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The MiniBooNE experiment at Fermilab reports results from an analysis of νe appearance data from
12.84 × 1020 protons on target in neutrino mode, an increase of approximately a factor of 2 over previously
reported results. A νe charged-current quasielastic event excess of 381.2� 85.2 events (4.5σ) is observed in

the energy range 200 < EQE
ν < 1250 MeV. Combining these data with the ν̄e appearance data from

11.27 × 1020 protons on target in antineutrino mode, a total νe plus ν̄e charged-current quasielastic event
excess of 460.5� 99.0 events (4.7σ) is observed. If interpreted in a two-neutrino oscillation model,
νμ → νe, the best oscillation fit to the excess has a probability of 21.1%, while the background-only fit has a

χ2 probability of 6 × 10−7 relative to the best fit. The MiniBooNE data are consistent in energy and
magnitude with the excess of events reported by the Liquid Scintillator Neutrino Detector (LSND), and the
significance of the combined LSND and MiniBooNE excesses is 6.0σ. A two-neutrino oscillation
interpretation of the data would require at least four neutrino types and indicate physics beyond the three
neutrino paradigm. Although the data are fit with a two-neutrino oscillation model, other models may
provide better fits to the data.
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Evidence for short-baseline neutrino anomalies at an
L=Eν ∼ 1 m=MeV, where Eν is the neutrino energy and L
is the distance that the neutrino traveled before detection,
comes from both neutrino appearance and disappearance
experiments. The appearance anomalies include the excess
of νe and ν̄e charge-current quasielastic (CCQE) events
observed by the Liquid Scintillator Neutrino Detector
(LSND) [1] and MiniBooNE [2,3] experiments, while
the disappearance anomalies, although not completely
consistent, include the deficit of νe and ν̄e events observed
by reactor [4] and radioactive-source experiments [5]. As
the masses and mixings within the three-generation neu-
trino matrix have been attached to solar and long-baseline
neutrino experiments, more exotic models are typically
used to explain these anomalies, including, for example,
3þ N neutrino oscillation models involving three active
neutrinos and N additional sterile neutrinos [6–14], reso-
nant neutrino oscillations [15], Lorentz violation [16],
sterile neutrino decay [17], sterile neutrino nonstandard
interactions [18], and sterile neutrino extra dimensions
[19]. This Letter presents improved MiniBooNE νe and ν̄e
appearance results, assuming two-neutrino oscillations
with probability P ¼ sin2ð2θÞ sin2ð1.27Δm2L=EÞ, where
θ is the mixing angle, Δm2 (eV2=c4) is the difference in
neutrino mass eigenstates squared, L (m) is the distance
traveled by the neutrino, and E (MeV) is the neutrino
energy.
The booster neutrino beam (BNB) at Fermilab delivers to

the MiniBooNE experiment a flux of neutrinos and anti-
neutrinos that is simulated using information from external
measurements [20]. The BNB is produced by 8 GeV
protons from the Fermilab booster interacting on a beryl-
lium target inside a magnetic focusing horn. Depending on
the polarity of the horn, either πþ are focused and π− are
defocused to produce a fairly pure beam of νμ, or π− are
focused and πþ are defocused to produce a somewhat pure
beam of ν̄μ. In neutrino mode, the νμ, ν̄μ, νe, and ν̄e flux
contributions at the detector are 93.5%, 5.9%, 0.5%, and
0.1%, respectively, while in antineutrino mode, the flux
contributions are 15.7%, 83.7%, 0.2%, and 0.4%, respec-
tively. The νμ and ν̄μ fluxes peak at approximately 600 and
400 MeV, respectively.
The MiniBooNE detector is described in detail in

Ref. [21]. The detector consists of a 12.2 m diameter
sphere filled with 818 tonnes of pure mineral oil (CH2) and
is located 541 m from the beryllium target. The detector is
covered by 1520 8-inch photomultiplier tubes (PMTs),
where 1280 PMTs are in the interior detector region and
240 PMTs are located in the optically isolated outer veto
region. Charged particles produced by neutrino interactions
in the mineral oil emit both directed Cherenkov light and
isotropic scintillation light that is detected by the PMTs.
Event reconstruction [22] and particle identification make
use of the hit PMT charge and time information, and the
reconstructed neutrino energy EQE

ν is estimated from the

measured energy and angle of the outgoing muon or
electron, assuming the kinematics of CCQE scattering [23].
From 2002–2017, the MiniBooNE experiment has

collected a total of 11.27 × 1020 protons on target (POT)
in antineutrino mode, 12.84 × 1020 POT in neutrino mode,
and a further 1.86 × 1020 POT in a special beam-off target
mode to search for sub-GeV dark matter [24]. The neutrino
sample has approximately doubled in size since the
previous publication [3]. The published neutrino-mode
data correspond to 6.46 × 1020 POT, while 6.38 × 1020

POTwere obtained in 2016 and 2017. During the 15 years
of running, the BNB and MiniBooNE detector have been
stable to within 2% in neutrino energy.
The analysis is optimized to measure νe and ν̄e induced

CCQE events, and the event reconstruction [22] and
selection are identical to the previous analysis [3]. The
average selection efficiency is ∼20% (∼0.1%) for νe-
induced CCQE events (νμ-induced background events)
generated over the fiducial volume. The fraction of
CCQE events in antineutrino mode that are from wrong-
sign neutrino events was determined from the angular
distributions of muons created in CCQE interactions and by
measuring CC single πþ events [25].
The predicted but unconstrained νe and ν̄e CCQE

background events for the neutrino energy range 200 <
EQE
ν < 1250 MeV are shown in Table I for both neutrino

TABLE I. The expected (unconstrained) number of events for
the 200 < EQE

ν < 1250 MeV neutrino energy range from all of
the backgrounds in the νe and ν̄e appearance analysis before using
the constraint from the CC νμ events. Also shown are the
constrained background, as well as the expected number of
events corresponding to the LSND best fit oscillation probability
of 0.26%, assuming oscillations at large Δm2. The table shows
the diagonal-element systematic plus statistical uncertainties,
which become substantially reduced in the oscillation fits when
correlations between energy bins and between the electron and
muon neutrino events are included. The antineutrino numbers are
from a previous analysis [3].

Process Neutrino mode Antineutrino mode

νμ & ν̄μ CCQE 73.7� 19.3 12.9� 4.3
NC π0 501.5� 65.4 112.3� 11.5
NC Δ → Nγ 172.5� 24.1 34.7� 5.4
External events 75.2� 10.9 15.3� 2.8
Other νμ & ν̄μ 89.6� 22.9 22.3� 3.5
νe & ν̄e from μ� decay 425.3� 100.2 91.4� 27.6
νe & ν̄e from K� decay 192.2� 41.9 51.2� 11.0
νe & ν̄e from K0

L decay 54.5� 20.5 51.4� 18.0
Other νe & ν̄e 6.0� 3.2 6.7� 6.0
Unconstrained bkgd. 1590.6� 176.9 398.2� 49.7
Constrained bkgd. 1577.8� 85.2 398.7� 28.6
Total data 1959 478
Excess 381.2� 85.2 79.3� 28.6
0.26% (LSND) νμ → νe 463.1 100.0
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mode and antineutrino mode [26]. See Supplemental
Material [27] for more information on backgrounds. The
upper limit of 1250 MeV corresponded to a small value of
L=E and was chosen by the collaboration before unblind-
ing the data in 2007. The lower limit of 200 MeV is chosen
because we constrain the νe events with the CCQE νμ
events and our CCQE νμ event sample only goes down to
200 MeV, as we require a visible Cherenkov ring from the
muon. The estimated sizes of the intrinsic νe and gamma
backgrounds are based on MiniBooNE event measure-
ments and uncertainties from these constraints are included
in the analysis. The intrinsic νe=ν̄e background from muon
decay is directly related to the large sample of observed
νμ=ν̄μ events, as these events constrain the muons that
decay in the 50 m decay region. This constraint uses a joint
fit of the observed νμ=ν̄μ and νe=ν̄e events, assuming that
there are no substantial νμ=ν̄μ disappearance oscillations.
The other intrinsic νe background component, from kaon
decay, is constrained by fits to kaon production data and
SciBooNEmeasurements [28]. The intrinsic νe background
from pion decay (1.2 × 10−4 branching ratio) and hyperon
decay are very small. Other backgrounds from misidenti-
fied νμ or ν̄μ [29,30] events are also constrained by the
observed CCQE sample.
The gamma background from neutral-current (NC) π0

production and Δ → Nγ radiative decay [31,32] are con-
strained by the associated large two-gamma sample (mainly
from Δ production) observed in the MiniBooNE data,
where π0 measurements [33] are used to constrain the π0

background. The π0 background measured in the first and
second neutrino data sets were found to be consistent,
resulting in a lower statistical background uncertainty for
the combined data. Other neutrino-induced single gamma
production processes are included in the theoretical pre-
dictions, which agree well with the MiniBooNE estimates
[31,34]. Single-gamma backgrounds from external neu-
trino interactions (“dirt” backgrounds) are estimated using
topological and spatial cuts to isolate the events whose
vertices are near the edge of the detector and point towards
the detector center [35]. With the larger data set, the
background from external neutrino interactions is now
better determined to be approximately 7% larger, but with
smaller uncertainty than in the previous publication [3].
A new technique to measure or constrain the gamma and
dirt backgrounds based on event timing relative to the beam
is in development.
Systematic uncertainties are determined by considering

the predicted effects on the νμ, ν̄μ, νe, and ν̄e CCQE rates
from variations of uncertainty parameters. The parameters
include uncertainties in the neutrino and antineutrino flux
estimates, uncertainties in neutrino cross sections, most of
which are determined by in situ cross-section measure-
ments at MiniBooNE [29,33], uncertainties from nuclear
effects, and uncertainties in detector modeling and
reconstruction. A covariance matrix in bins of EQE

ν is

constructed by considering the variation from each source
of systematic uncertainty on the νe and ν̄e CCQE signal and
background, and the νμ and ν̄μ CCQE prediction as a

function of EQE
ν . This matrix includes correlations between

any of the νe and ν̄e CCQE signal and background and νμ
and ν̄μ CCQE samples, and is used in the χ2 calculation of
the oscillation fits.
Table I also shows the expected number of events

corresponding to the LSND best fit oscillation probability
of 0.26%, assuming oscillations at large Δm2. LSND and
MiniBooNE have the same average value of L=E, but
MiniBooNE has a larger range of L=E. Therefore, the
appearance probabilities for LSND andMiniBooNE should
not be exactly the same at lower L=E values.
Figure 1 shows theEQE

ν distribution for νe CCQE data and
background in neutrino mode for the total 12.84 × 1020 POT
data. Each bin of reconstructed EQE

ν corresponds to a
distribution of “true” generated neutrino energies, which
can overlap adjacent bins. In neutrino mode, a total of 1959
data events pass the νe CCQE event selection requirements
with 200 < EQE

ν < 1250 MeV, compared to a background
expectation of 1577.8� 39.7ðstatÞ � 75.4ðsystÞ events. The
excess is then 381.2� 85.2 events or a 4.5σ effect. Note that
the 162.0 event excess in the first 6.46 × 1020 POT data is
approximately 1σ lower than the average excess, while the
219.2 event excess in the second 6.38 × 1020 POT data is
approximately 1σ higher than the average excess. Figure 2
shows the excess events in neutrino mode from the first
6.46 × 1020 POT data and the second 6.38 × 1020 POT data
(top plot). Combining the MiniBooNE neutrino and anti-
neutrino data, there are a total of 2437 events in the 200 <
EQE
ν < 1250 MeVenergy region, compared to a background
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FIG. 1. The MiniBooNE neutrino mode EQE
ν distributions,

corresponding to the total 12.84 × 1020 POT data, for νe CCQE
data (points with statistical errors) and background (histogram
with systematic errors). The dashed curve shows the best fit to the
neutrino-mode data assuming two-neutrino oscillations. The last
bin is for the energy interval from 1500–3000 MeV.
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expectation of 1976.5� 44.5ðstatÞ � 88.5ðsystÞ events.
This corresponds to a total νe plus ν̄e CCQE excess of
460.5� 99.0 events with respect to expectation or a 4.7σ
excess. Figure 2 (bottom plot) shows the total event excesses
as a function of EQE

ν in both neutrino mode and antineutrino
mode. The dashed curves show the two-neutrino oscillation
predictions at the best-fit point (Δm2 ¼ 0.041 eV2,
sin2 2θ ¼ 0.92), as well as at a point within 1σ of the
best-fit point (Δm2 ¼ 0.4 eV2, sin22θ ¼ 0.01).
A two-neutrino model is assumed for the MiniBooNE

oscillation fits in order to compare with the LSND data.
However, the appearance neutrino experiments appear to be
incompatible with the disappearance neutrino experiments
in a 3þ 1 model [10,12], and other models [15–19] may
provide better fits to the data. The oscillation parameters are
extracted from a combined fit of the observed EQE

ν event
distributions for muonlike and electronlike events using
the full covariance matrix described previously in the full

energy range 200 < EQE
ν < 3000 MeV. The fit assumes the

same oscillation probability for both the right-sign νe and
wrong-sign ν̄e, and no νμ, ν̄μ, νe, or ν̄e disappearance. Using
a likelihood-ratio technique [3], the confidence level values
for the fitting statistic, Δχ2 ¼ χ2ðpointÞ − χ2ðbestÞ, as a
function of oscillation parameters, Δm2 and sin2 2θ, is
determined from frequentist, fake data studies. The fake
data studies also determine the effective number of degrees
of freedom and probabilities. With this technique, the
best neutrino oscillation fit in neutrino mode occurs at
(Δm2, sin22θ)¼ (0.039 eV2, 0.84), as shown in Fig. 3. The
χ2=ndf for the best-fit point in the energy range 200 <
EQE
ν < 1250 MeV is 9.9=6.7 with a probability of 15.5%.

The background-only fit has a χ2 probability of 0.06%
relative to the best oscillation fit and a χ2=ndf ¼ 24.9=8.7
with a probability of 0.21%. Figure 3 shows the
MiniBooNE closed confidence level (C.L.) contours for
νe appearance oscillations in neutrino mode in the
200 < EQE

ν < 3000 MeV energy range.
Nuclear effects associated with neutrino interactions on

carbon can affect the reconstruction of the neutrino energy,
EQE
ν , and the determination of the neutrino oscillation
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parameters [38]. These effects were studied previously
[3,39] and were found to not affect substantially the
oscillation fit. In addition, they do not affect the gamma
background, which is determined from direct measure-
ments of NC π0 and dirt backgrounds.
Figure 4 shows the MiniBooNE allowed regions in both

neutrino mode and antineutrino mode [3] for events with
200 < EQE

ν < 3000 MeV within a two-neutrino oscillation
model. For this oscillation fit the entire data set is used and
includes the 12.84 × 1020 POT data in neutrino mode and
the 11.27 × 1020 POT data in antineutrino mode. As shown
in the figure, the MiniBooNE 1σ allowed region lies mostly
within the LSND 90%C.L. band, which demonstrates good
agreement between the LSND and MiniBooNE signals.
Also shown are 90% C.L. limits from the KARMEN [36]
and OPERA [37] experiments. The KARMEN2 90% C.L.
limits are outside the MiniBooNE 95% C.L. allowed
region, while the OPERA 90% C.L. limits disfavor the
MiniBooNE allowed region below approximately 0.3 eV2.
The best combined neutrino oscillation fit occurs at
ðΔm2; sin22θÞ ¼ ð0.041 eV2; 0.92Þ. The χ2=ndf for the
best-fit point in the energy range 200 < EQE

ν < 1250 MeV

is 19.4=15.6 with a probability of 21.1%, and the back-
ground-only fit has a χ2 probability of 6 × 10−7 relative to
the best oscillation fit and a χ2=ndf ¼ 47.1=17.3 with a
probability of 0.02%.
Figure 5 compares the L=EQE

ν distributions for the
MiniBooNE data excesses in neutrino mode and antineu-
trino mode to the L=E distribution from LSND [1]. The
error bars show statistical uncertainties only. As shown in
the figure, there is agreement among all three data sets.
Assuming two-neutrino oscillations, the curves show fits to
the MiniBooNE data described above. Fitting both
MiniBooNE and LSND data, by adding LSND L=E data
as additional terms, the best fit occurs at ðΔm2; sin22θÞ ¼
ð0.041 eV2; 0.96Þ with a χ2=ndf ¼ 22.4=22.4, corre-
sponding to a probability of 42.5%. The MiniBooNE
excess of events in both oscillation probability and L=E
spectrum is, therefore, consistent with the LSND excess of
events. The significance of the combined LSND (3.8σ) [1]
and MiniBooNE (4.7σ) excesses is 6.0σ, which is obtained
by adding the significances in quadrature, as the two
experiments have completely different neutrino energies,
neutrino fluxes, reconstructions, backgrounds, and system-
atic uncertainties.
In summary, the MiniBooNE experiment observes a total

νe CCQE event excess in both neutrino and antineutrino
running modes of 460.5� 99.0 events (4.7σ) in the energy
range 200 < EQE

ν < 1250 MeV. The MiniBooNE allowed
region from a two-neutrino oscillation fit to the data, shown
in Fig. 4, is consistent with the allowed region reported by
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FIG. 5. A comparison between the L=EQE
ν distributions for the

MiniBooNE data excesses in neutrino mode (12.84 × 1020 POT)
and antineutrino mode (11.27 × 1020 POT) to the L=E distribu-
tion from LSND [1]. The error bars show statistical uncertainties
only. The curves show fits to the MiniBooNE data, assuming two-
neutrino oscillations, while the shaded area is the MiniBooNE 1σ
allowed band. The best-fit curve uses the reconstructed neutrino
energy EQE

ν for the MiniBooNE data. The dashed curve shows the
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the LSND experiment [1]. On the other hand, a two-
neutrino oscillation interpretation of the data would require
at least four neutrino types and indicate physics beyond the
three neutrino paradigm. The significance of the combined
LSND and MiniBooNE excesses is 6.0σ. All of the major
backgrounds are constrained by in situ event measure-
ments, so nonoscillation explanations would need to invoke
new anomalous background processes. Although the data
are fit with a two-neutrino oscillation model, other models
may provide better fits to the data. The MiniBooNE event
excess will be further studied by the Fermilab short-
baseline neutrino (SBN) program [40].
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