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The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across theUnited
States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators
and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex,
as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make
after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer
disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We
employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g.,
the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can
be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain
disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze
the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for
varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides
insights into the consequences of choosing an inappropriate inventory policy when disruptions take place.

1. Introduction

1.1. Background. Between 2006 and 2016, drug shortages
in the United States increased a whopping 120%, with the
highest peak of 280% in 2011 [1]. In 2017, 146 new shortages
were added to the list of nonresolved shortages from prior
years, and by the end of 2017, there were 183 active shortages
[1]. Drug shortages not only bring the cost of health care
above $400 million annually [2] but can also be considered a
public health threat since patient lives are put at risk. Despite
all the efforts undertaken by health care administrators to
ensure product availability, there are still drugs that have
experienced shortages for several years [3].

One drug that consistently creates challenges for health
care providers is saline (sodium carbonate 9%) which has
experienced shortages since 2013. In the United States, saline

has been widely used (more than 40 million bags per month
[4]) for treating dehydration and for patients undergoing
dialysis, surgery, and chemotherapy. In the past decade,
shortages of saline have raised questions about the ability to
manage the pharmaceutical supply chain. What makes saline
interesting to study is its low price (approximately US $4
for a 250ml bag of saline [5]), simple ingredients (only salt
and water), high demand, exclusive production by certain
manufacturers, and in some cases nonsubstitutability [6].
The US Food and Drug Administration (FDA) announced
an ongoing national shortage of saline in early 2014. Several
disruptions occurred around this time in the saline supply
chain, e.g., multiple recalls and spikes in demand due to
flu seasons [7], and the FDA attempted to mitigate these
shortages by advising manufacturers to collaborate with each
other and importing saline from other countries such as
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Norway and Germany. Despite these efforts, shortages in the
United States persisted for several months [7]. The failure of
these two approaches can be explained by the fact that: (1) the
FDA cannot dictate the production changes by manufactur-
ers, and (2) the import of saline from new sources requires
several months of regulatory processing. Compounding the
latter challenge, outsourcing was limited since manufacturers
in other countries have limited capacities to expand their
production.

The saline shortage is getting worse, and its supply chain
was not fully recovered when a sudden severe disruption in
the production of saline occurred after Hurricane Maria, in
Puerto Rico in 2017 [8]. The hurricane shut down two of
the United States’ main manufacturers of saline for several
months and created a major disruption in the supply chain.
A combination of this disruption with the other preexisting
shortages amplified the shortages even more. Following that,
the shortage increased as another producer interrupted its
production for maintenance purposes. Interestingly, this was
announced several months in advance, yet there remained no
clear plan to stockpile the inventories to bolster the supply
chain. Additionally, due to high rates of influenza during
the 2017 flu season, demand for saline increased and drove
further shortages of saline in most of the United States [8].
Despite the direct effect of these shortages on patients, health
care providers faced the challenge of deciding who should
receive the limited supply of saline and how to procure more
units of saline, if any were available.

Commonly identified causes of drug shortages include
complex manufacturing processes, supply or demand uncer-
tainties, regulatory actions, and the discontinuation of prod-
ucts [9]. Furthermore, quality issues or a lack of incentives
formanufacturers to produce high-quality products are other
known reasons for drug shortages [9]. However, 53% of the
reasons behind the shortages of drugs in 2017 designated by
the American Society of Health-System Pharmacists (ASHP)
database are labeled as unknown [1]. In fact, these shortages
may be explained by a combination of these reasons in
conjunction with the effects of decision making by supply
chain stakeholders.

In general, pharmaceutical supply chains mirror other
supply chains that are exposed to the risk of disruptions.
Previous research has indicated that because drug shortages
are caused by one or multiple disruptions in the phar-
maceutical supply chain, preventing these disruptions can
be nearly impossible [6]. The reasons for recalls can vary
including mislabeling, defective products, or defects in the
container. When product recalls occur in a pharmaceutical
supply chain, the inventory of some or all of the supply chain
members is removed. While product recalls are common
for pharmaceutical products, the characteristics and patterns
of recalls can differ between products both in terms of the
frequency of shortages and the size of each recall, or the total
number of units affected. Beyond recalls, pharmaceutical
supply chains can also experience temporary shutdowns of
manufacturing plants for multiple months on end. Designing
a supply chain that remains resilient to different types of
disruptions is among the major challenges researchers in
supply chain risk management must tackle.

One common solution for mitigating shortages is to keep
more inventory [10], as this will ensure that more inventories
are available to treat patients in the event that products
are recalled. However, retaining more inventory results in
added costs in the supply chain and may not be feasible
for many health care centers due to storage and budget
limitations. With the need to balance the advantages and
costs of holding inventory, strategic decisions about inventory
policies throughout the supply chain become critical.

1.2. Research Problem and Contribution. The importance and
complexity of supply chain management in the pharmaceuti-
cal industry raises critical questions that are not addressed
in the literature. In this paper, we focus on answering the
following questions. What is the effect of altering inventory
policies on the ability to withstand product recalls? How
should inventory policies be chosen to address a variety of
disruption patterns? Is there any inventory policy that is
robust to all disruption patterns?

In order to address these questions, we evaluate the
performance of inventory policies such that the policies
defining order quantities and target inventory levels do not
change over time. Further, we evaluate the performance
under various disruption patterns. We model product recall
disruptions in pharmaceutical supply chains under deter-
ministic and stochastic settings which are more realistic
for pharmaceutical supply chains. To demonstrate the com-
plexity of the pharmaceutical supply chains under disrup-
tions including interactions among key decision makers,
we employ a mathematical simulation model accounting
for the dynamic features of the system. Different inventory
policies are implemented as decision rules in the simulation.
As the most critical consequences of drug shortages are
experienced at the health care centers with unmet patient
demand, the performancemetric used to distinguish between
policies is the total cost of the health care center. We also
employ an approach similar to data envelopment analy-
sis to prune inefficient policies corresponding to different
disruption patterns and the ratio of costs. Finally, we aim
to demonstrate the effects of making unsuitable inventory
policy decisions under different types of disruptions and
explore if an inventory policy exists that is efficient for all
types of disruptions.

While the present study focuses on saline shortages, it
should be noted that the findings are applicable to a wider
range of drugs that frequently experience shortages, such
as chemotherapy drugs and antibiotics, among others. The
results of the presented research reveal that an inventory
policy that is optimal for one disruption patternmay be ineffi-
cient when an alternate disruption pattern occurs.Therefore,
preparing for one intense disruption will not render a system
robust if multiple small disruptions happen instead.

The remainder of this paper is organized as follows.
In the next section, we provide a review of the literature.
Our model formulations and assumptions are then presented
in Section 3, followed by numerical analyses in Section 4.
Finally, Section 5 presents the conclusion and future research
directions.
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2. Literature Review

In order to address our research questions, we divide the
literature areas into three sections: pharmaceutical supply
chain modeling, supply chain disruption mitigation, and
simulation modeling for supply chains.

Pharmaceutical Supply Chain Modeling. In recent years there
has been a noticeable focus on researching pharmaceutical
supply chainmanagement. A study by Lücker and Seifert [10],
focuses on operational strategies for managing pharmaceuti-
cal supply chains under disruption. They model disruptions
with features defining the probability of the occurrence
and intensity in length. They analyze three operational
risk mitigation strategies for pharmaceutical supply chains
experiencing disruption risks, namely (i) Risk Mitigation
Inventory (RMI), (ii) Dual Sourcing and (iii) AgilityCapacity,
with a focus on minimizing the total cost, as a function of
product stock-outs and fulfilled demand, over only one cycle
[10]. While Lücker and Seifert’s [10] study considers one type
of drug, Uthayakumar and Priyan [11] model an inventory
decision tool for a two-echelon pharmaceutical supply chain
with multiple products without considering disruptions in
the system.Theyuse continuous ordering policies to optimize
and define the lot size, lead-time, and the number of deliveries
for a hospital to minimize the total cost for the supply chain
with respect to the target cycle service level for the hospital or
pharmaceutical companies.

Overall, research in pharmaceutical supply chain disrup-
tions has neglected to examine the role of product recalls, a
critical type of disruption in this domain [10–15]. We develop
amodel to capture the role of various recall disruptions in the
pharmaceutical supply chain.

Supply Chain Disruption Mitigation. While the focus on
disruption mitigation in pharmaceutical supply chain man-
agement research is limited in the scope of the types of
disruptions examined, research on modeling supply chain
disruptions and response strategies has been conducted for
other industries. There are many different approaches for
mitigation of disruption risks that have been examined.
Common tactics for alleviating the effects of disruptions are
financial mitigation, operation mitigation, and operational
contingencies [16]. Mitigation tactics are those in which
the firm takes an action in advance of a disruption and
correspondingly incurs the cost of the action regardless
of a disruption’s occurrence. Operational tactics, such as
inventory management, multiple sourcing, and flexibility in
production are also studied in the literature of supply chain
disruptions [16].

Researchers in the supply chain disruption area, demon-
strate that an optimal strategy to implement when coping
with a disruption varies based on the characteristics of the
disruption. Tomlin [16] suggests inventory, dual sourcing,
and acceptance strategies for dealing with disruptions, and
demonstrates that the optimal strategy changes as disruptions
become longer ormore frequent. In this research, disruptions
are modeled as an uncertainty in supply or demand. Tomlin
and Snyder [17] demonstrate how strategies change when
a firm has advanced warning of an impending disruption.

Chopra et al. [18] evaluate the errors resulting from
“bundling” disruptions and yield uncertainty for making
inventory decisions. Atan et al. [19] present hybrid strategies
for dealing with supply uncertainty or demand uncertainty in
multiechelon supply chains.They consider disruptions which
occur at a specific location and demonstrate that an optimal
policy for addressing a supply uncertainty disruption is not
the same as the optimal policy for addressing a demand
uncertainty disruption.

A variety of different features have been used by
researchers for characterizing and modeling supply chain
disruptions. The majority of disruptions are modeled as
follows: (i) all-or-nothing events (also known as on and off
disruptions, in which a disruption at a node will deplete
the entire capacity) or (ii) random yield disruptions [20–24].
Most studies focus on large disruptions that happen for a
short time duration. Some studies look at the different order-
ing policies and frequency of the disruptions, e.g., frequent
but short disruptions versus rare but long disruptions [16]. To
the best of our knowledge, there are no studies that examine
the sequence of the disruptions.

In this study, we examine operational mitigation tactics
which characterize the role of inventory policies in the
prevention of shortages by studying the relationship between
the performance of these policies and the disruption pattern
exhibited. Rather than all-or-nothing disruptions or random
yield disruptions, this research is unique in the focus on
removing a fraction of inventory from nodes throughout the
network.

Simulation Modeling for Supply Chains. In pharmaceutical
supply chain disruptions, and particularly in cases of product
recalls, inventory management behaviors are believed to be
key to the behavior of the entire system. Often theoretical
models in Operations Research misrepresent the ‘behavioral’
aspects of supply chain stakeholders and focus solely on the
supply chain mechanisms. Unlike many of these models, sys-
tem dynamics (SD) simulation modeling is able to represent
interactions, nonlinearities, time delays, and feedback among
the members of the supply chain [25–27]. Sterman [28]
develops a simulated inventory distribution system for the
beer game distribution supply chain which contains multiple
actors. He examines the interaction of individual decision
makers who make irrational decisions with the objective of
minimizing the total supply chain costs and demonstrates
the resulting bullwhip effect in the system. Lee et al. [29]
demonstrate that even if each agent acts rationally and uses
optimal ordering policies, the supply chain is still at the risk
of experiencing the bullwhip effect.

Some studies using SD as a tool to model food or drug
supply chains include Minegishi and Thiel [30], Georgiadis,
Vlachos, and Iakovou [31], and Strohhecker and Größler
[14, 15]. Minegishi and Thiel [30] study the complexities of
the behavior of poultry supply chains.They examine different
simulations to reveal the role of changes in the demand
on the behavior of the supply chain. Georgiadis, Vlachos,
and Iakovou [31] develop an SD model for a multiechelon
food supply chain. In this study, they try to identify effective
long-run policies for managing a food supply chain under
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uncertainty of demand and transportation capacity using a
periodic order-up-to-level policy (R,S,s) when demand has a
normal distribution. Strohhecker and Größler [14] study the
effects of severe production shutdowns on the performance
of pharmaceutical products. In separate work, Strohhecker
and Größler study the effect of severe but infrequent quality
breakdowns, as disruptions, on the conditions for preventing
stock-outs by adapting safety stock levels using a SD simula-
tion [15]. Among the SD-based studies, there is only one study
which examines the performance of the system when there
are transportation disruptions at twodifferent locations in the
supply chain and it compares the results for a traditional sup-
ply chain with a vendormanaged inventory supply chain [32].

Prior research on supply chain disruptions, including
those focused on pharmaceutical supply chains, reveals the
importance of distinguishing the disruption features and
identifying operational mitigation policies that address these
characteristics. Despite this, minimal research examines sup-
ply chain performance as it pertains to (i) pharmaceutical
product recalls and the unique features of recalls, (ii) patterns
of disruptions that account for disruptions affecting multiple
nodes and multiple disruptions occurring over time, and (iii)
the inventory management policies and behaviors that drive
the dynamics of the system.

To address these features, we employ a mathematical
simulation model that accounts for the dynamics underlying
the system.While there are a limited number ofmodelswhich
analyze the complexities of supply chains with disruptions,
this is the first simulation model that focuses on product
recalls and the role of disruption patterns in pharmaceutical
supply chain.

3. Mathematical Modeling

We integrate two analytical methods to examine the per-
formance of inventory policies in pharmaceutical supply
chains experiencing disruptions: simulation modeling and
data envelopment analysis (DEA) approaches. To identify the
optimal performance—which is a function of the inventory
policy corresponding to the safety stock level, inventory
holding costs, and shortage costs—for varying disruption
patterns, we populate data points from the simulation results.
Using the simulation results, an approach derived from DEA
is used to identify the optimal inventory policy for various
types of disruptions and relative values of shortage and
inventory holding costs.

3.1. Model Structure. Thepharmaceutical supply chain that is
presented in this paper has a serial network structure consist-
ing of four echelons: manufacturer, distributor, wholesaler,
and health care center with a single pharmaceutical product
being distributed across the system over a finite time horizon.
The assumption of considering the pharmaceutical supply
chain as including four echelons is in alignmentwith themain
players identified by the FDA [32]. Additionally, this is similar
to the assumptions made in other models of these supply
chains [33, 34].The formulation of this model is adapted from
the beer distribution game simulated by Sterman [28] and
Croson and Donohue [33].

The supply chain members, each corresponding to one
echelon, are denoted as 𝑖 = 1, . . . , 4 for the health care center,
wholesaler, distributor, and manufacturer, respectively. In
each time period 𝑡 (𝑡 = 1, 2, 3, . . . , 260) representing a
week during a 5-year period, each supply chain member will
receive product shipments from the supply chain member
immediately upstream, resulting in increased inventories,
and will receive orders for products from supply chain mem-
bers immediately downstream. Since there is no upstream
echelon for the manufacturer, the inventory of the manu-
facturer is increased by the quantity that is produced in the
previous period. Moreover, there is no downstream node for
the health care center. Hence the health care center should
satisfy the patients’ demand in each period.

After satisfying orders, if there are not enough inventories
available, the remaining orders are added to the backlog of
each member, except for the health care center, and must
be satisfied in the next period. The unsatisfied demand for
the health care center is lost, resulting in a shortage. At
the end of each period, each supply chain member, other
than the manufacturer, will place an order for more products
with the supply chain member immediately upstream. The
manufacturer will determine how much to produce in the
next period, similar to an order. In this model, we assume all
members use a periodic review inventory model with zero
fixed costs when determining how much to order in each
period.This order quantity is dependent on two features: cycle
stock (for satisfying the expected demand) and safety stock (as
extra inventory to buffer against uncertainty). Cycle stock is
calculated as the mean of lead-time demand, and safety stock
is a function of the standard deviation of lead-time demand
and the target cycle service level (CSL).The cycle service level
can be defined as the expected percentage of order cycles
in which no shortage occurs. Each member wants to keep
safety stock to address the uncertainty related to demand
fluctuations during the lead-time.

Additionally, information about disruptions in the supply
chain due to product recalls may become available to the
affected member during any time period. If there is a product
recall, some products will be removed from the inventory
of the health care center, wholesaler, and distributor (in
Section 3.2.2 we discuss why we do not consider removals
from themanufacturer). Eachmember’s remaining inventory
which was not recalled can be used to satisfy orders or patient
demand.

We assume that the members of the supply chain make
their ordering decisions based on a forecast of uncertain, but
stationary, demand in each period. Lee et al. [29] indicate
that even a rational ordering decision—which is changed
dynamically—can lead to the bullwhip effect or the phenom-
ena inwhich orders placed by downstreamnodes to upstream
nodes are variable over time and variability is amplified at
members further upstream from the customer.There are four
elements considered for the bullwhip effect in a supply chain:
demand signal processing, rationing game, order batching,
and price variations. Due to the lack of fixed ordering costs,
price variability, and rationing ability in the presented model
of these elements, only demand signal processing would be
expected to cause the bullwhip effect phenomena.
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3.2. Model Formulation

3.2.1. Ordering Decisions. The model used in this paper
assumes that members place orders based on a periodic
review policy with zero fixed costs. We follow the same
notation as presented by Sterman [28]. The indicated order
rate for echelon 𝑖 (𝐼𝑂𝑖𝑡) is based on the anchoring and adjust-
ment heuristic. In our model, we assume that each member
is a rational decision maker and uses an approximately
optimal local policy to place orders. Therefore, the indicated
order rate is a function of demand, lead-time, service level,
inventory level, and the order amount that has ordered but
has not been received (on-order).The anchoring corresponds
to the base stock (𝑆𝑖𝑡) over time which is locally optimal
for a periodic review policy under certain assumptions.
Furthermore, adjustments can be equivalent to the inventory
position (𝐼𝑃𝑖𝑡), which is a function of on-hand inventory, on-
orders (orders that have been placed but not yet received),
backlog (health care center does not have backlog), and
disruptions (as recalls).𝐼𝑂𝑖𝑡 = 𝑆𝑖𝑡 + 𝐼𝑃𝑖𝑡, (1)
Asmentioned earlier eachmember is assumed to be a rational
optimizer and uses a periodic review policy with zero fixed
costs to place orders.The periodic inventory policy with base
stock (order-up-to-level) is optimal under these assumptions:

(1) demands are stationary,
(2) the lead-time is fixed and there is no limitation on

production,
(3) there is no fixed ordering cost and there are no

changes in the purchase cost of the product over time.
When using a periodic review policy, the base stock level at
time 𝑡 is given by

𝑆𝑖𝑡 = 𝜇𝐿𝑖𝑡 + 𝑧𝛼𝜎𝐿𝑖𝑡, (2)

where 𝜇𝐿𝑖𝑡, and 𝜎𝐿𝑖𝑡, are the mean and standard deviation of
the stationary demand for echelon 𝑖 over the fixed lead-time,
respectively. Furthermore, 𝑧𝛼 is denoted as the 𝛼𝑡ℎ fractal of a
standard normal distribution, known as the cycle service level
(CSL). Also, it can be interpreted as the likelihood of being
able to satisfy demand assuming no disruptions. In return,
this drives the level of safety stock that is held to buffer against
uncertainties in demand.

Since the distribution of the demand is unknown andmay
change in each period, we use the moving average forecasting
technique to estimate the mean and standard deviation of the
lead-time demand. This estimation may change periodically
and adjust based on the demand for the previous 𝑛 time
periods.This process of updating demand forecasts is known
as demand signal processing and can result in the bullwhip
effect [34, Ch. 10]. Assuming that the demand is independent
of previous periods, then, as demonstrated by Snyder and
Shen [34], the estimator for the mean lead-time demand (𝜇𝐿𝑖𝑡)
is

𝜇𝐿𝑖𝑡 = 𝐿(∑𝑛𝑗=1𝐷𝑖𝑡−𝑗𝑛 ) , (3)

where 𝐿 is lead-time and 𝐷𝑖𝑡−𝑗 is demand at time 𝑡.

The forecast error for the lead-time demand is

�̂�𝐿𝑖𝑒𝑡 = 𝑘√∑𝑛𝑗=1 (𝑒𝑖𝑡−𝑗)
2

𝑛 , (4)

where 𝑘 is a constant and assumed to be√𝐿.And the forecast
error in time 𝑡 is assumed to be the one-period forecast error
as

𝑒𝑖𝑡 = 𝐷𝑖𝑡 − 𝜇1𝑖𝑡. (5)

Following from the definition above, the base stock level at
each period is defined as

𝑆𝑖𝑡 = 𝜇𝐿𝑖𝑡 + 𝑧𝛼𝜎𝐿𝑖𝑒𝑡, (6)

where it is approximately optimal by using the defined
estimators to forecast demand.

The other element necessary to calculate for the indicated
order is the inventory position of member 𝑖 in time 𝑡 (𝐼𝑃𝑖𝑡),
which is defined as follows:

𝐼𝑃𝑖𝑡 = 𝐼𝑃𝑖𝑡−1 + 𝑎𝑖𝑡−1 − 𝐷𝑖𝑡−1 − 𝑅𝑖𝑡−1 − 𝐵𝑖𝑡−1 + 𝑂𝑛𝑂𝑖𝑡, (7)

where 𝑎𝑖,𝑡−1 is the acquisition amount in time 𝑡−1,𝐷𝑖,𝑡−1 is the
demand in time 𝑡−1,𝑅𝑖,𝑡−1 is the quantity of recalled products
that is removed from the inventory of member 𝑖 in time 𝑡 − 1,𝐵𝑖,𝑡−1 is the quantity of back ordered units in time 𝑡 − 1, and𝑂𝑛𝑂𝑖𝑡 is the quantity of on-order products expected to arrive
in time period 𝑡.

If the health care center does not have enough inventories
to satisfy all patient demand, then the unmet demand is lost
and not transferred to the next period, and a shortage will
result. Shortage is defined as

Shortage1𝑡 = 𝐷1𝑡 − (𝐷1𝑡 ∗ Fullfillment ratio1𝑡) , (8)

where the fulfillment ratio is the percentage of demand at the
health care center which is satisfied. However, for the rest of
the supply chain members, the excess amount is added to the
backorder quantity and must be satisfied in the subsequent
periods.

Finally, the order amount should be nonnegative such
that

𝑂𝑖𝑡 = max (0, 𝐼𝑂𝑖𝑡) . (9)

3.2.2. Disruption Modeling. In the model, we examine supply
chain disruptions due to product recalls, which are mod-
eled as exogenous shocks that can affect the availability of
inventory at all echelons of the system. As discussed earlier,
a product recall happens when there are concerns related to
the safety of products produced in the past. Consequently,
the manufacturer enforces a voluntary recall of the affected
product that has been already distributed within the supply
chain. Because this process usually begins after some time
has passed, we only consider recalls from three echelons,
the distributor, the wholesaler and the health care center. It
is possible to have multiple disruptions, or product recalls,
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Periodicity of disruption Breadth of disruption

Short break in events Longer break in events Single continuous disruption Two disruptions
with a break in events

Length of disruption Size of disruption

Brief disruption Prolonged disruption 5% loss of inventory 10% loss of inventory

Figure 1: Graphical description of elements characterizing disruptions including the periodicity, breadth, length, and size.

occurring over a period of time. Additionally, the size of the
disruption, as defined by the amount of product recalled, can
vary significantly based on the driving forces.

Disruptions as external interruptions have been stud-
ied in supply chain risk management as deterministic and
stochastic events [16, 24, 35, 36]. However, to the best
of our knowledge, there are no studies which model the
effects of product recalls. To address the lack of modeling
of pharmaceutical shortages, we develop deterministic and
stochastic models of these types of disruptions which account
for the possibility of multiple events over time and varying
sizes of the disruptive events.

In deterministic scenarios, the hypothetical disruptions
are defined in advance. There are multiple different elements
that are considered for characterizing disruption patterns.
Adapted from [37], the elements that are considered for
characterizing a disruption are disruption periodicity, disrup-
tion breadth, disruption length, and disruption size. Figure 1
demonstrates each element. The periodicity of disruptions
refers to the duration of time between disruption events.
Disruption breadth refers to whether the disruption hap-
pens once or if there are multiple distinct disruptions. In
this paper, we examine the effect of a single disruption
versus multiple disruptions. Additionally, the length of the
disruption refers to the duration of the time period during
which the disruption occurs. In our model, we assume this
element is either brief but severe in intensity or prolonged
but moderately sized. The disruption quantity lost or the size
of disruption refers to the total loss of the system due to
disruption occurrence.

In addition to the deterministic set of disruptions, we
model disruptions as exogenous stochastic events that hap-
pen during the simulation time horizon. We assume that
the time between disruptions is variable and uncertain,
but the occurrence of disruptions is modeled as a Poisson
distribution with an average arrival rate lambda (𝜆). For
the Poisson process with a mean of 𝜆 events occurring
in a specified time period, the time between events are

𝑇0 ← 0𝑖 ← 0
while (𝑇0 < 𝑟𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒)𝑖 ← 𝑖 + 1

generate𝑈𝑖 ∼ 𝑈(0, 1)𝑇𝑖 ← 𝑇𝑖−1 − (1/𝜆) ln(1 − 𝑈𝑖)
Return 𝑇1, 𝑇2, . . . , 𝑇𝑖−1

Algorithm 1: Algorithm for simulating a Poisson Process with
Exponential interarrival times between disruption events.

independent and identically distributed with a continuous
exponential distribution of mean 1/𝜆. In order to generate
the random interarrival times with the rate of arrival as 𝜆
in a Poisson distribution, we use the algorithm presented in
Algorithm 1.

In our model, we assume that the duration of recalls
is greater than or equal to the lead-time to make sure
that no defective product remains in the transshipment.
The current simulation model is employed over multiple
random scenarios which facilitates the comparison of the
effects of recall periodicity and the size of disruptions on
the shortages and inventory costs with varying inventory
policies. Furthermore, in order to compare the different
patterns of disruptions, the expected total amount recalled
for all scenarios is assumed to be fixed. Another challenge
for modeling recalls in both deterministic and stochastic
settings is the need to ensure that there are enough defective
products in the inventory compared to the recall amount
which is removed, such that the inventory cannot be negative.
Correspondingly, we assume that the amount that we recall
from each echelon is proportional to the available inventory
of that echelon.

The objective is to minimize the total costs of the health
care center, as presented in (10), which consists of the
summation of the total cost of shortages and the total cost for
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Table 1: Model parameters.

Parameter Definition Value
𝑇 (Time to review inventory and place an order at Hc,
Ws, Ds, Mn) Review period length 1 week

𝐿 (Lead-time from the upstream node to a downstream
node)

Time required to transport/ship products between
upstream nodes and downstream nodes 2 weeks

Manufacturing cycle time Time between the production decision point and the
first shipment point 3 weeks

𝑛 (Forecast demand time period Hc, Ws, Ds, Mn) Number of previous time periods used in the
estimation and the forecast of demand 12 weeks

𝐶𝑆𝐿 (Cycle service level) The CSL parameter defines the inventory policy and
level of safety stock held by Hc, Ws, Ds, and Mn 0.95 (initial value)

holding inventory at the health care center where ℎ is the per
unit holding cost and 𝑝 is the per unit shortage cost. The total
cost varies based on the product recall disruption pattern and
the inventory policy, as defined by the target cycle service
level (CSL).

minimize ℎ𝐼𝐿1𝑡 + 𝑝 Shortage1𝑡. (10)

3.3. Data Envelopment Analysis. Accessing the true value of
the inventory costs and the shortage costs is challenging
because health care centers are unlikely to share this infor-
mation with the public. Moreover, if these costs are available
for a particular drug, it may vary substantially in comparison
to other pharmaceutical products. In order to assess the
performance of the system, without knowledge of the true
underlying costs of the system, we employ an approach
derived from the concepts of the data envelopment analysis
(DEA) approach. DEA is a data-driven approach which
seeks to assess the relative performance of multiple systems,
referred to as decision-making units (DMUs), accounting for
multiple inputs and outputs without exact information about
the relative costs and values associated with the inputs and
outputs, respectively. Thus, a system, or DMU, is defined as
efficient, in comparison to the others under consideration,
if there is some set of costs of inputs and values of outputs
that leads it to have the best, or most efficient, performance.
A set of optimization problems are solved in order to
determine which DMUs are denoted as efficient under some
combination of costs and values. These DMUs are defined as
making up the ‘efficient frontier’ [38, 39].

We employ an approach similar to DEA to evaluate
which policies, as defined by a CSL, are efficient for some
set of inventory costs and shortage costs, under different
disruption patterns. The data created from the simulation is
used as input into this approach. Using an approach similar
to DEAwith constant-returns to scale [38], we identify which
policies, defined by the CSL value, are efficient, or perform
best for some relative value of inventory and shortage costs.
Correspondingly, we also identify which CSL values never
perform best for any set of inventory and shortage costs,
and therefore are denoted as inefficient. When plotting the
outcomes of the policies, with respect to both the level of
shortage and inventory, the efficient frontier can be estimated
by connecting the efficient policies with isoquant lines. This

efficient frontier can be interpreted as the set of inventory and
shortage levels that are efficient for somepair of inventory and
shortage costs.

4. Analysis

4.1. Data. Using the saline demand patterns as a basis for the
model, we assume that demand follows a normal distribution
with amean of 10,000 bags per week and a standard deviation
of 100 bags per week. In all experiments, we use a common
random number seed to generate demand data. This allows
for the isolation of variations due to ordering behavior and
inventory policies rather than variations due to different
demand streams in the comparison of the results.

As mentioned in Section 3.1, the simulated supply chain
has a serial structure with four echelons (manufacturer,
distributors, wholesalers, and health care centers).We assume
that there is no limit on the capacity of the manufacturer to
meet the demand. The simulated model is defined by several
parameters. These parameters are assumed to be consistent
across the duration of the entire simulation run, or 5 years.
However, in order to capture the effect of inventory policies
on the ultimate goal of minimizing shortages and limiting
inventory costs as the health center, the CSL value which
defines the inventory policy may change. While the CSL may
vary among simulation runs, we assume that all echelons
will have the same CSL. Table 1 provides a summary of the
parameters and their values.

4.2. Disruption Pattern Comparison. As the characteristics
defining product recalls can vary based on multiple char-
acteristics, the goal of this section is to provide insights
into the behavior of the supply chain defined in Section 4.1
under different disruption patterns while assuming that the
inventory policies, as defined by the CSL, remain the same.
For this purpose, we create five disruption scenarios (A-E)
to examine the effects of disruption characteristics, presented
in Figure 1, on the health care center behavior and the
performance metrics.

Table 2 summarizes the characteristics of each scenario.
To allow for easy comparison of these scenarios, we assume
that all disruptions start at the same time (week 50), and
that the total recall quantity remains the same for all of the
scenarios, except Scenario C, which has a greater recall size.
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Table 2: Disruption scenarios.

Scenarios Definition Total
Recall

Breadth
(𝜆)

Time
Between∗

Duration
(𝛾)∗ Intensity (𝜃) % Lost Start Time∗

A

1% loss of inventory,
brief disruption,
single continuous

disruption

26,200 1 - 12 2,183 1% 50

B

1% loss of inventory,
prolonged disruption,
single continuous

disruption

26,200 1 - 24 1,092 1% 50

C

5% loss of inventory,
prolonged disruption,
single continuous

disruption

131,000 1 - 24 5,458 5% 50

D
1% loss of inventory,
two disruptions, short

break in events
26,200 2 3 12 1,092 1% 50

E
1% loss of inventory,
two disruptions, long

break in events
26,200 2 24 12 1,092 1% 50

∗The unit of measure for time is weeks.

The total recall amount corresponds to the area under the
rectangles in Figure 1. Therefore, we define the variable 𝜆
as the number of disruptions (breadth), 𝛾 as the duration
of each disruption, and 𝜃 as the intensity of the disruption.
The intensity of the disruption corresponds to the quantity
of product effected, or recalled, during each period of time
during the disruption. Equation (11) shows the relationship
among these factors. In all scenarios, we assume that the total
recall amount is equal to a percentage of the total demand
during the simulation duration, or the percentage lost. The
total recall amount is defined as

Total recall = 𝜆𝛾𝜃. (11)

Length of Disruption. To examine the effect of the length
of the disruption, Scenarios A and B are compared. While
both scenarios have the same amount of total recalls, corre-
sponding to 1% of the total demand, Scenario A represents a
disruption that has a higher quantity of product recalled per
week which lasts for fewer weeks than Scenario B. All other
features of the scenarios are the same. Graphical depictions
of the disruption pattern and behavior at the health center
including inventory levels, shortage levels, and order amounts
for Scenarios A and B are presented in Figure 2. While both
systems quickly recover to a state of no shortages within
one week after the disruption occurs, the ultimate effects
of the disruption scenarios are different. For example, as
presented in Table 3, the total shortage is 19% greater in
Scenario A than in Scenario B when demand is modeled
stochastically. When demand is modeled deterministically,
the shortage in Scenario A is 13% greater than in Scenario B.
While the shortage amounts differ, the total inventory does
not vary significantly between the scenarios. These results
demonstrate that the effects of recalls are driven bymore than
just the total amount recalled. Instead, the rate of products

recalled per week and the duration of time over which recalls
occur will affect the total number of individuals that are
unable to receive the needed product, referred to as the
shortage amount.

Breadth of Disruption. To examine the effect of the number of
disruptions, or the disruption breadth, we compare Scenarios
B and D. While in Scenario B there is one disruption that
lasts for a total of 24 weeks, in Scenario D there are two
disruptions each with a length of 12 weeks and with 3
weeks passing between the disruptions. Both scenarios have
the same intensity (𝜃), defined as the number of products
recalled eachweek during the disruption.The results for these
scenarios with deterministic demand are shown in Figure 2.
Scenario B and D have slightly different behavior. It takes
one week more for Scenario D to return to steady state than
Scenario B. Also, the total order amount in Scenario D is
greater than in Scenario B. As presented in Table 3, the total
shortage is 2% greater in Scenario D than in Scenario B
when the system is modeled with stochastic demand and 1%
greater when the demand is modeled deterministically. This
implies that the system performs slightly better when there is
a continuous disruption as opposed to having a short break
between the shortages. This is further examined by studying
the effects of periodicity of the disruptions.

Periodicity of Disruption. Scenarios D and E are compared in
order to examine the effect of periodicity of the disruptions.
All disruption parameters except for the time between the
disruptions are the same. Unlike the 3-week duration that
occurs in Scenario D, in Scenario E there is a 24-week break
between the disruptions. Similar to the results seen through
the comparison of Scenarios B andD, as the time between the
recall disruptions increase, so does the level of shortage in the
system. As presented in Table 3, the shortage in Scenario E is
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Figure 2: Inventory levels, shortage rates, and orders at health centers over time for disruption Scenarios A-E when demand is modeled
deterministically.

10% greater than that in Scenario D for both deterministic
and stochastic demand patterns. We hypothesize that the
reason for this behavior is that when another disruption has
recently occurred the system is already working to recover,
with greater production and shipping levels. Thus it is more
prepared for a subsequent disruption. As the time between
disruptions increases the system is more likely to revert to
a steady state which is not prepared to accommodate an
additional disruption.

Size of Disruption. Finally, we examine the effect of the size
of the disruption on the system by comparing Scenario B and
Scenario C. In Scenario C, the number of products recalled
per week is five times that found in Scenario B. From exam-
ining Figure 2, it is shown that the pattern is the same for the
two disruption scenarios, but the intensity differs. Similarly,

the temporal patterns pertaining to the inventory, orders, and
shortage at the health center are similar for the two scenarios,
although the scale of the effects are different. As shown in
Table 3, the total shortage in Scenario C is 470% of that
in Scenario B when demand is modeled deterministically.
Similarly, when demand is modeled stochastically, the total
shortage in Scenario C is five times that found in Scenario B.

The higher rate of shortage in proportion to the increase
in the recall rate is expected since it is assumed that the
inventory policy, as defined by the CSL, is the same regardless
of the recall pattern. In practice, it would be natural for
a supply chain stakeholder to choose a higher CSL if it
was expected that substantially greater recalls were likely.
Similarly, if a particular product is more likely to exhibit
short and intense disruptions rather than long andmoremild
disruptions this should inform the management decisions
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Figure 3: Effects of inventory policies, defined by CSL, on the total
shortage and health center inventory and an estimate of the efficient
frontier defining nondominated inventory policies. The CSLs equal
to .86, .87, .91, and .94 are inefficient and not included on the efficient
frontier.

made by supply chain members. As demonstrated in the
comparison of scenarios here, even with just one change in
the features of the disruption and no changes in the inventory
strategy or the total amount recalled, the performance of the
system can vary significantly. Thus, it is important to consider
potential disruption features when choosing an inventory
strategy.

The results for the defined scenarios show that the
system acts very differently based on the differing disruption
characteristics. In the next section, we examine how different
policies affect the performance of the underlying system.

4.3. Effect of Inventory Policies on the Performance. The driv-
ing parameter that defines the inventory management policy,
and correspondingly the safety stock, at each echelon of the
supply chain, is the cycle service level. In the previous section,
it was seen that for different recall disruption scenarios (A-
E) and a constant CSL the performance of the system varied
significantly. Next, we examine the effects of changes to the
inventory policies as they correspond to changing the CSL for
the different recall scenarios. While we allow for the policies
to change, it is assumed that all echelons will have the same
CSL value. Further, we examine the effects of these changes
in inventory policies and disruption patterns jointly on two
performance metrics, (i) total shortage and (ii) inventory at
the health center.

To provide a baseline performance level for the inventory
policies, Scenario 0 is defined which represents the system
when no disruptions occur.

Figure 3 demonstrates the effects of different CSL values
on the two performance metrics in Scenario 0. As this
figure shows, by increasing the CSL, the total inventory level
increases and the total shortage level decreases.

Identifying the optimal CSL among the policy options
is dependent on the relative costs associated with the two
performance measures of total shortage and health care
center inventory. We evaluate the performance of the policy

options for different relative costs using the approach dis-
cussed in Section 3.3.The efficient frontier in Figure 3 depicts
the estimated levels of both shortages and health care center
inventory that can be achieved, and would be optimal, for
some relative value of shortage and inventory costs. Thus,
all CSL values that do not fall precisely on this efficient
frontier are classified as inefficient by the DEA approach. An
alternate interpretation of inefficiency is provided by noting
that there is a point on this efficient frontier that achieves
fewer shortages or fewer inventories while keeping the same
level with respect to the second measure. Thus, the outcomes
estimated by the efficient frontier are strictly better than those
achieved with the inefficient CSL value. As shown in Figure 3,
and determined by applying the DEA approach, the policies
corresponding to the CSLs of 0.86, 0.87. 0.91, and 0.94 are
not on the corresponding efficient frontiers and therefore are
never efficient when no shortages occur, regardless of the
relative values of the inventory holding cost and the shortage
cost. All efficient inventory policies among those simulated
are on the efficient frontier in the graph in Figure 3.

To identify efficient inventory policies when the system is
experiencing disruptions, we introduce a stochastic model of
recalls to present amore realistic setting in which the number
of disruptions and the time between disruptions vary. To
ensure that the total expected number of products recalled
is consistent across scenarios, we model the disruptions
with a Poisson distribution with the parameter lambda (𝜆)
corresponding to the expected number of disruptions, or
the disruption breadth. Additionally, with the assumption
that the duration of each recall disruption (𝛾) is the same,
the average recall quantity per week (𝜃) is scaled to ensure
that the total expected quantity recalled is the same. Due
to the stochastic nature of the modeling, it is possible
that simulation instances experience different numbers of
disruptions, and therefore different quantities are recalled,
but the expected number recalled remains the same.

In order to study the effect of different inventory policies
on the performance metrics of the health center, we simulate
each recall pattern for 16 different CSLs. Furthermore, we
run the simulation for multiple disruption patterns defined
by the value of 𝜆, for 𝜆 = (5, 10, 15, 20), for a 5% of
loss inventory, to examine the relationship between policies
and recall patterns. For smaller values of 𝜆 there are fewer
disruptions with higher intensity. More frequent disruptions
with fewer recalls per week results from higher values of 𝜆.
Figure 4 shows the performance of these policies, defined
by the CSL, for different recall patterns, defined by the 𝜆
value. From the results, it is clear that different inventory
policies perform significantly different depending on the
disruption pattern. Additionally, the incremental difference
in inventory and shortage between policies varies for different
disruption patterns. Thus, the choice of policy should vary
with respect to the expected disruption characteristics and
with the relative costs of one unit of shortage and one unit
of inventory.

Similar to the identification of efficient inventory policies
for the scenario with no recalls, we can identify inventory
policies that are inefficient regardless of the relative valuation
of the two performance measures. This can be achieved
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Table 4: Optimal CSL for varying ratios of shortage and inventory costs under different disruption patterns as defined by the expected
number of recall disruptions (𝜆).

Relative value of cost (unit cost of shortage/ unit cost of inventory)
𝜆 0.8 1 1.2 1.4 1.6 1.8 2
5 0.9 0.94 0.95 0.96 0.98 0.98 0.99
10 0.9 0.94 0.97 0.98 0.99 0.999 0.999
15 0.93 0.98 0.98 0.99 0.999 0.999 0.999
20 0.96 0.98 0.98 0.999 0.999 0.999 0.999
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Figure 4: For different recall patterns, defined by 𝜆, the resulting
total shortage and health care center inventory for various inventory
policies, defined by the CSL.

by using an approach similar to DEA. For example, when𝜆 equals 5, 15 and 20, inventory policies with CSL equal
to 0.91, 0.86 and 0.96, and 0.95, respectively, are found to
be inefficient using the mathematical models in the DEA
approach. While an inventory policy may be identified as
efficient it will not be optimal for all relative values of per unit
shortage costs and per unit inventory costs.The optimal CSLs
for a selection of relative costs and for different disruption
patterns, defined by 𝜆, are provided in Table 4.

For different ratios of the unit cost of shortage and the
unit cost of inventory, we can identify the optimal CSL
for the inventory policy. Table 4 illustrates the result of
this analysis. This analysis reveals that increasing the CSL,
which is equivalent to choosing to hold more safety stock in
inventory, is not always best and it varies based on the ratio
of costs and the type of disruption that is expected to occur.
For example, if the ratio of the costs is 1, a CSL equal to 0.98
is optimal only if there are frequent recalls, of approximately
more than 15 over 5 years, or low intensity in this model.
However, if it is expected that there will only be one recall per
year (𝜆 = 5) of a high intensity, then choosing a CSL of 0.98
is no longer optimal and we should instead choose a CSL of
0.94.

Finally, the results in Table 4 demonstrate the sensitivity
of the choice of inventory policy for a disruption pattern. For
example, if the ratio of costs is 1.4, choosing an inventory

policy with the assumption of five recalls over the five-year
duration will leave the supply chain stakeholder very far
from the optimal policy if in fact there are fifteen recalls
and the same total quantity is recalled. This demonstrates
the criticality of choosing a policy that correctly matches the
expected recall disruption pattern. Further, this supports the
value of stakeholders gathering information about historical
patterns in recalls and forecasting future recalls. By achieving
a better understanding of the likely recall scenarios, supply
chain decision makers can adjust and ultimately reduce
costs from inventory and shortages. These results support
the consideration of the use of adaptive policies such that
inventory decisions change over time either in anticipation of
or in response to recalls. This ultimately may lead to reduced
drug shortages and reduced supply chain costs. As discussed
below, we suggest expanding the model to integrate adaptive
inventory policies in future work.

5. Conclusion

We present a mathematical simulation model of the phar-
maceutical supply chain to understand the behavior of the
drug shortages under different disruption patterns. There are
currently few models that study the entire pharmaceutical
supply chain, and none that focus on recalls and disruption
patterns. To provide insights into this critical relationship
we examine (i) the role of the disruption characteristics and
(ii) the role of the inventory management policies within a
simulation model inspired by the saline supply chain. Sterile
solutions, such as saline, constitute a large portion of the
pharmaceutical recalls and shortages that occur each year.

Through analysis of this supply chain, we find that small
differences in the disruption patterns lead to very different
system performance when the inventory management poli-
cies are held consistent. Further, this relationship holds for
changes to either the (i) length, (ii) breadth, (iii) periodicity,
or (iv) size of the disruptions. Additionally, we demonstrate
the sensitivity of the optimal inventory policy to these
features of the disruptions. Thus, rather than a traditional
approach of using a consistent cycle service level (i.e., holding
more safety stock in inventory), our results support the need
for evolving inventory management strategies that account
for the features of the disruption.

In the case of saline, frequent small recalls occurred
in the system prior to 2017. If the inventory policies were
designed to instead be resilient against major disruptions or
large recalls, the inventory management policy and levels
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of safety stock would not be efficient. Thus, choosing a
policy that best responds to the likely disruptions is critical.
Further, with an understanding of the effects of frequent
small disruptions, one option for stakeholders in the saline
supply chain would be to invest in manufacturing equipment
and institute practices that would decrease the likelihood of
this disruption pattern. Additionally, instituting policies that
allow for inventory policies to agilely adapt based on current
and expected future circumstances would improve the overall
system performance.

A key challenge to implementing policies that adapt to
disruptions is the critical unknown features of disruptions
that will occur in the future. But while full knowledge
of future events is not possible, the results of this work
support the need for supply chain managers to examine
and identify the best inventory management policies for a
variety of types of disruptions that are probable. In return,
understanding this relationship between the best policies and
the disruption characteristics can inform implementation of
policies that are robust to a variety of types of disruptions.
Further, as disruptions occur and estimates of their features,
such as length, breadth, size, and periodicity, are updated
supply chain stakeholders canmodify their inventory policies
accordingly. Lastly, these results support the importance of
supply chain stakeholder investing in gaining information
about these disruption characteristics both in anticipation of
or during a disruption. This additional information will be
valuable as it allows the decision makers to adapt policies in
real-time.

There are several limitations and extensions which
require further investigation. First, this paper considers that
there is no limitation on the manufacturing capacity. A
more realistic model with inclusion of limited capacities and
a sensitivity analysis examining the role of manufacturing
capacity may be informative for future consideration as the
capacity is expected to significantly influence the shortage
size and the time for the system to return to a steady
state. Second, we assume that all the echelons use the same
inventory policy and have the same CSL. This representation
may be violated for pharmaceutical supply chains in which
downstream nodes tend to hold more safety stock to reduce
the likelihood of unmet patient demand. Third, defining the
total cost of the system as the inventory holding cost and
shortage cost of the health care center is a limiting feature.
While we only consider the inventory of health care centers,
this can be considered to serve as a proxy that represents
the total inventory in the supply chain. Additionally, with
a focus on addressing the critical societal problem of drug
shortages, we focus on developing an understanding of the
elements driving shortages. Future extensions of this model
can account for additional system elements in the objective
function.

We propose to address these limitations in future
research. Additionally, since, in the real world, planners are
often unsure of the type of disruption that will occur, in future
research we aim to construct and examine the performance
of adaptive inventory policies by building on the findings
from this work. There are also opportunities to expand this
study to investigate other types of pharmaceutical supply

chain disruptions, including manufacturing shutdowns and
surges in demand to compare and contrast with the effects
of recall disruptions. Also, consideration of the cooccurrence
of manufacturing shutdowns and product recalls can further
inform operational policies for supply chain stakeholders
seeking to prevent future drug shortages.
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