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Abstract

Recent advances in stem cell research has demonstrated that the fate of a terminally
differentiated cell can be reverted back to pluripotency. The ability to reprogram a
differentiated cell back to its undifferentiated, pluripotent state would be a signif-
icant breakthrough for regenerative medicine. For example, lost or damaged cells
could be replaced by patient-specific reprogrammed cells, thus providing on-demand,
compatible, high-quality cells of any required type. However, current protocols for
reprogramming rely on simplified models that do not wholly capture system dynamics
and on inefficient transcription factor overexpression. We study a gene regulatory net-
work that determines the cell fate in the hematopoietic lineage and demonstrate that
a deterministic model cannot capture the experimentally observed system dynamics.
We also propose the use of feedback control to address inefficient reprogramming and
implement two configurations of the controller on both deterministic and stochastic
models of the Oct4-Nanog network. We also address practical issues such as place-
ment of the regulator and consider the effect of inducing or constitutively producing
microRNA on the protein steady-state distribution.
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Chapter 1

Introduction

There have been several recent advances in the stem cell field, with demonstrations

that the fate of a terminally differentiated cell, contrary to what was traditionally

believed, could be reverted back to pluripotency or directly converted to other dif-

ferentiated cell types. The ability to "reprogram" a differentiated cell back to its

undifferentiated, pluripotent state would be a significant breakthrough for regenera-

tive medicine. For example, lost or damaged cells could be replaced by patient-specific

reprogrammed cells, thus providing on-demand, compatible, high-quality cells of any

required type. Current reprogramming protocols are largely based on prefixed over-

expression of suitable transcription factors (TFs), with the rationale that this over-

expression could trigger transitions among the states of the gene regulatory networks

(GRNs) that take part in cell fate determination. Yet, despite a decade of remarkable

progress, the efficiency of these protocols remains low and the quality of produced

cells is often unsatisfactory. These issues pose a formidable obstacle to the practical

use of pluripotent stem cells.

A better understanding of the GRNs involved in this reprogramming process and

tighter control of TFs could potentially alleviate the current bottleneck. My thesis

work addresses both these factors: firstly, I studied and modeled one branch of the

hematopoietic cell lineage and secondly, I modeled and simulated a feedback controller

for better control of TF expression.

Hematopoietic stem cells (HSCs) have the ability to differentiate into any blood

13



cell and hematopoietic cell fate is thought to be determined by a series of discrete,

stable progenitor cells [42, 11, 311. Here we study the GRN of the first branching

step of HSC differentiation to platelets, specifically the PU.1 vs GATA-1 network.

Current deterministic models of this GRN do not predict experimentally observed

multistablity and we demonstrate that stochasticity is necessary to explain this be-

havior. A good understanding of this GRN is crucial for developing protocols that

could provide an unlimited supply of safer and higher quality platelet transfusion

product from human-induced pluripotent stem cells (hiPSCs). Platelet transfusions

from donors are currently the most popular method of treating thrombocytopenia

and other ailments that require an external platelet source. However, donor-derived

platelets have side effects (hemolysis, infection) and logistic problems (short shelf-

life). Using hiPSCs to directly produce platelets would address these issues, but a

better understanding of the GRN is required to guide an effective protocol.

We also seek to improve current reprogramming protocols that rely on TF overex-

pression by considering closed-loop feedback overexpression. This study is performed

on the Oct4-Nanog GRN, which is a subset of the Yamanaka factors (Oct4, Sox2,

Klf4, c-Myc) that have been shown to reprogram fibroblasts to pluripotency. We

created deterministic and stochastic models that incorporate regulator dynamics and

cell-cell variability. Simulation results demonstrate the efficacy of feedback control

compared to open-loop overexpression. The stochastic model was also used to opti-

mize the placement of the regulator gene and the type of expression (constitutive vs

inducible) of microRNA. This approach is novel and could replace current prefixed

overexpression protocols, leading to a fundamental shift in current cell fate repro-

gramming strategies.
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Chapter 2

Modeling hematopoietic cell fate

determination

2.1 Background

All mature, specialized blood cells have been shown to be derived from hematopoi-

etic stem cells (HSCs) through a differentiation process called hematopoiesis [5, 401.

Though there is currently no consensus on the mechanism that guides this pro-

cess, there is evidence supporting that hematopoiesis occurs in discrete steps where

each step is determined by the relative levels of certain transcription factors (TFs)

[42, 11, 31]. A stochastic increase in the relative expression level of one TF over an-

other at a cell lineage junction leads the differentiating cell down that corresponding

lineage [37, 26, 44]. A diagram of the hematopoietic cell lineage with multipotent

progenitor and specialized cells is shown in Fig. 2-1. HSCs have also been shown to

self-renew, meaning they not only give rise to all blood cell types, but also have the

ability to give rise to HSCs themselves without the need for differentiation, in a pro-

cess called maintenance. HSC transplants from bone marrows of healthy donors are

currently used in treatments of immune system disorders and some cancers because

of these two properties.

A good understanding of the gene regulatory network (GRN) that governs hematopoiesis

is critical to developing a model that can accurately predict the resulting specialized

15
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Figure 2-1: HSC lineage tree studied in [9]. In this study, we will discuss the lineage

determinant GRN of the Common Myeloid Progenitor (CMP) as it differentiates to ei-
ther the Megakaryocyte-Erythroid Progenitor (MEP) or the Granulocyte-Macrophage
Progenitor (GMP).

cell phenotype from an undifferentiated progenitor cell, subject to overexpression of

certain TFs. Here we study the GRN at the Common Myeloid Progenitor (CMP)

state, at which point the cell can either differentiate to the Megakaryocyte-Erythroid

Progenitor (MEP) or the Granulocyte-Macrophage Progenitor (GMP). Commitment

to the MEP or GMP phenotype results in the differentiation to the erythroid or

myeloid/lymphoid lineages, respectively [35]. Commitment to the MEP lineage re-

sults in the production of megakaryocytes, which shed into platelets.

Platelets are a component of blood that are primarily used to stop bleeding by

aggregating and clotting blood vessel injuries and are also responsible for vascular

integrity, immunity, and neoangiogenesis (formation of new blood vessels). Platelet

transfusions from donors are currently the most popular method of treating thrombo-

cytopenia and other ailments that require an external platelet source. In the US alone,

over 2 million platelet doses are transfused every year [1]. However, donor-derived

platelets have major potential side effects including hemolysis, infection, sepsis, aller-

gic reactions, and graft-vs-host diseases [431. Furthermore, platelets must be stored

at room temperature; cooling them causes them to lose their clotting ability. How-
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ever, room temperature storage increases the risk of bacterial infection leading to a

shelf life of just a few days and so donors are continuously being sought to renew

supplies that often go to waste. An alternative is to produce platelets directly from

human-induced pluripotent stem cells (hiPSCs) derived from universal donor type

platelets. The advantage of this method is that hiPSCs, like HSCs, have the ability

to self-renew, and so once a colony of hiPSCs is grown, they can, in theory, be allowed

to proliferate without a need to replenish their supply. Secondly, since these hiPSCs

would be obtained from universal donor type platelets, there would be no issue with

infections or graft-vs-host diseases that need to be considered when using current

platelet transfusions. Lastly, this could potentially provide an unlimited supply of

safer and higher quality platelet transfusion, if there were a protocol to force the hiP-

SCs to differentiate into platelets (as opposed to other specialized blood cells). Here

we study the GRN that governs the differentiation of the HSC or hiPSC at the CMP

state into either MEP and GMP.

Literature indicates that the TFs PU.1 and GATA-1 regulate the differentiating

HSC into either the myeloid/lymphoid or erythroid lineages, respectively [54, 33].

These 2 TFs have been shown to transcriptionally self-activate and interact antago-

nistically [54, 33, 531 as pictorially depicted in Fig. 2-2. Arrows and blunt-end arrows

represent transcriptional activation and repression, respectively. The expression level

of GATA-1 has been shown to increase down the hematopoietic lineage from HSCs

to MEPs and the TF is a key regulator of erythroid genes [8, 31. Similarly, PU.1 ex-

pression increases as cells differentiate to the myeloid/lymphoid lineage [35] and has

been shown to be critical for myeloid cell regulation. Early progenitor cells around

the CMP stage have been shown to have relatively low levels of GATA-1 and PU.1

compared to more differentiated cells [3, 23J. A stochastically-driven increase in the

concentration of either PU.1 or GATA-1 may perturb this balance and tip lineage

commitment to either myelopoiesis or erythropoiesis [53, 13].

The PU.1-GATA-1 network has been extensively studied since the early 2000s

[54, 33, 53]. Previous models of the PU.1-GATA-1 GRN in the literature make as-

sumptions on the biological interaction between the TFs to explain the biologically

17
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Figure 2-2: PU.1-GATA-1 GRN demonstrating self-activation and mutual repression.

expected bistable property of this GRN, in which one stable state corresponds to

high levels of GATA-1 and low levels of PU.1 and vice-versa. However, some of these

assumptions have not been experimentally validated. Specifically, the studies in [41]

and [221 assume high cooperativity of TFs (n=2 and 4, respectively), though mutual

repression and self-activation have been shown to occur primarily in their monomeric

form [20, 10, 54]. The model presented in [61 introduces a hypothetical protein X that

transcriptionally represses PU.1 and is activated by GATA-1, which has not been ex-

perimentally identified. The model studied in [48] assumes both TFs can directly

bind to each others' promoter sites and transcriptionally repress each other but this

has not been shown. In this paper, we consider a set of biomolecular reactions for the

system, in which none of these assumptions are made. Interestingly, we mathemati-

cally demonstrate that the corresponding ODE model is monostable, which does not

agree with experimental results demonstrating that the network should be capable of

exhibiting two phenotypes, high GATA-1, low PU.1 (MEP) and low GATA-1, high

PU.1 (GMP).

2.2 Modeling assumptions for the PU.1 vs GATA-1

GRN

The list of modeling assumptions (and evidence) used to derive the deterministic

model are:

" PU.1 and GATA-1 transcriptionally self-activate their respective production

[36, 341.

* PU.1 represses GATA-1 production by binding to the complex formed by GATA-

1 and its promoter. This complex forms repressive chromatin structure effec-

18



tively silencing transcription (the PU.1-GATA-1 complex has been shown to be

present at repressed GATA-1 target genes) [45, 28].

" Similarly, GATA-1 represses production of PU.1 by binding to it on its target

genes and prevents the recruitment of co-activators (such as cJun), which are

critical for PU.1-mediated transcriptional activation 128, 541.

" PU.1 cannot directly bind to the GATA-1 promoter. [54] reports that PU.1

blocks GATA-1 activation without affecting GATA-1 mRNA, protein expres-

sion, or nuclear translocation.

" GATA-1 cannot directly bind to the PU.1 promoter. [71 reports two GATA-1

binding sites on the PU.1 locus, a -18 kb site, which has not been shown to have

a functional regulatory role, and a -17 bp site that potentially transcriptionally

represses PU.1 production. However, [361 reports that the -14 kb PU.1 URE

(to which GATA-1 cannot directly bind) is significantly more critical than the

proximal promoter (which includes the -17 bp GATA-1 binding site) in myeloid

cell line 416B for PU.1 expression. Therefore, here we only consider the con-

tribution of the PU.1 URE (either activation or repression when bound with

GATA-1).

" All TF interaction occurs in their monomeric form. ETS TFs, such as PU.1 typ-

ically bind as monomers (both to DNA and other proteins) [20]. Though there

is evidence of GATA-1 dimerization [10], it exists primarily in its monomeric

form. In particular, GATA-1 self-activation and binding to PU.1 occurs only in

its monomeric form [10, 54].

" The promoters of both TFs are leaky [36, 34].

" Protein production occurs in a one-step process (no intermediary mRNA dy-

namics).
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2.3 Modeling primer

Here we demonstrate an example of how to model biochemical reactions using mass

action kinetics. Consider the following reaction where two species, A and B interact

to form species C at a forward rate a and reverse rate d:

A + B ,a ' kC (2.1)
d

The most common model for reaction networks is a deterministic model [17]. It assigns

to each species a state variable corresponding to its concentration. The time-evolution

of a species' concentration is given by an ordinary differential equation (ODE). Mass

action kinetics dictates that the rate of a chemical reaction is proportional to the

product of the concentrations of the reactants. Therefore, the dynamics of this system

is given by:

A = dC - aAB, (2.2)

= dC - aAB, (2.3)

= aAB - dC. (2.4)

Several TFs have been shown to transcriptionally activate or repress the production of

other TFs by interacting with the promoter sites of the target TFs. Activation occurs

when the complex formed by the TF and the promoter increases the transcription rate

of the target TF. Conversely, repression occurs when the previous complex silences

transcription. When modeling the concentration of promoters in their on or off states,

we typically assume that DNA is conserved (i.e., the total promoter concentration is

constant). Consider protein A that transcriptionally activates itself as shown in Fig.

2-3. Let the unbound promoter be represented by P0 and the protein A and promoter

complex given by P1. By conservation of DNA we find Po +P = PT, where PT is the

20



total number of promoter sites. The reactions for this system are given below:

P, + A',\ P1, (2.5)
d

P1 -÷P, +A, (2.6)

A >0. (2.7)

Equation 2.5 refers to reversible reaction formed by the unbound promoter P and

protein A to form P1. Equation 2.6 describes the production of protein A. Note

that here we model this as one-step protein production, but protein is generally

produced from messenger RNA (mRNA) in a process called translation, which is in

turn produced from the gene, in a process called transcription. Equation 2.7 refers

to dilution of protein A. Since cells grow and their volumes increase, a species with

a constant number of molecules decreases in concentration. This is modeled with a

dilution term. The ODEs that describe this system are given below:

A= aP1 - 6A + dP1 + aAP, (2.8)

Po = dP - aAPo, (2.9)

1 = aAPo - dP. (2.10)

We are often concerned with reducing the dimension of our ODE model. Since protein

dynamics are significantly slower than binding reactions [4], we can reduce this system

to a single ODE that describes the dynamics of A. Using the conservation of DNA,
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Figure 2-3: Self-activating protein.

we can calculate the steady-state values of PO and P1 .

PO + P1 =.PT, (2.11)

P, = dAPO (2.12)
a

dA + P = PT (2.13)
a

PO = (2.14)
1 + A/Kd'

(2.15)

This leads to the dynamics of A given by:

Al= aP- 6 A. (2.16)
1 + A/Kd

We note the Hill function form of the activation term ( Al). This indicates that for

A/lKd << 1, we operate in a linear regime where the activation term is roughly aPTA

If there is a lot of protein A in the system, we find that the Hill function saturates

(lKd 1) and the activation term approaches aPT. In this regime, additional A

does not increase its production rate since its promoter is saturated.

2.4 Model reactions

In this section, we use the same modeling principles in Section 2.3 on the biological

system described in Section 2.2. The reactions that describe this system are given

22
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below. Here po, shown in Fig. 2-4(a), and go are the unbound promoters of TFs PU.1

(P) and GATA-1 (G):

Po+ P , Pi, (2.17)
do

go + G , g1 , (2.18)
do

a,
pi + G P2, (2.19)

di

g1 + P ,al g 2 , (2.20)
di

Po Po + P, (2.21)

go -n- go + G, (2.22)

Pi Pi + P, (2.23)

g1 -- > g1 + G, (2.24)

P & > 0, (2.25)

G G(2.26)

The reversible binding reactions between the unbound promoters (po and go) and

their TFs (P and G) to form complexes pi (shown in Fig. 2-4(b)) and gj, respectively

are given by (2.17)-(2.18). Reactions (2.19)-(2.20) describe the formation of complexes

P2 and g 2 by reversible binding of G(P) with p1 (g1 ), respectively. These complexes

represent the "off" state of the promoter wherein the gene is silenced as shown in

Fig. 2-4(c) for P2. Reactions (2.21) and (2.22) describe the leaky promoter one-step

production of P and G with rates apo and ago, respectively. P(G) is produced at rate

api(agi) when it is bound to its promoter as shown in reactions (2.23)-(2.24). Lastly,

reactions (2.25)-(2.26) describe the decay of both transcription factors. Since the

genes are self-activating, we have apo < api and ago < a,. To simplify the model,

we assume that there is no expression from the repressed P2 and g 2 configurations.
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(a) (b) (c)

Figure 2-4: Promoter states: (a) po representing leaky production, (b) pi with self-
activated production, and (c) P2 when the promoter is fully repressed.

2.5 Deterministic Model

Using mass action kinetics, the ODEs that describe this system are given below:

P = apip1 - 6pP + dop1 - aopoP + d1g2 - a1g1P, (2.27)

S= ayg1 - 6GG + d'0g1 - a'0goG + d'1p2 - a'1p1G, (2.28)

o = d'gi - a'goG, (2.29)

yi = aogoG - d'g1 + d1g2 - alg1 P, (2.30)

92= aig1P - dig2, (2.31)

Po = dop1 - aopoP (2.32)

P1 = aopoP - dop1 + d'1p2 - alp G, (2.33)

P2 = a' p 1G - d'P2. (2.34)

Here we once again use the conservation of DNA given by:

PO +PI +P2 =PT, (2.35)

go + 1 + g2 =-gT. (2.36)
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Once again using the fact that protein dynamics occurs on a slower scale than binding

reactions, we obtain the reduced model describing the dynamics of PU.1 and GATA-1.

apoPT + K p

P + + PG JPP (2.37)
Kd KdKd1

* 'g09T + C G
=Kd G -6GG, (2.38)

1+ I+ PG _ G
Kd KdKd K l

The number of steady states of this reduced system is the same as the number of

steady states in the original network. Setting the derivatives to zero and performing

algebraic manipulations results in a quintic equation. It is not easy to show directly

that this equation has a unique solution for all possible choices of kinetic parameters.

Thus, in order to determine the number of positive equilibria, we use the advanced

deficiency algorithm developed in [14, 16, 24], and implemented in the "Chemical

Reaction Network" toolbox [151. When the algorithm is applied to our network, it

shows that it cannot admit multiple positive equilibria for any combination of kinetic

parameters. Hence, the deterministic model cannot explain the bistable behaviour

observed experimentally [35, 8, 3].

2.6 Conclusions

Deterministic models are usually justified under the assumptions of sufficiently large

volume and sufficiently large number of molecules [27], or, under some conditions such

as fast promoter kinetics [251. In such cases, an ODE model captures the system's

dynamics, and it produces a similar qualitative behaviour to the one produced by the

stochastic model. However, these assumptions are not usually satisfied in practice

due to the fact that cell-fate GRNs have usually very low gene copy numbers. Fur-

thermore, in such cells, transcriptional regulation is often mediated by an additional

regulation layer dictated by DNA methylation and histone modifications, commonly

referred to as chromatin dynamics. For example, the presence of nucleosomes makes

binding sites less accessible to TFs and therefore TF-gene binding/ unbinding is modu-
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lated by the stochastic process of chromatin opening [38, 30, 501. Several experiments

have confirmed the role of the aforementioned complex transcription processes in slow

promoter kinetics [39, 49, 29, 521. Therefore, the qualitative behaviour produced by

deterministic models can be erroneous. We are currently preparing a paper that con-

siders the stochastic version of this chemical network and analytically construct the

stationary distribution to show that this distribution is indeed capable of admitting

a multiplicity of modes.
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Chapter 3

Feedback overexpression to

reprogram the Oct4-Nanog GRN

3.1 Background

The state of a multistable gene regulatory network (GRN) can be determined by the

concentration of the transcription factors (TFs) that make up the network. Wadding-

ton's view of cell differentiation [51] consists of cells, represented by balls, that roll

down a landscape of bifurcating valleys as shown in Fig. 3-1. Each valley represents

a possible cell fate and the ridges between the valleys maintain the cell fate once it

has been chosen. A cell in its pluripotent state occupies the top of this landscape.

Normal development consists of a pluripotent or multipotent progenitor cell differ-

entiating to a committed cell state naturally over time. Reprogramming consists of

forcing a differentiated cell up the landscape to its pluripotent state. Transdifferentia-

tion consists of directly reprogramming a cell to a different state without intermediary

reprogramming to the pluripotent state.

According to Waddington, each stable state of a GRN can be represented by a

particular cell phenotype and the transitions between the phenotypes are triggered by

external stimuli or noise. Our ability to trigger these transitions is dependent upon

how well we can artificially stimulate the GRN [21]. The current method of triggering

changes in cell phenotypes is by overepxressing certain TFs above their endogenous
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Normal development Reprogramming to pluripotency Direct reprogramming
(Dedifferentiation) (Transdifferentiation)

Key * Pluripotent cell state * Differentiated cell state Cells of another lineage

Figure 3-1: Waddington's view of cell differentiation [46]. A: Normal development
consists of a pluripotent or multipotent progenitor cell differentiating to a differenti-
ated cell state naturally. B: Reprogramming consists of forcing a differentiated cell
up the landscape to its pluripotent state. C: Transdifferentiation consists of directly
reprogramming a cell to a different state without intermediary reprogramming to the
pluripotent state.

level [18]. Here "endogenous" refers to the cell's natural GRN without any artificial

modifications. However, the success rate of protocols that rely on overexpression

remains low and once an experiment begins, the TF levels cannot be adjusted [32].

[12] suggests that the low reprogramming efficiency from TF overexpression is be-

cause there is no general guarantee that a GRN's dynamics will allow transitions to a

desired target state under the imposed stimuli. Here we propose a method for artifi-

cially enabling transitions between stable states that does not depend on the natural

network's dynamics and would allow for more efficient reprogramming.

The goal of this project is to reprogram fibroblasts to efficiently generate high qual-

ity human-induced pluripotent stem cells (hiPSCs) by using feedback overexpression

of certain TFs, in particular Oct4, Sox2, Klf4, and c-Myc (OSKM factors). These 4

OSKM TFs have been shown to induce reprogramming to iPSCs from fibroblasts [47].

Here we study a model of the Oct4-Nanog GRN and develop a feedback controller to

arbitrarily place the steady-state of Oct4 and Nanog. The purpose of using models

is to address questions regarding the optimization of virus construction and to study

how various parameters affect the distribution.
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3.2 Endogenous system model

We began this analysis using a tristable network incorporating the Nanog-Oct4 GRN,

developed in [121 and pictorially represented in Fig. 3-2. Arrows represent transcrip-

tional activation and blunt-end arrows represent transcriptional repression. The ex-

ogenous inputs ui and U2 in Fig. 3-2 are the synthetic signals that directly increase

the concentration of Nanog and Oct4, respectively. The list of reactions for this GRN

is given in [12] and the coupled ODEs that describe the dynamics endogenous network

with the exogenous inputs are given below (O=Oct4, N=Nanog):

K aOoo + oi(+) 2 + a2(N ) 2 + a03( )2

O6=1 + ( ()2 + (L)2 + (NO )2 + u 2 - 0 (3.1)
01 101lk2 ok02

= Ho+ u 2 - 7O, (3.2)
60

K NO + aNl(k )2 + ckN2( ) + aN3 N O 2N = N 1(+ )2( 2 kN2 + kNkN2 ] + U 1 - 'YNN, (3.3)
N Ni kN2) L N27 kN~kN 2

KN HN + ul - -NN, (3.4)
6N

where the Hill function terms for Oct4 and Nanog are represented by HO and HN,

respectively. The above system is tristable and the three stable equilibrium points cor-

responds to the trophectoderm (TR), the desired pluripotent state (PL), and primitive

endoderm (PE). Fig. 3-3 plots the transfer curves for Nanog and Oct4, which show

the stable steady states for each level of inducer concentration. Since the addition

of inducer to the system changes the GRN's dynamics, the steady states themselves

change. Both the Nanog and Oct4 transfer curves demonstrate that the PE state is

accessible for all inducer values and that the TR and PL states are only accessible for

sufficiently low inducer concentration. Furthermore, note that the PE state represents

the high steady state for Oct4 but is intermediate in terms of Nanog expression (there

is no requirement for a steady-state to have the same relative expression levels of all

TFs in the GRN). Also note the disparity in the change of inducer for the system to

have multiple steady states to switch to a single steady state. For u1 (Nanog overex-
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Figure 3-2: Nanog-Oct4 GRN showing transcriptional interactions between the TFs

[12]. ui and u2 are the inducers for Nanog and Oct4, respectively.

pression), the TR state is lost for low inducer values and the PL state is attainable

for a wide range of u1 . However, the behavior of both TR and PL states are quite

similar for u2 .

Fig. 3-4 plots the steady-state that a trajectory initialized at 0 converges to for a

given inducer concentration. The single circle around 40 nM for Oct4 represents the

PL state demonstrating that it would be extremely difficult to guide the system to

pluripotency if one were to use U2 to control the system.

3.3 Controller dynamics

Here we propose the use of feedback control to arbitrarily place the steady-state of

TFs, so that upon removal, the system converges to the desired steady-state. The

reason we choose to not use direct overexpression is because we have shown that

overexpressing Oct4 or Nanog may lead the system to overshoot and converge to

the undesired PE state. Implementation of this feedback control requires the use of

lentiviral constructs that are inserted into cells. These constructs are pieces of DNA

that use cell machinery to produce proteins, which can act as input signals (activation

or repression) for other processes in the host cell. Specifically, feedback overexpression

involves using microRNA to degrade the mRNA of the TF we wish to control (high

gain negative feedback) and overexpression of the same TF.

For simplicity, we will consider a bistable system of a protein X, that transcrip-

tionally activates itself. We would like to control the concentration of X from its

low state by feedback overexpression so that it is within the stability region of its

high state and so once the controller is removed the endogenous system converges

to the desired high state. Though for this toy system, overexpressing X sufficiently
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will cause it to converge to its high state we use this model as an example on how to

implement similar control for the Oc4-Nanog GRN.

The endogenous system is bistable and is initialized with its concentration in the

stability region of the low state. The controller, which consists of the microRNA

gene and synthetic x, gene with copy number no is introduced making the system

monostable. We aim to arbitrarily place the concentration of the total TF in the sta-

bility region of the high state by only controlling the production rate of the synthetic

mRNA. Upon removal of the controller (setting the synthetic TF to 0), we hope to

show that the steady-state value of the endogenous TF concentration approaches that

of the high state.

The reactions describing this system are given below. Here xe is the endogenous

gene that produces mRNA, me at a rate ao as shown in Equation 3.5. Equations 3.6

and 3.9 represent the production of X from me and m, respectively at rate K. The

TF dimerizes (Equation 3.7) and binds to xe in Equation 3.10. Equation 3.8 describes

the production of synthetic mRNA, m. Here since we have assumed that it is consti-

tutively produced, we represent its production by the copy number of its DNA, which

is no. Its rate of production is a, which is the input to the system. Here we assume

that the promoter is inducible by an external inducer and that a is proportional to

the inducer concentration. The microRNA, s is constitutively produced from a dif-

ferent vector with copy number ni (Equation 3.14) and enzymatically degrades both

synthetic and endogenous mRNA, ms and me respectively, after reversible binding in

Equations 3.12 and 3.11. The dilution reactions are given in Equations 3.15-3.19.
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X

xe * + Xe + me,

me ,me + X,

X+x A X2 ,
d

2 + xe + Cl,
d*

me +S - C3 -+" s,
d

Ms + s

C1

ni

me

ms

s

x

X2

a

d

-4

-4

-4

3s-4

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

C4 -1j4 S,

C 1 + me,

ni + s,

0,

0,

0,

0,

0.

The ODEs that describe the endogenous and controller system are given below:
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Xe = d* C1 - a*xe X 2 ,

he = ao Xe + ai C1 - 6m me + d' C3 - a' me s,

Xz= (m + mns) - 6x X + 2 dX 2 - 2 a X 2,

X 2= a X 2 - dX 2 + d* C1 - a*xe X 2 - 6x X 2 ,

nIs = ano - 6,m m. + d' C4 - a' m s,

Ci = a* xe Xe2 - d* Ci,

d3 = a me s - d' C 3 - 6c C 3 ,

d4 = a ms s - d' C4 - c C4 ,

S = a 2 ni - 6. s + d' C3 - a' me s + 6 c C3 + d' C4 - a I Is + 6 c C4.

Using conservation of DNA, Xe + C1 = XT we find the equilibrium value of the species

a 2n 1

04 a mas
d + 6c'
ano

MS = ,

Xe =
XT

1+

C1-Xe 
x

x
2

XX2

KdI1

Xao + Cel (X 2 )
me () Kdl d

Y2 1+ Kd IK7

where 'Yi =rm + a'sjeq(1 -- d+ c)' 72 -- + a's e(1 - ). This leads to the
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following reduced system:

XTK a + al X
2

Kno + _ )___ 6 Xx (3.36)
71 2 1 + Kd X

The first term in X is from the production of X by the controller (synthetic X) and

the second term is Hill function representing the transcriptional endogenous activation

by X. We can rewrite this as:

K1a K<2
i +- H(X) - JxX (3.37)

Y1 7Y2

with constants K, ~ no, K2 . Increasing the amount of microRNA and the synthetic

promoter strength corresponds to increasing n, and a, respectively because Y1, 7Y2

C1 + C2 n1 for positive constants C1, C2. Therefore, for large ni1 , a we have:

~ Kla - 6xX (3.38)
7Y1

and so Xieq ~K2. In order to drive X to a desired equilibrium point, we require

a and n, sufficiently large and that a/71l becomes a non-zero constant. As a sanity

check we can see if ni = 0, _Y1, Y2 = m and we recover the endogenous system with

constitutive synthetic production. Now, if we remove the microRNA degradation of

m. (remove Equation 3.12) so that the controller only degrades me, the X dynamics

are given by:

Kano XTK / 0  a1X
2

x = + ( ) KdK* _ -XX (3.39)
6m 7Y2 + X',1

Rewriting this as:
= K 1 a K<2X= - H(X) - xX (3.40)

6m Y2

Here just increasing ni is sufficient to ensure that:

Kla
K ~ -6xX (3.41)
6m
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and so Xleq ~ Kja, which is unique and controllable from a. Note here there is no

requirement for increasing a with Y1, Y2. Now, if we remove microRNA degradation

of me (remove equation 3.11), we would expect to not be able to control Xieq. The

X dynamics are of the form:

K1a K2X + H(X) - 6xX (3.42)

This matches our intuition since here we shut down the synthetic production of X by

increasing both a and ni.

Applying the same controller reactions (for endogenous mRNA degradation only)

to the endogenous Nanog-Oct4 network results in the following dynamics

o= HO + KO 2 - 70, (3.43)
Go

S= N HN - KNUl -YNN. (3.44)
GN

The parameters, Go and GN are increasing functions of microRNA steady state and

so for sufficiently large amount of microRNA, the endogenous network is shut down:

0 KoU 2 - 7YO0, (3.45)

N KNui - _YNN. (3.46)

The steady-state of this system is linear with respect to the inputs u1 , U2 . For the

system with microRNA degradation of both endogenous and synthetic mRNA, the

protein dynamics are of the form:

KO Kou 20 --- Ho + - - y00, (3.47)
Go Go

= _N HN + KNUl - 7NN. (3.48)
GN GN

Here we note that for large microRNA degradation, the inputs a 1 , U2 also need to be

relatively large to have any appreciable change on the Oct4 or Nanog steady-state.
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From this analysis, it appears that the controller with endogenous mRNA degrada-

tion has the benefit of not only being able to produce linear input-output system

response but also requiring significantly less input than the system with degradation

to both synthetic and endogenous mRNA. However, in reality, the vector copy number

varies from cell to cell (i.e., not every cell will receive no copies of the synthetic gene)

and so we need to address the robustness of this controller to this form of stochasticity.

3.4 Multiplicity of infection

The multiplicity of infection (MOI) is the ratio of the total number of infectious agents

(e.g., lentiviruses with synthetic Oct4 and microRNA gene) to infection targets (e.g.,

cells). The protocol to infect a colony of cells with a desired MOI is given below

(adopted from [2]):

" Seed a fixed number of cells into each well (e.g. 75,000 cells in each well of a

6-well dish) by:

1. Diluting cells in media (e.g. dilute 525,000 cells into 14 mL of DME media)

2. Mixing well by pipetting/inverting

3. Adding 2 mL of cell suspension to each well (e.g. (2mL/14mL) x 525,000

cells = 75,000 cells)

" Incubate the cells overnight.

" If using freshly collected virus, use a filter to remove cells/debris. If using frozen

virus, rapidly thaw in warm water bath. At this point the concentration of the

virus stock is unknown.

" Prepare dilutions of virus (1:10, 1:100, 1:1000, etc.) in same DME media.

" Add the viral dilution to each well of cells that were grown overnight and incu-

bate for 48-72 hrs.
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" Calculate the percent of fluorescent-positive cells in each well (MOI). Only con-

sider wells with <40% fluorescent-positive cells. Here we assume 1 integration

event per cell because for >40% fluorescent-positive cells, we risk counting cells

with multiple integration events per cell.

" Calculate the titer (transduction units/mL) of the original virus stock using the

dilution factors (method 1) or virus volume (method 2).

1. Method 1: TU/mL = (Number of cells transduced x Percent fluorescent

x Dilution Factor)/(Transduction Volume in mL). Method 1 example: If

the 1:100 well has 25% fluorescent cells and 150,000 cells were originally

transduced, then there are (150, 000 x 0.25 x 100)/(1.5 mL) = 2.5 x 106

TU/mL

2. Method 2: TU/mL = (Number of cells transduced x Percent fluores-

cent)/(Virus volume in mL). Method 2 example: If 15 pL of virus is

added to 150,000 cells resulted in 25% fluorescent cells, then there are

(150, 000 x 0.25)/(0.015 mL) = 2.5 x 106 TU/mL

3. For an accurate titer, take the average of multiple dilutions.

" Now that the titer is known, to get a desired MOI for a certain number of cells,

pick the appropriate volume of the virus stock (e.g. say titer was calculated to

be 105 TU/mL and we want MOI=10 for 100 cells, we need 10 5 TU so take 1

mL of virus stock and add it to plate of cells (volume of virus stock = MOI x

cells/titer)).

The variation in vector copy number is modeled as a Poisson distribution with the

multiplicity of infection (MOI) as the Poisson parameter. The intuitive reason for this

is because if we had 100 balls (infectious particles) that are randomly thrown in 10

boxes (cells), the probability that a given box has n balls is Poisson with parameter

10.
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3.5 Modeling cell-cell variability using Poisson pa-

rameter

A numerical study was performed with the vector copy number having a Poisson

distribution. Initially, two configurations of the controller (for both Oct4 and Nanog)

were studied: degradation of endogenous mRNA only and degradation of both en-

dogenous and synthetic mRNA. For simplicity, we assume that the microRNA and

TF genes are on the same vector with copy number n and we adjust the promoter

strength of the microRNA to change the microRNA steady-state. We found that for

sufficiently strong mRNA degradation, there is approximately a linear input-output

relation between the inducer concentration and the mean of the protein distribution

for both controllers as shown in the deterministic model. However, in the system with

just endogenous mRNA degradation, the distribution widens as inducer concentration

increases. This occurs because the microRNA shuts down the endogenous network

but there is no control of the variation in vector copy number of the synthetic gene

as shown by the following dynamics:

=o Kou20 = Ho +  - -00, (3.49)
Go 6M

N = HN + KNU - NN. (3.50)
GN 6M

Once again Go, GN are increasing functions of the microRNA steady-state (for Oct4

and Nanog, respectively) and so the Oct4 steady-state is of the form:

0 = KO2, (3.51)
6,n60

= Cnu2 , (3.52)

for some positive constant C. Here we find that the Oct4 steady-state (and Nanog)

is proportional to the Poisson random variable n. In particular, there is no way to

control for this variation from the input U 2 .

In the case with both endogenous and synthetic mRNA degradation, this variation
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in copy number is accounted for leading to a tighter distribution. This is reflected in

the system dynamics of the form:

O = K Ho + KOU2 _-yoo, (3.53)
Go Go

= N HN + KNUl -NN. (3.54)
GN GN

For large Go, GN, the Oct4 steady-state is given by:

0 KoU 2  (3.55)
Go~yo'

n U 2  (3.56)

1+ na2' (-6

where a2 is the microRNA production rate and is assumed to be large. Therefore,

the cost of degrading the synthetic mRNA is that the inducer concentration (u1 , u2 )

needs to be significantly larger to produce any appreciable change in the Oct4 steady

state value. Here the parameters, Go and GN are of the form C1 + C2n (C1, C2 > 0),

and KO and KN are of the form C3 n (C3 > 0).

The Oct4 steady state concentration for a cell population (N=500) infected with a

lentivirus (MOI=10) containing both the synthetic Oct4 gene and the microRNA gene

as a function of inducer concentration (U 2 ) is shown in Fig. 3-5. The left plot is the

open-loop case (no microRNA), the middle plot is for endogenous mRNA degradation

only, and the right plot is for both endogenous and synthetic mRNA degradation. For

no inducer, the distribution of all 3 plots indicate the cells are in the initial TR state.

For the open-loop case, increasing the inducer slightly results in a small proportion

of cells converging to the desired PL state (parameter values were chosen so that this

population was roughly 1% of cells). Increasing the inducer concentration resulted

in the cell population converging to the undesired PE state. For the system with

endogenous mRNA degradation, there is a spreading out effect in cell population.

This is because the Oct4 steady-state is a scaled version of a Poisson distribution,

which only has probabilities associated for non-negative integers. The distribution

of the model with degradation to both endogenous and synthetic mRNA retains the
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input-output linear response of the mean but is significantly tighter.

3.6 Regulator dynamics

Until this point of analysis, the inducer was modeled to directly increase the Oct4

steady-state concentration without limit. This assumption was then relaxed to ac-

commodate a more realistic model of gene activation. A regulator gene is also inserted

in the lentivirus that produces a protein TetR, which dimerizes in the presence of the

inducer (the true input to the system). The complex of 2 TetR molecules and 1 Dox

molecule can bind to the promoter of and activate the synthetic Oct4 gene. Fig. 3-6

demonstrates the two experimental choices for where to place the regulator: on the

same or different vector as the Oct4 gene. In the different vector case, the copy num-

ber of the regulator vector is no and that of the Oct4 gene is n1 . This was done to

answer if it was better to place the regulator and gene on the same (1V) or different

vectors (2V).

3.6.1 Regulator model

Here we consider a toy model incorporating the regulator and inducer that produces

synthetic Oct4 (i.e., no endogenous GRN). TetR (T) can dimerize only when bound

to the inducer, Dox (D) and the resulting complex binds to the synthetic Oct4 pro-

moter (Po). The activated promoter (P1 ) produces mRNA (m). For simplicity we

also assume no inducer dynamics and so binding to the promoter does not affect its

concentration: this is reasonable if D is large and we are operating in a saturating

inducer region (explained later). The reactions for the same vector configuration are
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Figure 3-5: Distribution of steady-state Oct4 concentration in cells as a function of

Oct4 inducer overexpression for top: no microRNA, middle: endogenous Nanog
and Oct4 mRNA degradation bottom: endogenous and synthetic Nanog and Oct4

mRNA degradation-. The steady-state vales of the tristable endogenous systems are

also shown (TR = trophectoderm, PL = pluripotent, PE = primitive endoderm).
N=500, MOI=10.
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Figure 3-6: Schematic of regulator and inducer used to control expression of synthetic
Oct4. Regulator and Oct4 on same (top) and different (bottom) vector.

given below:

n -% n + T, (3.57)

T+D a C1, (3.58)
d

T+C1 + C2, (3.59)
d

C2 + POa P1, (3.60)
d

P1 - - P1 + m, (3.61)

m - m + 0, (3.62)

0L 0, (3.63)

m L 0, (3.64)

T 0, (3.65)

C1 0, (3.66)

C2 L 0. (3.67)
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The ODEs that describe this system include:

O = ao m - 60 0, (3.68)

rh = am P1 - 6m m, (3.69)

P1 = a C2 PO - d P1 , (3.70)

'T'= aT n - T T + d C1 - a T D + d C2 - a T C1, (3.71)

01 = a T D - d C1 + d C2 - a T C1 -6c C1, (3.72)

2 = a TC1 - dC2 +dP 1 - a C2 PO -6cC 2 , (3.73)

I = d C1 - a T D - 6D D. (3.74)

Using conservation of DNA (PO + P1 = n) we can show (Kd = 4:

PO = (3.75)

C2 /KdP = n C 2 K (3.76)
1 + C21Kd

For binding significantly faster than dilution (d >> 6), we can show the equilibria of

C2 and C1 as:

C = D (3.77)
Kd

TO1 = T 2D
Kd K . (3.78)

From Tq =T we find:

a n2
D

0q ( 6 6 )n 2TD

6T

1 + n - (3.80)n1 +n2D (-0
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For the case of different vectors the form of the equilibrium 0 is given by:

Oeq n1 ( ) (3.81)1-F 2~I + noD

Here we note a difference from our previously assumed activation term given by:

O = KonD - -yO. (3.82)

In particular, activation is now a Hill function term and so for low inducer levels

(noD << 1) it is linear, but after the promoter is saturated (nrD >> 1), increasing

the inducer concentration does not change the Oct4 steady-state. To summarize, the

dynamics for the two configurations in consideration are given (for the 1V case):

Dn 2
O = Kon n 2  - 0, (3.83)

6 + Dn -

where n is the copy number of the vector. The 2V dynamics is given by:

Dn 2
O = Kon 2 - 0, (3.84)1 + Dno

where no and ni are the copy numbers of the regulator and Oct4 gene vectors, respec-

tively. A configuration was deemed better if it had a smaller coefficient of variation

(CV) for a given mean and is given by:

CV(X) E[X2 - (3.85)
E[X]

for a random variable X (in our case, it would be the steady-state value of Oct4). We

simplified the analysis by assuming that the microRNA had completely shut down the

endogenous network so we are only concerned with the steady-state distribution of

the synthetically produced Oct4. The CV for the 1V model is calculated by assigning

each probability of a Poisson distribution to the corresponding Oct4 steady-state.

For example, let the Oct4 steady-state be a function, f, given by (for the 1V and 2V
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cases, respectively):

n2D
f(n,u32 ) =n 1-,nD (3.86)

njD
f(n, U2 ) = nil + n2D. (3.87)

Let the MOI=A. The probability mass function (pmf) of the random variable n is

Poisson and given by:

P(n = n*) =AnA (3.88)
n*!

The pmf of f(n) is given by P(n) since the transformation from n = 0, 1, ... to f(n)

is one-to-one (f(n)-is monotone increasing in n).

The CV for the 2V model involves making a grid of no = 0, ... , No and n= 0, ... , N1

values that we would expect to contain significant probabilities (No, N >> MOI).

The join distribution is calculated for every combination of no, n, and multiplying

the value at every grid location with the corresponding Oct4 steady-state gives us the

mean. Fig. 3-7 plots the ratio of the CV for the 2V to 1V models as a function of

MOI and inducer concentration (u).

Here MOI is plotted from 1-10, which are experimentally realizable values over a

wide range of inducer concentrations. For large MOI and inducer values, we find that

the ratio approaches 1. This agrees with intuition since for large MOI and inducer

concentrations, the Hill function term of f(n) given by iDD saturates and f(n) n,

f (no, ni) ~ n1 . Since both n and n, are the same distribution, it would make sense

that their CVs match. It is perhaps difficult to explain the trend in other regions of

the CV plot until we look at Fig. 3-8. Here we plot the ratio of the means of the

2V and IV models. To make a valid comparison between both models, the means

must be equal. This is only satisfied by the large inducer and high MOI region of

the plot where the mean ratio is 1. At every other point, we find that for the same

inducer concentration, the mean for the 2V model is lower than its corresponding 1V

configuration. A lower mean can skew the CV to be larger for the same standard
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Figure 3-7: CV ratio (2V/1V) for regulator dynamics as a function of MOI and

inducer concentration (u).

deviation.

Instead of numerically finding inducer levels that yield the same mean for a given

MOI across the 1V and 2V models, we instead plot the analytic pmfs of both models

to find a trend. Examples of these plots are shown in Fig. 3-9, where the MOI is

changed from MOI=1,5,10. The pmfs of both the 1V and 2V models are shown in red

and blue, respectively. The inducer values are adjusted to ensure that the mean for the

1V and 2V models are the same. We find that for MOI=1 and MOI=5, the 2V model

has a smaller CV compared to the 1V model for the same mean. We find that if the

MOI is not sufficiently large, the 2V case can give a lower CV compared to IV because

there is a higher probability of having values closer to the mean of the distribution.

Consider the comparison of the CV of two models Y = X2 and Y2 = X1 X 2 , where

X, X 1 , X 2 are the same distribution (Poisson with same parameter) but independent.

Note that the values of Y can only take on squares 0, 1, 4, 9, 16, 25, 36, ... while Y2 can

take any non-negative integer value. This means there exist combinations of X1, X2

that have relatively high probabilities that are much closer to the mean compared to

the Y case and a result we would expect it to have a smaller CV for a given mean.

We now proceed to study the CV of the 2V model. In particular we ask if it is
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Figure 3-8: Mean ratio (2V/1V) for regulator dynamics as a function of MOI and
inducer concentration (u).

favorable to have the regulator on the lower or higher copy number vector compared to

the synthetic Oct4 gene vector. To do so, distributions from the 2V model were chosen

with roughly the same mean as shown in Fig. 3-10. The 3D plot is of Y2 = n11i

and represents the form for the steady-state of Oct4 with no, n1 being the copy number

for the regulator vector and Oct4 vector, respectively. We use this plot to determine

combinations of no and ni that result in a similar mean.

We find that the CV of the 2V case is more sensitive to the MOI of the regulator

and decreases rapidly as this MOI is increased as shown in Fig. 3-11. This is because,

for low inducer levels, the Oct4 steady state is roughly proportional to the square of

the regulator MOI (D=inducer concentration):

0 ni nD(3.89)

n i2D. (3.90)

For low MOI (MOI<5) there is a relatively high probability for the Oct4 steady

state to be zero even though the mean is relatively large. This Oct4 zero steady-state

concentration increases the CV of the distribution. This is captured in the yellow
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Figure 3-10: Oct4 steady-state as a function of no, ni used to determine copy numbers

of the regulator and synthetic gene vectors yielding the same mean.

curves of Fig. 3-11, where no is relatively small (=2) and so there is a significant

probability that the vector copy number of the regulator is 0. When this happens,

there can be no Oct4 in the system and so its steady-state is 0. However, since

0 ~ n0, there is still a significant probability for ng = 4 and this "stretches" the

distribution, increasing the CV for a given mean. However, we find that the Oct4

steady-state is not significantly affected by n1 . The blue plot represents relatively

low copy number for the Oct4 gene and even for ni = 3, we find that the CV of the

distribution is comparable to the distribution with intermediate values of both no, ni

as shown in red. This is once again because of the difference between the linear and

squared relationship for n1 and no. Fig. 3-12 plots the CV as a function of MOI,

which is calculated as follows (E is the expected value):

QE[n2 ] - E[]
CV(n) = E (3.91)

E[n]

CV(n2) - E[n2] (3.92)
E[n 2]

We find that for a given MOI, the CV of n is always less than n 2 and that for both

cases, the CV decreases monotonically as MOI increases.

In summary, for sufficiently large MOI, the CV is identical for the 1V and 2V
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Figure 3-11: Analytic pmf of steady-state Oct4 distribution for 2V for various combi-
nations of regulator (no) and Oct4 gene (n1 ). Top: For roughly the same mean, we
find the CV for the yellow curve with no = 2 to be roughly twice that of distributions
with intermediate MOI. Bottom: CV is not as sensitive to low Oct4 vector MOI
(blue) compared to regulator vector MOI (yellow).
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models. If the MOI and inducer concentration are sufficiently low, the CV for the 2V

model is lower than the 1V case. For the 2V case, the CV is more sensitive to the

MOI of the regulator and decreases rapidly as this MOI increases.

3.7 MicroRNA dynamics

The next question to answer is whether to constitutively express microRNA or have it

inducible by the same Dox-TetR complex that activates the Oct4 gene. Here we derive

a model for constitutively-expressed microRNA (p) from the biochemical reactions,

assuming the microRNA is on a different vector (with copy number no) than the Oct4

gene (with copy number ni):
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no -22 no + /j, (3.93)

n, -21+ n, + mn, (3.94)

M+Pa C P, (3.95)
d

m - m + 0, (3.96)

0 -Ie> 0, (3.97)

C -- 4 0, (3.98)

m L 0, (3.99)

P -L+ 0. (3.100)

The ODEs that describe this system is given by:

A = aono - tpt + dC - amp + &C, (3.101)

rh = aini - mm + dC - amp, (3.102)

C = amp - dC - KC- cC, (3.103)

O = a 0m - 600. (3.104)

Using the model reduction techniques used in previous sections, the dynamics that

describe the concentration of the mRNA with constitutively-expressed microRNA is

given by:

rn/Km
r = aini - 6mm - Kno- ,/Ki (3.105)

1 + M/Km)

where Km = d+K+6c. The mRNA dynamics with the regulator described in thea

previous section and constitutively-expressed microRNA is given by (assuming the

regulator gene is on the same vector as that Oct4 gene):

n 1D
2  rn/Km

mr = ini- 2  6mm - 1no / , (3.106)
1 + niD I1+ mn/K,.
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Similarly, for inducible microRNA, the dynamics of mRNA is given by:

S=Dni 2  - 5mm - Kno r/Km n ,D2  (3.107)ma + ll D 1 + m/Km1+rniD

We study these two models of microRNA (Dox-inducible and constitutive) and com-

pare their CVs with the model without microRNA and the results are summarized

below.

3.7.1 Comparison of CV for models with constitutive and no

microRNA

We find that the CV of the constitutive microRNA model is lower than that of the

model without microRNA for a given mean if m/Km << 1 or if K is sufficiently large.

If m/Km << 1, this reduces Equation 3.106 to:

m
rn = cin1H(D) - mn - Kno , (3.108)

K H

where H(D) = 1D . Solving for the mRNA steady-state yields:

M-ain1H(D)(319rnno

The mRNA steady-state of the system without microRNA is given by:

S= aiH(D) (3.110)

We find that the n term is effective in decreasing the CV of the distribution when

compared to the free ni term in the model without microRNA. K is the degradation

catalytic constant and needs to be sufficiently large for the Kni U1 g term to be
1+mr/Km em ob

significant. In simulation, this was satisfied as long as K was larger than dilution, 6m,

which is realistic.

The conditions for the CV of the constitutive microRNA model to be greater

than that of the no microRNA model for a given mean include m/Km -, >> 1, low
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Figure 3-13: Comparison of analytical pmfs of Oct4 mRNA steady-state distribution

for models with constitutive microRNA (top row) and without microRNA (bottom
row). The CVs and mean are shown for each distributions and we compare the two
models having the same mean (column by column comparison). We find that there

are parametric regions where the CV for the constitutive microRNA case is larger

than that of the CV for the model without microRNA.

inducer concentration (H(D) should not be saturating) and small r. When all these

conditions are met, the tail of the distribution for the constitutive microRNA case

becomes large as shown in Fig. 3-13. Here the 4 plots on the first row are the mRNA

pmfs with constitutive microRNA and the 4 plots on the second row are the mRNA

pmfs with no microRNA for approximately the same mean.

To see why this happens, we plot the mRNA steady-state as a function of n. The

steady-state for Equation 3.106 is given by (assuming microRNA, Oct4, and regulator

genes are all on the same vector with copy number n):

-7 + V2 +4anH(D)6m/Km (3.111)
Z011m/ AM

j n - anH(D)

Km
(3.112)

To compute the mean of this distribution, we perform a dot product of the vector

m(n) for n = 0, 1, ... , N with the Poisson pmf vector of parameter MOI and sum

56

El



x105

0 10 20 30 40 50
n

Figure 3-14: mRNA
offset ramp function

steady-state
form.

as a function of n for Km = 10 demonstrating the

10 20 30 40 50
n

Figure 3-15: mRNA steady-state as a function of
smoother, monotonically increasing function.

n for Km = 10' demonstrating a

57

10

8

EL
E

6

4

2

n

x10
10

8

LL11
E

6

4

2

0
0



the resultant vector (N >> MOI to ensure we capture the whole distribution).

Typically, as n increases, m(n) increases, but the probability of these values for large

n are so small, they do not affect significantly affect the mean (and CV). However, for

the conditions above, we find the mRNA steady-state vs n plot resembles an offset

ramp function as shown in Fig. 3-14 for MOI=10. At n = 10, m(n) = 4 but for

n = 20, m(n) = 200 and the mRNA steady-state values quickly reaches 105 . For the

same parameters (inducer, r,) but large Km = 105 , we find this plot is significantly

smoother as shown in Fig. 3-15. Here the corresponding values for n = 10, 20 are

m(n) = 1.9 x 104 , 1.1 x 105 , which is less than an order of magnitude closer than the

previous case. The CV for this distribution is, as a consequence, significantly lower

than the model with intermediate Km.

3.7.2 Comparison of CV for models with constitutive, inducible,

and no microRNA

We find that the CV for the constitutive microRNA case is the lowest, followed by

the inducible microRNA and then the no microRNA case if m/Km << 1. In this

regime, the microRNA degradation term in rh is smaller for inducible microRNA

than constitutive microRNA since it is scaled by 0<H(n)<1 and not as effective in

degrading the mRNA as reflected in the equations:

MconstitHtive = ,(D) (3.113)
Em + Km

ci 1 H(D)
minducible = .H(D) (3.114)

jm + H(D)nno

Depending on the inducer concentration (i.e., if the promoter is far from saturation)

the difference in CV between the constitutive and inducible microRNA case can be

significant. Conversely, if the target mRNA level reached is reached for saturating

inducer (H(D) ~ 1), the CV for both models are similar.

If m/Km ~,>> 1, we find that the CV for the inducible microRNA model is

lower than the CV for the constitutive microRNA for the same mean. Once again,
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this is because in this regime the mRNA vs n plot for the constitutive microRNA

case resembles the offset ramp function. This behavior is not observed in the system

with inducible microRNA because the microRNA level scales with mRNA (unlike

constitutive microRNA system) since they are activated by same complex.

3.7.3 Realistic parameter values

We find that typical values of Km = 8 nM [19]. We would like to be operating

in the saturating inducer regime when the mRNA levels reach the PL state, which

corresponds to mtarget = 2 nM. This corresponds to m/Km = 0.25, which satisfies the

m/Km < 1 requirement. Preliminary experiments have shown up to 60% reduction

in mRNA level in pluripotent stem cells, and so r, = 5 nM was used in simulation.

For these parametric values, we find that the CV for both inducible and constitutive

microRNA cases are similar and are lower than the case without microRNA. Fig.

3-16 shows representative pmfs of mRNA steady state at the target level (2 nM) for

the models with no microRNA, constitutive and inducible microRNA, respectively.

We find that the CV for both microRNA models is significantly lower (0.3) compared

to the model with no microRNA (0.8).

3.8 Conclusions

The goal of this study was to determine the best configuration for a feedback controller

to reprogram a differentiated cell back to pluripotency. We considered the Oct4-

Nanog GRN, a crucial component of the OSKM transcription factors that have been

shown experimentally to trigger a transition from adult cells to induced pluripotent

stem cells (iPSCs). iPSCs derivation is typically an inefficient process (0.01 - 0.1%)

and this study seeks to improve the current protocol of overexpressing the 4 TFs.

We propose the implementation of a feedback controller by lentiviral constructs that

shut down the endogenous GRN by microRNA-mediated mRNA degradation and

synthetic gene overexpression. We developed a deterministic model and studied two

controllers: one with pure endogenous mRNA degradation and the other with degra-
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dation to endogenous and synthetic mRNA. For this deterministic scenario, we found

that both controllers shut down the endogenous network for sufficiently large mi-

croRNA copy number and have a linear input-output relationship from inducer con-

centration to protein steady-state. However, the system with degradation to both

mRNA requires significantly higher inducer concentration for any appreciable change

in protein steady-state since we are effectively degrading the same protein that we

are inducing.

Stochasticity in the form of the vector copy number as a Poisson random variable

is then introduced. We find that the coefficient of variation (CV), defined as the ratio

of the standard deviation to the mean, is large for the system with just degradation to

the endogenous network. This is due to the microRNA not being able to control (via

degradation) the synthetically produced protein copy number. Conversely, the model

with degradation to both mRNA produces a much tighter distribution of protein

steady-state.

We revisit the assumption of being able to increase the production rate of the

synthetic protein in a linear manner without bound. Modeling the dynamics of the

regulator and inducer and how the complex interacts with the promoter of the Oct4

gene leads to a Hill function activation term, which is approximately linear for low

inducer concentration but eventually saturates. We then ask if it is beneficial to place

the regulator on the same vector as the synthetic gene or a different one. We find that

for sufficiently large MOI, the CV is identical for the 1V and 2V models. If the MOI

and inducer concentration are sufficiently low, the CV for the 2V model is lower than

the lV case. For the 2V case, the CV is more sensitive to the MOI of the regulator

and decreases rapidly as this MOI increases.

We then study whether it is beneficial to either constitutively express microRNA

or place it under the control of the same complex that activates the synthetic gene.

We find that under certain parametric regimes, the model for constitutively expressed

microRNA demonstrates significantly large CV, which is undesirable. This does not

appear in the case for the inducible microRNA. For the parametric region of interest,

we find that there is no practical difference between the two configurations of the
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microRNA in terms of the CV, which is lower than the no microRNA case.
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