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Abstract

Using a two-dimensional, compressible flow representation of axial compressor
dynamics, a control-theoretic input-output model is derived which is of general utility in
rotating stall and surge active control studies. Geometry of a three stage research
compressor is used in this model to perform control configuration studies using operating
range extension and mean-square costs in the comparisons.

The derivation presented begins with a review of the fluid dynamic model, which
is a 2D stage stacking technique that accounts for blade row pressure rise, loss and
deviation as well as blade row and inter-blade row compressible flow. This model is
extended to include the effects of the upstream and downstream geometry and boundary
conditions, then manipulated into a transfer function form that dynamically relates
actuator motion to sensor measurements.

Transcendental functions in this input-output form are then approximated using
rational polynomials. Further manipulations yield an approximate state-space model
which is in standard form for studying active control of rotating stall and surge.

Specifications on the control system are proposed which are standard restrictions
in modern control theory. Cost functions are proposed to compare control configurations.
Two control design methods are presented to design the compensators. The linear
quadratic-Gaussian optimal control minimizes a mean-square cost function of the
perturbations and the control activity. The H_ optimal control minimizes the H_-norm
related to the specifications.

The control design methods are then applied to the geometry of a three stage
research compressor. As examples of high current relevance, the transfer functions from
an array of jet actuators to arrays of either static pressure, stagnation pressure, and
velocity sensors are examined. It is found that using a jet actuator that reduces the
momentum of the flow can be as good as a jet actuator which adds equivalent
momentum. It is also found that velocity and stagnation pressure sensors are superior to
static pressure Sensors.

Thesis Supervisor: Professor James Paduano
Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background and Motivation

The operating range of axial compressors is limited at low mass flows by two
types of aerodynamic instabilities: rotating stall and surge. Rotating stall is a non-
axisymmetric disturbance which travels around the compressor annulus at about 30% to
70% of the rotor speed. When this phenomenon was first encountered, it was observed
that there were regions, or cells, where the flow was separated from the compressor blade
rows, hence the name ‘rotating stall'. Surge, on the other hand, is an axisymmetric
disturbance which not only interacts with the compression system, but also that of the
plenum volume downstream. Surge is characterized by potentially damaging large
amplitude oscillations at low frequency. In many instances, though, rotating stall has
been identified as a precursor to surge in an engine. Moreover, blade fatigue
considerations will not allow a compressor to operate for prolonged periods in a fully
developed rotating stall mode.

Until recently, the research into these phenomena has been focused on the ability
to predict the onset of rotating stall and surge and to characterize the inception and fully
developed behavior. Within the last five years, there has been increased research on
active control of compressor instabilities incorporating ever increasing complexities in

the modeling. For example, early proof-of concept studies in surge control [1,2] assumed
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one dimensional flow through the compression system. Rotating stall control studies
{3.4,5] however, required at least a two dimensional model. These rotating stall studies
used a two dimensional incompressible flow model which characterized the low-speed
experimental apparatus. As the technology of rotating stall and surge control advances,
and as the experiments conducted to verify concepts become more sophisticated and more
realistic, the compressor models must become more complex.

In high speed compressors, nonlinearity and compressibility must be addressed.
Nonlinearity includes not only the nonlinear dynamics of rotating stall and surge, but the
coupling between the iwo phenomena as well. Nonlinear compressible numerical models
[6,7,8] have been used to study the inception and characteristics of rotating stall, but these
have little use for active control. Nonlinear theoretical models have been developed
[9,10,11,12,13] which may prove important to the stabilization efforts.

Nonlinear compressible surge models have been developed by Badmus et al [ 14]
and Escuret and Elder [ 15], each of which was linearized tc find a linear controller for the
nonlinear system. Badmus et al applied their controller to a single stage research
compressor, while Escuret and Elder simulated their linear controller with their nonlinear
model. Both of these models use an axial spatial discretization across blade rows or
across the whole compressor and used steady state or quasi-steady state information to
find key relationships in the model. Badmus et al report some success at stabilizing surge
near neutral stability, while Escuret and Elder repert very small operating range extension
in simulation. The results of the latter could be attributed to the linear controller which
was implemented; Badmus et al used a control design method to achieve robustness to
stable additive perturbations in the plant, while Escuret and Elder used a Linear
Quadratic-Gaussian (LQG) controller. LQG optimal controllers do not provide explicit
robustness properties unless the free parameters are ‘tuned' to achieve them.

The only linearized two dimensional compressible theoretical model described to

the author's knowledge is that of Bonnaure [16] and Hendricks et al [17]. This model
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describes an axially continuous two dimensional compressible model in the inter-blade
row gaps and upstream and downstream ducts and a one dimensional compressible model
within the blade rows to form the total compressor model. Experimentaily or
theoretically determined pressure losses and deviations are used to find key relationships
in their model. This model is used as the starting point of this thesis.

This 2D compressible model predicts the existence of lightly damped 'higher
frequency’ eigenvalues of the compressor. These are sometimes referred to as ‘acoustic’
modes, although they may originate from sources such as static pressure delays, entropy
and vorticity deiays, or interactions of these two. These higher frequency eigenvalues
may be considered analogous to higher frequency eigenvalues of structures. Frequently,
these predicted modes in structures have uncertainty associated with their locations. This
may also be the case with higher frequency modes in compressors, but there is little data
as of yet. This thesis assumes that these higher frequency mode locations are well
known.

The control methodologies employed in this thesis are: LQG optimal control,
with some 'tuning’ of the free parameters to meet specified frequency domain robustness
properties, and H_ optimal control, where frequency domain specifications are used

directly in the design procedure.

1.2 High Speed Multi-Stage Axial Compressors

The compressor is the first of three parts of a gas turbine engine. After air is
compressed in the compressor, it is used for burning the propellant in the combustion
chamber, and the exhaust is fed through the turbine to drive the compressor. An axial
compressor differs from other compressors in the direction of airflow through the
compressor; air flows axially through an annulus in the compressor, as opposed to
radially, to achieve a pressure rise. A high speed compressor is one where the Mach
number of the rotors is close to 1 and where compressibility effects are expected to

contribute significantly to the dynamics of the compressor. There are two basic elements
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of an axial compressor: stators, which are stationary sets of blades around the annulus,
used to change the circumferential velocity of the flow as well as diffuse the flow; and
rotors, which are moving sets of blades, used to impart energy by accelerating the airflow
(see Figure 1.1). A stage of a compressor is the combination of a rotor in front of a
stator. Aircraft engines typically have between 8 and 20 stages. Frequently, there will be
a set of inlet guide vanes (IGVs), which is a stator row in the front of the compressor to
give the airflow an initial circumferential velocity before the first rotor. Other needed
definitions are: the hub is the inrer radius of the compressor annulus, the casing is the

outer radius of the compressor annulus, and the #ip is the outer radius of the rotor.

_XTE |
XLE
|
< CASING
I ——
———
Inlet Duct Gap m Gap | Stator | Gap m Gap | Stator anWucl

Figure 1.1 - Compressor diagram.

The operating condition of the compressor is determined by the corrected mass
flow, or flow coefficient, which is a non-dimensional mass flow through the compressor.
Compressor performance is characterized by a speed line or characteristic, which is the
functional dependence of the pressure rise on the flow coefficient. A sample
characteristic is shown in Figure 1.2. In multi-stage compressor models, each blade row
has its own characteristic which can be combined to determine the overall characteristic.
Generally speaking, the compressor is in the stable regime when the slope of the

characteristic is negative, that is, when a decrease in flow coefficient ieads to an increase
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in pressure rise. When the slope of the characteristic is positive, small deviations from

the mean flow tend to grow into nonlinear rotating stall or surge.

Unstable Regime | Stable Regime
>
o
A
c
o
3
[/23
(72
2
a
Flow Coefficient, ¢
Figure 1.2 - Pressure rise characteristic.
1.3 Summary

The primary purpose of this research is twofold: to present a model of a high
speed multi-stage axial compressor in input-output form, and to present control law
configuration and design methods to extend the operating range of compressors.

The linear two-dimensional compressible model, developed by Bonnaure [16], is
extended and recast into input-output form. Cancellation of branch cuts in the inter-blade
row gap solutions is identified; this realization leads to the addition of more realistic end
conditions necessary to cancel the branch cuts arising from the inlet and exit duct
solutions. These new end conditions also result in a new eigenvalue problem. Similar to
the branch cuts, singularities in the inter-blade row gap solutions are shown to cancel in
the same manner. Actuator and sensor models are developed, which allow the solution to

be recast into input-output form using the same technique that is used to formulate the
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eigenvalue problem. Another contribution to the modeling is the identification of higher
frequency (higher than the rotor frequency) modes of the compressor.

The distributed model for each spatial Fourier coefficient is approximated by a
finite dimensiona! state-space approximation. This is accomplished using Padé
approximations of exponentials (time delays) and Taylor series expansions of
transcendental functions. Tw2 approximate models are developed: a model ignoring the
dynamics of the inter-blade row gaps, and a model including the gap dynamics. The
former has the advantage of having on the order of 40% fewer states than the latter, but is
less accurate. Long inlet and exit ducts are not easily modeled using this method due to
the very high order approximations necessary.

Frequency domain specifications and cost functions on the state and control
variables are developed to compare control configurations (i.e. sensor and actuator
placement and type). A bandwidth constraint is used to provide robustness to high
frequency errors, and a sensitivity constraint is used to provide specified gain and phase
margins. A state cost is defined to measure how well a compensator can keep the static
pressure perturbations small, while a control cost is defined to measure the amount of
control activity necessary to achieve the state cost.

The Linear Quadratic-Gaussian (LQG) and H_ design procedures are reviewed
for use in control design and configuration comparison. In the LQG design method,
colored measurement noise is used to penalize bandwidths greater than the specified
constraint, and other free parameters are chosen to provide a good trade-off between
bandwidth and low sensitivity. This design also results in an '‘LQG' cost function which
is used in addition to the state and control costs to compare control configurations.
The H_ design method uses the frequency domain specifications directly in the design
procedure to find which configurations can meet the specifications at the lowest flow
coefficients. This information is used with the state and control cost functions to find the

‘best’ control configuration.
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1.4 Structure of Thesis

A review of the two dimensional (2D) compressible model, the truth model, is
presented in Chapter 2. The truth model is that of Bonnaure [16], with some
modifications, reformulated into a frequency (Laplace transform) domain input-output
representation. To app!y moderr control theory to the truth model, the transcendental
functions of the truth model must be approximated by rational polynomials in the Laplace
variable, s. The approximation method is presented in Chapter 3 with a section analyzing
the accuracy of the approximate model for use in stability analysis and in control law
design. The approximate model of Chapter 3 is then used in modern control design
methodologies. Chapter 4 presents desired frequency domain specifications on closed
loop transfer functions of a compensator as well as cost functions which can be used to
compare different control configurations. Also presented are two design methodologies
which will be used to compare sensor and actuator configurations and to design a
compensator to meet the frequency domain specifications. These control design
methodologies are nused in Chapter 5 to find the 'best’ control configuration in terms of the
cost functions and operating range extension which also meet the frequency domain
specifications. Chapter 6 presents a summary, conclusions and recommendations for

further research.

27



28



Chapter 2

Fiuid Dynamic Model and Analytical Solution

This chapter begins by presenting the motivation for finding the input-output form
of the model in Section 2.1. In Section 2.2, a review of the 2D compressible model
described by Bonnaure [16] is presented with some modification. The primary
modification is the use of new end conditions that model finite length ducts, which are
believed to be more realistic than the original end conditions. A new eigenvalue equation
is derived which is free of some of the mathematical difficulties of the original. Section
2.3 presents additional modifications to the model, namely, the addition of an actuator
model and a sensor madel. These are applied to the same procedure used to find the
eigenvalue equation to yield the desired input-output form. Section 2.3 comments on

some of the general and specific results of the model.

2.1 Motivation for Input-Output Form

The primary application of the original 2D compressible model eigenvalue
equation, and that derived in Section 2.2, is stability analysis. It can be used to study the
effects of various design parameters on compressor operating range and stall inception
behavior [17]. In its current form, however, it has no provision to analyze effects of
feedback control. A few modifications are therefore necessary.

Both classical and modern control theory rely upon a description of the open-loop

transfer function from an actuator to a sensor, either in the frequency domain, or in state-
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space form. Using this description, feedback control laws can be designed and evaluated
by ‘closing the loop'. Stability, performance, and robustness of the closed-loop system
can then be evaluated in a number of ways. Section 2.3 will present modifications and

the technique to find the input-output forin of the 2D compressible model.

2.2 Solution of Partial Differential Equations

This section presents the solution of the original {16] linear, time and space
invariant partial d.fferential equations (PDEs). There are a few differences here from the
original. The first is the minoi' change of taking a Laplace transform in time instead of
assuming the form of a complex exponential, ¢’*. This is the standard methed to
produce transfer functions from linear, time invariant ordinary differential equations
(ODEs), which also applies to PDEs. Additional steps are also included to aid a person
with only a control systems background to understand the usage of the complex Fourier
series and to understand each part of the soiution. New notation is introduced for
organization when the system is approximated. New end conditions, which are
considered more realistic than the original, are proposed and derived to eliminate
difficulties associated with the originz' end conditions. Finally, a new eigenvalue

equation is derived using the new end conditions.

2.2.1 Inter-Blade Row Gap and Duct Equations

Presented first are the original time and space invariant PDEs describing the two
dimensional (2D) fluid flow in an annulus. The two parts of the compressor, where this
model is assumed to be valid, are in the annular space between the blade rows, which will
be referred to as inter-blade row gaps or gaps, and the annular space upstream and
downstream of the compressor in the ductwork, which will be referred to as ducts (see
Figure 2.1). These equations apply separately to each gap and duct, with all the constant
mean flow variables dependent on the particular gap or duct to be modeled. The index

indicating the gap or duct number, &, (see Figure 2.1) is omitted in most places wherever
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it is understood by context that the equations apply to each gap or duct separately. The

four PDEs are

Mass Continuity Equation

@waav‘w 35p+l(p38V,+V 38p)=0 @1

ot ox  “ox r\" 90  ° 98

Axial Momentum Equation

aév aévV_ pV, déV doP
L+pV = 8 L=— 2.2
p&‘t+p'¢9x+r a0 dx 2
Circumferential Momentum Equation
aév, adv, pV, bV, 1 doP
P P T YT e v oe @3
Energy Equation (for a perfect gas)
doP doéP V, do6P d26p adp V 35p)
1% -4 =a? 1% - — 2.4
o " ax Ty a8 a(8t+'3x+r30 24

where the dependent variables (6P,dp,dV,,6V,) are the perturbations of static pressure,
density, axial velocity and circumferential velocity, respectively. The independent
variables, (x,0,t) are axial distance, circumferential angle, and time, respectively. All
other terms in the PDEs are assumed constant in the annulus.

A standard method of solving PDEs is to use a transform or series expansion to
eliminate derivatives with respect to independent variables. The result is then either an
algebraic expression, or an ordinary differential equation. Equations 2.1-2.4 have three
independent variables, so a Laplace transform will be applied to the time variable and a
complex Fourier series will be applied to the circumferential angle. What remains will be
an ODE in the axial coordinate. First, however, the dependent variables must be

eliminated.
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The PDEs are first solved for static pressure by differentiating Equation 2.2 with
respect to x, differentiating Equation 2.3 with respect to 8 and dividing by r, adding the
results, using Equation 2.1 to eliminate the velocity differentials by substitution, and

using Equation 2.4 to eliminate the density by substitution to obtain

2 2 2
d’8P lc?&P____lz_(a v V";)JP 2.5

+— + + 2 —

oxt r! 08* o ‘dx r d6
This is a two dimensional wave equation in Cartesian coordinates, x = x,y =r6,

with the fluid medium moving relative to the reference frame. Taking the Laplace

transform in time yields

6P 1 3%6P 1 o V., adY
axz +F 302 =7(S+V _+_8__) oP (26)

where 8P = 8P(x,0,s). This can be rearranged by expanding the RHS and collecting

terms:

d*6P s M, d\déP
— 2 —
(l M)a’ 2M( r30)8x+ an
s 1 9*6P s d6P '
(—F5P+( M) 302 —2M ra%') 0

where M, and M, are the Mach numbers (velocity divided by speed of sound) in the axial

and circumferential directions, respectively. Assuming the static pressure has the form of

a Fourier series in the circumferential direction:

6P(x,0,s)= ZEPJ(x.n,s)sin n@ + 8P (x,n,s)cosnf, (2.8)
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Equation 2.7 results in

((] -

aap (s35P ey 2351") ]
“\a ox r ox
sinn@ +
—’—253, -(1- M’) 6P +2M, ——8P
5. L
PL 5P s6P. . ndsP) | o 2.9)
n=—e - —
(1 M) 2M,(a = M,r e )+
cosn@

a ra

(——8P+(l— ) 6P 2M ——SP)

For the sum to equal zero, each coefficient of the sines and cosines must be identically
equal to zero. The equations for the sine and cosine coefficients can be reduced to a

single equation if a new variable is defined as

6P, = 6P, + j6P,. 2.10)

The result is one complex constant coefficient ODE in x for each harmonic (i.e. term of

the Fourier series):

d*6P s n\JdoP
B ¥ £ Yl 20 RS ¥ Sl chatell 3
(l M) ax? M (a JMor) ox *
. : @11
(-”—2-(3-,%2) )511 =0
r a r

There are still two states of interest for each harmonic, the sine and cosine
coefficients, but they have been lumped into one complex variable for convenience. This

same ODE could have been obtained using the complex Fourier series:
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5P(x,0.5) = Zap(x,n.s)e'"" 2.12)

in Equation 2.7. The only difference is that the ODE would have n replaced by -n. The
ODE in x (Equation 2.11 with n replaced by -n) becomes

d*6P s ... n\dbéP
ax? _ZM'(;+',M0-;) ox

2 2
(—"—2—(i+jM,,ﬁ) )5P=0
r a r

(1-M?) +

(2.13)

where 8P = 6P(x,n,s).
To understand the dynamics of Equation 2.13, it is instructive (o look first at the

case where the mean velocities are zero. Equation 2.13 becomes

d*6P _(

2 2
o L 8_2)5,. =0 (2.14)

r a

This can be easily solved by assuming the form of exponentials in x and solving for the

exponential constants:

8P(x,n,s) = Bn(s)e’J'_”?'_‘ + cn(s)e"J'_’+?_‘ . 2.15)

Examining this equation, we see that there is a cut-on frequency, |@w|=na/r,
above which the character of the solution changes. The solution consists of exponentials
below the cut-on frequency, and sinusoids above the cut-on frequency. The exponential
solutions are analogous to the axially decaying solutions of the incompressible static

pressure solution. The sinusoidal solutions are non-decaying propagating waves in the
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axial direction. The two exponents are not continuous in the frequency domain, however;
they represent two Riemann sheets of the solution separated by branch cuts arising from
the square root of the frequency parameter, s. If the boundary conditions are stated in
terms of the PDE dependent variables, then these branch cuts do not appear either in the
eigenvalue equation or in the open-loop transfer functions.

The corresponding solution to Equation 2.13 with non-zero velocities is

8P(x,n,s)= B,(s)e™"" + C, (s)e""

where the exponents are

2
M,(£+jnM,)i \/n’(l - Mf)+(£ +jnM,,)
a a

r(1-M})

o,,pB,.(s)= (2.16)

with «, (s) taking the positive sign. Again, branch cuts appear in the case with the
moving fluid relative to the reference frame.

The solution of Equation 2.13 will be modified by changing the definition of the
frequency and harmonic dependent coefficients to allow for simpler solutions to the rest
of the dependent variables, shown in Equation 2.17 below. Specifically, if the
coefficients were not modified, the velocity perturbation solutions would have
denominator functions of s. There is no change in the final eigenvalue equations or
transfer functions due to this modification, but it makes the solutions easier to
manipulate. The solutions for density and velocity perturbations are easily found, using

Equation 2.17, by solving Equations 2.4, 2.2 and 2.3, respectively. The solution is
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ra ()M, + +jnM ))B (s)e™"™ +
—(x 6, s)- e (2.17)

rﬂ (5)M, + nM,))C (5)eP"

(ra (S)M + +jnM ))B (s)ea o
5p b
—(I'G.S)_ e’ (2.18)
p n=-=o (rﬁ (S)M + +jnMa))Cn(s)ep.(.\)x +En(s)e1.(.\)x
(- B Galeir C B. o
8_Vx_(x.6.s)= Z ra, (s) (s)e ~rB (s)C,(s)e™ emo 210
a "=___JnMan(s)el. fx
ov = -'_-’."Bn(-5')3"“"("))l - jnC, (s)eﬂ"‘"‘
Cha " 2.20
(x = ..-Z-- (£+jnM9)Dn(s)ez.(x)x € ( )
[\ a
where
S—r+jnM‘9
X.(8)=- —

When n=0, the zeroth harmonic, Equations 2.17-2.20 have a special form, similar

to the blade row equation solution in the next section:

Q(x,e,s) = Z }'[I—_'M— B"(s)e""""' + ﬁ C"(s)e”"""’Jr ]e’"o (2.21)

% 2 (x.0.5)= [—B (™ + b C()H N +E () e @)

n=-co

Ve (x.0.5)= Z[—#B"(s)e“"'”‘ + brishs ]e""" (2.23)
a il X
%(x, 0,s)= ZD"(s)e“-""e""" (2.24)
a

n=-eco
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Equations 2.17-2.20 or 2.21-2.24 can be written in matrix form as

[ OP |
p B

. C
— jn®
](x.O,s)—“E_-e V. (x,s D L(5) (2.25)

a E

where V, (x,s) contains the axial distance, frequency and harmonic dependent terms of

the solution multiplying the coefficients. This condensed form of the solution will get

much use throughout this chapter and the next.

2.2.2 Blade Row Equations

Presented here are the time and space invariant PDEs describing the one
dimensional (1D) fluid flow in the blade row directly from Bonnaure [16]. The fluid is
constrained to one dimension by the individual blades and the annulus’ inner and outer
walls (i.e. the hub and casing). These equations apply separately to each blade row, with
all the constant mean flow variables dependent on the particular blade row to be modeled.
The index indicating the blade row number, k, (see Figure 2.1) is omitted wherever it is
understood by context that the equations apply to each blade row separately. The three

PDE:s are:

Mass Continuity Equation
98p . Idp __ IEW
o Vo TP o0 (2.26)

Momentum Equation
oW oW 1 d6P
w = ——— 2.21
a o T oo (220
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Energy Equation (for a perfect gas)

By 2B o 20

dép
> = +W ) (2.28)

or ox’

where £ is the blade stagger angle, x’ = x/cos¢ is the distance along a particular blade
row, the dependent variables (OP,8p,6W) are the static pressure, density and velocity
perturbations, respectively, and the independent variables are again (x,6.r). The
circumferential angle does not appear in these equations since perturbations are
constrained to move along the blades, but the solution can still be assumed to be in the
form of a Fourier series. The only implication is that the harmonic number, n, does not
affect the dynamics. These three equations can be manipulated like the inter-blade row
gap equations to yield

d d

d*6P
g 26p_ 2
(31 W a.t') oP=a ox"?

(2.29)

This is a2 one dimensional wave equation along the length of the blades with the fluid
medium moving with respect to the reference frame. This can also be solved with the

Laplace transiorm and the complex Fourier series, yielding the total solution:

P(x.e.s)_y";[B,(s)e +C.(s)e ]e’ (2.30)
ﬂ’-(x. 0.s5) = Z[l-?"(s)eé""” + G, (5)eM " + E (s)ek ™" ]e""‘9 (2.31)
P -

ﬂ _ N _" a,(s)x ~ ﬁ,,(.\)l jn8

; (x.O.s)—z[ B,(s)e™" + C () |e (2.32)

where
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As was stated previously, the harmonic number does not affect the dynamics of the blade
row solution. It does, however, affect the transformation between the reference frame of
the blade row and the compressor reference frame. The two effects are due to the stagger
of the blade rows and the rotation of the rotors. For example, if the flow is rotated with

respect to the compressor an amount A6, the phase of a harmonic is changed by nA6.

Equations 2.30, 2.31 and 2.32 can be written in matrix form as

(s) (2.33)

e he Bt

P
P oo
% I(x,0,5)= Y €™B,(x,s
w
a

This form of the solution will get much use throughout this chapter and the next.
Through the rest of the thesis, the subscript n will be dropped with the
understanding that each equation will apply separately to all harmonics. The only

exception to this will be separate end conditions for n=0.

2.2.3 Boundary Conditions

At each interface between a blade row leading or trailing edge and a gap or duct,
there must be an appropriate number of boundary conditions to connect the system. The
total number of boundary conditions plus end conditions must equal the total number of

unknowns in the system, namely, the coefficients in Equations 2.25 and 2.33. For each



combination of blade row and adjacent gap. then, there should be seven boundary
conditions for the seven unknowns of the two solutions. However, the total number of
unknowns for a compressor with K blade rows and K+1 gaps (see Figure 2.1) is 7*K+4,

so there must be a total of four end conditions.

2231 Leading Edge Conditions:

There are three leading edge boundary conditions: mass continuity, total
temperature conservation, and a total pressure loss. These conditions are described in
Appendix A, along with the definitions of all the new matrices. The matrix notation for

the leading edge boundary condition is

(2.34)

e O oo

[B
‘C
(Vyu+ =P, )V,‘(xm,s)[D | =B,B,(x,4.5)
E},

This allows us to solve for the kth blade row unknowns in terms of the preceding gap or

duct unknowns, gap k.

The other four boundary conditions for each blade row are the trailing edge
boundary conditions: mass continuity, total temperature conservation, total pressure
conservation and a flow angle deviation. These conditions are described in Appendix A,
along with the definitions of all the new matrices. The matrix notation for the trailing

edge boundary condition is

B

r
=V aVien (g, ) D +;Dkvk(xu:‘k’s)

BB, (x;g.5) — (2.35)

e O B
m o aOw

k E
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This allows us to solve for the gap k+1 unknowns in terms of the blade k unknowns as

well as the gap k unknowns.

2.2.4 Stacking Method

Now that the boundary conditions have been defined for each leading and trailing
edge, these can be combined into a transmission matrix across the entire blade row, from
the gap /» unknowns to the gap k+1 unknowns.

Combining Equations 2.34 and 2.35, the transmission matrix across a blade row

can be written as

B B
C BB, (x5, 9B, (x5, 5)B(V,, + P C
D =v;-'+|(xry:'s)v;llz+|[ o ) = u( wom k) Vk(xLEk’s) D
T Tt Tk
E k+1 E k
B
C
=A,(s) D
E k
(2.36)

Using Equation 2.36, the total transmission matrix relating the inlet to the exit gap

unknowns can be found by multiplying, or "stacking", successive stages:

= A, (DA, () A A ) ~ | =A(s) (2.37)

m O Ow
m O O ®
m oA

K+l | |
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2.2.5 End Conditions

As was stated previously, there must be four end conditions to properly specify
the system. Due to physical reasons beyond the scope of this thesis, the four end
conditions will be divided into one exit condition and three inlet conditions. In Bonnaure
[16], the assumption of infinite length ducts was used. This works well for low speed,
incompressible theory but, unfortunately, causes mathematical difficulties in the
compressible case. Specifically, branch cuts in the Laplace domain are introduced into
the problem which cannot be dealt with easily in standard control theory. This was the
motivation fer finding more realistic end conditions which eliminate the problem.
Indeed, modeling finite length ducts with appropriate end conditions removes this

complication.

2.2.5.1 Ini iti
The inlet will be treated in this thesis as an open end having clean and smooth
flow. This translates into variations in total pressure, entropy and vorticity equal to zero,

or:

6P,
oS, [=0 (2.38)

enir

6Q

vort

applied at the interface of the free stream and the inlet duct. The specifics of the end

condition are derived in Appendix A, and the following condensed form will be used:

N(s) =0 (2.39)

m o O W
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The matrix N(s) is 3x4.

2.2.5.2 Exi itions:

The exit condition model depends on what is downstream of the compressor..
This thesis will assume that the flow dumps into a plenum, so a boundary condition
modeling this will be used throughout. The open end condition for non-zeroth harmonics

is:

2 =0 (2.40)

applied at the interface of the exit duct and the plenum. In the condensed notation of

Equation 2.25, this can be written:

B
C
[T 00 O]V“,(xp,“,.s)D =0 (2.41)

E

K+l

where x,,, is the location of the plenum/exit duct interface. The modeling of the exit for

zeroth harmonic perturbations includes the open end condition plus the following

equation modeling the plenum dynamics (modified Equation 3.60 from Bonnaure):

V...P
[ pl;n. plen s+ y+l)_5_’:_Q_QL=O (242)
a‘m, 2y

where V , is the plenum volume. In the condensed notation of Equation 2.25, this can

be written:



B

V. P c

E

K+

Equations 2.41 and 2.43 will both be condensed into the general matrix form:

X(s) =0 (2.44)

MmO aOw

K+1

where the matrix X(s) is 1x4.

2.2.6 Eigenvalue Equation

An cigenvalue equation is a function of the Laplace variable, s, that ,when solved,
gives the unforced natural frequency modes of the system. One use for the eigenvalue
equation is to determine whether or not a system is stable. This was the primary use of
the 2D compressible model used by Bonnaure [16] and by Hendricks et al [17]. The
eigenvalue equation is also important with respect to open-loop transfer functions,
because it will always appear in the denominator, causing eigenvalues to appear as poles
in the transfer functions.

To review Bonnaure's eigenvalue equation, the infinite duct assumption was

translated into the following equation:

M T O
© © oW

K+l |
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Ay, (=0 (2.46)

where one end condition has been applied at the exit, gap K+1, and three conditions have

been applied at the inlet, gap 1.

A new eigenvalue problem, using the more realistic end conditions, can be
formulated. Combining the end conditions, Equations 2.39 and 2.44, with the total

transmission matrix, Equation 2.37, we get

B 0
X(HAGB) | C 0
, 2.47
[ N(s) ] D 0 ( )
E) |0
or, using the dependent variables of the PDEs in the inlet duct as the unknowns:
[ 5P 0
P
X(s)A(s)] /4 0
[ N(s) ]V,'(x,.",s) ﬁa =lol (2.48)
-5_":2 l.x 0
The new eigenvalue equation can be stated as
X(s)A(s)V;'(x,,,
detl AV i) _ g (2.49)
N(s)V, (x;,.5)

where changing the unknowns to the dependent variables serves to eliminate the branch
cuts in the eigenvalue equation. There are two singularities in the eigenvalue equation,

one in the right half plane (RHP) and one in the left half plane (LHP), due to the vorticity
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inlet condition (Appendix A). These appear because the vorticity condition is a
derivative condition and can not be expressed as a constant linear combination of the
dependent variables of the original PDEs (Equations 2.1-2.4). However, these
singularities in the eigenvalue equation do not appear at all when transfer functions are

formed.

2.2.7 Discussion

It is important to note that the eigenvalue equation (2.49) is a general
representation which applies for all harmonics, n. In other words, changing the value of n
will yield different solutions.

In the definition of the transmission matrix, Equation 2.36, we see the inverse of

the matrix V(x,.,s). The determinant of this matrix is a function of s, and indeed has
four roots: two on the imaginary axis of the s domain at the branch points of ofs) and
B(s) , one in the RHP of the s-domain, and one in the LHP of the s-domain. This matrix
inverse V~'(x,,,5) appears separately in the transmission matrix of each blade row, so it
was expected that all of the roots would show up as singularities in the original
eigenvalue equation, Equation 2.46, since they are in the denominator. When the
eigenvalue equation was examined, though, only one singularity in the LHP appeared.
The lack of multiple singularities is due to the matrix product V(x,_E,s)V"'(xTE.s), which
appears when two adjacent transmission matrices are multiplied (Equation 2.37).
Forming this matrix product cancels the singularities analytically. Appendix B expands
the matrix product V(x,,s)V'(x,s), and Section 3.3.1 will show how these
singularities cancel out analytically in the matrix product. Therefore, the only remaining
singularities in the original eigenvalue equation are due to the downstream exit duct,
where in the original eigenvalue equation, the matrix V~'(x,,s) of A,(s) was not
multiplied by another V(x,.,s) matrix.

When the new end conditions are applied, singularities still exist due to the

vorticity inlet condition. This condition is a derivative condition and is not expressible as
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a constant linear combination of the dependent variables of the gap PDEs. Therefore,
there are two singularities in the eigenvalue equation, but when a transfer function is
formed, these artifacts are removed completely.

The same cause of the singularities in the original eigenvalue equation also causes
branch cuts to appear, but in this case due to both the V"(xTE,s) matrix of A ,(s) and the
V(x,,s) matrix of A (s). Appendix B shows the matrix product V(xw.s)V"(xm.s)
which is free of branch cuts. Therefore, in the original eigenvalue equation, only two sets
of branch cuts remained due to the inlet and exit duct solutions.

The reason for these remaining branch cuts lies in the end conditions. Bonnaure's
assumptions about the end conditions was that they were infinite length ducts. The
problem was not in the assumption, but in how it was implemented: one part of the static
pressure solution was chosen to be zero in each of the inlet and exit ducts. While this
implementation will work for 1D flow or incompressible 2D flow models, it causes
problems in the 2D compressible flow model. The reason is that, in the 2D compressible
flow model, there is no clear distinction between up- and downstream traveling (or
decaying) static pressure perturbations as there is in 1D flow or incompressible 2D flow.
The separation of the two parts of the static pressure perturbation in the original end
conditions causes the branch cuts to appear, since the mathematical form of the boundary
conditions does not provide a matrix product V(x,_E.s)V"(xTE.s). Instead, one of these
matrices is left alone on each end of the compressor (one for the inlet and one for the
exit). The addition of realistic end conditions in Section 2.2.5 results in the cancellation
of these artifacts.

While it is not uncommon for solutions to linear constant coefficient PDEs to
contain branch cuts, it is inconvenient to have them show up in input-output forms of the
solution, especially when performing approximations. However, if all terms of the
solution are included, and if boundary conditions are posed in terms of the PDE

dependent variables, then the branch cuts tend not to appear in input-output forms of the
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model. In fact, they do not appear in the 1D diffusion equation (as described below), the
1D Bernoulli-Euler beam model [18), and the present 2D compressible flow model when
one dimension is reduced by Fourier series expansion. For example, take the 1D

diffusion equation:

The general solution, by Laplace transform in time, and solving the resnlting ODE in x, is

R
u(x,s)=Ae * +Be *

which contains branch cuts in the form of +/s. Using this solution, the transmission

matrix between axial locations can be found by writing the dependent variables of the

PDE in terms of the coefficients:
u(x,s) e e‘T A
w (x| |6, % _, o LB

and eliminating the coefficients using two axial locations:

cosh(éxi‘;-] —a—sinh[—Ax—\/;)
[u(xz,s):l_ o Vs o [u(x,,s)]
u,(x,,s) - ﬁSinh[Ax\/;J Cosh(Axw/;] u,(x,,s)|
a o .«

All of the elements of the transmission matrix are even functions of Vs , which

means the branch cuts of the solution do not appear. If end conditions were applied to

each axial location in terms of u(x,s) and u,(x,s), then an eigenvalue equation could be
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formulated without branch cuts. If one of the ends was then taken to infinity as the limit,
the transmission matrix would still not contain branch cuts, but the eigenvalues would all
move toward the origin, approaching a continuum of eigenvalues, which is different than
a branch cut.

In the 2D problem, the PDE solutions containing branch cuts have arbitrary
coefficients. When these coefficients are chosen properly, such as in the previous
example (A and B), where they were solved in terms of the PDE dependent variables, the
branch cuts do not appear. However, when the coefficients are chosen by other methods,
such as setting one to zero, the discontinuity of the branch cuts will appear. Two
conditions which may cause branch cuts to appear in input-output forms of structural
dynamic systems [19] are when approximations to infinite length end conditions are used,
and the dereverberated (ignoring reflected or delayed parts of the solution) input-output

form is used. In both of these cases, the choice of coefficients causes branch cuts to

appear.

2.3 Input-Ouiput Form

Now that we have a complete description of the system, to solve for the open loop
response, or transfer function, we only need to model the sensor and actuator and perform
some manipulations using the stage stacking technique. The sensors and actuators
physicaily will be arrays around the annulus to measure and affect different harmonics of
the perturbations. The discrete nature of the sensors and actuators will limit the number
of harmonics that we can control, but experimental results [4] and results of using the
new eigenvalue equation (2.49) indicatc that the first three harmonics are the most
unstable and thus the most important to control. The placement of sensors and actuators
will be restricted to the gaps or inlet and exit ducts due to physical constraints. As
actuators for this system, we choose injection of high momentum air (jets), because

injectors are predicted to be effective in controlling rotating stall [20]. As sensors, we
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choose static pressure probes since these are likely candidates for sensing in high speed
compressors, although others are easily incorporated and will be studied in Chapter 5. If
the sensors and actuators are in the same gap, the sensors will be assumed to be in front
of the actuators. The reason for this is the discrete nature of the sensors and actuators; if
the sensors are downstream of the jets, they may or may not be impinged upon by the
jets. If they are not impinged, then the resulting transfer functions would look like the
sensors are upstream of the jets. If they are impinged, the distance is so short that the jets
would not have time to spread out in the flow properly, and the measurement would not

be valid.

2.3.1 Actuator Model

An actuator can be modeled by specifying the change in dependent variables
across the actuator disk. The four equations necessary to determine the change in the
quartet of unknowns across the actuator disk are continuity, x momentum, 6 momentum
and energy conservation. The conservation equations and their linearizations are in

Appendix A. The result of the linearization is the following equation:

B B
C C
J. V(x,.s) =J.V(x,,s) +b, u(s). (2.50)
D D
kua . downstream ku,upstream

where the control term, u, is the ratio of injected mass flow to the mean mass flow and

J,, and b,, are results of the linearization of the conservation equations.

If we write
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=A,(s) (2.51)

MmO O™
m o aOw

AK+) ka . downstream

where A (s) is the part of the A(s) matrix going from the actuator location to the exit

using the stage stacking method:

A, ()=A(HA,_(s)A,, (2.52)

then Equation 2.50 becomes

=A,(s) +(J, V. (x,.5)) ' bu(s)

T O™
moaw

K+l ka.upstream

B . (2.53)

o -
= AL )-A ) T +AILVi(x,.5) byu(s)
A(s)

E

Combining the end conditions, Equations 2.39 and 2.44, with Equation 2.53 results in

B

XOAG]C| _|-X(A, () Vu(x,.59) "' b,

[ N(s) ]D —[ o u(s). (2.54)
E
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This equation can be used to solve for the response of the unknowns in the inlet duct, gap
1, from the input of the actuator. Notice the eigenvalue equation will turn up in the

denominator when the inverse is taken.

2.3.2 Sensor Model

It now remains to define the sensor measurement and relate it to the unknowns in
the inlet duct, gap 1.

The state where the sensor is located can be defined by stacking stages from the
inlet and including the effect of the actuator if it is between the inlet and the sensor

location:

B B

€| -a (s) “l+a (JuVu(x,.5)) " bu(s) 2.55)
D s D as ka ¥ ka\Ta? ku .
oL el

where A (s) is the part of the A(s) matrix going from the inlet to the sensor location,

A (5)=A, _(s)-A,(5)A(5) (2.56)

and A (s) is the part of the A(s) matrix going from the actuator location to the sensor

location,

A (5)=A,_ (s)-A,(s) (2.57)

which is zero if the sensor is upstream of the actuator.

The measurement of the sensor gap unknowns is then written as
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B'l B
C
5—:(s)=[l 0 0 O]V(x,,s) =(8,.V(x,.5)) D (2.58)
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2.3.3 Transfer Function Description
Using Equations 2.54, 2.55 and 2.58 together, the transfer function from actuator

to sensor can be written as

5p ( )[X(s)A(s)]"[-X(s)Aum]

k) -

— ()= (S.V.(9) N(s) 0 (3 Vi (5)) 'bu(s) (2.59)
+A,(5)

Note that the matrix inverse in Equation 2.59 is the same matrix in the eigenvalue
equation (2.47). At the solutions of the eigenvalue equation, this matrix is singular. The
result is that the eigenvalues of the system show up as poles in the transfer function, just

as in linear, time invariant ODE systems.

2.3.4 Discussion

This open-loop transfer function, Equation 2.59, is an important step toward the
design of an active control system. Unfortunately, it is so complex, that we can only
apply ad hoc techniques to stabilize the compressor or to improve the performance.

Equation 2.59 represents all the possible location combinations of sensors and
actuators throughout the compressor as well as all of the harmonics. It would be
overwhelming to apply ad hoc techniques to each possible combination available for
study. For example, a three stage compressor plus IGVs has 8 gaps in which to place
sensors and actuators resulting in 64 different single-input/single-output transfer

functions for each harmonic and for each sensor and actuator type.

54



The next chapter derives an approximation to this model which will allow us to
write a familiar state-space description to represent the system. This is desired because
there are many modern automated procedures to design control systems for state-space
representations. We will use Equation 2.59 to check the accuracy of the approximation,
and ultimately apply the control system to it to check stability and robustness.

The technique used in Sections 2.2 and 2.3 to yield the input-output model can be
generalized to many different PDE-described systems. If one can write an eigenvalue
equation of the system by combining solutions within the system with the boundary and
end conditions, then writing the open-loop transfer function is only two steps away. First,
the description of the effect of an actuator and the measurement of the sensor is needed,
then the control variable is left as a free parameter in the eigenvalue equation, and the

measureinent variable is solved for in terms of the control variable.

2.4 Comments on the Partial Differential Equation Modeling

The appearance of branch cuts in a system model should be a clue to the use of a
set of improper end or boundary conditions, unless a physical reason can be put forth to
describe them. Transfer function in the s-domain are generally analytic functions, with
the exception of a set of poles and a set of zeros, possibly infinite sets. The appearance of
branch cuts in Bonnaure's eigenvalue equation and in the resulting transfer functions is
the result of misinterpreting the two coefficients of the static pressure solution, B(s) and
C(s) in the solutions, Equations 2.17-2.20. These were interpreted as up- and
downstream decaying solutions, respectively, like those that appear in the incompressible
model. However, the two parts of the static pressure solution cannot be interpreted
separately. It seems, at first glance, that they behave like the incompressible solution at
low frequencies, as decaying solutions, but the compressible model is valid at higher
frequencies as well, which is where the similarity ends and the branch cuts appear.

To ensure that there are no problems such as this, boundary and end conditions

should be stated in terms of the dependent variables of the PDEs. As the limit of the duct
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length approaches infinity, the use of boundary conditions in this form may or may not
yield a simple approximation. In the current problem, the length of the ducts can play an
important role in determining the frequency and stability of the dominant eigenvalues, so
it is best to use a duct length and end conditions consistent with the experimental
apparatus.

Finally, physical systems which do not have energy feeding them, should not
display unstable eigenvalues. If some do appear, as in the case with the 2D gap solutions,
then they must be artifacts which will cancel cut with appropriate boundary conditions.
If the transfer functions across the inter-blade row gaps were not examined in detail to
find these cancellations, the inclusion of these eigenvalues could have resulted in severe

degradation of the approximate model.
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Chapter 3

State-Space Approximation of Analytical Model

This chapter presents approximations to the analytical model derived in the
preceding chapter. First, however, some motivation for performing the approximation
and choosing the method of approximation is given in Section 3.1. Section 3.2 presents
steps necessary to approximate the model ignoring the dynamics of the inter-blade row
gaps. This loses some accuracy, but will result in a smaller model. Section 3.2.1 presents
the blade row approximations, Section 3.2.2 presents the boundary conditions with
actuation, Section 3.2.3 presents the end condition approximations, and Section 3.2.4
compiles the approximations into the complete state-space model. Section 3.3 presents
steps necessary to approximate the truth model including the dynamics of the gaps,
resuiting in a higher order, more accurate model. Sections 3.3.1 and 3.3.2 present
boundary conditions and gap approximations for non-zeroth and the zeroth harmonic,
respectively. These are used with the blade row and end condition approximations to
compile the complete state-space models ir Sections 3.3.3 and 3.3.4 for non-zeroth and
the zeroth harmonic, respectively. Finally, Section 3.4 presents an accuracy analysis of
the two approximate models in terms of their potential use in stability analysis and

control law design.
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3.1 Motivation for State-Space Model

Now that we have an input-output frequency domain representation of the
dynamics of a compressor, we could apply classical control theory to stabilize it, if it is
unstable, or increase its stability margins if it is stable. Unfortunately, even a three stage
compressor with a set of inlet guide vanes has 8 gaps and ducts in which one can place
sensors and actuators (see Figure 2.1). The result is 64 single-input/single-output pairs
which are possible for sensor and actuator placement. If we want to find the best possible
combination, we have to examine 64 control designs.

Using classical control methods, this would be a tedious procedure which would
yield qualitative, not quantitative, results, making it difficult to determine the best sensor
and actuator locations. Other disadvantages to classical control theory are: there is no
allowance for multiple noise sources and their effect on the resulting actuator motion, and
there is only a limited amount of freedom in designing a controller for multiple inputs or
multiple outputs. There can be some allowance for robustness to plant parameter
uncertainty, but only to a limited degree.

Using modern optimal control design methods, such as Linear Quadratic-
Gaussian (LQG) or H_ design with a state-space model, one can automate the design
procedure to examine 64 control designs in much less time than using the classical
methods. Moreover, these procedures result in cost functions, such as a sum of the mean-
squares of the states and the control signals, or the H_-norm of a particular transfer
function. These are inherently multiple-input/multiple-output design methods allowing
for multiple noise sources. There are also ways of designing for robustness to different
types of uncertainty. Applying these techniques requires a state-space model, which in
this case requires an approximation of the input-output form.

Different methods can be used to approximate a transfer function originating from
a set of PDEs. First, the frequency domain data (a set of points of the transfer function

evaluated on the imaginary axis) can be used directly in a numerical scheme to provide a
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state-space description. Or, if the transfer function is simple enough, one can directly
approximate the transfer function by a rational polynomial expression in the Laplace
variable, s. In this thesis, the latter approach is taken to approximate each blade row and
each gap and duct separately by rational polynomials. The advantage of this method over
the numerical method is that all 64 transfer functions are found at the same time in one
state-space system, with physically meaningful states, in less time than it would take to
evaluate the analytical model at enough frequencies to feed to the numerical procedure.
The disadvantage of this method is the relatively high order in the resulting state-space
model.

The first approximate model, derived in Section 3.2, ignores the dynamics of the
inter-blade row gaps. This assumption is valid for compressors with short gaps with
respect to the length of the blade rows. However, since the total length of the compressor
affects the frequency of the eigenvalues, the missing gap length is absorbed into the
preceding blade row to keep the total length constant. Modeling the blade row dynamics
is easy since the solutions are simple time delays as perturbations travel through the blade
row. These delays can be thought of as having an 'input' at one edge of the blade row,
and an 'output’ at the other edge, depending on whether the perturbation is traveling up-
or downstream. All of the delay outputs at the interface (the perturbations traveling
toward the interface) between adjacent blade rows are then combined to solve for the
inputs of the other delays at the same interface (the perturbations traveling away from the
interface). This is the basis for the model without gaps.

The second approximate model, derived in Section 3.3, models the dynamics of
the gaps which results in a higher order, more accurate approximation. The gap dynamics
have no identifiable 'inputs’ or ‘outputs' as the blade row solutions do, so the dynamics are
effectively lumped into transfer functions between parts of the blade row solution. For

example, the 'inputs’ of the delays in a blade row now depend on the 'outputs’ at the
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interface filtered through the lumped gap dynamics. This is the basis for the model

- including the gaps as well as the basis for modeling the inlet and exit ducts.

3.2 State-Space Model without Gaps

This section derives the model approximation ignoring the inter-blade row gap
dynamics. Section 3.2.1 describes the approximations to the delays in the blade row
equations. Section 3.2.2 describes the boundary conditions, now applied with zero gap
length, including actuation. Section 3.2.3 describes the end condition approximations
including actuation. The blade row approximations and end condition approximations
will also be used in the approximation including gap dynamics in Section 3.3. Section
3.2.4 shows how the separate parts of the approximation fit together to form the complete

state-space compressor model.

3.2.1 Blade Row Approximations
A few definitions will be made for notation convenience. First, starting with

Equations 2.30, 2.31 and 2.32, the following definitions will be made:

B, (5) = B(s)e™ "
C, . (s) = C(s)eP e G.1)

E,;(s) = E(s)e* v

and similarly

B, (5) = B(s)e* "
-TE(S) = C'(s)eﬁ""‘" . (3.2

E e (5) = E(s)e? "

The relations between Equations 3.1 and 3.2 become



w(s) = e-&(l)AxBTE(s)
Cre(8) = 9% C 1 (s) (.3)

~1'1-:(-9) = ej(:meL(s)

These relations are now all in the form of a complex constant multiplying a time delay,
€%~ Notice the B equation is a time delay with a negative Ax, which means it is an

upstream traveling perturbation. The time delays of Equation 3.3 are, respectively

AT, o BX
(a—W)cosé
Ax
T, =— 3.4
¢ (W+a)cosé -4
AT, = Ax
Wcosé
The phases of the complex constants of Equation 3.3 are, respectively
A8, = ~nQAT, + ntan E2X
r
A6, =-nQAT_.-ntan§ Ax 3.5
r

A6, = —nQAT, —ntanééﬁ
;

These time delays are approximated using Padé approximations. For example, the

upstream pressure perturbation can be written using a second order Padé approximation

[21] as
? (S) _ ejAO,.-JATn . eI'Aon l - yzATBS + %2AT:S2 . (36)
—LBTE(S) 1+ % AT,s + ), AT2s®
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Note that the blade row solution has three independent delays associated with it.
These delays are functions of axial distance, relative speed of the perturbation and stagger
angle of the blade row. The complex constant is also 2 function of these values, as well
as harmonic number and rotor angular velocity (zero for a stator). Appendix C provides

an example of a first order Padé approximation in state-space form.

3.2.2 Boundary Conditions with Actuation
Now that we have blade row approximations to the solutions, we need to connect
these to the adjacent blade rows, since the gaps will be assumed to have negligible length.
This will be accomplished through the boundary conditions, Equations 2.34 and 2.35.
The boundary conditions, Equations 2.34 and 2.35, using the actuation effect,

Equation 2.50, at the trailing edge, combined are

B
BB, (x.5.5) C =(Vu +|+|TPI:)vk(xu.rkvs)v;l(xrﬂ-lvs)'
E
k
([ ( B \ \
BTk—IBk—l(xrgk-ps) C
E
k-1
\E B +J;'byu, (3.7
C
~ e Diar Vi Xz ) D
\ k E k-1/ y,

The assumption that the gap has no dynamics, i.e. x.;_, = X, allows the reduction of

this to

62



B,B,(x..s)

t e B

(Vu+——P,)e

l+st

([

B, B, (xrz,,5)

e O &

Va

1+sT

\

\+J;lbkuk

D _V ,
ka1 Vo) (X110 8) D

E k-1/

(3.8

Using Equations 3.1, and the blade row solutions (Equations 2.30, 2.31 and 2.32), we can

write this as

where

= (Vu +'+'7Pk)o
/ -
( B,
B, M| C
TE Ji -
v;! .
1 C
—WDk—Ivk—l(xusk_ns) D
\ E
L+J;lbkuk
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0
| (3.10)
0

A definition is in order to remove the s-dependencies in Equation 3.9:

B

C
da,_, = _;D-tr.k—lvk—l(xLEk—l's) D 3.11)

I+st

E

k-1

where D,, , _, is the fourth row of the matrix D, _,, the only non-zero row. Unfortunately,

this still has some s-dependencies, but this can be resolved by using Equation 3.11
recursively in the trailing edge boundary condition (Equation 2.35), Equation 3.2, the

definition for M (Equation 3.10), and the actuation effect, Equation 2.50:

TER
o |Br,M 0} C -
aak—l =—%D4r.t—l vTLl'—I n ~TE +Jkl-lbk-luk-l - (3'12)
0 ETE
1] éa |, ,
Using Equation 3.11, Equation 3.5 reduces to
T 1 )
( oY,
B v! Brk—lM 0 Cre
BM[Cp,| =(Vy+=P) " 0| E,, (3.13)
Ef| 1] de |, _,
K+J;|bk“k y

Now, another definition is in order to remove the last s-dependence from Equation 3.13:



B. M
Por= —I—Par.k V; ! T +J;lbkuk (3.14)

I+st

I |.5a.l

k-1

where P, , is the third row of P,. the only non-zero row. Equations 3. 12 and 3.14 are
simple time lags from variables that are results of rational polynomial expressions, with
the exception of the B,, term, which is an input to a time lag, but will be solved for
shortly. Now, a constant transformation between the states of the blade rows, the states
of the lags, and the control can be realized at the boundary between adjacent blade rows

using Equations 3.13 and 3.14:

5 [ o &, ]|

L B. M 0lcC

¢, =M'B v, Vi ™ 0 ETE +

I TE

LE
k I I_L&x_k_l . 3.15)
0]
M-lBZJI: 0P +M-IB;JI:VU(J;lbkuk

1

This constant transformation equation will be solved for the set (ETE,(_,,(:'W_,EW) since

these are the ‘inputs' to the time delays (Equation 3.3):

— Ew‘
5 TEk-1
IEk—I E.
Cu |=K, Tk (3.16)
E' Pln.\'.\'.k
. éa,
L %
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which is a constant transformation. The variables on the right hand side are all ‘outputs',

or results of Padé approximations or time lags.

3.2.3 End Condition Approximations with Actuation

The end condition modeling begins with stating the specified end conditions and
joining these with the 2D duct solutions of Chapter 2. In the inlet condition, pressure loss
and deviation states are identified to remove their dynamics. Then, the 'inputs' to the
adjacent blade row are identified and solved for in terms of the 'outputs’ and the pressure
and deviation states and the control input. The results are transcendental equations in the

frequency variable s, which are then approximated using Taylor series expansions.
1 ition
The inlet conditions, Equation A.33, can be reduced to

™" B (s)+€"*C,(s) = D(s) = E,(s)=0 3.17)

These conditions are used to find transfer functions from B,,,(s) and u,(s) (if control is

applied at the inlet) to C‘m(s).E‘,_E,(s).Ba,(s).P,,m_,(s). Tt e inlet conditions, Equation

3.17, along with the effect of an actuator, Equation 2.50, used in the leading edge

boundary conditions, Equation 2.34, can be written

1

?LE _pla-pix,
Ce | =BL(V, +=P)| V(x,.5) 0 B +J'buy, (3.18)
LEl 0

where the control has been applied in the gap at the leading edge of the first blade row. A

pressure loss state can again be introduced to eliminate some of the s-dependencies:



1

_e(a-ﬂ)x,.
P .= .%;Pl.ar V (x.5155) 0 B, +JI_|blul . (3.19)
0
Equation 3.18 can then be written
- 1
§l£ _pla-Bix, 0
Csel= B;.'IVLIVI(XLEI'S) 0 B + BZ:VLIJ;lquI +B;.I| 0P (3.20)
LE §, 0 1

A few definitions will be made for convenience, replacing groups of constant matrices

with single matrices in Equation 3.20:

1

?LE _e(ﬂ-ﬂ)x_
Cie | =X\V (x151:5) 0 B +su +w,P, (3.21)
Epy )| 0

where the definitions of X, s,, and w, are obvious by comparing Equations 3.20 and

3.21. Expanding the first term for non-zeroth harmonics yields

- -

y((s—': + jnM, + M,oz)e‘"“' - (ir- + jnM, + Mlﬂ)e‘"“ el )
a a

B,
C.| =X ((ﬂ + jnMg + M,a)e‘"“' - (£ + jnMy + M,ﬂ)e‘"‘eﬁ“' ) B +
£ a a (3.22)
LE ) _aea"UI +ﬁea‘--eﬁml
\_ —jne™ + jne"‘"e"‘" |

s,u, +w,P,

ons )

and for the zeroth harmonic,
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r | as § ax,, PAr,
B y(l-u wy |+Mxe e 1
-us 1 e‘"‘-’-' _ | ar, farx
Cel =X,| \77 o € €
= 1 ax,, I ar,,
LE |, € e e’
| 0

B+su +w,P

loss |

or in a general form, Equations 3.22 and 3.23 can be written as

E,_E u,(s)
Cie | =|uy(s)|B, +5,u
~L£ uy(s)

+w,P

loss. |

(3.23)

(3.24)

This can be rearranged through the following steps to solve for the transfer functions of

interest, namely C,,,(s), E,_ (s), éa,(s),P,. (s):

—-u,(s) 0 O B -1
—uy(s) 1 0 C-‘uzl =0 §l£l +su +w P,
—uy(s) 0 1| E,, 0
| _ 1 I
B upy(s) s”"n"’ 1y,
~ _ u2|(.l) 4 "2.( 5) Uzl(-\')
?u'l il P B, + su,,l(,"'szl u, + Wu..“(.,"'wzl P
“]l(‘) "]l(‘) H:"(.\)
Lel P nam TS na,m T Wa

loss )

(3.25)

where w, and s, are elements of w, and §,, respectively. The pressure loss state can now

be written using Equation 3.19 and Equation 3.24:
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1
e( a-B)x,

Pier = 7ot PI 2wV, (xu:ns)\\ 0 B+ — |+n nrJ bl“:

0

—u,(s)B +.— I.JrJl-Iblul

T Rad) Test

(3.26)

Similarly, the deviation state can be defined using Equation 3.11, the inlet conditions

(Equation 3.17) the actuation effect (Equation 2.50) and Equation 3.24:

1
e(a B
ba, = —D, V. (x.5) B+ D ,J"b u
l+\r 1.4 LE) 0 |+_n' 1.4r91 171 (3. 27)
0
|+_;1 Dl JIJ-lblul
The four transfer functions can be written as
FEE, 1 Uy (5) Wa 21
E,. 1| wa(s) |- wy, 5
= (BLgy = Wi Py — Suitty) + P, + 3.28
th' u,,(s) ﬁl.'_:“p(s) LE) 1Y loss ) 1 0 Ioss,) H” H'J ( )
| 5(1, B |+tf ud(s) O |+\T |4'J_lb

The transfer functior:s have now been separated into a frequency dependent term with a

single input and two 'feed-through' terms. The last step is to expand the frequency

dependent terms and approximate them using Taylor series expansions. An example of

the approximation will now be given.

The expansion of the first transfer function of Equation 3.27, for non-zeroth

harmonics is
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(70 +x22)[(£+jnM0 +roM, e — (—+JnM +rBM, )e™eP |+
a

i
u,(s) _ X,y (—rae™™ + rPe®e” ") + x,,(— jne™™ + jne™ef) _ (3.29)

uy,(5) (}cr“+x,2)[( + jnM, + roM )e™ — (—+_]nM +rfM e e pA"J+

X, (—rae™= + rfe™reP ) + x,,(— jne™™ + jne™neP™)

and for the zeroth harmonic,

] ax,, ! ax,, PAx
(}{xz,+xn)[me Le1 _|+Mxe e l]+

- ! X gy ! ax,, ,BAx
wy(s) Tl e+ mpe™ne™)

= —. (3.30)
Uy, (s) (px,, + x;z)[ﬁ,: eM — ﬁem,,eﬁm, ] +

mmepA"l )

]
xll(lTnte +M,

If the numerator and denominator are divided by an exponential and rearranged, for non-

zeroth harmonics, Equation 3.29 becomes

-
()ocz, + X, )(E + jnMy + raM ) — x,,rot — x,, jn]e"“' -

(}'Jr2l +x22)( " jnMy +rBM ) — x,.rB — x,, jn:leﬁ“'
“zl(s)

(3.31)
u,(s) (yx,,+x.z)( +jnM +raM ) — xro - xl-t-’n]e

ahx,

sr . .
P+ 52X My + 1M, = 3= e

and for the zeroth harmonic, Equation 3.30 becomes
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[U“zl + xzz)“'xn]ﬁem

Uy (s) _ [y + x) + xn]ﬁeﬂ“

= (3.32
U, (s) [(Txu'*'xlz)"xn]r_:u—xem )
[(Wn +x,)+ x”]ﬁ‘_eﬂm
Equation 3.31, for non-zeroth harmonics, can be written as
uy(s) _ fola(s) = £,(B(s)) .33

u,(s) fila(s)- fl(ﬁ(s))

It is clear to see why the branch cut does not appear in this transfer function. When the
branch cut in the frequency domain is crossed, c(s) and B(s) are discontinuous, but B(s)
on one side is continuous with a(s) on the other side, and vice versa, so the transfer
function is continuous. In fact, in the process of expanding Equation 3.33, the branch
cuts will be analytically removed.

Expanding Equation 3.33 further, we get

[ M? M\
(()fx,,+x,2)(l+ M2) x,z——ﬁ)(£+jnMo)j ME +mM..)A,r it Ay,
fi(os)) = ) e g

xld""’((yxn + XM, xn)

3.3
where

2
¥(s)=n*(1- M’ )+( +nM)
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Noting the similarity between a(s) and f(s), simply the sign of the radical, we can write

Equation 3.34 as
f@($) = [8,(5)+ 6y a(s)e" .
Si(B(sp = [g,(s )= ¢,[y(s) ]h(s)e"""—"‘T’ :
where

=l
po L Bu
1-M; r

The denominator of Equation 3.33 can be written as

fila(s) - f, B(s)= [81 (8)+¢ \/y(s)]h(s)e"‘/-"‘T’ — [gl(s) -c \/}m]h(s)e"’ ¥(¥)
= 2, (I(s) e — ™) 4 p(5)c,[y(5) (e 4y
=2g, (S)h(s)sinh(b\/ y(s) ) +2h(s)c,\[y(s) cosh(b,/ y(s)) (3.36)

= 2h(s)\[¥(5)| &(s)——=——" '"h\(/@) +¢, cosh(byy(s))

where the term in the parentheses is an even function in the square root, so the branch cut
only appears in the square root out front. When the transfer function is formed, the

square roots cancel, and the result is

sinh(bm )

AN hib
ny(s) 8,(s) o) ¢, cos ( \,/)’(S)) (3.37)
inh(b-/
u,,(s) gl(s)ﬂy_(f)’(s_)) +c cosh(b\/)’(-?))
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which no longer contains a branch cut. The zeroth harmonic, from Equation 3.32, can be

similarly written

A Ay
U (s) d eu-V. _ e a+V,
n() _de” - S (3.38)
u(5) v, asv,’
de” " - fe

The other transfer functions have the same form as Equations 3.37 and 3.38. The
terms g(s), ¢, d and f can be written in a gencral form which simply use different rows of
X from Equation 3.21. This was implemented in the code in Appendix F.

The hyperbolic sines and cosines in the non-zeroth harmonics, Equation 3.37, can
be expanded using Taylor series expansions to find approximations in terms of pole and

zero polynomials:

~

V¥(s) V¥(s5)

sinh(b y(s)) sinh(bM)l 1 [bcosh(b%) _ sinh(b y(s))] dy(s)l "
cosh(bm ) = cosh(b\/ y(O)) + g

D) W) ds |

N=

sinh(6/y(0)) dy(s)|

\/)’(0) ds I.\‘=0

The zeroth harmonic terms are simple exponentials in s, which can be easily expanded
using Taylor series expansions without worrying about branch cuts.
For the state-space realization of Equation 3.28, we can use the controllable

canonical state-space form for a two state approximation:
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0 1 0
-po —p |1
a, q |a
3.39
b, b | b, ( )
Co G |G
d, d, |d,

for the input (B, —w, P

oss1 — Sty ), from Equation 3.28. To complete the inlet
condition approximation, the pressure loss and control feed-through terms of Equation

3.28 must be added.

3.2.3.2 Exit Condition

The exit condition from Section 2.2.5 is used to find transfer functions from
Cre (5), Egi (5),800,(s) and uy,,(s) (when control is applied at the exit) to B, (s).
This is a dual of the inlet conditions. The exit condition can be written in a general vector

form to accommodate both the non-zeroth and the zeroth harmonics:

B
C
T(s)V,, (x,,,5) pl = C. (3.40)

E

K+l

If control is applied in the exit duct at the trailing edge of the last blade row, we can use
the trailing edge boundary condition (Equation 2.35), the actuation equation (Equation

2.50) and the deviation state (Equation 3.11) to yield

B
B,M 0]&,

0 i +J;cl+|bx+|um| =0

T(s)V,M(x“,S)V;.'“(xTEK,s) v;;ml:

- TE
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This can be simplified by defining two additional matrices ( Y and r):

TV gy (X0 )V g (Xpexa )Y 1] =0. (3.41)

ex?

| Ul

For non-zeroth harmonics, the matrix product, T(s)V,,(x,.,5)V s (X7ex,5), is
simply the matrix product, V,, .,,(x.,,5)Vg, (Xz.5), which contains four elements that
can be found in Appendix B. We can now solve Equation 3.41 for B, (s) in a general

form:

?ﬁm
B =_L_[u (5) uy(s) uy(s) u(s)] Erex (3.42)
TEK u”(s) 12 13 14 I5 5(1,( .

L Uk 41

where the elements ,,, are not the same as in the preceding section.

One of the transfer functions for the non-zeroth harmonics, using Appendix B, is

) ' sinh(b+/y(s)
- ) Y2 cosh(bwfy(s))+(")’3z Y(Z—r +jnM,)+ Yar H"M,)%)

rex (5) _
sinh(b\/y_(s—)) '

(3.43)
Vi cosh(b\{y(s)) + (—y,, y(% + jnM, ) + )’ul’inMx) [(s)

Crex(5)

These functions can be expanded as before using Taylor series expansions to lead to a
state-space approximation. One of the transfer functions for the zeroth harmonic, using

Appendix B, is
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Ay T WA
Brex(s) _ _ (e +gy(s)e " +g(s)e " (3.44)
Crex (3) = e, = |
TEK a+V

g.(9)e ™" +g,(s)e V' +g.,(s)e
The dual of the controllable canonical state-space realization, Equation 3.39, is

then used for one output and four inputs of Equation 3.42:

0 -po|a b ¢ 4
Il =pla b ¢ 4 (3.45)
0 -1|-a, -b, -, —d,

where a two state approximation has been shown as an example. These transfer functions

have different poles than the inlet conditions.

3.2.4 Formation of the Model

The separate pieces of the model are now be connected together to form the state-
space matrices. The delayed states, Equation 3.3, and their approximations represented
by Equation 3.6, the lag states, Equations 3.12 and 3.14, and the boundary conditions,
Equation 3.16 can be used to connect the interior of the compressor. The inlet and exit
conditions, Equation 3.28 and 3.42, respectively, and their approximations can then be
used to complete the model. Appendix C gives an example of the intermediate state-
space matrices (of this section) using first order approximations.

First, an output vector will be defined for each blade row and inlet and exit duct.
This is the set of variables which are the result of the delays and the lags for the blade

rows and the outputs of the approximations of the end ducts:

76



B, S
é'TE "'w
- - E
Y. = TE v You T [BTE ]K s YT e "’;:)l (3.46)
P 0SS
o | O+ m5a i
L 6a Jk

where two outputs of the inlet duct are inputs to the pressure loss and deviation lags. The

approximations to Equations 3.3, 3.12, 3.14 and 3.16 can be collected into the form:

x,=Ax, +B,y,, +By +B,y,. +B,u +B,.u,.,
y,=Cx,+D,y, +D,y, +D,.y,,, +D,u, +D,.u,,,

(3.47)
where the state vector x for each blade row contains the Padé states and the lag states.
The equations can be written in this form because the only effects on the states of a
particular blade row are from the states of the adjacent blade rows and the control in the
adjacent gaps. Once the matrices of Equation 3.47 are formed, and similar
representations of the inlet and exit duct equations (Equations 3.28 and 3.42) are

included, the entire system of output equations must be solved simultaneously:

Y X, - A
u,
y: X,
. . u,
D =C +D,| (3.48)
Y« Xx u
y"l" x"“' u K
Lyin n inn B -

where
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[C, 0 0 0 0 O]
0o C, 0 0 0 O
- |0 0 ° 0O 0 O
€=lo 0 0 c, 0o o
o 0 0 0 C, O
|0 0 0 0 0 C,]
[1-D, -D,, 0 0 0 -D,_ ]
-D,. I-D, 0 0 0
B - 0 -D,_,, 0 0
0 0 D.,. I-D, -D,, 0
0 0 0 -D,.. I-D,, 0
| -D,.. 0 0 0 0 I-D, |
(D, D,, 0 0 0 ]
¢ b, D, 0 0
- 0 0 R 0
%=lo o o D D,
0 0 ¢ 0 ot
D, O 0 0 0
The solution to Equation 3.48 is:
y=D"'Cx+D'D,u (3.49)
Now, the differential equation in Equation 3.47 can be resolved:
]
’.‘l X, Y, u,
xf =A xf +B yf +B,| (3.50)
Xx Xx Yk uK
| Uk

where
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A, 0 0 0 0 0]
0 A, 0 0 0 O
. lo o . 0o o o
A=lo 0 0 A, 0 o
0 0 0 0 A, O
0 0 0 0 0 A,
B, B, 0 0 0 B_]
B, B, 0 0 0
N B,, 0 0
B=lo o B,. B, B, 0
o 0 0 B, B, O
B, 0 0 o0 0 B,
B, B,, 0 0 0]
0 B, B, 0 0
_ o o 0
B, = 0 0 0 B, B,,
o o0 0 o0 B,
B, 0 0 o o0
so the solution to Equation 3.50 is
x=(A+BD"C)x+(B, +BD™D, )u. 3.51)

Finally, the measurement outputs are defined to be the static pressure in each gap
inciuding the static pressure at the leading edge of the first blade row and the static
pressure at the trailing edge of the last blade row. This set is a subset of the previous total

output vector:

%P =C,y=C,D'Cx+C,D'D,u (3.52)
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3.3 State-Space Model Including Gaps

3.3.1 Boundary Conditions and Gap Approximations for Non-Zeroth
Harmonics
The gaps are approximated starting with Equation 3.7, using the definitions in

Equations 3.1 and 3.2:

l+st

B,
B,M éu:- =(Vy + 1= POV, (x5 V (xpg_n5) @
LE

/ - \ \
( B,
BTI-IM ?TE
TE k-1
Va Bl [+Ji'bu |. (3.53)
\ C
”ka-lvk-l(xuu-ns) D
L\ Ef.) )
A definition for the deviation state can be written
aak = -%Dk.-uvk(xu‘:vs)v;l(xrﬂ-l's)’
(¢ - \ )
?TE
BTk—IM ?TE
TE -1
v;'ll B +J;'bkuk (3.54)
\ C
_ka-uvk-l(xlﬂ-lvs) D
\ \ E k-1

This can be manipulated into a recursion to yield
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éa, = #D“,V,,(xm-S)VI'(xm-nS) *

f+st

o7 3, |
B, M 0|¢, (3.55)

V3 0 +J:'b.u
Tk ol k “kk
Of Ep

|

=L k-1

A matrix definition will be made to simplify things:

B, M

Y, =V (3.56)

- o O O

Equation 3.53, using the deviation equation (Equation 3.54), and Equation 3.56, becomes

B,
B,M|C,; | =(V, + =PV, (x,5.9V; (X5 .5) @
LE k
'BTE’ ) (3.57)
Y, ?rs +J;lbkuk
TE
Lzsa!-l-l

Equation 3.55, using Equation 3.56, becomes

éa, = '|,'_,.rDk.uvk(xl_a-S)v;l(xrsk-lvs).
B,
- _ (3.58)
Yo €TE +J;'b,y,
TE
_éstz.ak<4
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Similar to the deviation state, Equation 3.58, the pressure loss state is defined as

P, ;Pk.lrvk(‘tlﬂ's)v;l(xTﬂ—l’s).

loss, k = l+sT
- A
By
A . (3.59)
Y, €TE +J.'b,u,
ETE
-5a.“:—-l
Using the definitions:
X,=M'B,V, (3.60)
0
w,=M"'B,,|0 (3.61)
1
Equations 3.57, 3.58 and 3.59 become
- . - -
B, Bres.
LE x* CTEI:-I W,
E. =| P, V(xw,s)V"(xm‘_,,s)[Y‘_l J;lbk] Erg o [*] O [Puss (3.62)
(1 + sr)th D‘_4, 5(1‘,_' 0
_(I+u)5a_‘ | U

This can be rewritten as
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a1 [Be
éw -TEk—l
E, | =Ugs ™' (3.63)

] P Pln.u'.k

(s + T) loss 5a
1 k-1

L (s + 7)5(1 N L u

ko

where each element of the U,(s) matrix is a linear combination of elements of
V,(x,5,5)V;' (X75_,,5) which are expanded in Appendix B, except for the terms

multiplying P, ,. Equation 3.63 will be manipulated to solve for the variables which are

inputs to the blade row Padé approximations and lags:

- (B |
B | b
é -TEk—I
~LE‘ ETEi-I
E. =Hu.k(-")i p (3.64)
(s %)P{,m'k 5ln.u.k
(“%)6‘1‘ ak-l i
| | jJ. u |

where
(-1 0 0 0 O-! wu, wuy w, us ug]
| —uy wy 0 0 0Of0 wy uy wy Uy Uy
HU.k(s)=u_ —ty, 0wy 0 OJO0 uy wuy wy Uy Uy|  (3.65)
"[-uy 0 0wy, OO0 uy uy 0wy i
|-u;, 0 0 O |0 uy, ug 0wy uy

The elements ., are not the same as those of Section 3.2.3.1. Equation 3.64 can be

written in the form:
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By = fo(Bige = Wi Progs i Cras TEk"sak-l'uk)

Ciav = [o(Big, = Wy, P i Crees TEk’aak—l'uk )+ Wy P

ELEI: = fe(BLEk - wll’)lmx.k’éTEk’ rEk"Sak-lv“k)'*' wy, P,

loss .k

(3.66)
o+ lr)th.k = fp(BLEk - wlIPln.r.f.k‘CTEk’ETEk’aak-l’uk)
(s + lﬁ‘sak = fa(BIEk - wlIPlo.tx,k’éTEk'Erﬂ'aak'“u")

This is a five input-five output system. From Equation 3.65 we can see that the transfer

function denominators are the upper left element of U, (s), and the numerators are either
linear combinations of elements or linear combinations of two element products of
U, (s). As was stated before, the elements of U, (s) (defined in Equation 3.62) are linear

combinations of elements of V,(x,,,,5)V; (x5_,,5) Which are expanded in Appendix B.

Each of these elements can be approximated by Tayior series expansions. When products
of elements occur in the numerator of these transfer functions, the individual Taylor
series expansions are simply multiplied to get the approximation. As for the pressure loss
state and the deviation state, the resulting transfer function is fed directly into the lag
state.

Some of the elements in Appendix B.1 (the non-zeroth harmonics) have
frequency dependent denominators which arise from the matrix inverse. This
denomirator contains an unstable zero which must cancel out in each case, since the duct
is not a physically unstable system by itself. The zeros can be removed by taking the
Taylor series in the axial coordinate term, b (see Equation 3.35). The (3,1) element will

be used as an example. If we take the (3,1) element and rearrange, we get

rn’M, cosh(b«/}(?) )

; h r .

V(x,)V(x;) an = Ws()sz—nzr —(ba—r +jnM0)\/y(s) smh(b\/y(s)) > 3.67)
_(.tr/u+jnMa)h
-n’Me M

x J
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In this notation, it is not clear how the denominator function y(s)-— n? is canceled. The
bracketed term is a function of Ax, or b, and doesn't have the denominator as a factor.
The motivation for the Taylor series in b is simply to have terms with separate
dependence on b and s. So, if we expand the bracketed terms in b, then we will see the

cancellation:

1

( 1
M (l+— b’ +
mM |1ty

¥ (s)b’ +)

LC) N NPLIANY ( LI PRVE IR *)
y(y(s)—nz) (u + jnM,) y(s)b+6y (s)b” + y (s)b'+

V(x, )V(x;)  an = 120

—n? - l 2 2_1 A 3 _l_ 400 4)
nM,(l ¢(s)b+2¢(s)b 6¢(s)b +24¢(.s)b |

\

(3.68)

where

srl/a+ jnM,
—

x

o(s)= (3.69)

In Equation 3.68, we see that each term of each series has a function of s multiplying a
function of b, the desired separation. Combining terms of similar order of b, and doing

some algebraic reduction, we get
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-(s;'-+ jnM,)( ¥(s)—n?)b
n*(1- M?) b
o Or)g
sr
—+ jnM 2
- h(s) ( ") sr . 4
V(IL)V(IT) |(fl.l) = y(y(s()—nz) -~a ME [M}(:'i']nMo) —nz(l—M,z-) ].}
b.'i
— 2 —
(y(s)-n?) =
+
J

where we now see the cancellation of y(s)—n’ term by term. This allows us to expand
all the terms of the matrix product V(x,)V(x, )™ in Taylor series expansions of s without

denominator terms.

3.3.2 Boundary Conditions and Gap Approximations for the Zeroth
Harmonic

For the zeroth harmonic, we can directly approximate the dynamics in the gap
because there is no problem with branch cuts. The solution is in the form of time delays.

Therefore, we will start with some definitions in the gap:

B, (s) = B(s)e™""
Cpz(s) = C(s)eP )
D, (s) = D(s)e¥""u
E, (s)= E(s)e""™

3.7

and similarly
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B,.(s) = B(s)e™""*
Crel(s) = C(s)eP
D, (s) = D(s)e*'""
E ¢(s) = E(s)e*™

(3.72)

The relations between Equations 3.71 and 3.72 become

B (s)= e B, (s)
C(s)= e e C, (5)
D(s)= e Dy (s)

E (s)=e "™ E(s)

(3.73)

where the time delays are

(3.74)

The right hand side of Equation 3.73 will be the 'inputs' to the gap solutions and the left
hand side will be the 'outputs’. The leading edge boundary condition, Equation 2.34,

using Equation 3.71 is

B, N
B
] CLE "LE
(Vi +,=P)G, b | =BuM|Cp (3.75)
” -
E,
E;|, LE &

where M is defined in Equation 3.10, and G is the analogous matrix for the gaps:
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[_z_ Y 50|
1-M, |+M,
LI B
G, =l 1-M, 1+M, (3.76)
.___I_ ! 00
1-M, 1+M,
0 0 I 0
The pressure loss state is defined, to remove the s-dependence in 3.75, as
_BLE_
C
Pust =P Gl (3.77)
LE
E;|
The deviation state will be defined similarly as
_ B
C
éa, = -T{.I,g—kaAer “ (3.78)
Dy
E; |
so Equation 3.75 with 3.77 and 3.78 can be rewritten as
r 01 - BLE - [~ BIE I
V,G, 0|C.| [BM 0 0] C_
(D= 0 1 of E, (3.79)
erk.]er O ELE 0 0 l_ (s + 'li')Plu.\'.\’
_ll'D“A’Gk 0_ _Plu.u_k | (s + —;)50 ]

This constant transformation can be manipulated to solve for the 'inputs' of the blade row,

the gap and the lags:
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B, B
éus C
Ey | =Kl Dy, (3.80)
(s+ l,’le E,
E lr)8a I} P,

The trailing edge boundary condition, Equation 2.35, can be written using
Equation 3.72, the definitions for M and G (Equations 3.10 and 3.75), and the actuation

relation, Equation 2.50, (for actuation at the trailing edge) as

Br B B,
~ £ -1 CTE 1 CLE
B.MC, |+ bt =V5naGia D +—=D,G, D (3.81)
= TE LE
TE |, ETE ol ELE A

The deviation state defined in Equation 3.78 removes the s-dependence in Equation 3.81

to yield

F o~

0 1= B,;

-1 CTEk C
BM 0 J.b,. | -
" 0 e TEK = V56 DTE (3.82)

S TE

1 . * ETE k+1
| U

This constant transformation can also be manipulated to solve for the 'inputs' to the blade

row and the gap:
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[ =~ A ’—BIEI:H
CBm ol
T =K | Era || (3.83)
DTEHI aak
LETEkﬂ_ L uk+|

Equation 3.73 defines the transfer functions within a gap for the zeroth harmonic. These
will be approximated like the blade row solutions with Padé approximations. Equations
3.77 and 3.81 define the pressure loss and deviation lag states within the blade row.
Equations 3.79 and 3.83 define how these states connect with the adjacent blade row

states.

3.3.3 Formation of the Model for Non-Zeroth Harmonics

The separate pieces of the non-zeroth harmonic model will now be connected
together to form the state-space matrices. The approximated ecuations (also repeated in
Appendix C) are the blade row solutions, Equations 3.3, the end conditions, Equations
3.28 and 3.42, and the gap approximations (including lag states), Equation 3.64.

Similar to the model without gaps, a solution will be sought in the form of
Equation 3.47, except with a larger set of states and outputs for each blade row. An
example of all of the intermediate state-space matrices (of this section) is given in

Appendix C. The gap states will be added to the previous blade row states:
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- BLE 7
Cre
-TE
N [ G ]
da B bu
y, = Ers v You = [BTE ]x L 0+ -"l’-;)lm.\
Ce | aesnda |, G5
Ey
a+ um.u
KE nda Ji

The same procedure as without the gaps is then followed to get the state-space matrices.

3.3.4 Formation of the Model for the Zeroth Harmonic

The separate pieces of the zeroth harmonic model will now be connected together
to form the state-space matrices. The approximated equations (also repeated in Appendix
C) are: the blade row solutions, Equation 3.3, the end conditions, Equations 3.28 and
3.42, the gap solutions, Equation 3.73, the lag states, Equations 3.77 and 3.78, and the
boundary conditions, Equations 3.80 and 3.83.

Similar to the model for non-zeroth harmonics, a solution will be sought in the
form of Equation 3.47, except with a larger set of states and outputs for each blade row.
An example of all of the intermediate state-space matrices (of this section) is given in

Appendix C. The gap states will be added to the previous blade row states:
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S

w

(l+ ‘”le.\ (385)
3 -+ m5a Ny

The same procedure as without the gaps i> then followed to get the state-space matrices.

3.4 Validation of the Approximate Models

Two models have been derived for approximating the analytical input-output
model of Chapter 2. The first model, assuming no gap dynamics, is expected to result in
a smaller, but less accurate model than the second including gap dynamics. In fact, the
model including the gap dynamics should match the analytical model perfectly at zero
frequency and lose accuracy slowly at higher frequencies, since all of the dynamics are

approximated and all the approximations are expanded about s=0.

3.4.1 Compressor Geometry and Data

The compressor to be modeled throughout this thesis is a 3 stage high speed axial
compressor with a row of inlet guide vanes (IGVs), such as shown in Figure 2.1. The
correlations and geometry were supplied by the manufacturer, ar.d a mean-line prediction
code was used to get the steady state flow conditions in each blade row and gap (i.c.
mean pressures, velocities, etc.). The inlet and exit duct lengths were not known, so these

were chosen to be lengths of .3 times the radius of the compressor. The plenum geometry

downstream of the compressor was not known, either, so a value of V,,_/m_ =.5 was

plen

assumed.
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As the flow coefficient, ¢, is decreased at 100% design speed, the first harmonic
to reach neutral stability is n=1 at a frequency of about 40% of the rotor frequency, Q.
The next harmonics to reach neutral stability are the zeroth, then the second and third,
etc. The first higher frequency modes to reach neutral stability are a pair of modes of the

zeroth harmonic, which reach neutral stability before any of the third harmonic modes.

3.4.2 Order of Approximation for Different Length Elements

The 'incompressible’ rotating stall mode for the first harmonic has a frequency less
than the rotor frequency, Q. Similarly, the higher harmonics usually have frequencies on
the order of n times the frequency of the first harmonic. If it is desired to control the first
three harmonics, then the approximate model should have small errors below three times
the rotor frequency. If the entire model needs a specific accuracy, then certainly each
element should retain that accuracy. An example for each type of element, blade row,
inter-blade row gap, and exit duct, will be given to examine the required order of
approximation.

In the blade row solution, there are three separate delays which need to be
approximated. The longest delay is the entropy mode since it travels with the fluid
velocity. The pressure modes travel at the sound velocity plus or minus the fluid
velocity, hence the associated delays are shorter. The longest delay, which incorporates
the longest blade length with the slowest velocity, in the 100% design speed case at flow
coefficient of .4506 is .52 when normalized to the rotor speed, Q. Figure 3.1 shows a
comparison of phases for different order Padé approximations versus the pure time delay.
It is clear that in the frequency range less than four times the rotor frequency, a second
order approximation is sufficient, yielding only a few degrees of error for this worst case
delay, with the error growing to 75 degrees at 10QQ.

In the exit duct, the order of approximation will depend heavily on the length of

the duct. In the absence of information about the true compressor geometry, a length of
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.3 times the radius was chosen. There are a number of transfer functions related to the
exit duct, all with the same poles. Figure 3.2 shows one of these transfer functions
compared with different orders of Taylor series approximations for numerator and
denominator. In this case, a third order approximation may be sufficient, but a fourth
order approximation is clearly better at frequencies up to &2, so it will be used. Figure
3.3 shows the same transfer functions when the length of the duct is assumed to be equal
to the radius. The fourth order approximation is only good up to about 2.5€2, which
steadily gets worse as the duct length is increased.

Each gap, like the end ducts, is modeled with a number of transfer functions all
having the same poles. The gaps differ in length, so Figure 3.4 shows one of these
transfer functions versus different order approximations in the longest gap. The
magnitudes of a constant approximation and the first order approximation are both fairly
good, with about .2 dB in error at 10€2, but the phase of the constant approximation is off

by 5 degrees at 32, while the first order approximation is nearly perfect up to 10Q. The

first order approximation will be used in the model including the gaps.

3.4.3 Eigenvalue Comparisons

One of the potential application of the approximate model is to compute
eigenvalues of the compressor to determine the neutral stability operating point. Using
the orders of approximation from the preceding section, the eigenvalues of the system can
be computed as the eigenvalues of the state matrix for the approximate model, or at the
zeros of the eigenvalue equation, Equation 2.49, of the truth model. Finding the zeros of
the eigenvalue equation requires a numerical procedure which has difficulties away from
the frequency axis of the s-domain. For this reason, the comparisons to follow will only
examine eigenvalues near the s-domain frequency axis.

The model without gaps is compared against the analytical, or 'truth’, model in

Figures 3.5, 3.6, and 3.7 for the zeroth, first and second harmonics. This shows good
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Figure 3.1 - Phases of pure delay (solid) and first (dash-dotted) and
second (dashed) order Padé approximations.
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Figure 3.2 - Magnitude and phase of truth model (solid) exit duct transfer function

and third (dash-dotted) and fourth (dashed) order approximations for Ax ,=3r.
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is a pole near neutral stability. These errors validate the use of control systems based on

this model for application to the truth model.
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is a pole near neutral stability. These errors validate the use of control systems based on

this model for application to the truth model.

98



Plant Eigenvalues ($=0.4506,n=0)
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Figure 3.5 - Eigenvalue comparison between truth model (X) and approximate model (+),
n=0, no gap approximation.

Plant Eigenvalues (¢=0.4506,n=1)
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Figure 3.6 - Eigenvalue comparison between truth model (x) and approximate model (+),
n=1, no gap approximation.
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Plant Eigenvalues (¢=0.4506,n=2)
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Figure 3.7 - Eigenvalue comparison between truth model (Xx) and approximate model (+),
n=2, no gap approximation.
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Figure 3.8 - Eigenvalue comparison between truth model (X) and approximate model (+),
n=0, gap approximation.
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Plant Eigenvalues (¢=0.4506,n=1)
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Figure 3.9 - Eigenvalue comparison between truth model (x) and approximate model (+),

Imag (Normalized by Q)

n=1, gap approximation.
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Figure 3.10 - Eigenvalue comparison between truth model (x) and approximate model

(+), n=2, gap approximation.
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Plant Bode Plot (¢=0.4506,n=0,ka=2,ks=1)
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Figure 3.11 - Open-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=0, no gap approximation.
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Figure 3.12 - Open-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=1, no gap approximation.
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Plant Bode Plot (¢=0.4506,n=2 ka=2,ks=1)
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Figure 3.13 - Open-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=2, no gap approximation.
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Figure 3.14 - Gpen-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=0, gap approximation.
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Plant Bode Plot ($=0.4506,n=1,ka=2,ks=1)
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Figure 3.15 - Open-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=1, gap approximation.
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Figure 3.16 - Open-loop frequency response comparison between truth model (solid) and
approximate model (dashed), n=2, gap approximation.
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Chapter 4

Control Law Specifications and Design
Methodologies

This chapter develops frequency domain specifications for a control system
design and associated mean-square performance measures. These are described in
Section 4.1. Two different control system design methodologies are presented to
accomplish these goals: the Linear Quadratic-Gaussian (LQG) design technique
(described in Section 4.2), which can be used to minimize a mean-square cost function,
but will be modified to try to satisfy the frequency domain specifications; and the H.,
design technique (described in Section 4.3), which can be used directly to satisfy the
specifications (if they are feasible for a configuration), but has no provision for
minimizing mean-square costs.

These two design techniques are applied to single-input/single-output systems in
Chapter 5 to find the 'best’ control corfiguration in terms of minimum cost functions and
minimum flow coefficients at which the specifications can still be met. The

configurations to be tested are sensor and actuator placement and types.

4.1 Design Specifications and Cost Functions
There are two types of specifications which the control system design will have to
meet. The first type is frequency domain bounds on the complementary sensitivity and

the sensitivity transfer functions, described in Sections 4.1.1 and 4.1.2, respectively. A
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controller meeting these specifications will have robustness to high frequency errors, such
as model errors, insensitivity to noise at the rotor frequency, and guaranteed gain and
phase margins from classical control theory.

The second type of specification, described in Section 4.1.3, and perhaps the most
difficult for which to account, is robustness to operating point changes. The range of
operating points contains both stable and unstable plants, so specifying bounds on the
system to account for this is not an easy proposition. Forturately, experience in
designing compensators has shown that many control configurations are 'naturally’ robust
to operating point changes in the following way: if a control law is designed for a
particular unstable operating point, then the system will remain stable for any more stable
operating point (i.e. a higher flow coefficient) than the designed point. This feature of
many configurations is the motivation for designing a compensator at the lowest possible
flow coefficient for which the frequency domain specifications can still be met. This
robustness will have to be examined on a case by case basis. If a configuration is not
naturally robust to operating point changes, then ad-hoc bounds can be used to try to
improve robustness.

The cost function to be minimized, described in Section 4.1.4, is the mean-
squared sum of the static pressure perturbations in each inter-blade row gap and duct.
Another factor affecting the configuration selection is the mean-squared actuator activity.
Driving these functions is measurement noise, which is white, and process noise, which is

white except for a spike at the rotor frequency, €.

4.1.1 Complementary Sensitivity Bounds
This section develops a frequency domain bound on the complementary

sensitivity function that the compensator must satisfy. First, a general form of an H_
complementary sensitivity constraint is given, then a particular function is chosen as a

specification.
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The specification on the complementary sensitivity function is the closed-loop
bandwidth. The bandwidth of the system is commonly defined as the highest frequency
where the complementary sensitivity function is equal to -3 dB. Although there are many
reasons to desire a high bandwidth, it is desired to have the bandwidth of the system
limited for practical purposes. One such reason to have the bandwidth limited is
modeling error at high frequencies. A reduced order compensator will be implemented in
practice, so it is desired for the system to have small response at higher frequencies so
that a low-order compensator model can accurately represent the full order compensator.
A second reason is the impact of sensor and actuator dynamics. If particalar sensors and
actuators are under consideration for use in active control, then their dynamics will
impact the closed-loop behavior of the system. Sensor and actuator dynamics are not
modeled in the present study, but their effect can be minimized if the bandwidth of the
system is kept below the frequency of all sensor and actuator dynamics.

The general bandwidth constraint can be specified as follows: for a particular

cross-over @, and a 20 dB/decade roll-off, yielding a bandwidth of 1.4 @, , the bound on

the complementary sensitivity can be expressed as

<1 Vo 4.1

o
= cjw)
(/)]

c

where the complementary sensitivity, C(s), is defined in terms of the plant, G(s), and the

compensator, K(s):

G(s)K(s)

Cs)y=——"—.
1+ G(s)K(s)

4.2)

Equation 4.1 is equivalent to the H_-norm constraint:
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Iw.ql. <1 @4.3)

where the weighting function, W,(s), will be defined as the complementary sensitivity
weighting function.

The specified bandwidth must be chosen high enough to allow stabilization of all
the spatial Fourier harmonics of interest. The highest harmonic to be considered is the -
third harmonic, which has a rotating stall frequency of about 1.1Q. Therefore, a cross-

over of 2Q should be adequate. The weighting function, W,(s), therefore becomes

s/2Q
W)= 57 1000) @9

with a high frequency pole included to make the transfer function proper. If robustness to
operating point changes (described in Section 4.1.3) is included as a complementary

sensitivity constraint, then W,(s) will still have this cross-over frequency, but its low

frequency characteristics will be modified.

4.1.2 Sensitivity Bounds

This section will develop a frequency domain bound on the sensitivity function
that the compensator must satisfy. First, some limits on this bound will be described to
motivate the idea that not any sensitivity weighting function can be satisfied by any plant.
Next, the relation between sensitivity and gain and phase margins will be described, and a
specification will be chosen based on these ideas.

The magnitude of the sensitivity transfer function

1

S0 = T GRe) @

108



is the inverse of the distance from the critical point of the Nyquist plot. So, the desire to
keep the distance from the critical point large translates into keeping the sensitivity small.
For example, if the sensitivity is always less than 2, then the Nyquist contour will always
remain at least .5 away from the critical point. The margin specified must be based upon

practical design considerations.

4.1.2.1 Limits to Achievable Sensitivity

The first limit on sensitivity arises from its relation to the complementary

sensitivity function. As a result of the relation

C(s)+S(s)=1, 4.6)

when one function approaches zero, then the other must approach unity. For instance,
beyond the bandwidth of the system defined in Section 4.1.1, the complementary
sensitivity approaches zero and, from Equation 4.6, the sensitivity must approach unity.
Therefore, the sensitivity cannot be constrained to be less than unity for frequencies that
are well beyond the bandwidth.

Other restrictions on the sensitivity weighting function are dependent on the

characteristics of the plant [22]. For example, if the specifications on the sensitivity is

[w,s]. <1 .7

where W,(s) is defined as the sensitivity weighting function, then an upper bound on the

weighting function for a plant with a non-minimum phase zero at z, is

W, i2)|<|w,S], <1. (4.8)
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This restricts how far the sensitivity function can be reduced at frequencies near the non-
minimum phase zero. Furthermore, if the plant has an unstabie pole at p and a non-

minimum phase zero at z, an upper bound on the weighting function is

i-p
z+p

W, ()| < W3] < 4.9)

When the pole and zero are close to each other, this severely restricts how far the
sensitivity function can be reduced at frequencies near the non-minimum phase zero.

As the operating point changes, the pole and zero locations will change, so the
restrictions on the sensitivity function will change. For instance, at a particular unstable
flow coefficient, it may not be possible to meet the specified sensitivity bound; increasing
the flow coefficient (toward the stable regime) tends to relax Equation 4.9 such that the

bound will eventually be able to be satisfied.

4.1.2.2 Gain and Phase Margin Concepts

In classical control, the gain and phase margin of the design are typically
specified. Graphically, these margins are shown in Figure 4.1. The gain margins are
stated as the inverse of the gain when the phase is 180 degrees. When expressed in dB,
the upper gain margin, g, is positive and the lower gain margin, g,, is negative. These
gain margins correspond to how much the system gain can vary in magnitude before the
system becomes unstable - the upper gain margin placing an upper limit, and the lower
gain margin placing a lower limit. For an unstable system, the critical point, -1, must be
encircled at least once, so there are both upper and lower gain margins. For stable
systems, the critical point is not encircled, so there usually only exists an upper gain
margin. The phase margin, 6, is the difference in phase from 180 degrees of the
Nyquist plot when the magnitude is equal to unity. Typical gain and phase margins are 6

dB and 40 degrees, respectively. An upper gain margin of 6 dB translates into a distance
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s-domain

Figure 4.1 - Gain and phase margins on a complex Nyquist plot.

away from the critical point of about .5. If the sensitivity is bounded less than 2, this
gives an upper gain margin of 6 dB, a lower gain margin of -3.5 dB and a phase margin

of 28.9 degrees. The weighting is

1
W(s)=>. 4.10)

These margins are lower limits for typica! designs, but will be adequate for the present

design study.

4.1.3 Robustness to Operating Point Changes

This section will first present the general construction of an H_ constraint for a
nominal model with a multiplicative perturbation in the frequency domain. Then, the
'truth’ modei will be examined at different flow coefficients using different sensor and
actuator locations to understand why this type of robustness is difficult to specify and

also why some configurations are naturally robust to operating point changes. For the
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cases without this natural stability robustness, part of the frequency domain bounds
described may be of use.

The main characteristic of operating point changes is the movement of the
incompressible rotating stall mode between the stable and unstable regimes. Other
factors, though, include the movement of the zeros of particular transfer functions. If a
zero is near the rotating stall mode, then the configuration tends to have worse robustness

to operating point changes.

First, some notation will be introduced. Let G, (s) represent the nominal system
used for design purposes, and G,(s) represent the actual plant. The relation between the

two can be expressed as a multiplicative error:

G,(5) =G, (s)(1+ A(s)W,(s)) @.11)

where A(s) has unity magnitude with arbitrary phase and W,(s) represents the

magnitude of the error between plants. Rearranging Equation 4.11 yields

|W2(S)|=

Ga(s) _

This relation between the nominal and the actual plant model can be formulated into

restrictions on the complementary sensitivity transfer function [22]:

Iw.C|_ <1. 4.13)

This is actually a result of the small gain theorem stating that, if the nominal closed-loop
system and weighting function are stable, then a feedback loop with a stable A(s) having

an H_ norm less than unity is guaranteed to be stable, if Equation 4.13 is satisfied. This

is shown in block diagram form in Figure 4.2.
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Figure 4.2 - Block diagram of small gain theorem.

Table 4.1 - Model data for operating point changes study.

| Harmonic 1

Flow Coefficient 4506-.4721

Rotor Speed 100% of design speed
Measurement OF/P

Jet Velocity 2 * gap mean axial velocity

Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

For the cases without natural stability robustness, as describe in the introduction
to Section 4.1, it is necessary to obtzin some theoretical data on how the plant changes
when the operating point is changed. The nominal conditions are described in Table 4.1.
Since some configurations will have natural robustness to increases in the flow
coefficient, the design point will be the lowest flow coefficient, ¢, which can satisfy the
constraints. Therefore, Equation 4.12 needs to be examined using the nominal plant

defined at the design point, and actual plants defined at higher flow coefficients. Four
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separate sensor/actuator pairs will be examined, (k,, k) = (2,1), (2,8), (8,3), and (5,6),
using the numbering scheme of Figure 2.1.

First, Figures 4.3 and 4.4 show the open-loop transfer functions for a particular
sensor/actuator pair (k,, k) = (2,1) for 2 stable, 2 unstable, and 1 near neutrally stable
operating points. Figure 4.3 shows the positive frequency magnitudes and phases, while
Figure 4.4 shows the negative frequency magnitudes and phases. These give an idea of
how the plant differs for different flow coefficients. In terms of the Nyquist diagram, a
compensator designed at an unstable flow coefficient will have one loop around the
critical point as shown in Figure 4.1. Generally, the rotating stall frequency (the lowest
positive frequency eigenvalue) will correspond to the point on the diagram labeled the
lower gain margin. As the flow coefficient is increased, this loop tends to expand
(following the increases in magnitude in Figure 4.3), increasing the distance from the
critical point, hence decreasing the sensitivity. As the neutral stability point is crossed,
the Nyquist diagram 'flips' to the right hand side of Figure 4.1, thereby decreasing the
sensitivity. However, the point on the diagram of Figure 4.1 labeled the upper gain
margin may also increase in magnitude, thus decreasing the sensitivity. The control
configurations which display a decrease in sensitivity over all frequencies as the flow
coefficient is increased are said to have 'natural’ stability robustness to operating point
changes, while others may only have increases in sensitivity near the frequency of the
upper gain margin, and still others may exhibit worse behavior.

Figures 4.5-4.8 show |G, (jw)/ G, (jw) - 1| for four different sensor/actuator pair
locations for a nominal case of ¢=.4506 and the actual case of ¢=.4721. If a transfer
function, W,(s), is fit to the figures, then the constraint (Equation 4.13) can be used in a
design procedure. However, this bound is conservative since the phase of the
multiplicative error is not arbitrary. Indeed, at the rotating stall frequency, these bounds
would require the complementary sensitivity function to approach zero. This is clearly

not necessary since, if the phase of the open-loop system is 180 degrees at this frequency,
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then increasing the flow coefficient would move the Nyquist contour away from the
critical point - not towards it. Having said this, one expects worse robustness properties
from sensor/actuator pair ( k,, k.) = (2,8) shown in Figure 4.6, because it shows a higher
magnitude at low frequencies than the others. Examining further deviations in flow
coefficient, Figures 4.9 and 4.10 show the two pairs (k,, k) = (2,1), (2,8) for the same
nominal flow coefficient, but an actual case of ¢=.4935, which is 4.9% greater than the
neutral stability point. The case of ( k,, k,) = (2,8) again shows a higher magnitude at low
frequencies which is expected to cause poor stability robustness to operating point

changes.

4.1.4 State and Control Cost Functions

The two cost functions of the system, to be ;lsed for evaluating control
configurations, will be a state cost and a control cost. The state cost is the ultimate
objective to keep small, but not at the expense of unacceptably large actuator activity.

The state cost function will be the sum of the mean-square static pressure
perturbations, 8P/P, in each of the inter-blade row gaps and ducts. The reason for this
choice is that, if the static pressure perturbations are kept small, then the velocity
perturbations are also kept small. Keeping perturbations small helps to avoid non-linear
effects. The plant to which the state cost is applied will be driven by process noise and
measurement noise as described below. Similarly, the mean-squared control activity,
S/ , required to control the plant will be defined as the control cost.

Driving the mean square states are process noise and sensor noise. Little data are
available for process and sensor noise, but process noise is expected to dominate the
measurement. The dominant frequency of the process noise affecting compressors is at
the rotor frequency, due to various imperfections (asymmetries) in the compressor. It is
desired to keep the response of the control system small at the rotor frequency so that

unnecessary effort is not expended trying to reduce these disturbances. In the operating
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Figure 4.3 - Open-loop positive frequency response plots for unstable [ ¢=.4506

(solid),¢=.461 (dashed)] and stable [¢=.4713 (dash-dotted), ¢=.4816 (solid-plus),p=.4919
(dashed-plus)] flow coefficients.
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Figure 4.4 - Open-loop negative frequency response plots for unstable { ¢=.4506

(solid),¢=.461 (dashed)] and stable [¢=.4713 (dash-dotted), ¢=.4816 (solid-plus),¢=.4919
(dashed-plus)] flow coefficients.
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Figure 4.5 - Positive and negative frequency magnitude responses of G, /Gy —1
(k,,k)=(2,1), ¢,=4506, ¢,=4721.
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Figure 4.6 - Positive and negative frequency magnitude responses of G, /Gy -1
(k,.k,)=(28), ¢,=4506, ¢,=4721.
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Figure 4.7 - Positive and negative frequency magnitude responses of G, /G, — 1
(k,, k) =(56), ¢,=4506, ¢,=4721.
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Figure 4.8 - Positive and negative frequency magnitude responses of G, /G, —1
(k,.k)=(8,3), ¢,=4506, ¢,=4721.

118



GAa/Gn-1 (n=1,ka=2,ks=1)

Pos. Freq. Magnitude (dB)

4
o
f

o
o
T

10" 10° 10'
Frequency (Normalized by Q)

Neg. Freq. Magnitude (dB}

-
o.
N

Figure 4.9 - Positive and negative frequency magnitude responses of G, /Gy —1
(k,,k)=(2,1), ¢,=.4506, ¢,=4935.
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range which is being exarnined, in this compressor, and for the first harmonic, all of the
eigenvalues are stable, except for the rotating stall mode which appears at a frequency
less than the rotor frequency. Thus, it is possible for the compensator to reduce the
sensitivity to noise at the rotor frequency without affecting stability properties of the
system. Other compressors may exhibit dominant eigenvalues at or near the rotor
frequency. For instance, the third harmonic has a dominant eigenvalue near the rotor
frequency. In this case, there is a conflict between keeping the noise response low and
keeping the gain high for stability robustness at the rotor frequency. This is certainly an
undesirable situation which may not have a good solution.

Anticipating the H_ robust design, the rotor frequency noise can be incorporated
into the design procedure by placing a spike in the weighting of the complementary
sensitivity function at the rotor frequency. This will cause the compensator to have a

notch at that frequency. The weighting function becomes

L s+(.001-jQ)
W2 9= < Coooor— e 2 (4.14)

for a spike of 40 dB.

The cost functions will be calculated using a system driven by a process noise of
unity magnitude with a spike of 40 dB at the rotor frequency in each pressure loss state.
In other words, the process noise is a white process noise of unity intensity fed through a
'spike’ filter. The sensor noise will be white with an intensity of 0.01, since it is expected
to have less of an effect on the measurement. A few definitions will be made before the

cost functions can be calculated. First the system is defined as

x = Fx + Gu + Pw

4,
y = Hx + Du + v @.15)
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where the state representing the spike has been appended to the state vector, and the

process noise feeds into that state. The compensator, with negative feedback, is defined

as

z = Fz + Gy 6
4.1
u = -Hez ( )

The state space model from the noise inputs to the states is then
X F -GH, X N P 0w F X G w a7
= = + .
i| |GH F,-GDH, |z]| [0 G |v| “|z] ‘v @1

If an output vector is defined to be the set of static pressure perturbations in each gap and

duct:

X
y= H‘[z] 4.18)

then using the solution of the Lyapunov equation

FL+LF'+GG/=0 (4.19)

the sum of the mean-square outputs, the state cost, is [22]

J,=TrH LH/] (4.20)

Similarly, the control cost is the mean-square control activity:
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J,=T "
,=Tr|[0 -H] _ 4.21)

4.2 Performance Design Methodology

This section will specify a cost function for the compensator to minimize. It will
not be exactly the cost functions described in Section 4.1.4, but it will be related. The
Linear Quadratic-Gaussian (LQG) design technique will be used for the design
procedure.

The LQG design technique optimizes the mean-square of the states and the
control action under specified noise inputs [23]. If the weights of the cost function and
noise input parameters (defined below) are fixed in advance, then the resulting minimum
cost index can be used to compare control configurations, with lower costs being better.
These costs will be derived at only one flow coefficient, but it is likely that a
sensor/actuator pair with the lowest cost among all configurations at the flow coefficient
will have a low cost at different flow coefficients (this will be examined in Chapter 5). In
the present case, this means that the best sensor/actuator location, in terms of LQG cost,
can be found by examining the LQG costs at one flow coefficient for each sensor/actuator
pair location. This technique is easier than that used for H_ designs, which requires
performing designs at multiple flow coefficients, as will be seen in Section 4.3.

The LQG optimal control assumptions and solution will be reviewed in Section
4.2.1. The number of free parameters in the LQG design procedure will be reduced by
making assumptions on the cost index and the noise sources in Section 4.2.2. Section

4.2.3 will present a study to determine the free parameters in the LQG design procedure.

4.2.1 Review of Linear Quadratic-Gaussian (LQG) Design and Cost
Definition
The LQG optimal control design procedure operates on a linear system of the

form:
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Fx + Gu + w
y = Hx + Du + v

.
il

4.22)

using the notation of Bryson and Ho [23], where w and v are white noise with intensities
wOlow o a gl QO TO].
E{[ o) ][w ) v (:,)]} = [ () R(:)]‘s(' t) (4.23)

and where E is the expectation operator, & is the delta function and H denotes the
complex conjugate transpose. The cost function to optimize is quadratic in the states and

the control:

el 1t wrn] AO NOTXO
J=E _— J [x“() u (')][N”(x) B(t)][u(t)]dt : (4.24)

In the present case, ali of the matrices are constant, and the statistical steady state solution
is desired. The minimization [23] involves solving two Ricatti equations, the control and

filter Ricatti equations:

$=-SF-F"S+(SG+N)B"'(G"S+N")-A

4.25
P=FP+PF'-(PH" +T)R"'(HP+T")+Q (4.25)

The minimized cost is

JL [SQ+(SG +N)B~'(G"S + N")P|dr -4.26)

Iy

minJ ,; =Tr ;S(to)x(to)"‘ !
t =ty t,— 1
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where T is the trace operator. The steady state cost, referred to here as the '‘LQG' cost,

can be found by letting t, — oo in Equation 4.26, resulting in:

min Ji; = Tr{SQ+(SG + N)B'(G"S + N“)p} 4.27)

4.2.2 Free Parameter Reduction

Now that the solution of the LQG problem has been stated, free parameters in the
procedure must be chosen. The weights in the cost function, Equation 4.24, and the noise
intensities in Equation 4.23 can be viewed as design parameters which can be chosen to
shape the frequency response to meet the specifications of Section 4.1.

To penalize the complementary sensitivity function at frequencies greater than the
desired bandwidth, the measurement noise can be modeled to be significant at
frequencies higher than the bandwidth. Since the transfer function from the sensor noise
to the states is related to the complementary sensitivity function, the complementary
sensitivity will be penalized for being large at frequencies greater than the desired
bandwidth. To achieve this, the measurement noise is chosen to be 'colored' with a first
order filter whose white noise input is uncorrelated with the process noise. The shape of
the filter has a low frequency level of 0.1 (corresponding to the 0.01 intensity of the
sensor noise of the cost functions in Section 4.1.4) with increasing gain beyond the
desired bandwidth of the system.

To achieve an insensitive response to process noise at the rotor frequency, a first
order filter can be used to color the process noise. In compressors, there is really only
one source of rotor frequency noise, the rotor itself, so only one noise term will be fed
into all the different blade rows. This approach avoids redundant states. The
disadvantage of this is that all of the phases of the noise entering each blade row are the
same, but this is not expected to be important. The compensator will simply contain a

zero at the rotor frequency to cancel this noise.
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For example, if the process noise filter is

(4.28)

G.(s) = s+(.001 —jQ')
s + (.000001 - j€2)

and the measurement noise filter is

G (5= 8120+

(s)= (4.29)
ST 145/100Q

with state-space representations

G F, |G G F. |G. 4.30
"._H,. D’. x‘H‘ D, 4.30)

then the state-space system becomes

x] [F pH.L o] x] [G] [PD, o
w

z.|=|0 F, 0]z |+|0ju+|G, 0[V]

z| [0 o z,| [0 0 G,

y

4.31)

F.v
X

y=[H 0 H]z |+Du+Dy
zV

where P directs the noise into the proper states. If w and v are white noise with

E[w(t)v(s,)] = 0, the noise intensities becomes

PD, | 07"
0] G, |0
rl o |G 4.32)
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If we want to weight the following error states:

_[<H. D, |[x 433
*“l o B |u *+33)

with ¢ an arbitrary weighting, the LQG weights become

- -~ H
~A 1:[ _ cH, 0 0|cD, |"(cH, 0 0]cD, 4. 34)
N B 0 00[B 0 00|B

4.2.3 Free Parameter Selection

The LQG compensator resulting from the minimization process has no guaranteed
robustness properties, so these have to be checked after the design is done. Frequently,
though, the free parameters in the performance index, A, B, and N, and the noise
parameters, Q, R, and T, are manipulated in an iterative design procedure to satisfy a set
of constraints not directly related to the minimization procedure. In the present case, it is
desired to fix as many parameters as possible by examining their impact on properties of
the system, such as the sensitivity and complementary sensitivity constraints, and use
these parameters for each separate sensor/actuator location design for performance index
comparison.

To standardize the procedure, the error states of Equation 4.33 will be chosen to
be the static pressure perturbations in each gap, which are the desired errors to minimize
in the state cost, with a variable weight of c, and a unity weight on the control, B=I. The
noise intensities in Equation 4.32 are chosen as unity for the measurement noise, R=I,
and a variable intensity for the process noise, Q=q. B can be specified as the identity
because only the relative values between state and control weights is important. Any

scaling of these parameters simply changes the cost without changing the resultant
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Table 4.2 - Model data for LQG free parameter selection.

Harmonic 1

Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement O6P/P

Jet Velocity 2 * mean axial veloucity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

compensator. Similarly, R can be specified as identity because only the relative value of
the noise intensities is important.

A few sensor/actuator pair locations will be examined to get a general idea of how
the free parameters affect the complementary sensitivity and the sensitivity functions. An
unstable operating point is chosen because it is expected that the compensator will be
designed at the lowest possible flow coefficient from the arguments in Section 4.1.3.

The four sensor/actuator location pair combinations are (k,, k) = (2,1), (2,8),
(8,3), and (5,6). These were chosen as a representative sample of the input-output pairs.
The configuration is described in Table 4.2. In the designs that follow, if the sensor and
actuator are in the same gap, the sensor is assumed to be upstream of the actuator. This is
a practica} consideration due to the discrcte nature of the sensors and actuators; if the jet
actuator is upstream of the sensor, the jet may or may not impinge upon the sensor,
depending on their relative alignment. If the jet does not impinge upon the sensor, then
the sensor may act as if it is upstream of the actuator; if the jet impinges upon the sensor,
then the jet will not have enough axial distance to spread out properly, and the
measurement may not reflect reality. The jet velocity is chosen to be high, but not
supersonic. The jet total temperature is chosen to be equal to the mean because tests have

shown that total temperature is not a significant variable.
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Sample sensitivity and complementary sensitivity functions from LQG designs
using various parameter selections are shown in Appendix E and summarized here. The
results of the designs are the transfer functions of interest and how the parameters affect
them. For instance, as the process noise level is reduced, the sensitivity increases at low
frequencies and the complementary sensitivity decreases near the desired bandwidth. As
the state weights are increased, the complementary sensitivity decreases near the desired
bandwidth, although the marginal effect is diminished at state weights greater than 1.
The results also show the effect of the rotor frequency noise, which is essentially to place
a zero in the compensator to cancel the noise.

The choice of parameters will be c=1 and g=1. With these choices, 3 of the 4
sensor/actuator pairs meet the constraints, and of the one which does not, pair (8,3), this
choice of parameters is in the middle of possibilities. The best parameters for (8,3) is
c=1, g=.01. However, all of the other pairs have poor sensitivities using these
parameters.

It is not possible to choose one set of LQG parameters to meet the specifications
all sensor/actuator placements. One choice of parameters can be made based on the most
placements which satisfy the constraints. But, if we accept the fact that robustness can
not be guaranteed with one set of parameters, then the parameters can be chosen to reflect
the sum of the state and control costs, ignoring robustness. The LQG cost will then be
the minimum sum of state and control costs applied to a system having colored
measurement noise. In this particular case, the two ways to choose parameters, in fact,

coincide.

4.3 Robust Design Methodology

This section will review the general H_ design procedure and then apply the
constraints of Section 4.1 in the H_ design procedure. This design procedure, in general,
iterates to find the minimum H_-norm of a transfer function. In the present case, though,

specifications have been developed that the system needs to satisfy. No iteration on the
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norm will be performed; rather, the operating point will be iterated on to find the lowest
flow coefficient at which the system can satisfy the requirements. The resulting

compensator will then be used to find the state and control costs of the system.

4.3.1 Review of H_ Design Method

4.3.1.1 Definiti | Motivati
The H_ optimal control problem can be stated as minimizing the H_-norm of a

transfer function from a set of disturbances to a set of errors,

e(s)

dcs) 4.35)

where the H_-norm is the maximum singular value, @, of the transfer function over all

frequencies,

e(s)
d(s)

= max E(M]. (4.36)
. ¢ \d(jo)

In the current problem, the H_-norm is exactly the type of specification
developed in Section 4.1. For example, if the frequency domain constraint on a particular

transfer function is

e(jw)
d(jw)

<|w'(w)| Vo, (4.37)

then this will be satisfied if the H_-norm of is less than unity.

wE
d

The weighting function can arise from different specifications. One such source,

as stated in Section 4.1.3, is a bound on the multiplicative modeling error of the system.
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Another source can be a performance specification, such as decreasing the sensitivity at
low frequencies to achieve low frequency disturbance rejection. A third source, as stated

in Section 4.1.2, is to guarantee specified gain and phase margins.

£3.1.2 Solution Techni
This section will present a simplified version of the H_ design solution. The
complete solution complicates the equations considerably, but all of the important
concepts are contained in this problem. The solution to the H_ design procedure is
described in Doyle et al., 1988 [24].
If a state-space system has a disturbance vector, d, and an error vector, e,

appended to the system as follows:

X F|IG G,|x
e|=(H,| 0 D,|d (4.38)
y H,|D, 0 |u

with the restrictions

DI2H[HI D|2] = [0 I]

4.39)
Dzu[G|H D2|H] = [0 l]
then the H_ design procedure will produce a compensator, if one exists, such that
e(s)
—| < 4.40
)l Y (4.40)

The compensator is found by solving the following two Ricatti equations:
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F'X_+X_F+X_(y’GG/ -G,G;)X. +HH =0
. 4.41)
FY_+Y_F*+Y_(y’HH/ -HH])Y_+G G/ =0
If positive semidefinite solutions, X_ and Y, exist, and p(X.Y.)< y?, where p is the
spectral radius, then a compensator can be found which satisfies Equation 4.40. One such

compensator is

Kis)= | = “Z.L. 4.42)
o[l ws

where

F_=F+7’GG'X_+G,A_+Z_L_H,
A_=-GYX_

L_=-Y_H!

z.=(i-7yY.X)"

To find the minimum H_-norm, 7., this procedure must be iterated to find the

smallest ¥ for which a solution still exists.

4.3.2 Application to Current Problem

The general H_ design procedure is adapted for the current problem in this
section. The current problem has two frequency domain constraints on the sensitivity and
complementary sensitivity functions. If the two weighting functions are used from

Sections 4.1.1, 4.1.2 and 4.1.4:

ISGw) <|W'jo)| VYo

(4.43)
Icho)|<|W;'o)| Vo
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and a disturbance and error outputs are defined as

e, (s)=W,(s)S(s)d(s)
e,(s) = W,(s)C(s)d(s)

4.44)
then the H_ optimal control using ¥=1, if it exists, will guarantee that the specifications
are met.

To perform the H_ design, it is necessary to integrate the constraints of Sections
4.1.1 and 4.1.2 into the state-space model and define the error and disturbance functions.
The state-space descriptions of the constraints on the sensitivity and complementary

sensitivity functions will be defined as, respectively

Fu, | Gw Fu, ’ Gy,
W,(s)= 4’—- W,(s)= . (4.45)
! Hy, | Dy, ’ Hy, | Dy,

It is then necessary to find one input and two outputs which will yield the two desired
transfer functions, the sensitivity and complementary sensitivity. One way to do this is to

add a fictitious disturbance to the measurement equation:

y=Hx+Du+d. '(4.46)

The sensitivity is then the transfer function from this disturbance to the measurement.
The complementary sensitivity is the transfer function from this disturbance to the

disturbance-free measurement:

_ Y

S(s) - 16) (4.47)
_ 1Y)

C(s) = o) (4.48)
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The weights of Equation 4.45 must be applied to these outputs to produce the

desired 'error’ output:

e(s)| | Wi(s)S(s)
e(s)= = d(s) 4.49

[ez(s)] [W,(s)C(s) )
One additional error output must be defined to ensure that the control is directly weighted
in the error output. This is a technical requirement of the H_ design procedure (and the
LQG design procedure) which bounds the magnitude of the control signal. This error
output is not necessary if one of the other error outputs contains a non-zero weighting of

the contro! term, but it is prudent to include it. In state-space form, this is written

" F 0 0 0 G |
(x] |G,H F,, 0 |G, |GyD[x]
z| |G,,H 0 F, | 0 |G,Djz
z,|=|D,H H,, 0 |D, |D,D]|z (4.50)
e D,H 0 H,| 0 |D,D
|y | 0 0 0 0 € Ju]
| H 0 O 1 D |

This description will be used in the H_ designs of Chapter 5.
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Chapter 5

Control Configuration and Design

6.1 Procedure

The design techniques presented in the preceding chapter can be used to aid in the
selection of the 'best' control system configuration (i.e. sensor and actuator placement and
type). In Section 5.2, a 3 stage compressor is studied. Section 5.2.1 presents a nominal
case to examine sensor and actuator locations using the LQG, state and control costs for
the LQG design and the state and control costs for the H_ design. The state and control
costs of the LQG designs are essentially a breakdown of the LQG cost, although the LQG
cost will be greater than the sum due to its different assumed system noise. The nominal
case has certain assumptions and free parameters, hence, it is necessary to test variations
from the nominal to validate the selection of the nominal case as a representative case
which can be used for sensor and actuator placement studies. These results are presented
in Section 5.2.2 In Section 5.2.3, other sensor types and actuator variations are examined
for comparison to the nominal case and to each other. Section 5.2.4 presents designs for
the 'best' sensor and actuator locations for the nominal case and the cases of Section 5.2.3.
Section 5.2.5 presents a discussion and summary of the 3 stage compressor results.
Section 5.3 presents the design procedure and conclusions based on the configuration

comparisons and designs.
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Table 5.1 - Data for the nominal case.

Harmonic |

Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement OP/P

Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

5.2 LQG and H ., Designs on a 3 Stage Compressor

Using the control system design methodologies developed in Chapter 4, different
control system configurations for the 3 stage compressor will be examined in an attempt
to find the 'best' set. The 3 stage compressor is described in Section 3.4.1. The
supporting tables of this section are in Appendix E.

The state-space model with no gaps will be used for all of the designs because of

its smaller size.

5.2.1 Nominal Case

This section will present a nominal case for which a best sensor/actuator location
pair can be chosen. The first harmonic was chosen since it is usually the harmonic to
reach neutral stability first as the flow coefficient is lowered. At this flow coefficient for
the first harmonic, the rotating stall eigenvalue (i.e. the lowest frequency eigenvalue in
the direction of the rotor) is the only unstable eigenvalue. The data for the nominal case
is shown in Table 5.1. The supporting tables of this section are in Appendix E.

From the LQG and H_ designs, the sensor/actuator pairs 'near’ (k,,k ) =(2,1) are

the best choices in terms of all the costs. Except for the pair (1,1), they meet the

specifications.

136



5.2.2 Variations from Nominal

This section will present cases which vary from the nominal to examine whether
or not the best sensor/actuator locations hold up under different assumptions. The cases
to be examined are: the zeroth and second harmonics, a 2.3% change in the flow
coefficient, a rotor speed change to 70%, a different set of correlations to predict the
mean flow, and a different definition of LQG and state costs using velocity perturbations
instead of static pressure perturbations. For each of these cases, new designs will be done

and new performance indexes will be computed using both the LQG and the H,_ design

procedures.

5.2.2.1 Case 2: Zeroth Harmonic

It is necessary to determine if the best sensor/actuator location pair for the first
harmonic is the best location pair for the zeroth harmonic. The dynamics of the zeroth
harmonic are expected to be somewhat different from the non-zero harmonics due to the
interaction of the plenum volume with the flow. For the flow coefficient of the nominal
case, the two conjugate symmetric surge eigenvalues (i.e. the lowest frequency
eigenvalues) are unstable at frequencies near the first harmonic rotating stall frequency,
and two higher frequency eigenvalues are stable, but very nearly neutrally stable. The
data for the second case is shown in Table 5.2. The supporting tables of this section are
in Appendix E.

The results show that pairs around (k,,k,) = (8,8) and (8,1) are the best selections,
except for those which do not meet the specifications. The best locations of the nominal

case, around (2,1), are not able to meet the specifications.

5.2.2.2 Case 3: Second Harmonic

It is necessary to determine if the best sensor/actuator pair location for the first
harmonic is also good for the higher harmonics. Checking the second harmonic should

be sufficient, since it is the second of the non-zero harmonics to reach neutral stability as

137



Table 5.2 - Data for case 2.

Harmonic 0
Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement OP/P
Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

Table 5.3 - Data for case 3.
Harmoric 2
Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement OP/P
Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

the flow coefficient is lowered. The dynamics of the second and higher harmonics are
similar to the first harmonic dynamics since, as opposed to the zeroth harmonic, the exit
duct conditions are the same. The data for the third case is shown in Table 5.3. The

supporting tables of this section are in Appendix E.
The LQG design results show that the pairs near (k,,k.) = (2,1) have the lowest

costs. The H_ design results show that the control does not have to work very hard to
meet the constraints for any pair, so all the state costs are very similar. However, the

control costs near (2,1) are the lowest.
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Table 5.4 - Data for case 4.

Harmonic |

Flow Coefficient 4506 (4.5% below neutral stability)
Rotor Speed 100% of design speed

Measurement OP/P

Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

5.2.2.3 Case 4: 2.3% Flow Coefficient Change

It s necessary to check whether the costs obtained at one flow coefficient can be
generalized over a range of flow coefficients, so a lower flow coefficient will be
examined. The data for the fourth case is shown in Table 5.4. The supporting tables of

this section are in Appendix E.

The LQG design results show that the pairs around ( k,, k,) = (2,1) have the lowest
costs. However, since the flow coefficient was reduced from the nominal, none of these
pairs were able to meet the constraints in the H_ design results. All of the pairs which
satisfy the constraint at this flow coefficient have an unacceptably high control cost. This
is an important well-known result which shows that small mean-square cost functions do

not necessarily imply good robustness.

5.2.2.4 Case 5: Rotor Speed Change to 70%

It may be necessary to control rotating stall when the compressor is operating at a
different rotor speed than the design speed. This section will present an example with the
rotor speed at 70% design speed. The data for the fifth case is shown in Table 5.5. The

supporting tables of this section are in Appendix E.
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Table 5.5 - Data for case 5.

Harmonic 1
Flow Coefficient .2644 (1.2% below neutral stability)
Rotor Speed 100% of design speed
Measurement OoP/P
Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap

I Correlations supplied by manufacturer

Table 5.6 - Data for case 6.

Harmonic 1
Flow Coefficient .3898 (7.5% below neutral stability)
Rotor Speed 100% of design speed
Measurement OP/P
Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

The LQG design results show that the pairs near (k,,k,) = (2,1) are the best
overall, while the H_ design results show that a smaller set near (2,1) are able to meet the

specifications with similarly low costs.

2. :_Predicted Correlation
The correlations supplied by the manufacturer may not capture the actual
conditions exactly. It is therefore necessary to examine a case in which an independent
set of correlations are used to predict the mean-line. The predicted correlations are
described by Bonnaure [16). The data for the sixth case is shown in Table 5.6. The

supporting tables of this section are in Appendix E.
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Table 5.7 - Data for case 7.

Harmonic 1

Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement oP/P

Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

The LQG results show that the pairs around ( k,,k,) = (2,1) have the best costs.
The H_ design results show that a smaller set of pairs around (2,1) are able to meet the

constraints with similarly low costs.

5.2.2.6 Case 7: Axial Velocity Weightings

One of the assumptions on the state and LQG costs is that static pressure should
be used in the cost functions. However, axial velocity is another option. This section
uses axial veiocity in the LQG and state cost functions which can be compared against
the nominal case which uses static pressure in the LQG and state cost functions. The data
for the seventh case is shown in Table 5.7. The supporting tables of this section are in
Appendix E.

The results are for this case are essentially equal to the results for the nominal

case in terms of relative costs between placements.

5.2.2.7 Summary of Variation Results

All of the cases presented in this section, with the exception of case 2, the zeroth
harmonic, resulted in the same group of senscr/actuator pairs as having the lowest state

and control costs while still able to meet the specification as the nominal case. This
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validates the use of a nominal case to choose sensor and actuator locations without the
need to check all of the variations above.

The zeroth harmonic, as stated above, has a different interaction with the plenum
than the non-zero harmonics. This is most likely the reason why the results differ for this

case. It may be necessary to implement an independent control scheme to stabilize surge.

5.2.3 Sensor and Actuator Variations

A few special cases will be examined which do not fall into the category of
variations on the nominal to verify the nominal case results. The cases to be examined
are: using a zero axial velocity jet actuator, using a total pressure sensor, using an axial
velocity sensor, and using velocity weightings in the LQG and state cost functions,

instead of static pressure weightings, while again using velocity measurements.

5.2.3.1 Case 8: Zero Velocity Jet Injection

It has been suggested [20] that the dominant factor of a jet injector is the
momentum change which it gives to the flow. This case will examine taking away
momentum rather than adding it, by injecting air with zero axial velocity rather than
twice the mean axial velocity. The advantage of this is that it may be easier to
implement. The data for the eighth case is shown in Table 5.8. The supporting tables of

this section are in Appendix E.

The LQG results show that the pairs near (k,,k,) = (8,1) and (1,1) have the lowest
costs. The H_ design results show that a smaller set of pairs near (8,1) are able to meet

the constraints with the lowest costs. These costs can be compared directly against the

nominal case. The pair (8,1), for the LQG design, has 8.7, 3.5 and 3.5 LQG, state and

control costs, respectively, and for the H_ design, has 4.3 and 3.5 state and control costs,

respectively. Comparing this to the nominal case, the pair (2,1), for the LQG design, has

9.9, 5.7 and 2.4 LQG, state and control costs, respectively, and for the H_ design, has 6.3

and 2.1 state and control costs, respectively. In terms of these costs, the best pair for the
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Table 5.8 - Data for case 8.

Harmonic

1

Flow Coefficient

461 (2.1% below neutral stability)

Rotor Speed 100% of design speed
Measurement OP/P
Jet Velocity 0

Jet Total Temperature

mean total temperature in the gap

Correlations

supplied by manufacturer

Table 5.9 - Data for case 9.

Harmonic 1

Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement OPy/Py

Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

zero velocity jet injection is at least as good as the best pair for the nominal case of

injection at twice the mean flow velocity.

5.2.3.2 Case 9: Total Pressure Sensor

Currently under consideration for sensor type is a total pressure sensor. This
section will examine the cost functions when measuring total pressure perturbations. The

data for the ninth case is shown in Table 5.9. The supporting tables of this section are in

Appendix E.

The LQG results show that the pairs around (k,,k) = (2,1) and (2,8) have the
lowest costs. The H_ design results show that a smaller set of pairs around (2,8) are able

to meet the constraints with the lowest costs. These costs can be compared directly
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Table 5.10 - Data for case 10.

Harmonic 1

Flow Coefficient 461 (2.1% below neutral stability)
Rotor Speed 100% of design speed
Measurement oVy/a

Jet Velocity 2 * mean axial velocity in the gap
Jet Total Temperature | mean total temperature in the gap
Correlations supplied by manufacturer

against the nominal case. The pair (2,8), for the LQG design, has 6.6, 1.9 and 3.2 LQG
state and control costs, respectively, and for the H_ design, has 1.8 and 3.0 state and
control costs, respectively. Comparing this to the nominal case, the pair (2,1), for the
LQG design, has 9.9, 5.7 and 2.4 LQG state and control costs, respectively, and for the
H_ design, has 6.3 and 2.1 state and control costs, respectively. In terms of these costs,
the best pair for total pressure measurement is at least as good as the best pair for the

nominal case of measuring static pressure perturbations.

5.2.3.3 Case 10: Axial Velocity Sensor

Previous results on low speed compressors show that velocity sensors have
advantages over static pressure sensors [20]. This case will examine the cost functions
when measuring axial velocity perturbations. The data for the tenth case is shown in

Table 5.10. The supporting tables of this section are in Appendix E.
The LQG results show that the pairs near (k,,k,) = (2,1) and (2,8) have the lowest

costs. The H_ design results show that a smaller set of pairs near (2,1) are able to meet

the constraints with the lowest costs. These costs can be compared directly against the

nominal case. The pair (2,1), for the LQG design, has 10.1, 6.0 and 2.5 LQG state and

control costs, respectively, and for the H_ design, has 6.3 and 2.1 state and control costs,

respectively. Comparing this to the nominal case, the pair (2,1), for the LQG design, has
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9.9, 5.7 and 2.4 LQG state and control costs, respectively, and for the H_, design, has 6.3
and 2.1 state and control costs, respectively. In terms of these costs, the best pair for
axial velocity measuremcnt is at least as good as the best pair for the nominal case of
measuring static pressure perturbations.

One comment about axial velocity measurements is that in terms of these costs,

the sensors are less sensitive to placement than static or total pressure sensors.

5.2.4 Examination of Best Sensor/Actuator Pairs

Now that a best sensor and actuator pair has been determined for each type of
sensor and actuator parameter, these can be compared to find which one can stabilize the
compressor to the lowest flow coefficient while still meeting the specifications. Not only
do the specifications have to be met at the design point, but also at incrcased flow
coefficients. In each of the cases to be presented, the neutral stability operating point is
the worst case in terms of plant changes due to operating point changes, so the designs
will only be tested off of the design point at neutral stability. Finally, the compensators

in each case will be reduced to a size amenable to implementation.

5.2.4.1 Minimum Flow Coefficient

The sensor/actuator locations to be examined in ecach case are: nominal case
(k,.k)=(2,1), case 8 (k,,k,)=(8,1), case 9 (k,,k)=(2,8), and case 10 (k,, k) =(2,8).
While in case 10, the pairs (2,1) and (2,8) seem to be equal in terms of costs, the pair
(2,8) has a lower minimum flow coefficient. The results are summarized in Table 5.11.
These are coarse numbers which are the minimum flow coefficients as the flow
coefficient was decreased by approximately 0.01. Case 4, one of the variations of the
nominal, in fact found that only six placements of the static pressure sensor could meet

the constraints at ¢=.4506, but all with unacceptably high control costs.
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Table 5.11 - Minimum flow coefficients for different cases.

Jet Velocity | Measurement | Minimum Flow %
Coefficient | Decrease
Uncontrolled - - 4703 -
Nominal Case| Vj=2Vx oP/P 4610 2.0%
Case 8 Vi=0 O6P/P 4610 2.0%
Case 9 Vi=2 Vx OPy/P ¢ 4403 6.4%
Case 10 Vi=2Vy SVy/a 4403 6.4%

One note about the results is that cases 9 and 10 were able to control the
compressor to flow coefficients where two 'acoustic’, or higher frequency, modes were
unstable in addition to the rotating stall mode.

Some insight into the results are presented in Figures 5.1-5.4 for the nominal case
and cases 8-10, respectively. Clearly the discussion in Section 4.1.2 applies to the
nominal case in Figure 5.1. It has a non-minirnum phase zero fairly near the unstable
eigenvalue and it has one of the highest (worst) flow coefficients. However, Figures 5.3
and 5.4, for cases 9 and 10, show no non-minimum phase zeros within the imposed
bandwidth of the system and have the lowest (best) flow coefficients. Figure 5.2, for case
8, however, shows only one minimum phase zero anywhere near the unstable eigenvalue
and two distant non-minimum phase zeros, but still has one of the highest (worst) flow
coefficients. This case may suffer due to the lack of interlaced, minimum phase zeros,
such as in Figures 5.3 and 5.4.

The complementary sensitivity and sensitivity transfer functions at the flow
coefficients of Table 5.11 are shown in Figures 5.5-5.8 for the nominal case and cases 8-
10, respectively. All of these show that the sensitivity function is very close to its bound

at frequencies less than the bandwidth.
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Plant Pole-Zero Plot (ka=2 ks=1,0=0.461,n=1)
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Figure 5.1 - Pole-zero plot for nominal case - ( k,, k) = (2,1).

Plant Pole-Zero Plot (ka=8,ks=1,0=0.461,n=1)
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Figure 5.2 - Pole-zero plot for case 8 - (k,,k.) = (8,1).
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Plant Pole-Zero Plot (ka=2,ks=8,0=0.461,n=1)
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Figure 5.3 - Pole-zero plot for case 9 - (k,,k,) = (2,8).
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Figure 5.4 - Pole-zero plot for case 10 - ( k,,k,) = (2,8).

148



Compensated Bode Plot (ka=2,ks=1,0=0.461,n=1)
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Figure 5.5 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) for nominal case - (&,,k,) = (2,1), ¢=.461.

Compensated Bode Plot (ka=8,ks=1,0=0.461,n=1)
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Figure 5.6 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with

constraint (solid) for case 8 - (k,,k.) =(8,1), ¢=.461.
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Compensated Bode Plot (ka=2,ks=8,¢=0.4403,n=1)
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Figure 5.7 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with

constraint (solid) for case 9 - (k,,k,) = (2,8), ¢=.4403.
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Figure 5.8 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with

constraint (solid) for case 10 - (k,,k.) = (2,8), ¢=.4403.
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.2.4.2 Robustness T rating Point Changes

Now that control designs have been done at the lowest flow coefficients for each
case, it is necessary to determine whether these designs are robust to operating point
changes. To be robust to operating point changes, the system must remain stable and the
specifications must still be met as the flow coefficient is raised. As was stated above, the
neutral stability operating point is the worst case variation, so this operating point will be
shown, although the results apply to all flow coefficients above this one.

Figures 5.9-5.12 show the complementary sensitivity and sensitivity transfer
functions when the compensator was designed for the minimum attainable flow
coefficient, but the compressor is operating at neutral stability. For the nominal case and
case 8, which could only decrease the flow coefficient by about 2%, the specifications are
still met at neutral stability. For cases 9 and 10, however, which could decrease the flow
coefficient by more than 6%, the specifications are not met at neutral stability. This is
due to a larger plant deviation than the nominal case and case 8, rather than worse
compensators. Referring to Section 4.1.3, the frequencies at which the specifications are
violated are those near the upper gain margin.

The compensators of cases 9 and 10 must be altered to achieve robustness to
operating point changes. Examining the frequencies where the specifications are
violated, a modified constraint on the complementary sensitivity can be imposed to
account for these frequencies. However, the result of imposing more restrictive
constraints is that the constraints are no longer able to be satisfied at ihe flow coefficients
of Table 5.11. The flow coefficient has then been raised by about 0.005 (about 1%) to
account for the modified bounds. Figures 5.13 and 5.14 show the modified bounds and
the complementary sensitivity and sensitivity functions for cases 9 and 10, respectively.
Figures 5.15 and 5.16 show the original specifications and the complementary sensitivity
and sensitivity functions for cases 9 and 10, respectively, when the compensators were

designed at the new minimum and the compressor is operating at neutral stability. A
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summary of the minimum flow coefficients which are robust to operating point changes

is presented in Table 5.12.

Table 5.12 - Minimum flow coefficients for different cases with robustness

to operating point changes.
Jet Velocity | Measurement | Minimum Flow | % Decrease
Coefficient
Uncontrolled - - 4703 -
Nominal Case | V;j=2Vx oP/P 4610 2.0%
Case 8 Vi=0 OP/P 4610 2.0%
Case 9 Vi=2 Vx OPy/P¢ 4455 5.3%
Case 10 Vi=2 Vx 6Vyva 4455 5.3%

5.24. mpensator Model R ion

For implementation, it is desired to have a low order compensator due to
computational constraints. This section will present the lowest order compensators
(using a balance and truncate algorithm [25]) which can still satisfy the specifications of
the previous section at the lowest flow coefficient (i.e. the original specifications for the
nominal and case 8, and the modified specifications for cases 9 and 10). The results are
summarized in Table 5.13.

Table 5.13 - Minimum compensator order for different cases with robustness
to operating point changes.

Jet Velocity | Measurement | Minimum
Order
Nomina! Case| V/=2Vyx OP/P 10
Case 8 Vi=0 OP/P 10
Case 9 Vi=2 Vy OPy/P; 10
Case 10 Vi=2Vy 6Vy/a 16
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Compensated Bode Plot (ka=2,ks=1,$=0.4703,n=1)
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Figure 5.9 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) at neutral stability using compensator design

at ¢=.461 for nominal case - (k,,k,) = (2,1).
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Figure 5.10 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) at neutral stability using compensator design

at ¢=.461 for case 8 - (k,,k,) =(8,1).
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Compensated Bode Plot (ka=2,ks=8,¢=0.4703,n=1)
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Figure 5.11 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) at neutral stability using compensator design

at ¢=.4403 for case 9 - (k,,k,) = (2,8).
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Figure 5.12 - Comp. sens. (dashed) with constraint (solid-c) and sens. {dotted) with
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Compensated Bode Plot (ka=2,ks=8,$=0.4455,n=1)
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Figure 5.13 - Comp. sens. (dashed) with modified constraint (solid-c) and sens. (dotted)

with constraint (solid) for case 9 - ( k,,k,) = (2,8), ¢=.4455.
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Compensated Bode Plot (ka=2,ks=8,$=0.4703,n=1)
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Figure 5.15 - Comp. sens. {dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) at neutral stability using compensator design

at ¢=.4455 for case 9 - (k,, k) =(2,8).
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Compensated Bode Plot (ka=2,ks=1,0=0.461,n=1)
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Figure 5.17 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) for nominal case - (k,,k,) = (2,1), ¢=.461,
compensator order = 10.
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Compensated Bode Plot (ka=2,ks=8,¢=0.4455,n=1)
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Figure 5.19 - Comp. sens. (dashed) with constraint (solid-c) and sens. (dotted) with
constraint (solid) for case 9 - (k. k,) = (2.8), ¢=4455,

compensator order = 10.
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front of the compressor. One reason it is bad in the back of the compressor is that the exit
condition specifies that the static pressure be constant. This condition causes static
pressure ‘nodes’ in the exit duct, so particular frequencies cannot be observed. The best
location for the total pressure sensor is in the back of the compressor. One reason it is
bad in the front is that one of the inlet conditions specifies that the total pressure be
constant. This condition causes total pressure nodes in the inlet duct. The best location
for the axial velocity sensor is in the back of the compressor, although the variations in
position are not as severe as the other sensors. One reason for the insensitivity is that the
velocity perturbations throughcut the compressor tend to be uniform; they are not

specified to be zero at any point.

5.3 Conclusions of Configuration and Design Results

The specifications and state and control costs described in Chapter 4 were used to
compare contro! configurations using the control design procedures also described in
Chapter 4. The LQG design procedure was able to distinguish between good and bad
configurations, in terms of state and control costs, using only the LQG cost, but did not
provide information on which configuration would yield a lower minimum flow
coefficient. The H_ designs generally yielded the same results with respect to state and
control costs as the LQG designs, but also found the minimum flow coefficient attainable
for each configuration.

The design procedure is:

1) Choose state and control cost functions and the noise affecting the system to
which they are applied. The state cost in this study was shown to be insensitive to
whether it used static pressure or velocity in the definition. The noise affecting
the system, however, can play an important role.

2) Choose frequency domain specifications. The specifications in this study were a
bandwidth constraint and a constant sensitivity constraint. If it is desired, the
sensitivity weighting can be frequency dependent to force the sensitivity lower at
low frequencies.

3) Choose free parameters in the LQG design method. The free parameters in this
study were 'tuned’ to a degree in an attempt to satisfy the constraints, although it
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4)

may be better just to define the LQG cost as the sum of the state and control costs
since this design will not be implemented. The LQG design will then yield the
minimum sum of the two costs.

Choose an unstable flow coefficient as a nominal case. A flow coefficient of 2%
below neutral stability was chosen in this study.

For each sensor and actuator type under consideration, repeat steps (5)-(9) for the first
harmonic:

5)

8)
9

10)

Perform LQG designs at each sensor/actuator location for this nominal case.
These results will yield LQG, state and control costs, which can be used as a
guide as to which locations are expected to be better than others.

Perform H_ designs at each sensor/actuator location for the nominal case using
the frequency domain specifications. These will result in state and control costs
as well as some information as to which pairs can or can not meet the
specifications at the nominal conditions. If the nominal case results in very tight
bounds so that only a few pairs can satisfy them, then the LQG costs can verify
whether or not the pairs which meet the constraints are among the lowest cost
pairs. If they are not, then the nominal flow coefficient must be raised and this
step must be repeated, but the LQG designs do not since they are valid for a range
of operating points.

Choose a sensor and actuator placement based on the H_ designs.

Perform H_ designs at lower flow coefficients to find the minimum attainable.

Using the design at the minimum flow coefficient, test the design at higher flow
coefficients. If it only has small robustness problems at a few frequencies, then
the constraints can be modified and step (8) must be repeated. If it has large
robustness problems, such as those caused by an unstable compensator, then a
new sensor/actuator pair must be chosen in step (7).

Choose the sensor and actuator type based on the minimum flow coefficient

attainable in step (9) as well as the state and control cost from siep (6), as long as
the nominal flow coefficient is constant for each case.
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Chapter 6

Summary and Conclusions

6.1 Summary

The linear two-dimensional compressible model, developed by Bonnaure [16], is
extended and recast into input-output form. Cancellation of branch cuts in the inter-blade
row gap solutions is identified; this realization leads to the addition of realistic boundary
conditions necessary to cancel the branch cuts arising from the inlet and exit duct
solutions. These new boundary conditions also result in a new eigenvalue problem.
Similar to the branch cuts, the singularities in the inter-blade row gap solutions are shown
to cancel in the same manner. Actuator and sensor models are developed which allow the
solution to be recast into input-output form using the same technique that is used to
formulate the eigenvalue problem. Another contribution to the modeling is the
identification of higher frequency (higher than the rotor frequency) modes of the
COMpressor.

The distributed model for each spatial Fourier coefficient is approximated by a
finite dimensional state-space approximation. This is accomplished using Padé
approximations of exponentials (time delays) and Taylor series expansions of
transcendental functions. Two approximate models are developed: a model ignoring the
dynamics of the inter-blade row gaps, and a model including the gap dynamics. The

former has the advantage of having on the order of 40% fewer states than the latter, but is
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less accurate. Long inlet and exit ducts are not easily modeled usi\ng this method due to
the very high order approximations necessary.

Frequency domain specifications and cost functions on the state and control
variables are developed to compare control configurations (i.e. sensor and actuator
placement and type). A bandwidth constraint is used for robustness to high frequency
errors, and a sensitivity constraint is used to provide specified gain and phase margins. A
state cost is defined to measure how well a compensator can keep the static pressure
perturbations small, while a control cost is defined to measure the amount of control
activity necessary to achieve the state cost.

The Linear Quadratic-Gaussian (LQG) and H_ design procedures are reviewed
for use in control design and configuration comparison. In the LQG design method,
colored measurement noise is used to penalize bandwidths greater than the specified
constraint, and other free parameters aie chosen to provide a good trade-off between
bandwidth and low sensitivity. This design also results in an 'LQG' cost function which
is used in addition to the state and control costs to compare control configurations.
The H_ design method uses the frequency domazin specifications directly in the design
procedure to find which configurations can meet the specifications at the lowest flow
coefficients. This information is used with the state and control cost functions to find the

‘best’ control configuration.

6.2 Conclusions

The results of Chapter 5 provide a framework for comparing control
configurations using realistic frequency domain specifications and cost functions. The
procedure proposed is listed in Section 5.3.

Specific configuration results for the 3 stage compressor are:

1) Using a jet actuator with zero axial velocity can be as good as using a jet
actuator having twice the mean axial velocity provided the actuator in each

164



case is placed in its respective ‘best' location. The best jet actuator location
with a velocity of twice the mean velocity is after the IGVs. The best location
for the jet actuator with zero velocity is in the back of the compressor.

2) The static pressure sensor was able to yield control laws which had
comparable state and control costs with respect to other sensors, but was not
able to meet the specifications to as low of a flow coefficient (~2% unstable)
as the other sensors. The best location of the static pressure sensor for use
with the jet actuator is in the front of the compressor.

3) The total (stagnation) pressure sensor was able to yield control laws which
had comparable state and control costs with respect to other sensors and was
able to meet the specifications to the lowest coefficient (~5.3% unstable). The
best location for the sensor, when used with a jet actuator having a velocity of
twice the mean velocity, is in the back of the compressor.

4) The axial velocity sensor was able to yield control laws which had comparable
state and control costs with respect to other sensors and was able to meet the
specifications to the lowest coefficient (~5 3% unstable). The best location
for the sensor, when used with a jet actuator having a velocity of twice the
mean velocity, is in the back of the compressor.

Fortunately, no unstable compensators resulted in the best sensor and actuator
locations, possibly because unstable compensators might have higher control costs.
Although not discussed, unstable compensators generally show poor robustness to
operating point changes, sometimes destabilizing the system at normally stable operating
points.

Also fortunate was the fact that the compensators designed for the best sensor and
actuator locations did not exhibit severe sensitivity to operating point changes. Only
minor modifications were necessary to provide robustness to operating point changes in

the two cases in which the compensators were designed at a 5.3% unstable operating
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point. For the two cases in which the compensators were designed at a 2% unstable

operating point, no modifications were necessary.

6.3 Recommended Future Work

The approximate model developed has difficulties when the length of the inlet or
exit duct becomes long with respect to the cornapressor radius due the need of very high
order approximations of the duct dynamics. A higher order approximation using a
different approximation technique than the Taylor series might solve these problems. Or,
a numerical frequency domain fitting algorithm might be used on the analytical input-
output system. The drawback to this is that a new approximation will have to be done for
each flow coefficient, requiring the analytical model to be evaluated at each frequency for
each input-output combination. Using the numerical algorithm will be much slower than
using the approximate model derived here, but it can result in a lower érdcr
approximation for the same accuracy. The order of the approximate model developed in
this thesis can also be reduced, while retaining its accuracy, but this can be slow and must
be performed for each flow coefficient.

In the course of this study, a number of parameters were chosen somewhat
arbitrarily due to lack of data or lack of knowledge of implementation issues. Some of
the specific issues and parameters are: sensor and actuator dynamics and bandwidths, jet
actuator velocity, system noise and gain and phase margins.

Also, before an implementation can be performed, validation of the input-output
model must be performed experimentally.

It is unknown at this time whether the 2D compressible model accurately predicts
the locations of the higher frequency eigenvalues. If it does not predict them accurately,
then robust techniques must be applied in order not to destabilize the system.

The addition of a second sensor and a second actuator has the potential to reduce
the total mean-square control power as well as increase operating range. The mean-

square cost functions can easily be modified to include multiple sensors and actuators,
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but to analyze operating range extension, however, a modified stability robustness test
must be proposed that can be used to compare single-input/single-output systems with

two-input/two-output systems.
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Appendix A

Linearized Boundary Condition Matrices

This appendix derives all of the linearized boundary condition matrices for the
mode! of Chapter 2. In Section A.l, the linearized leading edge boundary condition
matrices are derived. In Section A.2, the linearized trailing edge boundary condition
matrices are derived. In Section A.3, the linearized inlet condition matrices are derived.
In Section A.4, the linearized actuation effect matrices are derived.

In this appendix, the numbers "1" and "2" are used extensively to denote upstream

of the boundary and downstream of the boundary, respectively.

A.1 Leading Edge Boundary Conditions
The first leading edge boundary condition is continuity or mass flow

conservation. The equation for mass flow and its linearization are:

m, =,
om, = dm, (A.1)
m=pAV,

om = 6pAV, + pAdV,
O, _ om, _5p+i£~'vx

A2
m m p V. a (A-2)
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The second leading edge boundary condition is relative total temperature
conservation, relative meaning in the rotating reference frame of a rotor, or stationary

frame of a stator. The equation and its linearization are:

T:l = le
oT, =947, (A.3)
T,=T(1+ 5 M?)
8T, = 8T(1+ 1 M?)+ T(y - 1)MM

oT,_ST, (=M

T,

, T (l_+rT_l_Alz)8M (A4)

Here we need to derive a few more relations before we can get the linearization in terms

of the dependent variables:

P=pRT
OP = 6pRT + pROT
T P p
and
m=Y- fviiviz
a
5M=ﬂ@._ﬂg+ﬁﬁ+£% (A.6)
2p 2P V a V a
so combining Equations A.3, A4, A.5 and A.6, we get
[
T, oP &p ov, %
0T, = 8T, =H—’—2-+M’[?_7+(7_1)M‘T+(y_DM"TO:I (A7)
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The third leading edge boundary condition is a relative total pressure loss

equation. This equation is approximated in Bonnaure [16] as

P, _Pl)a’lm(aan)

P12=P —(
I+sT

1

The angle is the relative angle of the flow at the leading edge of the blade, the Mach
number is the Mach number relative to the blade reference frame, and the loss coefficient
partial derivatives need to be supplied as part of the compressor characteristic. The

linearization of this equation is

l (8PII - SPI )wlnss +

OP, = 6P, - (A.8)
27" 1+st|(P,-P) i 510 g, + 9P 5,
dtanq, oM,
The total pressure and its linearization are:
Y
P =P(1+ ’T"Mz)A"
P,
P P 1+5-M
using Equation A.6, we get
5P, 1 2\ 6P . 6p Y% 5V, |
4= 1-.5M% ) —+.5M° —+ £+ g A.10
P, l+'—2'1M2[( )P ™ p ™ a ™ a J (A-10)

We also need another relation at this point:
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5tana=__l_5V,+ 1 6V, (A1)
tan M a M, a
Using Equations A.8, A.9, A.10 and A.11, we get
P, S,
5P,2 _W[(l 5M2) + 5‘)’)"’2 4 —+ yM I + Wa :l
(1—.5M2)‘s w52 9P 4
" P P or
-l T -P— o, +
1+-M 8V, N _% P
1
1457 wla.u tan al _L‘va 1 ‘SVO (Alz)
(P, -P) dtanq, M, a M, a
\'nThO
| (MO _MOP V8V,  V, 8V,
oM, \2p 2P V a V a j
Equations A.2, A.7 and A.12 can be put in matrix form as
. ra
om, I m, 1 0 0 0 1 M 0 3
6T, |=|0 ‘_3,7 0 1 -1 (y-1DHM, (y-1)M, g
5P,2 O 0 H—'ﬁ? l_'SMz 'sz WX 7M9 &J
2 L 4 dk
[ o] [ sp ] (A.13)
0 0 0 0|z P
1 % %
+1+S1.' 0 0 0 0 i -—(Vu+|+“ k)ls_e;
Py Py2 Pax Paal sy, v,
L o g L 4 Jk
where
p3,=—[ P, -(1-.5M%) - P]w, (P, P,)ﬂ—a“""-“
’ 1+ 2 * 2 oM,
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-
Py, =~

i

Py3=—

—

Pra =~

P M awl’]‘
Rl

P, 00, 1  Jdow,, V,

1+7l zyMwlnn (PII—P|)(—mtana,—+ 3M' 7)]
Rl

P, Jw 1 dw
— A — (1) P —P ) — _tanq _+ Y Y6
l+ Y- |M2 7Ma loss ( )(3[an al ) aMR' v ):|

Now, the corresponding relations must be found for the blade row solutions, i.e.

state "2". The mass flow is written as

th, = pAW

om = SpAW + pASW
o, _6p , a SW

A.l4
m p Wa ( )
The relative total temperature is written, from Equation A.4
o7, = oT + ﬂ:_}_)MTgM (A.4)
T, T (1+3m)
The linearized Mach number equation is
w
M=—=W L
a v
5M=5—W+.5M(@—£{)—j (A.15)
a p P
Combining Equations A.4, A.5 and A.15, we get
oL | %, hud¥ (A.16)
T, T+ M P p a
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The last equation to derive is the total pressure in the blade row. Combining Equations

A9 and A.15, we get

oP

LAY B [NV Ly WYL L L (A.17)
M P p a

Equations A.14, A.16 and A.17 can be written in matrix form as

om,/m,| |1 0O 0 0 i M &
or, |=|0 3= O 1 -1 (y-IM %”
+—rl
5P, 0 0 A |l-sM® 5w’ M |
o ¢ (A.18)
5P
3
=B, 2
é_b!
a Jg
The leading edge boundary condition is written using A.13, A.18, 2.25 and 2.33:
B -
B
1 c ~ .
(Vu+ l_*_STP,‘)V,((Jsu,_.,‘.s) D =B,B, (x,.5) €' (A.19)
E E k

k

A.2 Trailing Edge Boundary Conditions
The first trailing edge boundary condition is continuity. This condition has the
same form as Equations A.2 and A.14, with the blade solution being upstream and the
gap solution being downstream, instead:
oy _ o, _Op  a dV, (A.20)

m m p V a

X
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om _0p, a oW (A21)

The second condition in the relative total temperature conservation. This condition also
has the same form as Equations A.7 and A.16 with the upstream and downstream

reversed again:

T, oP ép oV, 1% _
oT, =0T, = 1+1;—§M2 [T_7+(Y_1)Mx7+(7_ l)Mo_a—o] (A.22)
8T, 1L [op_dp, 5W
1 — — L -DM — A23
T, l+r—2_l'M2[ P p +Hr= a ] ( )

The third condition is relative total pressure conservation. This condition has the same

form as Equations A.10 and A.17 with the upstream and downstream reversed again:

P 1|
i”:m-'w (1-.5M2) +57M ‘5”+7M ‘+7M9 ] (A.24)
2 7 |
5P, 1| 1\ OP 25p
2 _ 1-.5M?*)—+.5M*> — — A.25
P, l+_’;—'M2L( )p+ ™ p”M a (A25)

The fourth condition is a deviation condition. This condition is approximated by

Bonnaure [16] as

= an..\: ( al.inlel ’ MRl.inlel )
2 1+ 5T

where "inlet" refers to the inlet of the blade row, i.e. the state "1" from the leading edge

boundary, and "q.s." means quasi-steady. This condition is linearized as
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1 Ja, da,
ba, = 1+st[8tana, Suna + oM, SM’"]

and using Equations A.6 and A.11, we get

da, tana[ 1 &V, | SVBJ_'_

| |dane, '\ M, a M, a
éa, = (A.26)
I+t g, (MSp MSP V, 8V, V,dV,
—_— e e +_1_X+_9_
(OMg\2 p 2 P V a V a)
and the linearized flow angle downstream is
da
éa, = 2_Stana
? Jdtane, 2
.5c)zz=&tanoz2 —L‘SV‘+ L oV, (A27)
diana, M, a M, a
Now, Equations A.20, A.22, A.24 and A.27 can be combined in matrix form as
ori, i, [0 0 0 o 1 M 0 e
- r x )
6T, (1% e O Of 1 -l (y-DM, (y-hM, | 2
- P 2
oP,, 0 0 e 0f1-.5M*> .5 ™, ™, %
b, ] o o 0 1] O 0. -MM? M |,
’-2-
P
5
=V i
.U Jdk+l
(A.28)

Also, Equations A.21, A.23, A.25 and A.26 can be combined in matrix form as
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8, I

oT

11

oP

1l

éa,

where

1 0 0 o o ] M-
5p
A R 1 -Lo-oM)p
0 0 _h I-5M> sm* M | g,
o o 0 o] o 0 o Jtelk
0 0 0 O07e o
P op P
1|0 0 0 ojel |F L
Pl = | + P
l+s7f 0 0 0 O :7: i G| l+st "%
d,, d;, d4.3 d,, P ¢k P

(A.29)

da, M

YoM, 2
da, M
27 oM, 2
__da, M, N da, V,
dtana, M? M, V

_ Oda, L Ja, V,
4 Jtanay, M, M, V

d4,_1 =

The trailing edge boundary condition is written using Equations A.28, A.29, 2.25 and

2.33:

VTuthl(erk's)

|
l+sT

=BnB, (xg,5) + DV, (x,5.5)

m O O W™
e O B
e> I R W - -

k+l x

(A.30)
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A.3 Inlet Condition
The three inlet conditions are constant total pressure, zero entropy and zero
vorticity [26]. The total pressure equation (A.10) will be used for the first condition. The

second condition requires a definition of an isentropic process:

Pp~7 = constant

This can be linearized and written as

pTSP—yYPp " '6p=0

The result of this, using Equations 2.17 and 2.18 for non-zeroth harmonics (2.21 and 2.22

for the zeroth harmonic), is

E,(s)=0 (A31)

The * st condition also requires a definition of vorticity:

90 dx
This can be linearized as
s 9. 98V,

“ 980 a ox a

The result of this, using Equations 2.19 and 2.20 for non-zeroth harmonics (2.23 and 2.24

for the zeroth harmonic), is
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D.(s)=0 (A.32)

Finally, the inlet condition matrix can be written using Equations A.10, 2.25, A.31 and

A.32 as

:2
:2
:2
:2

[8
0 = N(s)lc (A.33)
1 D
I E !

where

P
[NI.I N, N, Nl.4]=m'-'|—Mz'[l—-5M2 -57M2 ™, ’)M,,]V,(x,-n,s)
2

A.4 Jet Actuator Conditions

The four boundary conditions across a jet actuator are continuity, x momentum, 6

momentum and energy. The continuity equation can be written, as

o, _ om, +P1V1Aj
m o m | pVA

(A.34)

Here, the contro! variable will be introduced as the ratio of injected mass flow to mean

mass flow:

_p;VAis)
u(s)= VA (A.35)

where the physical control will be on the injector area, as indicated by the s dependence.

The x momentum equation is written as
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P, A+p,VLA=PA+pViA+pVIA,

This can be linearized and written as

1 6P dp | 2 6V, 1 6P d6p 206V, V,
T t— + =—— +— +——= +—u(s)
Wx P2 p 2 Mx a: Wx P' pl M: a . Vx

where the following relation was used:

pv; ™,

This can be simplified a bit by using Equations A.34, A.35 and A.2 to become

V.
1 6P 18V, _ 1 6P 1L &V +(7,_1}‘(S) (A.36)

X
X

2 + 2 +
™, P, M, a. M, P M a,

The 6 momentum is similar to the x momentum, but the jet velocity will have no

component in the @ direction:
P,V A=p,VgA

Also, there is no static pressure difference in the 6 direction. The linearization of this is

— (A.37)
p, My a2 p, My a,

The final equation is energy:
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PV, T,A =pV,T,A +p,V,T,A,

ysi

This can be linearized as

8T, &p 1 8v 8T, ép 1 6v, T,
ot = 9P L oV, +—Zu(s)
T, : P, M, a, T, v Py M, a T,

T,
o, _or, 221 lucs) (A.38)
T, T, (T

Now, using A.34 and A.35 with A.2, A.36, A.37 and A.38 with A.7, we get the following

relation:

[ o ! M 0 o]
- -2 -1 5P
Y A,jI 0 M‘ 0 2%
P —
0 1 0 M, | &,
r T, (r-OMT (y-nm,T, 5V
Sty -l M T | e
| 1+ 1M I+-M I+m I+3M _‘.. a _|ku,dnwn,umlm
(oL o Te1 g
P v,
y-lM;z 0 M;' 0 ) V—’—]
P X
- + 5
0 ! 0 am; | 0 | )
r T oomn genmg | |
2y =y v } - 2 T .]
| I+ y M H"!'!M I+oem _]_ u Jka.up.\'lreﬂm -~ T’ ka

(A.39)

or, in matrix notation:
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Ju

Jka,downstream

+b,u(s) (A.40)

L Jka,upsiream
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Appendix B

Elements of V(x,z,8)V™" (X7z,5)

This Appendix expands the elements of the matrix product V(x,,5)V ™' (xy,$) to
be approximated by Taylor series’. These terms are necessary to approximate the end
conditions and the inter-blade row gaps. The matrix V is defined in Equation 2.25.
Section B.l1 shows the elements for non-zeroth harmonics. Section B.2 shows the

elements for the zeroth harmonic.

B.1 Non-Zeroth Harmonics
This appendix will show each term of the matrix product for non-zeroth

harmonics starting with the following definitions:

2
y(s)=n’(l- Mf)+(%+jnMo)

£+jnMa

=——a -
x(s)=——"—

P ¢

The elements are:
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V(x,)V(x;) w1y = h(s)cosh(b+/y(s))

el’.x)Ax

V(x,)V(x,) an = f’-‘y'i)cosh(bdy(s))—

- —h . inh(b+/y(s))
V(x, )V(x;) an = }'(y—(s)(i)Tj(_nZM' cosh(b+/y(s)) + Y(s)(%+JnMa)——Sm 50) (s);(s)
_._lz_”lx_exmu
Y(y(s)-n?)

V(XL)V(xT)"“'” = L'l(”((£+]nM0)COSh(b\[;is_))— M_y(s) Sll‘lh(b—\,y(s)))

Y(ys)~n?) a )
jn(£+jnM,)
a

* ¥(y(s)-n?)

X(5)Ax

e

V(x, )V(x;) a2 =0
V(x )V(x;) 22 = X
V(x )V(x;) o =0
V(x,)V(x;) 42 =0

V(x )V(x;) " as = —y(% + jnM, Yh(s) sinh(b+/y(s))

\y(s)

V(x V() an = —(% + jnM, h(s) BV ()

V¥(s)
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(4 jnMyh(s)
V(x,)V(x;) o =2

()’(S)“nz) ."y(s)
__ﬂf_ x(s)ax
(y(S)-n’)e
jn(3L + jnM,)h(s)
V(x,)V(x;) an =—4 i ( M_cosh(b sr Smh(b\/y(s )
L T) @4y (y(s)—nz) \ cosh(b/y(s) )+( + inM,) ———=— )
JnM( +JnM) o
x(s
=) ¢

V(xL)V(xT) a.4) = YnM h(s )Smh(b\/)’(s )

\y(s)

V(x,)V(x;) "2 =jnM,h(s)s_mD%__ zls))'(.s‘))
- M h(s) sinh(b/ (s))‘
Vx V() __J"__[(_+ e sinh(bys)
L ) 34 = ( (s)— nz) inM ) cosh( \}y(s)) n'M, )
jnM, ( L+ jnM,) .
Go-m) ¢

2
Vx ) V(x) = -{%(—M cosh(bM)+( + jnM )smh(b; y)(s)))
(s

L+ jnM,)?
+-4
(}’(S)—nz)

(¥)Ax
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B.2 Zeroth Harmonic
This appendix will show each term of the matrix product for the zeroth harmonic.

The elements are:

1 = 2
V(XL)V(Xr)—lu.n =5[e"'v' +e Y J

[ o o
V(I,_)V(XT)_'(z.n=5(e"'v' +e asV, )__e '

N ! a-v,’ P
V(x,)V(x;) '(3.|)=2—y(—e i t+e V.)

V(x,)V(x; Y an=0

V(x )V(x;) a2 =0

Ax

-——x

V(xL)V(xT)"(z.z) =e "
V(x)V(x;)'62=0

V(x,)V(x;, )4 =0

ar - Ax BY
V(x)V(xr)a =%(—e"""" +e 9" ]

V(x,)V(x;)'an ==

N |
|
Q
0
< 3
+
3]
1
1]
x|
~—
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v(xL)V(XT)-I(g_J) = %[e"’v. +e ‘“’V..‘]

V(x,)V(x;) 43 =0
V(x, )V(x;) v =0
V(x )V(x;) 2 =0
V(x,)V(x) " 2.0 =0

V(x[_ )V(x-’- )-l(4_4) = e- v,
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Appendix C

State-Space Macrices

This appendix presents examples of the state-space matrices of Chapter 3.
Section C.1 presents the state-space matrices for the model without gaps. Section C.2
presents the state-space matrices for the model including gaps for the non-zeroth
harmonics. Section C.3 presents the state-space matrices for the model including gaps for

the zeroth harmonic.

C.1 Model without Gaps
For this example, a first order Padé approximation will be used for the delays.

First, Equation 3.12, the deviation lag, will be written as

By
“ ¢
5ak=W[Dn D, D, Dk4] 1 +7,Du (C.1)
TE
| 6o ], ,

By
T CTE
Pk = |+—,‘-f‘j[Pu P, P, PH] ~ + TpPkuuk (C2)
TE
Lsa-‘:—l
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where P,; and Dy; are scalars. The other equations used in this sections are the time delay

approximations:
Bw(s) = ejAa"-;ATu - el'Aa 1- %ATBS-}- %ZAT:.SJ (3 6)
B,.(s) = 1+ BAT,s+ AT '

the boundary condition constant transformation:

[ B, |
D CTEk—I
IEk-I E
Co |=Ki| ™' (3.16)
E Plo.“,k
- 5ak—|
[ W
the inlet condition:
[ C, | Uy (5) W 21
ELEI ] uy(s) | - Wy, $3)
= (By =W Py =St +| 0 Prossa + e |, (3.28)
le_"' w”(S) |Tl_‘7up(s) LE] 1 E loss.| 1™ O loss, | |_+I_‘.‘i.'P|'3,J||b| 1
| o, | ﬁ“d(s) 0 |Tl,?D|.4rJ|_lbn
where u;; are found using Equations 3.21, 3.26 and 3.27, and the exit condition:
C?TEA’
1
By =——[un(5) uy(s) wy(s) w()] ™) (3.42)
uy,(s) da,,
uK+I N

where u;; are found using Equation 3.41.
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The state matrix is found by finding the differential equations associated with the
Padé approximation and the time lags, using the time delays from Equation 3.4 and the

first order form of the Padé approximation from Equation 3.6:

(=2 0 0 0 0
ATB
0o Z 0 0 0

C
0 =2 0 0
A, = aTg (C.3)
0 0 O —(rl + an) 0
P

0 0 0 0 —(Ld + an) |

and the rotor frequency, €2, enters in the lag states because if the blade row is a rotor, it is
rotating with respect to the stationary reference frame (s is replaced by s+jn€2). This has
also been done in the delay equations, but the rotor frequency shows up in the complex

constant terms (Equation C.9). From Equations 3.16, C.1 and C.2, we get:

[0 K,.(1,2) K153 0 K,.1,5)]
K, (2,)) 0 0 K, (2,4) 0
B, =| K,(3.1) 0 0 K, (3.4) ) (C.4)
PK(MLD) 0 0 PK(014 0
DKL) 0 0 DJK0L4) 0 |
0 0 0 0 0 T
0 K, (2,2) K, (2,3) 0 K,(2,5)
B,_=|0 K,(3,2) K,(3,3) 0 K,(3,5) (C.5)

0o pP,+P,K (2 P,+P,K(13) 0 P,+P,K.(L5)
0 D,+D,K (2) D,+D,K/(3) 0 D,+D,K.(L5)
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rK,N,(l,l) 0 0 K, (1,4) 0
0 00 0 0
B,=| 0 00 o0 0 (C.6)
0 00 0 0
| 0 00 0 0]
_ 0 -
K, (2,6)
B, = K,(3,6) (C.7)
P, +P, K (1,6)
| D, + D,‘,K,‘(l.6)d
[K,.1(1,6)]
0
B, = 0 (C.8)
0
b 0 =
The output matrices are
[_4_gis0, 0 0 0 O]
ATB
0 %ef“f 0 00
C
C=| o 0 Ltet 00 (C9)
E
0 0 0 1 0
Y 0 0 0 1] -
and if a matrix is defined as
(% 0 0 0 0]
0 e 0 00
E =| 0 0 % 00 (C.10)
0 0 0O 00
| O o 0 0 O]
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then the feed-through matrices are

D, =-E,B,

D,,=-EB,,

D, =-EB,_ (C.11)
D, =-EB,

D,,.=-EB,..

Defining these matrices in Equations 3.47 allows the formation of the state-space

matrices, Equations 3.49, 3.51 and 3.52.

C.2 Model with Gaps for Non-Zeroth Harmonics

For this example, a first order Padé approximation will be used for the delays,
where the delays come from Equation 3.4 and the Padé approximation comes from
Equation 3.6. A summary of equations used in this section are: the time delay

approximations

jag 1 = AT 35+ Y, AT,

B, () = /80u=58T,

= =e R (3.6)
B (s) 1+ AT, s+ Y, AT s
the deviation and pressure loss lags:
oa, = —%Dk.drvk (xLEk’s)v;l (Xrgeys5)®
BTE
A , (3.58)
Y. €TE + 3.,
TE
Laajk-l

and
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P loss, k =

: i Pea Ve (xLEk’s)vzl('xTEk—l's).

the boundary condition transformation:

-

the inlet condition:

|
uy,(s)

Uy ()
“ﬂ(s)
l+n‘ I’(s)
m v, (s)

and the exit condition:

TEK =

T4s7
B,
C ,
Yol +3:'b,
TE
| b |, |
~ T _BLEk
o Crev
Cia P
E. =H,,(s) TR
( 1 P Plo.u.k
v loss .k
" oa
(11100, k=1
i i |y
Wy
5 Wy
(B gy = Wi Py — S1114) + 0 Pm.n-.l
0
e )[“lz(s) Uy (5)  wy(s) ug(s)]
Y

(3.59)
(3.64)
le
& (3.28)
u (3. '
|+H’ Pl '4"] Ib l
I1 st |, 4fJ—lb
CTLK
TEK 3.42
o (3.42)
LuKH

196




The gap approximations will use a first order denominator and a constant

numerator:

_ h(lm)

a,

H, (s)(l,m)

The state matrix is then

AT
-2
AT
-2
AT

—[-r'— + jnQ
P

A, = diag - L+ jn@)]
d

where a, is the pole of the approximation of the matrix H, ,(s).

0 0 0 0 0 1 0000
0 0 0 0 0 01000

0 0 0 0 0 00100

0 0 0 0 0 00010

B - 0 0 0 0 0 000O0O0 1
10 hm,12) h,13) 0 h,(15 0 0 0 0 O
h,(2,1) 0 0 h(24) 0 000 0O
h,(3,1) 0 0 h,(3,4) 0 000O00O
h,(4,1) 0 0 h44) 0 00000
| B (5.1) 0 0 h,(5.4) 0 000 0 O]
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O o0 o0ooc oo o0 oo
= I N N — B B S = S B = N )
©C OO0 o0 o0 o oo
o0 o0oo0co0oo0 o oo
O 0o Cc o oo o0 o oo
P S N~
i\ o
O 0o c oo odN&M TN
((((
O 0O 0 OO0 OO0 0 OO
N S N N
Mmoo o
cocooocooddT vV
I
PN S N S
NN ANA
S oo oo oa T 0N
N’ N’ N’ e
R =
o0 o000 oO0O 0 oo
—_ —
il
<
=]

0 00 0 0 0]
00600 O0O0

0
0

0 00O0O0O

0000 0O

0

0
b, (L) 0 0 h,(1,4 0 0 0 0 0 O

00 0O0O0ODO

0 00O0OPO

0
0

0 000O0OO

0000 OO

0
0

0 00O0O0O0

0

S © O <O

hk+l(l'6)

Bk+ =

Bku+

© O © ©o O

h,(2,6)

h,(3,6)

h,(4,6)
[ 1,(5,6)

Bku =

The output matrices are:
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0 000O0O0ODO
00 0O0O0O0T¢C

/86

[_4
AT

0 00O0O0OO
0 00 O0O00O0

1

0

eiAGI:

0
0

4
ATp

e/86¢

4
T,

0 00 0O

0
00O

G 0 0O

1

0 0O

1

0

0 0

0 0 0O
000O0TO0

00 0O0O0O0O]11

0

and if a matrix is defined as;

S o ocoococooco o o
©Ooococooo oo o
©Ccooc o oo oo oo
S o ocoocooco oo o
Soocooocooo o
SO o ocoo0oooo oo o
©Cooooooco oo
©c0of coocoooo
WV
<
©cf cocoooco o oo
Y]
@
T coocoocoocooo
rﬂ._
I
=

then the feed-through matrices are:
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Defining these matrices in Equations 3.47 allows the formation of the state-space

matrices, Equations 3.49, 3.51 and 3.52.

C.3 Model with Gaps for the Zeroth Harmonic

For this example, a first order Padé approximation will be used for the delays.

First, Equation 3.12, the deviation lag, will be written as

Bu-:

T C )
oo, = T [Dkl D, D, Du] Du:
LE

D

LE )

Similarly, Equation 3.14, the pressure loss lag, will be written as

T

Pui= ﬁ[”u P, P, Pu]

B,
Cur
D,
E.|

The other equations used in this sections are the time delay approximations:

Bw(s) = o/80=8Ty . ,it8 l—VzATBS+%zAT,§s2 (3.6)
B (s) T 1+ %AT,s+ Y, AT Y '

the gap delays:

B, (s)=e"™B, (s)
Ce(5)=e'C, (5)
Dye(s)=e ™D, (s)’
E (s)=e"™E, (5)

(3.73)
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the leading edge boundary condition constant transformation:

LE

LE

e O

LE
1
(s + ?)PI

{¢ARY

i (s + —lr-)aa ]

BTEI:
CTEk+l
DTEk+I
..ETEIrH
the inlet condition:
[ éLEl ] u:,(s)
2 L] o |-
LEI
- ( —w Pﬂ"
Plu.\'.\'.l ull(s) nl_T;u,,(S) LEI 117 loss,)
- 6a' %“d(s)

and the exit condition:

TEK

=K a

sllul)+ sy, | + !

l+st

0 !

T+sT

?TEK

1 ‘ Ergy
u“(s)[u,z(s) u,(8)  u,(s) u,s(s)] 50!,(.
_uK+I_
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S
P, J'b,
Dl.4r l_lbl

(3.80)

(3.83)

u,,(3.28)
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The state matrix is found by finding the differential equations associated with the

Padé approximation and the time lags, using the time constants from Equations 3.4 and

3.74:
-
aTg
-2
A7;C
A;E
A, =diag| T
-2
T
-2
-2
-2
| 57k, |
[ 0 KTE,‘(I,2) KTEI:(I'3) 0 KTE‘,(I,4)1
Klﬂ(?.,l) 0 0 KLE,‘(Z,S) 0
Kw,‘(3.l) 0 0 KLE,‘(3,5) 0
P“Km(l,l) 0 0 Pleljk(l,S) 0
B,,1:S)=|D,K,u(LI) 0 0 DK,15 0
K, (LD 0 0 K,Ek(l,S) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 |
i 0 0 0 0 ]
0 KLEk(2,2) KLEk(2,3) K,_Ek(2,4)
0 Ku_-,‘(3.2) KLEk(3’3) K,_Ek(3,4)
0 P2k+Plel£k(l'2) PM+PMKLE,‘(I,3) P“ +P”‘Klﬂ(l,4)
Bk(:,6:9)= 0 Du +leKl£k(l’2) D.u"'leKu;'k(lv3) D4k+D|kK,£k(l,4)
0 KLEk(l'z) K,_Ek(l,3) KLEk(l,4)
KTEk-I(Z'l) 0 0 0
Ko (3.1 0 0 0
_KTEk—I(4'l) 0 0 0 |
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0 00O
0 00O
0 00O
0 00O
0 00O
0 00O

0
0
0
0
0
0

0
0
0

0
0
0
0
0

0
Ky (24) 0 0 0 0

K, ,(33) 0 K, ,34) 00 00
K, (44) 0 0 0 0

0
0
0
0
0
0

000 00O
00000
000 00O
0 00 00O
000O00O0
0 00 O0OC0
0 00 0O

0 0 0 0 0 Ky(Ll) 0 0 0
0 0000

K1 (2,2) KTEk—I(2'3) 0

Bk+
K71 (3,2)
K5 (42) K (43) 0

0
0
0
0

P

©C O O O O O

K7g (1,5)
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Bku+ =

©c ©O © © ©

0
Krei1(2,5)
K7g1(3.5)
Krg.1(4,5)

Bku =

The output matrices are



1
1
0
C, = diag 1 E, =diag| 0
1
1
1
1

then the feed-through matrices are

D, =-E,B,
D, =-ESB,,
D, =-E,B,
D, =-EB,,
Dkw _EI:Blun-

Defining these matrices in Equations 3.47 allows the formation of the state-space

matrices, Equations 3.49, 3.51 and 3.52.
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Appendix D

LQG Free Parameter Selection

This appendix presents the supporting figures for the LQG free parameter
selection in Chapter 4. For each sensor/actuator pair, six combinations of parameters are

shown: ¢=[0.1,1], ¢=[0.01,1,100].
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Compensated Bode Plot (ka=2,ks=1,¢=0.461,n=1)
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Figure D.1 - Comp. Sens. (dashed) with Constraint (solid-c) and Sens. (dotted) with
Constraint (solid), ¢ = .1, g = .01, (k. k) = (2,1).

Compensated Bode Plot (ka=2,ks=1,4=0.461,n=1)
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Compensated Bode Plot (ka=2,ks=1,4=0.461,n=1)
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Compensated Bode Plot (ka=2,ks=1,0=0.461,n=1)
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Compensated Bode Plot (ka=2,ks=8,¢=0.461,n=1)
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Figure D.7 - Comp. Sens. (dashed) with Constraint (solid-c) and Sens. (dotted) with
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Compensated Bode Plot (ka=2,ks=8,¢=0.461,n=1)
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Compensated Bode Plot (ka=2,ks=8,$=0.461,n=1)
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Constraint (solid), ¢ = 1, g =100, (k,. k) = (2,8).

—
o-

211



Compensated Bode Plo! (ka=5,ks=6,9=0.461,n=1)
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Compensated Bode Plot (ka=5,ks=6,$=0.461,n=1)
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Compensated Bode Plot (ka=5,ks=6,$=0.461,n=1)

o
o
T

n
o
T

A R A R R O

T T

o
T

o
(=]
L)

Pos. Freq. Magnitude (dB)

1

F-S
—
o2

n

10 10 10

S
o

N
o
T

o
T

R
=]
;

Neg. Freq. Magnitude (dB)

-
o

N

10" 10° 10
Frequency (Normalized by Q)

Figure D.16 - Comp. Sens. (dashed) with Constraint (solid-c) and Sens. (dotted) with
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Compensated Bode Plot (ka=8,ks=3,¢=0.461,n=1)

N &
o O
T T

!

T
(=2 =)
T T

Pos. Freq. Magnitude (dB)
(=]

-t
(=]
'y
o
-
o
-
o

N b
o o

/
1 1

A D
o o
T T

,
[4
.
L L

Neg. Freq. Magnitude (dB)
(=)

10 10 10'
Frequency (Normalized by Q)

Figure D.19 - Comp. Sens. (dashed) with Constraint (solid-c) and Sens. (dotted) with
Constraint (solid), ¢ =.1,¢= .01, (k ,k,) = (8,3).
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Compensated Bode Plot (ka=8,ks=3,¢=0.461,n=1)
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Compensated Bode Plot (ka=8,ks=3,$=0.461,n=1)
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Appendix E

Control Configuration Cost Results

This appendix presents the cost results of the configuration studies in Chapter 5.
The first three tables of each case were arrived at using the LQG design procedure
described in Chapter 4. The last two tables of each case were arrived at using the H_
design procedure described in Chapter 4. No shading indicates values less than 20. Light
shading indicates values between 20 and 100, and dark shading indicates values greater
than 100. The black entries indicate configurations which were not able to meet the
constraints in the H_ design procedure. The black entries do not indicate infinite cost,
rather, if the constraints were relaxed enough to enable the configuration to meet the

specifications, then the values of the black entries would not necessarily be high.
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Table E. 1 - Nominal case LQG costs (n=1, ¢= .461, Measure SP/P).
Sensor Location - k,
1 2 3 4 5 6 7 8

a

4427| 46.63| 4839| 5280 5551 70.76| 8913[335
3643 ~

1 1444] 1531] 1597] 17.53] 1851] 23.82] 3022]

2 993| 10.58] 11.07| 12.22| 12.94| 16.76] 21.38]
Actuator 3 1056] 11.28] 11.81] 13.03| 13.79| 17.82] 22.67
Location 4 I518| 1622| 1694| 18.63| 19.67| 25.26] 31.93[
K 5 15.76| 16.70| 1740| 19.11| 20.17| 2590 32.84[

6

7

8

g EE]

R AT AT SRS T

Table E.2 - Nominal case state costs for LQG design (n=1, ¢= .461, Measure 6P/P).
Sensor Location - k_
1 2 3 4 5 6 7 8

a

9.75] 10.84] 11.35] 12.39| 13.00| 15.84| 18.48] 37.25
5.71 6.22 6.571 1724 7.69 9.521 11.40| 23.19
8.23 8.31 874 9.08 974 11.43| 12.78] 23.69

1 7.03 1.75 8.15 8.95 9.46| 11.70| 13.94| 27.97

2 5.74 6.40 6.76| 7.45 7.89 9.771 11.64] 23.76
Actuator 3 5.62 6.32 6.70f 7.40 7.85 9.721 11.52] 23.49
Location 4 6.56] 7.43 7.86] 8.65 9.16) 11.31] 13.32| 26.76
k 5 6.01 6.70f 7.08 7.81 8.271 10.23| 12.13| 24.71

6

7

8

Table E.3 - Nominal case control costs for LQG design (n=1, ¢=.461, Measure SP/P).
Sensor Location -
1 2 3 4 5 6 7 8

1 5.07 5.51 5.70 6.05 6.28 7.32 8.33] 16.82
2 242 2.64 2.74 2.90 3.01 348 3.94 8.13
Actuator 3 3.05 3.32 3.44 3.65 3.79 44] 5.02|] 10.19
Location 4 6.13 6.63 6.86 7.31 7.60 8.931 10.27{ 20.33
k, 5 7.19 7.75 8.02 8.55 8.90] 1048 12.07] 23.92
6 28711 30.76] 31.75| 33.90] 35.28] 41.88] 48.65| 94.41
7 19.16] 20.57| 21.26| 22.70] 23.63| 28.02| 32.44| 63.48
8 [:200: 82080 Eoa Vsl 428.02 1T 1i02610716612.94 [ 1184.7
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Table E.4 - Nominal case state costs for H_ design (n=1, ¢= .461, Measure 6P/P).
Sensor Location - &,
1 2 3 4 5 6 7 8

a

17.96|;

Byt i

5341 6.66] 7.86] 10.77] 1432 85.27
544 6.77| 7.79| 10.36| 13.70] 80.87

34 21
S o

1 - 855] 9.93] 9.68] 10.87] 11.38] 14.19]

2 6.27f 7.93| 854 846| 9.58] 9.99| 12.78
Actuator 3 5.74 7.38 8.94 8.21 9.87 990{ 14.05] 3¢
Lecation 4 8.58 7.56 8.98] 12.46] 1298| 12.37| 20.94
k 5 6.38] 7.16] 835| 11.49| 1546 25.55[il1333

6

7

8

Table E.5 - Nominal case control costs for H_, design (n=1, ¢= .461, Measure dFP/P).
Sensor Location - £,
1 2 3 4 5 6 7 8

1 - 5.06] 6.40[ 538] 6.03] 621 8.17[:1210.9]
2 2.10 2.38 2.89 2.44 2.75 2.83 3.75:
Actuator 3 2.60 3.02 3.31 3.08 3.67 3.62
Location 4 6.57 8.14 8.76
k, 5
6
7
8
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Table E.6 - Case 2 LQG costs (n=0, ¢=.461, Measurc 6P/P).
Sensor Location - k,
| 2 3 4 5 6 7 8

a

15.30| 16.42| 27.45| 41.15| 39.60] 32.71| 24.31| 20.59]
16.86] 15.05| 25.02| 3659 34.71] 28.17| 21.08| 18.04
1434 15.69| 2439| 31.36| 27.42| 21.59| 17.04| 15.72

1 36.07| 39.19] 38.64] 44.12| 52.14| 64.77] 65.55] 63.22
2 2458 2693| 26.69| 32.34| 39.42| 48.84| 48.57| 46.18
Actuator 3 | 22.59| 24.86] 2598 3747 4747 56.08] 52.37| 47.50]
Location 4 19.90| 21.81| 28.90] 49.90| 59.88] 61.97| 51.60] 43.56
k 5 16.43| 17.89| 27.48] 47.50] 53.20[ 50.56| 39.64| 32.61
6
7
8

Table E.7 - Case 2 state costs for LQG design (n=0, ¢= .461, Measure SP/P).
Sensor Location - &,
1 2 3 4 5 6 7 8

ua

6.21 7.09|] 13.33] 20.20| 18.62| 14.18 9.73 8.17
5.46 6.421 12.06| 18.02] 16.56] 12.43 8.67 7.31
5.67 6.821 11.67| 15.10] 12.71 9.38 7.13 6.59

1 16.36] 19.85] 20.24] 24.48] 30.01| 37.11| 36.35] 33.79
2 12.77| 1590 16.47| 21.59| 27.28| 33.29| 31.74| 2886
Actuator 3 10.12] 13.00[ 14.70| 22.90| 23.39| 33.66| 29.84| 25.72
Location 4 779 991| 14.65| 26.58[ 31.75| 31.50| 24.65| 19.69
k 5 5841 7.23| 12.87| 2342| 25.92| 2334| 16.95| 13.20
6
7
8

Table E.8 - Case 2 control costs for LQG design (n=0, ¢= .461, Measure 6P/P).
Sensor Location - k,
| 2 3 4 5 6 7 8

a

7.09 7.777 12,10 16.141 14521 11.12 8.32 7.30
6.54 7.16] 10991 14.19] 12.51 9.43 7.14 6.43
6.61 7.35]1 10.36] 11.77 9.69 7.55 6.50 6.50

1 10.69] 12.66] 1261[ 1601 20.08] 2432] 23.18] 20.87
2 5.10 6.11| 6.23] 8.40[ 1063 12.61| 11.72| 10.34
Actuator 3 6.01| 7.13| 8.10| 12.86| 16.17] 17.78| 15.37| 12.01
Location 4 728 835| 1245| 21.24| 2390| 2229 17.04| 13.41
k s | 728] 820[ 13.18] 21.10] 21.91| 18.74| 13.70| 10.77
6
7
8
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Table E.9 - Case 2 state costs for H_ design (n=0, ¢= .461, Measure SP/P).
Sensor Location - k,

1 2 3 4 5 6 7 8
1 32.54]
2 28.83| 26.01
Actuator 3 30.12| 28.22
Location 4 30.73] 29.55
k| 5 25.32| 25.44| 2523
6 1828 19.42| 40.24| 31.35| 29.17]
7 15.77| 18.66| 19.42| 35.89| 13.84] 19.95
8 8.40[ 12.57| 15.12| 17.05| 16.36| 17.11| 9.12] 7.35

Table E. 10 - Case 2 control costs for H_, design (n=0, ¢= 461, Measure SP/P).

Sensor Location - k,

1 2 3 4 5 6 7 8

1 21.38

2 9.25] 849

Actuator 3 13.40| 11.94
Location 4 20.23| 17.88
k, 5 1895 20.26| 17.38
6 12.73] 15.49[ 92.46| 62.88] 49.53

7 9.97[ 12.00] 14.80| 81.08] 13.04] 3455

8 14.44] 10.30] 994 10.70] 11.63| 25.66] 6.70] 6.44
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Table E. 11 - Case 3 LQG costs (n=2, ¢= .461, Measure SP/P).
Sensor Location - k_
1 2 3 4 5 6 7 8

a

17.821 18.01| 18.34] 18.62| 18.99( 20.09] 2049 26.23
13221 13.25] 13.62] 13.84] 14.25] 15.27) 15.65] 21.03
2841 28.38| 28.84| 29.04| 29.59| 30.89| 3140| 37.97

1 10.69] 10.80] 11.15] 11.40[ 11.79] 12.81] 13.18] 18.50

2 | 784 798| 832 8.56| 894 993 10.29] 15.52
Actuator 3 8.54] 869 9.04] 9.28] 9.66] 10.65| I1.00] 16.25
Location 4 1091 11.17] I11.53| 11.78] 12.17] 13.20| 13.53| 18.80
k 5 11.19] 11.30| 11.63| 11.87| 1226 13.26] 13.65| 19.03

6

7

8

Table E. 12 - Case 3 state costs for LQG design (n=2, ¢= .461, Measure SP/P).
Sensor Location - k,
1 2 3 4 5 6 7 8

a

6.601 691 7201 7.42 7761 8561 8.85] 12.06
4.61 4.68 5.01 5.18 5.56| 6.26| 6.56 9.46
9.251 9.19] 9.58 9.701 10.19] 11.13| 11.57] 15.54

1 4991 520 551 5.70] 6.06] 6.73] 701 9.62

2 428 454 483 501 537 598 6231 867
Actuator 3 436| 4.64| 495 5.12| 549| 6.11| 6.34| 8.83
Location 4 465 5.05| 538 555 594 663| 686 9.40
k 5 468| 4.89| 5.19| 5.37| 5.73] 6.39] 667| 942

6

7

8

Table E. 13 - Case 3 control costs for LQG design (n=2, ¢= .461, Measure 6P/P).
Sensor Location - k,
1 2 3 4 5 6 7 8

1.16 1.22 1.19 1.17 1.16 1.06 1.02 64

.68 72 1 .69 .68 .62 .58 .34

Actuator 81 .86 .84 .82 .82 .74 1 43
Location 1.25 1.29 1.27 1.24 1.23 1.13 1.10 .70

1.44 1.50 1.48 1.46 1.45 1.34 1.29 .84
3.24 3.31 3.29 3.26 3.25 3.08 3.02 2.24

2.18] 226 2.23 221 2201 2.06 1.98 1.37
9971 10.04| 10.00 9.97 9.97 9.741 9.71 8.47

0 N O AW -
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Table E. 14 - Case 3 state costs for H_ design (n=2, ¢= .461, Measure 6P/P).
Sensor Location - k,
1 2 3 4 5 6 7

8
39.34[ 37.84] 37.57] 37.62[ 37.94] 3851 38.09] 37.52

a

36.82] 37.08| 38.01| 3881| 40.59| 47.04| 45.94| 4694
34.30| 34.55| 3544 36.17| 37.43| 41.63| 40.00| 41.87
33.66| 33.92| 3480[ 35.53| 36.80| 41.04| 39.85] 62.10

I
2 | 36.22] 38.05| 37.43| 37.33| 37.49| 38.08] 37.72| 3721
Actiator 3 | 35.87| 36.19| 38.45| 38.06] 37.72| 38.33| 3821 37.67
Location 4 36.02| 36.29| 37.43[ 40.14| 38.50| 39.20[ 39.01| 38.81
k 5 35.54| 35.79| 36.70] 37.51| 39.93| 39.96] 40.11| 39.91
6
7
8

Table E. 15 - Case 3 control costs for H_ design (n=2, ¢= .461, Measure 6P/P).
Sensor Location - k,

a

1.00 1.01 1.01 1.02 1.03 1.0 1.08 1.06
52 .53 .53 .54 .53 .55 .55 .62
5.74 6.38 6.00] 6.12 5.67 5.67 5.68( 14.11

I 2 3 4 5 6 7 8
1 71 21 21| 20| 21 21 21 .68
2 10| 10| 10| .10 10| 10| 10| 25
Actuator 3 13| 13| 14| 13| 13| 13| 13| 2
Location 4 241 24| 24| 35| 26| 25| 25| 31
k 5 291 29| 29| 30| 31| 31 30 32
6
7
8
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Table E. 16 - Case 4 LQG costs (n=1, ¢= .4506, Measure SP/P).
Sensor Location - k,
1 2 3 4 5 6 7 8

49.61 Hm 66 54

a

1 33.02] 35.53| 38.69] 47.64

2 20.19] 21.82] 23.861 29.46
Actuator 3 [ 23.11[ 25.08] 2749| 33.92
Location 4 41.38| 45.02 49.12| 6045
k 5 46.11

6

7

8

Table E. 17 - Case 4 state costs for LQG design (n=1, ¢= .4506, Measure 6P/P).
Sensor Location - k,
| 2 3 4 5 6 7 8

1048 12.72| 14.18| 16.77| 18.32| 26.78| 31.57| 8224
2579 31.61| 34.66] 4042| 43.71| 63.51| 72.68|19634
1004 12.83| 14.43| 17.06| 18.67| 26.77| 30.89| 79.77
2648 29.43| 32.11| 3558| 38.57| 54.51| 53.90] f

a

1 1081 12.68f 13.98| 16.60( 18.13| 26.88] 32.77| 82.24

2 861 10.22| 11.32] 13.45| 14.71| 21.81] 26.58| 67.51
Actuator 3 850 1031]| 11.50{ 13.66] 14.95[ 22.10[ 26.58] 67.52]
Location 4 11.241 13.93] 15.44| 18.17| 19.87| 29.19] 34.63] 87.99
k 5

6

7

8

Table E. 18 - Case 4 control costs for LQG design (n=1, ¢= .4506, Measure § P/P).
Sensor Location - k,
1 2 3 4 5 6 7 8

1396] 1601| 17.21] 1993] 2145] 31.77] 39.24].10802
631 7.28| 785 9.09] 9.79| 1447| 17.88| 50.17
Actuator 862| 986 1062 1233 13.29] 19.60] 2546] 66.76
Location 19.03| 22.61| 24.27| 28.23| 3045 4542| 36.70] 150:62

5530 69.00] 183.07]

0 N A W —
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Table E. 19 - Case 4 state costs for H_ design (n=1, ¢= 4506, Measure 6P/P).
Sensor Location - &,
1 2 3 4 5 6 7 8

Actuator
Location
k

d

21.29] 139.76 1K

Table E.20 - Case 4 control costs for H_ design (n=1, ¢= .4506, Measure SP/P).
Sensor Location - k,

a

1 2 3 4 5 6 7 8
2
Actuator 3
Location 4
k 5
6
7
8
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Table E. 21 - Case 5 LQG costs (n=1, ¢= .2644, Measure 6P/P).
Sensor Location - &,

1 2 3 4 5 6 7 3
44991 38.20| 37.76| 89.94
47.25
93.10
95.86
56.74

112,15,

Frs 04X

Actuator

Location
k

o

00 N A bW —

Table E.22 - Case 5 state costs for LQG design (n=1, ¢= .2644, Measure 6P/P).
Sensor Location - &,
! 2 3 4 5 6 7 8

13.251 10.12| 10.67| 1299 1590 13.73 13.36| 22.11
13.46{ 10.16( 10.70| 13.00| 16.03| 13.71( 13.35| 22.57
11711 10.52{ 1191 14.60| 19.02] 1546 13.95] 20.58

1 2030 15.781 16.51| 19.75] 2396| 20.72| 20.22| 32.95

2 17.68] 13.70] 14.25f 16.95| 20.55| 17.68( 17.31| 28.53
Actuator 3 16.50| 12.72] 13.28] 15.89| 1931 16.65| 16.27| 2684
Location 4 20.58] 16.24| 16.99| 20.23| 24.32| 21.27{ 20.72| 33.15
k, 5 18.10| 14.26] 14.92| 17.80| 21.51] 18.77| 18.27| 29.56

6

7

8

Table E.23 - Case 5 control costs for LQG design (n=1, ¢= .2644, Measure 0P/P).
Sensor Location - &,
1 2 3 4 5 6 7 8

a

25361 22.35] 23.11| 26.14] 30.10] 2696 26.29] 37.15
69.17] 67.51] 97.11

66.2 57.33] 59.31

I |317.951272.551:282.00| 32045 371.33| 328.90( 321.13| 466.60

2 [T 1289 11.84| 1223| 13.70| 1564| 14.17| 13.78] 1895
Actuator 3 1555 14.09] 1455| 1635| 18.71| 1690] 16.45] 2281
Location 4 [~4512| 3939] 40.71| 4610 53.17| 4747 4635| 6606
k s [4962[ 4308 4452| 5047| 58.26| 51.96] 5074| 72.67

6

7

8
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Table E.24 - Case 5 state costs for H_ design (n=1, ¢ = .2644, Measure SP/P).
Sensor Location - k,

a

1028 11.53]| 13.19] 19.32| 36.98[ 26.41| 25.20
10.41] 1i1.40| 12.90] 18.79| 35.63{ 25.33| 34.56[-139:
881| 9.64] 1092| 16.01| 30.56] 21.13| 28.48

1 2 3 4 5 6 7 8

1 - 1633] 17.13 21.81] 23.00] 201

2 | 13.68] 15.12]| 1615 21.24| 22.66|.184.72
Actuator 3 | 12.58] I14.11]| 16.26 20.80| 22.20[135.02
Location 4 24.26 31.20] 34.76| 166:39
k s | 12.33] 1290 15.04] 21.96] 41.28] 31.58| 36.96| 99.

6

7

8

Table E.25 - Case 5 control costs for H_ design (n=1, ¢ = .2644, Measure 6P/P).
Sensor Location - k,

a

1 2 3 4 5 6 7 8
2
Actuator 3
Location 4
k 5
6
7
8
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Table E. 26 - Case 6 LQG costs (n=1, ¢=.3898, Measure 6P/P).
Sensor Location - k,

1 2 3 4 5 6 7 8

1 13.07] 13.51] 2072 2399 32.65[:#i928] 23.62] 40.40

2 817| 845 13.06| 1500| 20.74| 75.53] 14.96| 25.59
Actuator 3 -:-_’ TR WTLE A FELT0720
Location 4 ;;‘;ﬂ'-‘ﬁw" 2 %
k, 5

6

7 2 ~

8 506t *’”ﬁ

o ) e

¢ fiy

Table E.27 - Case 6 state costs for LQG design (n=1, ¢= .3898, Measure §P/P).
Sensor Location - k,

1 2 3 4 5 6 7 8
1 3.82[ 4.00] 583 592] 8.69] 11.24] 6.56] 8.71
2 3.00] 3.15| 4.64| 468 702 9.11] 5.29] 7.01
Actuator 3 946 O.8I| 1031| I1.75| 13.75| 32.21| 992 1294
Location 4 10.47| 1099| 12.27| 14.43] 18.62| 37.31| 13.33| 17.17
k, 5 1697 17.33] 21.31| 20.80| 27.56|  49.58] 19.84] 26.09
6 5.71] 5.76] 6.45| 7.38| 7.84| 18.24] 5.50| 7.56
7 455 4.70[ 7.0I| 6.67| 9.67| 1239 7.20| 9.61
8 5.14| 5.18| 7.56| 7.04| 9.34| 13.52| 6.62| 8388

Table E.28 - Case 6 control costs for LQG design (n=1, ¢=.3898, Measure 6P/P).
Sensor Location - k,

1 2 3 4 5 6 7 8

1 7.68 7.981 10.09| 10.31| 14.05} 22.26] 11.02| 14.04

2 3.99 4.15 5. 20 5.31 7.251 1191 5.69 7.23
Location 4 |[206611" 286
k, 5 ) 7

6 3‘:-: ; ki %25’2’;?0 92 ",

: BRIy .;‘-,3’:1 24
7 69. 86 72 51| 94.49] 96. 46
8 .;552 27 : ;&vm : o4 b %fx'uw {W/Mz-‘& g "‘ﬁ%‘i;‘lfrfa‘ «l G5k vf 'Jif $ia iy
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Table E.29 - Case 6 state costs for H_ design (n=1, ¢= .3898, Measure 6P/P).
Sensor Location - &,

o

1 2 3 4 5 6 7 8

1 — —
2
Actuator 3
Location 4
k 5
6
7
8

Table E.30 - Case 6 control costs for H_ design (n=1, ¢=.3898 Measure 6F/P).
Sensor Location - &,

a

1 2 3 4 5 6 7 8
1 10.35 .
2 4.20
Actuator 3
Location 4
k 5
6
7
8
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|
2
Actuator 3
Location 4
k 5
6
7
8

a

Table E.31 - Case 7 LQG costs (n=1, ¢= 461, Use §Vy/a in costs).

Sensor Location - k,

1 2 3 4 5 6
14.08] 1497 15.64] 17.27] 18.28] 23.96
1020 10.93[ 11.47| 12.76| 13.55| 17.98
1194 12.79] 13.42| 14.89] 15.79| 20.81| 26.75
1821| 19.42] 2030 2237| 23.65| 30.77
19.02] 20.19] 21.08] 23.21| 24.52
——LW_WW'W

Table E.32 - Case 7 state costs for LQG design (n=1, ¢= .461, Use 6V y/a in costs).

1

2

Actuator 3
Location 4
k, 5
6

7

8

Table E.33
1

2

Actuator 3
Location 4
k, 5
6

7

8

Sensor Location - k,

1 2 3 4 5 6 7 8
6.08] 6.77] 7.17] 8.03] 856] I11.13] 13.70[ 29.12
5.32| 6.02| 641| 7.21| 7.70] 10.04| 12.33| 26.73
6.26| 7.08] 754 842 897| 11.54| 14.00| 29.82
8.83| 9.88| 1044 11.55| 12.26] 15.54| 18.65| 238.54
8.55| 9.48| 10.02] 11.10] 11.77| 14.93| 17.99] 37.27]
15.89| 17.37| 18.19| 19.89] 20.92| 26.0I| 30.88] 61.89
9.14| 9.96| 10.47| 1159 12291 1565| 19.02] 38.87
980 1034 10.84] 11.76| 12.49] 15.60| 18.48| 36.03

- Case 7 control costs for LQG design (n=1, ¢= .461, Use 6V y/a in costs).
Sensor Location - k,

1 2 3 4 5 6 7 8
5.05 5.48 5.64 5.94 6.15 7.11 8.04| 16.42
244 2.66 2.73 2.86 2.96 3.37 3.78 7.88
3.02 3.28 3.38 3.55 3.67 4.22 4.78 9.88
5.95 6.43 6.62 6.98 7.24 8.40 9.59|1 19.28
8.97 7.52 7.75 8.20 8.51 991 11.33| 22.86

27.231 29.22]1 36.10] 31.99| 33.24] 39.18| 45.26| 88.66
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Table E.34 - Case 7 state costs for H_ design (n=1, ¢= .461, Use 6Vy/a in costs).
Sensor Location - &,
1 2 3 4 5 6 7 8

] 8.34] 9.73[ 9.80[ 11.52] 11.63] 15.64[

2 7.16]  9.33] 9.30| 9.58| 11.43| 11.43 -
Actuator 3 7.72] 10.01T 12.46| 10.70| 13.74| 13.i1
Location 4 912 11.35{ 14.16| 20.37| 21.44| 19.52 B ARE]
k, s [ 913 1167| 1436] 2041| 2778 QRN 4717 | Boch

6 il

7 9.85| 12.46| 15.08] 21.19

8 848 10.62| 12.92| 18.08

Table E.35 - Case 7 control costs for H_ design (n=1, ¢= 461, Use éVy/a in costs).
Sensor Location - k,
1 2 3 4 5 6 7 8

1 - 506] 640] 538] 6.03] 6.21

2 2.10] 2.38] 289 244 275 283
Actuator 3 2.60] 3.02] 331 3.08] 367| 362
Location 4 767 597 657| 8.141 8.76] 8.19
k, 5 7.66| 767 8.09] 9.92

6

7

8

18.36| 22.35| 23.78] 29.26

2 X0 57 fu
4 T G e A o
2 U G IR A A S S
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Table E. 36 - Case 8 LQG costs (n=1, ¢= .461, Measure 6P/P, Vj=0).
Sensor Location - k,
1 2 3 4 5 6 7 8
1

10.12| 10.86| 11.37| 1242 13.11| 17.04
18.81| 19.97] 20.87| 22.76| 24.03| 3001
8.67] 9.39] 9.901 1091| 11.56| 15.02

I [797[ 18.69] 19.22] 2085 21.94] 28.29] 36.19[.138.39

2 26.53| 48.95| 50.55| 54.79| 57.55| 73.68 3A8125
Actuator 3 ﬂ'.i x mm 5‘ Lre-sni AJ-mx '}J ks B v.*:zﬁ"'» 2 '; etz
Location 4 17.65| 18.69| 19.35| 2098 22.03| 23.46 3671
k, s | 5293 55.56| 57.62] 62.48| 65.60| 8399 10584]:395:

° e

7

8

Table E.37 - Case 8 state costs for LQG design (n=1, ¢= 461, Measure 6P/P, V;=0).
Sensor Location - &,
1 2 3 4 5 6 7 8

2.62 3.10f 3.3l 3.59 3.84 5.04 6.10) 12.69
3.05 3.55 3.831 4.17 4.50] 5.80 691 13.55
3461 4.07] 439 485 5201 6.63 7.86] 15.91

! 864] 906 923 991 1039] 1293] I1581| 32.03

2 [1203] 13.03| 1327| 14.05| 14.65| 18.04] 21.60| 42.68
Actuator 3 [FEZON04| 3B | EARATI 5039 155:64 | 18174 20539 | 405743
Location 4 33| 487| 499] 528] 550 706 862 1804
k, 5 503| 3064| 585 601| 627| 751 8.54| 1764

6

7

8

Table E.38 - Case 8 control costs for LQG design (n=1, ¢= .461, Measure 6P/P, Vi=0).
Sensor Location - k,
1 2 3 4 5 6 7 8

1 667 7.13| 731 7.74] 802] 936 10.77] 2L.75
2 2881| 30.60| 31.54| 33.54| 3491| 41.59| 4855| 94.19
Actuator 3 [H22AGIZHMSASI A6 MO0 014 0 i6Y 013913
Location 4 10.76 12.01 34.75
k, 5 41.67| 44.14| 4547 4850 5054
6 560] 607] 625] 662] 689 55T
7 1298 13.85| 1428 1517 15.82 43.03
8 3.47| 374 3.87| 4.09| 4.26 11.41
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1
2
Actuator 3
Location 4
k 5
6
7
8

|
2
Actuator 3
Location 4
k 5
6
7
8

u

a

Table E.39 - Case 8 state costs for H_ design (n=1, ¢= .461, Measure 6P/P, V;=0).
Sensor Location - k,
4

1

2

3

5

6

7 8

Table E.40 - Case 8 control costs for H_ design (n=1, ¢= .461, Measure SP/P, VJ:O).
Sensor Location - k
4

2

21.11

3

k)

5

6

7 8

5.79[2359.0

664 764 10.41
1524 1857 19.56] 24.35
350 4.12| 444 5.40
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Table E.41 - Case 9 LQG costs (n=1, ¢= .461, Measure 6P/P)).
Sensor Location - k,
1 2 3 4

43.51

1 1322 11.19] 21.10[ 15.64

2 7.38] 6.29| 17.66] 8.67
Actuator 3 851| 7.25] 2049 10.05
Location 4 14.821 12.61] 36.11] 17.65
k, 5 17.56] 14.86] 42.96] 20.86]

6 63.00| 53.03[F5332| 75.06

7

8

51.80

&% i

; % 5
B

Table E.42 - Case 9 state costs for LQG design (n=1, ¢= .461, Measure 6Py/Py).
Sensor Location - k,
1 2 3 4 5 6 7 8

a

3.861 3.90] 8.63] 4.93 6.04] 20.76{ 3.87 3.86
3.89( 3.67 8.39] 4.62 5.721 1545 3.69| 3.78
599 4.87]| 15.021 7.37 8721 3030 4.601 4.29

1 2.19] 211 447] 256| 3.21| 822[ 2.14[ 221

2 1.89] 1.79] 3.69| 2.14| 2.70| 6.56|] 1.84[ 1.89
Actuator 3 1.70] 1.65| 340| 1.99| 248 640 1.69[ 1.74]
Location 4 1.55] 1.59| 3.08] 1.89] 235| 6.74] 162| 1.63
k 5 2.10| 2.07| 441| 254 3.17] 9.09] 211| 2.15

6

7

8

Table E.43 - Case 9 control costs for LQG design (n=1, ¢= .461, Measure 6Py/P)).
Sensor Location - k,
1 2 3 4 5 6 7 8

1 7.39 6.82] 15.70 8.65 6.52 6.83

2 3.44 3.20 7.36 4.06 3.06 3.20
Actuator 3 4.44 4.12 944 5.21 3.94 4.13
Location 4 9.19 849 19.64] 10.79 8.10 8.51
k, 5 10.64 9.80| 22.63] 12.43 9.37 9.84

6 42.10] 38.58| 89.43]| 4896 36.82| 38.70

7 27.81" 25.54] 59.45]| 32.50

8 P00 %%?sw <t o) ki 2
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Table E.44 - Case 9 state costs for H_ design (n=1, ¢= .461, Measure 6P/Py).
Sensor Location - k,

a

1 2 3 4 5 6 7 8
| , -
2
Actuator 3
Location 4
k 5
6
7
3

Table E.45 - Case 9 control costs for H_, design (n=1, ¢= .461, Measure 6P /P ).
Sensor Location - &,

u

I 2 3 4 5 6 7 8
1 , —
2
Actuator 3
Location 4
k 5
6
7
8
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Actuator
Location

k

a

1
2
Actuator 3
Location 4
k 5
6
7
8

1
2
Actuator 3
Location 4
k 5
6
7
8

a

d

Table E.46 - Case 10 LQG costs (n=1, ¢=.461, Measure §Vy/a).
Sensor Location - k,

00 3 N & W N -

1 2 3 4 5 6 7 8
1485] 15.42] 16.05] 16.76 20.35
10.25| 10.70| I1L.18] I1.71 1431
10.90| 11.39] 11.91| 12.47 15.21
1564 16.30] 17.00[ 17.78 21.58
16.21| 16.83] 17.52| 1830 22.19
45.30[ 46.77| 4845| 50.43 60.71
30.53

Table E.47 - Case 10 state costs for LQG design (n=1, ¢= .461, Measure 6Vy/a).
Sensor Location - k_

1 2 3 4 5 6 7 8
732 7.50[ 7.82[ 8.17] 855 9.0I] 9.57] 10.12
600 6.17| 648 680 7.12| 7.51| 798 845
587 605| 638 6.71| 7.04] 742 7.89|] 8.35
6.84| 71.07| 7143| 782] 8.19| 864 9.18] 9.70
6.30] 6.47| 6.77| 7.11| 17.46| 171.87| 836| 8.84
10.26] 10.51| 10.83| 11.28] 11.81] 12.39| 13.10] 13.78
6.00] 6.11| 6.31| 6.60] 694 7.32| 7.79| 8.23
842 843 7.36| 7.16 7.38| 7.72| 80I| 8.35

Table E.48 - Case 10 control costs for LQG design (n=1, ¢= .461, Measure §Vy/a).
Sensor Location - k,

1 2 3 4 5 6 7 8
5.24 5.37 5.46 5.59 5.72 5.91 6.14 6.40
2.51 2.57 2.62 2.68 2.74 2.83 2.93 3.05
3.15 3.23 3.29 3.38 3.46 3.57 3.71 3.87
6.31 6.44 6.58 6.76 6.93 7.18 7.49 7.83
7.39 7.54 7.71 7.92 8.13 8.43 8.81 9.20
29.44) 30.00] 30.61] 31.40| 32.26] 33.50] 35.08] 36.72
19.67]1 20.06] 20.46| 20.99| 21.56] 22.37]| 2341 24.48
:wﬂﬁz DT :4 a = M ST i “*:k e
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Table E.49 - Case 10 state costs for H_ design (n=1, ¢= .461, Measure 6V y/a).
Sensor Location - &,
1 2 3 4 5 6 7 8

ua

735] 6.08] 6.28| 688 741| 21.66
5.33] 5.69| 601 642 6.74| 7.16

541| 5./0] 5.74] 6.00] 642|] 6.80

1 9.19] 9.30[ 9.68] 10.02] 10.59[ 12.51] 1231

2 % 6.77] 822 866 9.07| 9.63| 10.54[ 1133
Actuator 3 5.75] 6.25| 6.64] 925 988| 10.64| 11.88] 12.89
Location 4 9.12[ 7.26] 690 747 14.67| 16.12| 18.40] 2041
k 5

6

7

8

Table E. 50 - Case 10 control costs for H_ design (n=1, ¢= .461, Measure 6V y/a).
Sensor Location - k,
1 2 3 4 5 6 7 8

1 - 5.36] 5.29] 5.36] 541 S56I1] 601 642

2 2.17| 241 245 249 259 292 3.00
Actuator 3 262 272 282 332 345 363 407| 423
Location 4 830 6.27| 5.79| 596 8831 951| 1052 11.47
k, 5 9.12] 690| 6.80| 7.12| 7.63| 1443| 17.45| 1993

6 , — \ —

7

8
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Appendix F

State-Space Approximation Code

This appendix presents the code which builds the state-space matrices.
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%

% init

%

clear

format campact

load blade data -ascii;

n = -1 % Harmonic
nmeas = 1 % Stat. Pres, Density, Axial Vel, Circ Vel,

[1;1; 0; 0] % Control Vector

0

after control

[M,Nblades] = size(blade data);
Nblades

ple = blade data(l,:);
vle = blade data(2,:);
ale = blade data(3,:);
rle = blade data(4,:);
ttlrd = blade data(5,:
ptind = blade data(6, :
psind = blade data(7,:
utlnd = blade data(8,:
uxlnd = blade data(9, :
ulnd = blade data(10, :
alnd = blade data(11l,:)
mrl = blade data(12,:);
betalm = blade_data(13,:
amega = blade_data(14, :);

Ne N e Ny we ws we

)
)
)
)
)
)

pte = blade data(15, :)
vte = blade data(1e6, :)
ate = blade data(17, :)
rte = blade data(l8, :);

N Ne ws S

tt2nd = blade_data(19,:);
pt2nd = blade data(20,:);
ps2nd = blade data(21,:);
ut2nd = blade_data(22,:);
wnd = blade data(23,:);
uw2nd = blade data(24,:);
aznd = blade data(25,:);
mr2 = blade_data(26, :);
betaZm = blade data(27,:);

urownd = blade data(28,:);

stagg = blade_data(29, :);
pdla = blade data(30,:);
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pdlm = blade data(31,:);
pdaa = blade data(32,:);
pdam = blade data(33,:);
xle = blade data(34,:);
xte = blade _data(35, :);
chord = blade data(36, :);
taup = blade data(37,1);
taud = blade data(37,2);

xle(1l,Nblades+]1)=xte(1l,Nblades) ;
delx = xle(l,2:Nblades+1)-xle(1l, 1l:Nblades);

gam = 1.4;
gaml = 0.2;

md=1;

taup = taup*chord.*cos (stagg) . /uxind;
taud = taud*chord. *cos(stagg) . /uxind; ;
j = sart(-1);

tslndl = ttind(1)/(l+gaml*mrl(1)"2);
sphi = mrl(1l)/max(urownd(1:2))*sqrt(tsindl};
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This MATLAB routine sets up the state space matrices to
approximate the PDE solution of the high speed axial
campressor WITHOUT gaps. It uses 2nd order Pade
approximations for the time delays in the blade passages.

options
n - Harmonic
ac - Measure after control flag, otherwise before
nmeas Quantity to measure (l-Pres,2-Dens,3-Vx,4-Vt)
b Control Vector
nPade - Pade approximation order (2 or 3)

0 P 9P J I 0P IR OP oP P 0P of oP

nPade = 2 % Pade approximation order (2 or 3)
incamp = 0; % Incampressible approx (dtb=dtc=.0001)

nPpm = 1;

elseif (nPade == 3)
apde = 11;

= -1;

g

nPade;
2*nPade;
3*nPade;
apde-1;

’

2REREE

if (incomp == 1)
alnd = 1000*alnd;
aznd = 1000*a2nd;

ed

gam = 1.4;

gaml = 0.2;

Ak = zeros (apde,apde) ;

Bk = zercs(apde,5); Bkm = Bk; Bkp = Bk;
Ck = zeros(5,apde);

Dk = zeros(5,5); Dkm = Dk; Dkp = Dk;
Bku = zeros(apde,1);

Dku = zeros(5,1);

Cky = zeros(1,5);

Dtuu = zeros (Nblades+1,Nblades+1) ;
qll=0;

Kp = zeros(3,3);
Ip = zeros(3,1);
M = zeros(3,1);
Pp = zeros(1,4);
Do = zeros(1,4);
N = zeros(3,1);
Pu = 0;
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Du = 0;
Z1lr = zeros(1,4);

for k=1:Nblades

dtb = delx(k)/((ale(k)-vle(k))*cos(stagg(k)));

ejtb = exp(-n*j* (urownd (k) *dtb-tan (stagg (k) ) *delx (k) ) ) ;
dtc = delx(k)/((vlie(k)+ale(k)) *cos(stagg(k)));

ejtc = exp(-n*j* (urownd (k) *dtc+tan(stagg (k) ) *delx(k))) ;
dte = delx(k)/ (vlie(k)*cos(stagg(k)));

ejte = exp(-n*j* (urownd (k) *dte+tan (stagg (k) ) *delx (k) ) ) ;

Kp;

EU'UgL“N
28T 2%

Pu;

Du;

Z1lm = Z1r;

k = k+1;

if (k<Nblades+1)
Interm Matrices

+k

else
Kn = zeros(3,3);
In = zeros(3,1);

Mm = zeros(3,1);
Pn = zeros(l,4);
Dn = zeros(l,4);
Nm = zeros(3,1);
= 0;

zlrmn = zeros(1,4);

3

TR
o

-

PEEETEEE
FEEEE

™
[
[~
]
g

if (nPade == 2)

Ak(1:2,1:2) = [0 1 ; -12/(dtb*dtb) -6/dtb];
Ak(3:4,3:4) = [0 1 ; -12/(dtc*dtc) -6/dtc);
Ak(5:6,5:6) = [0 1 ; -12/(3te*dte) -6/dte];

elseif (nPade == 3)
Ak(1:3,1:3) = [010 ;001 ; -120/dtb™3 -60/dtb"2 -12/dtb];
Ak(4:6,4:6) = [010 ;001 ; -120/dtc”3 -60/dtc™2 -12/dtc];
Ak(7:9,7:9) = [010 ;001 ; -120/dte”3 -60/dte~2 -12/dte];
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erd

Ak (nP,nP) = -(1/taup(k)+j*n*urownd(k));
Ak (nV,nV) = -(1/taud(k)+j*n*urownd(k)) ;
Bkm(nC,2) = K(2,2);

Bkm(nC,3) = K(2,3);

Bkm(nC,5) = Mm(2);

Bkm(nE,2) = K(3,2);

Bkm(nE,3) = K(3,3);

Bkm(ngE,5) = Mn(3);

Bkm(nP,2) = P(2)+P(1)*K(1,2);

Bkm(nP,3) = P(3)+P(1)*K(1,3);

Bkm(nP,5) = P(4)+P(1)*Mm(1);

Bkm(nV,2) = D(2)+D(1)*K(1,2);

Bkm(nV,3) = D(3)+D(1)*K(1,3);

Bkm(nV,5) = D(4)+D(1)*Mm(1);

Bk(nB,2) = Kp(1,2);
Bk(nB,3) = Kp(1,3);
Bk(nB,5) = M(1);

Bk(nC,1) = K(2,1);

Bk{nC,4) = L(2);

BK{nE,1) = K(3,1);

Bk(nE,4) = L(3);

Bk (nP, 1) P(1)*K(1,1);

Bk (nP,4) P(1)*L(1);
Bk(nV,1) = D(1)*K(1,1);
Bk(nV,4) = D(1)*L(1);
Bkp(nB,1) = Kp(l,1);
Bkp(nB,4) = Ip(l);
Bku(nB,1) = N(1);

Bku(nC,1) = Nm(2);

Bku(nE, 1) Nm(3);

Bku (nP, 1) Pum+P(1) *Nm(1) ;
Bku(nVv, 1) Dum+D(1) *Nm(1) ;

if (nPade =
Ck(1,2)

2)
-12/dtb*ejtb;

‘ck(2,4) -12/dtc*ejtc;

Ck(3,6) -12/dte*ejte;
elseif (nPade == 3)

Ck(1,1:3) [240/dtb"*3 0 24/dtb] *ejtb;

Ck(2,4:6) [240/dtc™3 0 24/dtc] *ejtc;

Ck(3,7:9) [240/dte™3 0 24/dte] *ejte;
end
Ck(4,nP)
Ck(5,nV)
Cky(1,1)
Cky(1,2)
Cky(1,3)
Cky(1,4)
Cky(1,5)

E = diag([ejtb ejtc ejte 0 0});
Dkm = [Bkm(nB,:) ; Bxm(nC,:) ; Bkm(nE,:) ; zeros(size(Bkm(1:2,:)))];

1;
1;

Zlrm(1l,1)*K(1,1);
Z1r(1,2)+Z1r(1,1)*Kp(1,2);
Z1r(1,3)+Z1r(1,1) *Kp(1,3);

Zlrm(1,1)*L(1);
Z21lr(1,4)+Z21r(1,1)*M(1);
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dP 0P dP o0 0P of 0P g0 of

a0 of ogf

oP dP df

nPpm*E*Dkm;

nPpM*E*DK;

FE*R3

= nPpm*E*Dkp;

Dku = [Bku(nB,1) ; Bku(nC,1); Bku(ng,1) ; 0 ; 0];

Dku = nPpm*E*Dku;
if (k<Nblades)
Dtuu(k+1,k+1) = Z1r(1,1)*N(1);
if (after_control == 1)
Dtuu (k+1,k+1) = Dtuu(k+1,k+1)+qll;

end
end
kkl = (k-1)*apde+l;
kk2 = kkl+apde-1;
kk3 = (k-1)*5+1;
kkd4 = kk3+4;
A tilde

At (kk1:kk2,kkl:kk2) = Ak;

B tilde
Bt (kk1:kk2,kk3:kk4) = Bk;
if (k1)
Bt (klk1:kk2,kk3-5:kkd4-5) = Bkm;
end
if (k<Nblades)
Bt (kk1:kk2,kk3+5:kk4+5) = Bkp;
ed
Bu tilde
if (k<Nblades)
Btu(kkl:kk2,k+1) = [zeros(nPade-1,1)
Bku(nB, 1)
zeros (apde-nPade, 1) ] ;
end
if(k>1)
Btu(kkl:kk2,k) = [zeros (nPade*2-1,1)
Bku (nC, 1)
zexros (nPade-1, 1)
Bku(ng, 1)
Bku (nP, 1)
Bku(nv,1)];
end
C tilde

Ct(kk3:kk4,kk] :kk2) = Ck;
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(Bk(nB,:) ; Bk(nC,:) ; BK(nE,:) ; zeros(size(Bk(1:2,:)))];

[Bkp(nB, :) ; Bkp(nC,:) ; BKp(nE,:) ; zeros(size(Bkp(1l:2,:)))];



Cy tilde

0P dP 9P

if (k<Nblades)
Cty(k+1,kk3:kkd4) = [0 Cky(1,2) Cky(1,3) 0 Cky(1,5)];
end
if (k>1)
Cty(k,kk3:kk4) = [Cky(1,1) O O Cky(1,4) 0);
end

%
% D tilde
E
Dt (kk3:kk4,kk3:kk4) = eye(size(Dk))-Dk;
if (k1)
Dt (kk3 :kk4,kk3-5:kk4-5) = -Dkm;
erd
if (k<Nblades)
Dt (kk3:kk4,kk3+5:kkd4+5) = -Dkp;
ad
%
$ Du tilde
%
if (k<Nblades)
Dtu(kk3:kk4,k+1) = [ Dku(l,1); 0; 0; 0; 0];
end
if (k1)
Dtu(kk3:kk4,k) = [ 0; Dku(2,1); Dku(3,1); 0; 0];
end
ad

End Conditions

IDt = inv(Dt);

A = At + Bt*IDt*Ct;
B = Btu + Bt*IDt*Dtu;
C = Cty*IDt*Ct;

D = Dtuu+Cty*IDt*Dtu;
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Interm Matrices
Intermediate Matrices

oP dP df oIP

Vinw = eye(4);
% BUIILD T and J MATRIX

M2 = mr2(k-1);

amtr5 = 1/ (l+gaml*M2*M2) ;

Gm = diag([1l ; tt2nd(k-1)*qumtr5 ; pt2nd(k-1)*grmtr5 ; ...
1/ (l+tan(beta2m(k-1))"2)]);

Mx = w2nd(k-1)/a2nd(k-1) ;
Mt = ut2nd(k-1)/a2nd(k-1);
= [011/Mx0; 1 -1 ((gam-1)*Mx) ((gam-1)*Mt) ; ...

(1-.5*M2*M2) (.S5*gam*M2*M2) (gam*Mx) (gam*Mt) ; ...
0 0 Mt/Mx™2 -1/MK];

T = Qmn*T;

J=[011Mx0; 1/(gam*Mx*Mx) O 1/Mx O ; 010 2/Mt ;
amtr5 -qrmtr5 (gam-1) *Mx*qrmtr5 (gam-1) *Mt*qrmtr5];

JI = inv(J);

JIb = JI*kb;

vom = [0 O O 0];
if rmeas <= 4
vim(nmmeas) = 1;
elseif mmeas == 5
Mr = M2;
vm = [1-.5*Mr*2 .5*gam*Mr”~2 gam*Mx gam*Mt]/(1+(gam-1)/2*Mr~2);
ad
qll = vim*JIbb(:,1j;

% BUILD ML MATRIX
ML = mrl(k);

grmtr5 = 1/ (l+gaml*M1*Ml) ;
Gm = diag([1 ; ttlnd(k)*qmtr5 ; ptlnd(k)*qmtr5));

Mx = uxind(k)/alnd (k) ;

Mt = utlnd(k)/alrnd(k);

ML=(011/Mx0; 1 -1 ((gam-1)*Mx) ((gam-1)*Mt) ; ...
(1-.5*M1*M1) (.S5*gam*M1*Ml) (gam*Mx) (gam*Mt)];

ML = Qn*ML*VinwV;

% BUILD MP MATRIX

ML = mrl(k);

Ut = utlnd(k);
Ux = uwxxInd(k);
Mx = Ux/alnd(k);
Mt = Ut/alnd(k);

gmtr5 = 1/(1+(gam-1)/2*M1*M1) ;
pdlak = pdla(k)/(1l+tan(betalm(k))"2);
P31 = -amega (k) * (pt1lnd (k) *gqrmtr5* (1-.5*M1*M1) -pslnd (k) ) +. ..
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(ptlnd (k) -pslnd (k) ) *pdlm(k) *.5*M1 ;

P32 = -amega (k) *ptlnd (k) *qrmtr5* .5*gam*M1*Ml1-. . .
(ptlnd (k) -psind (k) ) *pdlm(k) *.5*M1 ;
P33 = -amega (k) *ptlnd (k) *qrmtr5*gam*Mx-. . .

(ptlnd(k)-psind(k) ) * (-
pdlak*Mt/ (Mx*Mx) +pdlm(k) *ux1nd (k) /ulnd(k) ) ;
P34 = -amega (k) *ptlnd(k) *qrmtrS*gam*Mt-. . .

(ptind (k) -pslnd (k) ) * (pdlak/Mx+pdlm (k) *ut1nd (k) /ulnd(k) ) ;
MP = [P31 P32 P33 P34]*Vinvv;

% BUILD MD MATRIX

pdaak = pdaa(k)/(l+tan(betalm(k))"2);
MD = pdam(k)*[-.5*M1 .5*Ml wxind(k)/ulnd(k) utlnd(k)/ulnd(k)]+...
pdaak* [0 0 -Mt/(Mx*Mx) 1/Mx];
MD = -MD*Vinw; % This is because MVC was defined to be negative
% with repect to how I am using it.

% BUILD MB2ipl MATRIX

Ml = vte(k-1)/ate(k-1);

armtrS = 1/ (1+(gam-1) /2*M1*M1) ;

Gm = diag([1 ; tt2nd(k-1)*gmmtr5S ; gam*pte{k-1)*qmtrS ; 1});

MB2ipl = [(1-1/M1) (1+1/Ml) 1 0 ; (gam-1)*(1-Ml) (gam-1)*(1+M1) -1 O ;

(1-M1) (1+M1) MI*M1/2 0 ; 0 0 O 1];
MB2ipl = Gm*MB2ipl;

% BUILD MB2i MATRIX

Ml = vile(k)/ale(k);

amtrS = 1/(1+(gam-1) /2*M1*M1) ;

Gm = diag([1 ; ttlnd(k)*qumtr5 ; gam*ple(k)*qmtr5]);

MB2i = [(1-1/M1) (1+1/M1) 1 ; (gam-1)*(1-Ml) (gam-1)*(1+M1) -1 : ...
(1-M1) (1+M1) MI*M1/2];

MB2i = Gm*MB2i;

% BUILD Kn, Ln, Mm, Pn, Dn MATRICES

inv(T) *MB2ip1;
inv(MB2i,) *ML*Z;
eye(3);

V(:Il) = -U(:ll);
U(:,1) = [-1;0;0];

< QN
i nn

W = inv(V) *U;
X = inv(V) *inv(MB2:) ;
Y = X*ML*JIhb;

Kn = W(1:3,1:3);
Mm = W(1:3,4);

Ln = X(1:3,3);

Pn = 1/taup(k)*MP*inv(T)*MB2ipl;
Dn = 1/taud(k)*MD*inv(T) *MB2ipl;
Nm = Y;
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1/taup (k) *MP*JIbb;
1/taud (k) *MD*JTkb;

Z1lrmnm = vrm*Z;
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%

% End Conditions

%

k=Nblades+1;

Exit Matrices;

dtb = delx{Nblades)/ ((ale(Nblades)-vle (Nblades) ) *cos (stagg (Nblades)) ) ;
ejthb = exp(-n*j*(urownd(Nblades) *dtb-
tan (stagg (Nblades) ) *delx (Nblades) ) ) ;

Kkl = Nblades*apde+l;
kk2 = kkl1+3;
kk3 = Nblades*5+1;
kk4 = kk3;
At (kk1:kk2,kkl:kk2) = [0 0 0 -pp(5);

100 -pp(4);

010 -pp(3);

001 -pp(2)];
Bt (kk1:kk2,kk3-5:kk3-1) = [0 z1(5) 22(5) 0 2z3(5);

0 z1(4) z2(4) 0 z3(4);

0 z1(3) 2z2(3) 0 z3(3);

0 z1(2) z2(2) 0 z3(2)1;
Btu(kkl:kk2,Nblades+1l) = [z4(5) ; z24(4) ; z4(3) ; 24(2)];
Ct(kk3,kkl:kk2) = [0O0O01]);
Dt (kk3,kk3) = [11; Feye
Dt (kk3,kk3-5:kk3-1) = -{0 z1(1) 2z2(1) 0 z3(1)1; %-Dk
Dtu (kk3,Nblades+l) = [z4(1)]):

Bt (kkl-apde+nB-1,kk3) = [1];
Dt (kk3-5,kk3) = -[ejtb]*nPmm; %$-Dk

if (after_control == 1)
Dtuu (Nblades+1,Nblades+1) = gll;
ad
Cty(1l:Nblades, kk3) = zeros(Nblades,1);
viimm = (0 0 0 0};
if meas <= 4
vm (nmeas) = 1;
elseif mmeas ==
Mr = mr2(Nblades);
Mx = w2nd(Nblades) /a2nd (Nblades) ;
Mt = ut2nd(Nblades) /a2nd (Nblades) ;
vrm = [1-.5*Mr~2 .5*gam*Mr"2 gam*Mx gam*Mt]/ (1l+(gam-1)/2*Mr"2);
ed
Cty (Nblades+1,kk3) = vrm*Y(:,1);
Cty(Nblades+1,kk3-4) = vim*Y(:,2);
Cty(Nblades+1,kk3-3) = vim*Y(:,3);
Cty (Nblades+1, kk3-1) vim*Y (:,4);

Inlet_Matrices;
dtc = delx(1l)/((vlie(l)+ale(l))*cos(stagg(l)));
ejtc = exp(-n*j* (urownd(1) *dtc+tan(stagg(l)) *delx(1)));
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dte = delx(1)/(vle(l)*cos(stagg(l)));
ejte = exp(-n*j* (urownd (1) *dte+tan(stagg(l))*delx(1)));

kkl = Nblades*apde+5;

kk2 = kkl1+3;
kk3 = Nblades*5+2;
kkd = kk3+42;
At (kk1l:kk2,kkl:kk2) = [0 1 0 0;
c 0 1 0;
0 0 0 1;
-pp(5) -pp(4) -pp(3) -pp(2)];
Bt (kk2,1:5) = [1 00 -wl3 0];
Btu(kk2,1) = [-s11);

Ct(kk3:kk3+1,kkl:kk2) = [z1(5) z1(4) z1(3) z1l(2);
z2(5) z2(4) z2(3) z2(2)];
(z3(5) z3(4) 23(3) 23(2)]/taup(l);
[z4(5) z4(4) z4(3) z4(2)]/taud(1);

At (rlP,k]Cl:k](Z)
At (nV, kk1:kk2)

$eye
%-Dk

Feye
%-Dk

$eye
$-Dk

Ct (kk3+2,kkl:kk2) = [z5(5) 25(4) 25(3) 25(2)];

Dt (kk3,kk3) = [1];

Dt (kk3,1:5) = -[z1(1) 0 0 (-z1(1)*wl3+w23) 0];
Dtu(kk3,1l) = [ -21(1)*s1l+s21 1;

Dt (kk3+1,kk3+1) = [1];

Dt (kk3+41,1:5) = -[22(1) 0 0 (-z2(1)*wl3+w33) 0];
Dtu(kk3+1,1) = [ -z2(1)*s1l+s31 1;

Bt (nP,1:5) = [23(1) 0 0 -2z3(1)*wl3 0] /taup(1);
Btu(nP,1l) = { -z3(1) *sll+rijlc ]/taup(l);
Bt (nv,1:5) = [z4(1) 0 0 -z4(1)*wl3 0]/taud (1) ;
Btu(nv,1) = [ -z4 (1) *sll+dijlec ]/taud(1);
Dt (kk3+2,kk3+2) = (1]1;

Dt (kk3+2,1:5) = -[25(1) 0 0 (-2z5(1)*wl3 )y 0];

Dtu (kk3+2,1) = [ -z5(1) *s11 1;

Bt (nC,kk3) = [1);

Bt (nE,kk3+1) = [1);

Bt (nE, kk3+2) = [0};

Dt(2,kk3) = -[ejtc] *nPpm; %-Dk
Dt (3,kk3+1) = - [ejte] *nPpm; %-Dk

if (after control == 1)
Dtuu(l,1l) = gll;

aed

Cty(1l,kk4) = 1;
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%
% Exit_Matrices
%

% BUIID T and J MATRIX

M2 = mx2(k-1);

aqrmtr5 = 1/(1+(gam-1) /2*M2*M2) ;

Gmn = diag(([1 ; tt2nd(k-1)*gmmtr5 ; pt2nd(k-1)*qrmtrs ;

1/ (1+tan(beta2m(k-1))"2)]);

Mx = w2nd(k-1) /a2nd(k-1);

Mt = ut2nd(k-1)/a2nd(k-1);

T=([011/Mx0; 1 -1 ((gam-1)*Mx) ((gam-1)*Mt) ; ..
(1-.5*2*M2) (.5*gam*M2*M2) (gam*Mx) (gam*Mt) ; ...
0 0 Mt/Mx"2 -1/Mx];

T = Gm*T;

J [011/M™M:0; 1/(gam*Mx*Mx) 0 1/Mx 0 ; 01 0 2/Mt ;
armtr5 -gmtr5 (gam-1) *Mx*qrmtr5 (gam-1) *Mt*qrmtrS];
JI = an(J),'
JIbb = JI*kb;
vim = [0 O O 0];
if rmeas <= 4

vim(meas) = 1;
elseif mmeas == 5

Mr = M2;

vim = [1-.5*Mr"2 .S5*gam*Mr"2 gam*Mx gam*Mt]/(1+(gam-1)/2*Mr"2);
erd

gll = vom*JIkb(:,1);

% BUILD MB2ipl MATRIX

Ml = vte(k-1)/ate(k-1);

agmtr5 = 1/(1+(gam-1) /2*M1*M1) ;

Gmn = diag([1 ; tt2nd(k-1)*qumtr5 ; gam*pte(k-1)*qmtr5 ; 1]);

MB2ipl = [{1-1/M1) (1+1/Ml) 1 O ; (gam-1)*(1-Ml) (gam-1)*(1l+Ml) -1 O ;

(1-M1) (1+M1) MI*M1/2 0 ; 0 0 O 1);
MB2ipl = Gn*MB2ipl;

% BUILD extra MATRICES

Y = inv(T)*MB2ipl;
a = aznd(k-1);
md = 1;

if (n ~= 0)
t0 = 1-Mx*Mx;
cn = [j 0 0 0};
kk = xe/t0;
aw [0 O gam 0;0 0 0 -gam*n*Mx] ;
Yy = n*n* (t0-Mt*Mt) ;
ry = sqrt(y);
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-2*n*Mt ;

-2;

kk*ry;

.S*Kk/ry*yp;

- .25*kk/ry*3*yp"2+.5*kk/ry*ypp:
.375*kk/ry"5*yp~3-. 75*kk/xy"*3*yp*ypPD;
~15/16*kk/xy~T*yp 4+9/4*kk/xy~5*yp " 2*ypp-. 715*kk/ry"3*ypp"2;
cosh(z);

sinh(z);

SzZ;

Ccz*zp;

sz*zp"2+Ccz*Zpp;
cz*zp"3+3*sz*zZp*Zpp+CZ*Zppp;
sz*zp"4+6*cz*zp"2*zpp+3*sz*zpp"2+4*sz*zp*zpm+cz*zgpp;
z*fp-f*zp;

z*fpp-£*zpp;

z* fppp+2zp* fpp-fp* zpp-£* 2pPD;

z* fpppp+2*Zp* fppp-2* fp* Zppp- £ * ZPPep;
Z*gp-2*g*Zp;

z*gpp-gp* ZP-2*g*ZpPp;

z*gppp-3*gp* Zpp-2*g* 200p;
z*hp-3*h*zp;

z*hpp-2*hp*zp-3*h*zpp;

2*qp-4*q*Zp;

[o,...

”e@gaﬁ§§%@g§gamﬂa§§gaN§%

coshw

(cz*zp"4+6*sz*zp"2*zpp+3*cz*zm"2+4*cz*zp*zpm+sz*ng:p) /24, ...
(sz*Zp"3+3*Ccz*Zp*Zpp+SZ* Zppp) /6, ...
(cz*zp™2+sz*Zpp) /2, - - -
sz*zZp, ...
cz 1:

sinhbryw = kk*[ r/z"5/24, ...

a/z"4/6, ...

h/z”3/2, ...

g/z"2,...

f/z 1;

convw = diag([0, (rnd/a)*4, j* (xnd/a)*3, - (rmd/a) *2, -j* (xnd/a) A1)
agw(2,:) = gw(2,:)+n*Mt*agw(l, :); .
pp = -(an*Y(:,1) *coshw+conv (gw*Y ( :, 1) , sinhbryw) ) *corvw;

o = pp(2:6); .
z1 = (an*Y(:,2)*coshw+conv (gw*Y(:,2) , Sinhbryw) ) *convw;
z1l = z1(2:6); .
22 = (am*Y(:,3)*coshw+conv (gw*¥(:,3) , Sinhbryw) ) *convw;
z2 = 22(2:6); _
z3 = (an*Y(:,4) *coshw+cornv (gw*V i ,4) , sinhbryw) ) *convw;
z3 = 23(2:6); _
24 = (an*JIbb*coshw+conv (gw*JIhb, sinhbryw)) *Convw;
z4 = 24(2:6);

z1l = z1/pp(1);

z2 = z2/pp(l);

z3 = z3/pp(1);

z4 = z4/pp(1);
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e = pp/rp(l);

z1(2:5) = z1(2:5)-pp(2:5)*21(1);
z2(2:5) = 22(2:5)-pp(2:5)*22(1);
z3(2:5) = 23(2:5)-pp(2:5)*23(1);
z4(2:5) = 24(2:5)pp(2:5)*24(1);

elseif (n == 0)
kkl = Vplen*ps2nd(k-1) / (a2nd (k-1) "2*mdotex) ;
= (gam+l)/(2*gam) ;
[kkl 00 0];
= [kk2 -1 -1 -1);
taul abs (xe) / (a-ux1nd (1)) ;
tau?2 = -abs(xe)/(a+uxind(1));
tau3 = -abs(xe)/ (uxInd(1));

etl = [taul"3/6 taul”2/2 taul 1);
et2 = [tau2”3/6 tau272/2 tau? 1];
et3 = [tau3"3/6 tau3"2/2 tau3d 1];

= [gamgam 0 0;1 1 01;-1 10 0;0 01 0};
’IGS Ts*G;
TGc = Tc*G;
vteamp(l, :) = TGs(1l)*[etl 0]+TGc(1l)*[0 etl);
vteamp (2, :) = TGs(2)*[et2 0]+TGc(2)*[0 et2];
vtemp(3,:) = TGs(3)*[et3 0]+TGc(3)*[0 et3];
vtamp(4,:) = 'I'Gs(4) [et3 0]+TGc(4)*[0 et3];

vtamp = vtemp. '
VvGYr = vtemp* (G\[Y JIbl);
vtenp = vtenp.';

P = -VGYr(:,1).';
zl = vGYr(:,2).';
z2 = vGYr(:,3).';
z3 = vGYr(:,4)."';
z4 = vGYr(:,5).';
z1l = z1/pp(1);
z2 = z2/pp(1);
z3 = z3/pp(l);
z4 = z4/pp(1);
e = pp/pp(1);

z1(2:5) = z1(2:5)-pp(2:5)*z1(1);
z2(2:5) = 22(2:5)-pp(2:5)*22(1);

z3(2:5) = z3(2:5)-pp(2:5)*z3(1);
z4(2:5) = 2z4(2:5)-pp(2:5)*24(1);
ad

256



%
% Inlet Matrices
%

clear Q pp zl1 22 23 z4 25
% BUILD ML MATRIX

Ml = mrl(l);

gmtrs = 1/(1+(gam-1) /2*M1*ML) ;

Gm = diag([1 ; ttlnd(1)*gmmtr5 ; ptlnd(1)*qrmtr5]);

Mx = uxind(1l)/alnd(1);

Mt = utlnd(1l)/alnd(1);

ML=([011/Mx0; 1 -1 ((gam-1)*Mx) ((gam-1)*Mt) ; ...
(1-.5Mm*M1) (.5*gam*M1*M1l) (gam*Mx) (gam*Mt)];

ML = Gm*ML;

=[011/Mx0; 1/(gam*Mx*Mx) O 1/Mx 0 ; 010 2/Mt ; ...
grmtr5 -grmtrS (gam-1) *Mx*qrmtr5 (gam-1) *Mt*qrmtr5];
if (Mt == 0)
J(3,4) = 10000.;
disp(‘ok*)
ed
JI = inv(J);
JIlkb = JI*kb;
vim = [0 0 O 0];
if nmeas <= 4
v (mmeas) = 1;
elseif mmeas == 5
Mr = Ml;
vim = [1-.5*Mr"2 .5*gam*Mr"2 gam*Mx gam*Mt]/ (1+(gam-1)/2*Mr"2);
end
gll = vim*JIhb(:,1);

% BUILD MP MATRIX

ML = mrl(l);

Mx = uxind(1)/alnd(1);

Mt = utlnd(1l)/alnd(1);

aqmtr5 = 1/(1+(gam-1) /2*M1*M1) ;

pdlak = pdla(l)/(l+tan(betalm(l))"2);

P31 = -amega(l)* (ptlnd (1) *qrmtr5* (1-.5*M1L*M1) -pslnd(1) ) +...
(pt1lnd (1) -pslnd (1) ) *pdlm(1) *.5*M1;

P32 = -amega(l) *ptlnd(1l) *qrmtr5*.5*gam*M1*Ml1-. ..
(ptlnd (1) -psind(1) ) *pdlm(1) *.5*M1;

P33 = -amega(l) *ptlnd (1) *qrmtrS5*gam*Mx-. . .
(ptlnd(1) -psind(1) ) * (-

pdlak*Mt/ (Mx*Mx) +pdlm(1) *ux1lnd (1) /ulnd(1) ) ;

P34 = -amega(l) *ptlnd (1) *qrmtr5*gam*Mt-. . .
(ptlnd(1)-psind (1)) * (pdlak/Mx+pdlm(1) *utlnd (1) /ulnd(1)) ;

MP = [P31 P32 P33 P34);

% BUILD MD MATRIX
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pdaak = pdaa(l)/(l+tan(betalm(1l))"2);

MD = pdam(1)*[-.5*M1 .5*Ml uxind(1l)/ulnd(1l) utlnd(1l)/ulnd(1)]+...
pdaak* [0 0 -Mt/ (Mx*Mx) 1/Mx];

% BUILD MB2i MATRIX

Ml = vlie(l)/ale(l);
armtr5 = 1/ (1+(gam-1) /2*M1*M1) ;

Gn = diag([1 ; ttlnd(1l)*qrmtr5 ; gam*ple(l)*qrmtr5]);
MB2i = [(1-1/M1) (1+1/M1) 1 ; (gam-1)*(1-Ml) (gam-1)*(1+Ml) -1 ; ...

(1-M1) (1+M1) MLI*ML/2];
MB2i = Gm*MB2i;

% BUILD extra MATRICES

X = inv(MB2i)*ML;
W = inv(MB2i);
wl3 = W(1,3);
w23 = W(2,3);

w33 = W(3,3);

S = X*JIkb;

sll = S(1,1);

s21 = S§(2,1);

s31 = S(3,1);

pij = MP*JIkb;

pijlc = pij(1,1);

dij = MD*JIbb;
dijlc = dij(1,1);

md = 1;
a = alnd(1);

% BUILD coefficients

if (n ~= 0)

1-Mx*Mx;

-xi/t0;

[gam* (1+rmd*Mx*Mx/t0) O
(1+rmd*Mx*Mx/t0) O

-md*Mx/t0 0
0 -n);

2588

<
]

n*n* (t0-Mt*Mt) ;
= sqgrt(y);

-2*n*Mt;

_2'-

kk*ry;

S*KK/xry*yp;

*CRELE:

:

-3/t0* [gam*rnd*Mx; rnd*Mx; -rnd; 0] ;

-.25*kk/xry"3*yp"2+.5*kk/ry*ypp;
.375*Kk/xy"S*yp~3-.75*kk/xy"3*yp*ypp:
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-15/16*kk/xry"7*yp™4+9/4*kk/ry"5*yp 2 *ypp- . 75*kk/ry"3*ypr’ 2;
cosh(z);

sinh(z);

SzZ;

cz*zp;

SZ*Zp"2+CZz*Zpp;

Ccz*zp"3+3*sz* Zp* Zpp+CZ* Zppp;
Sz*zZp™4+6*cz*Zp™2* zpp+3*sz* Zpp 2+4* sz * Zp* Zprp+CZ* Zpppp;
z*fp-f*zp;

z*fpp-f*Zpp;

z* fppp+zp* fpp-fp* zpp-£*ZpEp;

z* fpppp+2* zp* fppp-2* fp* zppp-£* ZpppD;

Z*gp—z*g*Zp;

z*gpp-gp*Zp-2*g*Zpp;

z*gppp-3*gp*ZppP-2*g* Zppp;

Z*hp—3*h*zp;

z*hpp-2*hp*zp-3*h*zpp;

z*qp_4*q*zp;

[0,...

cz
SZ

H%Q@"%‘D‘S%%Qggﬁ@m

coshw

(cz*zp™4+6*sz*Zp 2*zpp+3*cz*Zzpp " 2+4*Ccz*Zzp* Zppp+sz* Zpppp) /24, . . .
(sz*zp"3+3*cz*zp*zppt+sz*zppp) /6, . . .

(cz*zp"2+sz*zZpp) /2, . ..
sz*zp, ...
cz 1;
sinhbryw = kKk*[ r/z"5/24, ...

q/z"~4/6, ...

h/z"3/2, ...

g/z™2, ...

f/z 1;

convw = diag([0, (rmd/a) "4, j* (rmmd/a) "3, - (md/a) "2, -j* (rmd/a) ,1]);
gw(:,2) = gw(:,2)+n*Mt*gw(:,1);

po = (X(1,:)*an*coshw+conv (X (1, :) *gw, sinhbryw) ) *convw;
e = pp(2:6);

z1l = (X(2, :)*an*coshw+conv (X (2, : ) *gw, sinhbryw) ) *convw;
zl = z1(2:6);

z2 = (X(3, :) *an*costmw+conv (X (3, :) *gw, sinhbryw) ) *convw;
z2 = 22(2:6);

z3 = (MP*am*coshw+conv (MP*gw, sinhbryw) ) *convw;

z3 = z3(2:6);

z4 = (MD*an*coshw+conv (MD*gw, sinhbryw) ) *convw;

z4 = z4(2:6);

25 = (vrm*an*coshw+conv (vim*gw, sinhbryw) ) *convw;

25 = z5(2:6);

z1l = z1l/pp(l);

22 = z2/pp(l);

z3 = z3/pp(l);

z4 = z4/pp(l);

z5 = 25/pp(l);

pp = pp/pp(l);

z1(2:5) = z1(2:5)-pp(2:5)*z1(1);

22(2:5) = 22(2:5)-pp(2:5)*22(1);

23(2:5) = 2z3(2:5)-pp(2:5)*z3(1);
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z4(2:5)
z5(2:5)

z4(2:5)-pp(2:5)*z4 (1) ;
25(2:5) -pp(2:5)*25(1) ;

elseif (n = 0)
taul = abs(xi)/(a-uxInd(1));
tau? = -abs(vi)/(a+uxind(1));
etl [taul™4/24 taul™3/6 taul”2/2 taul 1];
et2 [tau274/24 tau2”3/6 tau272/2 tau2 1];
tempvd = [gam;1;-1;0]/(1-Mx);
tempvEt = [gam;1; 1;0]/(1+Mx);
d = [X;MP;MD] *[gam;1;-1;0]/(1-Mx) ;
d(6) = vm*tampvd;
f = [X;MP;MD] *[gam;1; 1;0]/(1+Mx);
f(6) = vrm*tempvi;

pp = d(1)*etl-f(1)*et2;
z1l = d(2)*etl-£f(2)*et2;
z2 = d(3)*etl-f£(3) *et2;
z3 = d(4) *etl-f(4) *et2;
z4 = d(5) *etl1l-£(5) *et2;
25 = d(6)*etl-£f(6)*et2;
zl = z1/pp(l);
z2 = z2/pp(1);
z3 = z3/pp(l);
z4 = z4/pp(l);
z5 = z5/pp(l);
Pp = pp/pp(l);

z1(2:5) = 21(2:5)-pp(2:5)*z1(1);

2z2(2:5) = z2(2:5)-pp(2:5)*z2(1);

z3(2:5) = z3(2:5)-pp(2:5)*23(1);

24(2:5) = z4(2:5)-pp(2:5)*zd(1);

z5(2:5) = 25(2:5)-pp(2:5)*25(1);
ed
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dePdePdePdePdePdePdP

This MATLAB routine sets up the state space matrices to
approximate the PDE solution of the high speed axial
campressor WITH gaps. It uses 2nd order Pade
approximations for the time delays in the blade passages.

options
n - Harmonic
ac _ Measure after control flag, otherwise before

meas - Quantity to measure (1—Pres,2—Dens,3—Vx,4—Vt)
Control Vector
nPade - Pade approximation order (2 or 3)

B

nPade = 2 % Pade approximation order (2 or 3)
incamp = 0; % Incampressible approx (dtb=dtc=.0001)

if

nv+l;
nv+5;
5;

(incamp == 1)
alnd = 1000*alnd;
a2nd = 1000*a2nd;

ed

gam = 1.4;

gaml = 0.2;

Ak = zeros(nt,nt);

Bk = zeros(nt,10); Bkm = Bk; Bkp = Bk;
Ck = zeros(10,nt);

Dk = zeros(10,10); Dkm = Dk; Dkp = Dk;

Bku = zeros(nt,1l);

Dku = zeros(10,1):

Cky = zeros(1,10);

Dtuu = 2eros (Nblades+1 ,Nblades+1) ;
ql1=0;

HB
HD

= zeros(5,5);
= HB;

ullc = 0;
BLi = zeros(3,3);
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for k=1:Nblades

dx = xte(k)-xle(k);

dtb = ax/((ale(k)-vle(k))*cos(stagg(k)));

ejtb = exp(-n*j* (urownd (k) *dtb-tan (stagg (k) ) *dx) ) ;
dtc = dx/((vle(k)+ale(k))*cos(stagg(k)));

ejtc = exp(-n*j* (urownd (k) *dtc+tan (stagg (k) ) *ax) ) ;
dte = dx/ (vle(k)*cos(stagg(k)));

ejte = exp(-n*j* (urownd (k) *dte+tan (stagg (k) ) *dx) ) ;

HBo = HB;

HDo = HD;

ullco = ullc;

BlLio = BLi;

if (k<Nblades)
Gap_Matrices

end

if (nPade == 2)

Ak(1:2,1:2) = [0 1 ; -12/(dtb*dtb) -6/dtb];
Ak(3:4,3:4) = [0 1 ; -12/(dtc*dtc) -6/dtc);
Ak(5:6,5:6) = [0 1 ; -12/(dte*dte) -6/dte];
elseif (nPade == 3)
Ak(1:3,1:3) = [010 ;001 ; -120/dth™3 -60/dtb"2 -12/dtb];
Ak(4:6,4:6) = [010 ;001 ; -120/dtc™3 -60/dtc"2 -12/dtc);
Ak(7:9,7:9) = [010 ;001 ; -120/dte™3 -60/dte”2 -12/dte];
ed
Ak (nP,nP) = -(1/taup(k)+j*n*urownd(k));
Ak (nV,nV) = -(1/taud(k)+j*n*urownd(k)) ;

Ak(ng:nt,ng:nt) = -diag([ullc ullco ullco ullco ullco]);

Bk(nB,6) = 1;

Bk(nC,7) = 1;

Ek(ngE,8) = 1;

Bk(nP,9) = 1;

Bk(nv,10) = 1;

Bk(ng,1:5) = [0 HB(1,2:3) 0 HB(1,4)];
Bkp(ng,1:5) = HB(1,1)*{1 0 0 -BLi(1,3) 0];
Bku(ng, 1) = HB(1,5);

Dk(6,1:5) = [0 HD(1,2:3) 0 HD(1,4)];
Dkp(6,1:5) = HD{1,1)*[1 0 0 -BLi(1,3) 0);
Dku(6,1) = HD(1,5);

Bk(ng+1,1:5) = HBo(2,1)*[1 0 0 -BLio(1,3) 0];
Bkm(ng+1,1:5) = [0 HBo(2,2:3) ) HBo(2,4)];
Bku(ng+l,1) = HBo(2,5);

Dk(7,1:5) = [HDo(2,1) 0 0 -HDo(2,1)*BLio(1,3)+BLio(2,3) 0];
Dkm(7,1:5) = [0 HDo(2,2:3) 0 HDo(2,4)];
Dku(7,1) = HDo(2,5);
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Bk(ng+2,1:5) = HBo(3,1)*{1 0 0 -BLio(1,3) 0];
Bkm(ng+2,1:5) = [0 HBo(3,2:3) 0 HBo(3,4)];
Bku(ng+2,1) = HBo(3,5);
Dk(8,1:5) = [HDo(3,1) 0 0 -HDo(3,1)*BLio(1,3)+BLio(3,3) 0];
Dkm(8,1:5) = [0 HDo(3,2:3) 0 HDo(3,4)];
Dku(8,1) = HDo(3,5);
Bk(ng+3,1:5) = HBo(4,1)*[1 0 0 -BLio(1,3) 0];
Bkm(ng+3,1:5) = [0 HBo(4,2:3) 0 HBo(4,4)];
Bku(ng+3,1) = HBo(4,5);
Dk(9,1:5) = HDo(4,1)*[1 0 0 -BLio(1,3) 0];
Dkm(9,1:5) = [0 HDo(4,2:3) 0 HDo(4,4)];
Dku(9,1) = HDo(4,5);
Bk(ng+4,1:5) = HBo(5,1)*[1 0 0 -BLio(1,3) 0];
Bkm(ng+4,1:5) = [0 HBo(5,2:3) 0 HBo(5,4)];
Bku(ng+4,1) = HBo(5,5);
Dk(10,1:5) = HDo(5,1)*[1 0 0 -BLio(1,3) 0];
Dkm(10,1:5) = [0 HDo(5,2:3) 0 HDo(5,4)];
Dku(10,1) = HDo(%,5);
if (nPade == 2)
Ck(1l,2) = -12/dtb*ejtb;
ck(2,4) = -12/dtc*ejtc;
ck(3,6) = -12/dte*ejte;
elseif (nPade == 3)
Ck(1,1:3) = [240/dtb™3 0 24/dtb] *ejtb;
Ck(2,4:6) = [240/dtc”3 0 24/dtc] *ejtc;
Ck(3,7:9) = [240/dte”3 0 24/dte] *ejte;
end
ck(4,nP) = 1;
ck(5,nv) = 1;

Ck(6:10,ng:nt) = eye(5);
Cky(1,1:10) = [0 Zlrmmn(:,2:3) 0 Z1lrm(:,4) Zlxm(:,1) 0 0 O 0)};

E = diag([ejtb ejtc ejte 0 0]);
Dkm(1:5, :) = [Bkm(nB, :) ;  Bkm(nC, :) ; Bkm(nkE, :) ;
zeros(size(Bkm(1:2,:)))];
Dkm(1:5,:) = nPam*E*Dkm(1:5,:);
Dk(1:5, :) = [Bk (nB, :) : Bk (nC, :) : Bk (nE, :) ;
zeros (size(Bk(1:2,:)))];
Dk(1:5,:) = nPEm*E*Dk(1:5,:);
Dkp(1:5,:) = [Bkp(nB, :) ;  Bkp(nC, :) ;  BKkp(nE, :) ;
zeros(size(Bkp(1l:2,:)))];
Dkp(1:5,:) = nPEm*E*Dkp(1:5,:);
Dku(1l:5,1) = [0;0;0;0;0);
if (k<Nblades)
if (after_control == 1)
Dtuu(k+1,k+1) = qll;
else
Dtuu(k+1l,k+1) = 0;
erd
end
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0P 0P of

if (k==1)
kkl = 1;
kk2 = et+];
ki3 = 1;
kk4 = 6;

elseif ( k=’=Nblades)

kkl = (Nblades-2)*nt+apde+2;
kk2 = kkl+apde+3;
kk3 = (Nblades-2)*10+7;
kkd4 = kk3+8;
else
kkl = (k-2)*nt+apde+2;
kk2 = kkl+nt-1;
kk3 = (k-2)*10+7;
kk4 = kk3+9;
erd
%
% A tilde
%
if (k==1)
At (kkl:kk2,kkl:kk2) = Ak(1l:apde+l,l:apde+l);
elseif (k==Nblades)
At (kk1:kk2,kkl:kk2) = Ak([l:apde,ng+l:nt], [1:apde,ng+l:nt]);
else
At (kkl:kk2,kk1:kk2) = Ak;
ed
%
$ B tilde
%
if (k=-1)

Bt (kk1:kk2,kk3:kk4)
elseif (k==Nblades)
Bt (kk1:kk2, kk3 :kk4)
else
Bt (kk1:kk2, kk3 :kk4)
end
if (k1)
if (k==2)
Bt (kkl:kk2,kk3-6:kk3-1) = Bkm(1l:kk2-kkl1+1,1:6);
elseif (k==Nblades)
Bt (kk1:kk2,kk3-10:kk3-1) = Bkm([1l:apde,ng+l:nt],:);

Bk(l:apde+l,1:6);

Bk([l:apde,ng+1:nt}, [1:5,7:10]);

Bk;

else
Bt (kk1:kk2,kk3-10:kk3-1) = Bkm;
end
erd
if (k<Nblades)
if (k==1)
Bt (kk1:kk2, kkd4+1:kk4+10) = Bkp(l:apde+l,:);

elseif (k==Nblades-1)
Bt (kk1:kk2,kk4+1:kk4+9) = Bkp(:, [1:5,7:10]);
else
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Bt (kk1:kk2, kkd+1:kk4+10) = Bkp;
end
erd
%
% Bu tilde
%
if (k<Nblades)
if (k==1)
Btu(kkl:kk2,k+1)
else
Btu(kkl:kk2,k+1)
end
end
if (k1)
if (k==Nblades)
Btu(kkl:kk2, k)
else
Btu (kk1:kk2, k)
end
end

Lzeros (apde, 1) ;Bku(ng, 1) ];

[zeros(apde, 1) ;Bku(ng, 1) ;zeros(4,1)];

[zeros (apde, 1) ;Bku(ng+l:nt,1)];

[zeros (apde, 1) ;0;Bku(ng+l:nt,1)];

C tilde

oe of odf

if (k==1)

Ct (kk3:kk4,kkl:kk2)
elseif (k==Nblades)

Ct (kk3:kk4,kkl:kk2)
else

Ct (kk3:kk4,kkl:kk2) = Ck;
end

Ck(1:6,1l:apde+l);

Ck([1:5,7:10], [1:apde,ng+1:nt]);

Cy tilde

0@ oP P

if (k<Nblades)
if (k==1)
Cty(k+1,kk3:kk4) = Cky(1,1:6);
else
Cty(k+1,kk3:kkd) = Cky;
end
end

D tilde

9 0P dP

if (k==1)

Dt (kk3:kk4,kk3 :kk4)
elseif (k==Nblades)

Dt (kk3:kk4, kk3 :kk4)
else

Dt (kk3:kk4,kk3 :kk4)
end
if (k>1)

if (k==2)

Dt (kk3:kkd4,kk3-6:kk3-1) = -Dkm(1l:kk4-kk3+1,1:6);
elseif (k==Nblades)

eye(6)-Dk(1:6,1:6);

eye(9)-Dk([1:5,7:10],[1:5,7:10]);

eye(size(Dk) ) -Dk;
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Dt (kk3:kk4,kk3-10:kk3-1)
else
Dt (kk3:kk4,kk3-10:kk3-1)
end
erd
if (k<Nblades)
if (k==1)
Dt (kk3:kk4, kkd+1:kkd4+10)
elseif (k==Nblades-1)
Dt (kk3 :kk4, kkd+1 :kk4+9)
else
Dt (kk3 :kk4, kk4+1:kk4+10)
end
erd

~Dkm([1:5,7:101, :);

-Dkm;

-Dkp(1:6,:);
-Dkp(:, [1:5,7:10]);

-Dkp;

Du tilde

90 P o

if (k<Nblades)
if (k==1)
Dtu(kk3:kk4,k+1)
else
Dtu(kk3:kk4, k+1)
end
erd
if (k1)
if (k==Nblades)
Dtu (kk3:kk4, k)
else
Dtu (kk3:kk4, k)
end
ed

[0;0;0;0;0;Dku(6,1)1];

[0;0;0;0;0;Dku(6,1);0;0;0;01;

[{0;0;0;0;0;Dku(7:10,1)];

[0;0;0;0;0;0;Dku1(7:10,1)1;

ad

Fnd Condgap

At + Bt/Dt*Ct;
Btu + Bt/Dt*Dtu;
Cty/Dt*Ct;
Dtuu+Cty/Dt*Dtu;

A
B
C
D
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%
% Gap Matrices
%

% BUILD T and J MATRIX

M2 = mr2(k);

armtr5 = 1/ (1+gaml*M2*M2) ;

Gmn = diag([1 ; tt2nd(k)*gqemtr5 ; pt2nd(k) *gqrmtr5 ;

1/ (1+tan(beta2m(k))"2)]):

a = aznd(k);

Mx = w2nd (k) /a;

Mt = ut2nd(k) /a;

T=[(011/Mx0; 1-1 ((gam-1)*Mx) ((gam-1)*Mt) ; ...
(1-.5*M2*M2) (.5*gam*M2*M2) (gam*Mx) (gam*Mt) ;
0 0 Me/Mx™2 -1/MX];

T = Qm*T;

J=[011/™M0; 1/(gam*Mx*Mx) O 1/Mx O ; 010 2/Mt ; ...
aqrmtx5 -grmtr5 (gam-1) *Mx*cpmtr5 (gam-1) *Mt*qrmtr5];

JI = irwv(J);

JIbb = JI*hb;

vom = [0 0 O 0];
if mmeas <= 4
v (rmeas) = 1;
elseif mmeas == 5
Mr = M2;
vim = [1-.5*Mr"2 .5*gam*Mr”~2 gam*Mx gam*Mt]/(1l+(gam-1)/2*Mr"2);
aed
gll = vim*JIkb(:,1);

% BUILD Gap Matrices

if n~=0
Mt = (ut2nd(k)+urownd(k))/a;
dx = xle(k+l) xte(k);
kk = dx/ (1-Mx*Mx) ;
h0 = exp(j*n*Mt*kk*Mx) ;
y0 = n*n* (1-Mx*Mx-Mt*Mt) ;

ry0 = sqrt(y0);

cy0 = cosh(kk*ry0);
sy0 = sinh(kk*ry0) ;
st0 = j*n*Mt;

dy0 = 2*st0*md/a;

eol = exp(-st0/Mx*kk) ;

ecl = exp(-j*n*Mt*dx/Mx) ;

ectay = [ecO0 -mmd/ (Mx*a) *&X] ;

htay = [h0 kk*Mx*rnd/a*h0];

ctay = [cy0 (sy0/ryO*kk*3*n*Mt*rnd/a)];

srtay = [sy0/ry0 j*n*Mt*rnd/a* (cy0/y0*kk-sy0/(y0*xry0))];
vvll = conv (htay,ctay);

vv2l = 1/gam*(vvll(1l:2)-ectay);

ttem(l,1) = (n*n*Mx*cy0-st0*ry0*syD-n*n*Mx*eo0)/ (y0O-n*n);
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ttem(1,2) = (-ttem(1,1)*dy0+n*n*Mx*sy0*.5*kk/ry0*dy0-md/a*ry0*sy0-. ..
.5*st0/ry0*sy0*dy0-st0*cy0*.5*kk*dy0+. . .
n*n*Mx*rnd*kk/ (a*Mx) *eo0) / (yO-n*n) ;

vv3l = conv (htay, ttem) /gam;

ttem(l,1) = (-stO*cyO+Mx*ry0*sy0+st0*eo0)/(y0-n*n);

ttem(l,2) = (-ttem(l,1)*dy0-rnd/a*cy0-st0*sy0*.5*kk/ry0*dy0+. ..
.5*Mx/ry0*sy0*dy0+Mx*cy0* . 5*kk*dyO+rnd/a*eo0-. . .
md*kk/ (Mx*a) *st0*eo0) / (yO-n*n) ;

vv4l = conv (htay, ttem) *j*n/gam;

w22 = ectay;

wil3 = -gam*conv(conv([j*n*Mt md/a], htay),srtay);

w23 = wl3/gam;

ttem(l,1) = (stO*stO0*cy0-n*n*Mx*st0*sy0/ry0-n*n*Mx*Mx*eo0) / (yO-n*n) ;

ttem(1,2) = 0;

vv33 = conv(htay, ttem);

ttem(1l,1l) = (-Mx*cyO+st0*sy0/ry0+Mx*eo0)/(y0-n*n);

ttem(1,2) = 0;

w43 = conv(htay,conv([j*n*Mt rnd/a], ttem))*j*n;

vvl4 = gam*j*n*Mx*conv (htay, srtay) ;

w24 = vvld/gam;

ttem(l,1) = (-stO0*cyO+n*n*Mx*sy0/ry0+st0*eo0)/(y0-n*n);

ttem(l,2) = (-ttem(1,1)*dy0-rmd/a*cy0-st0*sy0*.5*kk/ry0*dy0+. . .
n*n*Mx*cy0*.5*kk/y0*dy0-n*n*Mx*sy0*.5/ (yO*ry0) *dy0+. . .
rmd/a*eo0-st0*rnd*kk/ (Mx*a) *eo0) / (yO-n*n) ;

vv34 = conv(htay, tteam) *j*n*Mx;

ttam(l,1) = (-n*n*Mx*Mx*cy0+n*n*Mx*st0*sy0/ry0+st0*st0*eo0)/ (yO-n*n);

ttem(1l,2) = (-ttem(l,1)*dy0-n*n*Mx*Mx*sy0*.5*kk/ry0*dy0+. ..
n*n*Mx*rnd/a*sy0/ry0+n*n*Mx*j*n*Mt *cy0* . 5*kk/y0*dy0-. . .
n*n*Mx*j*n*Mt*sy0*.5/ {y0*ry0) *dy0+2*j*n*Mt *rnd/a*eo0+. . .
n*n*Mt*Mt*rmd*kk/ (a*Mx) *eo0) / (yO-n*n) ;

vv44 = conv(htay, ttem);

else

dx = xle(k+l)-xte(k);

kk = &/ (1-Mx*Mx) ;

ectay = [1 -rmmd/ (Mx*a)*dx];

coshtay = [1 0];

sinhtay = [0 kk*rnd/a];

vvll = coshtay;
vv2l = coshtay/gam-ectay/gam;
vv3l = -sinhtay/gam;
vvdl = [0 0];
yv22 = ectay;
vvl3 = -gam*sinhtay;
vv23 = -sinhtay;
vv33 = coshtay;
wd3 = [0 0];
vil4 = [0 0];
vv24 = [0 0];
w34 = [0 0];
vv4d4d = coshtay;

ed

Wc = [vvll(1) 0 vvl3(1l) vvld (1)
vv21(1) vv22(1) wv23(1l) vv24(1)
vwi3l(l) O vv33(1) vv34(1)

268



vvdl (1) 0 w43 (1) wwid(1l)];
Ws = [wvvll(2) 0 w13 (2) vvld(2)
w21 (2) vw22(2) ww23(2) vw24(2)
vv31(2) 0 vv33(2) wvv34(2)
vvdl (2) 0 wv43(2) vwidd(2)];

% BUILD ML MATRIX

ML = nrl(k+l);

grmtr5 = 1/(l+gaml*ML*M1) ;

Gm = diag([1 ; ttlnd(k+l)*cpmtr5 ; ptlnd(k+l)*qrmtr5]);

Mx = uwxind(k+1) /alnd(k+1);

Mt utlnd(k+1) /alnd(k+1) ;

L=1[011/Mx0 ; 1 -1 ((gam-1)*Mx) ((gam-1)*Mt) ; ...
(1-.5s*Mm*M1) (.5*gam*M1*Ml) (gam*Mx) (gam*Mt)];

L = Gn*L;

% BUILD P3r MATRIX

ML = mrl(k+l);

Ut = utlnd(k+l);
Ux = wiInd(k+1);
Mx = Ux/alnd(k+1);
Mt = Ut/alnd(k+l);

grmtrS = 1/(1+(gam-1) /2*M1*M1) ;

pdlak = pdla(k+1)/(1+tan(betalm(k+1))"2);

P31 = -amega(k+1) * (ptlnd(k+1) *qumtr5* (1-.5*M1L*ML) -psind (k+1) ) +. ..
(pt1nd (k+1) -psind (k+1) ) *pdlm(k+1) *.5*M1;

P32 = -amega(k+1) *ptlnd(k+1) *qrmtr5*.5*gam*ML*Ml1-. . .
(pt1nd (k+1) -pslnd (k+1) ) *pdlm(k+1) *.5*M1;

P33 = -amega(k+1) *ptlnd (k+1) *qrmtrS5*gam*Mx-. . .
(pt1nd (k+1) -psInd(k+1) ) * (-

pdlak*Mt/ (Mx*Mx) +pdim(k+1) *uxind (k+1) /ulnd(k+1) ) ;

P34 = -amega(k+1)*ptlnd (k+1) *qrmtrS5*gam*Mt-. ..
(ptlnd (k+1) -

psind (k+1) ) * (pdlak/Mx+pdlm(k+1) *utInd (k+1) /ulnd(k+1) ) ;

P3r = [P31 P32 P33 P34]/taup(k+l);

% BUILD Dr MATRIX

pdaak = pdaa(k+1)/(1+tan(betalm(k+1))"2);
Dr = pdam(k+1)*[-.5*M1 .5*M1 uxlnd(k+1)/ulnd(k+1)
utlnd(k+1) /ulnd(k+1) 1+...
pdaak* [0 0 -Mt/(Mx*Mx) 1/Mx];
Dr = -Dr/taud(k+1); % This is because MVC was definad to be negative
% with repect to how I am using it.

$ BUILD BT MATRIX

ML = vte(k)/ate(k);

aqmtr5 = 1/(1+(gam-1)/2*M1L*M1) ;

Gm = diag(({1 ; tt2nd(k)*qmtr5 ; gam*pte(k)*qrmtr5 ; 1]);

BT = [(1-1/M1) (1+1/Ml) 1 0 ; (gam-1)*(1-Ml) (gam-1)*(1+MLl) -1 O ;
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(1-M1) (1+M1) MI*M1/2 O ; 0 O O 1];
BT = Gn*BT;

% BUILD BL MATRIX

Ml = vle(k+l)/ale(k+l);

gmtxsS = 1/(1+(gam-1) /2*M1*M1) ;

Gmn = diag((1 ; ttlnd(k+l)*qmtr5 ; gam*ple(k+1) *qrmtrS]);

BL = [(1-1/M1) (1+1/Ml) 1 ; (gam-1)*(1-Ml) (gam-1)*(1+Ml) -1 ;
(1-M1) (1+M1) MI*ML/2];

BL = Gn*BL;

% BUILD Kn, In, Mm, Pn, Dn MATRICES

Uc
Us
BLi
Hnc
Hcl

[BLA\L; P3r;Dr] *Wc* [T\BT JIkb];

[BLAL; P3r;Dr] *Ws* [T\BT JIkb];

inv (BL) ;

Uc(1,1)*eye(4);

[-1 0 00 O;

-Uc(2,1) Uc(1,1) 000

-Uc(3,1) 0 Uc(1,1) 0O

-Uc(4,1) 0 0 Uc(1,1) O

-Uc(5,1) 0 0 0 Uc(1,1)];

Hc2 = [[-1;0;0;0;0] Uc(:,2:5)];

Hc = Hcl*Hc2;

Hsl = [0 0 0 0 O;

-Us(2,1) Us(1,1) 00 O

-Us(3,1) 0 Us(1,1) 0 O
0
)
)

-Us(4,1) 0 0 Us(1,1)
-Us(5,1) 0 0 0 Us(1,1
Hs2 = [[0;0;0;0;0] Us(:,2:5
Hs = Hcl*Hs2+Hs1*Hc2;
ulle = Uc(1,1);
ulls = Us(1,1);
Hc = Hc/ulls;
Hs = Hs/ulls;
ullc = ullc/ulls;
ulls = 1;
HB = Hc-Hs*ullc;
HD = Hs;
%
constant _numerator=1
IB = Hc;
HD = zeros(size(Hs));
E
Z = T\BT;
Zlrrmm = vim*Z;

1:
1;
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%

$ End Condgap

%

k=Nblades+1;

Exit Matrices;

dx = xte(Nblades)-xle(Nblades) ;

dtb = dx/((ale(Nblades)-vle(Nblades) ) *cos (stagg {Nblades)) ) ;
ejtb = exp(-n*j* (urownd (Nblades) *dtb-tan (stagg (Nblades) ) *dx) ) ;

kkl = Nblades*nt-5+1;

kk2 = kk1+3;

kk3 = Nblades*10-5+1;

kk4 = KKk3;

At (kkl:kk2,kkl:kk2) = [0 0 0 -pp(5);
100 -pp(4);
010 -pp(3);
001 pp(2)];

Bt (kk1:kk2,kk3-9:kk3-5) = [0 z1(5) z2(5) 0 z3(5);
0 z1(4) z2(4) 0 z3(4);
0 z1(3) z2(3) 0 z3(3);
0 z1(2) z2(2) 0 z3(2)];

Btu(kkl:kk2,Nblades+1l) = [z4(5) ; z4(4) z4(3) ; z4(2)];

Ct(kk3,kkl:kk2) = (00O 1];
Dt (kk3,kk3) = (1]; eye
Dt (kk3,kk3-9:kk3-5) = -[0 z1(1) z2(1) 0 z3(1)]; %-Dk
Dtu (kk3,Nblades+1) = [z4(1)];
Bt (kkl-apde-4+nB-1,kk3) = [1];
Dt (kk3-9,kk3) = -[ejtb]*nPpm; $-Dk
if (after_control == 1)

Dtuu (Nblades+1,Nblades+1) = gll;
exd

Cty(1l:Nblades,kk3) = zeros(Nblades,1);
vioim = [0 0 0 O);
if mMmeas <= 4
vrm(rmeas) = 1;
elseif mmeas ==

Mr = mr2{Nblades) ;
Mx = ux2nd(Nblades) /a2nd (Nblades) ;
Mt = ut2nd(Nblades) /a2nd(Nblades) ;

vim = [1-.5*Mr"2 .5*gam*Mr"~2 gam*Mx gam*Mt]/(1+(gam-1) /2*Mr~2);
ad
Cty (Nblades+1,kk3) = vom*Y(:,1);

Cty (Nblades+1,kk3-8) = vim*Y(:,2);
Cty (Nblades+1,kk3-7) = vim*Y(:,3);
Cty (Nblades+1,kk3-5) = vrm*Y(:,4);

Inlet_Matrices;
dx = xte(l)-xle(l);
dtc = dx/((vle(l)+ale(1l))*cos(stagg(l)));
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ejtc = exp(-n*j* (urownd (1) *dtc+tan(stagg(l) ) *ax) ) ;
dte = d&x/(vle(l)*cos(stagg(l)));
ejte = exp(-n*j* (urownd (1) *dte+tan(stagg(1l)) *ax) ) ;

kkl = Nblades*nt;
kk2 = kk1+3;
kk3 = Nblades*10-3;
kkd4 = kk3+2;
At (kkl:kk2,kkl:kk2) = [0 1 0 0;
0 0 1 0;
0 0 0 1;
-pp(5) -pp(4) -pp(3) -p(2)];
Bt (kk2,1:5) = [1 00 -wl3 0];
Btu(kk2,1) = [-s11];

Ct(kk3:kk3+1,kkl:kk2) = [z1(5) z1(4) z1(3) zl(2);
22(5) z2(4) z2(3) z2(2)];
(z3(5) z3(4) 23(3) z3(2)]/taup(l);
[z4(5) z4(4) z4(3) z4(2)]/taud(l);

At (nP, kk1:kk2)
At (nV, kk1:kk2)

Ct(kk3+2,kkl:kk2) = [z5(5) z5(4) z5(3) z5(2)];
Dt (kk3,kk3) = [1]; $eye
Dt(kk3,1:5) = -[z1(1) 0 O (-z1(1)*wl3+w23) O0]; $-Dk
Dtu(kk3,1) = [ -z1(1)*s1l+s21 ];
Dt (kk3+1,kk3+1) = (11; %eye
Dt (kk3+1,1:5) = ~-[22(1) 0 0 (-z2(1)*wl3+w33) 0]; %-Dk
Dtu(kk3+1,1) = [ -22(1)*s11+s31 1;
Bt (nP,1:5) = [2z3(1) 0 0 -23(1)*wl3 0)/taup(l);
Btu(nP,1) = [ -z3(1) *sll+pijlc ]/taup(l);
Bt(nv,1:5) = [z4(1) O O -24(1)*wl3 0] /taud(1) ;
Btu(nv,1) = [ -z4 (1) *sll+dijlc ]/taud(1);
Dt (kk3+2,Kkk3+2) = (1]); %eye
Dt (kk3+2,1:5) = -[25(1) 0 0 (-25(1)*wl3 ) 0]; %$-Dk
Dtu(kk3+2,1) = { -z5(1) *sl1 1;
Bt (nC,kk3) = (1];
Bt (nE, kk3+1) = (11;
Bt (nE, kk3+2) = [0];
Dt(2,kk3) = -[ejtc] *nPpm; %$-Dk
Dt (3,kk3+1) = -[ejte] *nPam; %$-Dk
if (after_control == 1)

Dtuu(l,1) = qll;
ed

Cty(1l,kk4) = 1;
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