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Results are reported from a search for long-lived particles in proton-proton collisions at
ffiffiffi

s
p ¼ 13 TeV

delivered by the CERN LHC and collected by the CMS experiment. The data sample, which was
recorded during 2015 and 2016, corresponds to an integrated luminosity of 38.5 fb−1. This search uses
benchmark signal models in which long-lived particles are pair-produced and each decays into two or
more quarks, leading to a signal with multiple jets and two displaced vertices composed of many tracks.
No events with two well-separated high-track-multiplicity vertices are observed. Upper limits are placed
on models of R-parity violating supersymmetry in which the long-lived particles are neutralinos or
gluinos decaying solely into multijet final states or top squarks decaying solely into dijet final states. For
neutralino, gluino, or top squark masses between 800 and 2600 GeV and mean proper decay lengths
between 1 and 40 mm, the analysis excludes cross sections above 0.3 fb at 95% confidence level. Gluino
and top squark masses are excluded below 2200 and 1400 GeV, respectively, for mean proper decay
lengths between 0.6 and 80 mm. A method is provided for extending the results to other models with
pair-produced long-lived particles.

DOI: 10.1103/PhysRevD.98.092011

I. INTRODUCTION

Many theories for physics beyond the standard model
(SM) predict the pair production of long-lived particles
decaying to final states with two or more jets. Some
examples include R-parity violating (RPV) supersymmetry
(SUSY) [1], split SUSY [2], hidden valley models [3], and
weakly interacting massive particle baryogenesis [4].
Searches for long-lived particles significantly expand the
parameter space of physics beyond the SM probed by the
experiments at the CERN LHC.
This analysis is sensitive to models of new physics in

which pairs of long-lived particles decay to final states with
multiple charged particles. We present results for two
benchmark signal models, as well as a method for applying
the results more generally. The “multijet” benchmark signal
is motivated by a minimal flavor violating model of RPV
SUSY [5] in which the lightest SUSY particle is a
neutralino or gluino, either of which is produced in pairs.
The neutralino or gluino is long-lived and decays into a top
antiquark and a virtual top squark, and the virtual top
squark decays into strange and bottom antiquarks, resulting

in a final state with many jets. The “dijet” benchmark signal
corresponds to an RPV phenomenological model in which
pair-produced long-lived top squarks each decay into two
down antiquarks [6]. The diagrams for the multijet and dijet
signal models are shown in Fig. 1.
The experimental signature of long-lived exotic particle

pairs is two displaced vertices, each consisting of multiple
charged-particle trajectories intersecting at a single point.
In this analysis, a custom vertex reconstruction algorithm
identifies displaced vertices in the CMS detector. We focus
on signals with intermediate lifetimes, corresponding to
mean proper decay lengths cτ from 0.1 to 100 mm, by
identifying vertices that are displaced from the beam axis
but within the radius of the beam pipe. The signal is
distinguished from the SM background based on the
separation between the vertices: signal events have two
well-separated vertices, while background events are domi-
nated by events with only one displaced vertex, usually
close to the beam axis.
The CMS Collaboration searched for displaced vertices

in proton-proton (pp) collisions at a center-of-mass energy
of

ffiffiffi

s
p ¼ 8 TeV in 2012 [7]. This analysis is an updated

version of the search, using pp collisions collected at
ffiffiffi

s
p ¼ 13 TeV. It improves upon the previous analysis,
because of better background suppression along with a
refined procedure for estimating the background and the
associated systematic uncertainties. A similar analysis was
performed by the ATLAS Collaboration [8]. The ATLAS,
CMS, and LHCb Collaborations have also searched for
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displaced jets or leptons [9–17], displaced photons [18],
and displaced lepton jets [19]. The analysis reported here is
sensitive to shorter lifetimes than those probed by previous
analyses.

II. THE CMS DETECTOR

The central feature of the CMS detector is a super-
conducting solenoid providing a magnetic field of 3.8 T
aligned with the proton beam direction. Contained within
the field volume of the solenoid are a silicon pixel and strip
tracker, a lead tungstate electromagnetic calorimeter, and a
brass and scintillator hadron calorimeter. Muon tracking
chambers are embedded in the steel flux-return yoke that
surrounds the solenoid. A more detailed description of the
CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be
found in Ref. [20].
The silicon tracker, which is particularly relevant to this

analysis, measures the trajectories of charged particles in
the range of pseudorapidity, η, up to jηj < 2.5. For non-
isolated particles with transverse momentum, pT, of 1 to
10 GeV and jηj < 1.4, the track resolutions are typically
1.5% in pT, 25–90 μm in the impact parameter in the
transverse plane, and 45–150 μm in the impact parameter
in the longitudinal direction [21]. Jets are reconstructed
from particle-flow [22] candidates using the anti-kT algo-
rithm [23,24] with a distance parameter of 0.4.
Events of interest are selected using a two-tiered trigger

system [25]. The first level is composed of custom

hardware processors, and the second level consists of a
farm of processors running a version of the full event
reconstruction software optimized for fast processing.

III. EVENT SAMPLES

The data sample used in this analysis corresponds to a
total integrated luminosity of 38.5 fb−1, collected in pp
collisions at

ffiffiffi

s
p ¼ 13 TeV in 2015 and 2016. Events are

selected using a trigger initially requiring HT > 800 GeV,
where HT is the scalar sum of the pT of jets in the event
with pT > 40 GeV. In the last data-taking period of 2016,
corresponding to 22% of the total integrated luminosity, the
higher instantaneous luminosity required the HT threshold
to be raised to 900 GeV.
Simulated events are used to model the signal processes.

In the multijet and dijet signal models, long-lived particles
are produced in pairs; the “multijet” and “dijet” refer to the
decay of each long-lived particle. For the multijet signals,
the long-lived particle is a neutralino that undergoes a
three-body decay into top, bottom, and strange quarks.
In this analysis, the final results are the same if the
neutralinos are replaced with gluinos. For the dijet signals,
the long-lived particle is a top squark that decays into
two down antiquarks. Signal samples with various neu-
tralino or top squark massesm (300 ≤ m ≤ 2600 GeV) and
lifetimes τ (0.1 ≤ cτ ≤ 100 mm) are produced using
PYTHIA 8.212 [26] with the NNPDF2.3QED parton dis-
tribution functions [27].
Backgrounds arising from SM processes are dominated

by multijet and top quark pair production (tt̄) events.
The multijet processes include b quark pair production
events. The multijet and tt̄ events are simulated using
MADGRAPH5_AMC@NLO 2.2.2 [28] with the NNPDF3.0
parton distribution functions [29], at leading order with
MLM merging [30] for the multijet events and at next-to-
leading order with FxFx merging [31] for the tt̄ events.
For all samples, hadronization, showering, and R-hadron

physics are simulated using PYTHIA 8.212. The under-
lying event tunes used are CUETP8M1 [32] for the signal
samples and the multijet background samples, and
CUETP8M2T4 [33] for the tt̄ samples. The detector
response for all simulated samples is modeled using a
GEANT4-based simulation [34] of the CMS detector. The
effects of additional pp interactions within the same or
nearby bunch crossings (“pileup”) are included by over-
laying additional simulated minimum-bias events, such that
the resulting distribution of the number of interactions per
bunch crossing matches that observed in the experiment.

IV. EVENT PRESELECTION

For an event to be selected for further analysis, it must
have at least four jets, each with pT > 20 GeV and
jηj < 2.5. Since the final states for the signal models
considered all have at least four quarks, this requirement
has little impact on signal events but is beneficial in
suppressing background.

FIG. 1. Diagrams for the multijet (upper) and dijet (lower)
benchmark signal models used in this analysis. In the multijet
signal model, long-lived neutralinos (χ̃0) or gluinos (g̃) decay into
top, bottom, and strange antiquarks, via a virtual top squark (t̃). In
the dijet signal model, long-lived top squarks decay into two down
antiquarks. The charge conjugate processes are also considered.
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To ensure that the efficiency of the HT trigger is well
understood, a stricter requirement of HT > 1000 GeV is
applied offline, where HT is the scalar sum of the pT of
jets with pT > 40 GeV, to match the trigger jet definition.
For events with at least four jets and HT > 1000 GeV,
the trigger efficiency, determined using events satisfying a
trigger requiring the presence of at least one muon,
is ð99� 1Þ%.

V. VERTEX RECONSTRUCTION AND
SELECTION

Displaced vertices are reconstructed from tracks in
the silicon tracker. These tracks are required to have
pT > 1 GeV; measurements in at least two layers of the
pixel detector, including one in the innermost layer; mea-
surements in at least six layers of the strip detector if jηj < 2,
or in at least seven layers if jηj ≥ 2; and significance of the
impact parameter with respect to the beam axis measured in
the x-y plane (themagnitude of the impact parameter divided
by its uncertainty, referred to as jdxyj=σdxy) of at least 4. The
first three criteria are track quality requirements, imposed in
order to select tracks with small impact parameter uncer-
tainties. The requirement on track jdxyj=σdxy favors vertices
that are displaced from the beam axis.
The vertex reconstruction algorithm forms seed vertices

from all pairs of tracks satisfying the track selection criteria,
and then merges them iteratively until no track is used more
than once. A set of tracks is considered to be a vertex if a fit
with the Kalman filter approach [35] has a χ2 per degree of
freedom (χ2=dof) that is less than 5. Subsequently, for each
pair of vertices that shares a track, the vertices are merged if
the three-dimensional distance between the vertices is less
than 4 times the uncertainty in that distance and the fit has
χ2=dof < 5. Otherwise, the shared track is assigned to
one of the vertices depending on the value of its three-
dimensional impact parameter significance with respect to
each of the vertices: if both values are less than 1.5, the
shared track is assigned to the vertex that has more tracks
already; if either value is greater than 5, the shared track is
dropped from that vertex; otherwise, the shared track is
assigned to the vertex with respect to which it has a smaller
impact parameter significance. If a track is removed from a
vertex, that vertex is refit, and if the fit satisfies the
requirement of χ2=dof < 5, the old vertex is replaced with
the new one; otherwise it is dropped entirely.
This procedure produces multiple vertices per event,

only some of which are signal-like. In order to select
vertices with high quality, we impose additional require-
ments: each vertex is required to have at least five tracks; a
distance from the detector origin measured in the x-y plane
of less than 20 mm, to avoid vertices from interactions in
the beam pipe or detector material; a distance from the
beam axis measured in the x-y plane, defined as dBV, of at
least 0.1 mm, to suppress displaced primary vertices; and
an uncertainty in dBV of less than 25 μm, to select only
well-reconstructed vertices. The requirement on the

uncertainty in dBV also suppresses displaced vertices from
single b jets, which are composed of tracks that are mostly
aligned with the vertex displacement from the beam axis
and have small opening angles between the tracks.
Since signal events contain a pair of long-lived particles,

we require events to have two or more vertices satisfying
the above requirements. The signal region is composed
of these two-vertex events. Simulation predicts there is on
the order of 1 background event in the signal region for
38.5 fb−1 of data. However, establishing the possible
presence of a signal relies on an accurate determination
of the background, and for this we rely on data.
The vertex selection requires each vertex to have five or

more tracks, but events with vertices with three or four
tracks provide valuable control samples. These control
samples, which are used to test the background prediction,
have a factor of 10–100 more background events than in the
signal region and negligible potential signal contamination.
Simulation studies show that events containing 3-track,
4-track, and ≥ 5-track vertices have similar distributions of
event variables, such as HT, number of jets, and quark
flavor composition, as well as vertex variables, such as dBV,
uncertainty in dBV, and angular separation between tracks.

VI. SEARCH STRATEGY

The signal is discriminated from the SM background
using the distance between the two vertices measured in the
x-y plane, which is defined as dVV. In signal events, the two
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FIG. 2. Distribution of the distance between vertices in the x-y
plane, dVV, for simulated multijet signals with m ¼ 800 GeV,
production cross section 1 fb, and cτ ¼ 0.3, 1.0, and 10 mm, with
the background template overlaid. All vertex and event selection
criteria have been applied. The last bin includes the overflow
events.
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long-lived particles are emitted approximately back-to-
back, leading to large separations. If an event has more
than two vertices, the two vertices with the highest number
of tracks are selected for the dVV calculation. In the case in
which two vertices have the same number of tracks, the
vertex with the higher mass is chosen, where the mass is
reconstructed using the momenta of the tracks associated
with the vertex, assuming that the particles associated with
the tracks have the mass of a charged pion.
We fit the distribution of dVV to extract the signal, using

templates to represent the dVV distributions for signal and
background. The signal dVV templates are taken directly
from simulation, with a distinct template for each signal
mass and lifetime. The background template is constructed

from events in data that have exactly one vertex, as
described in Sec. VII. Figure 2 shows examples of the
dVV distribution for simulated multijet signals with m ¼
800 GeV and production cross section 1 fb, with the
background template overlaid. The distributions depend
primarily on the signal lifetime; those for other signal
masses and for the dijet signals are similar. The small peaks
at low values of dVV are associated with events for which
the two vertices are reconstructed from the same long-lived
particle, with the effect being larger for the multijet signals.
In the signal extraction procedure, the dVV distribution is

broken into three bins: 0–0.4 mm, 0.4–0.7 mm, and 0.7–
40 mm. The two bins with dVV > 0.4 mm have low
background. This division maximizes the signal signifi-
cance for scenarios with intermediate and long lifetimes.
Figure 3 shows the signal efficiency as a function of

signal mass and lifetime in the region dVV > 0.4 mm. The
signal efficiency increases with increasing mass because
the events are more likely to satisfy the HT trigger
requirement. As lifetime increases, the signal efficiency
initially increases because of better separation from the
beam axis, but then starts to decrease when the lifetime is
so long that decays occur more often beyond the fiducial
limit at the beam pipe. The efficiency is above 10% for
cτ > 0.4 mm and m > 800 GeV.

VII. BACKGROUND TEMPLATE

Displaced vertices in background events arise from one
or more misreconstructed tracks overlapping with other
tracks. These events are dominated by multijet and tt̄
processes. The tracks can arise from light parton or b quark
jets, with those from b quark decays typically producing
slightly larger vertex displacements. Displaced vertices
composed of tracks from a single b quark jet are rejected
because of the vertex requirement on the uncertainty in
dBV. Background events with two vertices arise from
coincidences of misreconstructed vertices, whose displace-
ments are independent apart from small correlations due to
events with b quark pairs. Accordingly, we construct the
two-vertex background template, denoted by dCVV, by
combining information from events in data that have
exactly one vertex, and then correcting for possible
correlations between vertices. There are approximately
1000 times more events with only one vertex than there
are with two or more vertices, consistently for 3-track,
4-track, and ≥ 5-track vertices. Table I lists the number of
events in each of the event categories.
Each entry in the dCVV template is calculated from two

values of dBV and a value of ΔϕVV, where dBV is the
distance measured in the x-y plane from the beam axis to
one vertex, and ΔϕVV is the azimuthal angle between the
two vertices. The template also includes corrections for the
merging of nearby vertices in the vertex reconstruction
algorithm and for possible correlations between individual
vertices in background events with pairs of b quarks.
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FIG. 3. Signal efficiency as a function of signal mass and
lifetime, for the multijet (upper) and dijet (lower) signal samples.
All vertex and event selection criteria have been applied, as well
as the requirement dVV > 0.4 mm.
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The following paragraphs describe each of the inputs to the
dCVV template construction method.
The dBV values are sampled from the distribution shown

in Fig. 4 for the ≥ 5-track one-vertex events in data. The
distribution starts at 0.1 mm because of the fiducial
requirement imposed to avoid primary vertices, and falls
off exponentially. Signal contamination in the one-vertex
sample is negligible for values of the signal cross section
that have not been excluded by the previous similar
analysis [7].
The statistical uncertainty in the dCVV template, taken as

the root-mean-square of yields in an ensemble of simulated
pseudodata sets, depends on the number of entries in the
parent dBV distribution. To ensure sufficient sampling of
the tail of this distribution, the number of entries in the dCVV
template is 20 times the number of one-vertex events.

Values of ΔϕVV are approximated by sampling the
distribution of jets in data. Since background vertices arise
from misreconstructed tracks in jets, their position vectors
tend to be correlated with jet momentum vectors. The angle
between vertex positions can therefore be modeled using
the observed distribution of azimuthal angles between pairs
of jets, denoted as ΔϕJJ. The ΔϕJJ distribution used for the
dCVV construction is taken from the 3-track one-vertex
sample, which has a greater number of events than the
4-track and ≥ 5-track one-vertex samples. There are no
significant differences in the ΔϕJJ distribution among these
three samples.
To emulate the behavior of the vertex reconstruction

algorithm in merging overlapping vertices, the dCVV tem-
plate is corrected by the survival probability of pairs of
vertices as a function of dVV. This efficiency is estimated by
counting the number of remaining vertex pairs at each
iteration of the vertex reconstruction algorithm. The effi-
ciency correction suppresses small dCVV values, resulting in
a yield in the first dCVV bin that is lower by a factor of
approximately 2.
Pair production of b quarks introduces dBV correlations

in two-vertex events that are not accounted for when
pairing single vertices at random. This is because the
tracks from b quark decays are more likely to satisfy the
track jdxyj=σdxy requirement and therefore produce vertices.
In simulation, the mean dBV in events with b quarks is
higher than in events without b quarks by 47� 1 μm for 3-
track vertices, by 52� 3 μm for 4-track vertices, and by
50� 6 μm for ≥ 5-track vertices. The fractions of events
with b quarks are consistent across the 3-track, 4-track, and
≥ 5-track vertex samples: approximately 50% in one-vertex
events and approximately 78% in two-vertex events. We
determine corrections to the dCVV template for these dBV
correlations by constructing dCVV separately for simulated
background events with and without generated b quarks,
combining the distributions in the ratio of two-vertex events
with and without b quarks, and then dividing the resulting
distribution by the nominal dCVV template. The b quark
correction enhances larger dCVV values, resulting in a yield
in the last dCVV bin that is higher by a factor of 1.6� 0.4.
Evidence that the background template construction

method is valid is presented in the upper left, upper right,
and lower left plots in Fig. 5, where dCVV is compared to the
observed two-vertex dVV distributions in the low-track-
multiplicity control samples in data. There is good agree-
ment between the relative dCVV and dVV populations in each
of the three bins of the final fit. For example, in the 3-track
control sample, where this agreement is most stringently
tested, the ratios dCVV=dVV are 0.93� 0.06 in the 0–0.4 mm
bin, 0.97� 0.07 in the 0.4–0.7 mm bin, and 1.44� 0.20 in
the 0.7–40 mm bin.
The background template for the signal region is shown

in the lower right plot in Fig. 5.

TABLE I. Event yields in data. The “one-vertex” events have
exactly one vertex with the specified number of tracks, and the
“two-vertex” events have two or more vertices each with the
specified number of tracks. The control samples are composed of
the events with 3-track and 4-track vertices, the background
template is constructed using the ≥ 5-track one-vertex events, and
the signal region consists of the ≥ 5-track two-vertex events.

Event category 3-track 4-track × 3-track 4-track ≥ 5-track

One-vertex 109090 … 11923 1183
Two-vertex 478 99 7 1
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VIII. SYSTEMATIC UNCERTAINTIES

The signal yield is extracted from a fit of the signal and
background templates to the observed dVV distribution. The
free parameters are the normalizations of the signal and
background templates, subject to the constraint that their
combined yield matches the data. The result of the fit relies
on the relative yields in the three bins of the templates, but
is insensitive to the fine details of the template distributions.
This section describes the systematic uncertainties in the

background template. It also addresses the systematic
uncertainties in the signal efficiencies and templates.

A. Systematic uncertainties in signal efficiencies
and templates

The signal dVV templates are taken directly from
simulation of benchmark models with clearly specified
parameters, so the systematic uncertainties arise from
biases in the detector simulation and reconstruction. The

 (mm)VVd
0 0.5 1 1.5 2 2.5 3 3.5 4

E
ve

nt
s/

0.
1 

m
m

0

20

40

60

80

100

120

140

3-track x 3-track

Data

Background template

CMS

 (13 TeV)-138.5 fb

 (mm)VVd
0 0.5 1 1.5 2 2.5 3 3.5 4

E
ve

nt
s/

0.
1 

m
m

0

5

10

15

20

25

30

35

40

4-track x 3-track

Data

Background template

CMS

 (13 TeV)-138.5 fb

 (mm)VVd
0 0.5 1 1.5 2 2.5 3 3.5 4

E
ve

nt
s/

0.
1 

m
m

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4-track x 4-track

Data

Background template

CMS

 (13 TeV)-138.5 fb

 (mm)VVd
0 0.5 1 1.5 2 2.5 3 3.5 4

E
ve

nt
s/

0.
1 

m
m

0

0.5

1

1.5

2

2.5

3

3.5

4

5-track≥5-track x ≥

Data

Background template

CMS

 (13 TeV)-138.5 fb

FIG. 5. Distribution of the distance between vertices in the x-y plane in two-vertex events. The points show the data (dVV), and the
solid lines show the background template (dCVV) normalized to the data, for events with two 3-track vertices (upper left), one 4-track
vertex and one 3-track vertex (upper right), two 4-track vertices (lower left), and two ≥ 5-track vertices (lower right). In each plot, the
last bin includes the overflow events. The dotted lines indicate the boundaries between the three bins used in the fit.

A. M. SIRUNYAN et al. PHYS. REV. D 98, 092011 (2018)

092011-6



dominant source of uncertainty is due to the vertex
reconstruction efficiency. Smaller effects arise from track
resolution, pileup, jet energy scale and resolution, inte-
grated luminosity, and trigger efficiency.
The effect due to the vertex reconstruction efficiency is

evaluated by comparing the efficiency in data and simu-
lation to reconstruct signal-like vertices created by displac-
ing tracks artificially. In events passing the preselection
requirements (Sec. IV), we choose some number of light
parton and b quark jets that have pT > 50 GeV, jηj < 2.5,
and at least four particle-flow candidates. We then artifi-
cially displace the tracks associated with those jets as
described below.
The magnitude of the displacement vector is sampled

from an exponential distribution with scale parameter
cτ ¼ 10 mm, restricted to values between 0.3 and
20 mm. The direction of the displacement vector is
calculated from the vector sum of the momentum of the
jets. This direction is smeared to emulate the difference
between the vertex displacement direction and jet momen-
tum direction in signal events due to mismeasurements
from tracking inefficiency and missing neutral particles.
The track selection requirements and vertex recon-

struction algorithm are applied to the resulting set of tracks.
We then evaluate the fraction of events in which a vertex
satisfying all vertex selection requirements is reconstructed
near the artificial displacement position. This one-vertex
reconstruction efficiency is evaluated for different numbers
of displaced light parton or b quark jets. The largest
disagreement between data and simulation gives an
11.5% relative uncertainty in the one-vertex efficiency,
implying a 23% relative uncertainty in the two-vertex
efficiency. Varying the scale parameter of the exponential
distribution or the amount that the direction is smeared
within reasonable values has negligible effect on the
difference between data and simulation.
The difference in vertex reconstruction efficiency

between data and simulation could also depend on the
magnitude of the artificial displacement. This dependence
is found to be small, and the resulting difference in the
signal dVV templates has a negligible effect on the signal
yield extracted from the fit.
The selection of the tracks used in the vertex recon-

struction requires that each track has a value of jdxyj=σdxy of
at least 4. The efficiency of this requirement is sensitive to
the impact parameter resolution of the tracks. The mean
impact parameter uncertainty is 2% larger in data than in
simulation. The magnitude of this effect is quantified by
tightening the requirement on the transverse impact param-
eter significance by 2% and evaluating the change in the
signal efficiency. The maximum effect on the various signal
masses and lifetimes, 5%, is taken to be the systematic
uncertainty in the signal efficiency. This effect is corrected
for in the vertex resolution study discussed earlier.
The uncertainties in the jet energy scale and resolution

[36] could affect the total jet energy and change the

probability that events satisfy the HT selection. Varying
the jet energy scale by one standard deviation results in a
change in the signal efficiency of 5% or less for all signal
samples, and varying the jet energy resolution by one
standard deviation changes the efficiency by 2% or less. We
therefore assign these as the corresponding systematic
uncertainties in the signal efficiency.
The uncertainty in the integrated luminosity is 2.3% for

2015 [37] and 2.5% for 2016 [38]. The uncertainty in the
signal efficiency due to pileup is 2%. The uncertainty in the
trigger efficiency is 1%.
Table II summarizes the systematic uncertainties in the

signal efficiency. We assume there are no correlations
among them, and add them in quadrature to obtain the
overall uncertainty.

B. Systematic uncertainties in the background template

The dCVV background template is constructed from the
large sample of events in data with exactly one vertex.
Systematic uncertainties in the background template arise
from effects that could cause differences between the
constructed dCVV distribution and the true dVV distribution
of two-vertex background events. The 3-track control
sample is used to evaluate the scale of these differences.
The deviation from unity of the ratio of the predicted yield
in each bin of the dCVV template to the observed yield in the
same bin, which is referred to as the closure, is a measure of
the systematic uncertainty. Additional uncertainties arise
from effects that could compromise the validity of applying
the 3-track control sample to the ≥ 5-track sample.
We check the assumption that closure of the dCVV

construction method in 3-track vertices implies closure
in ≥ 5-track vertices by varying the inputs to the template
construction procedure and evaluating the resulting shifts in
the dCVV template. Constructing dCVV involves sampling two
values of dBV and an angle between vertices ΔϕVV, the
efficiency to keep pairs of vertices as a function of dVV, and
the b quark correction factors. Therefore, the main effects
are related to these distributions. We include additional
systematic uncertainties to account for possible differences

TABLE II. Relative systematic uncertainties in the signal
efficiency. The overall uncertainty is the sum in quadrature of
the individual uncertainties, assuming no correlations.

Systematic effect Uncertainty (%)

Vertex reconstruction 23
Track resolution 5
Jet energy scale/resolution 5
Integrated luminosity 3
Pileup 2
Trigger efficiency 1

Overall 24
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in dCVV predictions due to variations in these distributions
from 3-track vertices to ≥ 5-track vertices.
In background template construction, the ΔϕVV distri-

bution is modeled using the ΔϕJJ distribution in 3-track
one-vertex events. The ΔϕJJ distribution in ≥ 5-track one-
vertex events is indistinguishable from that in 3-track one-
vertex events. Potential bias could arise if the distribution of
angles between jets and vertices differ for 3-track and
≥ 5-track vertices. Indeed, the correlation between vertex
displacement directions and jet directions is smaller for
≥ 5-track vertices than for 3-track vertices. To probe the
impact, we construct dCVV using a variation of the ΔϕVV
input in which we assume that the displacement directions
are uncorrelated with the jet momentum directions and
draw ΔϕVV from a uniform distribution. We then assign the
fractional change in the dCVV prediction in each bin as the
systematic uncertainty.
The template also depends on the probability that pairs of

nearby vertices will both survive the vertex reconstruction
algorithm as a function of their separation dVV. The
efficiency to merge pairs of vertices is determined from
the vertex reconstruction algorithm. To assess the uncer-
tainty due to variations in this efficiency, we use a variation
of the algorithm in which the seed vertices are composed of
five tracks, rather than the usual two. We then construct a
variation of dCVV using the resulting efficiency curve and
take the fractional change in the dCVV prediction in each bin
as the systematic uncertainty.
The corrections to the dCVV template that account for dBV

correlations due to the pair production of b quarks are
derived using the fraction of simulated 3-track two-vertex
events with b quarks. This fraction could differ for ≥ 5-
track two-vertex events. To assess the related systematic
uncertainty, we recompute the b quark corrections using the
extreme case in which all two-vertex events contain b
quarks, and determine the fractional shifts in the dCVV yields
in each bin.
The statistical uncertainties in the b quark corrections are

also taken as systematic uncertainties in the template.
The systematic uncertainty in the background template,

dCVV, is estimated using a combination of the closure of the

constructionmethod in the control sample of 3-track vertices
and thedifference in effects from3-trackvertices to≥ 5-track
vertices. Table III lists the shifts arising from these compo-
nents for each of the three dVV bins, along with their
statistical uncertainties. The statistical uncertainties in the
shifts take into account the correlation between the default
template and thevariation. In assessing the overall systematic
uncertainty in the background template,we add in quadrature
the shifts and their uncertainties, assuming no correlations.

IX. SIGNAL EXTRACTION AND STATISTICAL
INTERPRETATION

To determine the signal yield, we perform binned shape
fits of the signal and background templates to the dVV
distribution using an extended likelihood method [39].
The background template is constructed from the one-

vertex events in data, while the signal templates are produced
directly using the dVV distributions from simulation. There is
one signal template for each signal model, mass, and lifetime.
The lower right plot in Fig. 5 compares the dCVV and dVV

distributions in the signal region. The observed number of
events in each bin, along with the predictions from the
background-only fit and from example signal models, are
listed in Table IV. The background-only fit normalizes the
prediction from the dCVV background template to the
observed number of two-vertex events. For the signal-
plus-background fits, the signal yield is constrained to be
nonnegative. Since there is only one two-vertex event in the
data, falling in the 0–0.4 mm dVV bin, the fits to the
observed distribution prefer zero signal yield.
Upper limits on the signal cross section are set using a

Bayesian technique [40]. A uniform prior is taken for
positive values of the signal cross section. The signal
efficiency is constrained by a log-normal prior with a width
of 24%, reflecting the overall uncertainty in the signal
efficiency (Table II). The only assumed uncertainty in the
shape of the signal templates is that due to the finite number
of events in the simulation; this uncertainty can be as large as
20% for the lower lifetime and mass samples that have
small efficiencies. For the uncertainty in the background,

TABLE III. Systematic shifts in the background prediction in each dCVV bin arising from varying the construction
of the dCVV template. The overall systematic uncertainty is the sum in quadrature of the shifts and their statistical
uncertainties, assuming no correlations among the sources.

Shift (%)

Systematic effect 0–0.4 mm 0.4–0.7 mm 0.7–40 mm

Closure in 3-track control sample −7� 6 −3� 7 þ44� 20
Difference from 3-track to ≥ 5-track vertices:

Modeling of ΔϕVV þ4� 0 −5� 1 −2� 3
Modeling of vertex survival efficiency þ20� 1 −19� 2 −26� 7
Modeling of b quark correction −11� 1 þ9� 2 þ18� 9

b quark correction statistical uncertainty �3 �9 �36

Overall systematic uncertainty 25 25 69
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FIG. 6. Observed 95% C.L. upper limits on σB2 for the multijet (left) and dijet (right) signals as a function of mass and mean proper
decay length. The upper plots span cτ from 1 to 100 mm, and the lower plots span cτ from 0.1 to 1 mm. The overlaid mass exclusion
curves assume gluino pair production cross sections for the multijet signals and top squark pair production cross sections for the dijet
signals, and 100% branching fraction.

TABLE IV. For each dVV bin in ≥ 5-track two-vertex events: the predicted background yield from the
background-only fit, the observed yield, and the predicted signal yields for simulated multijet signals with
m ¼ 2000 GeV, production cross section 1 fb, and cτ ¼ 0.3, 1.0, and 10 mm. The systematic uncertainties in the
predicted background yields reflect the fractional systematic uncertainties given in Table III, and the uncertainties in
the predicted signal yields reflect the fractional systematic uncertainty given in Table II.

Predicted multijet signal yields

dVV range Fitted background yield Observed 0.3 mm 1.0 mm 10 mm

0–0.4 mm 0.51� 0.01 ðstatÞ � 0.13 ðsystÞ 1 2.8� 0.7 3.5� 0.8 1.0� 0.2
0.4–0.7 mm 0.37� 0.02 ðstatÞ � 0.09 ðsystÞ 0 2.0� 0.5 3.7� 0.9 0.5� 0.1
0.7–40 mm 0.12� 0.02 ðstatÞ � 0.08 ðsystÞ 0 1.1� 0.3 11� 3 31� 7
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log-normal priors are taken for the yield in each bin, with
widths given by the fractional uncertainties listed in
Table III.
Figure 6 shows, as a function of lifetime and mass, the

observed 95%confidence level (C.L.) upper limits on the pro-
duct of the signal pair production cross section and the square
of the branching fraction for its decay (σB2) for both the
multijet and dijet signals. The expected limits are similar.
Exclusion curves are overlaid, assuming gluino and top
squark pair production cross sections [41] and 100%

branching fraction, for both the observed and expected
95% C.L. upper limits. The upper limits reflect the signal
efficiencies shown in Fig. 3, initially improving as lifetime
increases, but worsening at approximately 40 mm due to the
fiducial limit at the beampipe.As an example, for a neutralino
with mass of 800 GeV and cτ ¼ 1 mm, the observed
95% C.L. upper limit on σB2 is 0.3 fb. For mean proper
decay lengths between 0.6 and 80 mm, gluino masses are
excluded below 2200 GeV, and top squark masses are
excluded below 1400 GeV. Figure 7 shows the upper limits
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FIG. 7. Observed and expected 95% C.L. upper limits on σB2 for the multijet (left) and dijet (right) signals, as a function of mass for a
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as a function ofmass for several values ofcτ, andFig. 8 shows
the upper limits as a function of cτ for several values of
the mass.
In Fig. 8, the narrowing of the expected limit bands

above cτ ¼ 2 mm is due to the correlation between the
signal lifetime and the relative signal yields in the three dVV
bins. The low background yield causes the discrete nature
of the Poisson distribution to have an effect: the pseudodata
sets used to calculate the distribution of expected limits
have a limited number of combinations of yields in each
bin. For example, for a simulated multijet signal with m ¼
1600 GeV and cτ ¼ 4 mm, the signal is concentrated
almost entirely (> 90%) in the last bin. The majority of

pseudodata sets that are different in only the first two bins
then have nearly the same expected limit value. The bands
widen above cτ ¼ 20 mm with the reappearance of signal
in the first bin due to the effect described in Sec. VI in
which two vertices are reconstructed from the same
long-lived particle, an effect that is larger for the multijet
signals.

X. EXTENDING THE SEARCH TO OTHER
SIGNAL MODELS

This search for displaced vertices applies to other types
of long-lived particles decaying to multiple jets. Here we

 (mm)
g~ / 

0χ∼
τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210
 tbs, m = 800 GeV→g~/

0χ∼

95% CL upper limits:

Observed

Median expected

68% expected

95% expected

CMS

 (13 TeV)-138.5 fb

 (mm)
t
~τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210 , m = 800 GeVdd→t
~

95% CL upper limits:
Observed
Median expected
68% expected
95% expected

CMS

 (13 TeV)-138.5 fb

 (mm)
g~ / 

0χ∼
τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210
 tbs, m = 1600 GeV→g~/0χ∼

95% CL upper limits:

Observed

Median expected

68% expected

95% expected

CMS

 (13 TeV)-138.5 fb

 (mm)
t
~τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210
, m = 1600 GeVdd→t

~

95% CL upper limits:
Observed
Median expected
68% expected
95% expected

CMS

 (13 TeV)-138.5 fb

 (mm)
g~ / 

0χ∼
τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210
 tbs, m = 2400 GeV→g~/0χ∼

95% CL upper limits:

Observed

Median expected

68% expected

95% expected

CMS

 (13 TeV)-138.5 fb

 (mm)
t
~τc

1−10 1 10 210

 (
fb

)
2

Βσ

1−10

1

10

210
, m = 2400 GeVdd→t

~

95% CL upper limits:
Observed
Median expected
68% expected
95% expected

CMS

 (13 TeV)-138.5 fb

FIG. 8. Observed and expected 95% C.L. upper limits on σB2 for the multijet (left) and dijet (right) signals, as a function of cτ for a
fixed mass of 800 GeV (upper), 1600 GeV (middle), and 2400 GeV (lower).
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present a generator-level selection that can be used to
reinterpret the results of our analysis. For signal models in
which there are two long-lived particles, this generator-level
selection approximately replicates the reconstruction-level
efficiency. The selection is based on the number and
momenta of generated jets in the event, the displacements
of the long-lived particles, and the momenta of their
daughter particles. The generated jets are those clustered
from all final-state particles except neutrinos, using the anti-
kT algorithm with a distance parameter of 0.4, but are
rejected if the fraction of energy from electrons is greater
than 0.9 or if the fraction of energy from muons is greater
than 0.8. The daughter particles are the u, d, s, c, and b
quarks, electrons, muons, and tau leptons from the decay of
the long-lived particle, andwe consider thosewith an impact
parameter with respect to the origin measured in the x-y
plane of at least 0.1 mm. The generated jets and daughter
particles are required to satisfy pT > 20 GeV and jηj < 2.5.
The criteria of the generator-level selection are as follows:

at least four generated jets; HT > 1000 GeV, where HT is
the scalar sum of the pT of generated jets with
pT > 40 GeV; for each long-lived particle, a distance of
the decay point from the origin measured in the x-y plane of
between 0.1 and 20 mm, and a value of ΣpT of the daughter
particles of at least 350 GeV; and a distance between the
decay points of the long-lived particles measured in the x-y
plane of at least 0.4 mm. In calculating the ΣpT of the
daughter particles, we multiply the pT of b quark daughter
particles by a factor of 0.65. This accounts for the lower
reconstruction-level efficiency due to the lifetime of heavy
flavor particles, which can impede the association of their
decay products with the reconstructed vertices.
This generator-level selection replicates the reconstruction-

level efficiencywith a typical accuracy of 20% for a variety of
models for which the signal efficiency is high (> 10%). In the
region with dVV > 0.4 mm, there are no observed events.

XI. SUMMARY

A search for long-lived particles decaying into multijet
final states has been performed using proton-proton colli-
sion events collected with the CMS detector at a center-of-
mass energy of 13 TeV in 2015 and 2016. The data sample
corresponds to an integrated luminosity of 38.5 fb−1.
No excess yield above the prediction from standard model
processes is observed. At 95% confidence level, upper
limits are placed for models of R-parity violating super-
symmetry in which the long-lived particles are neutralinos
or gluinos decaying solely into multijet final states or top
squarks decaying solely into dijet final states. The data
exclude cross sections above approximately 0.3 fb for
particles with masses between 800 and 2600 GeVand mean
proper decay lengths between 1 and 40 mm. For mean
proper decay lengths between 0.6 and 80 mm, gluino
masses below 2200 GeV and top squark masses below
1400 GeV are excluded. While the search specifically
addresses two models of R-parity violating supersymmetry,
the results are relevant to other models in which long-lived

particles decay to final states with multiple tracks, and a
method to extend the search to other signal models is
provided. For the models considered, the results provide the
most restrictive bounds to date on the production and decay
of pairs of long-lived particles with mean proper decay
lengths between 0.1 and 100 mm.
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E. Conte,33,n J.-C. Fontaine,33,n D. Gelé,33 U. Goerlach,33 M. Jansová,33 A.-C. Le Bihan,33 N. Tonon,33 P. Van Hove,33

S. Gadrat,34 S. Beauceron,35 C. Bernet,35 G. Boudoul,35 N. Chanon,35 R. Chierici,35 D. Contardo,35 P. Depasse,35

H. El Mamouni,35 J. Fay,35 L. Finco,35 S. Gascon,35 M. Gouzevitch,35 G. Grenier,35 B. Ille,35 F. Lagarde,35 I. B. Laktineh,35

H. Lattaud,35 M. Lethuillier,35 L. Mirabito,35 A. L. Pequegnot,35 S. Perries,35 A. Popov,35,o V. Sordini,35 G. Touquet,35

M. Vander Donckt,35 S. Viret,35 T. Toriashvili,36,p Z. Tsamalaidze,37,i C. Autermann,38 L. Feld,38 M. K. Kiesel,38 K. Klein,38

M. Lipinski,38 M. Preuten,38 M. P. Rauch,38 C. Schomakers,38 J. Schulz,38 M. Teroerde,38 B. Wittmer,38 V. Zhukov,38,o

A. Albert,39 D. Duchardt,39 M. Endres,39 M. Erdmann,39 S. Ghosh,39 A. Güth,39 T. Hebbeker,39 C. Heidemann,39

K. Hoepfner,39 H. Keller,39 L. Mastrolorenzo,39 M. Merschmeyer,39 A. Meyer,39 P. Millet,39 S. Mukherjee,39 T. Pook,39

M. Radziej,39 H. Reithler,39 M. Rieger,39 A. Schmidt,39 D. Teyssier,39 G. Flügge,40 O. Hlushchenko,40 T. Kress,40

A. Künsken,40 T. Müller,40 A. Nehrkorn,40 A. Nowack,40 C. Pistone,40 O. Pooth,40 D. Roy,40 H. Sert,40 A. Stahl,40,q

M. Aldaya Martin,41 T. Arndt,41 C. Asawatangtrakuldee,41 I. Babounikau,41 K. Beernaert,41 O. Behnke,41 U. Behrens,41

A. Bermúdez Martínez,41 D. Bertsche,41 A. A. Bin Anuar,41 K. Borras,41,r V. Botta,41 A. Campbell,41 P. Connor,41

C. Contreras-Campana,41 F. Costanza,41 V. Danilov,41 A. De Wit,41 M.M. Defranchis,41 C. Diez Pardos,41

D. Domínguez Damiani,41 G. Eckerlin,41 T. Eichhorn,41 A. Elwood,41 E. Eren,41 E. Gallo,41,s A. Geiser,41

J. M. Grados Luyando,41 A. Grohsjean,41 P. Gunnellini,41 M. Guthoff,41 M. Haranko,41 A. Harb,41 J. Hauk,41 H. Jung,41

M. Kasemann,41 J. Keaveney,41 C. Kleinwort,41 J. Knolle,41 D. Krücker,41 W. Lange,41 A. Lelek,41 T. Lenz,41 K. Lipka,41

W. Lohmann,41,t R. Mankel,41 I.-A. Melzer-Pellmann,41 A. B. Meyer,41 M. Meyer,41 M. Missiroli,41 G. Mittag,41 J. Mnich,41

V. Myronenko,41 S. K. Pflitsch,41 D. Pitzl,41 A. Raspereza,41 M. Savitskyi,41 P. Saxena,41 P. Schütze,41 C. Schwanenberger,41

R. Shevchenko,41 A. Singh,41 H. Tholen,41 O. Turkot,41 A. Vagnerini,41 G. P. Van Onsem,41 R. Walsh,41 Y. Wen,41

K. Wichmann,41 C. Wissing,41 O. Zenaiev,41 R. Aggleton,42 S. Bein,42 L. Benato,42 A. Benecke,42 V. Blobel,42

M. Centis Vignali,42 T. Dreyer,42 E. Garutti,42 D. Gonzalez,42 J. Haller,42 A. Hinzmann,42 A. Karavdina,42 G. Kasieczka,42

R. Klanner,42 R. Kogler,42 N. Kovalchuk,42 S. Kurz,42 V. Kutzner,42 J. Lange,42 D. Marconi,42 J. Multhaup,42 M. Niedziela,42

C. E. N. Niemeyer,42 D. Nowatschin,42 A. Perieanu,42 A. Reimers,42 O. Rieger,42 C. Scharf,42 P. Schleper,42 S. Schumann,42

J. Schwandt,42 J. Sonneveld,42 H. Stadie,42 G. Steinbrück,42 F. M. Stober,42 M. Stöver,42 A. Vanhoefer,42 B. Vormwald,42

I. Zoi,42 M. Akbiyik,43 C. Barth,43 M. Baselga,43 S. Baur,43 E. Butz,43 R. Caspart,43 T. Chwalek,43 F. Colombo,43

W. De Boer,43 A. Dierlamm,43 K. El Morabit,43 N. Faltermann,43 B. Freund,43 M. Giffels,43 M. A. Harrendorf,43

F. Hartmann,43,q S. M. Heindl,43 U. Husemann,43 F. Kassel,43,q I. Katkov,43,o S. Kudella,43 H. Mildner,43 S. Mitra,43

M. U. Mozer,43 Th. Müller,43 M. Plagge,43 G. Quast,43 K. Rabbertz,43 M. Schröder,43 I. Shvetsov,43 G. Sieber,43

H. J. Simonis,43 R. Ulrich,43 S. Wayand,43 M. Weber,43 T. Weiler,43 S. Williamson,43 C. Wöhrmann,43 R. Wolf,43

G. Anagnostou,44 G. Daskalakis,44 T. Geralis,44 A. Kyriakis,44 D. Loukas,44 G. Paspalaki,44 I. Topsis-Giotis,44

G. Karathanasis,45 S. Kesisoglou,45 P. Kontaxakis,45 A. Panagiotou,45 I. Papavergou,45 N. Saoulidou,45 E. Tziaferi,45

K. Vellidis,45 K. Kousouris,46 I. Papakrivopoulos,46 G. Tsipolitis,46 I. Evangelou,47 C. Foudas,47 P. Gianneios,47

P. Katsoulis,47 P. Kokkas,47 S. Mallios,47 N. Manthos,47 I. Papadopoulos,47 E. Paradas,47 J. Strologas,47 F. A. Triantis,47

SEARCH FOR LONG-LIVED PARTICLES WITH … PHYS. REV. D 98, 092011 (2018)

092011-15



D. Tsitsonis,47 M. Bartók,48,u M. Csanad,48 N. Filipovic,48 P. Major,48 M. I. Nagy,48 G. Pasztor,48 O. Surányi,48 G. I. Veres,48

G. Bencze,49 C. Hajdu,49 D. Horvath,49,v Á. Hunyadi,49 F. Sikler,49 T. Á. Vámi,49 V. Veszpremi,49 G. Vesztergombi,49,a,u

N. Beni,50 S. Czellar,50 J. Karancsi,50,w A. Makovec,50 J. Molnar,50 Z. Szillasi,50 P. Raics,51 Z. L. Trocsanyi,51 B. Ujvari,51

S. Choudhury,52 J. R. Komaragiri,52 P. C. Tiwari,52 S. Bahinipati,53,x C. Kar,53 P. Mal,53 K. Mandal,53 A. Nayak,53,y

D. K. Sahoo,53,x S. K. Swain,53 S. Bansal,54 S. B. Beri,54 V. Bhatnagar,54 S. Chauhan,54 R. Chawla,54 N. Dhingra,54

R. Gupta,54 A. Kaur,54 M. Kaur,54 S. Kaur,54 R. Kumar,54 P. Kumari,54 M. Lohan,54 A. Mehta,54 K. Sandeep,54 S. Sharma,54

J. B. Singh,54 A. K. Virdi,54 G. Walia,54 A. Bhardwaj,55 B. C. Choudhary,55 R. B. Garg,55 M. Gola,55 S. Keshri,55

Ashok Kumar,55 S. Malhotra,55 M. Naimuddin,55 P. Priyanka,55 K. Ranjan,55 Aashaq Shah,55 R. Sharma,55 R. Bhardwaj,56,z

M. Bharti,56 R. Bhattacharya,56 S. Bhattacharya,56 U. Bhawandeep,56,z D. Bhowmik,56 S. Dey,56 S. Dutt,56,z S. Dutta,56

S. Ghosh,56 K. Mondal,56 S. Nandan,56 A. Purohit,56 P. K. Rout,56 A. Roy,56 S. Roy Chowdhury,56 G. Saha,56 S. Sarkar,56

M. Sharan,56 B. Singh,56 S. Thakur,56,z P. K. Behera,57 R. Chudasama,58 D. Dutta,58 V. Jha,58 V. Kumar,58 P. K. Netrakanti,58

L. M. Pant,58 P. Shukla,58 T. Aziz,59 M. A. Bhat,59 S. Dugad,59 G. B. Mohanty,59 N. Sur,59 B. Sutar,59

Ravindra Kumar Verma,59 S. Banerjee,60 S. Bhattacharya,60 S. Chatterjee,60 P. Das,60 M. Guchait,60 Sa. Jain,60

S. Karmakar,60 S. Kumar,60 M. Maity,60,aa G. Majumder,60 K. Mazumdar,60 N. Sahoo,60 T. Sarkar,60,aa S. Chauhan,61

S. Dube,61 V. Hegde,61 A. Kapoor,61 K. Kothekar,61 S. Pandey,61 A. Rane,61 S. Sharma,61 S. Chenarani,62,bb

E. Eskandari Tadavani,62 S. M. Etesami,62,bb M. Khakzad,62 M. Mohammadi Najafabadi,62 M. Naseri,62

F. Rezaei Hosseinabadi,62 B. Safarzadeh,62,cc M. Zeinali,62 M. Felcini,63 M. Grunewald,63 M. Abbrescia,64a,64b

C. Calabria,64a,64b A. Colaleo,64a D. Creanza,64a,64c L. Cristella,64a,64b N. De Filippis,64a,64c M. De Palma,64a,64b

A. Di Florio,64a,64b F. Errico,64a,64b L. Fiore,64a A. Gelmi,64a,64b G. Iaselli,64a,64c M. Ince,64a,64b S. Lezki,64a,64b G. Maggi,64a,64c

M. Maggi,64a G. Miniello,64a,64b S. My,64a,64b S. Nuzzo,64a,64b A. Pompili,64a,64b G. Pugliese,64a,64c R. Radogna,64a

A. Ranieri,64a G. Selvaggi,64a,64b A. Sharma,64a L. Silvestris,64a R. Venditti,64a P. Verwilligen,64a G. Zito,64a G. Abbiendi,65a

C. Battilana,65a,65b D. Bonacorsi,65a,65b L. Borgonovi,65a,65b S. Braibant-Giacomelli,65a,65b R. Campanini,65a,65b

P. Capiluppi,65a,65b A. Castro,65a,65b F. R. Cavallo,65a S. S. Chhibra,65a,65b C. Ciocca,65a G. Codispoti,65a,65b M. Cuffiani,65a,65b

G. M. Dallavalle,65a F. Fabbri,65a A. Fanfani,65a,65b P. Giacomelli,65a C. Grandi,65a L. Guiducci,65a,65b F. Iemmi,65a,65b

S. Marcellini,65a G. Masetti,65a A. Montanari,65a F. L. Navarria,65a,65b A. Perrotta,65a F. Primavera,65a,65b,q A. M. Rossi,65a,65b

T. Rovelli,65a,65b G. P. Siroli,65a,65b N. Tosi,65a S. Albergo,66a,66b A. Di Mattia,66a R. Potenza,66a,66b A. Tricomi,66a,66b

C. Tuve,66a,66b G. Barbagli,67a K. Chatterjee,67a,67b V. Ciulli,67a,67b C. Civinini,67a R. D’Alessandro,67a,67b E. Focardi,67a,67b

G. Latino,67a P. Lenzi,67a,67b M. Meschini,67a S. Paoletti,67a L. Russo,67a,dd G. Sguazzoni,67a D. Strom,67a L. Viliani,67a

L. Benussi,68 S. Bianco,68 F. Fabbri,68 D. Piccolo,68 F. Ferro,69a F. Ravera,69a,69b E. Robutti,69a S. Tosi,69a,69b A. Benaglia,70a

A. Beschi,70a,70b L. Brianza,70a,70b F. Brivio,70a,70b V. Ciriolo,70a,70b,q S. Di Guida,70a,70b,q M. E. Dinardo,70a,70b

S. Fiorendi,70a,70b S. Gennai,70a A. Ghezzi,70a,70b P. Govoni,70a,70b M. Malberti,70a,70b S. Malvezzi,70a A. Massironi,70a,70b

D. Menasce,70a L. Moroni,70a M. Paganoni,70a,70b D. Pedrini,70a S. Ragazzi,70a,70b T. Tabarelli de Fatis,70a,70b D. Zuolo,70a

S. Buontempo,71a N. Cavallo,71a,71c A. Di Crescenzo,71a,71b F. Fabozzi,71a,71c F. Fienga,71a G. Galati,71a A. O. M. Iorio,71a,71b

W. A. Khan,71a L. Lista,71a S. Meola,71a,71d,q P. Paolucci,71a,q C. Sciacca,71a,71b E. Voevodina,71a,71b P. Azzi,72a

N. Bacchetta,72a D. Bisello,72a,72b A. Boletti,72a,72b A. Bragagnolo,72a R. Carlin,72a,72b P. Checchia,72a M. Dall’Osso,72a,72b

P. De Castro Manzano,72a T. Dorigo,72a U. Dosselli,72a U. Gasparini,72a,72b A. Gozzelino,72a S. Y. Hoh,72a S. Lacaprara,72a

P. Lujan,72a M. Margoni,72a,72b A. T. Meneguzzo,72a,72b J. Pazzini,72a,72b N. Pozzobon,72a,72b P. Ronchese,72a,72b

R. Rossin,72a,72b F. Simonetto,72a,72b A. Tiko,72a E. Torassa,72a M. Zanetti,72a,72b P. Zotto,72a,72b G. Zumerle,72a,72b

A. Braghieri,73a A. Magnani,73a P. Montagna,73a,73b S. P. Ratti,73a,73b V. Re,73a M. Ressegotti,73a,73b C. Riccardi,73a,73b

P. Salvini,73a I. Vai,73a,73b P. Vitulo,73a,73b M. Biasini,74a,74b G. M. Bilei,74a C. Cecchi,74a,74b D. Ciangottini,74a,74b

L. Fanò,74a,74b P. Lariccia,74a,74b R. Leonardi,74a,74b E. Manoni,74a G. Mantovani,74a,74b V. Mariani,74a,74b M. Menichelli,74a

A. Rossi,74a,74b A. Santocchia,74a,74b D. Spiga,74a K. Androsov,75a P. Azzurri,75a G. Bagliesi,75a L. Bianchini,75a T. Boccali,75a

L. Borrello,75a R. Castaldi,75a M. A. Ciocci,75a,75b R. Dell’Orso,75a G. Fedi,75a F. Fiori,75a,75c L. Giannini,75a,75c A. Giassi,75a

M. T. Grippo,75a F. Ligabue,75a,75c E. Manca,75a,75c G. Mandorli,75a,75c A. Messineo,75a,75b F. Palla,75a A. Rizzi,75a,75b

P. Spagnolo,75a R. Tenchini,75a G. Tonelli,75a,75b A. Venturi,75a P. G. Verdini,75a L. Barone,76a,76b F. Cavallari,76a

M. Cipriani,76a,76b D. Del Re,76a,76b E. Di Marco,76a,76b M. Diemoz,76a S. Gelli,76a,76b E. Longo,76a,76b B. Marzocchi,76a,76b

P. Meridiani,76a G. Organtini,76a,76b F. Pandolfi,76a R. Paramatti,76a,76b F. Preiato,76a,76b S. Rahatlou,76a,76b C. Rovelli,76a

F. Santanastasio,76a,76b N. Amapane,77a,77b R. Arcidiacono,77a,77c S. Argiro,77a,77b M. Arneodo,77a,77c N. Bartosik,77a

R. Bellan,77a,77b C. Biino,77a N. Cartiglia,77a F. Cenna,77a,77b S. Cometti,77a M. Costa,77a,77b R. Covarelli,77a,77b N. Demaria,77a

A. M. SIRUNYAN et al. PHYS. REV. D 98, 092011 (2018)

092011-16



B. Kiani,77a,77b C. Mariotti,77a S. Maselli,77a E. Migliore,77a,77b V. Monaco,77a,77b E. Monteil,77a,77b M. Monteno,77a

M.M. Obertino,77a,77b L. Pacher,77a,77b N. Pastrone,77a M. Pelliccioni,77a G. L. Pinna Angioni,77a,77b A. Romero,77a,77b

M. Ruspa,77a,77c R. Sacchi,77a,77b K. Shchelina,77a,77b V. Sola,77a A. Solano,77a,77b D. Soldi,77a,77b A. Staiano,77a S. Belforte,78a

V. Candelise,78a,78b M. Casarsa,78a F. Cossutti,78a A. Da Rold,78a,78b G. Della Ricca,78a,78b F. Vazzoler,78a,78b A. Zanetti,78a

D. H. Kim,79 G. N. Kim,79 M. S. Kim,79 J. Lee,79 S. Lee,79 S. W. Lee,79 C. S. Moon,79 Y. D. Oh,79 S. Sekmen,79 D. C. Son,79

Y. C. Yang,79 H. Kim,80 D. H. Moon,80 G. Oh,80 J. Goh,81,ee T. J. Kim,81 S. Cho,82 S. Choi,82 Y. Go,82 D. Gyun,82 S. Ha,82

B. Hong,82 Y. Jo,82 K. Lee,82 K. S. Lee,82 S. Lee,82 J. Lim,82 S. K. Park,82 Y. Roh,82 H. S. Kim,83 J. Almond,84 J. Kim,84

J. S. Kim,84 H. Lee,84 K. Lee,84 K. Nam,84 S. B. Oh,84 B. C. Radburn-Smith,84 S. h. Seo,84 U. K. Yang,84 H. D. Yoo,84

G. B. Yu,84 D. Jeon,85 H. Kim,85 J. H. Kim,85 J. S. H. Lee,85 I. C. Park,85 Y. Choi,86 C. Hwang,86 J. Lee,86 I. Yu,86

V. Dudenas,87 A. Juodagalvis,87 J. Vaitkus,87 I. Ahmed,88 Z. A. Ibrahim,88 M. A. B. Md Ali,88,ff F. Mohamad Idris,88,gg

W. A. T. Wan Abdullah,88 M. N. Yusli,88 Z. Zolkapli,88 J. F. Benitez,89 A. Castaneda Hernandez,89 J. A. Murillo Quijada,89

H. Castilla-Valdez,90 E. De La Cruz-Burelo,90 M. C. Duran-Osuna,90 I. Heredia-De La Cruz,90,hh R. Lopez-Fernandez,90

J. Mejia Guisao,90 R. I. Rabadan-Trejo,90 M. Ramirez-Garcia,90 G. Ramirez-Sanchez,90 R. Reyes-Almanza,90

A. Sanchez-Hernandez,90 S. Carrillo Moreno,91 C. Oropeza Barrera,91 F. Vazquez Valencia,91 J. Eysermans,92 I. Pedraza,92

H. A. Salazar Ibarguen,92 C. Uribe Estrada,92 A. Morelos Pineda,93 D. Krofcheck,94 S. Bheesette,95 P. H. Butler,95

A. Ahmad,96 M. Ahmad,96 M. I. Asghar,96 Q. Hassan,96 H. R. Hoorani,96 A. Saddique,96 M. A. Shah,96 M. Shoaib,96

M. Waqas,96 H. Bialkowska,97 M. Bluj,97 B. Boimska,97 T. Frueboes,97 M. Górski,97 M. Kazana,97 K. Nawrocki,97

M. Szleper,97 P. Traczyk,97 P. Zalewski,97 K. Bunkowski,98 A. Byszuk,98,ii K. Doroba,98 A. Kalinowski,98 M. Konecki,98

J. Krolikowski,98 M. Misiura,98 M. Olszewski,98 A. Pyskir,98 M. Walczak,98 M. Araujo,99 P. Bargassa,99

C. Beirão Da Cruz E Silva,99 A. Di Francesco,99 P. Faccioli,99 B. Galinhas,99 M. Gallinaro,99 J. Hollar,99 N. Leonardo,99

M. V. Nemallapudi,99 J. Seixas,99 G. Strong,99 O. Toldaiev,99 D. Vadruccio,99 J. Varela,99 S. Afanasiev,100 P. Bunin,100

M. Gavrilenko,100 I. Golutvin,100 I. Gorbunov,100 A. Kamenev,100 V. Karjavine,100 A. Lanev,100 A. Malakhov,100

V. Matveev,100,jj,kk P. Moisenz,100 V. Palichik,100 V. Perelygin,100 S. Shmatov,100 S. Shulha,100 N. Skatchkov,100

V. Smirnov,100 N. Voytishin,100 A. Zarubin,100 V. Golovtsov,101 Y. Ivanov,101 V. Kim,101,ll E. Kuznetsova,101,mm

P. Levchenko,101 V. Murzin,101 V. Oreshkin,101 I. Smirnov,101 D. Sosnov,101 V. Sulimov,101 L. Uvarov,101 S. Vavilov,101

A. Vorobyev,101 Yu. Andreev,102 A. Dermenev,102 S. Gninenko,102 N. Golubev,102 A. Karneyeu,102 M. Kirsanov,102

N. Krasnikov,102 A. Pashenkov,102 D. Tlisov,102 A. Toropin,102 V. Epshteyn,103 V. Gavrilov,103 N. Lychkovskaya,103

V. Popov,103 I. Pozdnyakov,103 G. Safronov,103 A. Spiridonov,103 A. Stepennov,103 V. Stolin,103 M. Toms,103 E. Vlasov,103

A. Zhokin,103 T. Aushev,104 R. Chistov,105,nn M. Danilov,105,nn P. Parygin,105 D. Philippov,105 S. Polikarpov,105,nn

E. Tarkovskii,105 V. Andreev,106 M. Azarkin,106,kk I. Dremin,106,kk M. Kirakosyan,106,kk S. V. Rusakov,106 A. Terkulov,106

A. Baskakov,107 A. Belyaev,107 E. Boos,107 M. Dubinin,107,oo L. Dudko,107 A. Ershov,107 A. Gribushin,107 V. Klyukhin,107

O. Kodolova,107 I. Lokhtin,107 I. Miagkov,107 S. Obraztsov,107 S. Petrushanko,107 V. Savrin,107 A. Snigirev,107

A. Barnyakov,108,pp V. Blinov,108,pp T. Dimova,108,pp L. Kardapoltsev,108,pp Y. Skovpen,108,pp I. Azhgirey,109 I. Bayshev,109

S. Bitioukov,109 D. Elumakhov,109 A. Godizov,109 V. Kachanov,109 A. Kalinin,109 D. Konstantinov,109 P. Mandrik,109

V. Petrov,109 R. Ryutin,109 S. Slabospitskii,109 A. Sobol,109 S. Troshin,109 N. Tyurin,109 A. Uzunian,109 A. Volkov,109

A. Babaev,110 S. Baidali,110 V. Okhotnikov,110 P. Adzic,111,qq P. Cirkovic,111 D. Devetak,111 M. Dordevic,111 J. Milosevic,111

J. Alcaraz Maestre,112 A. Álvarez Fernández,112 I. Bachiller,112 M. Barrio Luna,112 J. A. Brochero Cifuentes,112

M. Cerrada,112 N. Colino,112 B. De La Cruz,112 A. Delgado Peris,112 C. Fernandez Bedoya,112 J. P. Fernández Ramos,112

J. Flix,112 M. C. Fouz,112 O. Gonzalez Lopez,112 S. Goy Lopez,112 J. M. Hernandez,112 M. I. Josa,112 D. Moran,112
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33Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

34Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,
CNRS/IN2P3, Villeurbanne, France
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76bSapienza Università di Roma, Rome, Italy

77aINFN Sezione di Torino, Novara, Italy
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