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Abstract

Car crashes cause a large number of fatalities and injuries, with about 33,000 people
killed and 2.3 million injured in the United States every year. To prevent car crashes,
the government and automotive companies have taken initiatives to develop and de-
ploy communications among vehicles and between vehicles and infrastructure. By
using such communications, we design centralized coordinators at road intersections,
called supervisors, that monitor the dynamical state of vehicles and the current input
of drivers and override them if necessary to prevent a collision. The primary technical
problem in the design of such systems is to determine if the current drivers' input
will cause an unavoidable future collision, in which case the supervisor must override
the drivers at the current time to prevent the collision. This problem is called safety
verification problem which is known to be computationally intractable for general
dynamical systems. Our approach to solving the safety verification problem is to
translate it to a computationally more tractable scheduling problem. When modeling
an intersection as a single conflict area inside which the paths of vehicles intersect, we
exactly solve the scheduling problem with algorithms that can handle a small number
of vehicles in real-time. For a larger number of vehicles or with more complex inter-
section models, we approximately solve it within quantified approximation bounds
by using mixed integer linear programming (MILP) formulations that, despite the
combinatorial complexity, can be solved in real-time by available software such as
CPLEX. Based on the solutions to the safety verification problem, we design a super-
visor and prove that it ensures safety and is nonblocking, another major challenge of
verification-based algorithms. We validate the supervisor using computer simulations
and experiments.

Thesis Supervisor: Domitilla Del Vecchio
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

In this chapter, we introduce motivations for the designs of driver assistance systems

that ensure safety of vehicles at road intersections, and state the contributions of this

thesis.

1.1 Motivation

According to the National Highway Traffic Safety Administration (NHTSA), 33,561

people died, and 2,362,000 people were injured in the United States in 2012 be-

cause of car crashes [61]. To reduce the number of car crashes, the U.S. Department

of Transportation (USDOT) and automotive companies have started initiatives to

deploy vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V21) communication

technology to allow vehicles to exchange information with each other [60]. This com-

munication technology stimulated research on networked vehicle systems to maintain

safety, mostly on highways, since the 90's with the California PATH project [9,10].

More recently, the communication technology has been utilized to prevent collisions

among multiple vehicles at road intersections [24,55]. This thesis proposes the design

of centralized coordinators that ensure collision-free intersections by exploiting the

communication technology.

A common framework to implement centralized coordinators at road intersections

is an automated intersection management, where the coordinators take full control of
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vehicles at all times, without considering the presence of individual driving entities

such as humans or computers [34,37,38,44,56]. The work in this framework focuses on

the computation of an (optimal) input signal that avoids collisions. The problem is

rewritten as a nonlinear constrained optimization problem that minimizes the length

of overlapped vehicle trajectories inside an intersection [38] or minimizes the quanti-

fied risk of collisions at intersections [34]. In [37], the coordination of vehicles at an

intersection, such as First In First Out (FIFO), is separately incorporated with local

driving controllers designed based on model predictive control (MPC). Generalized

queuing theory [56] or virtual platooning [44] also enables the coordination of vehicles.

However, fully automated intersection management requires a complete overhaul of

existing paradigms in which vehicles are not fully automated.

OVERRIDE OVERRIDE SILENT

(a) Automated (b) Semiautonomous

Figure 1-1: As opposed to the automated intersection management framework in (a),
we adopt the semiautonomous framework in (b) where the system should decide when
to change modes.

In the immediate future, a more practical approach is to design driver assistance

systems that take temporary control of driving entities only when necessary. As

illustrated in Figure 1-1, systems in the semiautonomous framework in (b) override

drivers only when necessary to prevent collisions, whereas systems in the automated

framework in (a) take full control of vehicles at all times. The main challenge in the

design of a semiautonomous system is determining the timing of overrides, that is,

detecting whether the drivers' present input is bound to cause a future collision. To

answer this, we solve a safety verification problem, which is the problem of verifying

whether there is a control input that keeps the state trajectory outside a set of states

corresponding to collisions (called a bad set) given an initial condition [58].

To solve the safety verification problem, prior work has used reachability analysis

20



Backward
reachable set

Figure 1-2: If a state is inside the backward reachable set of the bad set, all possible
trajectories starting from the state enters the bad set.

to calculate the backward reachable set of the bad set, which is defined as the set of

starting states from which state trajectories enter the collision set independent of the

control input [39,42,57,59]. The backward reachable set of the bad set is illustrated

in Figure 1-2. By definition, if a given initial state is inside this set, there is no

control input that prevents the state trajectory from entering the bad set eventually.

To ensure safety, the coordinators in the semiautonomous framework should override

vehicles before the state enters the backward reachable set of the bad set.

However, reachability analysis of dynamical systems with large state spaces is usu-

ally challenging due to the complexity of computing reachable sets. This motivated

the development of several approximation approaches. One approximation approach

is to consider a simplified dynamical model to compute reachable sets instead of using

the original complex dynamical model, as studied in [8,29,32]. Another approach is

to approximately represent the original reachable set by employing various geometric

objects, including polyhedra [12], ellipsoids [26], or parallelotopes [23]. The reach-

ability analysis becomes relatively simple if system dynamics are monotone, which

means that state trajectories preserve a partial ordering on states and inputs [43].

This is because, for such systems, the boundary of a reachable set can be computed

by considering only maximum and minimum states and inputs [22]. Indeed, an exact

method for the reachability analysis is presented in [28,31] for monotone systems.

Our approach to designing a centralized coordinator in the semiautonomous frame-

work relies on the monotonicity of dynamics and the approximation of dynamics. The

detailed description of our approach and the contributions of the thesis will be dis-

cussed in the following section.
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1.2 Statement of Contributions

Systems consisting of vehicles and a centralized coordinator in the semiautonomous

framework are hybrid systems, also recently known as cyber-physical systems (CPS),

because the systems involve both continuous dynamical states and discrete modes.

The objective of this thesis is to design a centralized coordinator that returns both a

discrete input (decision for mode transition) and a continuous input (control input to

the vehicle dynamics) to ensure safety at road intersections. More precisely, as illus-

trated in Figure 1-1, the coordinator is in the SILENT mode unless the current input

of drivers will cause any future collision. In the OVERRIDE mode, the coordinator

takes control of the drivers and applies a safe continuous input. Such a coordinator

is referred to as a supervisor [52].

The supervisor determines the timing of mode transition by solving the safety ver-

ification problem, as discussed in the previous section. We exploit the monotonicity of

the longitudinal dynamics of vehicles to translate the safety verification problem into a

computationally more tractable scheduling problem. The safety verification problem

is equivalent to a single-machine scheduling problem if an intersection is modeled as a

single area inside which all the longitudinal paths of vehicles intersect, and equivalent

to a jobshop scheduling problem if an intersection is modeled as multiple areas inside

which some pairs of the paths intersect. That is, the safety verification problem is

rewritten as a different scheduling problem depending on an intersection model. In

the thesis, we separately consider three intersection models of different complexity

levels:

Model 1: The paths of vehicles intersect inside a single conflict area.

22



Model 2: The paths of vehicles intersect inside multiple conflict areas.

4
/

Model 3: The paths of vehicles intersect

overlap.

inside multiple conflict areas and partly

gv~

With the simple model (model 1), a collision occurs if more than one vehicle stays

inside the single conflict area at the same time. Supervisor algorithms that prevent

such a collision were previously studied in [16,17]. As opposed to the previous works,

this thesis considers uncertainty sources and designs a robust supervisor to allow its

practical implementation. More precisely, in this problem setting, the contributions

of the thesis are as follows.

o We present the design of a provably safe, least restrictive supervisor that handles

the simultaneous presence of measurement errors, unmodeled dynamics, and

uncontrolled vehicles, which are not equipped with communication modules

and thus not controlled by the supervisor.

23
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" Because the algorithm of the least restrictive supervisor has combinatorial com-

plexity with the number of vehicles, we also present a novel strategy to design

an approximate supervisor that can handle a larger number of vehicles in poly-

nomially bounded time.

* We quantify an approximation error bound of the approximate supervisor.

" We validate the least restrictive supervisor through experiments using three

in-scale cars and the approximate supervisor through computer simulations.

The works in [1,2,14] presented methods to separately handle the errors in measure-

ment and dynamical model, and the presence of uncontrolled vehicles. By merging

the methods, this thesis presents a method that handle the simultaneous presence

of uncertainties. Also, the approximate supervisor designed in the thesis is less re-

strictive than the previously proposed approximate supervisors [1,2,14]. That is, the

approximate supervisor of this thesis overrides drivers less often than the previously

proposed ones.

With a more complex model (model 2), a collision occurs if two vehicles are si-

multaneously inside the same conflict area. Since an equivalent jobshop scheduling

problem is computationally intractable due to its nonconvexity and nonlinearity, the

thesis instead presents approximate solutions to the problem within quantified ap-

proximation bounds. The contributions of the thesis in this setting are as follows.

" We prove that the safety verification problem is equivalent to a jobshop schedul-

ing problem for general longitudinal dynamics (second-order and nonlinear).

" Because the jobshop scheduling problem is a mixed integer nonlinear program-

ming (MINLP) problem due to the second-order dynamics of vehicles, we ap-

proximately solve the jobshop scheduling problem by formulating two mixed in-

teger linear programming (MILP) problems based on first-order linear dynamics

and second-order nonlinear dynamics on a restricted input space, respectively.

" We prove that the two MILP problems provide over- and under-approximations
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of the exact solution to the jobshop scheduling problem, and quantify the ap-

proximation error bounds.

* We design a supervisor algorithm based on an approximate solution that ensures

safety, and validate it through computer simulations.

A similar problem where robots follow predefined paths is considered in [48,49], but

the approach of these papers is not designed for safety verification and thus is re-

stricted to zero initial speed with double integrator dynamics. Our scheduling ap-

proach can deal with general vehicle dynamics and verify safety for any given starting

state.

In general and realistic intersection models (model 3), the paths of vehicles define

side conflict areas as the areas inside which the paths intersect, and rear-end conflict

areas as the regions where two paths overlap. Here, a side collision occurs if two

vehicles meet inside a side conflict area, and a rear-end collision occurs if the distance

between two vehicles in a rear-end conflict area is less than a minimum safe distance.

In order to construct a supervisor algorithm that prevents both rear-end and side

collisions, we adopt a hierarchical structure. On the top layer of the structure, we

formulate a scheduling problem based on a coarse dynamical model, referred to as

an abstraction or abstract system. On the low layer, the goal is to find a solution

to the safety verification problem based on actual vehicle dynamics, referred to as

the concrete system. Here, the main contribution of the thesis is that we provide a

map between the solutions to a scheduling problem formulated in terms of the abstract

system and to the safety verification problem formulated in terms of the concrete

system. To achieve this, the thesis presents the following.

* We formulate a novel scheduling problem based on an abstract system of the

actual longitudinal vehicle dynamics and on discretized paths of vehicles. The

solution to the scheduling problem gives a trajectory of the abstract system

that avoids the bad set inflated by a given value emax.

" By appropriately designing the interface between the abstract and concrete

systems using sliding mode control, we construct a trajectory of the concrete
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system that tracks the trajectory of the abstract system within a given error

bound em,. By construction, the trajectory of the concrete system never enters

the bad set.

" We design a supervisor algorithm based on the solution to the scheduling prob-

lem (thus the solution to the safety verification problem), and validate its com-

putationally efficient performance through computer simulations.

" We compare our approach with another approach based on time discretization to

show through computer simulations the computational benefit of our approach

while maintaining similar restrictiveness.

Uniform time discretization was used to design a centralized coordinator that main-

tains safety at intersections in the automated framework [34] and in the semiau-

tonomous framework [6,7]. While formally correct, these solutions are computation-

ally demanding, because of the structure of the ensuing optimization problems; we will

discuss this in detail in Chapter 6. Thus, our approach is based on discretizing space

rather than time, which is a better approach from the computational point of view.

Similar approaches based on discretization and abstraction were studied in [15,20,21].

Using time and input space discretization, the work in [15] performed the abstraction

by exploiting the differentially flat systems, and the works in [20,21] constructed a

discrete event system (DES) abstraction and applied supervisory control theory of

DES. These approaches, however, are applicable only for a single conflict area and

require higher computation costs than our approach.

The rest of the thesis is organized as follows. In Chapter 2, we define the bad

set (i.e., the set of points corresponding to collisions) for each intersection model,

explain the longitudinal vehicle dynamics, and state the design specifications for the

supervisor based on safety verification. In Chapter 3, we present the background

of scheduling problems and the formal definition of equivalence between two deci-

sion problems, and provide an example of a single-machine scheduling problem that

is equivalent to the safety verification problem at a single conflict area. In Chapters

4-6, we design supervisor algorithms in the three different intersection models, respec-
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tively. In each chapter, we formulate a scheduling problem, prove that the resulting

supervisors ensure safety at intersections and are nonblocking, and validate the su-

pervisors via computer simulations and/or experiments. We conclude the thesis in

Chapter 7 by summarizing the thesis and suggesting future research directions.
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Chapter 2

Problem Setup and Statement

Throughout the thesis, we assume that the paths of vehicles are known before they

enter an intersection, for example, via road regulation that allows a specific turn

on each road or via estimation algorithms (e.g., [40]) that enable the prediction of

future paths. Depending on the number of points at which the paths intersect, we

characterize three intersection models of different complexity levels. In this section,

we also describe the longitudinal dynamics of vehicles and their property, and state

the safety verification problem and the design specifications of the supervisor.

2.1 Intersection Models

Consider that n vehicles are approaching an intersection. The position of vehicles'

centers on their own longitudinal paths is denoted by x = (x1 , x2 ,..., xn) E X1 x

X2 x ... x Xn = X c Rn. A conflict area refers to an area around a location at which

the longitudinal paths of vehicles intersect, and its size is determined by the lengths

of vehicles. In this section, we introduce three intersection models in terms of the

number of conflict areas m.
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2.1.1 Single Conflict Area (m = 1)

In the simplest scenario, an intersection is modeled as a single conflict area in which

all the paths of vehicles intersect, as illustrated by a dotted oval in Figure 2-1(a).

We assume in this scenario that there is only one vehicle per road to concentrate

only on the avoidance of side collisions. We can extend the result to incorporate the

avoidance of rear-end collisions by using a method given in [17]. This scenario can be

equivalently illustrated by Figure 2-1(b).

Let (ai, Oi) C Xi C R be the location of the conflict area on the path of vehicle i.

Then, the set of points corresponding to side collisions is

B := {x E X :i E (ai, ), E (aj, O3) for some i 4 j}, (2.1)

and called the bad set.

j373

(a) (b)

Figure 2-1: Single conflict area (dotted oval) and multiple conflict areas (red shaded
circles). If modeling the intersection as a single conflict area, we can simplify the
scenario in (a) to the scenario in (b). By modeling the intersection as a set of multiple
conflict areas, we can design a less restrictive supervisor.

2.1.2 Multiple Conflict Areas (1 < m < oc)

In the single conflict area scenario depicted in Figure 2-1(a), the supervisor prevents

cars 1 and 3 from simultaneously staying inside the conflict area (dotted oval) although

their collision is geometrically infeasible. To design a less restrictive supervisor, we

model the intersection as a set of distinct conflict areas (red shaded circles). We
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still assume that there is only one vehicle per road so as to focus on side collision

avoidance only.

Conflict area i on the path of vehicle j is located at (ajy ,#,) C X C R. Let

(j, j') E Di denote that the paths of vehicles j and j' intersect inside conflict area i.

Then, the bad set, which is the set of points corresponding to side collisions, is

B {x E X : xj E (aij, j,), xj E (ai,jt, 3 i,ji) for some (j,j') E Di}. (2.2)

For example, in Figure 2-1(a), say that the left circle is conflict area 1 and the right

circle is conflict area 2. We have (1, 2) E Di and (2, 3) e D2 , and the bad set is

B = {(x 1 , x 2 , X 3 ) E X : (x 1 E (a1,i, 01,) and x 2 E (a 1 ,2, /1,2))

or (x 2 E (a 2,2 , 02,2) and x 3 E (a 2,3 , /2,3))}.

2.1.3 Multiple Conflict Areas

with Merging/Splitting Paths (mr = oc)

As illustrated in Figure 2-2, a realistic intersection model considers rear-end conflict

areas as well as multiple side conflict areas. If the paths of two vehicles overlap, then

the vehicles must maintain a minimum safe distance d in the rear-end conflict area.

In this model, we relax the assumption of one vehicle per road and consider rear-end

collision avoidance in conjunction with side collision avoidance.

When the paths of vehicles j and j' overlap, we say (j, 0') E 0. A rear-end

conflict area is defined as a closed interval with a nonempty interior where the two

paths overlap. The location of a rear-end conflict area is denoted by Ojj C Xj C R

on the path of vehicle j. Let o,jl := min Ojj. The sets of points corresponding to

side collisions and to rear-end collisions are

Bside :={x E X : x, E (ai , Oj) , xj E (aei,j,/ Oi,j) for some (j, j') E Di},
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Figure 2-2: Realistic complex intersection scenario. We design a supervisor that
overrides these vehicles when necessary to prevent side or rear-end collisions. We
assume that the paths of vehicles are known in advance; gray vehicles will go straight
while white vehicles will turn.

and

Brear-end := {x E X : for some (j,j') E 0 if xi E O,3; and xjl E Ojy,

respectively. The union of these sets,

B Bside U Brear-end,

is the bad set.
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2.2 Vehicle Dynamics

The dynamical state of vehicle j is (xj, i ) where xj c Xj c R is the position

and y E Xy := [ j,min, i ,maxl C R is the speed along its longitudinal path. The

longitudinal dynamics of vehicle j are

zj = fj (Xjj Is, Uj), (2.4)

where u3 C Ui := [Uj,min, Uj,max] C R is the control input, which is a throttle or brake

input. We assume that the differential equation (2.4) has a unique solution, and the

solution depends continuously on the input. We consider scenarios where the radii

of the paths of vehicles are sufficiently greater than the lengths of the vehicles, and

the speeds of vehicles are low. In such scenarios, the coupling between the lateral

and longitudinal dynamics can be ignored [31], which allows us to focus only on the

control of longitudinal dynamics. For example, a standard longitudinal dynamical

model is

zi = ciu3 - c2 ( g) 2 + c3  (2.5)

with parameters ci > 0, c2 > 0 and c3 . The nonlinear term appears due to aerody-

namic drag force, and the constant term appears due to rolling resistance.

The whole system dynamics can be obtained by combining the individual dynam-

ics (2.4) and written as

k = f(x, *, u), (2.6)

where x = (x1,... , xn) E X C R' and similarly, X C X = [kmin, imaxl C R ,

U E U = [Umin, Umax] C R .

The input uj (t) is a value of the input signal uj evaluated at a time instance

t, where an input signal u3 : R+ -+ U is a piecewise continuous function with

a countable number of discontinuities. We assume that the space of input signals

U{ is connected. The function xj(t, uj, xj(0), (O)) denotes the position reached at

time t starting from (xj(0), j(O)) using an input signal ua E Uj. For simplicity, we
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write xj (t, a1 ) if the initial condition is (xj(0), j(0)), and otherwise specify an initial

condition. We also write the aggregate position x(t, u) with the aggregate input

signal u E U1 x .. x U = , implicitly assuming the initial condition (x(0),:k(0)).

Similarly, we use *(t, u) to denote the speed at time t evolving with an input signal

U.

We now introduce the definition of monotonicity [11]. We say that an input

signal uj is no greater than another input signal u', which is denoted by uj < u', if

uj (t) u (t) for all t > 0.

Definition 2.1. The system (2.4) is monotone if u3 < u', xj(O) < x'(0), (0) <

.'(O), and t < t',

Xj (t, Uj (-), xj (0), - j (0)) < xj (t', U' (-), X, (0), - (0))

for all t, t' > 0.

We assume that the system (2.4) is monotone. It means that displacement of the

vehicle at time t is larger when larger inputs are applied and/or larger initial states

are considered. The standard longitudinal dynamical model (2.5) satisfies the above

assumption [30].

2.3 Supervisor Design and Safety Verification

The objective of this paper is to design a supervisor that returns an input signal that

makes the system's state avoid the bad set. The supervisor is a map

s : (x(0), 5(0), Ud) '-s u,

where (x(0), k(0)) is the current state of vehicles, Ud E U is the vector of desired

inputs applied by drivers, and u C U is an input signal returned by the supervisor.

The current state and desired input are measured through cameras, lidars, and radars

on the roadside or through each vehicle's on-board sensors whose measurements can
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(x(O),A(0),Ud):
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Verificatio~n- sued

Fail

Override

Figure 2-3: Supervisor returns the desired input ud if the input will not cause a future
collision, and otherwise returns a safe input u,.

then be communicated to the supervisor. If the desired input ud will not cause a

future collision, the supervisor returns u = ud. Otherwise, the supervisor neglects

the desired input and returns u = u, to prevent the predicted collision, where u, E U

is an input signal that keeps the system's state, starting from (x(0), *(0)), outside

the bad set B. The supervisor is implemented as a discrete-time algorithm with time

step r, which is typically r = 0.1 s for intelligent transportation applications [60].

The most challenging part in the design of the supervisor is to determine whether

the desired input Ud will cause a future collision, that is, to determine whether the

supervisor has to change the mode to the OVERRIDE mode (see Figure 1-1(b)). To

do this, we solve a sacfety verification problem.

Problem 2.1 (Safety verification). Given a state (Xnext, inext), determine whether

3u E U : X(t, U, Xnext, Xnext) V B, Vt > 0. (2.7)

In other words, the safety verification problem is the problem of determining

whether a given state is inside the backward reachable set of the bad set (defined as

the set of starting states that will reach the bad set regardless of control input). A

state outside the backward reachable set is a solution to Problem 2.1.

Given a state (x(r, Ud), k(r, Ud)), one-step ahead state with the desired input from

the current state, if Problem 2.1 has a feasible solution, then the desired input Ud
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will not cause an unavoidable collision. Otherwise, the desired input Ud must be

overridden to avoid a predicted future collision. To sum up, the supervisor s at time

t = kr is designed as follows:

if 3u G U : X(t, U, Xnext, inext) V B Vt > 0,

Ud where xnext = x(7, Ud,x(kT),X(kT)),

xnext k(, Ud, x(kT), x(k)),(

u, otherwise.

where u, is a safe input signal defined on time [0, r) that satisfies

]u G U : x(t, u, x(r, u,, x(k),k(kr)), 5(r, u,, x(kr),k(k7))) V B,Vt > 0.

By construction, the supervisor s guarantees safety because it always returns the

input that makes the one-step ahead state outside the backward reachable set of the

bad set. Also, the supervisor s is least restrictive, that is, it returns the desired input

Ud if and only if the desired input will not cause the situation where no control input

exists to avoid the bad set.

The supervisor is said to be nonblocking if

s(x((k - 1)7), 5((k - 1)>r),ud) $0 > s(x(kr), k(kr), ud) #0,

which means by induction that if we have initially s(x(0), k(0), ud) $ 0, then the

supervisor always returns a nonempty output.
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Chapter 3

Preliminary Results

Our approach to solving the safety verification problem (Problem 2.1) is to translate

it into a scheduling problem. In this section, we introduce fundamentals of schedul-

ing problems, and explain a concept of equivalence between two decision problems.

We also show an example of a scheduling problem that is equivalent to the safety

verification problem in a simple intersection model.

3.1 Scheduling

Scheduling problems are described by jobs, machines, and processing characteristics

[18, p. 4]. Jobs represent tasks which have to be executed; machines represent scarce

resources such as facilities where jobs are processed; and processing characteristics

include release times, deadlines, and process times. Scheduling problems are the

problems of assigning jobs to machines at particular times. A scheduling problem is

called single-machine scheduling if there is only one machine, and is called jobshop

scheduling if there are more than one machines involved and each job follows its own

predetermined routes of machines.
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3.1.1 Single-machine Scheduling

Given a set of n jobs, an operation i, which refers to the process of job i on a

single machine, is associated with release time ri, deadline di, and process time pi.

Scheduling jobs means finding a schedule t = (t1 , .t.,n) E R that satisfies

ri :! ti < di - pi,

(iItidi + pi) n (t, t + pj) = 0, Vi - j.

A feasible schedule must satisfy that each operation starts after the release time and

is completed before the deadline, and only one job is processed on the machine at a

time.

Scheduling problems are usually formulated as optimization problems. For exam-

ple, jobs are scheduled to minimize the maximum lateness [50]

Lmax max (ti + pi - di) , (3.2)
iC{1,2,...,n}

or to minimize the maximum completion time

Cmax:= max (ti + pi) .
iE{1,2,...,n}

In Chapter 5, we use an objective function similar to the maximum lateness to check

the possibility of scheduling jobs before deadlines.

Although, in general, single-machine scheduling problems are known to be NP-

hard [50], the problem that minimizes the maximum completion time can be solved

in polynomial time if p = 1 for all i [27,53]. We adopt this result to address the

complexity issue of the safety verification problem in Chapter 4.

There is another class of scheduling problems called inserted idle-time (IT) schedul-

ing. An inserted idle-time is an open time interval when the machine is deliberately

held idle while at least one job is waiting to be processed [35]. If we let (I, zi) be an
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idle-time, a feasible schedule must satisfy (3.1) and an additional constraint

(ti, ti + pi) n (r, p) = 0. (3.3)

In Chapter 4, we handle the presence of vehicles that are not controlled by the su-

pervisor by introducing idle-times.

3.1.2 Jobshop Scheduling

In jobshop scheduling, given a set of n jobs and a set of m machines, each job has its

own predetermined route of machines to follow. A jobshop scheduling problem can be

described by a graph representation [50]. In the graph, a node is an operation (i, j),

i.e., a pair of a machine and a job, denoting that job j is processed by machine i. The

collection of all nodes is denoted by K. A conjunctive arc connects two nodes (i, j)

and (i', j) if the two operations are on the route of job j, and a disjunctive arc connects

two nodes (i, j) and (i, j') if the sequence of the two operations is undetermined on

machine i. Let C denote a set of conjunctive arcs and D a set of disjunctive arcs.

1,1 3,1

(2s2 1, I2

Figure 3-1: Example of the graph representation.

For example, in Figure 3-1, the black solid arrows are conjunctive arcs and the

red dotted arrows are disjunctive arcs. We have

C= {(1,1) , (3,1), (2,2) , (1,2), (3, 3), (2 , 3) },

C = (,1) -+(3, 1),1(2, 2) - (1, 2), (3, 3) -+ (2, 3)},

D = (,1) ++(1,1 2), (2, 2) ++ (2, 3), (3,5 3) ++(3, 1)}1.
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The conjunctive arc (1, 1) -+ (3, 1) represents that job 1 should be processed by

machine 1 and then machine 3. The disjunctive arc (1, 1) ++ (1, 2) represents that by

machine 1, jobs 1 and 2 should be processed and the sequence is undetermined.

Given release time ri,, deadline di,, and process time pi,j of an operation (i,j),

scheduling jobs means finding a schedule t = (tij : (i, j) EE A) that satisfies

r{ < tij < di - pi,j, ()

(ti,j, ti,j + pi,j) n (tijl, ti,j, + pi,y) = 0, V(i, j) ++ (i, j') E 'D.

3.2 Equivalence

We introduce a concept of equivalence [19] to describe the relation between two de-

cision problems. In general, an instance of a problem is the information required to

determine a solution to the problem. We say an instance is accepted by a problem if

the solution to the problem is yes given the instance. A problem P is reducible to a

problem P2 if for every instance I1 of P1, an instance 12 of P2 can be constructed in

polynomially bounded time such that P2 accepts 12 if and only if P accepts I,. We

say P is equivalent to P2 if and only if P is reducible to P2 and P2 is reducible to

P1.

3.3 Example

As an example, we consider that n vehicles move toward an intersection modeled as

a single conflict area. The conflict area is located at (cei, 3 ) on the path of vehicle

i. Given a state (Xnext, xnext), where Xnext,i and inext,i denote the i-th entries of Xnext
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and *next, respectively, let

Ri :=min ft :i z(t, ui, x,,,xt,3, I next,i) =i 1s,

Di maxf t xi (t, ui,XnextiX nexti) ail

Pi (Ti) :=min ft : xi (t, ui, Xnext,i, 7 next,i) = #34

with constraint xi(Ti, Ui, Xnext,i, $next,i) = ai}.

We formulate a scheduling problem, by considering vehicles as jobs and the conflict

area as a single machine, to determine if scheduling times at which vehicles enter the

conflict area is feasible.

Problem 3.1. Given a state (Xnext, inext), determine if there exists a schedule T =

(T1 ,... , T,) C R' that satisfies

Ri < Ti < Di, 
35(3.5)

(Ti P(T)) n (T, P (T)) = 0, Vi # j.

A schedule T is the time when vehicle i is allowed to enter the conflict area. The

entering time must be bounded by Ri and Di, and two vehicles never meet inside the

conflict area. The comparison between (3.5) and (3.1) shows that Ri functions as a

release time, Di as a deadline, and Pi(T) as a process time.

It is proved in [16] that Problem 3.1 is equivalent to the safety verification problem

(Problem 2.1). That is, if (Xnext, next)is accepted by Problem 3.1, it is also accepted

by Problem 2.1, and vice versa. Note that by determining the existence of a feasible

schedule (real numbers), we can determine the existence of a set of input signals

satisfying (2.7) (functions of time).
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Chapter 4

Supervisors at Single Conflict Area

/3

ai

1 2

Figure 4-1: Road intersection (left) and its simplified model (right). An intersection
is modeled as a conflict area (the shaded area), and its location is denoted by an
open interval (ac, O3 ) along the path of car i. The supervisor communicates with and
controls only cars 1 and 2 to avoid a collision among all three cars.

In this section, we model an intersection as a single conflict area as illustrated in

Figure 4-1, and design supervisors that ensure safety inside the conflict area. In order

to enable practical implementation of supervisors, we consider several uncertainty

sources, such as modeling errors, measurement noises, and the presence of vehicles

that are not equipped with communication modules and thus not controlled by the

supervisors. In the nondeterministic setting, we design a least restrictive supervisor

and a bit restrictive, but computationally efficient, supervisor that are robust to

bounded uncertainties. We validate the supervisors via experiments using three in-

scale cars and via computer simulations.
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4.1 Uncertainty Sources

Before autonomous vehicles supersede the existing transportation paradigm, we ex-

pect road traffic to be composed of a mix of (i) autonomous vehicles, (ii) human-driven

vehicles capable of communication with other vehicles and infrastructure, and of au-

tonomous actions under specific conditions, and (iii) vehicles without any autonomous

capability. We call (i) and (ii) controlled vehicles, and call (iii) uncontrolled vehicles,

from the supervisor's perspective.

In the simulations and experiments presented in the end of this chapter, we model

the longitudinal dynamics of the vehicles as a second-order affine system with distur-

bances:

.j-vi + dxj

max(0, aivi + bi + Oiui + dvi) if (vi Vi,min), (4.1)
Vi min(vi,max, aivi + bi + qjuj + dvj) if (vi Vi,max),

aivi + bi + q5uj + dv,i otherwise.

The variable xi is the position of vehicle i along its path, and vi is the velocity of vehicle

i, with velocity vi bounded in the interval [Vi,min, Vi,max] C [0, +oc); ui e b4e is the

control input signal bounded between [Ui,min, Ui,max] (i.e., ui(t) E [Ui,min(t), Ui,max(t)]

for all t); parameters ai and bi are a mass-normalized damping coefficient and friction;

dx,i and dv,i are bounded disturbance, capturing the effect of imperfect path following,

of the coupling of lateral and longitudinal dynamics, of the road slope, and of the

engine's nonlinear behavior; #2 is a gain dependent on the battery charge. Note

that the speed along the path (zi) is not equal to the actual speed (vi) due to the

disturbance dxi.

In the following, we let

si = (Xi, vi)
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denote the full state of vehicle i and

di := (dx,i, dvi) E Di,

denote its disturbance input signal, bounded between [di,min, di,max], that is, dXi(t) E

[dx,i,min(t), dx,i,max(t)] and dv,i(t) E [dv,i,min(t), dv,i,max(t)] for all t > 0. Uncontrolled

vehicles have the same dynamics, but neither the input ui nor di is controllable.

We denote by si(t, ui, di, si(0)) the state of vehicle i reached after time t with input

signal u and disturbance signal di starting from an initial state si(0), and similarly,

by xi(t, ui, di, si(0)) the position reached at time t.

The state measurement sm,i (Xm,i, Vm,i) is subject to noise 62 := (6 x,i, &,i)

where 6xi and 6,,i are bounded errors for the position measurement xm,i and speed

measurement Vm,i, respectively. That is, the actual state si = (xi, vi) is

Xi = Xm,i + 6x,i, Vi = Vm,i + ,i. (4.2)

The measurement noise is bounded between bimin and 6 i,max. The state measurement

for all controlled and uncontrolled vehicles is available, for example, through cameras,

lidars, and radars on the roadside.

For the system involving n controlled and n uncontrolled vehicles, the aggregate

state is denoted by s E Rn+ ), the aggregate disturbance signal by d G D, and

the aggregate control input signal by u E U. We partition the entries of u into u,

and u., where u, E U, is the set of control input signals for controlled vehicles, and

uUc E Uc is the set of control input signals for uncontrolled vehicles. The aggregate

state measurement is denoted by sm c R2 (n+n), and the aggregated measurement

noise by 6.

In the nondeterministic setting, the bad set is

B {x E X : xi E (ai, /i) and x, c (aj, 3 j)

for some controlled vehicle i and controlled/uncontrolled vehicle j}.
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The bad set contains points corresponding to collisions in which at least one controlled

vehicle is involved, so that the supervisor can prevent the system's state from entering

the bad set by controlling the input of controlled vehicles, u,.

4.2 Supervisor Design

Due to the presence of uncertainty sources, we should revise the supervisor design

and the safety verification problem given in Chapter 2. In this section, we detail the

revised structure of the supervisor and safety verification problem.

Supervisor

h bst sup Estimation Prediction

[sI (T), sh(Try

erification Saucceed

Fa il+

Override

Figure 4-2: Structure of the supervisor. The verification algorithm predicts whether
the supervisor should override controlled vehicles with a safe input u s to prevent
collisions.

The robust supervisor consists of an estimation algorithm, a state prediction al-

gorithm, a verification algorithm, and an override input algorithm as depicted in

Figure 4-2. These run in a short time step of length r to quickly adapt to the chang-

ing control inputs generated by drivers of controlled vehicles, and to the unmeasurable

behavior of uncontrolled vehicles. We assume that the algorithms are synchronized

among vehicles, and that communication takes a negligible time. Asynchrony and

communication delays can be handled with little overhead [13].

4.2.1 Estimation

We call a state estimate the set of all states compatible with the system's measure-

ments history at a given time. Consider the preorder x < y, meaning that each

46



element of x is smaller than or equal to the corresponding element of y. The dynam-

ics of (4.1) are monotone in the control and disturbance inputs with respect to the

above preorder [11]. This suggests to consider box state estimates, defined as the set

{s :si S < Sh},

and identified by their lower and upper bound, [si, shl. At the current time kT, given

a prior state estimate [s(kT), Sh(kT)],, and the measured state sm(kT) at the current

time 0, the supervisor computes the posterior state estimate

[s, (kT), Sh(kTr)], := [s,(kT), Sh(kr),, n [sm(kT) + 6min, sm(kT) + 6max], (4.3)

where 6 min and bmax are the vectors of measurement uncertainty bounds. Because

the sets [si(kT), Sh(kT)],, and [sm(kT) + 3 min, sm(kT) + 6max] contain the actual state,

the posterior state estimate (4.3) is nonempty.

4.2.2 Prediction

Consider a prediction interval of length T, equal to a supervisor time step. Given the

current state estimate [s(kT), sh(kT)],O, and the control input uk issued by the drivers

of controlled vehicles at time kr, this algorithm predicts a box of possible future states

[s,((k+1)T), sh((k+ 1)r)], exploiting monotonicity of the dynamics (4.1) with respect

to input and disturbances to propagate the lower and upper bounds of the state

estimate forward in time.

For controlled vehicle i, the control input u k' in the interval [0, T] is assumed to

be constant, so the only uncertainty is due to the unknown disturbance input di. The

future state estimate is given by

[s,((k + 1)T),sh,i((k + 1)T)] (4.4)

[sNtt, curre dem s(k )),(), s(T,( U ,di d,max, (st,i(k))eO)].

Note that given a current state s(kT) E [sj,j (kT), Sh,i (kr)]po, the one-step ahead state
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s(T, a,, di, s(kT)) must be bounded by the future state estimate (4.4) due to the

monotonicity of the dynamics. For uncontrolled vehicle i, due to the lack of informa-

tion about the control inputs, uncertainty is both on control and disturbance inputs.

Therefore, the future state estimate is given by

[s'i,((k + 1)T),sh,i((k + 1)-r)] :=

[s1,i (T, Ui,min, di,mini (sj,j (kr))po), Ish,i (7, U,max, di,max, (Sh,i (k7-))po)

The future state estimate is used as the prior state estimate at the next time step.

4.2.3 Verification

To account for the presence of uncertainty sources, we revise the safety verification

problem given in Problem 2.1.

Problem 4.1 (Revised Safety Verification). Given a state estimate [Sl(T), sh(T)1,

determine whether

3u, E- U, : x(t, u, d, so) V B, Vt > 0,(45

Vuc E U,,Vd c D,Vso c [sI(T), sh(7)].

In other words, the safety verification problem in the nondeterministic setting is

the problem of finding a control input signal of controlled vehicles that prevents the

whole system's position from entering the bad set for all input signals of uncontrolled

vehicles, for all disturbance input signals, and for all initial states inside a given state

estimate.

In the following sections, we design discrete-time supervisors based on the solu-

tions to Problem 4.1. The following supervisor s is said to be least restrictive:

k if uc, E Uc : x(t, u, d, so) B, Vt > 0,

s(sm(kT), uk) = Vuc, E Ubc, Vd c D, Vso c [s,((k + 1)T), Sh((k + 1)T)] (4.6)

us otherwise,
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in the sense that overrides are activated only when the desired input of controlled

vehicles would lead to collisions at some future times for some disturbances and inputs

of uncontrolled vehicles.

4.3 Least Restrictive Supervisor

In this section, we formulate an inserted idle-time (1IT) scheduling problem, which

is solved straightforwardly, and prove that this problem is equivalent to Problem 4.1.

Based on the solution to the IIT scheduling problem, we provide an algorithm imple-

menting the least restrictive supervisor given in (4.6).

4.3.1 Inserted Idle-Time Scheduling Problem

We can translate Problem 4.1 into an inserted idle-time (1IT) scheduling problem,

considering an intersection as a resource that all vehicles must share. A schedule

represents the vector of times at which each controlled vehicle enters the intersection,

and an inserted idle-time represents a set of time intervals during which uncontrolled

vehicles occupy the intersection. This analogy is characterized mathematically using

the concept of decision problem equivalence.

To formulate the IIT scheduling problem, we define processing characteristics.

Definition 4.1. Given a state estimate [si(T), Sh(T)], a release time Ri, a deadline

Di, and a process time P(T) are defined for controlled vehicle i as follows.

If Xh,i(7) < ai,

Ri :={t > 0 X z(t, Ui,max, di,max, Sh,i(T)) - ai},

Di := t > 0 : i(t, Ui,min, di,min, ish,i(7))-- ai}.
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Given a real number T > 0,

Pi (T) :=Min {t : xi (t, ui, dj,mijsj,i(T)) = Oi

with constraint xi(T, ui, di,max, Sh,i (T)) ai}-

If Xh,i(T) > a, then set Ri = Di =0, and P(T) {t : x2 (t, u,max, d,min, si,i(T))

Oi}. If Xj,i(T) > 0i, then set Ri = = P(T) 0. If the constraint cannot be

satisfied, set P(T) = oc.

For uncontrolled vehicle i, an inserted idle-time, denoted by (Ri, PA), is defined as

follows.

If Xh,i(7) < ai,

Ri :={t 0 :xi (t, u,max, di,max, sh,i(7)) = a}

Pi {t _ 0 X z(t, Ui,min, di,min, Si,i(T)) = 3d.

If Xh,i(T) > aj, set Ri = 0 and Pi = {t : Xi(t, ui,min, di,min, Si,i(T)) = 1i}. If X,i(T) > /i,

set Ri = P, = 0.

Due to the monotonicity, the release time Ri is the earliest time at which controlled

vehicle i can enter the intersection (located at (ai, #3)) and the deadline Di is the latest

such time. Given that controlled vehicle i enters the intersection no earlier than Ti,

process time Pi(Ti) is the earliest time at which it can definitely exit the intersection.

The inserted idle-time (Ri, P) is a time interval within which uncontrolled vehicle

i can enter and exit the intersection regardless of its driver's input and disturbance

signals.

The Inserted Idle-time (1IT) scheduling problem is formulated as follows.

Problem 4.2 (1IT scheduling). Given a state estimate [sj(T), sh(T)], determine if
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there exists a schedule T = (T1, ... , T,) C R' that satisfies

Ri < Ti < Di,

(Ti, P(T)) n (T, P (T)) = 0, (4.7)

(Ti Pi (Ti)) n (k, I P) = 0,

for all controlled vehicles i # j and uncontrolled vehicle y.

A schedule T indicates the time at which controlled vehicle i enters an intersection

with di,mx from the state Sh,i(T), that is, xi(Ti, ui, di,m., Sh,i(T)) = a for some ui E

1i . In Problem 4.2, the first constraint is induced on the schedule by the bounded

input signals, and the second constraint implies that controlled vehicles i and j do

not occupy the intersection simultaneously, thereby preventing a collision between

controlled vehicles i and j. The last constraint implies that vehicle i does not occupy

the intersection during the inserted idle-time, thereby preventing a collision between

controlled vehicle i and uncontrolled vehicle -y. Thus, a schedule satisfying the above

constraints is related to an input signal that satisfies (4.5). This is the essence of the

proof of the following theorem. The proof can be found in Appendix A.

Theorem 4.1. Problem 4.1 is equivalent to Problem 4.2.

We now provide an algorithm that solves Problem 4.2, which, in turn, solves

Problem 4.1 by Theorem 4.1. This algorithm contains two procedures. The first

procedure, called SCHEDULING, assigns a schedule T =_ (T,..., T) to controlled

vehicles according to a given sequence 7ro E Rn, that is, if ro = (ji,... , jn), then

T, < ... < Tj, which means that vehicle J2 crosses the intersection after vehicle J1

does. Also the procedure evaluates whether T satisfies (4.7). The second procedure,

called EXACT, inspects all possible sequences until it finds a sequence corresponding

to a feasible schedule. The procedure returns yes if a feasible schedule is found and

no otherwise.

The algorithm focuses on scheduling vehicles that are before the intersection (jobs

that have not been processed). Given Sh(T), let M := f : Xh,i(r) < ai} and P be the
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set of all permutations of M. The cardinality of the set P is (IM|)! = 1 x 2x . . x M1.

Without loss of generality, we identify uncontrolled vehicles by integers 1, ... , i such

that R1 < ... < R_ .

Algorithm 4-1 Solution to Problem 4.2
1: procedure SCHEDULING(7O, [si(r), sh(T)1)

2: A = {i E {1,2,.. . , } Xh,i() <ai}

3: Ti = 0, Vi M

4: Pmax = maxiom Pi(T)

5: 7r = (ji,j, ... ,JIMI) where 7o = (ii,.. . , i, 01) and jk i roI-IMI+k

6: for i = 1 to IM 1do

7: if i = 1 then Tj1 = max(R, Pmax)

8: else if i > 2 then

9: T = max(Rjs P_ (T_)

10: for -y = 1 to h do

11: if T, ;> f, then T, =- max(T2,1,)

12: else if Pj,(Tj,) > R.t then Tj, = Py

13: if Ti < Di for all i then return (T, yes)

14: else return (0, no)

15: procedure EXACT([Si (7), sh(T)1)

16: if [si(r), Sh(T)] n B # 0 then return (0, no)

17: else

18: if Xh,i(r) > a for all i then return (0, yes)

19: else

20: for all 7r E P do

21: (T, ans) = SCHEDULING(7r, [sI(T), Sh(7)])

22: if ans = yes then return (T, yes)

23: return (0, no)

Procedure SCHEDULING in Algorithm 4-1 works as follows. In lines 2-4, if Xh,i(7) >

ac, Ti = 0 because Ri = Di = 0, and Pmax is the time at which all of such vehicle
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i exit the intersection. Given a vector of the indexes of vehicles ro, the assignment

at line 5 extracts from 7o the subvector 7r when IM < |7ol. Given this sequence

7r, procedure SCHEDULING finds the earliest possible schedule. In a given sequence

7r (i,.. . , 3jM), vehicle ji-1 crosses the intersection earlier than vehicle ji (lines 7-

9). In the for loop of lines 10-12, uncontrolled vehicle -y is considered. For an inserted

idle-time (ky, P), either T, > P, or Pj,(Tj,) < ky is true, thereby (T,, P,(Tj1)) n

(R,, Py) 0. If Ti < Di for all i, then T satisfies (4.7), and thus, this procedure

returns a feasible schedule in conjunction with the answer of yes (line 13). If T > Di

for some i, since the schedule T is constructed so that it takes the earliest possible

value, there cannot be another schedule that satisfies Ti < Di. Thus, no feasible

schedule can be found according to this sequence 7r, and the procedure returns no

(line 14).

Procedure EXACT in Algorithm 4-1 solves Problem 4.2 by inspecting all permuta-

tions in P until a feasible schedule is found as noted in lines 20-22. In the worst case,

all entries in P must be evaluated, which means that the computation time increases

exponentially as the number of controlled vehicles increases. Indeed, a scheduling

problem is known to be NP-hard [16]. To avoid this computational complexity issue,

we provide another algorithm that approximately solves the IIT scheduling problem

with the guarantee of a quantified approximation bound. This approximate algorithm

is provided in Section 4.4.

4.3.2 Least Restrictive Supervisor Algorithm

Based on the solution to the safety verification problem (Problem 4.1), we present an

algorithm that implements the least restrictive supervisor.

Given a feasible schedule T = (T1,... , T,), we compute a corresponding input

signal that satisfies (4.5). This is possible because the existence of a feasible schedule

implies the existence of a safe input signal by Theorem 4.1. We define a safe input
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generator o- : ([sl(), sh(7)],T) -+ us as

Us'i= o-([sii(), s,i) Ti) E {ui E b4 :xi (Pi(Ti), uri, di,min, si,i(r)) = #i

and xi(Ti, ui, di,max, sh,i(T)) = ail,

if T > 0. Let u,,i = ui,ma if T = 0. Here, o-i([sl,i(), Sh,i(T) , Ti) is the i-th entry

of -([sl(T), Sh(r)], T). The safe input signal u,,i makes controlled vehicle i enter the

intersection no earlier that T and exit it no later than P(Ti).

The following algorithm implements the supervisor at time step k. When k = 0,

let [s1(0), Sh(0)]p, = R n+.

Algorithm 4-2 Implementation of the least restrictive supervisor at time kT

1: procedure SUPERVISOR(Sm(kT), uk)

2: Estimate: Given [si(kT), sh(kT)], and sm(kT), estimate [si(kT), sh(kT)],

3: Predict: Given [si(kr), sh(kT)]p, and ud, predict [sj((k + 1)r), sh((k + 1)r)]

4: (T1 , ansi) = EXACT([si((k + 1)F), sh((k + 1)7)])

5: if ans1 = yes then

6: uk+1 = a ([s,((k + 1)T), sh((k + 1)T)I, T 1 )

7: return ud

8: else

9: Predict: Given [si(kr), sh(kr)],O and us, predict [sl((k+1)T), Sh((k+1))I

10: (T2 , ans 2)= EXACT([sl((k + 1)T), sh((k + 1)T)])

11: uk+1 
- o-([s((k + 1)r), sh((k + 1)r)I, T2 )

12: return uk restricted to time [0, T]

13: [s,((k + 1)T), sh((k + 1)T)] is used as [sl((k + 1)T), sh((k + 1)T)],

When the future state estimate with uk is accepted by the safety verification

problem (line 5), the supervisor stores a safe input signal u +1 for possible uses at the

next time step and returns uk (lines 6 and 7). Otherwise, the algorithm computes the

future state estimate with us, a safe input signal stored at the previous step (line 9).

Using this new state estimate, the algorithm updates a safe input signal uk+ 1 (line 11)

and overwrites the desired input with a safe input signal uk restricted to time [0, T]
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(line 12).

To initiate the procedure, we assume that the algorithm returns uo when k = 0.

Given this assumption, procedure SUPERVISOR in Algorithm 4-2 is nonblocking, which

implies that it always returns a nonempty output, and ensures safety by implementing

the supervisor given in (4.6). The proof of Theorem 4.2 is provided in Appendix A.

Theorem 4.2. Procedure SUPERVISOR in Algorithm .4-2 implements the supervisor

s designed in (4.6), and it is nonblocking.

4.4 Approximate Supervisor

Even though a least restrictive supervisor is theoretically computable, exploring all

possible sequences for a large number of vehicles is typically too demanding. Thus, we

present a novel approach to finding a good candidate sequence, and the construction

of an approximate supervisor.

4.4.1 Approximate Verification

As mentioned in Section 3.1.1, while scheduling problems on a single machine with

arbitrary release times, deadlines, and process times are known to be NP-hard, the

complexity can be reduced to O(n log n) if process times of all jobs are identical [27].
The basic idea of the scheduling algorithm in [27] relies on the concept of a "forbidden

region," a set of time intervals in which jobs are forbidden to be scheduled, and the

"earliest deadline scheduling (EDD)" rule. The EDD rule is a rule that assigns the

machine to jobs in the order of their deadlines. The algorithm computes forbidden

regions and applies the EDD rule to solve the scheduling problem with identical

process times.

We present Algorithm 4-3, which is a modified version of the result in [27] to handle

inserted idle-times, and use it to compute a good candidate sequence of vehicles. We

define initial forbidden regions F to account for the idle-times and set them as inputs

of Algorithm 4-3, whereas forbidden regions are initially declared empty in [271. We
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call r and d the vectors of ri and di, and call - a vector of indexes in the increasing

order of ri (so that r, < r,2 < .. ). The forbidden regions F is the union of F,.

Algorithm 4-3 Modified version of the result of [27]
1: procedure COMPUTE SEQUENCE(r, d, F)

2: Forbidden region declaration:

3: for i = n to 1 do

4: for j E {j : d3 > dc } do

5: if c3 undefined then cj = dj else cj = cj -

6: if cj E F, for some -y then cj = inf FE

7: if or =1 or re, < r, then

8: c = min{cj : c3 defined}

9: if c < r, then the problem is infeasible

10: if r, < c < r, + Ithen F F U (c - 1, r,,)

11: Sequence computation:

12: s = 0, A = 0, B = {1, ... , IRI}

13: while B # 0 do

14: if A = 0 then s = miniE3 ri

15: if s E , for some 'y then s =sup F,

16: A = {k E B: rk > s} and = argminiE di

17: ty = s,s = s + 1, and B = B\{j}

18: 7r* := a sequence of vehicles in increasing order of t = (ti, ... , tn)

19: return (7r* t)

Algorithm 4-3 is a straightforward variation of the scheduling algorithm proposed

in [27], changed so as to return a sequence r* even if the scheduling problem does not

admit a feasible schedule t. The feasibility of the scheduling problem of unit-length

jobs is determined during the forbidden region declaration (line 9), while the feasibility

result is not returned by procedure COMPUTE SEQUENCE. Sequence computation

uses the EDD rule, that is, one with smallest di among the jobs is scheduled earlier
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than the others while avoiding the forbidden region (lines 15-17). This algorithm is

proved to yield the exact solution to the scheduling problem of unit-length jobs.

We assign to all vehicles a time interval of equal length to cross the intersection,

and formulate the IIT scheduling problem with identical process times. The identical

process time 0 max is defined as

Omax =- max max (P(Ti) - Ti). (4.9)
iE{1,2,...,n} Ri<Ti<Di

Here, 0 max is the maximum time that any controlled vehicle spends crossing an inter-

section, so that Omax > Pi(T) - T for all i for all Ti E [Ri, Di]. In other words, all

controlled vehicles are guaranteed to cross the intersection within 0 max. By replac-

ing P(T) in Problem 4.2 with T + Omax, we state the 1IT scheduling problem with

identical process times as follows.

Problem 4.3 (IIT scheduling with identical process times). Given the process-

ing characteristics used in Problem 4.2, determine if there exists a schedule T

(T1 , .. ,Tn) C Rn that satisfies

R i < T i < D i , 
4 . 0

(Ti, Ti + Omax) n (Tj, Tj + Omax) = 0, (4.10)

(Ti, Ti + 9max) n (ky,y) 0,

for all controlled vehicles i / j and uncontrolled vehicle -y if T, T > 0. If Ti = 0,

(0, Pi(0)) replaces (Ti, Ti + Omax).

We present an algorithm that solves Problem 4.3 by using Algorithm 4-3. For this,

all the parameters need to be normalized by 0 max because Algorithm 4-3 assumes unit

process times. For notational simplicity, let M ={I {1, 2,. .. , n} : Xh,i(T) < ai}l

{1, 2,. . ., |M|}, and r = (ri, .... , roI),I d = (di, . .I dyIA), and F = U F_ .
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Algorithm 4-4 Solution to Problem 4.3
1: procedure SOLUTION TO PROBLEM 4.3([si(T), Sh(T)])

2: if [XI(T), xh(T)] n B f 0 then return (0, no)

3: else

4: M = {i E {1,2, ... , n : Xh,i(T) < Ci}

5: Ti = 0,Vi M

6: Pmax = maxi2 m Pi(Ti)/Omax

7: ri max(Ri/Omax, pmax), di= Di/Omax for all i E M

8: F- (max(0, Ry/Omax - 1), D9 ,y/Omax) for all -y E {1,. . . ,

9: (7*,t) = COMPUTE SEQUENCE(r, d, F)

10: Ti = t0max, Vi E M

11: if Ti < Di for all i then

12: return (T, yes)

13: else

14: return (T, no)

Because procedure COMPUTE SEQUENCE in Algorithm 4-3 handles only vehicles

before the intersection (i.e., jobs not yet processed), procedure SOLUTION TO PROB-

LEM 4.3 separately considers vehicles inside or after the intersection (lines 5 and

6) and vehicles before the intersection (lines 7-10). This procedure exactly solves

Problem 4.3 (as proved in [27]).

Procedure SOLUTION TO PROBLEM 4.3 in Algorithm 4-4 can be used as an

approximate solution to Problem 4.2 (thus Problem 4.1 by Theorem 4.1), because a

feasible schedule of Problem 4.3 is also feasible in Problem 4.2. Note that Problem 4.3

assigns a time interval (Ti, T + Omax) to each vehicle i while vehicle i actually stays

inside the intersection during a time interval (Ti, P(T)) where P(T) Ti + Omax.

Thus, if the supervisor is designed based on the solution given by Algorithm 4-4, it

tries to ensure that the gap between the entering times of two controlled vehicles is

at least 0 max. This supervisor can be very conservative, and was presented in [14

without considering the presence of uncontrolled vehicles. To design a less restrictive
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supervisor, we provide another approximate solution to Problem 4.1 in the following

algorithm, which assigns the time interval (Ti, P(T)) to each vehicle i while consid-

ering the same sequence ir* used in Algorithm 4-4.

Algorithm 4-5 Approximate Solution of Problem 4.1
1: procedure APPROXIMATE([Sl(T), Sh(T)])

2: if [X1(T), xh(T)] n B 7 0 then return (0, no)

3: else

4: M4 = i E {, 2, ... , n} : Xh,i(T) < ai}

5: Ti =0, Vi M4

6: pmax = maxiem Pi(Ti)/Omax

7: ri = max(Ri/Omax, pmax), di = Di/Omax for al

8: Fy = (R-/Omax - , D-y/Omax) for all -y {1,

9: (7T*, t) = COMPUTE SEQUENCE(r, d, F)

10: (T, ans) = SCHEDULING(7r*, [SI(T), sh(T)j)

11: return (T, ans)

I i E M

. .. , q}

This procedure schedules vehicles according to a sequence returned by procedure

COMPUTE SEQUENCE, thereby inheriting computational efficiency. The only differ-

ence between Algorithms 4-4 and 4-5 is that Algorithm 4-5 calls procedure SCHEDUL-

ING to find a schedule based on a sequence wr*, not using a schedule t returned by

COMPUTE SEQUENCE (lines 9 and 10).

We will prove that procedure APPROXIMATE (approximate solution to Prob-

lem 4.2) is more conservative than procedure EXACT (exact solution to Problem 4.2)

because it computes a schedule based on one candidate sequence, not all possible se-

quences. In order to quantify the degree of conservatism, we prove two theorems. The

first theorem states that if procedure APPROXIMATE returns yes, then there exists

an input signal to avoid the bad set. In the second theorem, if procedure APPROX-

IMATE returns no, then there does not exist an input signal to avoid an inflated bad

set, which accounts for the conservatism. The proofs of these theorems are provided

in Appendix A.
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Theorem 4.3. If APPROXIMATE([S(T), sh(T)]) returns yes, then EXACT[sl(7), Sh(T)

also returns yes (i.e., there is an input signal satisfying (4.5)).

However, the converse of Theorem 4.3 is not true. That is, for some instances

accepted by Problem 4.1, procedure APPROXIMATE returns no. To consider such

instances, we introduce an inflated bad set.

Given a state estimate [sl(T), sh(T)], a feasible schedule T = (T1 , . . , Tn) in Prob-

lem 4.2 satisfies for some ui E Hi,

xi(T, ua, di,max, sh,i(7)) = a, xi(i(Ti), ui, di,min, Si,i(T)) = #i,

that is, vehicle i enters the intersection no earlier than T and exits no later than

Pi(T). In contrast, a feasible schedule in Problem 4.3 satisfies for some ui E Uj,

xi(T , ui, di,max, Sh,i(7)) = aj, Xi(T + 6 max, Ui, di,min, si,i(T)) ;> i,

Given that the farthest distance that controlled vehicle i can travel during 0max is

OmaxVi,max, we define an inflated intersection (as, /3 ) such that

3j := a + Omaxvi,max

Note that ,3 < . Because the process times are only defined for controlled vehicles,

-= for all uncontrolled vehicle -y. Thus, the inflated bad set b is defined as

follows:

B := {x E X : xi E (ai, ,3) and xj E (aj, 3j)

for some controlled vehicle i and controlled/uncontrolled vehicle j}.

By replacing the bad set B in Problem 4.1 with the inflated bad set B, we can

formulate the relaxed verification problem. The following theorem is a key result

that shows the approximation bound of procedure APPROXIMATE. The proof can be

found in Appendix A.
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Theorem 4.4. If APPROXIMATE([SI(T), sh(T)F) = (0, no), then there is no input

signal u, U, that guarantees x(t, u, d, so) $ B for all t > 0 for all uce E Uuc, d E D,

and so E [si(7), Sh(T)].

In summary, Theorem 4.3 states that if procedure APPROXIMATE returns yes,

there exists an input signal to avoid the bad set B for all uncertainties. Theorem 4.4

states that if the procedure returns no, there does not exist an input signal to avoid

the inflated bad set b for all uncertainties. Thus, b represents the approximation

bound of the solution given by procedure APPROXIMATE.

The approximate solution presented in this section is computationally efficient

because it evaluates only one sequence of vehicles, as opposed to the exact solution

given in Section 4.3 which evaluates all possible sequences. We can adopt other

procedures that efficiently generate a candidate sequence. For example, Problem 4.3

can be written as a mixed integer linear programming (MILP) problem, which can

be solved quickly by available software such as CPLEX [33], and the solution to

Problem 4.3 can be used to extract a good candidate sequence.

4.4.2 Approximate Supervisor Algorithm

In order for a supervisor to run in real-time, the safety verification problem must be

solved within a time step r. However, if a large number of controlled vehicles are

involved, the problem becomes intractable. Thus, we design an approximate, but

computationally efficient, supervisor by employing the results in Section 4.4.1.

Here, we present an algorithm implementing an approximate supervisor by using

procedure APPROXIMATE to verify whether or not to override drivers.
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Algorithm 4-6 Implementation of an approximate supervisor

1: procedure APPROXIMATESUPERVISOR(Sm(kT), uk)

2: Estimate: Given [s,(kT), Sh(kr)], and sm(kr), estimate [s,(kT), sh(kT)],O

3: Predict: Given [s,(kT), sh(kT)]pO and uk, predict [si((k 1)T), sh((k 1)T)]

4: (T 1, ansi) = APPROXIMATE([SI((k + 1)T), Sh ((k + 1)T)])

5: if ans1 = yes then

6: 7rk = a vector of indexes in the increasing order of T1

7: - .([s,((k + 1)T), Sh((k + 1)T)], T1 )

8: return uk

9: else

10: Predict: Given [s,(kr), sh(kr)]], and us, predict [s,((k+1)T), sh((k+1)T)

11: (T2 , ans2 ) = APPROXIMATE([s,((k + 1)T), sh((k + 1)T)])

12: if ans2 = no then

13: (T 2 , ans3 ) = SCHEDULING(k-1, [s((k + 1)T), sh((k + 1)T)])

14: 7rk = a vector of indexes in the increasing order of T2

15: ui+1 = -([sj((k + 1)T), sh((k + 1)T)], T 2 )

16: return uk restricted to time [0, T]

17: [sj((k + 1)T), Sh((k + 1)T)] is used as [sl((k + 1)-r), sh((k + 1)T)1p

This procedure stores a feasible sequence of vehicles crossing the intersection at

every time step (lines 6 and 14) such that 7rk = (Ji, . . , Jn) implies Tjj < .. < T.

These steps are necessary because when a sequence considered in line 11 does not

yield a feasible schedule, the previous step's sequence 7rk-1 can be used to generate a

feasible solution (line 13). The fact that ans3 is always yes is proved in Theorem 4.5.

In [14], the approximate supervisor does not store a sequence at each time and uses

SOLUTION TO PROBLEM 4.3 in place of APPROXIMATE. As a result, their approxi-

mate supervisor cannot find a feasible schedule at every time step and considers the

maximum process time, Omax. In contrast, our approximate supervisor always finds

a feasible schedule based on the most current state estimation and considers process

times P(T) for all controlled vehicles i, thereby being less conservative.
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The computation time of APPROXIMATE and SCHEDULING determines the com-

putation time of APPROXIMATESUPERVISOR. Thus, Algorithm 4-6 has polynomial

computational complexity. Also, this approximate supervisor is more restrictive than

the least restrictive supervisor s given in (4.6) in the sense that it overrides con-

trolled vehicles more frequently than s. This implies that the approximate supervisor

guarantees that the system's position never enters the bad set B.

Theorem 4.5. Procedure APPROXIMATESUPERVISOR in Algorithm 4-6 is more re-

strictive than the supervisor s given by (4.6), that is,

APPROXIMATESUPERVISOR(Sm(kr), ud) = u 5(Sm(kT), ud) =u.

Moreover, Algorithm 4-6 is nonblocking.

The proof of Theorem 4.5 can be found in Appendix A.

4.5 Validation of the Supervisors

We present the validation results of the supervisors given in Algorithm 4-2 and Al-

gorithm 4-6 via computer simulations and experiments.

4.5.1 Computer Simulations

In this section, we present the results of computer simulations of Algorithm 4-2 (least

restrictive supervisor) and Algorithm 4-6 (approximate supervisor). The simulations

were performed using MATLAB on a personal computer with an 3.10 GHz Intel Core

i7-3770s processor with 8 GB RAM, with control gain #i = 1 and desired input Ud,i

150 for all i. The values of the other parameters are presented in the next section.

In Figure 4-3, we show a run of Algorithm 4-2 and Algorithm 4-6 on the same

initial conditions, desired input signals, and disturbance signals in a scenario with

eight controlled vehicles and two uncontrolled vehicles. The supervisor overrides the

controlled vehicles (when the blue bands appear) to avoid a collision at the intersection

63



...... .... .... ... ... .... .... ... .. .. .;I. ..... .. .... ..
0 0 / /

-200 -200

CI C)
CO / cO /

S-400- / -400 /

-600- -600 /

-800 -800 0 1
0 5 10 0 5 10

time time
(a) Least restrictive supervisor. (b) Approximate supervisor.

Figure 4-3: In simulation, the approximate supervisor intervenes no earlier than
the least restrictive supervisor. The solid black and dotted red lines represent the
actual position of the controlled and uncontrolled vehicles, respectively, with gray
surrounding representing the state estimate. The blue bands on the bottom appear
when the supervisor overrides the controlled vehicles to prevent a collision at the
intersection at (0, 65).

at (0, 65). Notice that the approximate supervisor overrides the controlled vehicles

no earlier than the least restrictive supervisor. That is, the approximate supervisor in

practice performs close to the least restrictive supervisor. Algorithm 4-2 took 2.92 s

per iteration while each iteration of Algorithm 4-6 was executed in less than 0.007 s.

To compare Algorithm 4-6 with the algorithm in [14], we have tested a scenario

with four controlled vehicles and no uncontrolled vehicle (which the algorithm in [14]

could not handle), running the two algorithms with the same initial conditions, desired

input signals, and disturbance signals. The blue bands at the bottom of Figure 4-

4 indicate times when the supervisor is overriding the drivers' desired input; the

supervisor from [14], in the left panel, overrides much earlier than Algorithm 4-6, in

the right panel. We also performed 100 tests with random initial conditions of four

vehicles. The average ratio of the number of overrides to the number of steps until all

vehicles exit the intersection (set to be constant at 200 steps) is 0.42 for the algorithm

in [14] and 0.09 for Algorithm 4-6. This confirms that Algorithm 4-6 indeed restricts
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Figure 4-4: The blue bands at the bottom show that our supervisor in (b) starts an
override later than the supervisor in (a). The same coloring is used as in Fig. 4-3

the drivers less than the supervisor in [14].

4.5.2 Experiments
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Figure 4-5: Experimental setup. The supervisor modifies the inputs of cars
2 only when necessary to avoid collisions at the intersection (shaded circle)
presence of an uncontrolled vehicle (car 3).
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tion testbed. As shown in Figure 4-5(a), we use three in-scale cars. Cars 1 and 2 are

controlled by an on-board computer and communicate with the supervisor via wifi.

Car 3 is uncontrollable, and is remotely controlled by a human operator. The posi-

tions of all cars are measured by a camera system, while velocities of the controlled

cars are measured through encoders. Each car follows one of the the three paths in

Figure 4-5(b), which intersect at the center.

We have investigated the sources of disturbances di = (d,, de,,) for each car i and

designed a compensating input to reduce their effects. For the disturbance input on

the position dynamics, d_,, = dproj,i, where dproj,i is the effect of the car's wiggling

motion about its nominal path on the longitudinal velocity. For the disturbance input

on the speed dynamics,

do : dpower,i + dslope,i + dsteer,i

where dpower,i, dslope,i, and dsteer,i are the effects on the longitudinal acceleration of

the engine's nonlinear behavior, of the road slope, and of the lateral-longitudinal

dynamics coupling, respectively. We model dpower,i = gie-t/hit where gji, hi are a gain

and a time constant, and ui is the motor input. The disturbances dsiope,i and dsteer,i

vary on the position xi and are estimated off-line. The effects of dsteer,i, dslope,i, and

dpower,i are reduced through the introduction of a compensating input ci(t, xj)

9e t/hi + dslope,i(Xi) + dsteer,i(Xi)
c (t, x) =e/ i

By applying an input ui = u' + ci(t, xi), the car dynamics become

i~j = aivi + bi + Oiu' + d'I,
viV~

where d',i gieC-/hi(U' - 1) is the effective disturbance after the compensation. The

gain qi in our experiments depends on the battery charge and is estimated on-line

using adaptive control.

Through a set of experiments on each car, we have identified the values for the
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Figure 4-6: Experimental results of the supervisor. The solid black and dotted red
lines represent the position measurement of the controlled and uncontrolled cars,
respectively. The same coloring is used as in Figure 4-3.
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parameters, which are given as follows: a =(-0.53, -0.30, -0.43) s-1, and b =(-84.68,

-66.43, -49.64) cm/s 2. The bounds of the speed are Vmin =(25, 25, 40) cm/s and

Vmax =(200, 200, 130) cm/s, and those of the motor input z'4 (PWM) are Umin =

(105, 105,130) and umax =(170,165,150). The bounds for disturbance inputs and

measurement errors are chosen from their distributions obtained from experiments.

The bounds for d, are (-5, -3, -3) cm/s and (3,4,3) cm/s and for d',, (-4, -2, -3) cm/s 2

and (2, 3, 2.5) cm/s 2 . The measurement error bounds are 6 i,minZ= (-25 cm, -25 cm/s)

and 6 i,max = (25 cm, 16 cm/s) for all i. For computer simulations in Section 4.5.1, the

parameter values of car 1 and car 3 are used for controlled and uncontrolled vehicles,

respectively.

Figure 4-6 depicts two experimental results near the intersection located at (0,

65) cm for all cars. In the first scenario (a), panel 1 shows that the uncontrolled

car (dotted red circle) approaches the intersection earlier than the controlled cars

(solid blue circles). Thus, the supervisor forces the controlled cars to decelerate to

avoid a conflict. Panel 2 shows that the conflict is resolved, and one controlled car is

crossing the intersection alone without overrides. In the second scenario (b) as shown

in panel 1, all three cars are close to the intersection, and the supervisor forces one

controlled car to accelerate and the other to decelerate to prevent a collision with the

uncontrolled car. Note that the upper state estimate of the last car's position enters

the intersection right after the lower state estimate of the uncontrolled car's position

has exited, indicating that the override was necessary to avoid the collision. In both

scenarios, intersection collisions are averted.

Figure 4-7 depicts 509 trajectories (semitransparent black lines) near the set in

which the cars collide (red solid). From the 2D projections in (b), we can confirm that

none of the trajectories enters the red solid. We can see that the supervisor overrides

cars 1 and 2 when the trajectories would enter the red solid if the trajectories were

linear. We observed the failure of 15 out of 509 experiments due to disturbances and

measurement errors outside the model bounds. In the 15 experiments, the supervisor

terminates before the cars enter the intersection because of incompatibility of the

state estimate and measurement. The choice of small bounds for disturbances and
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Figure 4-7: Position trajectories of cars 1-3. The red region represents a set of
positions where cars collide. The trajectories (semitransparent black lines) are in
blue when the supervisor intervenes. The 2D projections confirm that no trajectory
enters the red region.
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measurement errors was necessary in the confined laboratory because otherwise a

feasible initial condition may not always exist.
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Chapter 5

Supervisor at Multiple Conflict

Areas

2

2

I I',

31--- der
('3, 1

1i,1

I
Figure 5-1: An intersection is modeled as a set of conflict areas near which two
longitudinal predefined paths intersect. The locations of conflict areas 1 and 3 along
the path of vehicle 1 are denoted by (ai,, 01,j) and (as,1, 03,1), respectively.

Modeling an intersection as a collection of multiple conflict areas enables the

design of a less restrictive supervisor than the supervisor in the previous chapter, as

mentioned in Chapter 2. For example, in Figure 5-1, the intersection is modeled as a

set of conflict areas 1-3. The primary focus of this chapter is to design a supervisor

that prevents side collisions among vehicles inside conflict areas. Recall that the bad
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Figure 5-2: General intersection. The safety verification problem in this scenario,
which involves 20 vehicles and 48 conflict areas, without considering rear-end col-
lision avoidance on merging paths, can be approximately solved within quantified
bounds. This intersection is obtained from [41] to encompass 20 top crash locations
in Massachusetts, USA.

set is

B :{x E X : xj E (aij, Oij), xjl E (ai,j/, Oi,jl) for some (j, j') ED}

where (aij ,#i,) c Xj C R is the location of conflict area i on the path of vehicle j,

and ( E j')EDi denotes that the paths of vehicles J and J' intersect inside conflict

area i.
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This chapter is organized as follows. In Section 5.1, we present a jobshop schedul-

ing problem, which is equivalent to the safety verification problem (Problem 2.1).

However, the jobshop problem is still computationally difficult to solve due to its

nonconvexity. In Section 5.2, we formulate two mixed integer linear programming

(MILP) problems that provide over- and under- approximations of the solution to

the jobshop scheduling problem with quantified approximation bounds. Based on the

approximate solutions, in Section 5.3, we design a supervisor, which, although not

least restrictive, runs in real-time for scenarios of reasonable size (such as that in

Figure 5-2) and ensures safety. Using the scenarios depicted in Figures 5-1 and 5-2,

we validate the supervisor via computer simulations in Section 5.4. All the proofs in

this chapter are collected in Appendix B.

@2017 IEEE. Reprinted, with permission, from Heejin Ahn and Domitilla Del Vec-

chio, Safety Verification and Control for Collision Avoidance at Road Intersections,

IEEE Transactions on Automatic Control, July 2017.

5.1 Jobshop Scheduling

Consider n vehicles approach an intersection, which consists of m conflict areas. As

we mentioned in Chapter 3, instances in jobshop scheduling can be presented by a

graph (K, C, D) where AV is the set of operation (i, j), which is a pair of conflict area

i and vehicle j, C is the set of conjunctive arcs, and D is the set of disjunctive arcs.

The set of operations is defined in advance as

A := {(i, j) E {1, ... ,m}x{1, . . ., n} : conflict area i is on the route of vehicle j},

because we assume that the paths of vehicles are known in advance. We also define

a set AF,(o) C AV that contains operations that have not yet been processed given an
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initial position x(O), that is,

JVXt :=0() j) E Xj :z(0) < #3,s}

We define this set because some operations may not be relevant given that a vehicle

may have already exited a conflict area, captured by ij < x3 (0).

A first operation set F C AV,(o) and a last operation set L C Nx(o) are defined as

F :{(i,j) x(O) : i = arg min(aj - xj(O))},
i

L := {(i,j) E Nx(o) : i = arg max(aij - xj (0))}.

That is, an operation (i, j) is a first operation if conflict area i is the first conflict

area on the path of vehicle j, and is a last operation if conflict area i is the last such

conflict area. The sets F and L contain the first and last operations of each vehicle,

respectively.

We define sets of conjunctive arcs C and disjunctive arcs D, which connect two

operations in Arx(o) as follows:

C : {(i, j) - (i', j) for (i, j), (i',j) E Afx(o)

vehicle j crosses conflict area i and then conflict area i',

D := {(i, j) + (i, j') for (i, j), (ij') E fX(O)

vehicles j and j' share the same conflict area i}.

That is, a conjunctive arc in C represents a sequence of two operations on the path of

each vehicle, and a disjunctive arc in D represents an undetermined sequence of two

operations on the same conflict area. We also denote (i, 3) <-* (i, j') E D by

(j, j') E Di or (i, j) C Di,
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1,1 3,1 3,1

2,2 1,2 2,2 1,2

3,3 2,3 2,3
(a) (b)

Figure 5-3: (a) All operations of the scenario in Figure 5-1. (b) Operations when

01,1 5 Xi(0) < 03,1,X 2 (0) < 02,2, and 03,3 3 (0) < 02,3. The black solid and red
dotted arrows are conjunctive and disjunctive arcs, respectively. See Example 5.1 for
more details.

and (i,.j) -+ (i',j) E C by

(i, i') E C .

Example 5.1. In the scenario in Figure 5-1, suppose #1,1 < xi(0) < 3, , x 2 (0) < /2,2,

and03,3 :5 (0) < /23. The operations are illustrated in Figure 5-3, where the

operation sets Ar and Kx(o) are as follows:

f= {(1, 1), (3,1), (2, 2), (1, 2), (3, 3), (2, 3)},

Axfo) = {(3, 1), (2, 2), (1, 2), (2, 3)}.

Here, the first and last operation sets are

-T = {(3, 1), (2, 2), (2, 3)}, C = { (3, 1), (1, 2), (2, 3)}.

The set of conjunctive arcs is C = {(2, 2) -+ (1, 2)} or denoted by (2, 1) E C2 , and the

set of disjunctive arcs is D = {(2, 2) ++ (2, 3)} or denoted by (2, 3) E V 2 .

In this section, we formulate a scheduling problem and present the theorem stating

that this problem is equivalent to the safety verification problem (Problem 2.1).

We now introduce the processing characteristics (release times, deadlines, and pro-
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cess times) to formulate a jobshop scheduling problem [50]. To simplify the notation,

let

tmin (Xi (0), ij (0), asj) := min { t : xj (t, uj) = asj}

and

tmin(xj (0), j (0), ai,j;.q (uj)) min {t : xj (t, uj) = aij with constraint g(uj) = 0}.
uj Eu3

This is the minimum time to reach aij starting from (xj(0), j(0)) with a given

constraint. Similarly, let tmax(xj (0), ij (0), aij ; g(uj)) denote the maximum time to

reach aij starting from (xj(O), ,y(O)) while satisfying constraint g(uj) = 0.

Let Tij be a positive number that denotes the time at which vehicle j is scheduled

to enter conflict area i, that is, xj(Ti,j) = ai,. Let T be the set of Tij for all

(i, j) E /V (o). A jobshop scheduling problem is the problem of determining whether

there exists a schedule T such that an input signal uj E U satisfying xj(Ti,j, uj) = ai

exists for all (ij) c A/X(o) and vehicles never meet inside a conflict area.

Given a schedule T, the release time R4,(T) is the soonest time at which vehicle

j can enter conflict area i under the constraint that it enters the previous conflict

area i' at Ti,, (where (i, i') E Cj). The deadline Di, (T) is the latest such time. The

process time P,j(T) is the minimum time that vehicle j takes to exit conflict area i

under the constraint that it enters the same conflict area at time Tj and the next

conflict area i" at time T11 , (where (i, i") e Cj). We omit the argument T if it is clear

from context.

Formally, the release time and deadline are defined as follows. Given a state

(x(0), x(0)) and a schedule T, for all (i,.j) E A(.(o) \ F with (i', i) E C,

Ri, (T) tmin(xj (0), -i (0), a j ; x (T, u) - ), (5.1)

Di,j(T) tmax(xj (0), i (0), al,, ; xy(Til,3, nj) - ajj)

If the constraint is not satisfied, set Rij = oo and Di, = -oc. For all (ij) c F, if
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(5.2)

If aj 5 j (0), set Rij = Dij = 0. Note that for (i, j) E F, the release time and

deadline are independent of T.

The process time is defined as follows. Given (x(0), k(0)) and T, for all (iJ)

AVx(O) \ L with (i, i") C C3 , if Xj (0) < aij,,

P, (T) :=tmin(Xj (0), y (0),1 Oi3  ; xj (Ti,,, u ) - aei', zy (Ti"'j, Uj) - ail/j)

If aj < xj (0), set Pj (T) := tmin(xj (0), (0), 13ij ; x. (T 1,j, ua) - aij).

(ij) E L, if xj(0) <ai,

(5.3)

For all

Pj (T) : tmin(Xj (0), j (0), AJ ; Xj (T, Uj) - Cej) (5.4)

If aij < Xj(0), set P,: tmin(xj(0), ij(0), /3i,j). If the constraints are not satisfied,

set Pj = oc.

A jobshop scheduling problem has two decision variables: a schedule T and a set

of binary variables k ={ki3 C {0, 1}, V(i, j) ++ (i, j') E D} that indicates a sequence

of two operations on each disjunctive arc. For example, kijy = 1 indicates that vehicle

j precedes vehicle j' on conflict area i.

Problem 5.1 (jobshop scheduling problem). Given a state (x(0),:k(0)), determine if

s* = 0:

s* := minimize max (Ti - Di, (T), 0)
T,k (i,j)EKX(O)
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subject to

for all (i, j) E Af(o), Ri, (T) < Tij, (P5.1.1)

for all (i,j) ++ (i,j') D,

P,, (T) < T,, + M(l - kijj)

Pi,3 (T) < Tj + M(1 - kijg), (P5.1.2)

kijj, + kiyj = I.

where M is a positive and large real number that satisfies

max (#3, - xj(0))/yj,min < M.
(iJ)c x(o)

In the scheduling literature, max(Tj - Dij (T), 0) is called the maximum tardi-

ness [50]. The zero maximum tardiness indicates that a schedule of all operations

satisfies the deadline, that is, there is Tj satisfying Ri,j(T) < Tij < Di,j(T) for

all (i, j) E Al (O). This implies the existence of an input signal uj E U that makes

Xj(Tj, uj) = x, 3 for all (i, j) E .(o) by the definitions of Ri,(T) and Di,3(T) and

by the assumptions that the space U is connected and that the solution xj (t, uj) con-

tinuously depends on the input signal uj (the reasons of these assumptions are found

in [16]). Constraint (P5.1.2) says that for two vehicles j and j' that share the same

conflict area i (where (j, j') c Di), either vehicle j precedes vehicle ]' (when kij = 1)

or the other way around (when kiyj = 1). For example, if kij' = 0 and kiyj = 1, the

first inequality of (P5.1.2) always holds because of the presence of the large constant

M satisfying Pi, (T) < Ti,3 + M for any T that satisfies Tij G [Rj (T), Di(T)]. The

second inequality of (P5.1.2) becomes P,y (T) < Tj, implying that after vehicle j'
exits conflict area i, vehicle j can enter it. That is, each conflict area is exclusively

used by one vehicle at a time. Thus, the existence of such T and k that yield s* = 0

is equivalent to the existence of u C U to avoid the bad set. This is the essence of

the proof of the following theorem.

Theorem 5.1. Problem 2.1 is equivalent to Problem 5.1.
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Theorem 5.1 implies the following: given a state (x(O), x(0)),

s* = 0 == a safe input signal exists to avoid B,

s* > 0 = no safe input signal exists to avoid B.

That is, s* is the indicator of the vehicles' safety.

While this theorem holds for general dynamics (2.4), Problem 5.1 can be difficult

to solve depending on which vehicle dynamics are considered. Problem 5.1 in this

paper is a mixed integer nonlinear programming (MINLP) problem, which is notorious

for its computational intractability, due to the nonlinear and higher-order vehicle

dynamics. To approximately solve Problem 5.1, we formulate two MILP problems

that yield lower and upper bounds of s*, respectively, which can be efficiently solved

by a commercially available solver, such as CPLEX [33] . The first MILP problem that

computes the lower bound is based on first-order vehicle dynamics, and the second

MILP problem that computes the upper bound is based on nonlinear second-order

dynamics with a limited input signal space.

5.2 Approximate Verification

In this section, we provide two MILP problems that yield lower and upper bounds of

the optimal cost of Problem 5.1, and quantify the approximation errors introduced

by the two MILP problems.

5.2.1 Lower Bound Problem

Let us consider first-order vehicle dynamics

yj = Vj,

where yj is the position of vehicle j along its path and v3 is the speed input. In this

model, we control the speed of vehicles that lies in the space V = [Vj,min, vj,max] with
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iv',min > 0. The speed signal vj : R+ -+ V is piecewise continuous with a countable

number of discontinuities. We consider Vj,min = yj,min and Vj,max =Xzj,max where 3,min

and Xj,max are the speed bounds for the general dynamics (2.4).

In the lower bound problem, the decision variables are a schedule t = {tI, >

0, (i, j) E Ax(o)}, a set of process times p = {pi,j 0, (i, j) c .xfo()}, and a set of bi-

nary variables k {kijj, E {0, 1}, ( , j') E Di1}. Note that different from Problem 5.1,

the process times are decision variables in the lower bound problem. A schedule and

a process time satisfy yj (ti,j) = aij and yj (pi,j) = #ij for all (i, j) C Fx(o).

We define release times rij and deadlines dij for the lower bound problem, given

a state (x(0), i(0)) and a process time p, as follows. Let y(O) = x(0). For (i, j)

.Axfo) \ F with (i', i) E Cs,

rij (p) pzj + a'j - di (p) :pir + - . (5.5)
Vj,max Vj,min

For all (i, j) E F, if yj (0) < a ,

rjj(p) tmin(X (0), j(0),)ij) (5.6)

dj ,(p) :=tmax (Xj (0), 1 ' (0),1 Ci,j).-

If a,3 < yj (0), then rij = dj , 0.

Note that for the first operation (i, ) C F, the release times and deadlines are

defined on the general dynamics (2.4). This is because the release times and deadlines

even with the general dynamics are linearly dependent (more precisely, independent)

on the decision variables p and thus enable us to write linear constraints. Setting

ryi = Rij and dij = Dij for the first operation allows a tighter constraint than

rijy =(aij - yj (0))/vj,max and di, = (aij - yj (0))/Vj,min.

Problem 5.2 (lower bound problem). Given a state (x(0), k(0)) and y(O) = x(O),

determine if s* 0:

s minimize max (tij - di, (p), 0)
SL t,p,k (ij)E~rgo
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subject to

for all (i,j) E Nx(o), Tij(P) ,tij, (P5.2.1)

#-j - - /3- - -aj
for all (i, j) E Ar.(o), ''7 <', pi - ti, <' (P5.2.2)

Vj,max Vj,min

pij ti,1 + M(1 - kijj )

for all (i, j) + (i, j') E D, pi,j' < ti2, + M (1 - kijy), (P5.2.3)

kijj, + kijj = 1.

where M is a positive and large real number that satisfies

max i - yj (0) < M.
(il)EJx(O) Vj,min

Note that the objective function and constraints (P5.2.1)-(P5.2.3) are linear with

the decision variables. Thus, this problem is a mixed integer linear programming

(MILP) problem.

The following theorem proves that s* is a lower bound of s*. The proof of the the-

orem lies on the fact that the set of trajectories generated by the first-order dynamics

is a superset of the trajectories generated by the second-order nonlinear dynamics

(2.4).

Theorem 5.2. s* < s*

By the above theorem, s* > 0 if s* > 0. That is, given a state, if Problem 5.2 does

not have a feasible schedule that satisfies (P5.2.1), (P5.2.2), (P5.2.3), and ti, dij (p)

for all (i, j) c A/x(O), then Problem 5.1 does not have a schedule that satisfies (P5.1.1),

(P5.1.2), and Tij : Di (T) for all (i,j) e Nr(o). However, the cost error, s* - s*,

cannot be rendered as small as desired due to the simple dynamics (first-order linear)

which cannot fully represent the behavior of the actual dynamics (2.4).
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5.2.2 Upper Bound Problem

In this section, we relax Problem 5.1 to a MILP problem by considering general

dynamics (2.4) on a restricted input signal space. This problem is the problem of

determining the existence of a set of times at which vehicles enter their first conflict

area, assuming that to reach the following conflict areas all vehicles apply maximum

input, such that any two vehicles do not meet inside a conflict area. The rationale

here is that once a vehicle enters an intersection, the driver tries to exit as soon as

possible.

We define ajmin to denote the first conflict area as follows:

aj,min := min ai.
(ij)cK

Recall that I is the set of all operations independent of an initial state.

In the upper bound problem, the time to reach the first conflict area is a deci-

sion variable, as opposed to Problems 5.1 and 5.2 whose decision variables are the

entering times for all conflict areas. This decision variable, also called a schedule and

denoted by T = {IT > 0, (i, j) C F}, satisfies xj (TT) = ai if xj (0) < aij and

otherwise T- = 0. Another decision variable is a set of binary variables k = {kCjj E

{0, 1}, (j, j') E Di} as introduced also in the previous two problems.

The release times and deadlines are defined only for the first operation as follows.

Definition 5.1. Given an initial condition (x(0), x(0)), release times Rij and dead-

lines Dij are defined for (i, j) E F as follows. If xj(0) < aj,min,

Rij: tmin (Xj (0), j (0), 7 O,min),(.7

Dij :tmax(Xj (0), j(0), ajmin).

If aj,min < Xj (0) < a,,

, :=tmin(Xj (0), j(0), aij), Dij = Rij. (5.8)

If aj < x (0), set Rij = Lyjj = 0.
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(a) X3 (O) < a,min = ai',j (b) a,, xi (0) < Ovj

Figure 5-4: Illustration of Definitions 5.1 and 5.2, where the x-axis represents time
and the y-axis represents the position. Suppose (i', j) E F and (i', j) -+ (i, Ij) E C. We
can compute Pij , Tj', IPjj by considering the maximum input inside the intersection.

Note that Rj = Ri, and Di, = Dij if xj (0) < aj,mil, and R, 3 = Di,j = Rij if

x3 (0) > aj,min. The release time Rij and the deadline D- y depend only on the initial

condition (xj (0), (0)), not on the decision variable T'.

Given a schedule T', we define '' (T-) and P,1 (Tx) for (i, j) E /Vx(o) as follows.

When vehicle j's location is before the intersection (xj (0) < aj,min), 'Ti (TF) and

Pi,j (Tx) represent the minimum times at which vehicle j can enter and exit conflict

area i, respectively, no matter what speed it has at where (i', j) is the first

operation. When vehicle j is in the intersection (aj,min <; xj (0)), I,3 (TY) and PF, (T-)

are the minimum times at which it enters and exits conflict area i, respectively. These

are formally defined as follows.

Definition 5.2. Given a state (x(0), x(0)) and a schedule T, we define 'I',(T-)

and Pj (T-) for (i, j) C .A(O) as follows. If x3(0) < a,,min, for (i, j) E F,

'is (T-7) = TF ,Pij (T-) = T: + tmin(ai,j, y,min, 1i,j), (5.9)

and for (i, j) E /N(o) \ F with the first operation (i', j) such that (i', j) E F and
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=i',j aj,min,

Ti,j(T ) - tmin(aj,min, -.j,max, ij),

Ii, min j(,min, j,min, /i,j) -

(5.10)

If aj,min < X (0), for (i, j) E E,

(5.11)
+it (() = T( )

Pijg (T7) = T -i5,j + tmin (Xj (0), 7 J (0),1 A,),7

and for (i, j) E Arx(o) \ F with the first operation (i', J) such that (i', j) E F,

Ti~ (T-F) = TPF

Pijy (T-7) = T:T

In (5.11) and (5.12), for (i',j) E

Ri,,j = D,j by (5.8).

- Ri,, + tmin(Xj (0), ij (0), az, 3 ),

- RiIJ + tmin(xj (0), zy(o), 3ij).

The definitions of Ti,2(T7) and P,j(T') are illustrated in Figure 5-4. Note that

the concept of applying the maximum input inside the intersection is in the expression

tmin in Definition 5.2 because the maximum input leads to the soonest time to reach

a position by the monotonicity. Also, note that the parameters in Definitions 5.1

and 5.2 are linear functions with respect to the decision variable T' because the

terms involving tmin and tmax are independent of the decision variable. We can easily

compute the expressions tmin and tmax by finding a time-optimal trajectory, which is

obtained by applying extreme control inputs.

Using these definitions, we formulate the upper bound problem.

Problem 5.3 (upper bound problem). Given a state (x(0), x(0)), determine if s* = 0:

s* :=minimize max (Tp - Dy,, 0)U T ,k (ij)E-FW
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subject to

for all (i,j) E F, R , T, (P5.3.1)

-Pi~ (TF) < Ti, (T-F) + M(1 - kijj)

for all (ij) ++ (i, j') E D, P T) < (T) + M(1 - kijg), (P5.3.2)

kijj + ki 1,

where M is a positive and large real number that satisfies

max (#3 ,j - xj (0))/yj,min < M.
(i,i)CAr.(o)

As the constraints are in linear forms with the decision variables Tr and k, the

problem is a MILP problem.

We show that s* in Problem 5.3 is an upper bound of s* in Problem 5.1 in the

sense that s* < Ms* for an arbitrarily large positive number M. If s* > 0, this

inequality is trivial, while it is not if s* 0 because then s* must also be zero. In the

following theorem, therefore, we will show that s* = 0 implies s* = 0 for any state

(x(0), x(0)).

Theorem 5.3. s* = 0 > s* = 0.

The proof relies on the fact that the set of trajectories generated by the second-

order nonlinear dynamics with a restricted input signal space is a subset of the tra-

jectories generated by the second-order nonlinear dynamics with the full input signal

space. Thus, a feasible schedule of Problem 5.3 can be realized by the second-order

nonlinear dynamics, thereby guaranteeing the existence of a feasible schedule of Prob-

lem 5.1.

By Theorems 5.2 and 5.3, we have

SL > 0 = s* > 0 and s* = 0 = s* =0.

That is, from Problems 5.2 and 5.3, which can be solved with a commercial solver
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Table 5.1: s* is bounded below by s and above by s*.
s~t s~y s*

Case I 0 0
Case II 0 + ?
Case III + - +

such as CPLEX, we can find the solution to Problem 5.1, as shown in Table 5.1. In

Case I, if s = 0, we know that s* = 0. In Case III, if s* > 0, we know that s* > 0.

However, when s* = 0 and s* > 0, represented by Case II in the table, s* is not

exactly determined. In this case, we can quantify the approximation bounds.

5.2.3 Approximation Bounds

To determine the solution to Problem 5.1, the solutions to the approximate problems

(Problems 5.2 and 5.3) are used when s* > 0 or s* = 0. However, when s = 0 and

s* > 0, the approximate problems cannot determine the solution to Problem 5.1.

To represent the difference between the approximate and exact solutions in this case,

we introduce a shrunken bad set and an inflated bad set. A shrunken bad set is

such that if it were considered in place of the bad set in Problem 5.1, then whenever

s* = 0 Problem 5.1 would return s* = 0, meaning there exists an input signal with

which the state trajectory can avoid the shrunken bad set. An inflated bad set is

such that if it were considered in place of the bad set in Problem 5.1, then whenever

su > 0 Problem 5.1 would return s* > 0, meaning that for all input signals the

state trajectory cannot avoid the inflated bad set. In other words, when s* = 0 and

s* > 0, the shrunken bad set leads to an under-approximation of the solution to

Problem 5.1, and the inflated bad set leads to an over-approximation of the solution

to Problem 5.1. Thus, the approximation bounds can be quantified in terms of the

discrepancy between the shrunken and inflated bad sets.

To construct the shrunken and inflated bad sets, we define a shrunken conflict

area and an inflated conflict area. In the definitions, let us consider T C K because

the bad sets are geometric objects independent of an initial state of vehicles. See

Figure 5-5.
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xj (0)

xj (0) t(

(d)

Figure 5-5: Shrunk and Inflated conflict areas for (i', j) E F and (i', i) E Cj. Figures

(a)-(d) illustrate (5.13)-(5.16), respectively. By definition, (ie, 3,jj) C (O /ji#,j) C

(di~j,#N j) and (a^ij, Oij) C (ai~j,Oij) 9 (dijOij).

Definition 5.3. A shrunken conflict area (a ij, 3 ,j) for all (i, j) E K is defined as

follows. For all (i,.j) E T,

(5.13). 06~ - ai~jmin xj ,Uj, ijXj,min-
uj EUj Xj,max

For all (i,j) E K \ F with the first operation (i', j) E F,

aij - maXj
UjEUj

(5.14)
min j , Uj,
ujEUj Xj,max
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If aij ;> O3 ,j, set (^i,,, 3,) 0.

Definition 5.4. An inflated conflict area (di,j, Oi,) for all (i,j) E M is defined as

follows. For all (i,j) E Y,

&j = max x, (t*, U, a) -i,max), (5.15)di'j = ai,,,

where t* = tmin(aij, j,min, iJ).

(i', j) E 7,

dcx = min xj(t**, Uj, a, ,min),
uj EUj

For all (i,j) c K \ F with the first operation

j3 , = maxxj (t***uj , ai,,j ,max),
uj EUj

(5.16)

where t**= tmin(aj,min, i, max, aij) and t*** = tmin(a,min, -tj,min, /i,j). Note that t*, t**,

and t*** are the same as the added times in (5.9) and (5.10).

A shrunken bad set and an inflated bad set P are defined as follows:

B := {x C X : for some (jj') C Di, x3 E ( and x E (Oij AI)}.

B := {x E X : for some (j, j') E Di, xj E (&,j, &,) and xy E (i',l)

(5.17)

(5.18)

It can be checked that

BB C B

by showing that (&ij, ,) C (aij, / ,j) Q (dij, ,j) for all (i, j) E K.

In the following theorems, we prove that 1) s* = 0 implies that there exists an

input signal such that the state trajectory can avoid the shrunken bad set B, and 2)

s* > 0 implies that for all input signals, the state trajectory cannot avoid the inflated

bad set P. The proofs of the theorems are collected in Appendix B.

Theorem 5.4. Given a state (x(0),x(0)), if s* = 0, then there exists an input signal

u C U such that x(t, u) g for all t > 0.
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Theorem 5.5. Given a state (x(O),5(0)), if s* > 0, then for all input signals u e U,

x(t, u) G P for some t > 0.

If we consider any strict superset of the shrunken bad set, there exists an initial

condition such that Theorem 5.4 does not hold. Similarly, if we consider any strict

subset of the inflated bad set, there exists an initial condition such that Theorem 5.5

does not hold. This is shown through the following example.

Example 5.2. Two vehicles with dynamics j = u3 e [-2, 2] M/s 2 are approach-

ing a single conflict area located at (5, 7) m along the path of each vehicle. A

given state is xi(0) = Om, x 2 (0) = -0.99m, and i1(0) = z2(0) = 5m/s where

x 1, t 2 E [1, 5] m/s. Then, s* in Problem 5.3 is positive because the optimal solution

is (Tj, P1,1) =(1,2) s and (TT2,Pi,2) =(2,3)s, but =1,2 =1.99 s. The inflated conflict

area is (5, 10) m by (5.15).

There is no input signal such that the system's state avoids the inflated bad set

because at t =1 s, vehicle 1 enters the bad set with the maximum speed and at t =

2 s, vehicle 1 can exit the inflated bad set. At t = 2 s, vehicle 2 cannot enter the bad

set because D1 ,2 =D 1 ,2 =1.99 s. However, if a strict subset of the inflated conflict

area, say (5,9.94) m, is considered, vehicle 1 exits the subset at t = 1.988 s and thus

vehicle 2 can enter the bad set no later than its deadline. This means that an input

signal exists to avoid the subset of the inflated conflict area.

5.3 Supervisor Algorithm

Based on the results of Section 5.2, we can design a supervisor that is activated when

a future collision is detected inside the inflated conflict areas. The structure of the

supervisor is illustrated in Figure 5-6.

Let APPROXVERIFICATION(X(0), 5(0)) be an algorithm solving Problem 5.3 given

an initial state (x(0), 5(0)). Let APPROXVERIFICATION return (sr, T'*) where TT*

is the optimal solution.

The supervisory algorithm runs in discrete time with a time step T. At time kr, it

receives the measurement of the state (x(k ), k(kr)) and the desired input ud e U,
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us> - k0=
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Figure 5-6: The supervisor overrides the vehicles if Problem 5.3 returns s* > 0, given
the desired state (x , k).

which is a vector of inputs that the drivers are applying at time kr. We also denote

by uk a map t E [0, r) F-* uk if there is no confusion. The supervisor is implemented

by the following algorithm.

Algorithm 5-7 Supervisory control algorithm at t k-r

1: procedure SUPERVISOR(x(kr), k(kr), uk)

2: x - x(r, u, x(kr), i(kr))

3: :kk< i(r, Uk, x(k-r), 5c(k-r))

4: (s*, TF*) - APPROXVERIFICATION(Xkk)

5: if s* = 0 then

6: uk+ 1 <- 7(x , k , TF*

7: return ud

8: else

9: x <- x(,r, u , x(kr), 5c(k-r))

10: i <- i(-r, Uk, x(k-r), Sc(kr))

11: (- T-*) = APPROXVERIFICATION(Xk, ik)

12: u k+1 <-- a (x), 5k, T-T*)

13: return uk restricted to time [0, r)

The measurement (x(kr), k(kT)) is used to predict the desired state at the next

time step, which is denoted by (xd, xC) (lines 2 and 3). We solve Problem 5.3 to see

if the system's state, starting from the desired state, can avoid the bad set (line 4).
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If APPROXVERIFICATION(Xk, 5k) returns TF* that makes s= 0 (line 5), we can

find a safe input signal by defining an input generator function o: X x X x R' - U

as follows:

o-(x , j , T'*) E {u E U : for all (i, j) E .,

Xj (TF*, 4, ji, n) = aij and uj (t) = uj,max V t ;> T-*}

where xd and 'i denote the j-th entries of x -_d a k, respectively. The supervisor

stores this safe input signal for potential use at the next time step (line 6). Since there

is an input signal such that the system avoids entering the bad set from (xk, kb), the

supervisor allows the desired input (line 7).

If APPROXVERIFICATION(x, kg) returns s* > 0 (line 8), the supervisor overrides

the drivers with the safe input signal uk stored at the previous step. This safe input

signal is used to predict the safe state at the next time step, which is denoted by

(xS, .g) (lines 9 and 10). This state is used to generate a safe input signal for potential

use at the next time step (lines 11 and 12). We will prove in the next theorem that

APPROXVERIFICATION(Xi,,*) always returns s* = 0 and thus a safe input signal is

defined by the input generator function a. The supervisor neglects the desired input

un and returns the safe input signal uk that is restricted on time [0, -r).

The computational complexity of Algorithm 5-7 is determined by the complexity

of APPROXVERIFICATION (solving Problem 5.3) in lines 4 and 11. Since Problem 5.3

involves O(mn(n - 1)) binary variables and n continuous variables, where n is the

number of vehicles and m is the number of conflict area, APPROXVERIFICATION has

O(n2mn(n-1)) asymptotic computational complexity. Although the complexity of Ap-

PROXVERIFICATION is combinatorial with the number of vehicles and the number

of conflict areas, several algorithmic approaches are available to solve MILP prob-

lems [25].

By Theorem 5.5, s* > 0 indicates that no input signal exists to avoid the inflated

bad set. However, there may exist an input signal to avoid the bad set. Thus, this

supervisor is not least restrictive, but is close to the least restrictive one in a quantified
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Figure 5-7: Simulation results without the supervisor (Algorithm 5-7) for the scenario
in Figure 5-1. Cases 1, 11, and III denote the same cases in Table 5.1.

bound in the sense that when it overrides vehicles, there is no input signal to avoid

the inflated bad set (Theorem 5.5), and when it does not override vehicles, there is

an input signal to avoid the bad set (Theorem 5.3).

Theorem 5.6. Algorithm 5-7 guarantees that the system's state never enters the bad

set, that is, x(t) B for all t > 0, and is nonblocking.

5.4 Validation of the Supervisor: Simulations

We implemented Algorithm 5-7 on the cases illustrated in Figures 5-1 and 5-2 to

validate its collision avoidance performance and its nonblocking property. We imple-

mented the algorithm on MATLAB and performed simulations on a personal com-

puter consisting of an Intel Core i7 processor at 3.10 GHz and 8 GB RAM.

In the simulations, we consider the vehicle dynamics with a quadratic air drag

term

zy = Ci + C22 + C3 .

The following parameters are used: r = 0.1, ci = 1, c2 = 0.005, c3 = 0. For all
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jE{1, ... , n Ujmin -2, uj,max 2 , aj,min 20. For all (i, j) E A(, A, - cij 5

and for all (i, i') c C,, ay,j - aij = 6.

Consider the scenario illustrated in Figure 5-1 with the following initial state and

parameters: x(0) = (0, 0, 0), x(0) = (10, 8, 8), and dU,min = 8, Lj,max = 10 for all

j E {1 ... , n}. Without implementing the supervisor (Algorithm 5-7), we let the

vehicles travel with the desired input uk = (-2, -2, 2) for all k and plot the optimal

values of Problems 5.2 and 5.3, shown in Figure 5-7. As proved in Theorems 5.2

and 5.3, s*= 0 implies s = 0. With implementing the supervisor, we plot the

position trajectory in Figure 5-8(a)-(c). The trajectory (black line) is controlled by

the supervisor when s* > 0 (dotted line) so that it avoids the bad set (solid in (b))

by Theorem 5.6. Note that the trajectory penetrates the inflated bad set (solid in

(a)). This is because although s* > 0 implies that there is no input signal to avoid

the inflated bad set by Theorem 5.5, s = 0 does not imply that there is an input

signal to avoid the inflated bad set, but implies that there is an input signal to avoid

the bad set by Theorem 5.3.

Now, let us consider the scenario illustrated in Figure 5-2 with the following initial

state and parameters: x(0) = (0, -2, 5, -5, 0, 5, 0, 1, 5, 4, 0, -2, 5, 5, 0,5, -2, 0, -2, 0)

and j(0) = 5 , j,min = 1, i ,max = 10 for all C' {1,E . .. , n}, with the desired input

Umax for all k. The result is shown in Figure 5-9. The trajectory of vehicle 1

(black line) and the trajectories of other vehicles that share the same conflict area (red

dotted lines) never stay inside the conflict area simultaneously. The supervisor over-

rides vehicles when s* > 0 (when blue boxes at the bottom appear) to make them

cross the intersection without collisions. In the simulations, to determine whether

s= 0 or s* > 0, we solve the following problem instead of solving Problem 5.3

because solving the following problem (with no cost function) takes less computa-

tion time than solving Problem 5.3 (with a cost function) [33]: given an initial state,

determine if there exists a feasible solution (T-7, k) that satisfies (P5.3.1), (P5.3.2),

and T-' < Dij for all (i, j) E -. Note that such a feasible solution exists if and

only if s5 = 0. Based on the solution of this feasibility problem, Algorithm 5-7 takes

no more than 0.05s per iteration, even in this scenario of realistic size involving 20
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vehicles, 48 conflict areas, and 120 operations on a representative geometry of dan-

gerous intersections. Given that the allocated time step for intelligent transportation

systems is 0.1 s [60], this algorithm can be implemented in real-time.
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Figure 5-8: Simulation results with the supervisor for the scenario in Figure 5-1. The
black line represents the trajectory and is the same on each figure. The line turns to
the dotted line when the supervisor intervenes to prevent a predicted collision. The
solid is (a) the inflated bad set, (b) the bad set, and (c) the shrunken bad set. The
supervisor manages the system to avoid entering the bad set.
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Figure 5-9: Trajectory of vehicle 1 in the scenario of Figure 5-2, which involves 20
vehicles, 48 conflict areas, and 120 operations. The blue boxes represent the times at
which the supervisor overrides the vehicles. The red dotted lines are the trajectories
of the other vehicles that share the same conflict area. This graph shows that each
conflict area is used by only one vehicle at a time.
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Chapter 6

Supervisor at Multiple Conflict

Areas and Merging/Splitting Paths

02,3 al,2

3 (2

Figure 6-1: Scenario with four vehicles. The
side conflict areas and partly overlap.

0 )2,4

a4,2

I

4

paths of vehicles intersect inside four

The scenarios considered in the previous chapters assume that there is only one

vehicle per lane, and thus focus only on side collision avoidance. This chapter presents

a novel approach to the design of a supervisor that ensures simultaneous avoidance

of side and rear-end collisions. Our approach is to adopt a hierarchical structure

for safety verification, as illustrated in Figure 6-2. In this structure, we first formu-

late a verification problem given the first-order dynamics (abstract system), which
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(x, I*o) -i Abstract System

(Xa,*a)

Concrete System

Figure 6-2: Hierarchical structure for the safety verification problem. The verification
on an abstract system is used for the verification on an concrete system.

is therefore similar to Problem 5.2 except that the new problem has an additional

constraint that limits the instantaneous speed changes of the first-order dynamics so

as to represent the behaviors of the second-order dynamics. Then, we use the result

to approximately solve the safety verification problem for the actual second-order dy-

namics (concrete system). In particular, we consider as the concrete system vehicle

dynamics that are affine in the input, but otherwise nonlinear:

= f (x1 , 3 ) + b (xj, i) Uj, uj E U := [u,min, Uj,maxl, (6.1)

where f(xj, cj) and b(xj, zj) are nonlinear functions of the state. We assume that

(6.1) has a unique solution that continuously depends on the input signal, and that

-f(xj, zj)/b(xjI_,t) E (Uj,min,Uj,max) for all xj E X, j E X6 to ensure that any

constant speed in Xj is attainable. An example of such dynamics is the longitudinal

dynamics given in (2.5).

In this chapter, we present the design of a supervisor that prevents side collisions

and rear-end collisions at a general, realistic intersection. We assume that the paths

of vehicles approaching an intersection are known in advance. Some of the paths

intersect at several points, thereby forming side conflict areas, and overlap, thereby

forming splitting or merging regions. Recall that in this scenario, the bad set is

B = Bside U Brear-end,

98



where

Bide = {x C X : Xj E (aij, /ij), xj E (aij,, ,3 j,) for some (j, j') E Di},

which is the set of points corresponding to side collisions, and

Brear-end {x E X : for some (j,j') E 0 if x C Oj,y and xy C OyJ,

I(X- - ,)- (x -oj', I < d},

which is the set of points corresponding to rear-end collisions. Here, (j, j') E Di indi-

cates that the paths of vehicles j and j' intersect inside side conflict area i (recall that

D is defined as the set of disjunctive arcs in the graph representation in Section 5.1).

The set 0 consists of a pair (i, j') if the paths of vehicles j and j' overlap; the rear-end

conflict area on the path of vehicle j is denoted by a closed interval Oj,j C Xj, and

that on the path of vehicle j' by a closed interval Oyj C Xy. Also, o0,y = inf O,jf.

The notations are represented in Figure 6-1. In the figure, the four red circles indicate

side conflict areas, where (1, 2) E D1 , (1, 3) E D2 , (3, 4) E D3 , and (2, 4) E D4 . The

side conflict areas 1 and 4 are located at (ai,2 , /31,2) and (a4,2, 04,2), respectively, on

the path of vehicle 2. The thick lines indicate rear-end conflict areas on the path of

vehicle 2, 02,3 and 02,4-

In order to formulate a verification problem for the abstract system, we adopt

an approach based on discretizing the paths of vehicles. Before formulating the

discretization-based verification problem in Section 6.2.1, we explain in Section 6.1

why our formulation is computationally more efficient than other formulations based

on different discretization schemes. In Section 6.2.2, we use the results of the ab-

stract system's verification problem to solve the verification problem for the concrete

system (Problem 2.1) by employing a sliding mode control. Based on the solution,

we design a supervisor in Section 6.3 and validate it through computer simulations

in Section 6.4.
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6.1 Comparison of Discretization Schemes

In this section, we overview the safety verification problem discretized through differ-

ent discretization schemes to compare the computational complexity of the resulting

problem formulation.

In the formulation of the optimization problem, we denote decision variables by

s = (s[0], s[1], s[2], ... , s[N]), where s[k] is the variable at (space or time) step k. At

step k, let s[k] = (si[k], s 2 [k], ... , sn[k]) where sj[k] is the variable associated with

vehicle j. The positive integer N indicates a finite horizon.

The discretized safety verification problem is written as

min f(s)

subject to Fdynamics(S) < 0, Frear-en(s) < 0 Fside(S) < 0,

with some cost function f(s) E R. The constraint Fdynamics 0 imposes the dynamical

equation, and the constraints Frear-end < 0 and Fside < 0 ensure the avoidance of

rear-end and side collisions, respectively. In the following sections, we specify the

inequalities for different discretization schemes.

6.1.1 Time Discretization

In uniform time discretization, the decision variable s,[k] is the dynamical state

(xj[k], 3[k]). Vehicle dynamics (2.4) can be discretized in time and written in terms

of the state (xj[k], sij[k]) and the input uzt[k] (Fdynamics < 0).

For rear-end collision avoidance (Frear-end 0) for two different vehicles j and j',
where (j, j') E 0, the constraint is encoded by

if vehicle j precedes vehicle j', if x [k] E Ojj and if x[k] E O (6.2)

g(sj[k],sy [k]) > d.

Here, g(sj[k], sy [k]) > d indicates a set of inequalities imposing that the distance

between two vehicles is greater than or equal to the minimum safe distance d. For
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side collision avoidance (Fside < 0) between vehicles j and j' where (j, j') E Di, the

constraint is encoded by

if vehicle j precedes vehicle j' at side conflict area i, if xj [k] E (cej, Oij),

then xy [k + 1] (aj,, #ij, ). (6.3)

In other words, if vehicle j is inside the side conflict area at time step k, then vehicle

j' must not be inside the side conflict area at the next time step.

Note that encoding the "If' statements in (6.2) and (6.3) require additional binary

variables because the value of the decision variable s determines the truth of the

statements. To encode "vehicle j precedes vehicle j"' in side conflict area i, we

introduce a binary variable kijj such that it is 1 if vehicle j precedes vehicle j', and 0

otherwise. There are at most mn(n - 1) such binary variables,where n is the number

of vehicles and m is the number of side conflict areas. To encode xj [k] E Oj, or

x3 [k] E (ij ,,ij), we introduce binary variables to indicate whether xj [k] is inside

a given set. For example, we impose -y[k] = 1 if xj[k] C Ogjj, and j [k] = 0 if

xj [k] c Ojj. Since a binary variable is associated with a vehicle at each step for a

rear-end conflict area or a side conflict area, the constraint requires O(Nnm) binary

variables where N is the number of time steps.

Solving the problem formulated above tends to require large computation time due

to a large number of binary variables involved. In particular, the number of binary

variables is nearly proportional to the length of a finite (time) horizon N. A finite

horizon cannot be made arbitrarily short to reduce computational loads because the

solution (the state trajectory that avoids collisions) over the horizon must guarantee

the existence of solutions for all subsequent time steps. One straightforward choice

of a horizon is the one in which a vehicle can cross an intersection even in the worst

case, such as for each j

N =- max Xjmax - XOJ

.-j~jI x j At
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given an initial position xO = (xo,, . . . , xo,,) and a step size At. Since the minimum

speed : j,min is close to zero, this horizon is usually very long, and thus, solving the

problem requires long computation time. The work in [6] adopted this approach and

introduced a shorter finite horizon with a guarantee of future safety, but a shorter

finite horizon is applicable only for a simple intersection model (single side conflict

area) and for a specific intersection geometry where vehicles can fully stop before an

intersection no matter what speed vehicles initially have.

6.1.2 Space Discretization

As opposed to the formulation based on time discretization, uniform space discretiza-

tion with space step size Ax3 enables a finite (space) horizon without assuming any

worst-case behavior of vehicles, which is for each vehicle j

N- Xjmax - X,j
Axj

Furthermore, the total number of binary variables required to write the constraints

Frear-end < 0 and Fside < 0 based on space discretization is independent of a finite

horizon. This is because the position at step k is xo,3 + kAx, which is fixed given the

initial position xo,3 and spatial step size Axj, and thus, there is no need to introduce

any binary variable to indicate whether the position at step k is inside rear-end or side

conflict areas. The only required binary variables are the ones indicating the order of

vehicles at side conflict areas, whose total number is at most mn(n - 1) as discussed in

the previous section. Since the asymptotic computational complexity of mixed integer

programming problems exponentially increases with the number of discrete variables,

the problem in space discretization has more favorable computational complexity

than that in time discretization. However, rewriting vehicle dynamics with respect

to space introduces nonlinearity in the constraint Fdynamics < 0, thereby requiring

a strong simplifying assumption, such as restricting the bounds of inputs [45], to

linearize the constraint.

Here, we do not present explicitly the expressions of the constraints Frear-end 0

102



and Fside 0 0 because we adopt the space discretization approach to achieve compu-

tational efficiency and present our formulation in the next section.

6.2 Verification in a Hierarchical Structure

The main idea of our proposed approach consists of two sequential stages. First, we

formulate the safety verification problem based on (nonuniform) space discretization

for better computation time. Second, we address the drawback of the space discretiza-

tion approach, which is using simplified vehicle dynamics, by adopting a hierarchical

structure as illustrated in Figure 6-2. In this structure, the complex dynamical vehicle

model considered in the original safety verification problem (Problem 2.1) is referred

to as the concrete system, and its coarse model as the abstract system or abstraction.

We solve the safety verification problem (Problem 2.1) by solving a verification

problem of an abstraction. In particular, we construct a trajectory of the abstrac-

tion in Section 6.2.1, and find a trajectory of the concrete system that tracks the

abstraction trajectory within an allowed bound in Section 6.2.2 by using a sliding

mode control. This approach is applicable to by far the most general intersection

geometries, such as that in Figure 2-2, including multiple side conflict areas, splitting

paths, and merging paths without significantly increasing computational complexity.

6.2.1 Verification on the Abstract System

In this section, we formulate the safety verification problem based on an abstraction of

the concrete system (2.4) and on space discretization. Suppose that emax is an allowed

maximum error between trajectories of the abstract and concrete systems. To ensure

collision avoidance of the concrete system, we formulate the abstraction-based safety

verification problem in terms of an inflated bad set. That is, let

d* := d + 2emax and (a*, ) := (a - emax, ikj + emax), (6.4)
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which indicates that d* and (cQ, j3) are the safe distance and the location of side

conflict area i inflated by emax, respectively.

Abstraction

We define an abstraction of the concrete system (2.4) as a first-order dynamical system

with a smoothing constant Ej:

aJ=V, = V E Vi (e ) (6.5)

where xa,j is the position. Also, vj E Vj (Ej) is a piecewise constant speed whose values

are bounded between [Vj,min, Vj,max] X , and the difference between consecutive

values of vj is limited by Ej.

Path Discretization

We divide the longitudinal path of vehicle j into Nj short segments of varying, but

predetermined, lengths. Given an initial position xo = (XO, 1, ... , Xo,n), the discretized

longitudinal path is denoted by a finite sequence of intervals

{ [[k - 1, 1j[k]]}

where [ j [k - 1], j[k]] C Xj, j [k - 1] < (j[k], j[0] = xo,j, and j [Nj] = xj,max. That

is,

U [Ijk - 1], j[k]] = [xo,j, Xj,max].
k=1

Let A~j {1, 2,. . ., N)} -+ R+ denote a sequence of the segments' lengths, that is,

A~j[k] =j [k] - j[k - 1].

The longitudinal path of vehicle j can be discretized such that it satisfies the

following specifications, which enable simple and exact description of the collision

avoidance constraints.
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1) The end points of segments coincide with the begin or end points of rear-end

conflict areas. If (j, j') E 0, there exist positive integers k, and k2 such that

[ j [ki], I [k2]] = Oj,j';

2) The end points of segments coincide with the begin or end points of inflated side

conflict areas. If (j, j') E Di, there exist positive integers k, and k2 such that

[ki] =aoj and [k2 =*

3) The length of some segments in rear-end conflict areas is the same as the inflated

safe distance d*. If vehicle j precedes vehicle j', there exists a positive integer 6

such that ( j [k] - d*) - ojj = y [6] - oj,, if j [k], j [k] - d* E Oj,j,;

4) Segments in rear-end conflict areas share a common discretization grid in the

sense that ( j [k] - d*) - oj, = (j [6] - oj,,j implies A~j [k + 1] = A j [6 + 1] if

j [k + 1],1 (j[k + 1] - d* E Oj,jl.

Given an initial position xO, specifications 1, 3, and 4 are necessary if x0,j < sup Oj'j,

which means that vehicle j has not exited the rear-end conflict area. In particular,

in specification 1, if xo,j E O,, then there exist positive integers k, and k2 such that

j [ki] = xo,j and j [k2] sup Oj,ji. Similarly, in specification 2, if xo,3 E [a*, i*J,
then there exist positive integers k, and k2 such that j [k1] = xo,j and , [k 2j =*.

The decision variables in the problem are times necessary for a vehicle to cross

each space segment. That is,

sj [k] Atj [k]

for all j E {1,2,... , n and k E {1, 2, . . . , Nj where Atj [k] is the time for vehicle j

to travel the distance Aj [k].

Constraint 1: Fdynamics(S) 0

The abstraction (6.5) enables rewriting of the decision variable as

At [k] A= [k],
vi
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if vj is a constant speed on the k-th segment. The fact that the speed v is bounded

by [V,min, Vj,maxl gives the bounds of time interval Atj,

< Atj [k] < for all k c {1, 2,... ,Nj}. (6.6)
Vjmax Vj,min

If Vj,min= 0, the constraint becomes A~j[k]/vj,max < At [k] < o.

We also impose a smoothing constraint in the abstraction (6.5) to prevent ex-

treme speed changes between two segments. This constraint is required to maintain

a bounded error between trajectories of the abstract and concrete systems:

A( [k - 1] A j [k] _ [k - 1] -At [ A j [ [k] - At [k - 1] <

Atj[k - 1] At[k] Atj[k - 1]Atj[k]

We introduce a smoothing function h(Atj[k]) such that h(Atj[k]) < EjAtj[k -

1] Atj [k] and

IAk [k - 1] - Atj[k] - A .[k] -At3 [k - 1]j h(At[k]), (6.7)

for all k E {2, .. , NJ for allj' E {1, 2, . . .,n}. For k = 1, set

|zo At[11 - AMj[1]| egAty1J := h(At[1]),

where xo =(6o,1 . .. , o,n) is a given initial speed. The smoothing function is related

to the maximum tracking error and the control input bounds, and the determination

of the function will be described in Section 6.2.2. Since we want to have a linear

constraint with respect to the decision variable Atj [k], one favorable option is to set

h(Atj[k]) = c1Atj[k]+ c2 for some constants ci and c2.

Constraint 2: Fear-end(s) < 0

Given a step K where (1 [K] E Ojj, let a positive integer 6 (K) satisfy

(([K] - d*) - oj,ji = y [6(K)] - oj,,.
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The integer 6(K) exists if ( j[K] - d*) E Ojy by the construction of the discretized

paths. Since rear-end conflict area segments share a common grid, 6(K) and 6(K +1)

are consecutive segments of vehicle j'.
The rear-end collision avoidance constraint is as follows. If (j, j') E 0, and

K 5(K)

if vehicle j precedes vehicle j', j Atyj[k] < E Aty[k], (6.8)
k=1 k=1

for all K E {k E Z+ : j[k] E Ojy and ((j[k] - d*) E 0j, }. This means that after

vehicle ] reaches j [K], vehicle j' can reach ( j [K] - d*) - (oj, - oy,). Thus, Xa, and

Xa,jl are distance d* apart at the end points of each segment. Even between the end

points, the distance between Xa,j and XaI, is maintained above distance d* because

trajectories of the abstract system (6.5) are (piecewise) linear.

Constraint 3: Fside(S) <_ 0

Let positive integers Ki" and K i denote

- a[K l' ] =*, (j[K t] =

which means that the path from the Ki"-th segment to the K j-th segment exactly

overlaps with the inflated side conflict area (as, * ). Such integers exist by the

construction of the discretized paths. These allow rewriting of the expression xj (t) E

(a8, ,) in terms of the decision variable as follows:

K K04

k=1 k=1

To avoid a side collision, two vehicles never meet inside the same side conflict area.

The side collision avoidance constraint is

Kout Ki, Kt K

Z Atj [k] < Z Atj [k] or Z At [k] < Z At [k], (6.9)
k=1 k=1 k=1 k=1
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for all (j, j') E 'Di for all side conflict area i. That is, vehicle j' enters the side conflict

area after vehicle j exits or vehicle j' exits the side conflict area before vehicle j

enters. This constraint can be written by introducing binary variables to indicate the

precedence constraint of vehicles, the number of which is at most mn(n - 1), where

m is the number of side conflict areas and n is the number of vehicles. Note that the

number of binary variables does not grow with a finite horizon Nj.

To sum up, our formulation of the discretized safety verification problem consists

in verifying nonemptiness of the region satisfying (6.6)-(6.9).

Problem 6.1 (Discretized safety verification). Given an initial state (xo, xo), deter-

mine if there is a feasible solution Atj for all j to

min f(Atj, Vj)

subject to (6.6) - (6.9),

for some objective function f (Atj, Vj).

Trajectory of the Abstraction

Given a solution At for all j to Problem 6.1, we construct a trajectory of the abstract

system, denoted by (xa,j, a,j), such that for all k E {1, ... , N},

1k-1 k

for t EC Ati [i, 1 At [i],

Agj [k] =1k-I 6-0
aj (t) = Atj[k1 Xa,(t) =j[k - 1] + aj(t) t - Ati [i] .

The trajectory (Xa,J, aj) is piecewise affine as illustrated in Figure 6-3, which is

feasible for the abstraction but not for the concrete system. By considering this

trajectory as a reference, we find a trajectory of the concrete system that tracks

(Xa,j, zaj) within a given maximum error Cmax.
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Xjmax

At[1] ... At [13]

Figure 6-3: Discretized path {[( [k - 1], ( [k]] } of vehicle .j and sequence of time
intervals At3 , based on which a trajectory of the abstraction (red line) is defined.

6.2.2 Verification on the Concrete Systemn

This section describes the verification of the concrete system (Problem 2.1) given

a reference (xa, xa) constructed by the map (6.10). As the method of designing

the interface between the abstract and concrete systems, we employ sliding mode

control [541, which guarantees safety of vehicles under some conditions.

Sliding Mode Control

In this section, we focus on an input signal of an individual vehicle, and thus, omit

the subscript .j for notational simplicity, which has been used to indicate vehicle j.

As an indicator of tracking errors, a scalar function, s : X x X -> ]R, is defined

such that

where A > 0 is a design parameter, and (Xa, za) is a given reference trajectory that

the state (x, ) of the concrete system needs to track. The goal is to design a control

input that maintains s close to zero. To do this, a control input is designed such that
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if Is(x,iz)I > 4) for some 4 > 0,

2 dt

where y > 0 is a design parameter. The control input satisfying (6.11) drives the

state into a thin boundary layer S = {(x,.z) : ts(x, )| < 4P}. Once the state enters,

it stays inside the boundary layer unless there is an extreme change in the reference

trajectory that makes js(x, z)J greater than (D.

We use the following input, which satisfies (6.11) with equality if letting - 0

(by neglecting a finite number of discontinuities of A),

U = -fA(i-A) - sat ' (6.12)
b(x,.) xP )1

where sat (q) is 1 if q > 1, -1 if q < -1, and q otherwise. Typically, the sliding mode

control input makes the state converge to the sliding surface {(x, .) : Is(x, )( = 0}

by considering D = 0, but such control input causes a chattering behavior of the

state. To avoid an issue of chattering, we consider the boundary layer with thickness

of strictly positive 4).

One property of the sliding mode control is that it provides quantified upper

bounds of tracking errors, Ix - xa and j- - A. If Is(x(t), i(t))j < S for all t > 0, we

have

S
x(t) - Xa(t)j 1 : , (t) - ta(t)| K 2S (6.13)

for all t > 0.

Interface between the Abstract and Concrete Systems

The parameters A, ,q, and (D play an important role in determining the tracking error

bounds. In the following, we provide some conditions of A 1, 'D that are necessary

to ensure the tracking error IX - Xal bounded by emax. Let the parameters D and

A be constant over all segments, and the parameter q be constant at rqk on the k-th
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segment and vary between segments. Let Av[k] denote the speed difference between

two consecutive segments k - 1 and k of the abstraction trajectory, that is,

A[k - 1] _ A [k]
At[k - 1] At[k]

For k 1, set Av[1]:= - [

Condition 6.1. The design parameters y and A satisfy the following:

* r1 = 77k > |Av[k]I/At[k] on k-th segment;

* A > (D + maxk IAv[k]I)/emax.

We prove the lemmas that Condition 6.1 ensures the position tracking error

bounded by emax.

Lemma 6.1. If q and A satisfy Condition 6.1, the tracking error IX(t) - Xa(t)| is

bounded by ema. for all t [0,k_ 1 At[k]l.

Proof. We will prove that Is(x, )| j 4D + |Av[k]| on each k-th segment by math-

ematical induction on k. On the first segment, Is(x, )l < IAv[11] because xo =

Xa(0), | (0) - 'a(0) I= IAv[1], and ls(x,L )J does not increase in time on the segment

by (6.11). Suppose Is(x, )I < <D + IAv[k - 1]l on the (k - 1)-th segment. Then,

since 'rk_1 IzAv[k - 1]/At[k - 1] and Is(x, )I linearly decreases in time at rate

r'/k-1, we have |s(x, )l < 4D at the end of the (k - 1)-th segment. Because between

the (k - 1)-th and k-th segments, the speed of the abstraction trajectory changes

by Av[k] and the position does not change instantaneously, Is(x, ) I increases by at

most JAv[k]|, that is, Is(x,i) ) 1< + |Av[k]. Since Is(x, )| does not increase in

time on a segment, Is(x, J) 4D + Av[k]I on the k-th segment. This concludes the

proof because by (6.13)

<D + IAv[k]|IfrtCz--
IX(t) - Xa(t)| fortE At[i], At [i)

1i=1

which becomes |X(t) - Xa(t)l < emax since A > (<D + maxk Av[k])/emax by Condi-

tion 6.1. E
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However, the parameters T and A cannot be made arbitrarily large to satisfy

Condition 6.1 because the magnitude of control input (6.12) increases with respect to

r1 and A, and should be bounded by [Umin, Umax]. By appropriately restricting speed

changes of the abstraction trajectory, we can enforce the input bound constraint. In

the following, we provide a condition for the smoothing function h, which is part of

constraint (6.7) in Problem 6.1.

Condition 6.2. The smoothing function h at the k-th segment is denoted by hk,

which is a map from [A [k]/vmax, A[k]/Vmin] to R+, such that, with At[k - 1] sat-

isfying IA [k - 1] - At[k] - A [k] - At[k - 1]1 hk(At[k]),

b1, .I 1 max hk (At[k]) 2  hk(At[k])
b(x, emax k,,t[k] At[k - 1]At[k] L At[k - 1]At[k]2

1 . + m hk(At[k]) 2 hk(At[k])
eUmax 2)-+xb(x,:) emax kAtfk At[k - 1]At [k] At[k - l]At[k]2

for all At[k] E [A [k]/vmax, A[k]/Vminl.

Since the smoothing function h should be determined before solving Problem 6.1,

it must satisfy the inequalities in Condition 6.2 for all possible solutions. The set of

smoothing functions h that satisfy Condition 6.2 is nonempty because if hk 0 for

all k,

1 ( . 2(12 ___1. 2I52
Umin < 1 . f(x,1) - , Umax > I -f (X.) + ,

b(x, ) emax b(x, z) emax

which are true because emax is nonzero, (D is arbitrarily small, and -f(x, )/b(x, 1) E

(Umin, Umax) for all x E X, ic X by assumption. Therefore, h - 0 is in the set.

Lemma 6.2. Suppose that At is a solution to Problem 6.1 based on the smoothing

function h satisfying Condition 6.2. Then there exist the design parameters 77 and A

that satisfy Condition 6.1 and make the control input (6.12) bounded by [umin, lUmax].

Also, the control input yields a trajectory of the concrete system that deviates no more

than emax from the abstraction trajectory defined by At.
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Proof. Condition 6.1 is satisfied if

7k - hk(At[k]) and A 1 () + m hk(At[k])
At[k - l]At[k] 2  emax k,At[k At[k - 1]At[k]

because from constraint (6.7),

hk(At[k])

-At([k - 1])A t[k]'

Thus, by Lemma 6.1, the tracking error Ix - xal is bounded by emax, and f - L

2emaxA. Then the control input (6.12) becomes the right-hand side terms in Condi-

tion 6.2, which implies that the input is bounded by [Umin, Umax]. D

An analytic expression of h satisfying Condition 6.2 can be obtained before solving

Problem 6.1. Let gk(hk, At[k], AVmax) < 0 denote the inequalities in Condition 6.2

in which b(x, st), f(x, ji), At[k - 1] are substituted with their worst-case bounds and

maxk,At[k] hk(At[k])/(At[k - l]At[k]) by Avmax. First, assume AVmax is 0 and find

hk as a function of At[k] so that it satisfies the inequalities gk(hk, At[k], 0) < 0. With

the obtained hk, compute maxk,At[kl hk(At[k])/(At[k - 1]At[k]). If this maximum

value is greater than the value of Avmax, let AVmax take the maximum value and

find again hk that satisfies gk(hk, At[k], AVmax) _ 0. If the maximum value is not

greater than the value of Avmax used to find hk, then stop the iteration. The following

example shows this process.

Example 6.1. Consider the vehicle dynamics -= 0.005 2 + u, which is the same

as (2.5) with ci = 0.005,c 2 = 0, c 3  1. Suppose AC[k] = 3 for all k, Cmax = 1,

[Vmin, Vmax] = [1, 15], [Umin, Umax] = [-3, 3], and 4D = 0.001. We want to find linear

smoothing functions hk(Atlk]) = ciAt[k] + c2 that satisfy Condition 6.2.

First, suppose that the speed decreases between the (k - 1)-th and the k-th seg-

ments, in which case the lower bound of the control input is important to ensure. By

denoting the maximum speed change by Av max,

3 K 0.005z2 - 2 (0.001 + AVmax) 2 _ hk(At[k]) (6.14)
At[k - 1]At[k]2
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Figure 6-4: With AVmax = 0, the smoothing function that satisfies (6.15) with equal-
ity is represented by the black solid line, and a linear smoothing function that satisfies
(6.15) (and thus Condition 6.2) by the red dotted line.

From the smoothing constraint (6.7), A [k -1]- At[k] - A6[k]- At [k -1] hk(At[k]),

thereby implying At[k - 1] > At[k] - lhk(At[k]) in the decelerating case. Also, we

have i > A [k]/At[k] - 2(4D + AVmax) on the k-th segment because - decreases over

the segment and satisfies 1t - :5l 2(4D + Avmax) where i7 = A [k]/At[k] at the

end of the segment. In (6.14), we substitute with A [k]/At[k] - 2(<D + AVmax),

and At[k - 1] with At[k] - lhk(At[k]).

-3 < 0.005 [ - 2(0.001 + Avmax) -2(0.001 + AVmax)K hk(At[k])
At[k] (At[k] - !hk)At[k]'

(6.15)

Assume Avmax = 0. The smoothing function hk that satisfies (6.15) with equality

is depicted as a solid black line in Figure 6-4. Any function that lies below this

black line satisfies (6.15). In the figure, the red dotted line represents the linear

smoothing function 0.4761At[k] - 0.0751, which satisfies (6.15), is non-negative for

all At[k] E [A6[k]/vmax, A6[k]/vmn], and maximizes the trapezoidal area below the
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linear function. Similarly for an increasing speed, hk(At[k]) = 0.4560At[k] - 0.0777

is the linear smoothing function that satisfies Condition 6.2, is non-negative over the

domain, and maximizes the trapezoidal area below the function. With these two

linear smoothing functions, the maximum speed change is 0.8217. With Avmax =

0.8217, we again obtain hk = 0.2708At[k] - 0.0429 for the decelerating case and

0.1958At[k] - 0.0354 for the accelerating case. These new smoothing functions yield

the maximum speed change of 0.4474, which is smaller than the value (0.8217) used

to find the functions. Thus, the constraint (6.7) becomes

Az[k - 1] At[k] - A .[k] At[k - 1] < 0.2708At[k] - 0.0429,

-A [k - 1] - A t[k] + A [k] - At[k - 1] < 0.1958At[k] - 0.0354.

Given that Conditions 6.1 and 6.2 are satisfied, we prove that our approach guar-

antees that the existence of the solution to Problem 6.1 implies the existence of the

solution to Problem 2.1.

Theorem 6.1. Given a state (xo,ko), if Problem 6.1 has a feasible solution, then

Problem 2.1 has a feasible solution u E U.

Proof. A sequence of time intervals that is feasible in Problem 6.1 is used to construct

an abstraction trajectory, based on which the sliding mode control input is computed

according to (6.12). This input signal makes the concrete system's state track the

abstraction trajectory within an error smaller than or equal to emax, given that the

design parameters satisfy Condition 6.1. Since d* and (aoj, #3*) used in Problem 6.1

are d and (amj, fi,) inflated by emax, respectively, the resulting trajectory ensures

that a safe distance d is maintained and that two vehicles never meet inside a side

conflict area. Therefore, the sliding mode control input satisfies (2.7). D

Corollary 6.1. If (Xa, 5a) is a trajectory of the abstraction (6.10) generated by the

map (6.10) using a solution to Problem 6.1, the solution u E U to Problem 2.1 is

computed by an algebraic mapping (6.12).

The converse of Theorem 6.1 is not always true, that is, a solution to Problem 2.1

115



can exist while no solution exists to Problem 6.1. This implies that the supervisor

based on the solution to Problem 6.1 is more restrictive than the least restrictive

supervisor.

6.3 Supervisor Algorithm

We design the supervisor based on the solution to Problem 6.1. We denote by

VERIFICATION the procedure that takes (xo,5,0 ) as an input and returns the so-

lution (Atj,Vj) to Problem 6.1 if exists. If the problem does not have a feasible

solution, set At = 0 for all j. Also, we denote by SLIDINGMODE the procedure

that takes the solution (Atj,Vj) of Problem 6.1 and returns an input signal u E U

generated by the formula (6.12).

Algorithm 6-8 Implementation of the supervisor at time step k
1: procedure SUPERVISOR(x(kT), *(kT), uk)

2: (Xnext, knext) +- (x(T, Uk, x(kT), 5(kT)), k(T, U , x(kr), k(kT)))

3: (Atj, Vj) +- VERIFICATION(Xnext , knext)

4: if Atj # 0, Vj then

5: uk +- SLIDINGMODE(Atj, Vj)

6: return uk

7: else

8: (Xnext , next) <- (x(T, uk- 1 , x(kT), *(kT)), *(T, u-- 1, x(kT), k(kT)))

9: (At , Vj) +- VERIFICATION(Xnext, Inext)

10: if At. 0 then

11: uk +- SLIDINGMODE(At',Vj)

12: else

13: u +- uk-1 restricted to time [T, oc)

14: return uk- restricted to time [0, T)
S

The supervisor takes as inputs the current state (x(kT), k(kr)) and the desired

input ud, based on which the one-step ahead state is defined (line 2). If there is a
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solution to Problem 6.1 (line 4), which implies by Theorem 6.1 that an input signal

that avoids the bad set exists, then the supervisor stores the safe input signal uk

for a possible use at future steps (line 5) and allows the desired input (line 6). If

Problem 6.1 is infeasible, the supervisor neglects the desired input and returns the

safe input signal stored at the previous step (line 14). To update the safe input signal,

Problem 6.1 is solved again based on the one-step ahead state determined by the safe

input signal at the previous step (line 8). If a feasible solution exists (line 10), a new

input signal is stored as a safe input signal (line 11), and otherwise, the safe input

signal stored at the previous time step uk 1 is translated by T and reused as a safe

input signal (line 13).

Theorem 6.2. Suppose initially SUPERVISOR(X(0), *(0), ud) returns a nonempty out-

put for some desired input uo E U. At time kT, if SUPERVISOR(x(kT), 5(kT), uk)

returns uout, then u0 ut is a safe input signal, that is,

-u E U : x(t, u, x(T, uo,, x(kT), k(kr)), 5(r, uout, x(kr), k(kr))) B, Vt > 0.

(6.16)

Also, the procedure SUPERVISOR in Algorithm 6-8 is more restrictive than the super-

visor s in (2.8) in the sense that u0ut = uk implies s(x(kT), k(kT), uk) = uk.

Proof. The output of Algorithm 6-8 is either ud (line 6) or u- 1 restricted to time [0, T)

(line 14). If uout = uk, there exists a solution (Atj, Vj) to Problem 6.1 given a state

(x(T, uk, x(kr), k(kT)), k(T, u , x(kT), k(k-r))), which implies (6.16) by Theorem 6.1.

If u0 ut = uk- 1 restricted to time [0, r), (6.16) is true because the input signal ukil

restricted to time [T, oc) satisfies the condition in (6.16). This is because u- 1 gets

the value from SLIDINGMODE(Atj,Vj) or SLIDINGMODE(At',Vj) when Atj or At

is nonempty, and the sliding mode control input (6.12) is the solution to Problem 2.1

by Theorem 6.1.

If Uout = ud given (x(kT), k(kT), ud), there is a feasible solution Atj, Vj to Prob-

lem 6.1, which implies the existence of a solution to Problem 2.1 by Theorem 6.1.

Thus, s(x(k-), k(kT), uk) = u.
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6.4 Validation of the Supervisor: Simulations

We implement Algorithm 6-8 in the traffic scenario depicted in Figure 2-2 using MAT-

LAB on a personal computer consisting of an Intel Core i7 processor at 3.10 GHz and

8 GB RAM. We use CPLEX [33] to solve mixed integer programming problems. Also,

in the scenario depicted in Figure 6-1, we perform computational experiments to com-

pare the performance of our space discretization-based approach with the performance

of the time discretization-based approach described in Section 6.1.1.

6.4.1 Implementation of the Supervisor Algorithm

In the scenario depicted in Figure 2-2, consider the longitudinal vehicle dynamics

(2.5) where ci = 0.005, c2 = 0, and c3  1. The paths of vehicles are first uniformly

discretized into small segments of length Aj = 3, and then further refined to include

specific locations to satisfy the specifications discussed in Section 6.2.1. We use the

same values for the parameters Vmin, Vmax, Umin, Umax, <b, and emax as in Example 6.1.

Given a state, we solve Problem 6.1 based on the abstract system and compute

a sliding mode control (6.12) that generates a trajectory of the concrete system.

Figure 6-5(a) shows that a trajectory of the concrete system tracks an abstraction

trajectory within the error bound emax = 1, which confirms Lemma 6.1. The vertical

dotted lines indicate the solution of Problem 6.1 over the discretized path of a vehicle.

Figure 6-5(b) shows the magnitude of the scalar function s over time. At the beginning

of each segment, |s J increases by IAv[k]| and decreases linearly over time. It becomes

smaller than or equal to <D at the end of each segment as we stated in the proof of

Lemma 6.1.

Now, we implement the supervisor algorithm (Algorithm 6-8) in the scenario of

Figure 2-2. The supervisor prevents side collisions among 20 vehicles on 36 side con-

flict areas, and rear-end collisions on splitting and merging paths. Figure 6-6 shows

trajectories of vehicles crossing the intersection. The solid line represents the tra-

jectory of vehicle 16, which travels through two rear-end conflict areas (gray regions

016,7 and 016,9, at the same location as 016,10) and five side conflict areas (red regions
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Figure 6-5: With A,rq, and h satisfying Conditions 6.1 and 6.2, a trajectory of the
concrete system tracks an abstraction trajectory within emax 1, and the magnitude
of s decreases over a segment. The vertical dotted lines indicate time intervals taken
to travel each segment.

between the positions 0 and 20). The dotted lines represent the trajectories of other

vehicles that share the rear-end or side conflict areas. Note that vehicles do not meet

inside a side conflict area, and vehicles maintain a safe distance of 4 on the rear-end
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Figure 6-6: Trajectory of vehicle 16 through two rear-end conflict areas (016,7 and

016,9 = 016,10) and five side conflict areas, as depicted in Figure 2-2. The dotted
lines represent the trajectories of other vehicles that share the same rear-end or side

conflict area. Vehicles maintain a safe distance of 4 on the rear-end conflict areas,
and are not simultaneously present inside each side conflict area.
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Figure 6-7: Input signal applied to vehicle 16. The supervisor overwrites the desired
input (black line) when a future collision is detected. The dotted red line indicates
the sliding mode control input applied by the supervisor.
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Figure 6-8: Computation time to solve Problem 6.1 as the number of vehicles in the
scenario of Figure 2-2 increases.

conflict areas. The input signal applied to vehicle 16 is illustrated in Figure 6-7. The

desired input is 1 (solid black line) and is overridden by the supervisor (dotted red

line) when a potential collision is detected (i.e., when Problem 6.1 has no feasible

solution). Note that the input signal is bounded by [umsm, Umax] at all times because

we use the control design parameters rj, A and the smoothing function h that satisfy

Conditions 6.1 and 6.2, respectively. This confirms Lemma 6.2. As increasing the

number of vehicles in the scenario from 8 to 20, we measured the maximum com-

putation time to solve Problem 6.1 in Algorithm 6-8. As shown in Figure 6-8, our

approach can handle realistic and complicated scenarios, such as that in Figure 2-2

with 20 vehicles, within 0.45 s.

6.4.2 Performance Comparisons

In the scenario depicted in Figure 6-1, we compare the performance of our space

discretization-based safety verification (Problem 6.1) with that of time discretization-

based safety verification discussed in Section 6.1.1. The comparison is performed in

terms of two measures: restrictiveness and computation time. If a problem finds a
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feasible solution given a state while the other problem does not, the problem is less

restrictive than the other problem. For computation time, we measure the CPU time

taken to solve each verification problem.

We consider linear vehicle dynamics ,j = uj, which is the same as (2.5) with

C1 = c 2 = 0 and C3 = 1. While our approach based on space discretization can handle

nonlinearity of vehicle dynamics by using the abstraction and sliding mode control,

the time discretization approach requires the assumption of linear vehicle dynamics

to make the constraint Fdynamics < 0 linear. We let x(0) = (-15, -6, -15, -15) and

x(0) = ( 15, 15, i4) be an initial state, where a vehicle at position 0 indicates that

the vehicle's center just enters the intersection, and determine if each problem has a

feasible solution while varying i1 and x4 from min = 1 to max = 15.

Restrictiveness and computational time depend on the size of (time or space)

discretization grid. If a finer discrete step is considered, the verification tends to be less

restrictive but requires more computation time. In Figure 6-9, we compare the results

of our approach (Problem 6.1) on two different spatial grid, where A~j ~ 3 means that

we first divide the path uniformly into segments of length 3, and then refine the grid to

satisfy the specifications given in Section 6.2.1. If Problem 6.1 does not have a feasible

solution, we place a red dot, and otherwise, a white dot. The smaller number of red

dots indicates that the approach is less restrictive with a finer spatial grid; for example,

given a state with 1 = 15 and x 4 = 1, Problem 6.1 with A~j = 0.5 finds a feasible

solution, whereas it is not possible with A~j = 3. In both cases, the computation

time is acceptable, which usually means less than 0.1 s [60]. In Figure 6-10, the time

discretization*based verification problem is evaluated with two different time steps,

At = 1 and At = 0.15. The problem with a smaller time step is less restrictive,

but the computation time grows exponentially, because a smaller time step increases

the number of binary variables as discussed in Section 6.1.1. In these simulations,

8 binary variables are involved in our space discretization-based approach, whereas

863 and 5708 binary variables are involved in the time discretization-based approach

with At = 1 and 0.15, respectively. The results show that our approach does not lose

restrictiveness compared to the time discretization-based approach while exhibiting
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Figure 6-9: As varying kiz and i4 from imin = 1 to imax= 15, we plot a white dot if
there is a feasible solution to Problem 6.1 given a state x(0) = (-15, -6, -15, -15)
and x(0) = (zi, 15, 15,i4), and a red dot otherwise. We use emax = 1 in (a) and 0.25
in (b). The smaller number of red dots in (b) indicates that our problem on the finer
grid is less restrictive while requiring more computation time.

favorable computation time.
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Figure 6-10: Results of time discretization-based verification, with different time
steps. Our approach in Figure 6-9 is not more restrictive than the time discretization-
based verification while computationally favorable.
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Chapter 7

Conclusion

This thesis presented the design of supervisor algorithms in three intersection models

of different complexity levels. The supervisors determine the existence of a future

collision among vehicles at or near an intersection (safety verification) and override

the drivers with a safe input if a future collision is detected. We translated the

safety verification problem into scheduling problems by exploiting the monotonicity

of the system. Since scheduling problems are combinatorial with the number of

vehicles, we approximately solved the problems within quantified approximation error

bounds. We designed the supervisors based on the (exact or approximate) solutions

to the scheduling problems, proved that they ensure safety and are nonblocking,

and validated them through computer simulations and experiments. In particular,

computer simulations showed that the supervisors could be implemented in real-time

for most scenarios of realistic size.

In more detail, in Chapter 4, when modeling an intersection as a single conflict

area, we considered several sources of uncertainty, such as errors in the dynamical

model and measurement and the presence of uncontrolled vehicles, and designed ro-

bust supervisors to enable practical implementation on an experimental testbed. We

translated the safety verification problem to an inserted idle-time scheduling problem

and approximately solved the problem in polynomially bounded time by adopting a

previously studied polynomial-time algorithm solving a scheduling problem with unit

process times. In Chapter 5, when modeling an intersection as multiple conflict areas,
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we translated the safety verification problem into a jobshop scheduling problem. Be-

cause the jobshop scheduling problem is computationally intractable mainly due to its

nonconvexity, we approximately solved the problem by formulating two mixed integer

linear programming (MILP) problems that yield lower and upper bounds of the opti-

mal cost of the jobshop scheduling problem. In Chapter 6, when considering general

and realistic intersection scenarios, with multiple conflict areas and merging/splitting

paths, we performed the verification in a hierarchical structure. In the top layer, we

employed an abstraction of the actual system and formulated a scheduling problem

based on path discretization as an MILP problem. We provided a map between the

solutions to the scheduling problem and to the safety verification problem, and thus,

could approximately solve the safety verification problem in the low layer.

We now discuss some insights and possible extensions of the works presented in

the thesis. Also, we provide some other applications that can be pursued based on

the theory developed in the thesis.

7.1 Discussion

As taking more realistic and busier intersections into consideration, we developed the

designs of the supervisors. In this section, we discuss how the designs have changed

and how they can further be extended for even more realistic scenarios.

We assumed in Chapters 4 and 5 that there is only one vehicle per lane. Our

approaches can be easily modified to handle multiple vehicles per lane; one possible

modification can be solving the scheduling problems only for the first vehicles in

lanes while letting the following vehicles maintain a safe distance from their lead

vehicles. Instead of this approach, we presented a less conservative approach based

on discretized paths in Chapter 6. Another approach to handling rear-end collisions

without any approximation at a single conflict area is provided in [17].

In Chapter 5, the cost error s* - s* cannot be made as small as desired, where s* is

the maximum tardiness in the jobshop scheduling problem (Problem 5.1) and s* is the

lower bound. This is mainly because that the behaviors of the first-order dynamics
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allow instantaneous speed changes, thereby not fully representing the behaviors of

the second-order dynamics. Thus, we introduced in Problem 6.1 the abstraction (6.5)

that includes an additional constraint limiting the instantaneous speed changes of the

first-order dynamics. By using this abstraction, we can improve the cost error s* -s*

Similarly, in Chapter 5, the cost error s* - s* cannot be made as small as desired,

where s* is the upper bound. This is mainly because the upper bound problem

(Problem 5.3) accepts an input signal that is maximum inside an intersection. Various

upper bound formulations are possible, for example, by allowing only the minimum

input inside an intersection. To obtain a smaller cost error, we can formulate another

upper bound problem that allows combinations of the maximum and minimum inputs

inside an intersection with a binary variable associated with each combination. This

approach is less conservative and gives a tighter upper bound, at the expense of

computational complexity due to the additional binary variables.

Also, the consideration of uncertainty sources in the supervisor designs is necessary

for real-world implementation. Using a similar method used in Chapter 4 allows the

extensions of the results in Chapters 5 and 6 to handle the process and measurement

errors and the presence of uncontrolled vehicles.

Figure 7-1: Paths of vehicles are undetermined before they enter the intersection.

In the thesis, we assumed that the paths of vehicles are known before they enter an
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intersection. One straightforward approach to relaxing this assumption is to prevent

collisions on all possible future paths, considering, for example, all three paths in

Figure 7-1. A less conservative approach can be incorporating an algorithm that

infers future paths of vehicles (e.g., [40]), which remains as future work.

Another interesting extension is to consider moving bad sets. For example, in

lane changing scenarios, the location where two paths of vehicles start to merge

changes depending on the speed of the vehicles and their steering inputs. One possible

approach can be deriving the dynamics of bad sets and using the same scheduling

approach presented in this thesis based on the relative dynamics of vehicle dynamics to

the bad set dynamics. We expect that this extension will be able to widen application

areas of our scheduling approach.

Another possible extension of the works in this thesis is to design a decentral-

ized controller as a scalable and practical solution at intersections where vehicle-

to-infrastructure communication technology is not feasible. With the application of

air traffic management, decentralized control has been studied in [36,46,62j while it

usually terminates with suboptimal solutions or deadlock. At a small and simple

intersection, a decentralized approach in the automated management framework was

presented in [47]. Designing an effective decentralized supervisor at large intersections

remains as future work.

We have published [5] based on the experimental result in Chapter 4, and [3,4]

based on the results in Chapter 5. We are currently working on the publication

processes of the theoretical results in Chapter 6.

7.2 Future Directions

The thesis provides novel methods to design a decision-making process based on

continuous dynamics and coordinate multiple vehicles. These areas have plenty of

applications, including automation of city driving, warehouse, and factory.
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Figure 7-2: Sequence of discrete modes in city driving scenarios. LF is the lane
following mode in lane i and Si is the stop mode in lane i.

Decision-Making in City Driving

In scenarios of city driving, driver assistance systems should determine a sequence of

decisions, such as whether the ego vehicle has to change lanes at the current time.

Figure 7-2 depicts an example of a sequence of modes in city driving scenarios, where

LFj refers to the lane following mode in lane i, and Si refers to the stop mode in lane

i. Here, the problem is to design a controller that determines a decision Ej such that,

for example, it applies E1 if the current mode is LF and changing lanes from 1 to

2 is feasible, and E2 if the current mode is LF2 and the vehicle should start braking

to reach a full stop before a stop line. The solution to the problem must consider

continuous dynamics of vehicles to determine the timing of a discrete input. A similar

approach used in this thesis, such as checking whether the current dynamical state is

in the backward reachable sets of target sets, can be adopted to solve the problem.

An initial result will be presented at 2018 American control conference.

Interactive Environment

An autonomous driving system is designed usually based on an assumption that

its decisions do not affect the behaviors of other agents (e.g., pedestrians or other

vehicles). In real-world, however, the system interacts with the environment; other

agents may not behave as predicted depending on the decisions of the system. This

discrepancy can be reduced if vehicle-to-vehicle communications are available with

which vehicles can cooperate during the decision-making processes. If there is no
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communication available, the autonomous driving system can take a gentle probing

to observe other agents' reactions and estimate the resulting future behaviors of other

agents (e.g. [51]). The design of an autonomous driving system that interacts with its

environment with or without communications would be an interesting future direction.

Factory Automation

The design of controllers for manipulators requires to handle both high-order non-

linear dynamics and discrete modes (e.g., move items to another position, assemble

items, etc.). In particular, when manipulators collaborate with human operators,

one possible approach to their coordination is to make decisions based on the reach-

able sets of the manipulators to optimize productivity while ensuring no conflict with

the human operators. Also, coordinating a large number of mobile robots that au-

tonomously move around warehouses to pick up, pack, and ship specific products can

be another future direction.
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Appendix A

Proofs in Chapter 4

Theorem 4.1 Problem 4.1 is equivalent to Problem 4.2.

Proof. Note that an instance I of Problem 4.2 is described by [s,(r), sh(T)], and it is

the same as an instance of Problem 4.1. Thus, transforming an instance to another

takes constant time. Now, the following relation is left to prove the equivalence.

Problem 4.1 accepts I <> Problem 4.2 accepts I.

(>) Given a state estimate [S1(T), Sh(T)], there is an input signal fl, E U, such

that x(t, fi, d, s(r)) V B for all t for all nii E U,,, d E D, and s(T) E [sl(T), sh(T)].

A real number T4 denotes the soonest time at which controlled vehicle i can reach

a by applying an input signal fia, that is,

-Tj(i ij, di,max, Ish,i (T)) -- a .

If Xh,i(T) a, set Tj = 0. Also, a real number P denotes the latest time at which

vehicle i can reach f3 with an input signal fi, that is,

S( Sine (1, sisfi s ()) = i.

Set 15i = 0 if Xj'i(r) > #3i. Since 4s satisfies the constraint of Pi(i) in Definition 4.1,
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Pi (T) _< PP.

A vector of times T = (Ti,... ,Ti) satisfies 4.7 in Problem 4.2. First, Ti is

bounded by Ri and Di by definition. Next, without loss of generality, suppose vehicle

i crosses the intersection earlier than vehicle j, that is, Tj < Tj. Since fiT and i6j

guarantee that at most one vehicle is inside an intersection for any uncertainty, we

must have x(t,ti, d,min, si,i(7)) > 3 i when xj(t, iij, dj,max, Sh,j(r)) a3 . Because xi

is nondecreasing in time, we have P < tj and thus P(Ti) < Ij. This concludes

that (Ti, P(Ti)) n (Ti, IP (Tj)) 0. Lastly, by definition of 6i, controlled vehicle i and

uncontrolled vehicle -y are not simultaneously inside the intersection for all i2,, d-, and

s,(r). During (Ti, Ps), vehicle i is inside the intersection, and during (R, P,), vehicle

-y is inside the intersection for any uncertainty according to Definition 4.1. Thus,

(TL, P) n (R., P1) 0. Since Pi(Ti) < Pi, this implies (Ti, P(Ti)) n (R-, AP) 0.

(=) Given a state estimate [S1(7), sh(7) , there exists a schedule T = (Ti, ... ,i) E

Rn that satisfies (4.7) in Problem 4.2.

Let a function fii satisfy

xi(Tii , di,max, Sh,i())) = a

and

xi (Pi (i), I ii, di,min, sl,i (7)) = #3i.

If xl,i(r) > 0j, we do not consider vehicle i because it has already crossed the intersec-

tion. Since xi depends continuously on fi4, and UL is connected by assumption, there

exists an input signal iii in U&.

The schedule 4 < 1 for controlled vehicles i and j satisfies P(ti) < 1j, which

indicates that xi(t, iT4, di,min, sl,i(r)) Oi when xj(t, iij, dj,max, Sh,j(T)) aj. Vehicle

j exits the intersection no later than t for all uncertainties, and vehicle j enters the

intersection no earlier than t for all uncertainties. With uncontrolled vehicle 7, the

schedule 47 satisfies either P, < T or P(t1 ) < R. In the first case, X(t) > 3) when

xi(t, i4, dimax, Sh,i(r)) ai, which implies by monotonicity that for all uncertainties,

vehicle i enters the intersection after vehicle -y exits. In the second case, x-(t) <_ a-
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when xi(t, iii, di,min, si,j(r)) = , which implies by monotonicity that for all uncer-

tainties, vehicle i exits the intersection before vehicle -y enters. Therefore, an input

signal ii satisfies (4.5) in Problem 4.1. l

Theorem 4.2. Procedure SUPERVISOR in Algorithm 4-2 implements the supervisor

s designed in (4.6), and it is nonblocking.

Proof. Given (sm(kr), uk), procedure SUPERVISOR returns uk in line 7 if ansi is yes.

The existence of a feasible solution T1 to Problem 4.2 implies that there exists an

input signal u, c EU (stored as u,+1 in the algorithm) that satisfies x(t, u, d, soT)) B

for all t for all u,, E U,, d E D, and so E [si((k+ 1)r), sh((k-+ 1))] where [s1(T), sh(T)]

is determined by (4.4) with input Ud. Otherwise, it returns uk restricted to time [0, T)

in line 12. This structure corresponds to the supervisor s in (4.6).

We prove the nonblocking property by mathematical induction on time step k. For

the base case, we assume that SUPERVISOR(sm(0), uo) 7 0 and a well-defined input

signal ul exists. We say u' is well-defined if there exists a solution T to Problem 4.2

that defines uS through a map -([si(T), sh(T)], T) given in (4.8). Suppose at step

k - 1, we have SUPERVISOR(Sm((k - 1)7), u k 1 ) # 0 and uk is well-defined. That is,

there exists uk that satisfies

Vs(kr) E [si(kr), sh(kr)], x (t, (us, IUUc), d, s (kr)) B. (A. 1)

for all t > 0, uuc E UUc, d C D. Here, (ui, uC) indicates an input signal in U consisting

of ui E CU and uc E Uuc.

At at step k, we will show that SUPERVISOR(Sm(kr), uk) # 0 no matter what

Ud is applied, and Uk+1 is well-defined. In Algorithm 4-2, SUPERVISOR(Sm(kT), Ud)

returns either uk in line 7 or uk restricted to time [0, T) in line 12. In either case,

the output of the procedure is nonempty. The former case is when ansi = yes and

T1 exists, and thus, ui+1 = -([s, ((k + 1)7), sh((k + 1)T)], T1 ) is well-defined. In the

latter case, we consider the state estimate [sl((k + 1)T), sh((k + 1)r)] predicted with
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uk. Here, we partition uk into uk and uk such thatS S, [0,-r) S,[r,oo)

u o)(t) = us(t) for t E [0,T),

[,0)(t - T) - uk(t) for t E [T, oc).

That is, U is uk restricted to time [0, r) and u' is uk restricted to time [r, oc).

Then, we can rewrite (A.1) as

Vs((k + 1)T) E

[S (T, (U k' [0, uc,min), dminI si (kTr)), s(T, (U k') uc,max),1 dmax, sh (kr),)],

x(t, (U k ) , d, s((k + 1)T)) B, (A.2)

for all t > 0, uue E Uuc, d c D, where Uuc,min and uuc,max is the minimum and max-

imum signals in Uuc, respectively. At step k, we obtain the predicted state estimate

[s,((k + 1)T), sh((k + 1)7)] given [si(kT), sh(k)](, and u [ . Since the posterior es-

timate is a subset of the prior estimate (i.e., [s(kr), Sh (kT)1o _ [s,(kr), Sh(kT)lpr),

the state estimate [sj((k + 1)7), sh((k + 1)T)] is a subset of the state interval given

in (A.2). Thus, (A.2) is satisfied for all s((k + 1)T) E [sl((k + 1)T), sh((k + 1)T)].

That is, given [sj((k + 1)r), sh((k + 1)T)], the signal u is a solution to Prob-

lem 4.1 and by Theorem 4.1, a feasible solution T2 to Problem 4.2 exists. The signal

Uk+1 = a- ([s,((k + 1)T), sh((k + 1)T)], T 2 ) is well-defined.

Therefore, the supervisor is nonblocking. 3

Theorem 4.3. If APPROXIMATE([SI(T), sh(T)]) returns yes, then EXACT[Sl(r), Sh(T)]

also returns yes (i.e., by Theorem 4.1, there is an input signal satisfying (4.5)).

Proof. Procedure APPROXIMATE of Algorithm 4-5 returns yes if a candidate sequence

7F* yields a feasible solution T according to procedure COMPUTE SEQUENCE (line 10).

Since -r* E P, where P is the set of all sequences, EXACT([s 1 (T), Sh(r)]) also returns

yes.

To prove Theorem 4.4, we prove two lemmas that compare two procedures Ap-
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PROXIMATE in Algorithm 4-5 and SOLUTION TO PROBLEM 4.3 in Algorithm 4-4.

Lemma A.1. If APPROXIMATE( Si(T), Sh(T)]) = (T, yes), and SOLUTION TO PROB-

LEM 4.3([sj (r), sh(T)1) (T, yes), then T < T7 for all i E {1,. . . , n}.

Proof. For i M T, = -= 0. The vector of indexes in M is denoted by r*=

(ji,...,jA) in the increasing order of T, that is, T1 : T < ... TjIMI. We will

show by induction on i that T Tj, for all jE M. For the base case, T, =

max(Rj,, Pmax) in procedure SCHEDULING. Since T is a solution to Problem 4.3, it

satisfies R< T-1 and (0, Pmax)(n iTji +Omax) 0. Thus, max(Rj, Pmax) -Ti <
T 3 1 .

Suppose T_, _. We need to show that T, 7i. In procedure SCHEDULING,

T, = max(R,, P,(T, 1 )). If T = Rj,, we have T Tj because i > R,. If

Ti,= P_, (T 1 ), we have T, < Tij_ + Omax because T l_, < _i- and P,-, (T_) -

Tji- 1  Omax by definition. Since Tj satisfies T,- + Omax < T,, we have Tj < T3s.

For uncontrolled vehicle -y, procedure SCHEDULING assigns the schedule so that it

increas s to Ti= k y if (T, IP ,(Tj,)) n (k y , PY) 7# 0. If (- gi 6 2)n R ,P ) / 0increases to Tji P~~i 0 fTji7Tj + Omax)O(~,y n0,7

the solution T to Problem 4.3 must be T, > 1%. Therefore, T< T-. E

Lemma A.2. If APPROXIMATE([sI(T), sh(F)) = (0, no), then SOLUTION TO PROB-

LEM 4.3([s, (T), sh (T)]) = (0, no).

Proof. Procedure APPROXIMATE returns no if [Xi(T), Xh(T)] n B # 0 or if T > Di

for some i. In the former case, procedure SOLUTION TO PROBLEM 4.3 also returns

no. In the latter case, suppose SOLUTION TO PROBLEM 4.3([s,(T), sh(-r) returns a

nonempty solution T. However, T cannot be feasible because TP > T by Lemma A.1

and T > Di. Thus, by contradiction, procedure SOLUTION TO PROBLEM 4.3 returns

(0, no). D

Theorem 4.4. If APPROXIMATE([Sj(-), sh(T)1) = (0, no), then there is no input

signal u, E U, that guarantees x(t, u, d, so) V $ for all t > 0 for all u,, E Ul4, d E D,

and so E [st(T), sh(T)I.

135



Proof. By Lemma A.2, APPROXIMATE([SI(T), Sh(r)]) = (0, no) means that SOLUTION

TO PROBLEM 4.3([s(T), Sh(T)1) = (0, no). Thus, we will prove that if there is no

schedule satisfying (4.10) in Problem 4.3, there is no input signal to avoid the inflated

bad set for all uncertainty. For ease of proof, we prove the contrapositive statement.

That is, assume that there is an input signal ic E U, such that x(t, ii, d, so) 0 b for

all t, uc E Ulc, d E D, and so E [1(T), Sh(T)]. The existence of such an input signal

implies that there exists a schedule i satisfying (4.10). This proof is similar to the

first part of the proof of Theorem 4.1.

For controlled vehicle i, let T4 denote the time when xi(t, fti, di,mx, sh,i(T)) = a if

Xh,i(T) < ai, and 0 otherwise. Let P denote the time when xi(t, lti , di,min, Si,i(T))

j if xj,j(T) < f3, and 0 otherwise. For two controlled vehicles i and j, since

xi(t, i4, di, si(T)) and xj(t, ftj, dj, sj(r)) avoid entering the inflated bad set for all un-

certainty, (ti, F1) n (Tj, P) = 0. Since the inflated intersection takes account of the

maximum driving distance during 0 max, we have xi(Tj + 0 max, i, di,min, i,i (T)) /3 .

This implies T + Omax < Pi because xi is nondecreasing in t. Thus, (ti, t + Omax) n

(1,T j + Omax) =0. Uncontrolled vehicle -y enters the intersection no earlier than

R, and exits it no later than P, for any uncertainty, by definition. Since ui guar-

antees that vehicles i and -y never meet inside the intersection for all uncertainty,

(TI, P) n (Ry, P_) =0. Thus (, IE +Omax)(n (NP)=0 because Ti+6max < P I

Theorem 4.5. Procedure APPROXIMATESUPERVISOR in Algorithm 4-6 is more

restrictive than the supervisor s given by (4.6), that is,

APPROXIMATESUPERVISOR(Sm(kT), uk) = Uk -- > S(sm(kT), Uk) = uk-

Moreover, Algorithm 4-6 is nonblocking.

Proof. APPROXIMATESUPERVISOR(Sm(kT), u) = uk when APPROXIMATE(1s 1((k +

1)T), sh((k + 1)r)]) returns yes. By Theorem 4.3, there is an input signal u, E Uc

satisfying (4.5). Thus, s(sm(kT), ud) returns ud. This proves that APPROXIMATESU-

PERVISORis more restrictive than s, thereby ensuring safety.
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The nonblocking property is proved by mathematical induction on time step k.

For the base case, we assume that APPROXIMATESUPERVISOR(sm(0), uod) = uod 7 0,

in which case ul is well-defined, that is, there exists a schedule T that defines ul

as Or([s1 r), Sh(T)], T). Suppose at step k - 1, we have APPROXIMATESUPERVI-

SOR(Sm((k - 1)-r), u 1) # 0 and uk is well-defined. The input signal uk satisfies

x(t, (uk, Uc) d, so) B for all use E 1uc, d E D, and so E [si(kT), sh(kT). Now,

we need to prove that APPROXIMATESUPERVISOR(Sm(kT), ud) # 0, and u+ 1 is well-

defined.

In Algorithm 4-6, if ans1 = yes in line 5 or ans2 = yes in line 11, there exists

an input signal that makes the state trajectories avoid entering the bad set by The-

orem 4.3. Thus, uk+1 is well-defined. Also, the output is nonempty because it is

either uk or uk restricted to time [0, 7). In the case when ans1 = no and ans2 = no,

we should prove that ans3 = yes given a sequence 7rk-1 (i.e., a nonempty solution

T2 exists in line 13). Note that 7k-1 is the vector of indexes in the increasing order

of the nonzero entries of a feasible schedule Tk-- of the previous step. That is, at

step k - 1, SCHEDULING(7rk-, [sI(kT), sh(kT)) = (Tk-1, yes). We will show that the

existence of T"- implies that of T2 .

We decompose uk into U and uk such that uk is uk restricted to time8 ,O )S,['r'00) s,[O,) s

[0, T) and u[ is uk restricted to time [7, oc). The i-th entry of Tk-1 is

pk-1 , t xi(tUk', di,max, Sh,i (kT))

= {t : x (t, Uk,,,i di,max, si(T, u k,[T)i) di,max, Sh,i(kT))) = a2 } + 7, (A.3)

lty i d(to i),, dkmax, Si,(T, Us [sdi,max, sh,i(kT),4 = an + m.

The inequality is due to [sl,i(kr), sh,i (kT)], Q [s, (k7), 7sh(kr)] by (4.3) and the mono-
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tonicity of the dynamics. Similarly, the process time P(T-) is

i(Tk-1) = {t :, z(t, Uk,idmisik))=#}

{t :z(t, t , ,) , di,min, s(T, U ,[o,,, di,min, sj(kT)) = 3 j} + T ' (A.4)
{ t :i z(t, U kg,4 di~mn s , - o),, 7di,min, sj,i(kT),) = oi} + 7.

:=Pi

Then, we will show that the schedule i = (TI, ... , T,) is the solution returned by

SCHEDULING(7k- , [s,((k + 1)T), Sh((k + 1)T)]). The release time and deadline of the

procedure is by definition,

Ri = min{t : xi(t, ui, di,max, Sh,i(k + 1)T)) = ai},

Di = max{t : xi(t, ui, di,max, Sh,i((k + 1)T)) = ai}.

Because si(r, -'Or),i, di,max, Sh,i(kT)po) = Sh((k + 1)T) by definition given in (4.4), we

have Ti C [Ri, Di]. Since Tk- is feasible, (Tk-l, P(k-1)) n ( P (T- 1)) 0 for

i : J E {1, 2, ... , r}. Because of (A.3) and (A.4),

(i , P ) C (Tlk1, Pik-'(Tk-l) - T.

Since Pi(T2) < P, we have (fi, P(Ti)) n (i, P (T)) 0. For uncontrolled vehicle -Y,

an idle-time given [s,(kT), sh(kT)] is denoted by (R-, Pk-1 ), and an idle-time given

[s,((k +1)T), sh((k + 1)T)] is denoted by (Ru, P.). We can easily show that

(R_, P y) C (Rkl P41 )

. Thus, (Tik-I, P(Tik-1)) n (k-, p 1) = 0 implies that (ti, P(fi)) n (R,, P) 0.

Thus, i is feasible, thereby implying ans3 = yes in line 13 of Algorithm 4-6. Since

T2= 'i exists, k + 1, oc is well-defined.

Therefore, the supervisor is nonblocking. El
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Appendix B

Proofs in Chapter 5

Theorem 5.1. Problem 2.1 is equivalent to Problem 5.1.

Proof. An instance I of Problem 2.1 is described by (x(0), k(0)). Since an instance of

Problem 5.1 is identical to I, the transformation between instances takes 0(1) time.

Thus, all we have to show is that

Problem 2.1 accepts I 4> Problem 5.1 accepts I,

where we say Problem 5.1 accepts I if s* = 0.

(=-) Given a state (x(0), k(0)), there exists an input signal fl E U such that

x(t, fi) B for all t > 0. In this proof, we assume xj (0) < ai,. For all (i,j) E Mx(O)

let

i- = {t : Xj (t, ft) = aj,} P - {t : X (t, ii) -Oi, }

We will show that t = {ij : (i, j) E .Ax(o)} satisfies the constraints in Problem 5.1

and gives s* = 0. By the definitions of Rij and Di,, we have Rij(T) < i < Di,(T)

for all (i,j) c Ax(o) and thus s* = 0. For all (i, j) ++ (i, j') E D, assume without loss

of generality vehicle j enters conflict area i before vehicle j'. Then we know that at

t =- PJ', since xj(t, ft) = Oi,, we have xj,(t, i) < azj. That is, Pj, < tiy due to

the monotonicity. The constraints given in the definitions of P ,g are satisfied with
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the input signal ftj, thereby implying Pj PI,. Therefore, Pjj <T t, 3 .

(4-) Given a state (x(O), k(O)), there exists a schedule i satisfying the constraints

in Problem 5.1 and yielding s* = 0. Because Tij E [Ri,(T), Dij(T)] and Uj is

connected, there exists ftj E Uj that satisfies xj (T,, inj) = aij and xj (Pi ) = #ij
for all (i, j) C Al (o). For all (i, j) -+ (i, j') E D, we have Pj (T) < Ti,j if Tij 3 T, 3 .

Then, at t = P,'(J), we have xi(t, itj) = 3 ij while xy (t, iy) < ai,ji. This implies

that any two vehicles never meet inside a conflict area, that is, x(t, fi) V B for all

t > 0. l

Theorem 5.2. s* < s*

Proof. Suppose Problem 5.1 finds T* and k* with the corresponding cost s*, whether

or not s* = 0. We will show that t T* and k k* become a feasible solution to

Problem 5.2 with some P.

Given T*, we have Pi,j(T*) for all (i, j) E .A(O) according to the definitions in

(5.3) and (5.4). Consider Pjj = Pi,j(T*). Then P,j(T*) - TI* - ti,, is the time

to reach #,3 from aij and thus satisfies (P5.2.2). Constraint (P5.2.3) is the same as

constraint (P5.1.2) in Problem 5.1.

We will show that rij (f) < Ri, (T*) and Di, (T*) < di, (P). As mentioned earlier,

for (i, j) C F, rij = Rij and dij = Dij. For (i',j) -+ (i, j) E C, Rij is equal to Tj

plus the minimum time to reach acij from ai/,j by (5.1). Considering this definition

with (5.3) and (5.4), Rij is again equal to P, plus the minimum time to reach aij

from i,, thereby Rij > P,3 + (aij - 3 i',j)/Vj,m.a. Also, since Pi,, = P,, we have

Pi~j + (aij - i',J)/vj,ma. = ri,. Thus rij < Rij. Similarly, Dij < dij. By these

inequalities, Ri, < T*, implies rij < T * = ij, which is constraint (P5.2.1).

Therefore, t, p, and k is a feasible solution of Problem 5.2. Since Dij < di,,

s* < max (tij - dij , 0) < max(T73 - D(,T,0) = *.

Theorem 5.3. s* = 0 = s* = 0.

Proof. Suppose Problem 5.3 finds an optimal solution T-:* = {T * : (i, j) E F} and

{ki, : (j, j') E Di} that yields s* 0 given an initial condition (x(0), 5(0)). Be-

cause Tj* E [Ri, , Dij], there exists an input signal u(-) E Uj such that x3 (j*, j(-))=
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ai,3 . We define i and P as follows: for (i, j) C T, if xj (0) < ai,,

~e~ = T '7*,

Pii tmin(xj (0), j (0), 1ij j; ((T*,()) - ai,)

If xj (0) aij, let ij 0 and Pi,j = tmin(xj (0), 1j (0), 1ij).

For (i, J) C N (o) \ F with the first operation (i', i) E T,

Ti= tmin(Xj (0), y (0), aeij; Xj (TT, u ()) -a,),

Pijr= tmin(xj (0), (O), 0 ,; x (TT*, u(-)) -a,)

Note that F5,j is Pj (J) by the definitions in (5.3) and (5.4). We will show that t

and k = k* is a feasible solution in Problem 5.1 that yields s* = 0.

For constraint (P5.1.1) in Problem 5.1, since T * satisfies constraint (P5.3.1) and

Rij= Ri for all (i, j) E F, we have R, < Tij,. For (i,j) E Kx(o) \ F, we define

Tij as the minimum time to reach conflict area i, thereby tij = Rjj(T) by (5.1).

This establishes that R,3 < T, for all (i, j) E fix(o). For constraint (P5.1.2) in

Problem 5.1, let us compare tij and P,3 with ij (TF*) and Pj (TF*) in Definition

5.2. If xj (0) < aj,min, we have Ti, < ti,j and -Pj < P . If xj (0) > ajmin, we have

Tij = T, and Pj = P, because s= 0 implies Tf = for (i', j) E F. Thus,

constraint (P5.3.2) becomes

P,5 j Pj < i, + M(1 - k*, iy ( k*,)

pi', < pi, < i + M(1 - kij,5) < Teij + M(1 - kii,j).

That is, T and k = k* satisfy constraint (P5.1.2).

Now we have a feasible solution T and k in Problem 5.1. For (i, j) E Vx(o) \.F, we

have tij = Rij : Di,, and thus, max(ij)eKA(r(ij - D 0) = 0. For (i,j) E F,
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we have Dij < Di and the following inequalities complete the proof.

* < max (Tij - Dij, 0) = max (T j - Di, 0)
(iAE~rxo> (ij) C:

< max ('i - Dij, 0) = s*.
(iJ)EF

Therefore, if s* = 0, we have s* = 0.

Theorem 5.6. Algorithm 5-7 guarantees that the system's state never enters the

bad set, that is, x(t) V B for all t > 0, and is nonblocking.

Proof. By construction, the supervisor guarantees that the state never enters the bad

set. The supervisor allows the desired input signal if s* = 0 given the desired state.

This implies by Theorems 5.1 and 5.3 that there exists an input signal such that a

state trajectory starting from the desired state avoids the bad set. If s* > 0 given

the desired state, the supervisor takes temporary control of the drivers at the current

time to drive the system state to the state from which s* = 0.

We prove the nonblocking property of the supervisor by induction on time step

k. For the base case, assume SUPERVISOR(x(0), *(0), uO) # 0 and u' is well-defined,

i.e., there is a schedule to Problem 5.3 corresponding to s* 0 that defines u 1'U safe

using the map o-.. Suppose at time (k - 1)T,

SUPERVISOR(X((k - 1),T), k((k - 1)T), u) U 0,

and uk is well-defined. At time kT, for any un E U,

SUPERVISOR(X(kT), k(kr), uk) / 0

because it returns either uk or uk restricted to time [0, T). We need to show that uk+1

is well-defined in line 6 or line 12 of Algorithm 5-7. In line 6, since T* = {Th*:

(i,j) E T} yields s* = 0, we have Rij < Tj* < T) for all (i, j) C F, and thus, there

exists uj E U in the connected set Uj that satisfies xj(T'*, , , j) =cr1 . Thus,

o-(xk, Ik, TT*) is well-defined. In the case of line 12, we have that (x(kr), k(kr)) is
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either (x- 1 , k- 71) or (xk- 1, k-1) depending on the output of the supervisor at the

previous time step. In either case, there exists a safe input signal uk by the induction

hypothesis. Since the safe state (x , *S) is the state reached after time T with the

safe input signal uk, the safe signal uk restricted to time [, oc) guarantees that the

state starting from the safe state (xk, 5k) can avoid the bad set. By Theorem 5.1,

TF* yields s* = 0 and thus uk+ 1 is well-defined. El
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