX1 we used was flashed with the NVIDIA Jetpack version 3.2 [461, which comes

with the CUDA toolkit version 9.0 [45]. The networks were tested using the same

demo methods used on the previous full setup.

Figure 3-4: The Jetson TX1 setup with development board and camera. The Jetson

TX1 was tested with a Logitech webcam.

Table 3.6: QUAD ARM CPU Specifications

Cores 4

Process Base Frequency 1.73 GHz
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Table 3.7: Maxwell GPU Specifications

TFLOPs 1

CUDA Cores 256

Max Clock Rate 998 MHz

The Jetson TX1 is a small, but still very capable computing device. However, it is

still much smaller than its full-sized Titan X cousin. It has 1 the number of CUDA

cores and achieves 11x fewer TFLOPs. Additionally, its CPU cores' clock rates are

more than 2x slower than the desktop setup.

We gathered similar statistics from the desktop setup on the TX1 with a few

additions. These include the network frame rate (fps), the GPU usage as a percentage,

the GPU frequency during runtime, the RAM usage, CPU usage as a percentage, the

CPU frequency, and the average usage for each CPU core. The networks were also

run and tested in their CPU mode configurations. The results were taken using the

tegrastats function 1481 on the TX1. The networks were again allowed a warm up

period before the results were taken. The data was then taken across 60 seconds with

the device being queried roughly every second, and each data point was averaged

across the 60 second interval. The results of the network evaluation on the Jetson

TX1 are shown in Tables 3.8, 3.9, and 3.10.

Table 3.8: Jetson TX1 GPU Network Evaluation Results
Network FPS I GPU Usage GPU Frequency [MHz] I RAM Usage [MBI [Average CPU Usage CPU ERequency [MHz]

YOLOv2 4.5 91.17% 998 2767.73 36.35% 1734

Tiny YOLO 13.3 88.35% 998 2213.02 52.42% 1734

SSD 10.34 70.25% 964.67 2479 14.03% 311.1

MobileNetSSD 6.5 50.72% 587.1 1849 30.64% 1465.4

53



Table 3.9: Jetson TX1 GPU Network Evaluation Results (CPU Core Usage)

Network CPU 1 1CPU 2 CPU 3 CPU 4

YOLOv2 42.98% 37.62% 35.27% 29.52%

Tiny YOLO 55.98% 53.43% 47.38% 52.88%

SSD 13.15% 10.60% 9.52% 22.85%

MobileNetSSD 37.87% 34.57% 25.97% 24.17%

Table 3.10: Jetson TX1 CPU Network Evaluation Results
Network FPS CPU UsageI CPU Frequency [MHz]I CPU 1 CPU 2 1fCPU 3 CPU 4

YOLOv2 0.10 26.34% 1734 43.53% 10.35% 17.53% 33.95%

Tiny YOLO 0.20 26.02% 1734 23.85% 30.73% 2.78% 46.72%

SSD 0.095 99.83% 1734 100.00% 100.00% 99.97% 99.37%

MobileNetSSD 0.84 98.93% 1734 97.02% 99.98% 100.00% 98.73%

Utilizing the GPU, the Tiny YOLO network ran at the highest frame rate of 13.3

fps; the next fastest was the default SSD network. The least demanding network,

however, was MobileNetSSD, which only consumed about 50% of the GPU even while

the GPU was not operating at its highest clock rate. Additionally, MobileNetSSD

used the least amount of RAM to run.

In CPU-mode, MobileNetSSD performed the best. Using the Jetson's CPUs, it

was able to achieve a frame rate of 0.84 fps. One difference to note between the Caffe

framework and Darknet, is that YOLO and Tiny YOLO (both implemented using

Darknet) only used one core at a time while the Caffe implementations of SSD and

MobileNetSSD would use all the available CPU cores.

3.7 NVIDIA Jetson TX2 Network Evaluation

After testing on the Jetson TX1, we tested the next compact computing device de-

veloped by NVIDIA, the Jetson TX2. An image of the TX2 is shown in Figure 3-5.

Instead of using a development board as we had done with the TX1, we used the

Connect Tech Orbitty carrier board with the TX2. This configuration shows off the
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compact size of the TX2. The TX2 uses a Pascal GPU and a Dual Denver CPU and

a Quad ARM CPU for a total of six CPU cores. The TX2 also came pre-flashed using

Jetpack version 3.11501, which uses the CUDA toolkit 8.0. The CPU and GPU spec-

ifications are shown in Tables 3.11 and 3.12. NVIDIA is less specific on the TFLOP

capability of the TX2, but NVIDIA does report that it can do >1 TFLOP, making it

more powerful than the TX1. The clock rates for both the CPUs and GPU are also

greater than the TX1. In addition, the TX2 has two more CPU cores.

7=

Figure 3-5: Jetson TX2 with Connect Tech Orbitty Carrier Board. The TX2 was

also tested with the Logitech webcam shown on the left.

Table 3.11: QUAD ARM and Dual Denver CPU Specifications

Cores 6

Process Base Frequency 2.0 GHz

Table 3.12: Pascal GPU Specifications

TFLOPs >1

CUDA Cores 256

Max Clock Rate 1300 MHz
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The same statistics for the networks were taken with the TX2, network frame

rate, GPU usage, GPU operating frequency, RAM usage, CPU usage, and CPU

operating frequency. Additionally for the TX2, we tested the networks using the

TX2's jetson_clocks function, which maxes out the GPU and CPU clocks. Both of

these results are shown below. We gathered these values using the same method used

on the TX1.

Table 3.13: Jetson TX2 GPU Network Evaluation Results
Network - FPS GPU Usage GPU Frequency [MHz] RAM Usage [MB] I Average CPU Usage CPU Frequency [MHz]

YOLOv2 6.1 95.60% 1132.3 3283.7 25.02% 2028.97

Tiny YOLO 14.6 76.48% 1069.4 3142 33.05% 2013.13

SSD 4.37 76.83% 222.8 2946 7.16% 358.47

MobileNetSSD 4.97 90.33% 137.8 2820.17 11.95% 604.38

Table 3.14: Jetson TX2 GPU Network Evaluation Results (CPU Core Usage)

Network IICPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6

YOLOv2 33.55% 0.00% 0.00% 56.10% 32.47% 28.03%

Tiny YOLO 56.97% 0.00% 0.00% 50.27% 45.43% 45.61%

SSD 8.42% 0.00% 0.00% 3.93% 14.73% 15.58%

MobileNetSSD 18.73% 0.00% 0.00% 13.28% 20.52% 19.18%

Table 3.15: Jetson TX2 CPU Network Evaluation Results
Network FPS[ CPU Usage CPU Frequency [MHz] CPU 1 CPU 2] CPU 3 CPU 4 CPU 5 1 CPU 6 RAM Usage 1MB]

YOLOv2 0.10 18.05% 2027 1.70% 0.00% 0.00% 61.07% 40.93% 4.62% 3113

Tiny YOLO 0.20 26.02% 2026 9.53% 0.00% 0.00% 41.58% 45.28% 7.35% 2818

SSD 0.11 99.83% 2026.05 99.45% 0.00% 0.00% 99.75% 100.00% 100.00% 3696

MobileNetSSD 0.92 98.93% 2027.7 95.38% 0.00% 0.00% 100.00% 100.00% 100.00% 2995

Table 3.16: Jetson TX2 GPU Network Evaluation Results with Max Clock Rate
Network FPS [GPU Usage [GPU Frequency [MHz] RAM Usage [MB] Average CPU Usage [CPU Frequency [MHz]

YOLOv2 6.1 96.27% 1134 3335 24.92% 2027

Tiny YOLO 14.9 76.43% 1134 3195.45 33.43% 2029.73

SSD 27.7 82.70% 1134 2952 3.62% 2027.03

MobileNetSSD 10.99 54.53% 1134 2827 12.55% 2028.77
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Table 3.17: Jetson TX2 GPU

Max Clock Rate

Network Evaluation Results (CPU Core Usage) with

Table 3.18: Jetson TX2 CPU Network Evaluation Results with Max Clock Rate
Network FPS CPU Usage [CPU Frequency [MHz] CPU 1 CPU 2 CPU 3 CPU 4 1 CPU 5 1CPU 6 RAM Usage [MBI]

YOLOv2 0.10 17.57% 2027.58 32.05% 0.00% 0.00% 2.87% 39.76% 30.72% 3148.05

Tiny YOLO 0.20 17.29% 2029.22 31.55% 0.00% 0.00% 20.20% 13.80% 38.20% 2853

SSD 0.11 66.52% 2029.93 100.00% 0.00% 0.00% 100.00% 99.10% 100.00% 3704

MobileNetSSD 0.95 65.72% 2027.17 99.48% 0.00% 0.00% 100.00% 94.90% 99.93% 3004.08

These results show that the TX2 is indeed more powerful than the TX1, as all the

networks showed an increase in frame rate. When the TX2 is at maximum GPU clock

rate, SSD shows a vast increase in frame rate. This is a surprising result, although it

seems reasonable that at the nominal clock setting it only uses 76% of the GPU at

222.8 MHz. Even though MobileNetSSD did not have the highest frame rate, it was

still very efficient at both clock rates in its frame rate to resource usage.

The results also show that the two Denver cores were not used in this evaluation.

The power and rate settings were the default settings for the TX2. We tested a few

of the other power settings that used the two Denver CPU cores, but using the four

ARM cores showed competitive results since they were still operating at high clock

rates. More testing with the other power settings is left for future work.
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[Network CPU 1 ICPU 2 CPU 3 CPU 4 CPU 5 CPU 6

YOLOv2 30.67% 0.00% 0.00% 56.52% 33.97% 28.37%

Tiny YOLO 51.10% 0.00% 0.00% 48.52% 54.95% 46.00%

SSD 6.50% 0.00% 0.00% 3.78% 5.58% 5.58%

MobileNetSSD 31.52% 0.00% 0.00% 9.95% 15.08% 18.75%



3.8 Intel Movidius Neural Compute Stick Network

Evaluation

Moving away from NVIDIA specific hardware, we also tested the detection networks

on a new deployable hardware aimed at deep learning applications made by Intel

called the Movidius Neural Compute Stick. The Movidius Stick is the size of a large

flashdrive making it ideal for size-, weight-, and power-constrained applications. The

Movidius Stick also only needs a USB port to communicate with the host hardware.

The neural compute stick is shown in Figure 3-6. Similar to CUDA cores, at the

heart of the Movidius Stick are 12 SHAVE processors that can parallelize the network

computations in the stick's Vision Processing Unit or VPU. Intel reports that this

compact device can achieve 100 GFLOPS [291.

The compute stick currently supports networks implemented with Caffe and Ten-

sorflow [1], another popular deep learning framework. ,Within these two frameworks,

the Movidius Stick API only supports certain network layers. This is very limiting

for this hardware since it cannot support custom layers, which are popular for new

emerging networks. The custom layers can't be used because the weights files for the

networks, for example a ".caffemodel" for Caffe, needs to be converted into a "graph"

that the Movidius Stick can use. This is also limiting for using YOLO networks which

to be used by the Movidius stick, first need to be converted into either a Caffe or

Tensorflow model and then into a graph. Luckily, the Movidius Stick has support for

SSD and MobileNetSSD, as well as Tiny YOLOv1. It does not, however, have official

support for either YOLOv2 or Tiny YOLOv2 at the time of this writing. There is

also no "CPU Only" configuration using the Movidius stick so that the only collected

statistics are frame rate, CPU usage, and CPU Memory usage of the host machine,

which was the same as the full setup described earlier. The results of the Movidius

Stick evaluation are shown in Table 3.19.
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Figure 3-6: Intel Movidius Neural Compute Stick

Table 3.19: Intel Movidius Neural Compute Stick Network Evaluation Results

Network 11 FPS J CPU Usage CPU Memory Usage

YOLOv2 Not Supported Not Supported Not Supported

Tiny YOLOv2 Not Supported Not Supported Not Supported

Tiny YOLOv1 7.3 27.72% 0.90%

SSD 0.74 10.84% 0.80%

MobileNetSSD 10.6 27.18% 0.70%

Again using this hardware MobileNetSSD outperforms the other networks in terms

of framerate. The networks also put little load on the on the host machine during

runtime.

3.9 Intel NUC Skull Canyon Network Evaluation

Our last evaluation was done on an Intel NUC Skull Canyon. Like the Movidius Stick,

the NUC doens't have any NVIDIA hardware. This creates a significant problem

for neural network deployment since most popular deep learning frameworks utilize
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the CUDA framework and NVIDIA GPUs. The NUC, on the other hand, uses an

Intel Iris Pro Graphics 580. Additionally, in order to use this, the deep learning

framework needs to use OpenCL instead of CUDA. Currently, there are few stable

deep learning frameworks that use OpenCL. There is, however, a fairly stable version

of Caffe, clCaffe [71], that uses an OpenCL backend that can utilize the NUC's GPU.

This OpenCL distribution of Caffe also supports all four of the networks we are

evaluating. The NUC uses an Intel Core i7-6770HQ Quad Core CPU. The CPU and

GPU specifications are shown in Tables 3.20 and 3.22. Figure 3-7 shows the Intel

NUC Skull Canyon setup.

1FP.
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Figure 3-7: Intel NUC Skull Canyon setup with Play Station Eye Camera.

Table 3.20: Intel Core i7-6770HQ Quad Core CPU Specifications

Cores 4

Process Base Frequency 2.60 GHz (max 3.50 GHz)

Table 3.21: Iris Pro Graphics 580 Specifications

TFLOPs 1.151 [67]

CUDA Cores N/A

Max Clock Rate 950 MHz
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The statistics on the NUC were taken using the intel_ gputop tool, which queries

the NUC's GPU usage. This tool reports render busy as a percentage, which we have

taken to be GPU usage, and render space, which take for memory usage. We also use

htop to record CPU usage and CPU memory usage. As before, every 100% of CPU

usage is one full CPU core. For example, 350% of CPU usage indicates that 3.5 CPU

cores were used. Since we used the Caffe versions of all the networks for the NUC, we

used the Caffe timing function for forward network passes to take timing data. The

timing results were taken in milliseconds [ms] and were averaged over five samples.

The networks were allowed to warm up to prevent recording transient effects. The

timing and usage results are shown in Tables 3.22 and 3.23.

Table 3.22: Intel NUC Skull Canyon GPU Network Evaluation Results
Network Forward Time [ms] GPU Usage Render Space Usage CPU Usage [CPU Memory Usage]

YOLOv2 73.43 (13.62 fps) 99.80% 9.61% 78.00% 2.20%

Tiny YOLO 18.62 (53.71 fps) 95.80% 4.63% 77.64% 1.00%

SSD 106.94 (9.35 fps) 100.00% 10.37% 79.36% 1.50%

MobileNetSSD 14.47 (69.11 fps) 95.20% 7.50% 99.96% 0.50%

Table 3.23: Intel NUC Skull Canyon CPU Network Evaluation Results

[Network Forward Time [ms] CPU Usage CPU Memory Usage

YOLOv2 2101.71 (0.48 fps) 770.60% 2.20%

Tiny YOLO 569.89 (1.75 fps) 771.60% 1.00%

SSD 4170.21 (0.24 fps) 783.20% 1.60%

MobileNetSSD 631.09 (1.58 fps) 783.40% 0.80%

On this setup, MobileNetSSD and Tiny YOLO were the top performers in terms

of inference time and render space usage. MobileNetSSD edges out Tiny YOLO in

frame by a little more than 15 fps. The results also show that YOLOv2 outperforms

SSD, but these two networks are still much slower to their lighter counterparts.

'Value not from manufacturer
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3.10 Testing Results

Altogether, this evaluation covered 43 different network and hardware configurations.

The tested hardware spanned from our baseline full desktop setup to possible de-

ployable hardware including a NVIDIA Jetson TX1, a NVIDIA Jetson TX2, an Intel

Movidius Neural Compute Stick, and an Intel NUC Skull Canyon. Based on the

evaluation results and the existing hardware already on the flight vehicle, we decided

to move forward with the MobileNetSSD detector on the Intel NUC Skull Canyon.

The NUC was already being used on the flight vehicle as the main computer for the

planning and state estimation stacks. The NUC's GPU was also free real estate in

the sense that no other processes were directly using it. There was the possibility

that a monocular state estimation pipeline might come online and utilize the GPU,

so it was still important the detector not take up the entire GPU during run time.

This will be discussed more in the next chapter.

Although the Movidius Stick was also a very competitive choice to use with the

MobileNetSSD detector, we decided not to use it and opted for the higher frame

rate on the NUC so that we could add other components to the detection pipeline

for temporal consistency and maintain a large margin to keep the system running

in real-time. This is also part of the reason we did not use the YOLOv2 detector.

The other is that the MobileNetSSD detector was the most flexible in terms of its

performance across different hardware, making it robust to an ever-evolving flight

vehicle. Additionally, MobileNetSSD was still competitive with the other detectors

in terms of accuracy. Table 3.24 shows a summary of the reported accuracy results

of the detectors on the PASCAL VOC dataset where all the networks were trained

on a concatenation of the 2007 and 2012 training and validation data.
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Table 3.24: Network VOC07+12 Accuracy [mAP]

Network Accuracy [mAP]

YOLOv2 76.8 1571

Tiny YOLO 57.1 [54]

SSD 74.1 [42]

MobileNetSSD 68 [3]

Using MobileNetSSD as our detector only comes at a small cost to accuracy from

the most accurate, YOLOv2. MobileNetSSD only decreases in mAP by 8.8, but we

get a 5 x speed up on the NUC. However, when pretrained on the Microsoft Common

Objects in Context (COCO) dataset [40], MobileNetSSD was able to achieve a mAP

of 72.7. Additionally, MobileNetSSD was shown to have one of the smallest mem-

ory demand across the devices showing the other benefit of the depthwise separable

convolution factorization.

Despite the expansive evaluation across hardware and a few configurations, there

are still some shortcomings of this evaluation. For one, the hardware configurations

were not optimized. This can be seen in the results for the full desktop setup where

the networks were not fully utilizing the hardware. Additionally, we did not look at

how each network scaled with the number of classes it was trained on. We did train a

YOLOv2 network and an SSD network on five classes. However, the network structure

was not downsized to account for the reduction in classes. The final MobileNetSSD

network we used for deployment was downsized for our reduction in classes, which we

will show later. We leave the hardware optimization and network class size evaluation

for future work.
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Chapter 4

Object Detection Flight Vehicle

Deployment

This chapter will give an overview on how MobileNetSSD was deployed as the object

detector for the FLA program to fulfill our exploration and semantic mapping mission.

The full FLA quadcopter is shown in Figure 4-1. The first step for deployment was

to train the network on the classes of interest. There were several iterations of object

classes, but the latest network was trained to detect people, cars, doors, and windows.

After training, we installed the necessary software on the Intel NUC Skull Canyon to

use the OpenCL backend of the clCaffe deep learning framework.
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Figure 4-1: FLA Quad setup. The main components are labeled including the Jetson

TX2, the Zed Camera (runs on the TX2), the Flea3 Camera, and the Intel NUC Skull

Canyon.

4.1 Training MobileNetSSD

The first step to deploying MobileNetSSD for the mission was to train it on our

objects of interest. Finding relevant training data for CNNs can be difficult. Training

datasets for the object detection task are especially sparse. For example, the image

classification task only requires a minimum of one label per image. The detection task,

however, requires a bounding box and a label for each object of interest in the image.

An example of an annotated image is shown in Figure 4-2. Figure 4-2 shows several

hand-labeled annotated objects in an image including a door and several vehicles.
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Figure 4-2: An example of an annotated image. This image was created using the

Figure Eight annotation platform. The image was created using visualization code

provided by Figure Eight.

4.1.1 Dataset: OpenImages

We used the OpenImages dataset [37] to train the network. At the time of training,

the V2 dataset of OpenImages was the available version. The most recent version of

the dataset is V4 at the time of this writing. In total, the V2 dataset boasts having

545 trainable classes with a total of over 669,000 images and over 1.2 million bounding

boxes in the training set alone.

Papadopoulos et al. in 1511 describe the method they used to create the V2 dataset.

The dataset was machine-created and human-validated, thus reducing the bounding

box annotation time by 6-9 times. They annotated the dataset by creating a feedback

loop between a learner and humans. In a standard loop of their method, localized

bounding boxes were verified by human annotators. The positively and negatively

determined bounding boxes were then used to train the learner and reduce the object

localization space for possible objects, respectively. With this method, no human
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Table 4.1: OpenImages Downsampled Dataset and Class Distribution
Image Sets 11 Total Person I Door Car Window

Test ' 32675 39906 517 28195 4994
Train 86563 57796 1792 22582 6869
Validation 10892 12978 160 9182 1603

had to draw a bounding box. However, in order to simplify their human verification

step, their method only produces one bounding box per image. This presents fewer

positive examples to the object detector that is being trained.

The authors verified their annotation method by comparing the performance

of two object detectors-one trained on their machine-annotated, human-validated

dataset and the other trained on a fully human-annotated dataset. The learner, Fast

R-CNN [20] was trained with one annotation per image from both the fully annotated

set and the human verified set. The loss in accuracy between the fully annotated data

and the human verified only dropped by 6%. Although there were some shortcomings

to this dataset, mainly that every object is not annotated, it did offer a wide range of

classes and training examples. Using this dataset allowed us to keep the same train-

ing pipeline for a range of different object classes as opposed to combining different

datasets.

In order to use this dataset, we took a subsample of the full dataset containing

only our desired classes. This downsized dataset contained almost 100,000 images on

which the network could be trained. The distributions of the image sets and class

instances of the downsampled dataset are shown in Table 4.1.

The data was converted from the OpenImages CSV format to the VOC [15] XML

annotation format. Once the data was converted to the VOC format, it could be

easily integrated into the existing training procedure used by MobileNetSSD.

4.1.2 Training Setup

The first step to training the MobileNetSSD detector was to adjust the network

parameters to accommodate the reduction in detectable classes from 20 to 4. There

is a convenient template for adjusting the network parameters available from [3]. We
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Table 4.2: MobileNetSSD mAP on OpenImages
Class mAPJ
Person 0.40
Door 0.26
Car 0.70
Window 0.14

also used the pretrained weights from the same Github repository. The pretrained

model was first trained on the Microsoft Common Objects in Context (COCO) dataset

[40] and then trained on the 2007 and 2012 VOC datasets [15].

Our final model was trained for 120,000 iterations with a batch size of 24. The

training was done using RMSProp [19], a method that helps with network optimiza-

tion by normalizing the back-propagated gradients. RMSProp normalizes the gradi-

ent with a running average of gradients for a particular weight so that one gradient

doesn't overpower others. The accuracy of the final trained network is shown in Table

4.2.

The final network accuracy leaves much to be desired. The person and car classes

are suitable for deployment, but the network struggles with detecting doors and win-

dows. This also reflects the bias in the training data. The network is shown many

more images of people and cars than doors and windows.

4.2 Vehicle Integration

After the network was trained on the specified classes, we needed to integrate the

software onto the flight vehicle. This turned out to be quite a challenge since it

needed to build easily across all the flight vehicles. Each flight vehicle NUC also

needed to have the proper OpenCL driver and SDK versions installed. We used

the Intel SRB4.1 Linux driver package [30] and the Intel OpenCL SDK for Ubuntu

v7.0 [31]. Additionally, clCaffe required additional dependencies compared to the

main branch Caffe. These included ViennaCL [59], a linear algebra library that is

functional with both CUDA and OpenCL, and ISAAC [69], an input-aware basic

linear algebra subprogram (BLAS).
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During runtime, the network could use either color images from the Zed Camera

or grayscale images from the Flea3 Camera. Both have shown comparable results to

each other. The object detection pipeline was integrated into the overall system using

the Robot Operating System (ROS) Kinetic [531.

One issue when deploying the detector, was the input frame rate from the camera.

Directly feeding every image from the camera to the detector would create a time lag if

the camera frame rate was faster than the inference time of the network. Additionally,

if we formulated the object detection ROS node to only accept an image once it was

done with the previous frame, the network would consume all the GPU resources. To

lower the time-averaged GPU usage and reduce possible time lag, we throttled the

incoming image message rate to 30 Hz.

The overall goal for the flight vehicle was to create a semantic map of objects of

interest in the environment. The detector would report its detections to the mapper.

The mapper, however, required several detections (> 5) in order to localize the object.

This also meant that there needed to be a way to filter some of the raw detections

from the detector to be used by the mapper. We applied a confidence threshold to

each class based on the class's mAP score. The threshold value for each class was

determined using Equation 4.1, where T is the per-class threshold and m, is the mAP

value for each class on the OpenImages V2 test set.

T 1-rn (4.1)

Setting the per-class confidence thresholds using this Equation 4.1 provided promis-

ing results in reported detections as shown in Chapter 5. We deployed this configura-

tion of MobileNetSSD on the Intel NUC Skull Canyon for several missions. However,

one weakness of this system was that MobileNetSSD only operates on single images.

There is a lot of information that is lost by using only single camera frames, and the

detector will sometimes find an object in one frame and miss it in the next. Chapter

5 discusses how we approached solving this problem and presents an evaluation of

our method.
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Chapter 5

Towards Temporally Consistent

Object Detection

We propose a lightweight method to incorporate temporal information into a detection

pipeline running on a live camera feed called Temporal Object Detection or TOD.

Figure 5-1 shows the motivation for this type of system. Each row of Figure 5-1

shows consecutive camera frames where a detection in one frame was lost in the

next. By leveraging object image representations across camera frames our method

can determine if an object was dropped and recover it. We can recover detections by

raising the confidence of low confidence detections or, in the absence of any detections,

use an object tracker to find the object. Existing methods that address the problem

of object detection in video such as [22, 36, 34, 35] reason over the entire video

sequence at run time to find objects. Other methods like [16, 18] build off networks

that require a region proposal stage, which is not as efficient as single shot detectors

like SSD [42] or YOLO [56, 57]. Our proposed method incorporates a base object

detector, a similarity metric based on bounding box size, bounding box dimensions,

intersection over union (IOU), and color, and a selectively employed object tracker.
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Figure 5-1: The top and bottom rows show consecutive camera frames where the

detector was able to detect objects above the confidence threshold, but in the next

frame the objects were either not detected or their confidence dropped below the

reportable threshold.

5.1 Object States

At the core of our method is the idea of determining the state of an object that the

system has previously detected. The object states are detected, in-frame, recovered,

tracked, failed, and their inverses. The detected state means that the object has been

directly detected by the detector with a confidence above the class threshold set by

Equation 4.1. If an object is in the in-frame state, it is likely still within the given

image frame. Out-of-frame means that the object is likely now outside the current

frame. The recovered state means that the object was found using a low confidence

detection. The tracked state means that the object tracker was able to find the object.

Lastly, failed means that the system is not able to find the object. This is a similar

72



Found

Detected Not
Detected

In Frame Out of
Frame

Not
Recovered Recovered

Tracked Failed

Figure 5-2: This is the representation of the object states used by our method. Every
previously found object starts in the found state.

idea used by [76] where they can determine a state of an object using an Markov

Decision Process. TOD however does not require learning a policy. The states can

be thought of as being conditionally dependent on one another. For example, an

object that is recovered must be in-frame. These conditional dependencies are shown

in Figure 5-2 where every previously found object starts in the found state. This tree

informs how or if TOD searches for an object.

Using this concept of object states, our method reduced the amount of computa-

tion needed to find lost objects compared to a method that applies a tracker to every

object. For example, Detect and Track [16] finds correlation maps for every location

in a feature map. For TOD, since we knew the object distribution was relatively

sparse in the environments our vehicle was deployed, we could avoid doing compu-

tation over the entire image by selectively applying portions of our object detection

pipeline to a subset of the objects in a given frame depending on the state of the
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object. The object tracking step in our pipeline was the most expensive portion.

By only running the tracker on a subset of objects in an image, we could save time

and computational resources. Using our state structure, we only applied the object

tracker when the object was in the not-recovered state. We could determine an object

state by traversing down the state tree until we reached a terminal state. The object

state was chosen at each split by using a similarity metric between a target object

and a candidate detection.

5.2 Similarity Metric

We used a similarity metric between a target object and a candidate detection to help

determine if they match. Our similarity metric was based on the similarity between

target and candidate detections' color, bounding box dimensions, IOU, and size.

These four components were combined into an overall score to measure the similarity

between a target object and candidate detection. The following sections will break

down how we calculate the contribution from each one of the metric components.

5.2.1 Object Color

The color similarity component was based off the Hellinger Distance shown in Equa-

tion 5.1 where P and Q are discrete distributions and N is the number of bins. The

Hellinger Distance gives a distance between these two discrete distributions. We cre-

ated HSV color space histograms using the H and S channels for each detected object

using its bounding box to bound all the pixels used in the histogram.

1 N

d(P, Q) 1 - _ Vpj -q i (5.1)
QPQN 2

Using color histograms to represent objects allowed the representation to be rota-

tion invariant, a useful property when images are coming from a constantly moving

flight vehicle. The color histogram representation however also came with the down-

side that it lost the spatial component of the object. To maintain some sense of
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spatial consistency, each object is represented by two histograms, one for the left side

of the bounding box and the other for the right. The total score for this component

then became the average of the Hellinger Distances of the left and right sides between

two object bounding boxes. Additionally, since the Hellinger Distance is a distance

metric we instead used 1 - d for each side of the bounding boxes, where d is the

Hellinger Distance between either the left or right side of two bounding boxes. The

distance was calculated using OpenCV [66].

5.2.2 Intersection Over Union (IOU)

Another component of the similarity metric was the intersection over union or IOU of

the candidate bounding box and the target bounding box of the previous frame. This

component of the metric exploited the idea that the location of an object between

consecutive frames would not drastically change. The IOU also accounted for object

size in its calculation such that even if two bounding boxes overlap, they also need

to have similar sizes to have a large IOU. The IOU value was directly used as part of

the overall similarity metric

5.2.3 Bounding Box Dimensions

We used bounding box dimensions as part of the similarity metric since this was

a characteristic of the object that should not have large changes between frames.

Additionally, while the IOU component took into account bounding box size, it did

not account for the dimensions of the bounding box. This component helped push

TOD to choose bounding boxes of similar dimensions. This component was calculated

by averaging the ratio of the widths and heights of two bounding boxes as shown in

Equation 5.2, where w, and w2 are the widths of the two bounding boxes and h, and

h2 are the heights of the two bounding boxes. The final component score was then

calculated from Equation 5.3 where p = 1 and a = 0.25. These values were chosen

empirically.
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5.2.4 Bounding Box Size

We included the bounding box size into the similarity metric as a weight between

the color component, and the IOU and aspect ratio components. Since we knew the

relative size of the objects in the environment, we made the assumption that the larger

the bounding box was, the closer the vehicle was to the object. Using this bounding

box size and object distance relation, we further assumed that objects with smaller

bounding boxes would move less between two consecutive frames than objects with

large bounding boxes. We exploited this idea to create a weight between the color

and dimension/location components of the similarity metric based on the object's

bounding box size. We called this weight #. If the bounding box was large, we would

rely more on the color component of the metric and if the bounding box was small

we would rely more on the dimension/location components of the similarity metric.

0 was found using a linear function shown in 5.4 where bA is the bounding box area,

1A is the image area, m is chosen to be 0.8, and c is chosen to be 0.5.

bA
A 

= M+C (5.4)
We also limited 3 to be between 0.5 and 0.8, so that the metric was more bi-

ased towards the color component. Putting all of the components together, the final

similarity metric became Equation 5.5 where d is the Hellinger distance between two

image crops, R is the aspect ratio component, IOU is the intersection over union of

two bounding boxes in consecutive frames, and # is the weight from Equation 5.4.

(R + IOU)
S = d + 2 (5.5)
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All the components of the similarity metric were between 0 and 1 so the final

metric was also between 0 and 1. Using this metric, our method could compare

consecutive bounding boxes to help determine the state of the object.

5.3 Pipeline Overview

At a high level, our method worked by traversing down the tree shown in Figure 5-2

for each previously detected object until it reaches a terminal state. Determining an

object state was broken up into several distinct steps. Initially, the system started

with no target detections. Once valid detections were made by the base detector that

were over the class confidence threshold, we set them up to be targets, meaning they

were objects in the current frame that we would like to detect in the next frame.

After the initial targets were found, for every target from the previous frame, we used

the similarity metric to determine if we successfully detected the target in the current

frame by the object detector. If the method determined that the object was dropped,

we tried to find the next best detection in the vicinity of the target by using the

similarity metric. Then we determined if the object was likely in the camera frame or

not. If it was likely in the frame, we looked to see if the similarity metric score was

above a certain threshold. If it was above the threshold, we took that detection to be

a valid detection. Else, we would try harder to find the object. In this case, we applied

an object tracker to find the object. The tracker returned a candidate detection that

we scored with the similarity metric and if it was above a threshold we took it as a

valid detection. If the candidate detection was below the threshold, we determined

that we could not detect the dropped object. With this formulation, we only applied

the tracker as a last resort. Each of the following sections will explain each step of

the system including finding dropped objects, finding close detections, scoring and

selecting detections, determining if an object was in the frame, determining if the

object has been recovered, and tracking the object.
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5.3.1 Find Dropped Objects

The first step of our method was to determine if the object detector has already

found a target object from the previous frame. To do this, we took all the detections

output by the base object detector in the current frame that were in the vicinity of

the target location from the previous frame. We then scored these detections against

the target object using the similarity metric. If the highest scoring detection was

above a threshold, we determined that the target object was found. If not, we passed

the target object to the next step of the pipeline. Although this step created scores

for each detection based on the similarity metric, we always kept detections above

the class confidence threshold.

5.3.2 Find Close Detections

In order to further determine the state of a target object, we would see if the object

was found by any low confidence detections we would not normally accept. To do

this, we first needed to find all the detections in the vicinity of the target object

in the current frame. At this step, we looked at all low confidence detections that

overlapped the target object bounding box in the current frame and were of the same

class of the target and add them to our list of candidate detections.

If there were not any low confidence detections in the vicinity of a target area we

ran the object tracker so that the target would have at least one candidate detection.

5.3.3 Determine In-Frame

Next, we would determine if the object was likely to be in the current frame or not.

This was done by simply creating a buffer around the edge of the image. If the

center of the target object was in this buffer, it was determined that the object was

likely out of the frame. We set the buffer to be 15% of the image width and height

because it showed good results for the current configuration of the flight vehicle. It

was important to have this as part of the pipeline because there was a tendency for

TOD to place detections at the edge of the image when the object had already moved
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Figure 5-3: An example of multiple overlapping low confidence detections on an
object.

out of the frame. The size of the buffer could also be tuned. A smaller buffer could

yield a higher recall, but at the cost of some precision.

5.3.4 Object Recovered

Given that the object was still in the frame, we would see if any of our candidate

detections found from "find close detections" might be a suitable detection for the

target object. A visual depiction of this is shown in Figure 5-3. Figure 5-3 shows

that at a low confidence there may be several boxes in the vicinity of an object we

would like to detect and we need to pick the best one.

These nearby detections were scored against the target object using the similarity

metric and then the highest valued detection was selected as a candidate detection

for the target object. If the candidate detection score was above a threshold, we

considered the detection a valid detection and it took on the confidence value of its

matched target object. If the score was below the threshold, we moved to the tracking

step.
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5.3.5 Object Tracking

After all the other steps to find the target object had been exhausted, we attempted

to find the object with an object tracker. The object tracker could be any algorithm

that takes a target image and a search image as input and returns a bounding box.

This includes methods such as [25, 2, 73]. For our implementation, we used the

GOTURN tracker by Held et al [24].

GOTURN is a CNN based object tracker that takes in two image crops as input.

The CNN architecure is unique in that each input is passed through separate parallel

convolutional layers before being concatenated and passed into three fully connected

layers. The output of the network is four points that represent the bounding box for

the tracked object. The network is trained entirely offline on frames from videos and

requires no online training. This object tracking method is both fast and accurate.

The authors claim that it is capable of running at 100 fps on a GTX 680 GPU.

These features made GOTURN a promising component to add as part of the object

detection pipeline. Akthough, on the Intel NUC Skull Canyon the GOTURN network

had a forward pass time of 30.9 ms. The inference time of GOTURN was a significant

cost for the overall pipeline since the inference time of the detector was only 14.5 ms.

This is why we wanted to limit the use of the tracker as much as possible.

After the tracker found a bounding box for the object, the candidate detection

still needed to be verified. Again we used the similarity metric to score the candidate

detection. If the candidate score was above a threshold we took the candidate de-

tection as a valid detection and it took on the confidence value of its matched target

object. If the score was not above the threshold, we assumed that the object could

not be found. Once we added our final detections, we set these as targets for the next

frame.

During testing, we set the threshold for the similarity metric for accepting can-

didate detections to be 0.75. This threshold could determine how risky the system

would be. A lower threshold would accept more detections, while a higher threshold

would be more conservative. We found 0.75 to be a good middle ground.
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At the end of the pipeline, we needed to add two more post processing steps. Since

we knew that the objects in our deployed environment were somewhat sparse, it was

unlikely that objects will be stacked or heavily occluding one another. With this in

mind we added a non-maximum suppression step that is based on overlap area rather

than IOU. This step eliminated spurious detections where one object was found to

be inside the bounding box of another object of the same class. This would helped

prevent the pipeline from tracking some false positive detections. The second step,

was updating the histograms of the targets by Equation 5.6 to incorporate past object

representations, where Hm is the new histogram, H' is the histogram of the object

in the current frame, H - is the histogram of the object in the previous frame, and

a is a scalar. We set alpha to be 0.8. This was similarly done by Tian et al. [68].

Hm = aHt + (1 - a)Ht- 1  (5.6)

5.4 Results

To evaluate our method, we tested TOD on three ROS bags recorded on board the

flight vehicle across three different locations using the base detector, MobileNetSSD,

as the baseline to evaluate against. Our ground truth labels were created using the

Figure Eight platform. The Figure Eight platform uses human annotators to label

raw data. We needed several objects of different classes to be labeled in each image.

Figure Eight was able to provide this service by going through one of their partners.

The data that was labeled using Figure Eight was a subsample of the total amount of

image message collected in the ROS bag. The labeled data was taken at roughly 10

Hz, however the image rates in the ROS bags ranged from 20 Hz to 60 Hz depending

on the camera being used. To better match the performance during runtime, we

tested our method and the baseline with images collected at higher framerates and

then only used the frames with an associated ground truth in the evaluation.

We evaluated our method and baseline, on the annotated ROS bags by measuring

the total true positives, total false positives, recall, and precision across the entire
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ROS bag at different confidence thresholds. We looked at thresholds from 0.15 to

0.95 at a step size of 0.05. Following the VOC model [15], a true positive detection

is one that has an IOU greater than 0.5 with a ground truth bounding box. A false

positive either has an IOU less than 0.5 with a ground truth box or do not overlap any

ground truth box. Recall is calculated by Equation 5.7 where t is the total amount

of true positives at a given confidence threshold and n is the total amount of ground

truth objects in the dataset. Precision is found using Equation 5.8 where t is the

amount of true positives and f is the amount of false positives.

t
r = - (5.7)

n

P t (5.8)
f +t

5.4.1 Camp Lejeune

One of the flight testing locations was at the Marine Corps Base Camp Lejeune in

North Carolina. An example image from the ROS bag recorded during a flight at

Camp Lejeune is shown in Figure 5-4. This image was taken using an Intel Realsense,

which was serving as the camera on the flight vehicle at that time. The Realsense

collected images at roughly 60 Hz. During runtime we throttle the rate of accepted

image messages to the object detector to 30 Hz so that the network does not constantly

use the GPU. In our evaluation we collected images at around 30 Hz to more closely

match runtime performance. We then evaluated the method on frames that were

most closely associated with the frames that had ground truth information available.

Figure 5-4 shows that the environment the vehicle was flying in was quite unique

and was not a typical urban environment. There weren't typical windows or doors

and all of the cars are crushed with their windows broken in. Additionally, as might be

expected in a semi-urban environment, the amount of windows vastly outnumbered

any other of the detectable objects. This created a difficult job for the object detector.

Since MobileNetSSD already had a low mAP for windows and doors, it was not
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Figure 5-4: An image taken on the flight vehicle at Camp Lejeune during a flight test.

suitable for detecting those objects and will be left out of this evaluation. The results

for people and cars are shown in Figures 5-5 and 5-6.

The results show that our method, Temporal Object Detection or TOD, outper-

formed the baseline detector in recall over all the confidence thresholds up to 0.8

and in some places precision. It also shows that our nominal operating confidence

threshold of 0.3 for the people class was well-suited for the baseline detector on the

Camp Lejeune dataset. While this threshold was good for the baseline detector, with

TOD, adjusting the threshold to 0.4 gave a slight improvement to precision at a small

cost to recall compared to the baseline. Figure 5-7 shows a sequence of images where

TOD was able to pick up detections that would have otherwise been rejected. The

top row shows the results from TOD and the bottom row are the results from the

baseline. In the top row, blue bounding boxes are detections below the threshold

that our method has determined match our target object and we accept it as a valid

detetion. The red box represents a detection added by the GOTURN tracker. The

GOTURN detection was also determined to be better than a bounding box returned

by the detector.

The best results of TOD were seen on the people class. While TOD did achieve
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Figure 5-5: True positives, false positives, recall, and precision plotted against accu-
racy thresholds for the person class on the Camp Lejeune dataset. TOD is able to
achieve a higher recall across all confidence thresholds than the baseline detector at
a small cost to precision.
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Car Class Results
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Figure 5-6: True positives, false positives, recall, and precision plotted against accu-
racy thresholds for the car class on the Camp Lejeune dataset.
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Figure 5-7: The top row shows detections from TOD and the bottom row shows
detections from the baseline detector. Blue detections are low confidence detections
matched with previously detected object. Red detections were found by GOTURN.

a higher recall than the baseline on the car class, the baseline detector is still very

proficient at detecting cars.

A downside to TOD, was that when the confidence threshold increased, the num-

ber of false positives did not necessarily decrease as it does with the baseline. This

was because a detection that would normally have detected the object was rejected

by the threshold causing TOD to try and find the target object, producing an invalid

detection. An example of this is shown in Figure 5-8. The top row shows the results

of TOD running at the 0.4 threshold and the bottom row shows TOD running at

the 0.35 threshold. The poor detection results of TOD on the top row were prop-

agated from previous frames since the threshold rejected the detections that would

have otherwise detected the object shown in the bottom row.

The higher recall of TOD comes at a modest cost to framerate despite using

another neural network. Figure 5-9 shows a comparison of the framerates of the

baseline detector and TOD at increasing confidence thresholds. TOD was still very

fast running at over 60 fps for confidence thresholds over 0.2.

5.4.2 Medfield State Hospital

Another flight location for the vehicle was at the Medfield State Hospital in Medfield

Massachusetts. This was a fairly different environment compared to Camp Lejeune.
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Figure 5-8: A poor result of TOD. The top row is from TOD running at a confidence
threshold of 0.4 and the bottom row shows TOD running at a confidence threshold
of 0.35. The red boxes are detections from the GOTURN tracker. The top row has
poor detection results because of drift in the tracker from a bad target image. This
does not occur in the bottom row because the detection output was not rejected by
the threshold.
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Figure 5-9: Average framerate of TOD vs the baseline on the Camp Lejeune dataset
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Figure 5-10: The results of TOD and the baseline detector, MobileNetSSD, on the
Medfleld data for the person class. TOD is able to add more valid detections at all
the threshold levels up to 0.6. Additionally, several of the false positives are due to
mislabeling of the ground truth data.

Instead of many cement buildings and broken cars, Medfield had brick buildings with

boarded up windows and intact cars. Another difference was that at this stage in

the program, the flight vehicle color camera switched from the Intel Realsense to the

Zed camera. One challenge with this camera was that it would publish color image

messages at irregular framerates ranging from 20-25 Hz. This was much slower when

compared to the 60 Hz output of the Realsense. Like the Camp Lejeune results, we

evaluated TOD and the baseline on total true positives, total false positives, recall,

and precision across different confidence thresholds for the person and car classes. The

ground truth was also provided by Figure Eight. The results are shown in Figures

5-10 and 5-11.

As with the Camp Lejeune dataset, TOD was able to find more valid detections

than the baseline while only adding a small number of false positives. Figure 5-10

88



Car Class Resuts

True Positives

200 --

LO

0.2 (s i4 05 False Positives 0.6 07 0. as

020:4 Q5 Rcl A0.7 0.9 0.9

0.9

0.4-
0.2 -

0.2 0.3 0.4 0.5 0.9 0.7 0. 0.9
LOj L -4 - _ _ _ _ _ _ _ _ _

0.89

as2 - ---

0.2 0.3 04 0.5 0.6 0.7 0.909

Figure 5-11: The results of TOD and the baseline detector, MobileNetSSD, on the
Medfield data for the car class.
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Figure 5-12: The top row shows the results from TOD and the second row are the
baseline results using a confidence threshold of 0.3 over a sequence of three frames.
The bottom row are the associated ground truth labels from Figure Eight. The
blue boxes are low confidence boxes that have increased confidence by matching with
previous detections. The three positives detections across the sequence are counted
as false positives because of the mislabeling.

shows that the TOD added a large portion of false positives at the threshold of 0.3.

This is an example of where there were errors in the labeling of the data. Figure 5-12

shows example images of where TOD detections were labeled as false positives. In

this case, the false positives occurred because the ground truth was labeled with the

wrong classes.

The cost to the achievable framerate of TOD on the Medfield data more closely

matches the baseline. This was because the tracker was used fewer times in this

dataset and more matching low confidence boxes were found. The comparison in

framerates of TOD and the baseline are shown in Figure 5-13.

5.4.3 Guardian Center

The last location where we ran an evaluation of our method was at the Guardian

Center in Perry, Georgia. The data taken at this location shows some of the weak
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a) Example of the overlap b) Example of the overlap
non-maximum suppression step non-maximum suppression step

removing a false positive removing valid detections.
detection.

Figure 5-14: Two cases where the overlap based non-maximum suppression step gets
rid of a false positive detection in a) and removes valid detections in b). The top
frames show the result before the step is applied, the bottom shows the effect after-
wards.

spots of our method. For one, there were several false positive detections that our

method started to track, creating invalid detections. This highlights that TOD is only

as good as the base detector. Additionally, there are several cars grouped together

creating overlapping detections. This created a situation where our overlap based non-

maximum suppression step would reject otherwise valid detections. Since many of the

environments we flew in had a wide spatial distribution of objects, this step helped

to reject false positive detections. Figure 5-14 shows two situations, one where this

non-maximum suppression step helped eliminate false positive detections and another

where it rejected valid detections.

The results of TOD and the baseline detector are shown in Figures 5-15, 5-16,

and 5-17. Our method performed the worst on this dataset. It was unable to add
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Figure 5-15: TOD compared to the baseline detector results on true positives, false
positives, recall, and precision for varying confidence thresholds for the person class.

valid person detections to the baseline. At its worst, the overlap based non-maximum

suppression step rejected several valid detections. The method also started to track

a tree that was falsely detected as a person.

5.4.4 Discussion

Overall our method, Temporal Object Detection (TOD), performed well on the Leje-

une and Medfield datasets, but had a difficult time on the Guardian dataset. TOD

showed the most improvement on the people class, where it was able pick up lost

detections. Additionally, by selectively applying the object tracker, the runtime of

TOD was only slightly slower than the baseline detector. TOD has also proven to be

very flexible. It can use any network as the base detector without any requirements

on an object proposal stage as well as with any object tracker. The method is also

tunable by raising or lowering the similarity score threshold providing a trade off
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Figure 5-16: TOD compared to the baseline detector results on true positives, false
positives, recall, and precision for varying confidence thresholds for the car class.
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Figure 5-17: Average framerate of TOD vs the baseline on the Guardian dataset.

between recall and precision.

The method as it currently stands assumed that objects are spread fairly sparsely
throughout the map. Using this assumption, we applied a non-maximum suppression

step based on the ratio of the overlap area between two boxes and a box's area
eliminating small detections inside larger detections. This does however eliminate

positive detections if objects are close together. The method could be improved by
being more selective about what objects it decides to track, but we leave this for

future work.

As the results across the datasets show, although TOD often offers improvements

in both recall and precision, the baseline detector also performs very well on its own.

TOD becomes more important on edge case objects where the detector may only
get one or two high confidence detections. TOD can then help provide subsequent

detections providing enough for the object to be localized in the map by the object

mapper later on in the pipeline.

For improvements, the method could likely be paired with a motion model to help
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track the objects. Additionally, instead of using color similarity as a main portion of

the similarity metric, appearance features could be incorporated into the model. The

tracking step could also be improved by creating a criteria for which objects should

be tracked. We leave these possible improvements for future work.
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Chapter 6

Conclusion

6.1 Summary

The research presented in this thesis was motivated by the DARPA Fast Lightweight

Autonomy (FLA) program. The goal of the program was to have an autonomous

micro aerial vehicle (MAV) explore and map an urban environment. The map needed

to include semantically labeled objects of interest such as cars and people that the

vehicle encountered in its exploration. In pursuit of this goal, the flight vehicle needed

a real time object detection system to find and recognize objects in the environment.

To develop this capability, we first evaluated of several state of the art object

detectors measuring speed and resource consumption across different hardware. This

evaluation included recently developed convolutional neural network (CNN) object

detectors. We tested You Only Look Once v2 (YOLOv2), Tiny YOLO, the Single

Shot MultiBox Detector (SSD), and another version of SSD, MobileNetSSD. These

networks were tested across five different hardware setups. The hardware included a

desktop setup with a NVIDIA TitanX GPU and Intel Core i7-6700KCPU, a NVIDIA

Jetson TX1, a NVIDIA Jetson TX2, an Intel Movidius Neural Compute Stick, and

an Intel NUC Skull Canyon. The evaluation also included testing the networks in a

GPU mode and a CPU only mode. In total, we tested 43 different configurations.

Throughout the evaluation we looked at the networks' framerate in frames per second

(fps), GPU utilization, CPU utilization, and memory usage. We found after the
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evaluation that MobileNetSSD provided the most flexibility and efficiency across the

various hardware setups.

After we chose MobileNetSSD as the object detector for the flight vehicle, we

worked on integrating it with the software stack and hardware. Since the flight

vehicle was already using the Intel NUC Skull Canyon, we decided to also use it for

object detection. In order to utilize the GPU on the NUC we had to use a special

version of Caffe called clCaffe, which uses an OpenCL backend. For initial flight tests,

MobileNetSSD used images from the onboard Flea3 camera since MobileNetSSD had

similar performance using both color and grayscale images.

During deployment, the object detector would look at a single frame from an image

stream being collected by the camera. Since the detector only looks at one image at a

time, it would frequently detect an object in one frame and not in the next. To take

advantage of the temporal information in the image stream, we presented Temporal

Object Detection (TOD). TOD used MobileNetSSD as a base object detector and

a similarity metric to either link detections between frames or determine when a

previously detected object had been lost. If an object was lost, TOD employed the

object tracker GOTURN to try and find the lost object. By selectively applying

the object tracker we maintained a high average framerate. Our results show that

in two of the three datasets TOD outperforms the baseline detector in finding valid

detections while still remaining fast.

6.2 Contributions

The main contributions of this work are an evaluation of state of the art CNN based

object detectors across a range of hardware and TOD, a method for using temporal

information in the object detection task. Previous evaluations of the tested CNN

object detectors including both an independent analysis [281 and analyses done in

the detectors' respective papers [57, 42], did not provide runtime results for different

hardware of the kind presented in this thesis. Additionally, the evaluation looked at

the performance of the hardware in supporting computationally demanding CNNs.
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The results of this evaluation can help guide future deployment configuration decision

by finding the appropriate balance in accuracy, speed, resource usage.

We also proposed TOD, a fast object detection method that incorporates previ-

ously detected object representations to both determine when an object has been lost

and to guide the search for the object using low confidence detections and an object

tracker. TOD showed promising results on the tested datasets. The evaluation of

TOD also showed some weaknesses in using annotation services to label testing data.

6.3 Future Work

There are several areas for future work. For one, the object detection evaluation did

not involve optimizing the tested hardware configurations. This could shine more

light on the full potential of the hardware. Additionally, different versions of TOD

could be explored using various combinations of object detectors and object trackers.

A new similarity metric could also be used that takes advantage of features and a

motion model.
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