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Identifying and Modeling

Urban Truck Daily Tour-Chaining Patterns

by

Peiyu Jing

Submitted to the Department of Civil and Environmental Engineering

on May 14, 2018 in partial fulfillment of the requirements for

the degree of Master of Science in Transportation

ABSTRACT

The main goal of this research is to better understand truck tour patterns in an urban
setting and develop models that can describe daily tour-chaining patterns. This
research uses truck activity data collected for the Urban Freight Heavy Vehicle Study
ongoing in Singapore, which is an advancement in freight data collection studies. The
data contain individual truck's Global Positioning System (GPS) traces and rich
behavioral details including the activities at stops and operator's characteristics that
were processed and verified though a freight data collection platform. Based on the
initiative of using post-processed GPS data for tour identification, this paper refines
the definition of tour and tour chain to explicitly reflect stop purpose, stop duration,
and time of stop. Tour types and daily tour-chaining patterns in the dataset are
identified. Further, this paper presents discrete choice models developed to explore
factors that influence daily tour-chaining patterns. Identified important factors are: the
difference between the number of distinct pickup and delivery locations, geographical
spread of distinct pickup and delivery locations, shipment type, time to start work,
employment type, land use type, and truck type. The major contributions of the paper
are: 1) identifying limitations of the conventional definitions of tour and tour chain
and proposing new approaches to reflect logistics practices; 2) explaining the tour-
chaining patterns of heavy goods trucks in Singapore; 3) developing tour-chaining
pattern choice models that aims serving agent-based simulation platforms.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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1 Introduction

1.1 Overview of freight behavioral modeling

Freight movements play very important roles in the transportation system. Modeling

freight movements is of significance because of its great influence on traffic

performances and economic activities. Apart from giving better empirical

explanations of travel patterns, understanding behaviors related to freight operations

at a disaggregate level is crucial for agent-based simulations, which can be applied to

predict freight vehicle and commodity movements under different scenarios such as

special events, new public policies, and changes in logistics practices of the freight

activity operator.

Freight behavioral modeling distinguishes itself from conventional passenger

behavioral modeling due to several well acknowledged reasons (Ogden, 1992;

Holguin-Veras and Patil, 2005, Gliebe et al., 2007). First, the revealed freight activity

pattern reflects the decision jointly made by multiple agents, such as shippers, carriers,

and receivers. Their roles in decision-making are difficult to identify and thus difficult

to be incorporated by a systematic approach in modeling. Second, the variations in

logistics practices add to complexity in modeling. This challenge is also related to the

first point, since different decision-making agents have different objectives and

constraints in their practices. For example, shippers are more concerned about the

shipping costs if they are the cost-bearers, while the primary concern of receivers (or

customers) may well be to minimize delivery delays. There exist trade-offs between

the conflicting objectives and constraints, which requires the identification of key

measurements contributing to the revealed behavior. Third, commodities and

commercial vehicles have large variations in characteristics, so travel patterns of

different freight operators are less homogenous than passengers. Fourth, commodity

movements and vehicle movements are two separate but related components that
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should be studied jointly. A holistic viewpoint is required to model the two

components together.

Freight behavioral modeling is faced with challenges due to the lack of high quality

data rich in travel behavioral and logistics planning details. Ideal data required to

develop freight behavioral models should include commodity movements, freight

vehicle movements, logistics practices including decision makers and their roles, and

objectives and constraints the different stake-holders have. The advancement in data

collection methodology and technology has enabled this research. Utilizing freight

data collection studies that provide processed and driver-annotated Global Positioning

System (GPS) traces of freight vehicles and multiple characteristics of freight activity

operators, we will develop freight behavior models.

1.2 Tour-based and tour-chain-based approaches

In general, freight behavioral modeling can be classified as two directions:

commodity-based and freight-vehicle-based. Although as aforementioned these two

components should be studied jointly, this research is primarily focusing on the latter

one. To study freight vehicle movements, we need to identify the basic unit of

analysis. A trip is the movement between two consecutive stops. A tour is a chain of

trips beginning and ending at a base location, which can be the home or work location

in passenger activity modeling, or a depot or overnight parking location in the freight

context. A tour chain is a chain of tours made within certain time frame, which is

usually a day for research interest.

Urban commercial vehicles deliver both services and cargoes within a metropolitan

area and are characterized by making multiple stops in one tour in daily operations.

Tour or trip-chaining is an important feature in urban commercial vehicle movements

(Wang and Holguin, 2008). It has been a recent research interest to study the typical

types of tours and how tours are chained together in daily operations. The study of
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freight vehicle tour-chaining patterns is of significance because it can provide insights

into supply chain agent decision-making and behavior (Figilozzi, 2007). It is also a

cornerstone in agent-based simulation which can be used to predict freight vehicle

movements for scenario analysis. The tour-chaining strategy is at the upper level of

many important decisions including next destination choice, route choice, etc., and

thus a good prediction of the strategy enhances the overall prediction accuracy. Based

on previous work, we want to improve the understanding of urban truck daily tour-

chaining patterns.

1.3 Thesis motivation

With an advancement of data collection study (Cheah et al., 2017), most recently

Alho et al. (2018a, 2018b) proposed tour and tour-chaining pattern identification

approaches and identified tour-chaining behaviors in the dataset. Based on this

initiative, this study is motivated by 2 major aspects.

First, the definitions of tour and tour-chain may be further refined so as to better

reflect logistics planning of freight vehicle movements. The popularly adopted

definition of a tour in freight studies is primarily the same as in passenger studies, yet

we question the rationality of such an approach. In addition, instead of containing a

large set of possible possibilities, each pattern should be clearly defined and

distinguished from each other.

Second, we want to develop the tour-chaining pattern choice models. For the first

point, previous literature did not take into consideration the correlations between

alternative tour-chaining patterns or concluded that structures that explicitly reflect

correlations between alternatives were not advantageous, however we want to test this

conclusion under a different definition of tour-chaining. Next, previous work used

many observed attributes of the actual choice as explanatory variables for all

alternatives. This is only applicable for the purpose of identifying key influencing
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factors, but models derived as such cannot well fit into agent-based simulators. For an

example, previous literature used travel distance between stops as an explanatory

variable. However, the distance is the calculated based on the sequence of stops

revealed in the day, which actually relies on the tour-chaining pattern chosen. In that

sense, the calculated distance can only be viewed as an attribute of the chosen

(observed) pattern, but it cannot be used to describe the attributes of other patterns not

chosen. We will only use attributes and characteristics not relying on any observations

and find generic attributes that can function as proxies of the observed attributes, so

that the model can be used for predictions and incorporated into agent-based

simulators. Last, Lin and Zhou (2013) indicated that tour-chaining patterns show large

cross-regional variations, so we want to develop a model specifically suitable for the

Singapore region which has not been studied before.

1.4 Thesis outline

The remainder of the thesis is organized as follows. Section 2 summarizes literature

on two topics - the classification and modeling of tour type and tour-chaining pattern.

Section 3 presents details of the data collection studies and descriptions of the data.

Section 4 presents a new approach to define tour types and tour-chaining patterns and

shows statistics of identified patterns in the dataset. Section 5 details the development

of discrete choice models of tour-chaining patterns. Section 6 presents the model

estimation results and discusses the insights derived from the results. Finally,

conclusions and future work are summarized in Section 7.
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2 Literature review

In this section, we first summarize the common classifications of tour types and tour-

chaining patterns of commercial vehicles in urban settings. Then we show literature

discussing the advantages of using a tour or a tour chain as a basic unit of freight

analysis. Finally, we show various models that investigate the choice of tour types and

tour-chaining patterns.

2.1 Classification of tour types and tour-chaining patterns

A trip is the movement between two consecutive stops. A tour is a chain of trips

beginning and ending at a base location. A tour chain is a chain of tours made within

certain time frame.

Insights for freight activity modeling come from passenger activity modeling, which

has been are well studied (Miller et al., 2005; Ben-Akiva and Bowman, 1998;

Bowman and Ben-Akiva, 2001). Bowman and Ben-Akiva (2001) developed a system

consisting of multiple choice models to forecast an individual's daily activities and

travel schedules. The activity pattern includes three main components: 1) the primary

activity, 2) the type of tour of the primary activity, and 3) the number and purpose of

secondary activities. Tour models include the choice of time of day, destination and

mode of travel. An individual's daily activities and travels are analyzed on the level of

tour and tour decisions are conditioned by the choice of activity pattern. There are a

number of other literature suggesting that approaches based on "tours" and "daily

activity patterns" are advantageous than the trip-based approaches.

In freight behavioral modeling, many researchers used tour as a basic unit for

analyzing urban commercial vehicle movements. (Wisetjindawat et al., 2006, Hunt

and Stephan, 2007; Wang and Holguin-Veras, 2008; Ruan et al. 2012; Kim et al.

2014). Hensher and Figliozii (2007) addressed the importance of studying trip-
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chaining behaviors in freight transportation. In urban freight settings, a tour is a more

appropriate unit of analysis than a trip, because it considers a series of freight

activities or schedules as a whole and thus contains important interactions between

trips. In terms of the impact on congestions, choice of tour type has a strong influence

on vehicle miles traveled (VMT) (Figilozzi, 2007) so the study on tour type

contributes to the prediction of VMT.

To conduct tour-based analysis, the classification of freight vehicle tour types is of

importance. In the freight setting, tours are primarily realizations of cargo distribution

strategies. Burns et al. (1985) first classified two basic types of cargo distribution

strategies of urban commercial vehicles. One strategy is named as "direct", where the

vehicle serves only one customer directly in one vehicle load. The other strategy is

"peddling", where the vehicle ships cargoes to multiple customers per vehicle load

before it returns to the base location. The authors found that the peddling strategy is

more cost-saving when customer demands are smaller, cargoes are of higher values,

and customer locations are concentrated geographically. Battelle Memorial Institute

(1995) extended the definition of peddling to include pickup activities at intermediate

stops. Liu et al. (2003) studied the features of two urban delivery systems. The first

one is "direct shipment", in which the suppliers ship cargoes to their customer(s)

directly. Depending on shipping costs and capacity constraints, one or more

customers may be served within one vehicle tour. The second system is "hub-and-

spoke system", in which cargoes from multiple suppliers are consolidated before

being distributed to one or more customers. In terms of delivery to customers, the two

systems both consist of the direct and the peddling strategy and in addition they

highlight the different strategies of picking up cargoes. Chopra (2003) summarized six

common types of distribution network designs based on the delivery strategy, the

pickup strategy, and the land use type of the base location. The designs are: retail

storage with customer pickup, manufacturer storage with direct shipping,

manufacturer storage with in-transit merge, manufacturer storage with pickup,

12



distributor storage with package carrier delivery, and distributor storage with last mile

delivery.

Further, Holguin-Veras and Patil (2005) analyzed features of urban commercial

vehicle movements and found that about 25% of all commercial vehicles make more

than one tour daily, thus the tour-chaining behavior is of interest. A tour-chaining

pattern of a freight vehicle can be viewed as the activity pattern of an individual in a

day, which is a corner-stone of activity-based modeling. In the study of individual

activity patterns, Ben-Akiva and Bowman (1998) pointed out that tour-based

modeling fails to consider the temporal and spatial constraints between tours, which is

less advantageous than tour-chain-based approaches capturing multi-facet of the

decision-making process. In a related work, Bowman (1998) held the similar

argument yet admitted the challenges of developing tour-chain-based modeling for a

day (or more) due to the huge size of activity schedule alternatives and complexity in

factors influencing the decisions.

The first attempt to study tour-chaining behaviors of freight vehicles is by Ruan et al.

(2012). They first found that freight tours are logically chained based on shipping cost,

customer demand, number of customers, type of service, etc. The rationale is that the

objective of freight activity decision-makers is to minimize logistics costs in daily

operations, thus the individual tours are considered jointly to complete daily tasks.

Tour-chain-based approach is advantageous than tour-based approach because it

considers the interconnections among linked tours and thus incorporates multiple

logistics considerations in a holistic framework. They first defined 5 types of tour-

chaining patterns on the basis of classifications by Burns et al. (1985) and Battelle

Memorial Institute (1995). A single direct tour starts at a base location, serves only

one customer or intermediate stop per vehicle load, and ends at the base location. A

single peddling tour starts at a base location, serves more than one customer stops or

intermediate stops per vehicle load, and ends at the base location. The five types of

daily tour-chaining patterns are: single direct, single peddling, multiple direct,

13



multiple peddling, and mixed. If the vehicle only makes one tour in a day, the daily

pattern is the same as the tour type (single direct or single peddling). If the vehicle

makes multiple single direct tours a day, then the daily pattern is multiple direct. By

the same logic, if multiple single peddling tours are made, then the daily pattern is

multiple peddling. If single direct and single peddling tours coexist in the day, then

the daily pattern is mixed. A tour is defined by a base location but a tour-chain may

have many base locations.

2.2 Tour type and tour-chaining pattern choice models

Ruan et al. (2012) developed logit models (a multinomial logit model (MNL), a

nested logit model (NL), a mixed model) to study the choice of 5 tour-chaining

strategies they defined as aforementioned. The dataset is the Texas Commercial

Vehicle Survey in 2005 and 2006 (Nepal et al., 2007a, 2007b, 2007c) which collects

plentiful travel details of commercial vehicles in 5 counties of Texas. Although the

nesting structure is not specified in the paper, theoretically an NL model partitions the

choice set to several nests and assigns correlated alternatives in one nest (Ben-Akiva

and Lerman, 1985). A mixed model is a generalization of the MNL (or binary logit)

model by means of estimating distributed coefficients, transforming variables to a

non-linear form, etc. They concluded that stop purpose (i.e. whether stop is a pickup

stop), travel distance, dwell time, cargo type, land use type, industry type,

pickup/delivery cargo weight, truck type, and other zonal features influence the

choice of tour-chaining patterns. The NL did not show significant structural

advantages over the MNL and the mixed model did not yield stable results probably

due to the small sample sizes of some patterns for some study areas. Further, they

compared the classic tour-based model with tour-chain-based model and concluded

that the latter performs better in capturing critical distribution decisions.

Lin and Zhou (2013) estimated a binary logit model for Texas and Idaho respectively

to investigate the choice between the direct and the peddling tour strategies of
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commercial vehicles. Two datasets from two similarly structured commercial vehicle

surveys are used for analysis. One is the Texas Commercial Vehicle Surveys in 2005

and 2006, and the other is Community Planning Association of Southwest Idaho

Commercial Vehicle Surveys. They showed that cargo type, travel purpose, travel

time, dwell time, and tour destination are factors influencing the choice. They also

revealed large cross-regional variations in commercial vehicle movement patterns

between Texas and Idaho.

Following previous work, Zhou et al. (2014) developed an MINL model to study

commercial vehicle tour type based on direct and peddling strategy with different

number of customer stops. The continuous component - number of customer stops is

classified as 4 levels and implicitly considered as different alternatives, contributing

to 5 types: direct tour, peddling tour with two customer stops, peddling tour with three

to five customer stops, and peddling tour with more than five customer stops. The

dataset is the Texas Commercial Vehicle Survey in 2005 and 2006. They tested an NL

model but did not observe structural advantage. The results show that factors

influencing the choice of tour type are: commodity type, land use type,

loading/unloading cargo weight, and travel speed.

Khan and Machemehl (2017) adopted the multiple discrete continuous extreme value

(MDCEV) model proposed by Bhat (2005, 2008) to jointly model the choice of tour-

chaining pattern and the number of trips in a tour chain. They argued that the choice

of a tour-chaining pattern is a multiple discrete-continuous choice because besides the

discrete component - the choice of tour-chaining pattern, there is a continuous

component - the number of trips made in a selected tour pattern. The two components

in decision-making are correlated to each other and should thus be studied together.

The alternative tour-chaining patterns considered are the same as the 5 patterns in

Ruan et al. (2012). The dataset they used is the 2006 Austin Commercial Vehicle

Survey. Various explanatory variables were used to explain the choice, including

cargo type, land use type, and other shipment and urban characteristics.
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To summarize, previous literature identified the most common tour types and tour-

chaining patterns of commercial vehicles in urban settings. The previous studies

primarily used responses to commercial vehicle surveys in the US and pointed out the

need for better quality data with more details. Factors influencing the choice of tour

type and tour-chaining patterns were investigated and different model structures were

tested.

Most recently, Alho et al. (2018a, 2018b) developed new approaches for identifying

tours and daily tour-chaining patterns. One approach defines tours based on the

pickup and delivery stops. A tour starts at a pickup stop and ends before another

pickup or a long rest stop. They incorporated the direct and peddling strategies at the

delivery stops, and also distinguished two strategies - regular and irregular - based on

whether the next pickup is at the same location as in the previous tour. Another

approach is based on the vehicle load, where the criteria for terminating a tour is

based on the availably capacity in vehicle. They identified and analyzed the tour-

chaining behavior of freight vehicles using data collected in the Singapore Heavy

Vehicle Parking Study (Cheah et al., 2017).
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3 Data Descriptions

This research is enabled by data collection studies that provided rich driver-annotated

GPS traces and stop activity data as well as operators' characteristics. This section

presents the data collection methodology and summary statistics.

3.1 Data collection

The identification and prediction of daily tour-chaining patterns of commercial

vehicles require disaggregate vehicle movement data of high quality and rich

behavioral details. We have been working on the development of state-of-the-art

freight data collection methodology and technology. The name of the study is the

Future Freight and Logistics Survey which targets at collecting freight vehicle and

shipment data in the US. Another ongoing study in Singapore is the Urban Freight

and Heavy Vehicle Study and researchers from two studies collaborate on survey

designs. The two studies use very similar survey flow, data collection methods, and

questionnaires with minor customizations. For simplicity, the former study is referred

to as the US study and the latter is referred to as the Singapore study in this thesis. For

more details about the US study, refer to Ding-Mastera et al. (2017) and for details of

the Singapore study, refer to Cheah et al. (2017).

The US study consists of 3 Phases. Phase 1 is the freight vehicle survey pilot study

which focuses on testing the feasibility of the proposed data collection methodology

and technology. The pilot study (Nov 2016 - Jan 2017) has been completed

successfully. Truck drivers based in the Greater Boston area were targeted survey

respondents. Phase 2 is the ongoing shipment survey pilot study which is also a

feasibility testing and is projected to be completed by the end of Sep 2018. Shippers

and shipments from establishments having outgoing shipments are targeted in the

survey. Shippers are expected to answer questions related the shipments tracked by

the provided GPS trackers. Phase 3 is a large-scale integrated survey to be conducted
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in 2019. It will integrate freight vehicle survey and shipment survey in a holistic

framework and will collect freight data from a large number of freight activity

operators.

The Singapore study has the similar design as the freight vehicle study in the US,

while only truck drivers with specific characteristics are targeted - those who operate

heavy vehicles with maximum laden weight over 5 tons and are assigned with an

overnight parking location in government-owned parking lots. 4 batches have been

completed until Apr 2018 and the 51 batch is ongoing. Survey methods have been

improved in each batch from feedback and experience in previous batches.

In both surveys, the uniform data collection platform employed is Future Mobility

Sensing - Freight (FMS - Freight) (Cottrill et al., 2013; Ding-Mastera et al., 2017).

FMS - Freight utilizes advanced sensing and communication technologies coupled

with machine learning algorithms to collect and process actual data on trips and

activities. Figure 1 illustrates the architecture of FMS - Freight, consisting of 3 main

components:

1) Tracking device. The platform is compatible with multiple types of tracking

devices. The web-based survey utilizes GPS loggers while the app-based survey

collects data directly from a smartphone or a tablet. In the US vehicle tracking

pilot study and the first four batches of the Singapore study, GPS loggers and

web-based survey were utilized for tracking freight vehicles.

2) Backend post-processing. The collected truck GPS data is sent to the server

database in real-time for post-processing. Machine learning algorithms, including

map matching and stop detection algorithms, are deployed in the backend. The

processed GPS data provides of the routes used, stops made, travel and stop times.

3) Mobile/Web Interface. The processed data is presented back to the driver in the

form of a daily questionnaire for verification. The driver can access the personal

webpage on the FMS - Freight website to complete the questionnaire, while in the
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app-based survey, the driver can directly finish the daily questionnaire in the

mobile application. Figure 2 shows the freight vehicle driver's personal web

interface. The left column shows the truck trace of the selected day on a map; the

middle column shows stop locations and stop times detected by the stop detection

algorithms; the right column are contextual questions specific to a detected stop.
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In both freight vehicle surveys, the survey respondents - freight vehicle drivers could

create personal accounts on the FMS - Freight website. After registering basic
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information about personal socioeconomic characteristics, the survey is initiated. The

driver is asked to conduct the following three main steps, which all can be completed

on the personal webpage.

1) Operations questionnaire: The driver is asked to answer a series of contextual

questions regarding employment and operational details of the vehicle. The driver

has the option to save frequently visited places and indicate the activities at the

place, which is intended to reduce verification burdens in the following step 3.

2) Vehicle questionnaire: Next, the driver registers the operated freight vehicle by

proving a unique vehicle identifier and answering questions regarding

characteristics of the vehicle.

3) Tracking and verification: When the above two questionnaires are completed, the

truck is tracked by a GPS logger for a period. At the end of each day, the driver is

asked to verify freight activities at detected stops and report special events on the

personal webpage.

However, only a low proportion of drivers self-verified daily freight activities on the

webpage due to difficulties in accessing and using computers. Surveyors recorded the

answers for the daily questionnaire from drivers via telephone interviews. In view of

this burden, we are developing and testing the tablet version of FMS - Freight and

planning to install tablets on freight vehicles for the following surveys, which will

enable the drivers to complete all questionnaires in the tablet application.

3.2 Data descriptions

From the freight vehicle survey, we collected 4 categories of data.

1) Driver characteristics: In the registration process, age and number of years

working as a truck driver are collected. In the Singapore survey, the postal code of

residential location is also collected to infer alternative overnight parking

locations the driver may consider.
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2) Vehicle characteristics: The vehicle questionnaire collects fuel type, vehicle body

type, make and mode, length of trailer (if trailer is used), length of the storage area,

and maximum laden weight.

3) Operations practices: The first part collects information related to employment:

self-employed or hired, drive for trucking company or non-trucking company, and

payment terms. The second part asks about vehicle operational details: decision-

maker of route and stops, criteria for route choice, sources of information for route

planning, the time stops are determined, commodity types usually carried,

industries usually served, special commodity types carried, and whether some

costs are paid out of pocket by the driver. The Singapore survey also asks

questions related to overnight parking.

4) Annotated GPS data: The processed GPS trace are presented to the driver for

daily verification. The first two questions are purpose of the stop and land use

type. Following questions are based on the answer to the purpose of the stop. If

the purpose is "pick up cargo" or "drop off cargo", then cargo types and amount

of cargo are asked. If the purpose is "fueling", then the question is amount of fuel.

If the question is "pick up trailer", then the question is the length of the trailer. In

the Singapore study, the percentage of utilized capacity upon arrival is also asked

at "pick up cargo" and "drop off cargo" type of stops. In addition, the driver can

optionally report special events. Location, time, and type of special events are

collected.

In summary, the data collected embrace driver-annotated GPS traces, logistics

planning practices, as well as characteristics of the driver, vehicle, and commodities

carried. GPS data coupling with driver verifications ensure the quality of data, and the

questionnaires can facilitate the explanation of the decision-making process in freight

vehicle movements. There is a great potential to develop agent-based and activity-

based freight models using the data.
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In the Phase I - freight vehicle survey pilot in the US study, 28 truck drivers were

recruited in the Greater Boston area. They were tracked for a total of 442 days and 18

out of them were tracked for more than 20 days. Among all the drivers, 8 drivers were

identified as driving only in urban areas of Boston, 15 drivers only made intercity

travels, while the rest 5 made a mixture of urban and intercity travels.

Until Apr 2018, the Singapore study has collected data of 1610 vehicle*days from

379 unique drivers/vehicles (Alho et al., 2018a). Each driver was tracked for

consecutive 5 days from Monday through Friday, yet there exist days with no data

observed. All of the truck operations are inside of Singapore (no cross-border travels)

and thus are identified as urban trucks.

We used data from the 3 rd batch (Oct 2017 - Nov 2017) of the Singapore study for the

following analysis. The dataset has 7,289 verified stops and 561 vehicle*days

collected from 119 driver/vehicles. Each truck was operated by a single driver. We

did not use data from the US study because of the small sample size and the existence

of intercity travels, which brings difficulties in identifying daily patterns. It remains a

research interest to study the tour and tour-chaining patterns of vehicles that do

planning on the basis of multiple days. We did not use data of the first and second

batches from the Singapore study mainly for the assurance and consistency of data

quality.
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4 Identifying Tour Type and Tour-Chaining

Pattern

This section presents a refinement of definitions of tour type and tour-chaining

patterns of freight vehicles. The definition incorporates multiple important factors in

logistics practices. Using the proposed definition, we identified the tour type and daily

tour-chaining patterns of the trucks in the dataset. The statistics are presented.

4.1 Enhancement to the conventional definition

The conventional definition of a tour is a chain of trips beginning and ending at the

same base location. A daily tour chain is a chain of tours made in a day. Previous

researchers developed this idea from passenger transportation modeling to study

freight activities. However, there are several limitations in this definition.

1) Problems with using a base location as:

The definition of a base location is vague. Unlike passengers who have very clear and

stable base depots (e.g., home, work), freight vehicles may not have a clear base depot.

First, the freight vehicle may have multiple frequently visited places which may

change over time. These places may be where the commodity suppliers and customers

are located, but it is difficult to determine which ones should be considered as the

base depots and which ones are only temporary pickup and delivery stops. Second, in

the data although the trucks have been allocated overnight parking locations, we

observed that some of them are parked somewhere else for several days in a week.

This indicates that the overnight parking location, usually viewed as a base depot,

may not be frequently visited and thus its importance in logistics planning should not

be overly emphasized. Third, if the base location is not defined properly, rich travel

details within a tour may be lost. Consider the observation above, if we define the

overnight parking location as the base depot, then the travel details are lost before the
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truck returns to it. There is a risk of not capturing important decisions made within the

tour if we use a base location to define a tour.

2) Stop purpose needs highlighting:

The conventional definition does not highlight the importance of pickup and delivery

stops. Pickup and delivery stops are treated in the same way as stops of other purposes.

A tour may contain multiple pickup stops and delivery stops, yet how they jointly

impact the decision of a tour is unknown. However, in logistics planning, the travel

pattern of freight vehicles is predominantly determined by the pickup and delivery

activities, which can be viewed as the primary purposes of freight vehicle operations

and should thus be separated from other types of stops in the analysis.

3) Time frame of interest:

Tour-chaining behavior is usually studied on a daily basis. The time frame is a

calendar day from 0:00 am to 11:59 pm, yet in the dataset, a lot of freight activities

were observed at night. In this sense, if a tour is made across two calendar days, it

may be cut into two or partly discarded. Notably, we are limiting our focus on trucks

traveling in urban areas in this research. Intercity trucks are significantly different

from urban trucks in that their travels may last for several days and even up to a week,

but they have less frequent stops. While urban truck movements are usually planned

on a daily basis (so we want to investigate daily tour-chaining patterns), intercity

truck movements are planned over a longer and varying time span depending on the

origin and destination locations.

In view of the potential limitations, we wanted to develop a new approach to define

tour and tour chain to reflect the strategic planning process of freight vehicle

movements.

4.2 Definition of tour and tour chain
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The proposed tour type and tour-chaining pattern identification approach takes into

account factors including stop purpose, stop duration, and time of stop, which

together determine the boundary of a tour and tour chain.

1) Stop purpose:

Truck movements are predominantly affected by the demand and supply of

commodities the truck carries. A complete tour must have pickup stops and delivery

stops, and may also include intermediate stops for resting, refueling, maintenance, etc.

Practically, we think that a consecutive sequence of pickups followed by a

consecutive sequence of deliveries is a basic unit of tour planning. We define a tour as

a consecutive sequence of pickups followed by a consecutive sequence of deliveries.

A tour starts at a pickup location, and when the truck arrives at the next pickup

location after delivering cargoes, the tour ends.

2) Stop duration:

As mentioned, a tour may have non-pickup and non-delivery intermediate stops.

Some of such intermediate stops may not be planned ahead, e.g., a brief stop for

restroom, refueling at a gas station found along the way; while others may be planned,

e.g., lunch break at a predetermined location. Although driver's plan is unknown, we

only considered long intermediate non-pickup and non-delivery stops (longer than the

median: 19 minutes) as planned stops and view such a stop as a delivery followed by

a pickup in tour pattern identification. Together with pickup and delivery stops, these

long intermediate stops form the tours.

3) Time of stop:

If there are no pickup or delivery stops before stops verified as "start of my shift" or

after "end of my shift", then all stops before "start of my shift" and after "end of my

shift" are excluded because we do not want to include travels for personal purposes.

By observing the data, we define 4:00 am - 3:59 am as a "day" because freight

activities between 4:00 am and 5:00 am are the least frequent. In this way the least

number of tours are cut into two. To avoid congestions and high toll rates, many

drivers work after midnight, thus cutting a day by 11:59 pm is irrational.
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By criteria above, we propose a different definition of tour types:

1) Regular Direct (RD): 1 pickup followed by 1 delivery;

2) Irregular Direct (ID): multiple consecutive pickups followed by 1 delivery;

3) Regular Peddling (RP): 1 pickup followed by multiple consecutive deliveries;

4) Irregular Peddling (IP): multiple consecutive pickups followed by multiple

consecutive deliveries.

The "regular" type has only one pickup stop in a tour, while the "irregular" type has

multiple pickups, which can be explained as collecting and consolidating

commodities from different suppliers. For an example, a garbage truck driver may

well prefer the irregular type when collecting garbage in residential areas. In terms of

delivery stops, the "direct" type has only one delivery, while the "peddling" type has

multiple ones, e.g., USPS trucks dropping off packages at multiple locations.

The daily tour-chaining pattern is identified based on the tour types identified in the

day (4:00 am - 3:59 am). There is a total of 13 tour-chaining patterns defined by

different combinations of tour types. The combinations of tour types and

corresponding tour-chaining patterns are summarized in Table 1. Some drivers only

make one tour daily, so their tour-chaining pattern is the same as the tour type: RD,

RP, ID, or IP. Some drivers make multiple tours of the same type daily, we name the

four patterns as mRD, mRP, mID, and mIP. Others mix 3 out of the 4 strategies

(regular, irregular, direct, peddling), contributing to four patterns: RDRP, IDIP, RDID,

and RPIP. The pattern mixing 4 strategies is named as mixed (MX). Another way to

name the patterns is using the #T#P#D notation. #T denotes the number of tours in the

day, so IT denotes making only one tour and mT denotes multiple tours; #P is the

number of pickup stops in tours made, so IP means making 1 pickup in all tours, mP

denotes making multiple consecutive pickups in all tours, and uP means that some

tours have only 1 pickup while others have multiple ones; #D is the number of

delivery stops in tours made, which shares the similar notation logic as #P. Some

examples of tour-chaining patterns are shown in Figure 3.

26



Table 1: Daily tour-chaining patterns corresponding to the number of 4 tour types
made in the day

RD ID RP IP mRD mID mRP mIP RDRP IDIP RDID RPIP MX

#T IT IT IT IT mT mT mT mT mT mT mT mT mT

#P IP M IP mP IP mP IP mP IP mP uP uP uP

#D ID ID mD mD 1D iD mD mD uD uD ID mD uD

#RD 1 0 0 0 >1 0 0 0 1 0 1 0 Other

#ID 0 1 0 0 0 >1 0 0 0 1 0 0 mix

#RP 0 0 1 0 0 0 >1 0 1 0 0 1 of

#IP 0 0 0 1 0 0 0 >1 0 1 1 1 types
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Figure 3: Examples of tour-chaining patterns
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4.3 Features of tours and tour-chaining patterns

The dataset we used contains a total of 561 vehicle*days. For the identification of tour

and tour-chaining patterns, data processing includes parsing stop activities, converting

stop data to daily stop sequences, filtering out days without tours, etc. After

processing, a total of 504 vehicle*days is kept for identifications. The type of each

tour is identified and then the pattern for each day is identified. Table 2 shows the

number and count of 4 tour types in the dataset. RD has the highest composition

(85.7%), showing that a high proportion of tours do not involve consolidation and

deconsolidation, but are directly from the supply to the demand. The percentage of ID

and IP are both very low, meaning that in this dataset, the trucks do not frequently

collect commodities from different suppliers before distributing to customers. 9.2% of

the tours are of RP type, the percentage of which is relatively low. In terms of pickup

strategies, regular (94.9%) takes the highest percentage, meaning that most trucks

deliver commodities directly after pickup; irregular only shares a small portion (5.0%).

As for delivery strategies, more direct (89.9%) are observed than peddling (10.1%),

meaning that a huge portion of tours serve one customer only. Table 3 shows the

number of stops (including pickup, delivery, and other long intermediate stops) in 4

tour types. In ID and RP types, the standard deviation of number of stops is high and

minimum is both 3 while maximum is 10 and 11, respectively. The mean number of

stops of all tour types is 2.24 and the median is 2, which is of the RD type.

Table 2: Number of 4 tour types

All RD ID RP IP

Count 2,392 2,051 101 220 20

Percentage 100% 85.7% 4.2% 9.2% 0.8%

Table 3: Number of stops in 4 tour types

All RD ID RP IP

Mean 2.24 2 3.55 3.77 4.25

Std 0.76 0 1.24 1.5 0.72

Median 2 2 3 3 4

Min 2 2 3 3 4

Max 11 2 10 11 7
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Then the daily tour-chaining patterns are identified. Table 4 shows some statistical

features of the patterns with more than 1 observation. In the dataset, only RD (36), RP

(7), IP (1), mRD (250), mID (1), mRP (8), RDRP (103), RDID (51), RPIP (1), and

MX (46) are observed (the number in parenthesis is the count), among which RD

takes the highest proportion 49.5%. ID, mIP, and IDIP are not observed, which may

be due to the small sample size as well as the truck types. All of the trucks are heavy

goods vehicles or very heavy goods vehicles and 86.55% of them carry construction

materials or minerals. Consistent with observations by surveyors that a great number

of trucks transport materials from one side of a construction site to the other, patterns

containing RD tour type (1 pickup and 1 delivery), including RD, mRD, RDRP,

RDID, MX, make up a large part. Pure peddling (RP and mRP) is not frequent

probably also due to the preference for full truckload operations when carrying

commodities as construction materials and minerals. Irregular patterns (RDID, RPID,

RPIP, IDIP, mID, IP, mIP) are not frequent. This may also be contributed to the

monotony of commodity types carried in a day. If a vehicle carries multiple types of

commodities, then it is more likely to collect the commodities from different suppliers

before visiting customers who have varying needs. Figure 4 shows the average,

minimal, maximum, and standard deviation of the number of tours in different tour-

chaining patterns. The RD and RP patterns have exactly I tour daily while other

patterns have at least 2 tours daily and at most 17-20 in mRD, RDRP, RDID, MX.

Only 8 mRP patterns are observed, which do not vary significantly in the number of

daily tours. As a pattern with 7 different combination of tour types, MX has the

highest standard deviation in the number of daily tours.

Table 4: Statistical features of tour-chaining patterns
All* RD RP mRD mRP RDRP RDID MX

Count 501 36 7 250 8 103 51 46

Percentage (%) 99.2 7.1 1.4 49.5 1.6 20.4 10.1 9.1

# carry construction materials 232 14 0 113 1 60 22 22

# carry minerals 217 10 0 120 2 40 23 22

* This does not include the 3 days identified as other patterns.
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Figure 4: Number of tours in tour-chaining patterns
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5 Modeling tour-chaining pattern choice

This section discusses the development of tour-chaining pattern choice models. First,

we show how we selected candidate explanatory variables and give a priori beliefs of

how these variables influence the choice. Next, we show the approaches and

procedures in model estimation.

5.1 Candidate explanatory variables

To select the most appropriate explanatory variables out of a number of characteristics

and attributes available from the dataset, we conducted a prior analysis on the data to

examine whether some variables influence the tour-chaining pattern choice in a way

consistent with intuitions and as suggested in literature. Based on the data and our a

priori beliefs, 8 categories of candidate explanatory variables are specified. As a

general guideline, the purpose of modeling tour-chaining patterns is for predicting

(rather than only explaining) the choices, thus unlike previous work, we avoid the use

of observed attributes belonging to the alternative chosen. Only information from an

upper level (e.g., pickup and delivery locations, cargo types) of decision-making that

the decision maker has good knowledge of is considered as candidate variables.

1) Number of distinct pickup and delivery locations:

A distinct stop has a unique location. Candidate variables in this category include the

number of distinct pickup locations, the number of distinct delivery locations, the

difference and the ratio between the two. The hypothesis is that as the number of

distinct pickup locations increases relative to deliveries, irregular (mP) is more

preferred than regular (iP); if it is on the contrary, peddling (mD) is more preferred

than direct (lD). These preferences are obviously revealed by the definition of

different strategies - irregular involves more pickup stops in a tour, while peddling

involves more delivery stops than pickup stops in a tour. From Table 5, the data

validates our hypotheses. The average numbers of distinct pickup locations of RDID
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and MX, both containing the irregular strategy, are both higher than other patterns.

The average numbers of distinct delivery locations of RP, mRP, RDRP and MX

which contain the peddling strategy are all higher than other patterns. We did not use

the average numbers of pickup and delivery stops as explanatory variables because

they are affected by the choice of tour-chaining patterns. Yet we put those statistics in

the table for comparison purposes. The average number of pickup stops is 5.14 in the

entire dataset and RDRP, RDID, and MX have average number of pickup stops higher

than 5.14. The average number of delivery stops is 5.47 in the entire dataset and mRP,

RDRP, MX have more delivery stops than 5.47.

Table 5: Number of distinct pickup and delivery locations
and number of pickup and delivery stops in a day

All RD RP mRD mRP RDRP RDID MX

Avg # distinct pickup locations 3.01 1 1 2.83 1.88 3.43 3.94 4.04

Avg # pickup stops 5.14 1 1 4.84 2.25 5.57 7.51 7.52

Avg # distinct delivery locations 3.87 1 4.71 3.39 6.25 5.09 3.76 5.52

Avg # delivery stops 5.47 1 4.71 4.84 7.5 7.51 5.39 7.7

2) Dwell time:

Dwell time is the duration at a stop, which is the difference in time between the

arrival time and departure time. Dwell time is determined by many factors such as

pickup or delivery amounts, cargo type, facility, and truck type. We want to use stop

duration as a proxy of pickup or delivery amount, i.e. supply at a pickup location and

demand at a delivery location. In the survey, the drivers were asked "How much

cargoes did you picked up/deliver here?", yet many entries are illogical or missing so

that the answers are unusable. Instead of absolute values, we used the ratio between

the average dwell time at distinct pickup locations and the average dwell time at

distinct delivery locations as an approach to avoid its inaccuracy as a proxy of amount

of cargo. The variable used is the logarithm of the ratio, which reduces the impact of

some overly large values. The hypothesis is that when average dwell time at each

distinct pickup location is longer relative to that at each distinct delivery location,

peddling (mD) is more preferred than direct (ID) and regular (1P) is more preferred
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than irregular (mP). The reason is that when on average the amount of cargo to pick

up at one location is bigger than that to deliver at one location, the vehicle is likely

collecting cargoes from a big supplier and then distributing to multiple customers. In

Table 6, we observe that the average dwell time at each distinct pickup location (dp) is

higher than that at each distinct delivery location (dd) for all patterns. This is

somehow not validating our a priori hypotheses. One underlying reason may be that

dwell time is not a good proxy of amount of pickup and delivery. Another reason is

that while we did allocate the dwell time to each stop purpose equally if the driver

indicated a multi-purpose stop (e.g., pickup and resting at the same stop), a pickup

location is more likely a place where the driver rests than a delivery location but the

driver may not have indicated the resting activity at pickup stops properly. The

relative magnitude of the dwell time at pickup and delivery stops is log(dp) - log(dd),

which is higher than average of the entire dataset (0.70) among only 2 patterns

containing the peddling strategy (RP and MX), and higher than 0.70 among 3 patterns

containing the regular strategy (mRD, RDID, and MX). Based on a priori data

analysis, this variable may not be able to explain the choice very well yet we still

tested the validity of this variable.

Table 6: Dwell time at distinct stop locations
All RD RP mRD mRP RDRP RDID MX

Avg dwell time at each distinct
52.86 42.22 108.00 55.42 37.27 46.23 57.18 52.54

pickup location (dp)

Avg dwell time at each distinct
29.06 39.94 31.37 30.32 24.19 26.95 26.10 23.08

delivery location (dd)

log(d) - log(dd) 0.70 0.32 1.34 0.76 0.47 0.52 0.93 0.79

3) Spread ratio:

The relative locations of distinctive pickups and deliveries play important roles in

tour-chaining pattern strategies. For example, if the distinctive pickups are very

concentrated geographically, then the irregular strategy is preferred given other

constraints satisfied. In other words, given the geographical spread, the decision

maker chooses a good strategy that saves distance to visit all locations. We define a

35



unitless factor "spread ratio" measuring how "dispersed" the network of some stops is,

relative to the network of all stops. The formula of the spread ratio of pickup locations

and delivery locations:

pSpreadRatio = p locations / # all pickup and delivery locations

dSprad~ a -= iaDelivery 12e Z jeAll Stops lcprea io delivery locations # all pickup and delivery locations (2)

where cp, cd, co is the geographical centroid location of distinct pickup locations,

distinct delivery locations, and all distinct pickup and delivery locations, respectively;

l; is the Euclidean distance between stop location i andj.

The distances could be weighted by total supply/demand at each distinct stop to

reflect the frequency of visit. The weight of each stop should be the supply or demand,

i.e. the summation of all pickup or delivery amounts, but since such data is unusable,

the total stop duration at each distinct stop location is used as the weight of the

location. pSpreadRatio Weighted and dSpreadRatio Weighted are calculated

accordingly. A priori belief is as pSpreadRatio and pSpreadRatio Weighted are large

meaning the pickup locations are very dispersed, regular (iP) is preferred than

irregular (mP); as dSpreadRatio and dSpreadRatio Weighted is large meaning the

delivery locations are very dispersed, direct (ID) is preferred than peddling (mD).

Table 7 shows the average weighted and unweighted spread ratio of pickup and

delivery locations. The relative magnitudes of spread ratios validate a priori beliefs to

some extent. The weighted spread ratios may not be very accurate due to the

inaccuracy of dwell time as a proxy of amount of cargo, yet we still tested these

variables.

Table 7: Average spread ratio of pickup and delivery locations
All RD RP mRD mRP RDRP RDID MX

Avg pSpreadRatio 0.41 0.00 0.00 0.44 0.27 0.44 0.53 0.42

Avg dSpreadRatio 0.67 0.00 0.41 0.65 1.00 0.77 0.85 0.81

Avg pSpreadRatio Weighted 0.37 0.00 0.00 0.40 0.17 0.40 0.51 0.37

Avg dSpreadRatio Weighted 0.68 0.00 0.24 0.66 0.98 0.80 0.89 0.79
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4) Commodity carried:

Only construction materials and minerals take up more than 5% of the total number of

commodity types carried, so we only considered the impacts of these two types. The

dummy variable for minerals assumes 1 if the day involves at least one stop that

supplies/demands minerals. Another dummy variable for construction materials is

similarly defined. Hypotheses are vehicles carrying construction materials tend to

make RD to transport between construction sites or mRD and RDRP within

construction sites; vehicles carrying minerals less prefer irregular (mP) because in

delivery locations, it is difficult to pick out different types of minerals from multiple

suppliers.

Table 8 shows the potential impact of commodity carried on choosing each tour-

chaining pattern. Specifically, the first row is the ratio of choosing a certain pattern

given that pattern is available in the entire dataset. The second and third rows are the

ratios of choosing a certain pattern given that pattern is available in the subset

characterized by carrying minerals and construction materials, respectively. If in a

subset, the ratio of choosing a pattern is higher than that in the entire dataset, then it

means the characteristic of the subset positively influences the choice of the pattern.

We observed that carrying minerals improves the ratios of choosing RD and RDRP,

both using the regular (1P) strategy. Carrying construction materials improves the

ratios of choosing RD and RDRP as expected, yet not mRD. We still tested the impact

of carrying construction materials on choosing mRD.

Table 8: Ratio of choosing an available pattern in the entire dataset
compared with that in the subset characterized by commodity carried

# observations RD RP mRD mRP RDRP RDID MX

All 501 83.7% 13.0% 49.6% 1.8% 22.9% 12.5% 11.7%

Carry minerals 216 66.7% 0.0% 55.1% 1.0% 20.1% 12.7% 12.4%

Carry construction materials 230 93.3% 0.0% 48.7% 0.5% 28.2% 11.5% 11.8%
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5) Land use type of stops visited:

The land use types are indicated by the drivers in the daily verification. Some land use

types are considered to have an impact on pattern choice: retail store, manufacturing,

transfer terminal, and distribution center. As previous literature suggest, land use

types are very important factors affecting the tour-chaining strategies. Dummy

variables indicating whether the vehicle visits at least one stop of certain land use type

are created. First hypothesis is that if in the day the vehicle visits retail stores,

peddling (mD) is more likely chosen when the truck distributes commodities from one

big supplier to customers with smaller demands, and RD is likely chosen if the

supplier only serves a specific customer. For an example, the former is the case when

Coca Cola distributes coke to retail stores and the latter is the usual practice when a

small company replenishes the only franchisee in the region or one franchisee at one

day. If the vehicle visits a distribution center, irregular (mP) and peddling (mD) are

more likely chosen because the vehicle is likely collecting cargoes from or

distributing cargoes to different distribution centers. If the vehicle visits a transfer

terminal, which is the place where cargoes are transshipped from other transportation

modes, regular (1P) and direct (1D) is more preferred because the cargo is likely in

big amount (e.g. a container) and have a designated customer or a designated delivery

location for deconsolidation before distributing to different customers. Table 9 shows

how land use type of stops visited affect the choice of tour-chaining patterns, which

are in general consistent with a priori beliefs. We observe that the ratio of choosing

RD also increases slightly if a distribution center is visited, which is opposed to a

priori belief but may reflect other logistics practices.

Table 9: Ratio of choosing an available pattern in the entire dataset
compared with that in the subset characterized by land use type of stops visited

# observations RD RP mRD mRP RDRP RDID MX

All 501 83.7% 13.0% 49.6% 1.8% 22.9% 12.5% 11.7%

Visit distribution center 81 85.7% 12.5% 45.7% 2.9% 15.7% 22.7% 12.9%

Visit retail store 192 90.0% 27.3% 48.2% 3.4% 25.0% 13.0% 7.8%

Visit transfer terminal 77 100.0% 0.0% 62.3% 1.4% 19.7% 8.6% 2.9%
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6) Time to start work.

Time to start work is assumed to come from upper level decisions. In the data it is

reflected by the start time of the first pickup stop. Two dummy variables are created,

one corresponding to start time before 8:00 am, and the other corresponding to start

time after 10:00 am. This division is based on a priori analysis of data (49.5% start

work before 8:00 am) and also reflects the impact of AM peak. Hypothesis is that if

the vehicle starts working relatively late in the day, it is likely to only make 1 tour

(RD and RP). The data in Table 10 shows that the ratios of choosing RD and RP

increase if the driver starts working after 10:00 am as we expected.

Table 10: Ratio of choosing an available pattern in the entire dataset
compared with that in the subset characterized by time to start work

# observations RD RP mRD mRP RDRP RDID MX

All 501 83.7% 13.0% 49.6% 1.8% 22.9% 12.5% 11.7%

Start after 10 am 94 85.7% 25.0% 51.6% 0.0% 17.1% 12.1% 9.7%

7) Employment type.

Two dimensions of employment type are available from the operations questionnaire:

self-employed or hired; drive for a trucking company or a non-trucking company.

Two dummy variables are introduced, one denoting whether the driver is self-

employed, the other denoting whether the driver drives for a non-trucking company.

Hypotheses are self-employed drivers tend to have MX ("Gypsy") tour pattern;

drivers from non-trucking companies more likely to choose regular (1P) than irregular

(mP) and more likely to make only one tour. From Table 11, self-employed drivers

are more likely to choose MX, RD, and mRP. The patterns using the regular strategy

(RD, RP, mRP) are preferred by drivers of non-trucking companies and the ratios of

choosing only one tour (RD and RP) increase. The preference for RD among self-

employed drivers and drivers working for non-trucking companies may be explained

as the driver is a supplier or works for an establishment supplying commodities, and
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thus the only pickup location is the establishment. In addition, the demand for such

commodity is from a specific customer so that can be accomplished in a tour directly.

Table 11: Ratio of choosing an available pattern in the entire dataset
compared with that in the subset characterized by employment type

# observations RD RP mRD mRP RDRP RDID MX

All 501 83.7% 13.0% 49.6% 1.8% 22.9% 12.5% 11.7%

Self-employed 39 100.0% 14.3% 41.0% 5.4% 21.6% 10.0% 20.0%

Non-trucking company 203 100.0% 27.3% 48.3% 3.1% 19.4% 13.3% 13.6%

8) Vehicle type:

Some types of trucks in the dataset are considered to have an impact on the choice of

tour-chaining pattern: garbage sanitary wagon, recovery vehicle, lorry wooden and

lorry metal (together considered as lorry truck). It is believed that certain truck types

imply the tasks undertaken. Figure 5 is a lorry wooden truck, the structure of which

makes it difficult to place scattered or unbundled cargoes. Recovery vehicles (Figure

6) are typically used for transporting vehicles, so when a recovery vehicle tows an

illegally-parked passenger vehicle, it is likely to make a RD tour. Hypotheses are

garbage sanitary wagons tend to make irregular (mP) and direct (ID) to collect

garbage from different stops and then dump at a garbage site; recovery vehicles are

more likely to make RD and mRD to carry one passenger vehicle at each tour; lorry

trucks are more likely to do RD and mRD. Dummy variables indicating whether the

truck is of the corresponding types are created. In Table 12, we observe the impacts of

garbage trucks and lorry trucks are generally in agreement with our a priori beliefs.

However, garbage trucks also show an increased chance of choosing mRD and lorry

trucks do not have a higher percentage in choosing mRD. Recovery vehicles do not

influence the choice as we expected probably due to the small number of observations.
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Table 12: Ratio of choosing an available pattern in the entire dataset

compared with that in the subset characterized by vehicle type

# observations RD RP mRD mRP RDRP RDID MX

All 501 83.7% 13.0% 49.6% 1.8% 22.9% 12.5% 11.7%

Garbage Sanitary Wagon 14 NA NA 57.1% 0.0% 14.3% 28.6% 0.0%

Recovery Vehicle 5 NA NA 40.0% 0.0% 0.0% 40.0% 20.0%

Lorry Truck 37 90.9% 0.0% 43.2% 0.0% 16.0% 16.7% 13.0%

Figure 5: Lorry wooden truck'

w0

Figure 6: Recovery vehicle 2

I https://www.gumtree.com/p/vehical-recovery-services
2 http://www.foodtruck2u.com/services/truck-body
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5.2 Model development

We developed a tour-chaining pattern choice model. 3 patterns having only 1

observation are excluded in model estimation, so the total number of observations

used is 501. 7 alternatives consist of the choice set: RD, RP, mRD, mRP, RDRP,

RDID, MX. Under the proposed definition of tour-chaining patterns, the availability

of an alternative is determined by the number of distinct pickup locations and distinct

delivery locations. Availability is specified for each alternative in Table 13. If the day

only has one distinct pickup location and one distinct delivery location, then only RD

and mRD are feasible choices. If the day only has one distinct pickup location and

multiple distinct delivery locations, RP, mRD, mRP, and RDRP are available choices.

If the day has multiple distinct pickup locations but only one distinct delivery location,

then mRD, RDID are available. Last, if the day has multiple distinct pickup locations

and multiple distinct delivery locations, then only RD and RP are unavailable choices.

Table 13: Availability of tour-chaining patterns given the number of distinct pickup
and delivery locations

avRD avRP avmRD av _mRP avRDRP avRDID avMX

LPID 1 0 1 0 0 0 0

1PmD 0 1 1 1 1 0 0

mP1D 0 0 1 0 0 1 0
mPmD 0 0 1 1 1 1 1

3 types of models are estimated and statistically tested.

A multinomial logit (MNL) model is first estimated. Based on a priori beliefs, we

used generic coefficients for alternatives in the same category that are influenced by

the variable in the same way. For example, if the variable increases the likelihood to

choose peddling, then the alternatives involved with the peddling strategy are all

given the same coefficient for this variable, the ones involved with the direct strategy

are all given the other coefficient, while other alternative patterns having a mixture of

peddling and direct strategies do not include this variable in their utility functions.
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The candidate explanatory variables enter the model stepwise. At each step, one

variable enters the utility functions, and is removed if it is insignificant at 20% level

after estimation. If the introduction of one variable significantly changes the sign or

magnitude of the coefficient of any other variable, only one of them is kept in the

model based on the F-statistics. At last, the signs and magnitudes of the coefficients

are examined and the variable is removed if its coefficient is counterintuitive.

Next, using the utility function specified in MNL model, 3 nested logit (NL) models

of different nesting structures are tested. Due to the correlations between different

patterns, it is highly likely that the error terms of the alternative are not independently

and identically distributed (i.i.d.). The violation of i.i.d. makes NL models more

structurally sound. The first model has 2 nests: Single, consisting of RD, RP; Multiple:

mRD, mRP, RDRP, RDID, MX. This model intends to test if nesting by the number

of daily tours has a structural advantage and if it improves the model estimation

results. The second model has 2 nests: Regular, consisting of RD, RP, mRD, mRP,

RDRP; Irregular, consisting of RDID, MX. This model assumes all alternatives only

having tours with one pickup in each tour to be under the same nest and all other

alternatives are under the other nest. The third model also has 2 nests: Direct,

consisting of RD, mRD, RDID; Peddling: consisting of RP, mRP, RDRP, MX. The

model assumes all alternatives only having tours with one delivery to be in the same

nest and others are in the other nest.

Finally, 2 cross nested logit (CNL) models are estimated. In the NL formulation, one

alternative can only belong to one nest. However, we could further partition the

choice set to 4 nests and assign some alternatives to different nests. This assumes that

these alternatives have different degrees of membership to different nests. In this

situation, CNL models could be tested (Small, 1987). The correlation between nests in

the NL model due to similarities in delivery strategies may make CNL models more

favorable. The first model we tested has 4 nests each consisting of several alternatives:

1) Direct: RD, mRD, RDRP, RDID, MX;
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2) Peddling: RP, mRP, RDRP, MX;

3) Regular: RD, RP, mRD, mRP, RDRP, RDID, MX;

4) Irregular: RDID, MX.

This model tests if nesting by logistics strategy has a structural advantage. RD, mRD,

RP and mRP belong to 2 nests; RDRP and RDID belongs to 3 nests; MX belongs to

all 4 nests. The second model has 4 different nests:

1) lP1D: RD, mRD, RDRP, RDID, MX

2) 1PmD: RP, mRP, RDRP, MX

3) mPID: RDID, MX

4) mPmD: MX

We also wanted to test the structure of nesting by tour types that consist of the tour-

chaining pattern. RD and mRD only have the 1 pickup plus 1 delivery tour type, so

they belong to the IP 1 D nest. RP and mRP only have 1 pickup plus multiple delivery

tour type, so they are under the 1PmD nest. RDRP belongs to 1 P ID and I PmD nests

and RDID belongs to 1P1D and mPID nests as they both have two different tour

types. MX belongs to all 4 nests. Although not all MX patterns consist of 4 tour types,

we cannot decompose easily the MX pattern.
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6 Results and Analysis

6.1 Estimation results

The estimation results of the MNL are shown in Table 14. The last row "alternatives

associated" lists the alternative that have the corresponding variables and coefficients

in the utility functions. The initial log likelihood is -745.140 and the final log

likelihood is -597.306. The adjusted rho squared is 0.181. Signs and relative

magnitude of the coefficients are consistent with some of the a priori beliefs.

Variable

# distinct P location - #

pSpreadRatio

dSpreadRatio

carryConstructionMate

carryMineral dummy

visitTransferterminalc

startAfter10_dummy

selfEmployed-dummy

driveForNonTrucking(

GarbageSanitary Wago

LorryVehicle dummy

Table 14: Estimation results of the MNL

Coefficient Std

0.39*** 0.0934
distinct D location

-0.163*** 0.0538

1.11*** 0.187

0.576*** 0.128

-2.47*** 0.387

rials dummy 1.84* 1.07

-1.16** 0.584

dummy 1.37*** 0.268

1.51** 0.699

0.617A 0.477

ompanydummy 1.5*** 0.574

n dummy 1.18A 0.789

1.59A 1.09

model

Alternatives associated

RDID

RP, mRP, RDRP

RD, RP, mRD, mRP, RDRP

RD, mRD, RDID

RP, mRP

RD

RD, RP

RD, mRD

RD, RP

MX

RD, mRD, RDID

RD, mRD, RDID

RD

# Observations

Initial log likelihood

Final log likelihood

Adjusted rho-square

ASignificant at 20% *Significant at 10% **

501

-745.14

-597.306

0.181

Significant at 5% ***Significant at 1%

The NL models do not show very good results because in three nesting structures, the

scaling factor of nests are very high, meaning that the correlations of alternatives
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across nests is higher than that within the nest. The first nest structure consisting of a

Single nest and a Multiple nest is structurally invalid because the structural

parameters of both nests are estimated to be below 1, meaning that the correlations of

utilities within a nest is lower than that between nests. Due to similar reasons, the

structure with a Regular nest and an Irregular nest is invalid as the structural

parameter of the Regular nest is estimated to be below 1. The NL model with a Direct

and a Peddling nest shows a structural advantage over NL model based on the

likelihood ratio test result. The structural parameter of the direct nest is significantly

different from 1 at 1% level, while that of the peddling nest is higher than 1 but not

significant. All variables are significant at 20% level and the signs are consistent with

a priori beliefs. The estimation results of this NL model are shown in Table 15.

Table 15: Estimation results of the

Variable

# distinct P location - # distinct D location

pSpreadRatio

dSpreadRatio

carryConstructionMaterialsdummy

carryMineral dummy

visit Transferterminal dummy

startAfter10 dummy

selfEmployed dummy

driveForNon TruckingCompany dummy

GarbageSanitary Wagon dummy

Lorry Vehicle-dummy

MU peddling

MU direct

NL model with a direct

Coefficient Std

0.345** 0.151

-0.0973* 0.0395

0.644*** 0.212

0.276A 0.186

-1.16*** 0.353

1.74A 1.25

-0.906* 0.5

1.25*** 0.353

1.05* 0.556

0.506* 0.287

0.961*** 0.382

1.07^ 0.799

1.51A 1.2

1.13 0.47

2.15*** 0.561

nest and a peddling nest

Alternatives associated

RDID

RP, mRP, RDRP

RD, RP, mRD, mRP, RDRP

RD, mRD, RDID

RP, mRP

RD

RD, RP

RD, mRD

RD, RP

MX

RD, mRD, RDID

RD, mRD, RDID

RD

# Observations

Initial log likelihood

Final log likelihood

501

-745.14

-586.665
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Adjusted rho-square 0.193

^Significant at 20% *Significant at 10% ** Significant at 5% ***Significant at 1%

MU peddling and MUdirect are tested against I and others are tested against 0

CNL models are more appropriate to address the correlation within a nest. Based on

likelihood ratio test, the CNL models show that the first nesting structure with

Regular, Irregular, Direct, and Peddling nests is less preferred than the MNL model.

The estimation results of the second CNL model with IPID, 1PmD, mPlD, and

mPmD nests show that the scale parameter of the mPmD nest is smaller than 1. Since

in the data, only 0.8% of the tours are of IP (mPmD) type and only the MX pattern

contains IP type of tours, we removed the mPmD nest and thus MX belongs to all the

3 nests. The second nesting structure is preferred than MNL based on likelihood ratio

test; but MU_1 P ID is unbounded from above so that the model is unidentifiable, thus

the structure of the model is not well validated under this specification. This may be

caused by the dominantly high ratio of RD type of tours. The estimation results of the

CNL model with 1PlD, IPmD and mPlD nests are shown in Table 16.

Table 16: Estimation results of Estimation results of the CNL model with IPID,
lPmD, mP1D nests

Variable Coefficient Std Alternatives associated

0.218*** 0.0647 RDID
# distinct P location - # distinct D location

-0.193*** 0.0542 RP, mRP, RDRP

RD, RP, mRD, mRP,

pSpreadRatio 0.428** 0.22 RDRP

0.523*** 0.14 RD, mRD, RDID
dSpreadRatio

-0.0483*** 0.008 RP, mRP

carryConstructionMaterials dummy 0.308 0.327 RD

carryMineral dummy -0.0889A 0.0568 RD, RP

visit Transferterminal dummy 1.06*** 0.27 RD, mRD

startAfterlO dummy 0.088A 0.0611 RD, RP

selfEmployed dummy 0.447A 0.36 MX

driveForNonTruckingCompanydummy 0.0518*** 0.0184 RD, mRD, RDID

GarbageSanitary Wagon dummy 0.977A 0.71 RD, mRD, RDID

LorryVehicle dummy 0.269 0.295 RD
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MU_IPJD 7.39 6.27

MUIPmD 50 1.80e+308

MUmPJD 1.79*** 0.598

AlphaRDIDJPID 0.441*** 0.107

AlphaRDRPJPID 1.00E-05 1.80e+308

Alpha_MXJPJD 0.273 1.80e+308

AlphaMXlPmD 0.000307 1.80e+308

# Observations 501

Initial log likelihood -736.672

Final log likelihood -563.785

Adjusted rho-square 0.208

^Significant at 20% *Significant at 10% ** Significant at 5% ***Significant at 1%

MUJPID, MU_]PmD, and MUmPJD are tested against 1 and others are tested against 0

6.2 Findings

Since the data size is limited and observations of some alternatives are very low, the

results and analysis may not be completely compelling. A more robust analysis relies

on the availability of a larger dataset. Major findings are summarized as below.

1) The difference between the number of distinct pickup and delivery locations is an

important factor influencing the choice of tour-chaining patterns. When the

number of distinct pickup locations is higher than that of delivery locations, RDID

that involves multiple pickups in a tour is preferred; while RP, mRP and RDRP

that involve multiple deliveries with one pickup in a tour are not preferred. This

validates our a priori beliefs.

2) The spread ratio has significant impacts, indicating that it is a good measurement.

If pickup locations are very dispersed, drivers prefer to choose patterns that have

only 1 pickup in each tour, contributing to an increased preference for RD, RP,

mRD, mRP and RDRP patterns. If distinct delivery locations are very dispersed, it

positively impacts the choice of patterns having only 1 delivery in each tour (RD,
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mRD, RDID), yet negatively impacts patterns with multiple deliveries in each tour

(RP and mRP). If the variables are weighted by the distances by dwell time (a

proxy of amount of pickup and delivery), then their impacts are not significant.

3) Types of commodities carried are important. Vehicles carrying construction

materials are more likely to choose RD, yet there is no significant impact on mRD.

This may be explained as there are correlations between other variables in the

utility function and the dummy variable of carrying construction materials.

Vehicles carrying minerals are more likely to choose patterns with multiple tours,

but there are no strong negative impacts on patterns using irregular strategy. We

do not observe any patterns involving only the irregular strategy, thus the impact

of carrying minerals cannot be well reflected on patterns mixing the irregular with

regular strategies.

4) If a transfer terminal is visited, the vehicle is more likely to choose RD and mRD,

both consist of tours of 1 pickup plus 1 delivery. Visiting distribution center and

retail stores do not have the expected impact on the choice.

5) Drivers who start working after 10 am are more likely to make only 1 tour in a

day, thus showing preferences for patterns of RD or RP.

6) Self-employed drivers have higher chances to choose the MX pattern as expected;

drivers driving for non-trucking companies prefer RD, mRD and RDID yet do not

prefer those involved with peddling.

7) Drivers driving lorry trucks (lorry wooden or lorry metal) prefer the RD patterns,

yet do not show strong preference for mRD, which again may be caused by

correlations between this truck type and other variables in the utility function.

Drivers driving garbage sanitary wagons tend to choose RD, mRD, RDID, which

may reflect different work patterns - the RDID pattern is suitable for collection of

garbage at residential locations while RD and mRD are likely involved with

dumping a large amount of garbage from one site to a designated landfill site.

8) The variables in the dwell time category are excluded because the estimation

results are count-intuitive, which may indicate that dwell time cannot be a good
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proxy of pickup and delivery amount since it contains too much information of

other types.
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7 Conclusions and Future Work

7.1 Conclusions

This thesis presents a holistic method of identifying daily tour-chaining patterns and

modeling the choice of tour-chaining pattern strategies of urban trucks.

We used data collected from the Singapore Heavy Vehicle Survey Study (Cheah et al.,

2017), which is an advancement in freight data collection methodology and

technology. The study collected processed GPS data which was later annotated by

drivers as well as plentiful operations details and truck characteristics. A total of 504

vehicle days from 119 drivers are extracted after filtering, which is used for the daily

tour-chaining pattern analysis. The ongoing tour and tour-chaining pattern

identification studies by Alho et al. (2018b) gave us insights on how to use driver-

annotated GPS data for the development of identification algorithms.

Taking into account important factors in logistics planning including stop purpose,

stop time, and time of stop, we defined 4 types of tours: regular direct (RD), irregular

direct (ID), regular peddling (RP), irregular peddling (IP). Specifically, RD tour

consists of 1 pickup and 1 delivery; ID consists of multiple pickups and 1 delivery;

RP consists of 1 pickup and multiple deliveries; and IP consists of multiple pickups

and multiple deliveries. Only pickup stops, delivery stops, and long intermediate stops

are considered in the pattern identification process. A day is defined as 4:00 am - 3:59

am to minimize splitting tours made across 2 calendar days. In the dataset, regular

direct tours have the highest share while irregular peddling tours only have a very low

proportion.

Based on the types of tours made in a day, 13 types of daily tour-chaining patterns are

defined. If the day consist of exactly 1 tour, then the tour-chaining pattern is the same

as the tour type, thus the pattern is RD, RP, ID, or IP. If the driver makes multiple
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tours of the same type, then the pattern is mRD, mRP, mID, or mIP depending the

type of tour made. If 3 out of the 4 types of strategies (regular, irregular, direct,

peddling) are used, the day pattern is RDRP, RDID, IDIP, or RPIP. The pattern

mixing regular/irregular and direct/peddling is mixed (MX). In the dataset, only RD,

RP, mRD, mRP, RDRP, RDID, and MX has more than 1 observations and IP, mID,

RPIP only has 1 observation, respectively. mRD has the highest share. The biasness in

the share of patterns may be due to the monotony of truck and commodity types.

We developed discrete choice models to understand influencing factors in the choice

of daily tour-chaining patterns. Such models are aimed for to be compatible with

agent-based simulations. However, as a preliminary work there is a large room for

improvement in the consideration of variables. The selection of candidate explanatory

variables is based on a priori data analysis and a priori beliefs from previous literature

and also intuition. Important factors identified include: number of distinct pickup

locations and distinct delivery locations, geographical spread of pickup and delivery

locations - the spread ratio, shipment type, time to start work, employment type, land

use type of stops visited, and truck type. An MNL model shows good explanatory

power whereas different structures of nested logit and cross nested logit models could

not be validated based on statistical tests. This research is limited by the small dataset

and the biased vehicle composition as all vehicles are heavy goods vehicles, yet it is

an elementary step to a better understanding of the key strategy of tour-chaining

behaviors in logistics planning.

7.2 Future work

1) Integration with agent-based simulation:

Tour-chaining pattern strategies is an important part in agent-based freight modeling.

To feed into an agent-based simulator, this model should fit in the planning stage

before the day starts. The introduction of discrete choice models will incorporate

more behavioral considerations than optimization-based models.

52



Inputs required are explanatory variables specified in the model, mainly consisting of

shipment sizes, shipment types, pickup and delivery tasks, land use types, truck types.

These inputs are generated from the long-term planning.

Outputs of the model is the choice of a daily tour-chaining pattern strategy for each

agent. For each pattern chosen, case-by-case analysis should be conducted. Some

additional models will need to be estimated in order to realize the model outputs as

traffic flows on the network. Such models may include: stop clustering, stop

sequencing, and route choice.

2) Model development and validation using other datasets.

Other types of discrete choice models may be estimated and tested. Error components

may be introduced to capture the correlation between alternatives, which has a similar

function as the NL and CNL model. Some coefficients may be defined as randomly

distributed. A candidate is the coefficient of the spread ratio so as to reflect the

different tastes for travel distances. Another possible improvement is to take into

account the panel effect, i.e. the intrinsic correlations between a sequence of choices

one driver makes since each driver was tracked for 5 days.

Another direction for refinement is modeling the number of trips and tour-chaining

patterns jointly. The MDCEV model Khan and Mechemehl (2017) specified is a good

reference. The author wants to further analyze the rationality of applying the MDCEV

model in this context, as well as better defining the discrete and continuous

components in the choice set.

The validity and robustness of this model is limited due to the small and biased

dataset. 6 tour-chaining patterns have 1 or 0 observation, making it impossible to

estimate their utilities. In addition, light goods vehicles are expected to have very

different tour-chaining patterns. For intercity trucks that travel for multiple days, their
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strategies should not be studied on a daily basis. The identification of their "strategy

planning unit" will bring insights to many prevalent models using a day as a unit of

analysis. We will further develop the models after the large-scale integrated survey in

the US projected in 2019.

3) Improving data collection methodology:

Data quality needs to be further improved by the advancement of the data collection

methodology. For the US study in 2019, we suggest to make some changes in the

survey design. One suggestion is that drivers should be tracked consecutively as in the

Singapore study. Another suggestion is to impose logic checks on entries from users.

In addition, the shippers should be surveyed in order to get more information about

constraints in logistics planning.

4) Incorporating logistics constraints in modeling:

Constraints play very important roles in decision-making in logistics practices. Such

constraints include time window, road restrictions on trucks, driver's longest working

hour, etc. We are interested in developing a holistic modeling system to address these

constraints and incorporate them in the choice modeling.

5) A more comprehensive consideration of explanatory variables and modeling

structure.

As a preliminary work, this thesis is limited in the considerations of explanatory

variables. Specifically, variables describing the network properties, such as travel

time dynamics, distance, time-varying toll rates, and parking supplies, are not

considered. The challenges in using these variables come from the difficulties of

deriving them from the daily tour-chaining patterns since decisions at lower levels

also have impacts on the final realization of the travels. As a future interest, we would

like to extend the current modeling structure to jointly model these choices, and thus

test how other important variables have an influence on travel patterns of freight

vehicles. In addition, we will consider what optimization objectives should be
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incorporated in a way more valid theoretically. These improvements are meant to

make the model more practical and more applicable for agent-based simulators.
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