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1 Introduction

In 2012 the ATLAS and CMS Collaborations discovered a particle with a mass of

125 GeV [1–3] compatible with the Higgs boson predicted in the standard model (SM)

of particle physics [4–9]. Although all the measurements of the couplings and properties of

this particle indicate compatibility with the SM within the experimental uncertainties, the

existence of exotic decays of the Higgs boson is still allowed. The combination of data col-

lected at center-of-mass energies of 7 and 8 TeV by ATLAS and CMS constrains branching

fractions of the Higgs boson to particles beyond the SM to less than 34% at 95% confidence

level (CL) [10].

Many well-motivated exotic decays of the Higgs boson are proposed in theories be-

yond the SM [11]. A possible scenario consists of exotic Higgs boson decays to pairs of

light pseudoscalars, which subsequently decay to pairs of SM particles. Such a process

would be allowed in two-Higgs-doublet models (2HDM) extended with a scalar singlet

(2HDM+S) [11]. In 2HDM+S, 5 scalar and 2 pseudoscalar particles are predicted: one of

the scalars, h, can be compatible with the discovered Higgs boson, while one of the pseu-

doscalars, a, can be light enough so that h→ aa decays are allowed. The next-to-minimal

supersymmetric SM (NMSSM) is a particular case of 2HDM+S [12, 13].

The ATLAS and CMS Collaborations have set limits on exotic decays of the Higgs

boson to a pair of light pseudoscalar bosons, in different final states and in various ranges

– 1 –



J
H
E
P
1
1
(
2
0
1
8
)
0
1
8

of the pseudoscalar mass, ma [14–20]. In particular, CMS published a null result in the

search in the 2µ2τ final state for 15.0 < ma < 62.5 GeV using data collected at a center-

of-mass energy of 8 TeV [14], and ATLAS reported a null result in the same final state

at the same energy for 3.7 < ma < 50.0 GeV using special reconstruction techniques for

Lorentz-boosted τ lepton pairs [20].

This paper presents a search for an exotic decay of the Higgs boson to a pair of light

pseudoscalar bosons in the final state of two muons and two τ leptons. The analysis is

based on data collected in 2016 by the CMS experiment in proton-proton (pp) collisions at

a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1.

Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed. Below 15 GeV,

the pseudoscalar bosons are Lorentz-boosted, causing their decay products to be collimated

and to fail the isolation selection criteria used in this analysis. The analysis scans the recon-

structed dimuon mass spectrum for a characteristic resonance structure. Four different final

states are studied to cover the different possible τ lepton decay modes: µµ+ eµ, µµ+ eτh,

µµ+ µτh, and µµ+ τhτh, where τh denotes a τ lepton decaying hadronically. The µµ+ ee

and µµ + µµ final states are not considered because of their smaller branching fractions

and the large background contribution from Z boson pair production. The event selection

and signal extraction used in this analysis have been optimized for the h → aa → 2µ2τ

decay channel, where h has a mass of 125 GeV. Events from the h→ aa→ 4τ process can

also enter the signal region when at least two of the τ leptons decay leptonically to muons

and neutrinos. These events are treated as a part of the signal even if they do not exhibit

a narrow dimuon mass peak. Assuming 2HDM-like scenarios, the ratio of the branching

fractions of a → 2µ and a → 2τ is proportional to the ratio of the squared masses of the

muon and the τ lepton:

B(a→ 2µ)

B(a→ 2τ)
=
m2
µ

√
1− (2mµ/ma)2

m2
τ

√
1− (2mτ/ma)2

'
m2
µ

m2
τ

. (1.1)

Events are selected only if the invariant mass of the four objects in the final state

is below 100–130 GeV (depending on the final state) to enforce the compatibility with a

Higgs boson decay. This criterion strongly suppresses both the background from events with

genuine leptons, which arise mostly from the Z boson pair production, and the backgrounds

with jets misidentified as τ leptons, leaving only a few expected background events in the

signal region. The background from Z boson pair production is estimated from simulation,

whereas the background with jets misidentified as τ leptons is estimated from data, as

detailed in section 5. The presence of a signal is probed using the reconstructed dimuon

mass as an observable. Given the narrow width of the signal and the small number of

expected background events, signal and background distributions are parameterized to

perform an unbinned maximum-likelihood fit.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are a silicon
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pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap

sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel

and endcap detectors. Muons are detected in gas-ionization chambers embedded in the

steel flux-return yoke outside the solenoid. Events of interest are selected using a two-

tiered trigger system [21]. A more detailed description of the CMS detector, together with

a definition of the coordinate system used and the relevant kinematic variables, can be

found in ref. [22].

3 Simulated samples and event reconstruction

Signal processes, for both h → aa → 2µ2τ and h → aa → 4τ , are generated using the

MadGraph5 amc@nlo 2.2.2 generator [23] with its implementation of the 2HDM and

the NMSSM, in gluon fusion and vector boson fusion production. They are simulated at

leading order (LO) in perturbative quantum chromodynamics (QCD) with the MLM jet

matching and merging scheme [24]. The generator is interfaced with pythia 8.212 [25] to

model the parton showering and fragmentation as well as the decay of the τ leptons. The

CUETP8M1 tune [26] is chosen for the pythia parameters controlling the description of

the underlying event. The ZZ background from quark-antiquark annihilation is generated

at next-to-LO (NLO) in perturbative QCD with powheg v2.0 [27–29], while the gg→ ZZ

process is generated at LO with mcfm 7.0 [30]. The set of parton distribution functions

is NLO NNPDF3.0 for NLO samples, and LO NNPDF3.0 for LO samples [31]. The fully

differential cross section for the qq → ZZ process has been computed at next-to-NLO

(NNLO) [32], and the NNLO/NLO K-factor is applied to the powheg sample as a function

of the invariant mass of the Z boson pair. Rare processes, such as triboson, ttZ, or SM

Higgs boson production, have a negligible contribution to the signal region because they

typically have a larger invariant mass of the four leptons in the final state.

Simulated samples include additional pp interactions per bunch crossing (pileup), and

are reweighted so as to match the pileup distribution observed in data. Generated events

are processed through a simulation of the CMS detector based on Geant4 [33].

The reconstruction of events relies on the particle-flow (PF) algorithm [34], which com-

bines the information from the CMS subdetectors to identify and reconstruct the particles

emerging from pp collisions: charged and neutral hadrons, photons, muons, and electrons.

Combinations of these PF objects are used to reconstruct higher-level objects such as jets

or τh candidates. The reconstructed vertex with the largest value of summed physics-object

p2T is taken to be the primary pp interaction vertex, where pT denotes the transverse mo-

mentum. The physics objects are the jets, clustered using a jet-finding algorithm [35, 36]

with the tracks assigned to the vertex as inputs, and the associated missing transverse

momentum, taken as the negative vector sum of the pT of those jets.

Electrons are reconstructed by matching ECAL clusters to tracks in the tracker. They

are then identified with a multivariate discriminant that makes use of variables related

to energy deposits in the ECAL, to the quality of the track, and to the compatibility

between the ECAL clusters and the track that have been matched together [37]. Muons
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are reconstructed by building tracks from hits in the tracker and in the muon system, and

are identified using variables related to the number of measurements in the tracker and

the muon systems and to the quality of the track reconstruction [38]. They are required to

have a relative isolation less than 0.2, with the relative isolation variable defined as follows:

Iµ ≡

∑
charged pT + max

(
0,
∑

neutral pT −
1
2

∑
charged, PU pT

)
pµT

. (3.1)

In this equation,
∑

charged pT is the scalar pT sum of the charged particles associated with

the primary vertex in a cone of size ∆R =
√

(∆η)2 + (∆φ)2 = 0.4 around the muon

direction. The sum
∑

neutral pT is a similar quantity for neutral particles. The pT of neutral

particles originating from pileup vertices is considered on the basis of simulation to be half

of that of charged particles associated with pileup vertices, denoted by
∑

charged, PU pT.

The term pµT denotes the muon pT. The azimuthal angle, φ, is expressed in radians.

Jets are reconstructed from PF objects with the anti-kT clustering algorithm imple-

mented in the FastJet library [36, 39], using a distance parameter of 0.4. Jets that

originate from b quarks, called b jets, are identified with the combined secondary vertex

(CSVv2) algorithm [40]. The algorithm builds a discriminant from variables related to

potential secondary vertices associated to the jet, and from track-based lifetime informa-

tion. The working point chosen in this search provides an efficiency for b quark jets of

approximately 70%, and a misidentification rate for light-flavor jets of approximately 1%.

Events with reconstructed b jets with pT > 20 GeV are vetoed in this analysis to reject tt

events and other backgrounds with b quark jets.

Hadronically decaying τ leptons are reconstructed with the hadrons-plus-strips algo-

rithm [41, 42]. This algorithm starts from anti-kT jets and reconstructs τh candidates

from tracks and energy deposits in strips of the ECAL, in the 1-prong, 1-prong + π0,

2-prong, and 3-prong decay modes. The 2-prong decay mode allows τh candidates to be

reconstructed even if one track has not been reconstructed. Given the large rate for jets

to be misidentified in this decay mode and the limited increase in efficiency for genuine

τh candidates, the 2-prong decay mode is not used to reconstruct τh candidates in the

signal region of this analysis, but is used in some control regions to study events with jets

misidentified as τh candidates. Hadronically decaying τ leptons are further required to be

identified using a multivariate discriminator that combines isolation and lifetime variables.

The working point of the discriminator has a τh identification efficiency of approximately

57% for a misidentification rate of light-flavor jets of approximately 0.35%. Discriminators

to reject muons and electrons misidentified as τh candidates are further applied.

4 Event selection

Online, events are required to pass a double-muon trigger with pT thresholds of 17 and

8 GeV for the leading and subleading muons, respectively, or a single-muon trigger with a

pT threshold of 24 GeV. In the µµ+ eµ and µµ+µτh final states, events are also selected if

they pass a triple-muon trigger with pT thresholds of 12, 10, and 5 GeV. Offline, the leading

– 4 –



J
H
E
P
1
1
(
2
0
1
8
)
0
1
8

muon must have pT > 18 GeV (or 25 GeV if only the single-muon trigger is satisfied), and

the subleading one pT > 9 GeV (or 11 GeV if only the triple-muon trigger is satisfied).

Selecting muons offline with pT thresholds 1 GeV above the online thresholds ensures fully

efficient triggers in this analysis. If there are additional muons, each is required to have

pT > 5 GeV (or 6 GeV if only the triple-muon trigger conditions have been met). All muons

must satisfy |η| < 2.4. Electrons from τ lepton decays are required to have pT > 7 GeV

and |η| < 2.5, and τh candidates are required to satisfy pT > 18.5 GeV and |η| < 2.3. Each

event is required to have an opposite-sign (OS) pair of isolated muons and an OS pair of

isolated τ candidates (e, µ, or τh).

In final states with three muons, the highest pT muon is considered as originating

promptly from the decay of the pseudoscalar bosons. It is paired with the next-highest

pT OS muon. The third muon is considered as a decay product of a τ lepton. The

probability for success of this algorithm for the expected signal varies between 72 and 94%,

and increases with the pseudoscalar boson mass.

The overlap between the events selected in the four different final states is removed:

events that have more isolated muons or electrons than those needed to build the four-

lepton final state under study are discarded from the analysis in that final state. Selected

leptons are required to be separated from each other by ∆R > 0.3, or > 0.4 if there is a τh
candidate, since it is built from a jet with a distance parameter of ∆R = 0.4.

More than 80% of the background is rejected by keeping only events for which the

visible invariant mass of the four leptons is below 110 GeV in the µµ + eµ final state,

120 GeV in the µµ+eτh and µµ+µτh final states, and 130 GeV in the µµ+ τhτh final state.

The threshold depends on the final state because of the different number of neutrinos from

τ lepton decays. Because of the neutrinos, the visible invariant mass is expected to peak

below 125 GeV for the signal, and this selection criterion has a signal efficiency close to

100%. Additionally, the visible mass of the ττ pair is required to be smaller than the

dimuon mass. Events that have a reconstructed dimuon mass lower than 14 GeV or higher

than 64 GeV are rejected from the signal region.

The selection described above is optimized for the h → aa → 2µ2τ signal process,

which benefits from an excellent dimuon mass resolution of the CMS detector. Assuming

a 2HDM+S model, the yield of the h → aa → 4τ signal after the selection is between 13

and 52% of all h → aa signal events, depending on the final state. The largest fraction

is obtained in the µµ + eµ final state, where the lepton pT thresholds are the lowest,

while the lowest fraction appears in the µµ+ τhτh final state, which has the highest lepton

pT thresholds.

5 Estimation of the background with misidentified τ leptons

The background composed of events where at least one jet is misidentified as one of the

final-state leptons is estimated from data. Such events include mostly Z+jets and WZ+jets

events, but there are also minor contributions from ZZ → 2`2q events, tt production, or

from the background from SM events comprised uniquely of jets produced through the
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strong interaction, referred to as QCD multijet events. The yield and the distributions of

these backgrounds are estimated from data via a two-step procedure:

1. The shape is obtained from data in a signal and ZZ background free control region

with the τ candidates of same sign (SS). To increase the statistical precision of the

templates and enrich the region in events with jets misidentified as leptons, the

isolation criteria on the τ candidates are relaxed and τh candidates are allowed to

be also reconstructed as 2-prong decays. Including the 2-prong decays increases the

data yield in the control region by about 50%.

2. The yield is estimated from data events that have one or two nonisolated τ candi-

dates. These events are reweighted with factors that describe the probability for jets

to pass the isolation criteria used to select the τ candidates. The misidentification

probabilities for jets are measured in Z → µµ + jets events, selected with the same

selection criteria as in the signal region except that neither isolation, nor identifica-

tion criteria are applied to the τ candidates, which are further required to have SS.

Additionally the dimuon pair is required to have an invariant mass between 70 and

110 GeV. The probabilities are measured separately in the barrel and in the endcaps

as a function of the pT of the jet that is closest to the lepton, and are parameterized

with Landau functions.

The estimation method for the background with jets misidentified as leptons is val-

idated in three control regions: one containing events that pass the full signal selection

except that the four-lepton mass criterion is inverted; another where τh candidates are

reconstructed as 2-prong decays only; and a third one with two SS τ candidates. The

background predictions and data are statistically compatible, with deviations not exceed-

ing 20–40% depending on the final state. The background estimation method has also been

validated in simulation for WZ + jets and Z + jets events.

6 Signal and background modeling

The results are extracted by fitting the reconstructed dimuon mass distributions. The

dimuon mass distributions of the simulated h → aa → 2µ2τ signal events passing all

selection criteria are parameterized with Voigt functions, which are convolutions of the

Gaussian and Lorentzian profiles with a common mean. The parameterizations for different

ma values in the µµ + µτh final state are shown in figure 1 (left). The dimuon mass

resolution is better than 2% for all masses and final states considered in the analysis. The

parameters of the Voigt functions are fit for each simulated mass and for each final state.

The parameters are interpolated for signal masses not covered by simulation.

For the h → aa → 4τ signal, the two reconstructed muons that have been chosen to

form the dimuon mass distribution can come from either pseudoscalar boson. When the

two muons come from the same boson, their visible mass distribution is a wide peak below

ma because they originate from τ lepton decays. When the two muons come from different

bosons, they do not form a resonance and their mass distribution is rather flat, with a
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Figure 1. Parameterized dimuon invariant mass distributions of the h → aa → 2µ2τ (left) and

h → aa → 4τ (right) signal processes simulated at different ma values in the µµ + µτh final state.

The normalization corresponds to the number of expected signal events after the selection for

an integrated luminosity of 35.9 fb−1, assuming the production cross section of the Higgs boson

predicted in the SM, and B(h → aa → 2µ2τ) = 2B(h → aa)B(a → µµ)B(a → ττ) = 0.1%. The

yield of the h→ aa→ 4τ contribution is further rescaled according to the relation in eq. (1.1).

shape sculpted by kinematic selections. The dimuon mass distribution of the h → aa→ 4τ

signal is parameterized with the sum of a Gaussian function for the resonant contribution

and of a polynomial for the nonresonant contribution. The parameterizations for different

ma values in the µµ+ µτh final state are shown in figure 1 (right).

The dimuon mass distributions of the Z pair background and the background with

misidentified τ leptons are parameterized with Bernstein polynomials. The number of

degrees of the polynomial required to describe the background in each channel is determined

with a Fisher F -test [43], which selects the minimal number that allows for a good fit

quality. The parameterizations of the backgrounds in the µµ + µτh final state are shown

in figure 2. The choice of the fit function and of its degree has only a limited impact on

the final results because of the low expected background yields.

7 Systematic uncertainties

Yield uncertainties for the processes estimated from simulation include the uncertainty

in the integrated luminosity (2.5%) [44], in the trigger efficiency (2%), and in the veto-

ing of b-tagged jets (0.5%). Additionally, the identification, isolation, and reconstruction

uncertainties amount to 2% per muon, 2% per electron, and 5% per τh candidate. The

uncertainty in the τh energy scale leads to yield uncertainties between 1 and 2%. The

uncertainty in the yield of the ZZ background is 12%: it accounts for the uncertainties in

the renormalization and factorization scales, as well as for the uncertainty related to the

absence of higher-order electroweak corrections in simulation. The statistical uncertainty

related to the limited size of the ZZ simulated sample reaches up to 13% in the µµ+ τhτh
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Figure 2. Parameterization of the shape of the background with misidentified τ leptons (left) and

Z pair production background (right) in the µµ+µτh final state. The points for the ZZ background

represent events selected in simulation, whereas they correspond to observed data events in the SS

region with relaxed isolation for the background with misidentified τ leptons.

final state, but is well below 3% in the other final states. The uncertainty in the normal-

ization of the signal shapes arising from the parameterization of the normalization as a

function of the mass is 5% per final state. The shape uncertainties related to the parame-

terization of the signal consist of a 0.1% uncertainty in the mean of the Voigt profile and

an anticorrelated 30% uncertainty in the two width parameters.

The yield uncertainty in the background with jets misidentified as τ leptons accounts

for two different components: the level of agreement between data and background pre-

diction in the control regions, and the statistical uncertainty in the yield predicted in the

signal region. As discussed in section 5, the first component varies between 20 and 40%,

depending on the final state, whereas the second one ranges between 11 and 23%. The

uncertainties in the parameters of the polynomials used to parameterize the distributions of

the background with jets misidentified as τ leptons are included as nuisance parameters in

the fit. These parameter uncertainties are obtained from the fits to the data control regions

with same sign τ candidates passing relaxed isolation and reconstruction conditions. The

uncertainty related to the choice of the fit function for the backgrounds is negligible with

respect to the size of the statistical uncertainty. This has been verified by comparing the

expected upper limits on the signal when other functional forms are chosen to parameterize

the backgrounds.

8 Results

To test for the existence of a resonance, an unbinned maximum-likelihood fit to the dimuon

invariant mass distribution is performed. In the fit, the systematic uncertainties are nui-

sance parameters varied according to a log-normal probability density function for the yield

uncertainties and a Gaussian probability density function for the shape uncertainties. The

dimuon mass distributions for the four final states are shown in figure 3. The expected

background and signal yields in the signal region are given in table 1 for the four final states.
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Figure 3. Dimuon mass distributions in the µµ + eµ (upper left), µµ + eτh (upper right), µµ +

µτh (lower left), and µµ + τhτh (lower right) final states. The total background estimate and its

uncertainty are given by the black lines. The histograms for the two background components are

shown for illustrative purposes only as the background models are extracted from unbinned fits.

The signal model is drawn in blue above the background model: it includes both h → aa → 2µ2τ

and h → aa → 4τ , and is normalized using B(h → aa → 2µ2τ) = 0.01%, assuming the relation in

eq. (1.1) to determine the relative proportion of these processes. The production cross section of

the Higgs boson predicted in the SM is assumed.

µµ+ eµ µµ+ eτh µµ+ µτh µµ+ τhτh
ZZ→ 4` 1.5± 0.2 0.5± 0.1 1.2± 0.2 0.03± 0.01

Misidentified τ 13.2± 5.5 9.7± 2.5 4.0± 1.2 1.2± 0.5

h→ aa→ 2µ2τ , ma = 20 GeV 0.39 0.25 0.47 0.10

h→ aa→ 4τ , ma = 20 GeV 0.37 0.04 0.24 0.01

h→ aa→ 2µ2τ , ma = 40 GeV 0.57 0.28 0.68 0.14

h→ aa→ 4τ , ma = 40 GeV 0.68 0.09 0.48 0.02

h→ aa→ 2µ2τ , ma = 60 GeV 0.94 0.85 1.18 0.52

h→ aa→ 4τ , ma = 60 GeV 1.27 0.20 0.93 0.05

Observed 17 10 6 1

Table 1. Yields of the signal and background processes in the four final states, as well as the

number of observed events in each final state, in the dimuon mass range between 14 and 64 GeV.

The signal yields are given for B(h → aa → 2µ2τ) = 0.01%. The h → aa → 4τ signal is scaled

assuming the couplings of the pseudoscalar boson proportional to the squared lepton mass, as in

eq. (1.1). The production cross section of the Higgs boson predicted in the SM is assumed. The

uncertainties combine the statistical and systematic sources.

– 9 –
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No significant excess of data is observed above the expected SM background. Upper

limits at 95% CL are set on (σh/σSM)B(h → aa → 2µ2τ) = 2(σh/σSM)B(h → aa)B(a →
µµ)B(a → ττ) using the modified frequentist construction CLs [45–48] for pseudoscalar

masses between 15.0 and 62.5 GeV. In this expression, σh/σSM is the Higgs boson cross

section for the gluon fusion and vector boson fusion production modes, divided by its SM

prediction. The limits are shown in figure 4 for the individual final states and for their

combination. The combined upper limits on the branching fraction B(h→ aa→ 2µ2τ) are

as low as 1.2 × 10−4 for a mass of 60 GeV assuming the SM production cross section for

the Higgs boson. The expected limits are the tightest for the µµ+ µτh final state because

the lepton pT thresholds are lower than in the µµ + eτh and µµ + τhτh final states, and

because the branching fraction is larger than in the µµ+ eµ final state. The h→ aa→ 4τ

signal is assumed to scale according to eq. (1.1) with respect to the h → aa → 2µ2τ

signal. Alternatively, considering a null contribution from h → aa → 4τ , there is still no

significant excess of data over the expected SM background and the expected limits become

less stringent by approximately 10%.

The results can be interpreted as upper limits on (σh/σSM)B(h→ aa) in the different

2HDM+S models. Types I–IV 2HDM+S forbid flavor changing neutral currents at tree

level. In type I 2HDM+S, all SM particles couple to the first doublet and the branching

fractions of the light pseudoscalar to SM particles are independent of tan β, defined as the

ratio of the vacuum expectation value of the second doublet to that of the first doublet. In

type II 2HDM+S, including the NMSSM, up-type quarks couple to the first doublet, and

leptons and down-type quarks couple to the second doublet. This leads to pseudoscalar

decays to leptons and down-type fermions enhanced for tan β > 1. In these two types,

the analysis is sensitive to a cross section larger than approximately three times the SM

production cross section of the Higgs boson for B(h → aa → 2µ2τ) = 100%. In type

III 2HDM+S, quarks couple to the first doublet and leptons to the second one, making

it the most favorable type of 2HDM+S for h → aa → 2µ2τ decays at large tan β. In

type IV 2HDM+S, leptons and up-type quarks couple to the first doublet while down-type

quarks couple to the second doublet. With ma, tanβ, and the type of 2HDM+S specified,

the branching fractions of the pseudoscalars to SM particles can be predicted following

the prescriptions in refs. [11, 49]. The results expressed as limits on (σh/σSM)B(h → aa)

are shown in figure 5 for the last two types of 2HDM+S. The most stringent limits are

obtained in 2HDM+S type III at large tan β, where the couplings to leptons are enhanced,

and where limits of approximately 3% are set for tan β & 3. This analysis improves previous

results [14] in the 2µ2τ final state by a factor two or more for 15.0 < ma < 62.5 GeV in all

four types of 2HDM+S.

9 Summary

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the

final state of two muons and two τ leptons has been performed using data collected by the

CMS experiment in 2016 at a center-of-mass energy of 13 TeV, and corresponding to an

integrated luminosity of 35.9 fb−1. The results are extracted from an unbinned fit of the

dimuon mass spectrum. Limits are set at 95% confidence level on the branching fraction
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Figure 4. Upper limits at 95% CL on (σh/σSM)B(h → aa → 2µ2τ), in the µµ + eµ (upper left),

µµ + eτh (upper right), µµ + µτh (middle left), µµ + τhτh (middle right) final states, and for the

combination of these final states (lower). The h → aa → 4τ process is considered as a part of the

signal, and is scaled with respect to the h→ aa→ 2µ2τ signal using eq. (1.1).

B(h → aa → 2µ2τ) for the masses of the light pseudoscalar between 15.0 and 62.5 GeV,

and are as low as 1.2×10−4 for a mass of 60 GeV assuming the SM production cross section

for the Higgs boson. These are the most stringent limits obtained in the final state of two

muons and two τ leptons for the masses above 15 GeV, improving previous limits [14, 20]

by more than a factor two. They provide the tightest constraints in this mass range on

exotic Higgs boson decays in scenarios where the decays of pseudoscalar bosons to leptons

are enhanced.
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Figure 5. Observed limits on (σh/σSM)B(h→ aa) in 2HDM+S type III (left) and type IV (right).

The contour lines shown for B(h→ aa) = 1.0 and 0.34 correspond to the colour scale indicated on

the right vertical scale. The number 0.34 corresponds to the limit on the branching fraction of the

Higgs boson to beyond-the-SM particles at 95% CL obtained with data collected at center-of-mass

energies of 7 and 8 TeV by the CMS and ATLAS experiments [10].
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K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen,
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Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université
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de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse,

H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde,

I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries,

A. Popov14, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang

Georgian Technical University, Tbilisi, Georgia

A. Khvedelidze8

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze8

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch,

C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov14

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, D. Duchardt, M. Endres, M. Erdmann, T. Esch, R. Fischer, S. Ghosh, A. Güth,
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J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka,

W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli,

G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi,

P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, N. Stefaniuk,

H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann,

C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, M. Centis Vignali, T. Dreyer,

E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner,

R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup,

M. Niedziela, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper,

– 20 –



J
H
E
P
1
1
(
2
0
1
8
)
0
1
8

S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver,
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MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd
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A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,15, S. Di Guidaa,d,15,

M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b,

S. Malvezzia, A. Massironia,b, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia,

S. Ragazzia,b, T. Tabarelli de Fatisa,b
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Italy

S. Buontempoa, N. Cavalloa,c, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa, G. Galatia,

A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,15, P. Paoluccia,15, C. Sciaccaa,b,

E. Voevodinaa,b
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INFN Sezione di Pisaa, Università di Pisab, Scuola Normale Superiore di Pisac,

Pisa, Italy

K. Androsova, P. Azzurria, G. Bagliesia, L. Bianchinia, T. Boccalia, L. Borrello,

R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, F. Fioria,c, L. Gianninia,c, A. Giassia,

M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa,

A. Rizzia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Romaa, Sapienza Università di Romab, Rome, Italy
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