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mechanism investigated in this search is tt pair production in which one top quark decays

to a charged Higgs boson and a bottom quark and the other decays to a charged lepton,

a neutrino, and a bottom quark. Charged Higgs boson decays to cb are searched for,

resulting in a final state containing at least four jets, a charged lepton (muon or electron),

and missing transverse momentum. A kinematic fit is performed to identify the pair of

jets least likely to be the bottom quarks originating from direct top quark decays and the

invariant mass of this pair is used as the final observable in the search. No evidence for the

presence of a charged Higgs boson is observed and upper limits at 95% confidence level of

0.8–0.5% are set on the branching fraction B(t→ H+b), assuming B(H+ → cb) = 1.0 and

B(t→ H+b) + B(t→Wb) = 1.0, for the charged Higgs boson mass range 90–150 GeV.
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1 Introduction

In 2012, a boson with a mass about 125 GeV was discovered at the CERN LHC [1–3] with

its properties subsequently shown [4–7] to be consistent with those of the standard model

(SM) [8–10] Higgs boson [11–16]. Although the last missing particle of the SM has been

discovered, several questions remain, including the nature of dark matter [17, 18], and the

origin of neutrino masses [19] inferred from the observation of neutrino oscillations [20].

Several hypotheses beyond the SM have been introduced and tested to answer these ques-

tions, and many of them include more than one Higgs doublet. Models with two Higgs

doublets, so-called two-Higgs-doublet model (2HDM) [21, 22], result in five Higgs bosons:

two charged (H±) and three neutral (A, H, h). In the 2HDM, the Higgs boson discovered

at the LHC can be one of the CP-even neutral bosons (H or h). Unlike the SM, in general

2HDM allows flavour changing neutral current (FCNC) at tree level. To suppress such tree

level FCNC, all fermions with the same electric charge are required to couple to one Higgs

doublet only [23, 24]. The 2HDM is typically categorized into four different types: type-I,

type-II, lepton-specific (type-III), and flipped (type-Y, also known as type-IV), depending

on the assignment of up/down-type quark and lepton couplings to each Higgs doublet.

We present a search for charged Higgs bosons. Hereafter, we refer to them as H+, but

charge conjugate states are always implied. In the 2HDM, the mass of the charged Higgs

boson (MH+) is an unconstrained parameter. Regardless of its mass, H+ is expected to

have a large coupling to the top quark unless a specific condition is being considered as

in refs. [25, 26]. If MH+ is smaller than the top quark mass, the so-called light charged

Higgs boson scenario, the top quark can decay to a H+ and a b quark, t → H+b. The
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Figure 1. Feynman diagrams of the H+ production in top quark pair events (left) compared to

the standard model production of tt in lepton+jets final states (right).

LEP experiments [27] excluded the mass of charged Higgs below 80 (72.5) GeV for type-II

(type-I for pseudo-scalar masses above 12 GeV) scenario at 95% confidence level (CL). In

the presence of the W boson resonance at a mass of 80.4 GeV, the light charged Higgs

boson search range is typically set between the W boson mass and the top quark mass.

Previous direct searches for a light H+ in decays of a top quark have been performed at

hadron collider experiments in following channels: H+ → τν [28–34], H+ → cs [35–38],

and H+ → WA [39]. No indication of a H+ was observed and the best upper limits on

the branching fraction of t → H+b were placed at O(1%). The H+ → cb process is the

dominant decay channel in the type-Y 2HDM [40–42], and this signal could be a signature

of models with more than two Higgs doublets [43, 44]. The search is performed assuming

B(H+ → cb) = 1.0 without any other model-dependent assumption.

The search uses tt events with a final state of at least four jets (at least two of which

originate from b quarks), a charged lepton (muon or electron), and missing transverse

momentum. If a light H+(→ cb) is produced in top quark decays, the tt event would have

one more jet to be identified originating from b quark due to the H+ decays, as shown in

figure 1. A kinematic fit is performed to identify the pair of jets least likely to be the b

quarks originating from direct top quark decays. The invariant mass of this jet pair is used

as the final observable in this search. The signal events are expected to peak at the charged

Higgs boson mass. We assume B(t→ H+b) + B(t→Wb) = 1.0, which implies a lowering

of the branching fraction of top quarks to Wb in presence of H+ in top quark decays.

The main background for this search is SM tt, including tt production in association

with heavy-flavoured jets (ttbb, ttcc). Other considered backgrounds are single top pro-

duction, multijet, W/Z+jets and diboson production, and tt production in association with

an H/Z/W boson.

2 Event simulation and reconstruction with CMS detector

Background samples of tt, tt+W/Z, and W/Z+jets are simulated at leading order (LO)

using the MadGraph 5.1 generator [45] with the CTEQ6L1 parton distribution function

(PDF) set [46]. The top quark mass is set to 172.5 GeV for simulating these samples.

The predicted tt production cross section is calculated with the Top++ 2.0 program

at the next-to-next-to-leading order (NNLO) in perturbative quantum chromodynamics
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(QCD), including soft-gluon resummation at the next-to-next-to-leading-log order (ref. [47]

and references therein), to be σtt = 252.9+6.4
−8.6 (scale) ± 11.7 (PDF+αS) pb, where “scale”

and “PDF+αS” refer to the uncertainties coming from the independent variation of the

factorization and renormalization scales, and the variations in the PDF set and in the

strong coupling constant αS , respectively, following the PDF4LHC prescription with the

MSTW2008 68% CL NNLO, CT10 NNLO and NNPDF2.3 5f FFN PDF sets (refs. [48, 49]

and references therein, and refs. [50–52]).

The transverse momentum pT distribution of top quarks in simulated tt events is

reweighted to match the pT distribution observed in collision data [53]. The simulated

W/Z+jets samples are normalized to the NNLO cross section calculated with fewz 3.1 [54,

55], and tt+W/Z events are normalized to the next-to-leading order (NLO) cross sec-

tion [56, 57]. Single top quark events are generated with the powheg v1.0 generator [58–

61] and the CTEQ6M PDF set [46], and are normalized to the production cross section

at NLO in QCD computed with HATHOR v2.1 [62, 63]. Diboson (WW/WZ/ZZ) and

ttH events are generated at LO using pythia v6.4 [64] and normalized to the NLO cross

section calculated using mcfm 6.6 [65] and the cross section given in ref. [66], respectively.

The charged Higgs boson signal events (tt → bH+bW− → bbcb`ν) are simulated

using the pythia v6.4 and CTEQ6L1 PDF set for MH+ = 90, 100, 110, 120, 130, 140, and

150 GeV. These samples are normalized to the SM tt cross section in lepton+jets channel.

Consequently, in the assumption of B(H+ → cb) = 1.0 and B(t → H+b) + B(t → Wb) =

1.0, a fit using templates of the SM tt and the H+ signal determines the branching fraction

of t→ H+b.

All generated samples are interfaced with pythia v6.4 in order to simulate parton

showering and hadronization, and then processed through the full simulation of the CMS

detector based on Geant4 [67]. The underlying event tune Z2* [68, 69] is used. To ensure

correct simulation of the number of additional interactions per bunch crossing (pileup),

simulated events are mixed with multiple inelastic collision events and reweighted according

to the distribution of the number of pileup interactions observed in data.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon

pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two

endcap sections. Additional forward calorimetry complements the coverage provided by the

barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded

in the steel flux-return yoke outside the solenoid. A more detailed description of the

CMS detector, together with a definition of the coordinate system used and the relevant

kinematic variables, can be found in ref. [70].

A particle-flow (PF) algorithm [71] aims to reconstruct and identify particle candidates

with an optimized combination of information from various elements of the CMS detector.

Muon momenta are obtained from the curvature of muon tracks. The energy of photons

is obtained from the ECAL measurement, upon proper calibration of several instrumental

effects as described in [72, 73]. The energy of electrons is determined from a combina-

tion of the electron momentum at the primary interaction vertex (PV) as determined by
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the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all

bremsstrahlung photons spatially compatible with originating from the electron track [74].

The PV is the reconstructed vertex with the largest value of
∑
p2

T, the sum of squared

transverse momenta of the charged particle tracks associated with the vertex. The energy

of charged hadrons is determined from a combination of their momentum measured in the

tracker and the matching ECAL and HCAL energy deposits. Finally, the neutral hadrons

are identified as HCAL energy clusters not linked to any charged hadron trajectory, or

as ECAL and HCAL energy excesses with respect to the expected charged hadron energy

deposit or photon.

Jets are reconstructed from all the PF candidates clustered using the anti-kT algo-

rithm [75, 76] with a distance parameter of 0.5. The jet momentum is determined as the

vectorial sum of all particle momenta in the jet, and corrected for effects of pileup within

the same or nearby bunch crossings. Jet energy scale corrections [77, 78] are used to ac-

count for the nonlinear energy response of the calorimeters and other instrumental effects.

Additional selection criteria are applied to each event to remove spurious jet-like features

originating from isolated noise patterns in certain HCAL regions. The missing transverse

momentum vector ~pmiss
T is defined as the projection onto the plane perpendicular to the

beam axis of the negative vector sum of the momenta of all reconstructed PF objects in

an event. Its magnitude is referred to as pmiss
T .

3 Event selection and yields

Candidate signal events are selected using triggers [79] that require a single isolated muon

(electron) with pT > 24 (27) GeV and pseudorapidity |η| < 2.1 (2.5). Further selec-

tion requirements are made offline. Events with exactly one muon (electron) with pT >

26 (30) GeV and |η| < 2.1 (2.5) are selected. Lepton identification selections, including

requirements of a good track quality and close distance with respect to the PV, are im-

posed on each lepton candidate. Leptons must be isolated, satisfying relative isolation

requirement Irel < 0.12 (0.1) for muons (electrons). The Irel is defined as the pileup-

corrected scalar pT sum around the lepton candidate’s direction at the vertex divided by

the lepton candidate pT. The pT sum is calculated from momenta of the reconstructed

charged hadrons originating from the PV, neutral hadrons, and photons within a cone of

∆R =
√

(∆η)2 + (∆φ)2 < 0.4 (0.3) for muons (electrons), where φ is the azimuthal opening

angle (in radians). Events with any additional muons (electrons) satisfying pT > 10 (20),

|η| < 2.5, and Irel < 0.3, are discarded.

The pmiss
T is required to be larger than 20 GeV, and at least four jets are required to

have pT > 30 GeV within the tracker coverage of |η| < 2.4. To identify jets originating

from b quarks, the combined secondary vertex tagging algorithm [80] is used. Selected

jets are considered b-tagged if they satisfy the medium working point requirements of this

algorithm. This results in an efficiency of approximately 70% for tagging a b quark jet,

and a mistag rate of 1% for light quark and gluon jets. The probability of a c jet to be

tagged as a b jet is about 20%. Events with two or more b-tagged jets are selected.
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The events selected using the above criteria are dominated by SM tt events (≈92%)

based on the background simulation samples. The observed event yields in events with two

b-tagged jets are well described by the simulation, however, the events containing three or

more b-tagged jets are more difficult to model. In order to estimate the tt component in the

three or more b-tagged jet event sample, we rely on the measurement of the ttbb cross sec-

tion in ref. [81]. In this reference, the ttbb cross section is measured to be 0.36±0.08 (stat)±
0.1 (syst) pb. Comparing with the theoretical expectation of 0.23 ± 0.05 pb, we obtain a

ratio between the measured and the expected ttbb production cross section of 1.56 ± 0.66.

As the study used dilepton tt events of same generator with current tt simulation sample, in

which both top quarks decay to Wb with W → `ν, the H+(→ cb) contribution to this extra

b quark process is negligible. The events with only one extra b jet (ttbj) is understood to

come from the ttbb process with one b jet missed. Consequently, the ttbb component in the

simulated tt sample is estimated by requiring at least one additional jet originated from an

extra b quark based on generator information, then rescaled by the ttbb cross section ratio.

The multijet background is estimated following the method used in ref. [38]. The

shapes of the multijet background distributions are obtained from a nonisolated control

region defined by 0.15 < Irel < 0.3 and pmiss
T > 20 GeV, after subtraction of the estimated

SM backgrounds. In a QCD enhanced control region (pmiss
T < 20 GeV), a multiplicative

scale factor used for the multijet background normalization is obtained from the noniso-

lated control region extrapolated to the isolated region. The shape uncertainty is estimated

from the multijet background samples obtained using the same method but with shifted

nonisolated control regions, 0.2 < Irel < 0.3 (smaller statistics) and reversing Irel selection,

0.12(µ)/0.1(e) < Irel < 0.3 (larger statistics). The normalization uncertainty is estimated

by an average difference in the multijet background yields obtained from the shifted non-

isolated control regions compared to the nominal multijet background, and its impact on

the total SM backgrounds except the tt process (non-tt) is calculated to be 10% or less.

Event yields satisfying the selection criteria in the absence of a signal are summarized

in table 1. The tt event yields are estimated after rescaling the ttbb component. The

number of b-tagged jets (b tags) indicated in table 1 is the number of b tags among the

four jets with highest pT in the event, which are used in the tt reconstruction. Signal

efficiency satisfying the selection criteria is 4–6% depending on MH+ .

4 Reconstruction of tt events

Top quark and W boson masses are reconstructed relying on the knowledge of the momenta

of their decay products. However, the reconstructed mass is different from the true mass

because the measured jet energy is corrected to the energy of a particle-level jet, not to

the energy of the initial parton. A correction is derived from the energy shift between a

particle-level jet and the matched hard scattering parton within ∆R = 0.3, depending on

its matched parton flavour (b, c, or light quarks) in the SM tt simulation sample. This

correction is called the top quark specific (TS) correction and is applied as a function of

the pT and η of the jet. The application of TS correction in the tt reconstruction have

been used in several analyses [35, 37, 82]. Using this correction increases the accuracy of
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µ+jets e+jets

2 b tags ≥3 b tags 2 b tags ≥3 b tags

tt 52821± 67 ± 5463 5060± 21± 586 44484± 60 ± 4682 4269± 19± 468

Single top 2212± 30 ± 178 169± 8 ± 16 1882± 28 ± 161 147± 8 ± 13

tt+W/Z/H 195± 2 ± 8 41± 1 ± 3 169± 2 ± 7 35± 1 ± 2

W/Z+jets 1305± 127± 157 13± 7 ± 13 1098± 114± 165 32± 19± 14

WW/WZ/ZZ 62± 2 ± 7 5± 1 ± 1 56± 2 ± 6 4± 1 ± 1

Multijet 497± 15 ± 15 190± 19± 23 996± 31 ± 58 178± 17± 20

Expected 57093 ± 5470 (stat+syst) 5477 ± 588 (stat+syst) 48683 ± 4688 (stat+syst) 4665 ± 470 (stat+syst)

Observed 57593 5754 50542 4848

Table 1. Observed event yields and estimated backgrounds for the µ+jets and e+jets channels

satisfying the event selection criteria. The number of b-tagged jets is the number of b tags among

the four jets with highest pT in the event. The first and second uncertainty shown corresponds to

the statistical and systematic components, respectively.

the mass reconstruction for top quarks and H+/W boson decaying to dijet, resulting in a

7–9% improvement in resolution.

The instrumental mass resolution is further improved using a kinematic fit. The fit is

used to fully reconstruct the tt system by assigning selected jets to the hadronic W/H+

decays or b quarks in tt decays. The function that is minimized in the fit is as follows:

χ2 =
∑

pνz solutions

( ∑
i=`, 4jets

(pi,fit
T − pi,meas

T )2

σi2
+
∑
j=x, y

(pj
UE,fit − pjUE,meas)2

σUE
2

+
(M`ν −MW)2

ΓW
2 +

∑
k=thad, tlep

(Mk −Mt)
2

Γt
2

)
. (4.1)

In the first two terms, the momentum with superscript “fit” is the variable to be determined

by the fit, and the measured TS-corrected input pT is denoted with the superscript “meas”.

The first term fits the transverse momentum of the lepton and leading four jets and the

second term fits an unclustered energy (UE) in the transverse directions x and y. The

unclustered transverse energy vector is obtained from all the observables in the transverse

plane by the relation:

pUE
x,y = −

∑
i=`, 4jets

pix,y −
∑

j=extra jets, pT>10 GeV, |η|<2.5

pjx,y − pmiss
x,y , (4.2)

where the pmiss
x and pmiss

y are the x and y components of ~pmiss
T . Variation of the lepton, jet,

and UE is allowed within the measurement uncertainties, σi and σUE, depending on their

pT. The longitudinal momentum (pνz) of the neutrino is calculated by the leptonic (`ν) W

boson mass constraint ([p` + pν ]2 = M2
W) and only real pνz is taken into account in the

fit. During the iterations for minimizing the χ2, this pνz varies to keep the W boson mass

constrained. The neutrino momentum vector (pν,fit
x , pν,fit

y , pν,fit
z ) is reconstructed from all

the fitted momenta and eq. 4.2: pν,fit
x,y = pmiss,fit

x,y . The last term constrains the hadronic and

leptonic top quark candidates to have the true mass of 172.5 GeV. The widths of the W

– 6 –
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boson (ΓW) and top quark (Γt) in ref. [19] are used for the resolution in the fit. The χ2

minimization is performed for each possible combination of the four leading jets to quarks in

the tt system, where the b-tagged jets are only assigned to the b quark daughters. In order

to suppress combinatorial backgrounds and the irreducible contaminations from initial-

and final-state radiation jets, two requirements are imposed: |pjet, meas
T − pjet, fit

T | < 20 GeV

for the jets used in the fit and Mk < 200 GeV, in which Mk is reconstructed using input

jets before the χ2 fit, for the hadronically decaying top quark. In the jet-quark assignment

that minimizes the χ2, the two jets not assigned to either b quarks originating directly

from top quark decays form a H+ → cb candidate.

The reconstructed events are further categorized according to the lepton flavour (µ or

e) and the number of b-tagged jets (2 or ≥3). Events containing two b-tagged jets are

used to constrain the SM tt background, while events with three or more b-tagged jets

are used to search directly the presence of H+ → cb decays. In events with two b tags,

the fit has only two possible combinations of the jet assignment. However, in events with

three or more b tags, one b-tagged jet is assigned to a leptonically decaying top quark,

and two other b-tagged jets are assigned to the hadronically decaying top quark resulting

in additional ambiguity. According to simulation, the ambiguity is efficiently resolved by

the fit procedure only for H+ masses below 120 GeV. At higher masses (130–150 GeV), the

ambiguity is resolved by assigning the b jet with the lower pT to the b quark that originates

from the t→ H+b decay.

5 Systematic uncertainties

Systematic uncertainties can affect the overall signal and background events, as well as

cause distortions in the shape of the dijet mass distribution. Since the H+ originates from

a top quark decay, a number of systematic uncertainties in the H+ signal and SM tt back-

ground are correlated. The systematic uncertainties are estimated based on the samples

and methods used in ref. [83]. A summary of the systematic uncertainties is given in table 2.

Sources of systematic uncertainties are grouped into several categories: jet correc-

tions, b tagging effects, tt modeling, and normalizations. Uncertainties due to jet energy

corrections, flavour-dependent uncertainties, and uncertainties due to jet energy resolution

corrections are estimated by varying the correction factors by ±1 standard deviation (s.d.).

The efficiency difference from data to the simulation (scale factor) in heavy quark tagging

(b/c jets) and mistagging for light-flavoured jets is also varied by ±1 s.d. separately and

the corresponding changes are estimated. Similarly, the following quantities are also varied

by ±1 s.d.: normalization of the tt cross section in the simulation, integrated luminos-

ity [84] of the data sample, and lepton scale factors including the single-lepton trigger,

identification, and relative isolation. The uncertainty due to pileup is estimated by varying

the total inelastic cross section used in the simulation by ±5% [81].

To account for the uncertainties in the modeling of SM tt events, we consider the un-

certainty in reweighting the shape of the top quark pT distribution in the tt events to match

the simulation to data, NLO production versus LO production with 0–3 partons (powheg

versus MadGraph), matching thresholds used for interfacing the matrix-elements calcula-

– 7 –
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Source of uncertainty
Signal (MH+ = 120GeV) (%) tt (%) Non-tt (%)

2 b tags ≥ 3 b tags 2 b tags ≥3 b tags 2 b tags ≥3 b tags

Jet energy scale (JES)* 4.6–5.3 5.0–5.8 3.1–3.3 3.1 10.2–14.5 1.9–3.4

Flavour-dependent JES (b quark)* 0.4 0.5 0.1 0.1 0.2 0.5–3.4

Flavour-dependent JES (udsc quark or gluon)* 1.0 0.4 0.9 0.8 2.8–4.6 2.7–9.0

Jet energy resolution* 0.2 0.8 0.3 0.3 1.0–1.3 1.3–4.9

b tagging scale factor for b/c-quark jets* 1.2 5.7 3.6 5.7 0.6–0.8 2.0–3.8

Mistag scale factor for light quark jets* 0.2 0.3 0.2 2.7 0.9–1.5 0.9–2.0

tt pT reweighting* 0.2 1.0 1.4–1.7 1.6–1.9 — —

NLO-vs.-LO shape* 7.5–8.4 7.2–7.7 7.0–8.2 6.8–7.6 — —

ME-PS matching* 0.8 0.9 1.1 1.8–2.4 — —

Renormalization and factorization scales* 0.3 1.3–1.8 0.8–1.8 1.3–1.6 — —

Top quark mass* 1.1–1.4 1.1–1.5 0.4–1.2 0.9 — —

ttbb production rescaling* — — 3.7–3.9 10.2–10.9 — —

pythia–MadGraph pT(tt) difference* 0.1 0.1 — — — —

tt cross section 6.5 6.5 6.5 6.5 — —

Integrated luminosity 2.6

Muon scale factor (µ+jets) 3.0

Electron scale factor (e+jets) 3.0

Pileup reweighting 0.1–1.3

Multijet background prediction from data* — 0.3–2.3 5.2–10.7

Table 2. Summary of the relative systematic uncertainties in the event yields for the H+ signal

(MH+ = 120 GeV), simulated SM backgrounds (separated into tt and non-tt components), and the

data-driven multijet events. The uncertainties apply to both µ+jets and e+jets events, and in the

case where the uncertainties in the two channels differ, a range is given. Uncertainties on the shape

of templates are marked with an asterisk.

tions of the MadGraph generator to the pythia parton showers (ME-PS), renormalization

and factorization scales, and the uncertainty in the top quark mass of 172.5±1.0 GeV. The

uncertainty in the ttbb rescaling ratio is estimated to be 50%, combining the ttbb cross

section uncertainties (42%) and a few percent of the inefficiency of counting b jets in gen-

erator level. The ttbb rescaling uncertainties listed in table 2 are the impact of rescaling

on the selected tt events.

The systematic uncertainty in the SM tt modeling is estimated using simulation sam-

ples in which the corresponding systematic sources are varied. In order to estimate the tt

modeling uncertainties in the simulated H+ signal events, the pT distribution of the top

quarks from SM tt events is used. The ratio of the pT distribution with each parame-

ter shifted to the nominal value is calculated, then is used to reweight the top quark pT

distributions in the H+ signal simulation to mimic the systematic sample. By using this

method the modeling uncertainties for H+ signal events are estimated as listed in table 2.

In addition, as the H+ events are generated using pythia, the difference in tt generation

estimated by the top quark pT distributions of pythia and MadGraph, is then used as

an additional systematic uncertainty.
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Figure 2. Post-fit with a null-H+ hypothesis on the expected dijet mass distributions from SM

backgrounds (cumulative filled histograms) and their ratio of observed to predicted yields for the

µ+jets (left column) and e+jets (right column) channels. In the first row, events are shown for two

b tags together with the fit procedure for a H+ signal (MH+ = 110 GeV in left and 140 GeV in right).

The second (third) row shows the results for events with at least three b tags in the fit procedure

for the H+ search with MH+ = 90–120 (130–150) GeV. The dijet distributions are compared with

the H+ signal shape (dashed line) for MH+ = 110 and 140 GeV.
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Figure 3. Upper limits at the 95% confidence level (CL) on the branching fraction B(t → H+b),

assuming B(H+ → cb) = 1.0 and B(t → H+b) + B(t → Wb) = 1.0, for the combined µ+jets and

e+jets channels. The black solid line shows the observed limit. The mean expected limit is shown

as a blue dashed line and the green/yellow bands indicate the 68/95% confidence intervals for the

expected limits. The red dotted line shows the mean expected limit in the absence of systematic

uncertainties.

6 Results

Figure 2 shows the dijet mass distributions together with the expected SM processes and H+

signal after the kinematic fit procedures in µ+jets and e+jets events with two b tags and at

least three b tags, which are used for the H+ search with MH+ of 90–120 and 130–150 GeV.

A binned maximum likelihood fit is performed simultaneously to all the observed dijet mass

distributions, using the signal and background templates extracted from the simulation or

from the data. The background templates are composed of the dominant SM tt and non-tt

contributions. For the MH+ values of 120 and 130 GeV, where the kinematic fit procedure

changes as described in section 4, the limits are derived also with the alternate procedure,

giving consistent results. No significant excess is seen above the expected SM background.

The upper limits at 95% CL on the branching fraction B(t → H+b) are calculated using

the statistical tools in RooStat [85] and the CLs criterion [86, 87] with a profile likelihood

ratio as a test statistic [88] and using an asymptotic formulae [89]. The expected branching

fraction limit is calculated using an Asimov dataset with a null hypothesis. Systematic

uncertainties are treated as nuisance parameters and profiled in the fit following a log-
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normal distribution for the normalization uncertainties and using distorted templates for

shape systematic uncertainties. With the assumptions of B(H+ → cb) = 1.0 and B(t →
H+b) + B(t → Wb) = 1.0, the expected and observed limits as a function of MH+ are

shown in figure 3. The expected limits without systematic uncertainties are also shown to

illustrate that the analysis sensitivity is largely limited by the present level of our knowledge

of the systematic uncertainties. The biggest impact on the expected limit comes from the

ttbb production rescaling uncertainty.

7 Summary

A search for charged Higgs boson decaying to a charm and a bottom quark (H+ → cb) is

performed for the first time. The search uses tt events with a final state containing at least

four jets, a charged lepton (muon or electron), and missing transverse momentum. The

search is based on the analysis of proton-proton collision data recorded at
√
s = 8 TeV, cor-

responding to an integrated luminosity of 19.7 fb−1. A kinematic fit is performed to identify

the pair of jets least likely to be the b quarks originating from direct top quark decays and

the invariant mass of this pair is used as the final observable in the search. No evidence for

the presence of a charged Higgs boson is observed and upper limits at 95% confidence level

of 0.8–0.5% are set on the branching fraction B(t → H+b), assuming B(H+ → cb) = 1.0

and B(t→ H+b)+B(t→Wb) = 1.0, for the charged Higgs boson mass range 90–150 GeV.
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Université Libre de Bruxelles, Bruxelles, Belgium

D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney,

G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic,

N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino,

M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,

A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles,

G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov
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P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, U.S.A.

S. Malik, S. Norberg

– 34 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
5

Purdue University, West Lafayette, U.S.A.

A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Ma-

hakud, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang,

R. Xiao, W. Xie

Purdue University Northwest, Hammond, U.S.A.

T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, U.S.A.

Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li,

B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, U.S.A.

A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel,

M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan,

R. Taus, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, U.S.A.

A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl,

E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo,

K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone,

S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, U.S.A.

A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, U.S.A.

O. Bouhali70, A. Castaneda Hernandez70, A. Celik, M. Dalchenko, M. De Mattia, A. Del-

gado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon71, S. Luo, R. Mueller,

Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov
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